
Abstract— Data embedding in videos has several important 
applications including Digital Rights Management, preserving 
confidentiality of content, authentication and tampering detection. 
This paper proposes a novel data embedding solution in scrambled 
videos by rotating motion vectors of predicted macroblocks. The 
rotation of motion vectors and the propagation of motion 
compensation error serve another purpose, which is video 
scrambling. A compliant decoder uses machine learning to 
counter-rotate the motion vectors and extract embedded message 
bits.  To achieve this, the decoder uses a sequence-dependent 
approach to train a classifier to distinguish between macroblocks 
reconstructed using rotated and un-rotated motion vectors. In the 
testing phase, motion vectors belonging to a classified macroblock 
are compared against the reviewed rotated motion vectors and the 
message bits are extracted. Furthermore, to guarantee accurate 
classification at the decoder, a constrained encoding approach is 
proposed in which data embedding is restricted to motion vectors 
that can be correctly counter-rotated at the decoder. The proposed 
solution is referred to as Classifying Rotated Vectors or CRVs for 
short. Experimental results revealed that scrambled videos can be 
reconstructed correctly without quality loss with a bitrate increase 
at the encoder of around 6% and an average data embedding rate 
of 1.68 bits per MB. 
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I. INTRODUCTION

     Data embedding in videos has various important 
applications including Digital Rights Management (DRM), 
embedding of authentication data and owner identity 
information. Data embedding is also used for tampering 
detection and ownership declaration of digital content.  
    Data embedding can be applied to compressed images and 
videos directly or to compressed and scrambled/encrypted 
images and videos. In this research domain, encryption refers 
to scrambling of visual content or compression of information. 
It typically does not refer to encryption in the computer security 
sense. The scrambling or encryption of digital content has 
several applications such as privacy protection of specific 
regions in surveillance images and videos, and privacy 
protection for images and videos stored on the cloud.  
    Data embedding in the compressed domain without 
scrambling or encryption has a drawback of  increasing the 
image/video size, degrading their visual quality or both. On the 
other hand, data embedding in the scrambled or encrypted 
domain has the advantage of lossless recovering of both 
embedded data and cover image/video. 
Examples of data embedding in compressed video domain 
include modulating quantization step sizes [1], modulating 
Motion Vectors (MVs) [2] and modulating coding parameters 
of image blocks [3].  

    In this work, on the other hand, we focus on data embedding 
in the scrambled domain. Such an approach can be applied to 
both images and videos. For instance, the authors in [4] 
proposed data embedding in encrypted images where data is 
hidden by flipping three LSBs of pixels in a given pixel block. 
A block smoothness measure is used to extract the data and 
recover the image. The work in [5] implemented a system in 
which scrambling and data embedding are simultaneous. The 
DC coefficients, statistical properties of AC coefficient block, 
and length of zero AC coefficients are utilized for scrambling 
and data embedding. Additionally, in [6], the authors proposed 
to reserve a room from images prior to encryption to embed data 
using a traditional reversible data-hiding algorithm. The hidden 
data is recoverable and image reconstruction is error-free. 
    Likewise, data embedding can be implemented in 
compressed and scrambled/encrypted video. For instance, the 
work in [7] proposed to embed data in the encrypted H.264 
videos to preserve the confidentiality of the video. Data 
embedding in the encrypted video is performed using codeword 
substitution, thus, the original video content does not need to be 
known to the data hider. In [8], a histogram shifting technique 
is used for data embedding. The receiver can decrypt the video 
and extract the data without affecting the quality of the video. 
On the other hand, if the data is not extracted then the video can 
be decrypted and reconstructed at an acceptable quality.  
    In the literature, some research work proposed application-
oriented data embedding solutions, for example in [9]; video 
regions of interest are identified and scrambled for privacy 
protection purposes. This is achieved by encrypting the modes 
of intra prediction and encrypting the signs of nonzero Discrete 
Cosine Transform (DCT) coefficients within the area of 
interest. The work in [10] proposed a solution based on 
blockchain for digital rights management. The solution 
provides trusted content protection and content violation 
traceability where DRM license and usage control can be 
retrieved form the blockchain. In addition, the work in [11] 
proposed a confidentiality preserving solution of videos where 
data is embedded directly in partially encrypted H.264 videos 
by substituting bin strings of the context-adaptive binary 
arithmetic coder.  
    In this work, we extend the existing literature by proposing a 
machine learning approach to data embedding in the scrambled 
video domain. In brief, we propose to embed messages by 
rotating motion vectors of the cover video. This is applied to the 
bitstream of the video, hence does not affect the motion 
compensation process of video encoding. At the receiver, the 
video can be decoded correctly, however the visual content is 
scrambled and therefore the watching experience is unpleasant, 
which is the sole objective of video scrambling. To unscramble 
the video and extract the embedded data, we propose a machine 
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learning solution that distinguishes between the correctly 
reconstructed macroblocks and those reconstructed using 
rotated MVs. 
    It is known that such solutions require model generation or 
training. We propose a video-dependent solution where the first 
part of the video is used for model generation. Such an approach 
was successfully implemented in speeding up High Efficiency 
Video Coding (HEVC) transcoding [13]. On the other hand, 
video-independent training was successfully implemented for 
Coding Unit (CU) split prediction in HEVC videos [12]. 
    The video-independent approach has the advantage of being 
able to scramble the whole cover video, yet it has a 
disadvantage of one-size-fits-all, which is not guaranteed to 
work with all video contents. The video-dependent approach on 
the other hand, has the advantage of being specific for the 
underlying cover video and therefore guaranteed to generate a 
more suitable model, yet it has the disadvantage of using the 
first part of the video for model generation. Therefore, the first 
part of the video will not carry embedded data. 
Another difference between the two approaches is that video-
independent model generation is implemented off-line and 
video-dependent model generation is implemented on-line at 
the decoder’s side.  
    In our work, the decoder receives a motion vector with 
embedded data, the decoder will then generate 4 candidate 
motion vectors with all possible rotations. If a macroblock has 
2 MVs then 16 combinations are generated. The 4 or 16 motion 
vectors are then used for motion compensation and 4 or 16 
candidate macroblocks are reconstructed. Only one of these 
macroblocks belongs to the original un-rotated motion vector. 
At this point, the decoder can use the classification model to 
decide which out of the 4 or 16 macroblocks is the one 
belonging to the un-rotated motion vector. As such, the 
classified motion vector can be compared to the one received in 
the scrambled video and by doing so, the embedded data is 
extracted.  Once the original, un-rotated motion vectors are 
classified, the video can be decoded into its unscrambled state. 
    The rest of this paper is organized as follows. Section II 
introduces the proposed data embedding solutions. Section III 
introduces the proposed feature extraction and model 
generation. Section IV explains the deployment of the trained 
model for message extraction. Section VI lists the configuration 
of the classification tools used. Section VII presents detailed 
experimental results and Section VIII concludes the paper. 

