
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3152548, IEEE
Access

VOLUME XX, 2021 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000. Digital Object Identifier 10.1109/ACCESS.2021.Doi Number

HEVC Video Encryption with High
Capacity Message Embedding by Altering
Picture Reference Indices and Motion
Vectors
Tamer Shanableh1, Senior member, IEEE
1American University of Sharjah, Sharjah, UAE.

Corresponding author: Tamer Shanableh (e-mail: tshanableh@aus.edu).

ABSTRACT A high capacity message embedding in encrypted HEVC video is proposed in this paper. The

challenges addressed in this paper include keeping the encrypted video compliant with standardized decoders,

correctly decrypting the video and finally, correctly extracting the message bits. The message embedding is

achieved by altering the values of reference picture indices and motion vectors which results in scrambled video.

Sixteen picture references are used in this work and therefore, combined with alteration of motion vectors, a

maximum of six message bits can be embedded per coding unit. Motion vectors are altered by swapping their x

and y components and/or changing their signs. This is achieved with full compliance with the HEVC video syntax.

To extract message bits, an authorized decoder builds a classification model per video sequence and uses it for

predicting the true values of the reference indices and motion vectors. As such, message bits are extracted and

the video is correctly reconstructed to its unscrambled state. Coding units that result in misclassification are

identified at the encoder and excluded from message embedding. This results in slightly lower embedding rates

but ensures accurate video reconstruction. Using nine video sequences of various resolutions that are compressed

using four different quantization parameters, the experimental results revealed that the true average message

embedding rate is 2.7 bits per coding unit or 173 kbit/s. This is achieved with accurate video reconstruction at the

expense of increasing the bitrate of the encoder by 3%. Comparison with existing work shows that the proposed

solution is superior in terms of embedding capacity whilst reducing the excessive bitrate of the encoder.

INDEX TERMS Data embedding, Machine learning, Video coding, Video encryption

I. INTRODUCTION

To authenticate digital video and ensure its confidentiality

and integrity, video encryption [1] and data embedding

techniques are used [2]. Video encryption can be used to

increase the difficulty of piracy in digital videos and to protect

privacy [3], [4]. In all cases, authorized users can restore the

encrypted video to its original state [5]. Additionally, with

cloud storage becoming feasible and popular, customers might

wish to encrypt their videos prior to outsourcing. This is

needed as data security is a major obstacle for cloud adoption.

For tampering detection, a cloud server manager can embed

labeling and authentication data into encrypted video [6].

One approach to protect digital video is through encrypting

the entire video standard cipher algorithms such as the

Advanced Encryption Standard (AES) [7], however, the

encrypted video will be no longer be compliant with

standardized decoders which results in prohibiting post

processing techniques like video transcoding and

watermarking. Thus, video encryption is typically archived by

altering selective syntax elements such as the sign of DCT

coefficients [8], altering intra prediction modes [9] or altering

motion vector difference signs [10].

Video encryption can be combined with data embedding in

AVC and HEVC videos as reported in [11], and [12]. The work

in [5] proposed a comprehensive solution for encryption and

data embedding by altering intra prediction modes, motion

vector differences and quantized DCT coefficients of AVC

videos. In [13] CABAC bin string substitution is used to embed

data in partially encrypted AVC videos. The encryption is

performed by altering various syntax elements such that the

receiver extract embedded data in the encrypted domain using

only the data-hiding key. An improved version of

aforementioned solution was reported in [14] where encryption

and data embedding did not affect the bitrate and maintained

the full bitstream compliance.

Video encryption combined with data embedding is also

reported for HEVC videos. A pioneering work was reported in

[15] where visual protection of video is achieved by

encrypting HEVC-CABAC bin strings whilst maintaining

compatibility with standardized decoders and without causing

an increase in video bitrate.

In [16], motion vector differences, intra modes and

quantized DCT coefficients of HEVC videos are altered to

achieve these two tasks. An enhanced version of this work was

https://doi.org/10.1109/ACCESS.2022.3152548

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3152548, IEEE Access

VOLUME XX, 2021 1

reported in [17] where the data embedding rate is increased

without resulting in excessive video bitrate.

In this work, we perform partial encryption to HEVC videos

by altering picture reference indices and motion vectors. To the

Such alteration results in scrambled video by means of

encryption. Again, to ensure compatibility with standardized

HEVC decoders, standard cipher algorithms are not employed

in this work.

The major advantage of the proposed work is that we embed

up to six message bits in each coding unit of the video. This is

made possible through altering the picture reference indices

and the motion vectors at the syntax level. As a result, the video

becomes decodable by standardized decoders yet scrambled.

We show that by using relevant feature variables, a machine-

learning model can be built to unscramble the video and extract

message bits.

To the best of our knowledge, video encryption and data

embedding by altering picture references and motion vectors,

as opposed to motion vector differences, is novel. Likewise,

the operations at the decoder’s side to extract the embedded

data and reconstruct the video by predicting the original values

of the picture references and motion vectors using machine

learning is also novel.

The rest of this paper is organized as follows. The overview

of the proposed system is presented in Section 2. The proposed

message embedding solution is introduced in Section 3. This is

followed by the proposed message extraction solution in

Section 4. Sections 5 and 6 present the proposed feature

extraction and classification solutions. The experimental

results are presented in Section 7 and the conclusion is

presented in Section 8.