II. PROPOSED DATA EMBEDDING 
 The proposed solutions of this paper are implemented using 
two video coding standards, namely, Moving Picture Experts 
Group (MPEG2) and High Efficiency Video Coding (HEVC) 
video coding standards. In video coding a raw video sequence 
is compressed into a specific bit stream format by the encoder. 
The decoder on the other hand decompresses bit streams back 
into raw video sequences with reduced quality due to 
quantization. The encoder performs Motion Estimation (ME) 
between video frames which results in a sequence of Motion 
Vectors (MVs). ME can be applied between a current frame and 
previous frames, future frames or both. This results in forward, 
backward and bi-directional predictions respectively. The ME 
is followed by Motion Compensation (MC), transform coding, 

quantization and Variable Length Coding (VLC). While the 
decode performs variable length decoding, inverse 
quantization, inverse transformation and motion compensation 
using the received motion vectors.      

In the proposed system, the message bits are hidden by 
rotating MVs by 0, ∏/2, ∏ or 3∏/2 degrees. With these four 
angles, 2 message bits can be hidden in one MV. The rotation 
of a MV is given in (1): 
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Where 𝜃𝜃 is the rotation angle, 𝑉𝑉𝑥𝑥

(𝑗𝑗), 𝑉𝑉𝑦𝑦
(𝑗𝑗) are the x and y 

components of the original 𝑗𝑗𝑡𝑡ℎ MV, and   𝑉𝑉𝑥𝑥
′(𝑗𝑗) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑉𝑉𝑦𝑦

′(𝑗𝑗) are the 
x and y components of the rotated MV. The 4 rotating angles 
guarantee that the x and y components of MVs can be 
represented by integer types. Therefore, counter rotation will 
not result in data loss. 
    Some MBs are bi-directionally predicted and contain forward 
and backward motion vectors (FMV and BMV). In such cases, 
2 message bits can be embedded in each MV, resulting in 4 
message bits per MB. However, in video compression 
algorithms where MVs are not allowed to exceed image 
boundaries, only one bit can be embedded per MV belonging to 
MBs at the image boundaries, the embedding can be in either 
the horizontal or  the vertical component of the MV. This results 
in a single hidden bit per a predicted MB and 2 hidden bits per 
a bidirectional MB.  
    The rotation of the MVs is implemented as a post-process at 
the video encoder to make sure that the rotated MVs are not 
used in the motion compensation loop of the encoder. 
Therefore, by counter-rotating the MVs at the decoder, the 
video can be reconstructed and displayed correctly.  
Clearly, MBs that are intra-coded and MBs with zero MVs are 
not used for message embedding. 
    Without counter-rotation of the MVs at the decoder, the 
video can be correctly decoded without crashing, however, the 
visual content will be scrambled. The reason is that motion 
compensation is performed using rotated MVs and therefore, 
video images are reconstructed incorrectly. Additionally, this 
error will propagate throughout the video because of the nature 
of motion compensation.  

III. PROPOSED SYSTEM TRAINING 
     The decoder receives rotated MVs based on embedded 
message bits. For the decoder to be able to counter-rotate the 
MVs, the decoder needs to classify MVs into rotated/un-
rotated.  Therefore, we propose a machine learning approach to 
classify MVs into rotated/ counter-rotated and thereafter extract 
the embedded message bits.  

The system training is sequence-dependent and uses the first 
10% of the video sequence to generate the training model. Such 
an approach has been successfully used in the context of 
expediting the process of video transcoding and video encoding 
as reported in [13] and [14].  

This implies that the first 10% of the video sequence is not 
used for message embedding. If scrambling is needed for the 



first 10% of the video, then a prearranged MV rotation approach 
can be used such as rotating all MVs with 180 degrees for 
instance. Any other reversible video scrambling technique can 
be used as well for the first part of the video.  

The proposed system training is illustrated in the process flow 
diagram of Fig. 1. Having received the macroblocks (MBs) and 
their MVs, the training system at the decoder, rotates the MVs 
using the four angles and uses the rotated MVs to reconstruct four 
candidate MBs using Motion Compensation (MC). In case a MB 
has 2 MVs, like forward and backward MVs, then the total 
number of candidate MBs after MV rotations is 16. This is so as 
each MV can be rotated using four angles, and the total number 
of MV combinations for two MVs is 16. 
     In all cases, Feature Vectors (FVs), are computed from each 
candidate MB and its rotated MV(s) to form a feature matrix.  
Since the first 10% of the video is used for model generation, the 
un-rotated MVs are known and are therefore used as the ground 
truth in model generation. A binary classifier then learns 
whether a candidate MB corresponds to the true un-rotated MV 
or not.  Details of feature extraction are given later in this 
section and details of the classification tools used and their 
configurations are given in Section VI. 
 

 
Fig. 1.  Process flow diagram of proposed sequence-dependent system training. 

       For message extraction, as will be explained in the next 
section, the angle between the received MV and the MV 
classified as un-rotated is used to extract the message bits. 
    The features used in the proposed machine learning solution 
are listed in Table I. 
Feature variables 1-4 are related to differences between the 
phases of the candidate MV and the surrounding ones. A lower 
difference indicates that the candidate MV is likely to be the 
true un-rotated MV. Feature 5 is the count of clip violation after 
adding the prediction error to one of the motion compensation 
locations using different candidate MVs. The violations are 
summations outside the pixel range of [0,255]. Lower number 
of clip violations indicate that the candidate MV is likely to be 
the true un-rotated MV. Feature 6 is an indication of edge 
strength after motion compensation using different candidate 
MVs. The true un-rotated MV is expected to reconstruct the MB 
correctly with clear edges. Lastly, features 7-11 are statistics 
from the reconstructed MB using different candidate MVs. 
Adding the prediction error to different motion compensation 
locations is expected to generate reconstructed MBs with 
different statistical features.  

Each of the above features are calculated per candidate MV 
and/or resultant candidate MB. Within a set of candidate MVs 
and candidate MBs belonging to the same true MB, the feature 
values are sorted and ranked from 1-4 in P-MBs and 1-16 in B-
MBs. If features form different candidate MVs/MBs have the 
same value then they will be assigned to the same rank. 

IV. PROPOSED MESSAGE EXTRACTION 
     Once the model is generated at the decoder, the system can 
switch to the testing mode in which MVs are classified as 
rotated or not. This process is illustrated in the flow diagram of 
Fig. 2. The feature extraction part is identical to that of the 
system’s training counterpart of Fig. 1. For MBs with a single 
MV, 4 candidate MBs are generated using 4 rotated MVs. 
Likewise, for MBs with 2 MVs, 16 candidate MBs are 
generated using 16 rotated MVs (i.e. 4 rotations for the forward 
MB x 4 rotations for the backward MV).  
     Features are extracted from each candidate MB and its 
corresponding rotated MV(s). Each of the 4 or 16 feature 
vectors per MB is classified using the trained binary classifier. 
In an ideal situation, only one out of all candidate MBs will be 
classified as positive. The corresponding MV is then compared 
against the decoded MV and the difference in the angle reveals 
the embedded message bits. If a MB has 2 MVs then the 
message bits are extracted twice. The extracted bits for the 𝑗𝑗𝑡𝑡ℎ 
MB are computed using (2): 

TABLE I 
LIST OF FEATURE VARIABLES REPRESENTING CANDIDATE MBS 

Feature 
ID 

Description 

             1 The absolute difference between the phase of the candidate 
forward MV (FMV) and the phase of the co-located MV of 
the reference frame. 

             2 The absolute difference between the phase of the candidate 
MV and the phase of the top MV of the same frame. 

             3 The absolute difference between the phase of the candidate 
MV and the phase of the left MV of the same frame. 

             4 Same as feature ID 1 above but applied to the backward 
MV (BMV). 

             5 Number of pixel clipping violations after reconstructing a 
candidate MB. The pixel range used for clipping is 0 to 
255. 

             6 Sum of absolute edge values of a candidate MB using edge 
detection. 

             7 
           8       
             9 

10 
 
 

11 
 

Pixel entropy of a candidate MB. 
Pixel mean of a candidate MB. 
Pixel variance of a candidate MB. 
The sum of absolute values of the prediction error obtained 
by subtracting a candidate forward MB (FMB) from the co-
located MB in the reference frame. 
Same as feature ID 10 above but applied to the backward 
MB (BMB). 

 
 
𝑀𝑀𝑀𝑀(𝑗𝑗)𝑚𝑚𝑚𝑚𝑚𝑚 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =

 

⎩
⎪⎪
⎨

⎪⎪
⎧ 00, �tan−1(𝑉𝑉𝑦𝑦

(𝑗𝑗)/𝑉𝑉𝑥𝑥
(𝑗𝑗)) − tan−1(𝑉𝑉′𝑦𝑦

(𝑗𝑗)/𝑉𝑉′𝑥𝑥
(𝑗𝑗))� = 0

01, �tan−1(𝑉𝑉𝑦𝑦
(𝑗𝑗)/𝑉𝑉𝑥𝑥

(𝑗𝑗)) − tan−1(𝑉𝑉′𝑦𝑦
(𝑗𝑗)/𝑉𝑉′𝑥𝑥

(𝑗𝑗))� = ∏/2 

10, �tan−1(𝑉𝑉𝑦𝑦
(𝑗𝑗)/𝑉𝑉𝑥𝑥

(𝑗𝑗)) − tan−1(𝑉𝑉′𝑦𝑦
(𝑗𝑗)/𝑉𝑉′𝑥𝑥

(𝑗𝑗))� = ∏

11, �tan−1(𝑉𝑉𝑦𝑦
(𝑗𝑗)/𝑉𝑉𝑥𝑥

(𝑗𝑗)) − tan−1(𝑉𝑉′𝑦𝑦
(𝑗𝑗)/𝑉𝑉′𝑥𝑥

(𝑗𝑗))� = 3∏/2

   (2) 



Where 𝑉𝑉𝑥𝑥
(𝑗𝑗) and  𝑉𝑉′𝑥𝑥

(𝑗𝑗) denote the x component of the received 
and classified MVs of the 𝑗𝑗𝑡𝑡ℎ MB  respectively. 
 
 

 
Fig. 2.  Process flow diagram of proposed message extraction. 

     However, there are few situations where the classification 
system will result in Type I and Type II errors. 

 In particular, a Type I error occurs If more than one 
candidate MB are positively classified and a Type II error 
occurs if all candidate MBs are negatively classified. Formally, 
let 𝐜𝐜(𝑗𝑗) to denote the list of classification results (class 1 for 
positive instances and class 0 otherwise) for the 𝑗𝑗𝑡𝑡ℎ MB: 

𝐜𝐜(𝑗𝑗) = �𝑐𝑐1
(𝑗𝑗), … , 𝑐𝑐𝑛𝑛

(𝑗𝑗)�                       (3) 

Where n is the number of candidate MBs, which is either 4 or 
16. And 𝑐𝑐𝑖𝑖

(𝑗𝑗) denotes the binary classification result of the 𝑖𝑖𝑡𝑡ℎ 
candidate of the 𝑗𝑗𝑡𝑡ℎ MB. 
    Two types of classification error are defined: 

𝐸𝐸𝐸𝐸𝐸𝐸 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  �
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(𝑗𝑗)𝑛𝑛
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                    (4) 

Type I and II errors can be dealt with using a post 
classification approach as illustrated in Fig. 2. For MBs with 
either error type, the Sum of Absolute Differences (SADs) 
between the boundaries of a candidate MB and its top/left MBs 
is computed. The candidate MB with the least boundary SAD 
is identified as the true MB and its MV is identified as the un-
rotated MV. The SAD between a MB and its top/left previously 
decoded MBs is illustrated in Fig. 3. 

Using this post-processing approach, the percentage of Type 
I and Type II errors can be reduced and thus increasing the 
overall classification accuracy of the system. In the 
experimental results section, we report the percentage of MBs 
with Type I and Type II errors, we also report the percentage of 
MBs with Type I and Type II errors that are correctly classified 
after applying the proposed post-processing approach. 

 
Fig. 3.  SAD between boundaries of a candidate MB and its top/left decoded 
MBs. 

There is a third type of error which is due to classification 
error. In such a case, only one candidate MB is classified 
positively, however it is not the correct one. No further 
processing is used in such a case. 

V. COMBINED ENCODER-DECODER SOLUTION 
     This solution complements the decoder-side operations, 
hence the title “combined encoder-decoder solution”. The core 
idea of this solution is to identify the MBs whose MVs will not 
be correctly counter-rotated at the decoder due to 
misclassification. Once identified, the encoder avoids 
embedding message bits in these MVs. One approach to 
achieve this is to force the use of a zero MV or use intra coding. 
This is the case as the decoder is not expected to extract 
message bits form zero MVs or intra coded MBs. As such, only 
the MVs that can be correctly counter-rotated at the decoder are 
used for data embedding. Once received by the decoder, the 
later performs the proposed model generating and classification 
as described in the previous section. 

This combined encoder-decoder solution can be achieved by 
replicating the model generation at the encoder side using the 
same set of frames that the decoder uses for model generation. 
Thus, the same classification model can be made available at 
both the encoder and the decoder without the need for 
communicating the model’s parameters. 

Once the model is generated at the encoder, the following 
steps are followed: for each inter MB, the MV is computed and 
rotated according to the message bits to be embedded. The 
encoder then replicates the process of the decoder, that is, 4 or 
16 candidate MBs and rotated MVs are computed and used for 
computing features vectors. The feature vectors are then 
classified using the encoder’s side model as illustrated in Fig. 
2. If correctly classified, then data embedding and MV rotation 
take place. Otherwise, the current MB is not used for data 
embedding. Again, this can be achieved by imposing the use of 
zero MVs or intra coding. This arrangement is possible at the 
encoder as the ground truth is known, which is the true MV(s) 
of the MB being examined. This process is illustrated in the 
diagrams of Fig. 4. 