II. SYSTEM OVERVIEW

 In the proposed system, message bits are embedded into a

compressed HEVC video by means of altering the reference

index of Coding Units (CUs) and their motion vectors. The

embedding takes place at the bit stream level and therefore the

locally decoded images of the encoder remain intact. However,

the generated video bit stream has altered syntax elements and

therefore decoding it results in a scrambled video. As such, the

output of the proposed encoding process is an encrypted bit

stream that embeds message bits. Full information about

HEVC syntax and semantics are found in [18]. The proposed

encoding arrangement is further illustrated in Figure 1. The

details of message embedding and the alteration of the

reference indices and motion vectors are presented in Section

3.

A standardized video decoder will be able to decode the bit

stream into a scrambled video. This task is archived without

crashing the decoder as the generated bit stream is standard

compliant in terms of syntax. On the other hand, in the

proposed decoding solution, a classification model is

employed to predict the correct values of the reference indices

and motion vectors. As such, the embedded message bits are

extracted and the video can be reconstructed correctly to its

unscrambled state. This arrangement is further illustrated in

Figure 2.

The proposed message extraction solution is presented in

Section 4 and the proposed classification solution is presented

in Sections 5 and 6.

III. PROPOSED MESSAGE EMBEDDING

To embed message bits in a CU, the following motion

information is altered; Vx, Vy and CU reference index (i.e

ref_idx). Two bits can be embedded in Vx and Vy and 4 bits

can be embedded in ref_idx as follows. For message bits 00,

Vx and Vy remain as is. For bits 01, Vx and Vy are swapped

and the first vector component is multiplied by -1, which

results in (-Vy,Vx). For bits 10, both vector components are

negated, which results in (-Vx,-Vy). And lastly, for bits 11, Vx

and Vy are swapped and the second vector component is

multiplied by -1, which results in (Vy,-Vx). This is

arrangement is presented in Equation (1):

𝐴𝑙𝑡𝑒𝑟𝑒𝑑 𝑀𝑉 = {

(𝑉𝑥,𝑉𝑦), 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑏𝑖𝑡𝑠=00
(−𝑉𝑦,𝑉𝑥), 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑏𝑖𝑡𝑠=01

(−𝑉𝑥,−𝑉𝑦),𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑏𝑖𝑡𝑠=10
(𝑉𝑦,−𝑉𝑥), 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑏𝑖𝑡𝑠=11

 (1)

These altered MV values are chosen to maximize the Euclidean

distance between them and at the same time be reproducible at

the decoder for message extraction.

Additional 4 bits are embedded by altering the CU reference

index according to the message bits as shown in Equation (2):

𝐴𝑙𝑡𝑒𝑟𝑒𝑑 𝑅𝑒𝑓_𝑖𝑑𝑥 = {

1, 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑏𝑖𝑡𝑠=0000
2, 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑏𝑖𝑡𝑠=0001

…
15, 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑏𝑖𝑡𝑠=1110
16, 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑏𝑖𝑡𝑠=1111

 (2)

The full arrangement of message embedding is listed in Table

1. Notice that in the third column a dash is used in message bits

to emphasize that the first 2 bits are a result of MV alteration

and the rest of the bits are a result of ref_idx alternation.

TABLE 1.

Altering CU reference indices and MVs for message embedding.

MV

alteration

Reference index

alteration

Message

bits

(Vx, Vy) ref_idx = 1 00-0000
 ref_idx = 2 00-0001
 … …
 ref_idx = 15 00-1110
 ref_idx = 16 00-1111

(-Vy, Vx) ref_idx = 1 01-0000
 ref_idx = 2 01-0001
 … …
 ref_idx = 15 01-1110
 ref_idx = 16 01-1111

(-Vx, -Vy) ref_idx = 1 10-0000
 ref_idx = 2 10-0001
 … …
 ref_idx = 15 10-1110
 ref_idx = 16 10-1111

(Vy, -Vx) ref_idx = 1 11-0000
 ref_idx = 2 11-0001
 … …
 ref_idx = 15 11-1110
 ref_idx = 16 11-1111

The alteration of the MVs and reference indices are carried

out as a post process at the encoder. This means that the alerted

values are stored in the output bit stream but not used for

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3152548, IEEE Access

VOLUME XX, 2021 1

motion estimation and composition. Consequently, an

authorized decoder has three tasks to carry out. Firstly, it will

predict the values of the unaltered MVs and unaltered reference

indices; secondly, it will extract the embedded bits, and finally

it will reconstruct the video. These steps are elaborated upon

in the sections to follow.

Only inter-coded CUs with MVs can embed 6 message bits

in this proposed solution. Intra-coded CUs and skipped CUs

are not used for message embedding. However, inter-coded

CUs with nil MVs can still be used to embed 4 bits in the

reference index. The maximum number of message bits per

CU type is listed in Table 2.

TABLE 2.

Maximum number of message bits per CU.
CU Type Bits

in

MV

Bits in

reference

index

Total

bits

Inter-coded CU with non-nil MV 2 4 6

Inter-coded CU with nil MV 0 4 4

Skipped CU 0 0 0

Intra-coded CU 0 0 0

Figure 1. System overview of proposed message embedding

and encryption solution.

Figure 2. System overview of proposed message extracting

and decryption solution.

IV. PROPOSED MESSAGE EXTRACTION SOLUTION

 To extract the message bits, the process of Figure 3 is

followed. Expressly, the ref_index and Vx and Vy are decoded

for a given CU. Four variants of Vx and Vy are created,

namely; (Vx,Vy), (-Vy,Vx),(-Vx,Vy) and (Vy,-Vx). Feature

vectors are formed using each of these variants with 16

different reference pictures. The resultant 64 feature vectors

are classified, only the feature vector belonging to the

unaltered MV and unaltered reference index will result in

positive classification. Consequently, 6 message bits are

extracted according to the MV variant and decoded ref_idx as

illustrated in Figure 3. The 2 message bits hid in MVs are

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3152548, IEEE Access

VOLUME XX, 2021 1

extracted by counting the number of 900 counterclockwise

rotations between the classified MV and the decoded one.