 



 
Fig. 4. Data embedding in selective MBs at the encoder’s side. 

     This proposed solution has advantages and disadvantages. 
The advantages manifest themselves at the decoder side where 
all received MVs can be classified correctly and therefore 
counter-rotated correctly. This results in correct message 
extraction and correct and accurate decoding without any error 
propagation. 

The disadvantages are caused by interfering with the MB 
decision type at the encoder’s side and therefore slightly 
increasing the bitrate of the generated video. The other 
disadvantage is the reduced message embedding rate as the 
percentage of MBs without MVs will increase. However, since 
the classification accuracy of the proposed decoder-side 
solution is above 96% (as will be illustrated in the experimental 
results section), only a small percentage of inter MBs will be 
affected at the encoder. Therefore, the impact on bitrate and 
message embedding rates is not significant. These observations 
are quantified in the experimental results section. 

VI. CLASSIFICATION TOOLS 
     In this work, we experiment with 3 classification tools, 
namely; Random Forests [15], SVM and Polynomial classifiers 
[16]. 

 In the Random Forest classifier, the number of trees grown 
is 128. We also experiment with feature variable selection in 
combination with Random Forests. In this approach, a large set 
of trees are generated against the label of a candidate MB. Each 
tree is trained on a subset of feature variables from Table I. The 
usage statistics of each variable are used to find an informative 
subset of feature variables. In particular, if a feature variable is 
selected repeatedly as best split, it is considered as a good 

candidate to keep. More information about this algorithm can 
be found in [17].  

  The importance of each of these feature variables in 
predicting the correct classification of a test feature vector from 
an out-of-bag data is computed and used to select the feature 
variables whose raw importance score makes up 90% of the 
total importance score. The out-of-bag data represent  the set of 
feature vectors that were left out during the training process of 
a given tree in the random forest. 
For the SVM, we train the classifier with an Radial Basis 
Function RBF kernel of the following form [18]: 
 
𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝐱𝐱𝑖𝑖 , 𝐱𝐱𝑗𝑗) = 𝑒𝑒−𝛾𝛾�𝐱𝐱𝑖𝑖−𝐱𝐱𝑗𝑗�                (5) 
 

Where 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗  are the 𝑖𝑖𝑡𝑡ℎ and 𝑗𝑗𝑡𝑡ℎ  feature vectors. 
 For Polynomial classifiers, we implement the work reported 

in [16] to expand the feature vectors into higher dimensionality 
using polynomial expansion. The classification decision is then 
based on the following formula that combines the model 
weights with the expanded feature variables: 
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                                                  (6) 
 

Where r is the order of the polynomial expansion, w is the 
vector of polynomial weights to be estimated, x is the feature 
vector containing l inputs. The dimensionality of the expanded 
vector is equal to 1+r+l(2r-1). The polynomial weights are 
estimated using least-squares error minimization. In this work, 
we use a fifth order expansion which is determined 
experimentally. 

VII. EXPERIMENTAL RESULTS 
     In the following experiments, we use well-known test video 
sequences with various resolutions and spatio-temporal 
activities. The sequences are listed in Table II. 

The proposed solution is applicable to video coders with 
block-based motion estimation and compensation such as 
MPEG2, AVC/H.264 and HEVC. As a proof of concept and for 
ease of software implementation, the MPEG-2 software codec 

TABLE II 
HEVC VIDEO TEST SEQUENCES AND THEIR RESOLUTIONS 

 
Sequence WidthxHeight f/s 

1 RaceHorses 416x240 30 
2 BlowingBubbles 416x240 50 
3 BasketballPass 416x240 50 
4 RaceHorses 832x480 30 
5 BQMall 832x480 60 
6 BasketballDrill 832x480 50 
7 ParkScene 1280x768 24 
8 Kimono1 1280x768 24 
9 Cactus 1280x768 50 

 
 



is modified to implement the proposed data embedding 
solution. The sequences are encoded using the following 
sequence of frame types: IBPBP…, we also repeat the results 
using an IPPP… sequence. Only the first frame is intra-coded 
and the rest of the frames are either P or B frames. Additionally, 
each sequence is compressed with three quantization scales: 5, 
15 and 25 out of 31. 

We test our solution on three types of MBs, namely; 
Predicted MBs in P-frames (P-MBs), mono-directional MBs in 
B-frames, which are predicted using either forward or backward 
prediction (mono-B-MBs) and bidirectional MBs in B-frames, 
which are predicted using both forward and backward 
prediction at the same time (bi-B-MBs). 

For training, the first 10% of each video sequence is used to 
generate the classification model. Therefore, the first 10% of 
the sequences are not used for data embedding as explained 
previously. In concept, the training can be repeated periodically 
or whenever a scene change is detected. A similar training 
approach was implemented in [13] and [14]. We experiment 
with four classifiers including Random Forests, Random 
Forests with feature selection, SVM and a polynomial 
classifier. In all cases, the messages to embed are generated 
using a uniform binary random number generator. 

To make the reported experimental results readable, we 
present the averages over all video test sequences in the 
experiments to follow. 

We start by presenting the classification accuracy of data 
extraction at the decoder’s side. As mentioned previously, the 
decoder generates 4 or 16 candidate MBs and extracts features 
from each of them. The feature vectors are classified to find out 
the true un-rotated MVs. Once done, the classified MVs are 
compared against what is received in the video’s bit stream and 
the embedded message bits are extracted. 

Table III presents the classification accuracy and f1-scores of 
data extraction using RFs with a frame sequence of IBP. The 
f1-score is the harmonic mean of the precision and recall 

Listed in the table are the percentages of Type I, Type II and 
classification errors. Again, as mentioned previously, Type I 
error refers to the case where more than one candidate MB  were 
classified as positive. Type II error refers to the case where none 
of the candidate MBs  was classified as positive. Lastly, the 
classification error refers to the case where one candidate MB 
was wrongly classified as positive. This error cannot be 
identified at the decoder and therefore cannot be post-
processed.  

The Type I and Type II errors are post-processed using SAD 
of the MB edges as proposed in Section  IV above. The 
percentages of corrected Type I and Type II errors are presented 
in Table III as well. The post processing is not perfect; however, 
it assists in increasing the overall classification accuracy.  

All of the average classification accuracies are above 96%. 
There are two additional conclusions that can be drawn from 
the results of this table. First, the number of candidate MBs is 
either 4 (in P-MBs and mono-B-MBs) or 16 (in bi-B-MBs). 
Yet, despite the increase in the number of candidate MBs, the 
classification accuracy of the later MBs is around 97.5%. The 
average classification rates over all quantization scales are 
96.06%, 96.83% and 97.5% for the P, mono-B and bi-B MBs 
respectively.  The overall classification accuracy using Random 
Forests for all cases is 96.8%. 