Figure 3. Data extraction flowchart for one coding unit.

For completion, a simple numerical example of data

embedding and extraction is as follows. Assume that a message

segment contains the following bits: 110101. Further assume

that the motion vector of the underlying coding unit is (-1,2)

with a picture reference index of 1. The first 2 message bits are

embedded by altering the motion vector value to (2,1)

according to Equation 1. The latter 4 message bits are

embedded by altering the picture reference index from 1 to 5

(which is the decimal value of 0101). An authorized decoder

receives this information and generates 4 alternatives of the

received motion vector (i.e (2,1)) which are {(2,1),(-1,2),(-2,-

1),(1,-2)} according to Equation 1 above. Each motion vector

is then combined with picture references indices 1 to 16 to

generate 64 feature vectors as elaborated upon in Section V.

The feature vector belonging the combination of the motion

vector (-1,2) and picture reference index 1 results in positive

classification as elaborated upon in Section VI. The number of

900 counterclockwise rotations between the classified MV (-

1,2) and the decoded one (2,1) is 3, which is 11 in binary. The

decoded picture reference index is 5 which is 101 in binary.

The authorized decoder knowns that the number of bits

embedded in reference indices are 4 hence it represents 5 as

0101. Combining both sets of bits, the sequence 110101 is

extracted at the authorized decoder.

Figure 4. Flowchart of proposed feature extraction approach

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3152548, IEEE Access

VOLUME XX, 2021 1

Additionally, as a result of this classification process, an

authorized decoder identifies the unaltered MVs and unaltered

reference indices and therefore be able to correctly decode and

reconstruct the video sequence.

In practical situations, the message to be embedded can be

prefixed by its length in bits, such that an authorized decoder

will know when to stop extracting message bits. Another

approach is to append the message with an end-of-message

symbol known to the authorized decoder. These extra bits are

embedded using the same proposed solution of altering motion

vectors and picture reference indices. The proposed embedding

solution is HEVC syntax-friendly, hence, a non-authorized

decoder can still decode the video but the content will be

scrambled as mentioned in Section III above.

V. PROPOSED FEATURE EXTRACTION SOLUTION

 In this proposed solution, feature vectors are formed using

16 reference frames and 4 variants of MVs as explained

previously. Thus, the total number of feature vectors per CU is

4*16=64. Only one of these 64 feature vectors is labeled as

positive and the rest are labeled as negative. The process of

generating these feature vectors is illustrated in Figure 4.

The Feature variables used to construct a feature vector are

based on bit stream information and reconstructed CUs.

a. Feature variables from received bit stream:

 Reference index differences between the received ref_idx

and the ones belonging to the top and left CUs. A smaller

difference is preferred.

 MV Phase differences between the received MV and the

co-located MV of the previous frame, the MV of the top

CU and the MV of the left CU. The difference is

discretized into eight categories each of which is 45

degrees. A smaller phase difference is preferred.

Summation of variance of Vx and Vy components of the

received MV and its surrounding top and left MVs [19]. A

smaller summation of variance is preferred.

b. Feature variables form reconstructed CUs:

 Sum of pixel values outside the range of 0 to 255. A

smaller summation is preferred.

 Pixel statistics computed from reconstructed CUs

including entropy, average and variance.

 Sum of pixel difference in the x-direction and the y-

direction [20].

 Sum of pixel differences across the borders with top and

left CUs.

VI. CLASSIFICATION AND CU MARKING

Again, the feature variables introduced in Section 5 are

calculated for each combination of reference index and MV

variant, this results in a 16x4=64 feature vectors per coding

unit. Only one of these feature vectors is labeled as positive

and the rest are labeled as negative. Let 𝐹𝑉𝑟𝑖,𝑣𝑗

(𝑛)
 to denote the

feature vector of the nth coding unit with reference index i, and

motion vector variant j, where i=1..16 and j=1..4. The feature

matrix X for a video sequence is represented as:

𝑋 =

[

 𝐹𝑉𝑟1,𝑣1

(1)

…

𝐹𝑉𝑟16,𝑣4

(1)

…
…

𝐹𝑉𝑟1,𝑣1

(𝑁)

…

𝐹𝑉𝑟16,𝑣4

(𝑁)
]

 (3)

The corresponding label vector can be represented as a vector

of Boolean expressions, if the expression evaluates to true then

the corresponding feature vector is labeled as positive and vice

versa. The label vector is represented in Equation 4:

𝐿 =

[

 (𝑟1

(1)
== 𝑡𝑟𝑢𝑒_𝑟𝑒𝑓_𝑖𝑑𝑥) 𝑎𝑛𝑑 (𝑣1

(1)
== 𝑡𝑟𝑢𝑒_𝑚𝑣_𝑖𝑑𝑥)

…

(𝑟16
(1)

== 𝑡𝑟𝑢𝑒_𝑟𝑒𝑓_𝑖𝑑𝑥) 𝑎𝑛𝑑 (𝑣4
(1)

== 𝑡𝑟𝑢𝑒_𝑚𝑣_𝑖𝑑𝑥)
…
…

(𝑟1
(𝑁)