TABLE IV 
CLASSIFICATION ACCURACY OF MESSAGE EXTRACTION AT DECODER 

AVERAGED OVER 9 SEQUENCES AND 3 QUANTIZATION SCALES USING (A) 
RANDOM FORESTS (B) SVM-RBF (C) POLYNOMIAL CLASSIFIER 

 P mono-B bi-B 

Type I err (%) 1.58 1.01 1.02 
Type II err (%) 1.84 1.51 1.01 
Class. err (%) 2.56 2.16 2.08 

Type I err corrected (%) 67.36 81.76 85.48 
Type II err corrected (%) 52.00 42.82 72.46 

Class. accuracy (%) 96.06 96.83 97.48 
F1-score(%) 94.73 95.57 95.90 

(A) 

 P mono-B bi-B 

Type I err (%) 1.99 1.13 2.54 
Type II err (%) 5.76 1.43 21.07 
Class. err (%) 2.63 2.14 3.26 

Type I err corrected (%) 65.34 44.97 61.98 
Type II err corrected (%) 59.39 59.16 37.55 

Class. accuracy (%) 94.34 96.67 82.62 
F1-score(%) 92.04 95.57 81.88 

(B) 

 P mono-B bi-B 

Type I err (%) 2.28 1.28 3.91 
Type II err (%) 1.00 1.00 1.01 
Class. err (%) 3.56 2.21 2.09 

Type I err corrected (%) 63.79 50.36 78.16 
Type II err corrected (%) 100 97.69 90.12 

Class. accuracy (%) 95.64 97.15 96.95 
F1-score(%) 93.73 95.63 91.90 

(C) 

TABLE III 
CLASSIFICATION ACCURACY OF MESSAGE EXTRACTION AT DECODER USING 
RANDOM FORESTS AVERAGED OVER 9 SEQUENCES USING A QUANTIZATION 

SCALE OF (A) 5 (B) 15 AND (C) 25 

 P mono-B bi-B 

Type I err (%) 1.74 1.01 1.01 
Type II err (%) 1.87 2.08 1.01 
Class. err (%) 2.54 2.23 2.02 

Type I err corrected (%) 68.06 81.67 95.09 
Type II err corrected (%) 54.35 48.05 93.22 

Class. accuracy (%) 96.05 96.53 97.85 
F1-score(%) 94.64 95.16 95.97 

(A) 

 P mono-B bi-B 

Type I err (%) 1.63 1.01 1.01 
Type II err (%) 1.80 1.08 1.01 
Class. err (%) 2.57 2.14 2.10 

Type I err corrected (%) 67.47 90.01 88.67 
Type II err corrected (%) 52.89 35.54 54.86 

Class. accuracy (%) 96.05 97.06 97.32 
F1-score(%) 94.71 95.81 95.89 

(B) 

 P mono-B bi-B 

Type I err (%) 1.36 1.00 1.03 
Type II err (%) 1.84 1.38 1.02 
Class. err (%) 2.56 2.09 2.12 

Type I err corrected (%) 66.54 73.61 72.69 
Type II err corrected (%) 48.75 44.88 69.31 

Class. accuracy (%) 96.08 96.89 97.27 
F1-score(%) 94.85 95.74 95.83 

(C) 

https://en.wikipedia.org/wiki/Harmonic_mean


The second conclusion is that the quantization scale used in 
compressing the videos does not influence the proposed 
solution, meaning that the proposed solution is independent of 
the compression quantization scale, which is considered as an 
advantage. Therefore, for the experiments to follow, the 
average results using the three quantization scales are 
presented.  

In Table IV, we repeat the experiment of Table III using two 
additional classifiers; SVM with an RBF kernel and a fifth order 
polynomial classifiers. The average results are shown for all 
video sequences and all quantization scales. For completeness, 
we show the average results of the Random Forest of Table III 
as well. 

 It is interesting to see that the average classification accuracy 
is 96.79% using Random Forests, 91.21% using SVM with 
FRB kernel and 96.58% using polynomial classifiers. The 
results show that SVM generated high classification results for 
P and mono-B-MBs which contain 4 classes only.  On the other 
hand, it did not generate high classification results for 
bidirectional B-MBs that contain 16 classes. In fact, Type II 
error was around 21% on average, which is rather high. 

In both P and mono-B MBs, the number of candidate MBs 
are 4, therefore, the classification results for P and mono-B are 
similar. On the other hand, in bi-B MBs, the number of 
candidate MBs are 16. Taking into account that only one 
candidate MB is labeled as the true MB (positive case) then for 
each MB classification there is 1 positive case and 15 negative 
cases resulting in a class imbalance. Random forests are known 
to work well in such cases and therefore all MB types generate 
similar results. This is not always the case for other classifiers, 
hence in Table IV, the SVM-RBF classifier generated a 
classification accuracy of around 83% for bi-B MBs. 

 We also present the classification results using Random 
Forests with feature selection. The results in Table V are 
averaged over all test sequences and all quantization scales. 

An observation from the results presented in Tables III ,IV 
and V is that the classification accuracies pertaining to P-MBs  
are slightly lower than their mono-B MBs counterparts. 
Although both MB types use 4 classification classes only, 
nonetheless, the mono-B MBs use reference frames (i.e. for 
motion compensation) that are one frame apart, whereas the P-
MBs use reference frames that are 2 frames apart.  

The classification results in Table V are very similar to the 
Random Forest results summarized in Table IV, part- A. 
Therefore, adding feature selection did not enhance the 
classification accuracy. Nonetheless, for completeness and 
proper analysis of the results, we examine the features that were 
selected per MB type. 

In Fig. 5, we plot the histograms of the selected features per 
MB type. 
The description of the feature variables is in Table I. Note that 
feature variables with ID ‘4’ and ‘11’ do not apply to P-MBs as 
reported in part ‘a’ of the figure. Therefore, the corresponding 
bin value is zero. The histograms of part ‘a’ and part ‘b’ show 
that for P MBs and mono-directional B MBs, the most 
frequently used feature variables are the phase differences 
between the candidate MB and its top and left MBs of the same 
frame and the reference MB in the reference frame, and the sum 
of absolute values of the prediction errors. The same applies for 
part ‘c’ of the figure, which is related to bidirectional MBs, but 

with having feature 9 also as one of the most frequently selected 
features. According to Table I, this is the pixel variance of the 
reconstructed candidate MB. 

 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 5.  Histograms of the selected features per MB type. 



We repeat the message embedding solution using a frame 
sequence of IPP…, without B-frames. Table VI presents the 
message classification results averaged over all video 
sequences. 

The table shows that the overall average message 
classification accuracy using P frames only is 96.34% which is 
slightly lower than the case of using both P and B frames. This 
can be attributed to the fact that with IBP sequences, having bi-
directional MBs results in improving the classification accuracy 
since the classifier in this case has more information to base its 
decision on, as the most influential features such as the MVs’ 
phase differences and the sum of absolute values of the 
prediction errors are now  
extracted in both directions; referencing to the previous and 
future frames. 

 
     The table also shows that at a low quantization scale with an 
IPPP… sequence, the average classification accuracy is nearly 
perfect. This is attributed to the fact that at low quantization 
scales, the image quality of reference frames used for image 
prediction and motion compensation is higher, therefore, the 
feature variables of motion compensated MBs are more 
representative. 

 
In Table VII we list the processing time required to generate 

the Random Forests classification models per video sequence. 
We ran the experiments on a PC with Intel Core i7-37400QM, 
2.7-GHz CPU with a 16-GB DDR3 RAM. As expected, the 
processing time increases with the increased spatial resolution 
of the videos. Note that data embedding and extraction in the 
context of this work need not be implemented in real-time. 

 
 
 
 
 

TABLE VII 
AVERAGE COMPUTATIONAL REQUIRED FOR RF MODEL GENERATION PER 

SEQUENCE. 
Seq. ID Resolution Time(s) 
1 416x240 1.85 
2 416x240 2.03 
3 416x240 1.8  
4 832x480 6.82  
5 832x480 4.67  
6 832x480 3.0  
7 1280x768 6.84  
8  1280x768 9.92  
9 1280x768 9.50 

 
Moreover, as mentioned in the proposed solution of Section 

IV, Type I and II errors are dealt with by examining the 
boundary SADs between a candidate MB and its top/left 
previously decoded MBs.  

It would be interesting to look at the classification results 
using this post processing technique only (as opposed to 
classification followed by post processing). Such an experiment 
would verify the importance of the proposed solution.  

In Table VIII, we repeat the results reported in Table VI 
using post processing only for the identification of the original 
non-rotated MVs. The rather low classification accuracies 
justify the use of the proposed solution which is classification 
followed by post processing. The results in Table VIII show that 
the average classification accuracy is around 75% which is 
considered very low in this application. It is also shown that by 
increasing the quantization scale, the use of the SAD becomes 
less reliable as more DCT coefficients are quantized to zero. 
For example, the average classification accuracy dropped from 
79% to 73% for the quantization scales of 5 and 25 respectively. 

Going back to the discussion of the proposed solution, we 
examine the true average number of message bits per MB as 
presented in Table VIII. 

Theoretically, a MB with one motion vector can embed 2 
message bits and a MB with two MVs can embed 4 bits.    

However, in practice there are 3 additional percentages that 
should be taken into account when computing the true average 
number of message bits per MB. These contain the percentage 
of intra-coded MBs, the percentage of MBs predicted with nil 
motion vectors and the percentage of boundary MBs that are 
not used for message embedding in this solution. 

TABLE V 
CLASSIFICATION ACCURACY OF MESSAGE EXTRACTION AT DECODER 

AVERAGED FOR 9 SEQUENCES AND 3 QUANTIZATION SCALES USING RANDOM 
FORESTS WITH FEATURE SELECTION 

 P mono-B bi-B 

Type I err (%) 1.54 1.01 1.02 
Type II err (%) 1.83 1.52 1.02 
Class. err (%) 2.56 2.17 2.09 
Type I err corrected (%) 68.66 77.55 82.18 
Type II err corrected (%) 50.11 46.88 76.33 
Class. accuracy (%) 96.06 96.82 97.48 
F1-score(%) 94.72 95.64 95.91 

 

TABLE VIII 
CLASSIFICATION ACCURACY OF MESSAGE EXTRACTION AT DECODER 

AVERAGED FOR 9 SEQUENCES WITH FRAME SEQUENCE OF IPP… USING POST 
PROCESSING ONLY 

 Quant. 
scale 5 

Quant. scale 
15 

Quant. 
scale 25 

Avg. Accuracy 79.1%     75.1%    73.1% 
 

TABLE VI 
CLASSIFICATION ACCURACY OF MESSAGE EXTRACTION AT DECODER 

AVERAGED FOR 9 SEQUENCES WITH FRAME SEQUENCE OF IPP… USING 
RANDOM FORESTS 

 Quant. 
scale 5 

Quant. scale 
15 

Quant. 
scale 25 

Type I err (%) 1.21 2.34 2.39 
Type II err (%) 1.82 2.46 2.57 
Class. err (%) 2.67 3.20 3.64 
Type I err corrected (%) 79.21 89.63 88.38 
Type II err corrected (%) 81.45 93.14 92.68 
Class. accuracy (%) 96.74 96.39 95.89 
F1-score(%) 94.47 94.46 91.45 

 



Table IX shows that the true average number of message bits 
per MB varies from one video sequence to the other according 
to the above-mentioned three additional percentages. 
Therefore, video sequences with relatively high percentage of 
intra-coded MBs and/or high percentage of nil motion vectors, 
have fewer number of message bits per MB. Overall, the 
averages range from 1.29 to 2.25 bits per MB for an IBPBP… 
sequence and range from 0.59 to 1.63 bits per MB for an IPPP… 
sequence. In the latter case, since the reference frames used for 
prediction are one frame apart, it follows that the percentage of 
nil MVs are higher. This also contributed to the lower number 
of message bits per MB in videos with frame IPPP… sequences. 

To examine the effect of the message classification accuracy 
on the quality of the reconstructed video, we report the PSNR 
differences between the video decoded normally without 
scrambling and without data embedding and the decoded video 
with scrambling and the proposed data embedding solution.   
The actual PSNR values of the decoded videos using the 
proposed solution are reported as well. The results are shown in 
Table X without the use of intermedia I-frames. 

The loss in PSNR is due to the fact that the classification of 
the motion vectors is above 95% accurate, however it is not 
perfect. This imperfection results in few wrongly rotated MVs 
that implies inaccurate reconstruction of the underlying MBs. 
The inaccuracy of motion compensation results in higher error 
propagation if intermediate I frames are not present in the video 
bitstream, which is the case in our experiments. Therefore, the 
average drop in PSNR in such a case is 6.43 dB.  

In summary, the Random Forest classifier generated the best 
classification results for the three types of MBs and the three 

levels of the quantization scale. The classification accuracy 
ranged from 96% to 97.5% and the average number of 
embedded bits are per MB are 1.68 and 1.07 with and without 
the use of B-frames respectively. However, these results are 
achieved at the expense of degrading the video quality at the 
decoder side as the classification accuracy is not 100%. 
     To eliminate the effect on the PSNR of the reconstructed 
video, the proposed combined encoder-decoder solution was 
implemented. As mentioned in Section V, the training and 
classification processes are also performed at the encoder, so 
that the misclassified MBs are marked as non-embeddable by 
setting their coding mode to intra or no compensation, i.e. coded 
with zero MV. It is clear that interfering with the coding 
decisions at the encoder results in higher bitrate. Likewise, 
marking non-embeddable MBs results in lower message 
embedding rates. Table X reports the results for each test 
sequence averaged over all QPs for an IBPBP… sequence. 

As shown in Table XI, in comparison with regular encoding, 
the average PSNR dropped by 0.12 dB and the average increase 
in bitrate is 6.2%. These numbers are at the encoder side. 