== 𝑡𝑟𝑢𝑒_𝑟𝑒𝑓_𝑖𝑑𝑥) 𝑎𝑛𝑑 (𝑣1
(𝑁)

== 𝑡𝑟𝑢𝑒_𝑚𝑣_𝑖𝑑𝑥)
…

(𝑟16
(𝑁)

== 𝑡𝑟𝑢𝑒_𝑟𝑒𝑓_𝑖𝑑𝑥) 𝑎𝑛𝑑 (𝑣4
(𝑁)

== 𝑡𝑟𝑢𝑒_𝑚𝑣_𝑖𝑑𝑥)]

(4)

In this work, we use a sequence-dependent approach to

machine learning in which that first 10% of the data is used for

training and the rest for testing. This is important as the

generated model parameters are more relevant to the

underlying video content in comparison to a sequence-

independent classification solution where training is performed

using other video sequences. In concept, the training can be

repeated every K frames to accommodate for scene changes.

For example, the first 10 frames of every 100 video frames can

be used for training or retraining the model.

This classification arrangement results in very good

accuracy as reported in details in the experimental results

section. However, if the classification is not 100% accurate,

then the decoder will reconstruct some CUs using the wrong

reference pictures and/or wrong MVs. Because of the nature of

motion compensation, such an error can propagate to future

pictures and result in visible distortions.

To avoid such a deficiency, we repeat the same classification

arrangement of the decoder at the encoder’s side. This is doable

as both the encoder and the decoder can use the first 10% of

the data for model generation, thus generating the same model

weights without having to communicate them. As such, the

encoder can use the classification model to identify which

coding units are incorrectly classified and exclude them from

message embedding. Therefore, only coding units that can be

correctly classified at the decoder are used for message

embedding. This raises the question of how to indicate to the

decoder that a coding unit is excluded from message

embedding. One simple approach is to change the quantization

parameter of such a coding unit by incrementing or

decrementing it by one unit. By alternating between an offset

of -1 and +1, the overall bitrate and PSNR of the video remains

very similar. The decoder can then exclude such coding units

from the message extraction process and perform an accurate

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3152548, IEEE Access

VOLUME XX, 2021 1

reconstruction of all coding units. Clearly, by excluding coding

units from message embedding, the embedding rate decreases

slightly with the advantage of correct and accurate video

reconstruction at the decoder. The details of such a solution

and its effect on bitrate, PSNR and embedding rate is presented

in details in the experimental results section.

Lastly, in this work we use Random Forests (RFs) as our

machine-learning tool. In training and testing, 16 trees are

grown. The RF classifier is one of the most used machine

learning algorithms as it is known to produce excellent

classification results even without hyper-parameter tuning.

VII. EXPERIMENTAL RESULTS

 In the experimental results to follow, nine video sequences

are used. The sequences has various spatial resolutions as listed

in Table 3. The sequences are encoded using HEVC HM13.0

model [21], the total number of frames per sequence is 100, the

first frame is intra coded and the rest of the frames are P-

frames. Sixteen reference frames are used and the CU size is

fixed to 16x16. The videos are coded with four quantization

parameters of {22, 27, 32 and 37}. In HEVC video coding, it

is recommended to assess proposed solutions using these 4 QPs

which result in low, medium-low, medium-high and high

bitrates. This reveals the suitability of the proposed solution on

4 different categories of video bitrates.

The message to be embedded is a sequence of ones and zeros

randomly generated with a uniform distribution. The sequence

of ones and zeros is a binary representation of any encrypted

or clear message content to be embedded in coded videos.

The classification accuracies and F-scores of the proposed

solution are listed in Table 4. The classification accuracy is

calculated using Equation 5:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
∗ 100% (5)

Where TP and TN stand for true positive and true negative,

and FP and FN stand for false positive and false negative. The

F-score is computed using Equation 6 where Precision =

TP/(TP+FP) and Recall = TP/(TP+FN):

𝐹𝑆𝑐𝑜𝑟𝑒 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (6)

TABLE 3

Video sequences used in the experimental results and their

resolutions.

ID Sequence WxH f/s

1 RaceHorses 416x240 30

2 BlowingBubbles 416x240 50

3 BasketballPass 416x240 50

4 RaceHorses 832x480 30

5 BQMall 832x480 60

6 BasketballDrill 832x480 50

7 ParkScene 1280x720 24

8 Kimono1 1280x720 24

9 Cactus 1280x720 50

TABLE 4

Classification accuracy and F-scores of the proposed solution

 Classification accuracy

ID QP22 QP27 QP32 QP37

1 98.5% 98.6% 98.7% 98.6%

2 91.7% 90.5% 89.8% 90.3%

3 94.8% 95.5% 96.7% 97.4%

4 99.1% 99.0% 98.8% 98.5%

5 95.5% 94.4% 94.4% 94.7%

6 82.3% 85.3% 90.4% 92.4%

7 97.3% 97.6% 97.3% 96.0%

8 99.0% 98.9% 98.5% 97.5%

9 94.0% 95.2% 95.0% 94.2%

Avg 94.7% 95.0% 95.5% 95.5%

(a) Classification accuracy

 F-score

ID QP22 QP27 QP32 QP37

1 98.5% 98.5% 98.7% 98.6%

2 89.8% 89.6% 89.4% 89.2%

3 96.1% 96.6% 97.0% 96.8%

4 99.1% 98.9% 98.7% 98.5%

5 95.9% 95.5% 95.2% 95.4%

6 83.7% 85.6% 89.7% 91.9%

7 97.0% 97.4% 97.0% 95.7%

8 99.0% 98.7% 98.0% 96.8%

9 94.3% 94.5% 94.5% 93.3%

Avg 94.8% 95.0% 95.4% 95.1%

(b) F-scores

The average classification accuracies and F-scores are

around 95%. The average classification accuracies and F-

scores vary across video sequence, however, there is no clear

indication that they constantly increase or decrease as the QP

varies. This gives an indication that the proposed solution is

suitable for different QP levels.