 At the decoder’s side, the average extracted message bits 
dropped from 1.68 to 1.61 bits/MB as non-embeddable MBs are 
excluded from message embedding in this solution. However, 
this solution results in accurate decoding as the MVs of all MBs 
are correctly counter-rotated at the decoder with 100% 
classification accuracy and no picture drift.  
 

TABLE XI 
DROP IN PSNR, INCREASE IN BITRATE OF THE DECODED VIDEO AND THE 

EMBEDDING CAPACITY OF MPEG2 CODEC AS A RESULT OF THE COMBINED 
ENCODER-DECODER SOLUTION. THE RESULTS ARE AVERAGED OVER THE  3 

QPS 

Seq. 
ID 

PSNR drop [dB]  
(at encoder) 

Bitrate increase 
(at encoder)[%] 

Bits 
/MB 

 

1 0.09 6.63 2.06  
2 0.06 2.72 1.32  
3 0.26 8.15 1.28  
4 0.14 12.87 2.15  
5 0.12 5.93 1.24  
6 0.11 5.90 1.23  
7 0.05 1.88 1.69  
8 0.17 8.38 2.18  
9 0.08 2.96 1.31  
Avg. 0.12 6.16 1.61  

 
 For comparison with existing work, namely, [7], [11], [19] 

and [20], we have identified 4 relevant papers that embed data 
in scrambled or encrypted video. Table XII below lists the 
reported average data embedding rate and drop in PSNR in dB. 

TABLE IX 
AVERAGE NUMBER OF MESSAGE BITS PER MB FOR EACH TEST SEQUENCE 

AVERAGED OVER ALL MB TYPES AND 3 QUANTIZATION SCALES 

Seq. ID IBP… IPPP… 

1 2.13 1.53 
2 1.40 0.87 
3 1.37 0.85 
4 2.22 1.63 
5 1.32 0.83 
6 1.29 0.96 
7 1.76 1.40 
8 2.25 0.99 
9 1.38 0.59 

Avg. 1.68 1.07 
 

TABLE X  
PSNR OF THE DECODED VIDEO WITHOUT USING THE PROPOSED ENCODER-

DECODER SOLUTION. THE RESULTS ARE AVERAGED OVER 3 QPS AND 3 MB 
TYPES; P-MB, MONO-B-MB AND BI-B-MB 

Seq. ID PSNR Drop 
[dB] 

Original 
PSNR 
[dB] 

1 8.94 30.94 
2 3.12 30.3 
3 5.10 33.0 
4 7.18 31.17 
5 7.99 31.84 
6 6.06 32.76 
7 5.22 33.23 
8 7.35 36.77 
9 6.87 32.64 

Avg. 6.43  32.52 
 

TABLE XII 
DATA EMBEDDING RATE AND DROP IN PSNR, COMPARISON WITH EXISTING 

SOLUTIONS 

Solution Bits/MB PSNR drop [dB] 

Proposed 1.61 0.00 
Ref.[19] 0.75 0.51 
Ref. [7] 1.06 0.20 

Ref. [11] 0.05 0.20 
Ref. [20] 0.08 0.17 

 



As shown in the table, in comparison to [7], the proposed 
solution has a higher data embedding rate and a lower drop in 
PSNR. The work in [11] and [20], reported low PSNR drops of 
around 0.2 dB, however the embedding rates are in the range of 
0.05-0.08 bit/MB which is considered very low in comparison 
to the proposed solution. Again, with the proposed encoder-
decoder solution of Section V, the decoder has accurate 
reconstruction without any drop in PSNR. This is facilitated by 
marking non-embeddable MBs at the encoder as mentioned 
previously. 

The computational complexity of the proposed solution is 
compared against the reviewed work as reported in Table XIII. 
The solutions reported in [7][11] and [20] have similar 
complexities as they reply on encryption and data embedding 
in codewords. The work in [19] on the other hand, requires 
manual intervention to locate regions of interest, it also requires 
a first round of fast decoding followed by full decoding. The 
proposed solution of this work embeds messages by rotating 
MVs and requires model generation using Random Forests. The 
time required to build the models is reported in Table VII above. 
Hence, the proposed solution has medium complexity when 
compared to other solutions, however, real-time data 
embedding and extraction is not a requirement in the proposed 
solution. 

TABLE XIII 
COMPLEXITY COMPARISON BETWEEN EXISTING WORK AND THE PROPOSED 

SOLUTION. 
Solution Comment on complexity 

Reviewed [7], 
[11] and [20] 

Selective encryption/decryption of video 
elements. 
Codeword substitution for data embedding. 
Complexity: Low 

Reviewed 
[19] 

Manual allocation of video areas to scramble. 
Two rounds of decoding required (with the first 
being fast) 
Optional encryption/ decryption of hidden data 
Complexity: Medium to high 

Proposed 

MV rotation for data embedding 
Machine learning needed to classify rotated 
MVs 
Complexity: Medium 

 
Additionally, we compare our proposed solution against the 

work reported in [21], [22] and [23]. The authors in [21] 
reported the embedding capacity using a Hiding Ratio (HR) 
metric which is computed as: 

 
HR  = length(message) / length(video)  *100  (7) 

 
Where length(.) is a function that returns the number of bits. 
The work in [21] also reported the PSNR and the Bit Error Rate 
(BER) of the extracted embedded message. The work in [22] 
and [23] encrypted HEVC videos and embedded data in 
quantized DCT coefficients. The embedding rate was reported 
as an absolute number of hidden bits and in Kbit/s. In our work, 
the embedding rate measured in Kbit/s is computed as: 
 
Embedding_rate= (avg_msg_bits_per_MB)  
    *(MBs_per_frame) * (frames_per_sec)/1024  (8) 
 

The HR and the bitrate of the embedded messages using our 
proposed encoder-decoder solution are reported in Table XIV. 
The HR and message bitrate results vary per sequence 

according to the spatial solution of the underlying video 
frames. Larger frames have higher number of MVs and hence 
higher HR and higher message bitrates are expected. This is not 
always true as some video sequences might have a high 
percentage of skipped MBs, zero MVs or intra-coded MBs and 
therefore negatively affecting the HR and message bitrate as 
the case for Sequence 9 in the table.  
 

TABLE XIV 
MESSAGE HIDING RATIO AND BIT RATE OF THE ENCODER-DECODER 

SOLUTION AVERAGED OVER ALL QUANTIZATION SCALES 

Seq. ID f/s HR(%) Kbit/s 

1 30 24.47 23.5 
2 50 21.09 25.1 
3 50 26.18 24.4 
4 30 23.38 98.3 
5 60 23.31 113.3 
6 50 27.58 93.7 
7 24 41.88 152.1 
8 24 50.88 196.2 
9 50 29.43 245.6 

Avg. - 29.8 108 
 

In [21] the average reported HR was 1.46% and the Bit Error 
Rate (BER) of the embedded message was 0.023%. In contrast, 
the BER of the proposed solution is 0% for all sequences as the 
proposed encoder-decoder solution has a classification 
accuracy of 100% and therefore all embedded messages are 
extracted correctly. Additionally, the reviewed work reported 
PSNR results in the range of 70.4dB to Infinite. Our proposed 
solution on the other hand, does not result in any drop in PSNR 
at the expense of increased bitrate at the encoder side as 
elaborated upon previously.  