On the other hand, the QP has a clear effect on the

percentage of CUs carrying message bits as shown in Table 5.

Higher QPs result in higher percentages of skipped CUs and

therefore reduce the percentage of CU carrying message bits.

The reported percentages of CUs carrying bits are 66.5%,

53.4%, 40.6% and 29.2% for QPs of 22, 27, 32 and 37

respectively. The percentage of CUs carrying message bits is

also affected by the percentage of intra coded-CUs because

such CU types do not carry MVs. Likewise inter-coded CUs

with nil MVs carry less message bits as previously illustrated

in Table 2. As a result, the average message bits per CU is 3.99,

3.2, 2.44 and 1.75 bits for QPs of 22, 27, 32 and 37

respectively.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3152548, IEEE Access

VOLUME XX, 2021 1

TABLE 5

Average percentage of CUs carrying message bits and

average number of message bits per CU.
 QP22 QP27

ID
CUs with

msg (%)
bits/CU

CUs

with

msg (%)

bits/CU

1 75.7% 4.54 70.1% 4.21

2 88.2% 5.29 72.2% 4.33

3 47.0% 2.82 39.7% 2.38

4 62.7% 3.76 63.1% 3.78

5 61.5% 3.69 46.1% 2.76

6 60.3% 3.62 43.8% 2.63

7 74.2% 4.45 48.5% 2.91

8 59.5% 3.57 50.3% 3.02

9 69.2% 4.15 46.6% 2.8

Avg 66.5% 3.99 53.4% 3.20

(a) QPs 22 and 27

 QP32 QP37

ID
CUs with

msg (%)
bits/CU

CUs with

msg (%)
bits/CU

1 59.9% 3.6 47.8% 2.86

2 51.3% 3.08 33.6% 2.01

3 34.2% 2.05 28.6% 1.72

4 52.2% 3.13 36.7% 2.2

5 34.8% 2.09 25.2% 1.51

6 30.6% 1.84 22.1% 1.33

7 30.0% 1.8 16.6% 1

8 39.4% 2.37 27.4% 1.65

9 33.2% 1.99 24.5% 1.47

Avg 40.6% 2.44 29.2% 1.75

(b) QPs 32 and 37

When applying the CU marking solution at the encoder as

proposed in Section 6, the CUs with MVs that cannot be

correctly classified at the decoder are excluded from data

embedding. This arrangement results in two consequences.

First, all reference indices and MVs of CUs carrying message

bits are correctly classified at the decoder and therefore the

classification accuracy becomes 100%. Second, since some

CUs are excluded from carrying message bits, the average

number of message bits per CU is reduced as reported in Table

6. The reduction in message bits varies according to the

original classification accuracy. For instance in Table 6, the

classification accuracy of Seq. 4 is 98.9% and therefore the

average message bits are reduced from 3.22/CU to 3.18/CU.

Whereas in Seq. 6 the classification accuracy was 87.6% thus,

the reduction in message bits is higher (from 2.36/CU to

1.9/CU).

TABLE 6

Average message bits per CU with and without CU marking

at the encoder.

 Without CU marking With CU marking

ID
Avg. msg

bits/CU
Class %

Avg. msg

bits/CU
Class %

1 3.80 98.6% 3.75 100%

2 3.68 90.6% 3.29 100%

3 2.24 96.1% 2.15 100%

4 3.22 98.9% 3.18 100%

5 2.51 94.8% 2.38 100%

6 2.36 87.6% 1.90 100%

7 2.54 97.0% 2.47 100%

8 2.65 98.5% 2.58 100%

9 2.60 94.6% 2.40 100%

Avg 2.84 95.2% 2.68 100%

In terms of embedding rate, the average number of message

bits per second depends on the number of message bits per CU,

spatial and temporal resolutions of the video. The resolutions

of the video sequences are reported in Table 3. With the

proposed embedding algorithm that incorporates altering CU

reference indices and MVs, the message embedding is on

average 173Kbit/s as reported in Table 7.

TABLE 7

Average number of message bits per CU and corresponding

average number of message bits per second averaged over

four QPs

 Embedding bits

ID Frames / sec Bits/CU Kbit/s

1 30 3.75 42.8

2 50 3.29 62.6

3 50 2.15 41.0

4 30 3.18 145.2

5 60 2.38 217.9

6 50 1.90 144.8

7 24 2.47 222.1

8 24 2.58 232.0

9 50 2.40 450.0

Avg. 2.68 173.16

The effect of encryption and CU marking at the encoder’s

side in terms of PSNR and bit rate are examined in Tables 8

and 9. The difference in PSNR is computed as (PSNR of

original video – PSNR of encrypted video). Since encryption is

carried out as a post process at the encoder then the locally

decoded images at the encoder are unaffected. Rather, the

effect of encryption will show at the decoder side. Therefore

encryption does not have an effect on the PSNR of the video at

the encoder’s side, and consequently, the PSNR results in

Table 8 are computed based on the proposed solution of

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3152548, IEEE Access

VOLUME XX, 2021 1

marking the CUs at the encoder. The effect of this arrangement

on the PSNR is reported in Table 8. As can be seen, since the

change in QP alternates between -1 and +1, the effect on PSNR

is negligible and can result in higher PSNR values which are

represented with a negative sign in the table.

TABLE 8

PSNR drop at encoder because of marking CUs to avoid

using them for message embedding.

 PSNR drop (at encoder) [dB]

ID QP22 QP27 QP32 QP37

1 0.006 -0.008 -0.018 -0.042

2 0.001 -0.016 -0.021 -0.031

3 -0.011 -0.008 -0.027 -0.007

4 0.006 0.000 -0.014 -0.037

5 -0.005 -0.012 -0.032 -0.044

6 -0.003 0.012 -0.031 -0.020

7 -0.013 -0.023 -0.045 -0.062

8 -0.006 -0.033 -0.076 -0.138

9 0.000 -0.006 -0.014 -0.034

Avg. -0.003 -0.010 -0.031 -0.046

On the other hand, encrypting the video for message

embedding has an effect on the bitrate of the video at the

encoder’s side. In fact, the encoder carries out a number of

tasks including message embedding, video encryption and

marking CUs. The effect all these tasks on the PSNR was

presented in Table 8 and its effect on video bitrate is presented

in Table 9. The excessive bitrate is computed as shown in

Equation 7:

𝑒𝑥𝑐𝑒𝑠𝑠𝑖𝑣𝑒 𝑏𝑖𝑡𝑟𝑎𝑡𝑒 =
#𝑏𝑖𝑡𝑠(𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑣𝑖𝑑𝑒𝑜)−#𝑏𝑖𝑡𝑠(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑉𝑖𝑑𝑒𝑜)

#𝑏𝑖𝑡𝑠(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑉𝑖𝑑𝑒𝑜)
∗ 100 (7)

As reported in the table, the excessive bitrate is QP and

sequence dependent. As the QP increases, the bitrate decreases

and therefore the effect of altering the MVs and reference

indices becomes more profound. Therefore, the average

excessive bitrates per QP as reported in Table 9 are 1.29%,

2.09%, 3.31% and 5.06%. The average excessive bitrate

resulting from the proposed encoding solution is also reported

in the table in Kbit/s, which is on average 67.2 Kbit/s. In

comparison to the average embedding rate of 173 Kbit/s

reported in Table 7, the average excessive bit rate indicates the

efficiency of the proposed solution.

The rate-distortion curves for all sequences are plotted in

Figure 5. The BD-Rate [22] of the proposed solution is also

reported to compare the rate-distortion performance of the

proposed solution versus normal HEVC coding.

The corresponding BD-Rates for the nine sequences are:

3.57%, 1.88%, 2.97%, 3.46%, 2.98%, 3.0%, 3.3%, 7.2% and

1.8% respectively. The average BD-Rate over all sequences is

3.36%. The BD-Rate results indicate that regular HEVC

coding saves 3.36% bits over the proposed solution for the

same quality.

TABLE 9

Percentage bitrate increase at encoder because of encryption

and marking CUs.

 Excessive bitrate (at encoder) [%] Avg. excessive bits

ID QP22 QP27 QP32 QP37 Kbit/s

1 1.3 2.3 4.0 7.5 32.3

2 0.4 1.1 2.1 2.4 15.2

3 1.1 2.2 3.0 5.2 20.6

4 1.3 2.0 4.1 7.1 119.8

5 0.8 2.1 2.7 4.5 88.4

6 1.0 2.1 3.4 5.9 60.8

7 1.2 1.3 2.8 4.3 55.7

8 3.9 4.9 5.5 5.6 113.5

9 0.4 0.9 2.3 3.0 98.0

Avg. 1.3 2.1 3.3 5.1 67.2

In this work, the fact the data embedding is performed by

altering syntax elements (MVs and picture reference indices)

as a post process resulted in embedding rates higher than the

reported excessive bitrates. If the alteration is not implemented

as a post process then a modified MV will result in high

prediction error in the motion compensation process as it is a

modified version of the best MV selected by the motion

estimation algorithm. However, this is not the case as the

altered MVs in this work are not used in the motion

compensation process. This results in a scrambled video at the

decoder side, and the unscrambling can be performed using

machine learning by authorized decoders to find the values of

the unaltered MVs (the same argument applies to the picture

reference indices). In other words, the message bits are implied

at the decoder by examining the differences between the

received and the classified MVs, hence the high embedding

capacity. Additionally, in video coding, MVs are compressed

by subtracting them from previously encoded motion vectors,

this results in motion vector differences which go through

variable length encoding. Neighboring MVs are known to be

correlated and therefore altering the values of MVs results in

higher MV differences and thus a higher number of coding bits.

This is manifested in the reported excessive bitrate.

Figure 5. BD-Rate curves for proposed solution versus

HEVC coding.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3152548, IEEE Access

VOLUME XX, 2021 1

The proposed solution generates promising results in terms

of the embedding capacity and the excessive overhead at the

encoder’s side. However, these advantages are achieved at the

expense of increasing the computational time required for

model generation. This is because the proposed solution has 64

different alteration options per coding unit as explained

previously, therefore, each coding unit has 64 features vectors

which results in an increased model generation time as reported

in Table 10. The table also lists the classification time at the

decoder’s side which includes classifying 64 combinations of

reference frames and motion vectors. The results are computed

on a laptop with Intel Core i7-37400QM, 2.7-GHz CPU with a

16-GB DDR3 RAM.