The work in [22] encrypted HEVC syntax elements and 
embedded data in quantized transform coefficients. The 
average reported embedding rate was 3.3 Kbit/s. However, this 
was achieved at the expense of increasing the size of the bitrate 
by 7.8% and a drop of PSNR of 0.08 dB, with the use of 
periodic I-frames. Our proposed work reported an embedding 
rate of 108 Kbits without a drop in PSNR and without the use 
of periodic I frames. However, it caused a bitrate increase at 
the encoder’s side by around 6%. The work in [23] extended 
and enhanced the work reported in [22]. The embedding rate 
was increased to 4.86 Kbit/s without increase in bitrate. 

For completeness, we re-implemented the proposed solutions 
using the HEVC video coding standard. The same video 
sequences of Table II are encoded using an IPPP… sequence, 
with each sequence being compressed with four different 
quantization scales: 22, 27, 32 and 37. Tables XV and XVI 
illustrate the decoder-side solution results. Table XV shows the 
different error types and the classification accuracy averaged 
over all sequences using the Random Forests classifier. Table 
XVI shows the embedding rate for each test sequence averaged 
over  all QPs. Using the HEVC codec, an average classification 
accuracy of 96.47% is reported  with an average message 
embedding rate of 0.97 bits/MB. These results are very close to 
the results previously reported using the MPEG2 codec.  
 

 
 
 

https://www.sciencedirect.com/topics/engineering/cryptography
https://www.sciencedirect.com/topics/engineering/cryptography


TABLE XV 
CLASSIFICATION ACCURACY OF MESSAGE EXTRACTION AT HEVC DECODER 

AVERAGED FOR 9 SEQUENCES WITH FRAME SEQUENCE OF IPP… USING 
RANDOM FORESTS 

 QP 22 QP 27 QP 32 QP 37 

 Type I err (%) 1.04 1.04 1.07 1.05 
 Type II err (%) 2.92 3.70 3.19 3.68 
 Class. err (%) 2.21 2.33 2.44 2.35 
Type I err corrected (%) 83.72 89.43 89.70 83.28 
Type II err corrected (%) 73.12 73.91 68.8 60.00 
 Class. accuracy (%) 96.83 96.59 96.45 96.00 
 F1-score(%) 94.74 94.10 94.19 94.27 

 
TABLE XVI 

AVERAGE NUMBER OF MESSAGE BITS PER MB FOR EACH TEST SEQUENCE 
AVERAGED OVER ALL 4 QUANTIZATION SCALES FOR HEVC 

Seq. ID IPPP...  

1 1.43  
2 0.73  
3 0.74  
4 1.57  
5 0.77  
6 0.43  
7 0.88  
8 1.45  
9 0.68  

Avg. 0.96  
 
     Table XVII repeats the results of Table XI using HEVC. 
The effect of the proposed combined encoder-decoder solution 
is examined using HEVC. Marking non-embeddable MBs at 
the encoder side resulted in an average PSNR drop of 0.14 dB 
and a 5.9% increase in the video bitrate. 
 

TABLE XVII 
DROP IN PSNR, INCREASE IN BITRATE OF THE DECODED VIDEO AND THE 
EMBEDDING CAPACITY OF HEVC CODEC AS A RESULT OF THE COMBINED 

ENCODER-DECODER SOLUTION. THE RESULTS ARE AVERAGED OVER THE 4 QPS 

Seq. ID PSNR drop (at 
encoder) [dB] 

Bitrate increase (at 
encoder) [%] Bits/MB 

1 0.11 5.99 1.39 
2 0.08 2.84 0.68 
3 0.24 7.73 0.68 
4 0.16 11.6 1.51 
5 0.14 5.94 0.72 
6 0.11 5.66 0.38 
7 0.07 1.80 0.83 
8 0.21 8.66 1.41 
9 0.13 2.75 0.62 
Avg. 0.14 5.89 0.91 
 
Again, such an arrangement will allow the HEVC coder to 

correctly classify MVs, correctly decode MBs and extract 
message bits correctly without any picture drift at the expense 
of decreasing the average message embedding rate from 0.96 
bits/MB, as reported in Table XV, to 0.91 bits/MB. 

In summary, with the proposed encoder-decoder solution, the 
classification accuracy is increased to 100% which results in an 
unaltered quality of the decoded video. However, these results 
are achieved at the expense of increasing the bitrate at the 
encoder side, with around 6% increase for both MPEG2 and 
HEVC video bit streams. Additionally, the average number of 
embedded bits per MB are 1.61 and 0.91 with and without the 
use of B-frames respectively. In comparison to existing work as 

shown in Tables XII and XIV, the proposed work results in the 
best decoding quality and the highest message embedding rate. 

VIII. CONCLUSION 
     A data embedding solution in scrambled video was proposed 
in this paper. The solution is based on rotating motion vectors 
according to message bits. A compliant decoder uses the first 
part of the video to generate a classification model to classify 
motion vectors into rotated or not. Once classified, the message 
bits are extracted, and the video is correctly reconstructed. 
     The proposed solutions  were implemented using MPEG2 
and HEVC video codecs. Detailed analysis of classification 
error was presented in terms of Type I and Type II errors. Such 
errors were detected and mitigated using a post-classification 
technique. It was also shown that the number of candidate MBs 
is irrelevant to the classification accuracy. The three MB types 
of P-MB, mono-B-MB and bi-B-MB had very similar 
classification accuracies.  The average number of message bits 
embedded in rotated MVs reached up to 1.68 per MB. 
     The Random Forest classifier generated the best 
classification results in comparison to SVM and polynomial 
classifiers with a classification accuracy reaching to 97.8%.  
     As the classification accuracy  was not 100%, the proposed 
solution  has affected the PSNR of the reconstructed videos at 
the decoder. Therefore, combined encoder-decoder solution 
was proposed in which model generation and classification are 
also performed at the encoder to decide which MBs are eligible 
for data embedding based on whether they are classified 
correctly or not. This solution affected the compression 
efficiency as it interfered with mode decisions at the encoder. 
However, it  resulted in 100% accurate classification and video 
reconstruction at the decoder without  loss in PSNR. 
     In comparison to existing work, it was found that the   
proposed solution has the highest embedding capacity without 
any picture drift at the decoder side. 

Future work includes studying the effect of the proposed 
solution on multilayer video coders. This is important as 
multilayer coders use inter layer prediction and possibly 
different MVs in different video layers. Future work also 
includes extending the proposed solution to sequence-
independent learning, as the current feature extraction approach 
is specific to sequence-dependent learning. Lastly, the proposed 
system learning solution can be enhanced by periodically 
repeating the model generation every N frames or whenever a 
scene change is detected. 
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