It is shown in the table that the average model generation

time varies according to the spatial resolution of the video. It

is also shown that within the same spatial resolution, the time

varies as the percentage of coding units used for message

embedding change from one sequence to the other. For

instance, in Table 2 above, the percentage of CUs with

message bits for sequences 1, 2 and 3 are around 63%, 61%

and 37% respectively. Therefore sequence 3 has the lowest

model generation time. At the decoder side, the 64

combinations of picture references and motion vectors are

classified to find the correct values used at the encoder. The

time required for this arrangement is also reported in table.

Depending on the spatial resolution of the video, the average

reported times are 6.1s, 23.8s and 60.2s.

TABLE 10

Model generation time and classification time at decoder

Seq.

ID
WxH

Model

generation

time (sec)

Decoder

classification

time (sec)

1 416x240 9.2 7.7

2 416x240 7.7 6.5

3 416x240 4.5 4.0

Avg. 7.1s 6.1s

4 832x480 46.4 37.0

5 832x480 25.3 20.4

6 832x480 16.6 14.1

Avg. 29.4s 23.8s

7 1280x720 93.7 65.3

8 1280x720 105.1 70.7

9 1280x720 63.8 44.6

Avg. 87.5s 60.2

Overall Avg. 41.3s 30.0s

Note that since message extraction need not be performed in

real-time, therefore we do not claim that the proposed solution

is suitable for real-time applications.

In terms of comparison with existing work, the authors in

[16] and [17] reported a message embedding solution in HEVC

encrypted videos. In both solutions, bits are embedded in

HEVC quantized transform coefficients. In [16], the reported

embedding rate is 3.3 Kbit/s and the reported increase in bitrate

the encoder side is 7.8%. Provided that periodic I-frames are

used, a negligible drop in PSNR was reported. In [17], the

reported message bits in HEVC videos is 4.86 Kbit/s without

any increase in bitrate. The comparison with the proposed

work is summarized in Table 11. It should be noted that the

work in [16] and [17] have low complexity as the encryption

and embedding is implemented using a procedure that uses the

modulus operator and simple arithmetic/logic operations,

likewise the extraction is implemented using simple

conditional statements.

TABLE 11

Comparison with existing solutions in terms of message bits/s

and excessive bitrates.
 Proposed Ref.[16] Ref.[17]

Kilo Bits per second 173 3.3 4.86

Excessive bitrate 2.94% 7.8% 0%

In all cases, our proposed work has high embedding

capacity, results in accurate video reconstruction at the

decoder’s side and does not require periodic I-frames. All of

which are achieved at an expense of 3% excessive bitrate at the

encoder’s side.

TABLE 12

Comparison with existing solutions in terms of message bits

per coding unit and drop in PSNR.

 Bits/coding unit PSNR drop[dB]

Proposed 2.68 0

Ref. [5] 0.75 0.51

Ref. [14] 1.64 0.47

Ref. [13] 0.05 0.2

Ref. [23] 0.003 0.08

Additionally, Table 12, summarizes the message embedding

rates and drop in PSNR as reported in [5], [13], [14] and [22].

All these solutions embed data in encrypted videos and were

summarized in the introduction. The work in [23] encrypts the

sign bits of nonzero quantized coefficients and motion vector

differences. Consequently, data hiding is performed in the

encrypted domain by modifying absolute level of quantized

DCT coefficients. As listed in the table, the proposed solution

has a clear advantage in terms on embedding capacity (as

detailed in Section III and the experimental results presented

in Tables 5,6 and 7) and at the same time it results in accurate

reconstruction of the video without loss in PSNR at the decoder

as detailed in Section VI.

VIII. CONCLUSION

This paper proposed a message embedding solution in

encrypted HEVC videos. An encrypted video remained

compliant with standardized HEVC decoders. The message

embedding is achieved by altering the values of reference

picture indices and motion vectors of CUs. When altering the

values of motion vectors and reference indices, it was shown

that a maximum of six message bits can be embedded per CU.

Motion vectors were altered by swapping their Vx and Vy

components and/or changing their signs. Message bits were

extracted using an authorized decoder by generating a

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3152548, IEEE Access

VOLUME XX, 2021 1

classification model and using it for predicting the true values

of the reference indices and motion vectors. Consequently,

message bits were extracted correctly whilst correctly

reconstructing the video to its unscrambled state. Coding units

that resulted in misclassification were identified at the encoder

and excluded from message embedding. Such an arrangement

resulted in lower embedding rates and ensured accurate

reconstruction of the video. In the experimental results, nine

video sequences are coded using a HEVC encoder with four

different QPs. It was shown that the average message

embedding rate is 2.7 bits per CU which corresponds to 173

Kbit/s. This is achieved at the expense of increasing the bitrate

of the encoder by 3% in addition to the time required to

generate the classification model per video sequence.

Comparison with existing work revealed that the proposed

solution is superior in terms of embedding capacity whilst

reducing the excessive bitrate of the encoder with the extra

requirement of model generation time.

REFERENCES

[1] T. Stütz and A. Uhl, “A survey of H.264 AVC/SVC

encryption,'' IEEE Transactions on Circuits Systems and Video

Technology, 22(3), pp. 325_339, March 2012.

[2] Y. Tew, K. Wong, R.CW. Phan, et al., “Separable

authentication in encrypted HEVC video,” Multimedia Tools

and Applications, 77, 24165–24184, 2018.

[3] M. Farajallah, W. Hamidouche, O. Déforges and S. E.

Assad, "ROI encryption for the HEVC coded video contents,"

2015 IEEE International Conference on Image Processing

(ICIP), 2015, pp. 3096-3100.

[4] M. A. Taha, N. Sidaty, W. Hamidouche, O. Dforges, J.

Vanne and M. Viitanen, "End-to-End Real-Time ROI-Based

Encryption in HEVC Videos," 2018 26th European Signal

Processing Conference (EUSIPCO), 2018, pp. 171-175

[5] P. Su, T. Tsai and Y. Chien, “Partial frame content

scrambling in H.264/AVC by information hiding,” Multimedia

Tools and Applications, 76(5), pp. 7473–7496, March 2017.

[6] D. Xu, S. Su, “Reversible data hiding in encrypted images

with separability and high embedding capacity,” Signal

Processing Image Communication, vol. 95, 2021

[7] "NIST, Advanced Encryption Standard (AES), Federal

Information Processing Standard 197", Nov. 2001.

[8] Y. Wang, M. O'Neill, and F. Kurugollu, “A tunable

encryption scheme and analysis of fast selective encryption for

CAVLC and CABAC in H.264/AVC,'' IEEE Trans. Circuits

Syst. Video Technol., vol. 23, no. 9, pp. 1476_1490, Sep. 2013.

[9] B. Boyadjis, C. Bergeron, B. Pesquet-Popescu, and F.

Dufaux, “Extended selective encryption of H. 264/AVC

(CABAC)-and HEVC-encoded video streams,'' IEEE

Transactions on Circuits Systems and Video Technology,

27(4), pp. 892_906, April 2017.

[10] Y. Wang, M. O'Neill and F. Kurugollu, "The improved

sign bit encryption of motion vectors for H.264/AVC,"

Proceedings of the 20th European Signal Processing

Conference (EUSIPCO), Romania, pp. 1752-1756, 2012.

[11] Y. Yao, W. Zhang, and N. Yu, “Inter-frame distortion drift

analysis for reversible data hiding in encrypted H.264/AVC

video bitstreams,'' Signal Process., vol. 128, pp. 531_545,

November 2016.

[12] M. Long, F. Peng, and H. Y. Li, “Separable reversible data

hiding and encryption for HEVC video,'' J. Real-Time Image

Process., 14(1), pp. 171_182, January 2018.

[13] D. Xu, R. Wang, Y. Zhu, “Tunable data hiding in partially

encrypted H.264/AVC videos,” Journal of Visual

Communication and Image Representation, vol. 45, 2017.

[14] D. Xu, R. Wang, Y. Shi, “An improved scheme for data

hiding in encrypted H.264/AVC videos,” Journal of Visual

Communication and Image Representation, vol. 36, 2016.

[15] Z. Shahid and W. Puech, "Visual protection of HEVC

video by selective encryption of CABAC binstrings", IEEE

Trans. Multimedia, 16(1), pp. 24-36, January 2014.

[16] D. Xu, “Commutative encryption and data hiding in

HEVC video compression,'' IEEE Access, vol. 7, 2019.

[17] B. Guan, D. Xu and Q. Li, “An Efficient Commutative

Encryption and Data hiding Scheme for HEVC Video,” IEEE

Access, April 2020.

[18] ISO/IEC 23008-2:2013: Information technology—high

efficiency coding and media delivery in heterogeneous

environments—Part 2: High efficiency video coding (2013)

[19] E. Peixoto, T. Shanableh and E. Izquierdo, “H.264/AVC

to HEVC Video Transcoder based on Dynamic Thresholding

and Content Modeling, ” IEEE Transactions on Circuits and

Systems for Video Technology, 24(1), January 2014

[20] T. Amestoy, A. Mercat, W. Hamidouche, D. Menard and

C. Bergeron, "Tunable VVC Frame Partitioning Based on

Lightweight Machine Learning," in IEEE Transactions on

Image Processing, vol. 29, pp. 1313-1328, 2020.

[21] I.-K. Kim, K. D. McCann, K. Sugimoto, B. Bross, W.-J.

Han and G. J. Sullivan, "High Efficiency Video Coding

(HEVC) Test Model 13 (HM13) Encoder Description," JCT-

VC O1002, 15th meeting of Joint Collaborative Team on

Video Coding of ITU-T SG 16 WP 3 and ISO/IEC JTC 1,

November 2013.

[22] G. Bjentegaard, "Calculation of average PSNR

differences between RD-curves (VCEG-M33)", VCEG

Meeting (ITU-T SG16 Q.6), Apr. 2-4 2001

[23] D. Xu, "Data hiding in partially encrypted HEVC video,"

ETRI Journal, 42(3), March, 2020.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3152548, IEEE Access

VOLUME XX, 2021 1

Tamer Shanableh a senior member of

the IEEE and a professional engineer.

Was born in Scotland, UK in 1972. He

studied at the University of Essex where

he received his Ph.D. in electronic

systems engineering in 2002 and his MSc

in software engineering in 1998.

 He then worked as a senior research

officer at the University of Essex for

three years, during which, he collaborated with BTexact on

inventing video transcoders. He then joined Motorola UK

Research Labs and contributed to establishing a new profile

within the ISO/IEC MPEG-4 known as the Error Resilient

Simple Scalable Profile. He joined the American University of

Sharjah in 2002 and is currently a professor of computer

science. During the summer breaks, Dr. Shanableh worked as

a visiting professor at Motorola Labs in five different years. He

spent his sabbatical leave as a visiting academic at the

Multimedia and Computer Vision and Lab at Queen Mary,

University of London, U.K. Dr. Shanableh authored more than

80 publications and has six patents. His research interests

include digital video processing and pattern recognition.

