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Abstract

In this paper, we consider nonautonomous second order difference equations of the form
xn+1 = F (n, xn, xn−1), where F is p-periodic in its first component, non-decreasing in its
second component and non-increasing in its third component. The map F is referred to as
periodic of mixed monotonicity, which broadens the notion of maps of mixed monotonicity.
We introduce the concept of artificial cycles, and we develop the embedding technique to tackle
periodicity and globally attracting cycles in periodic 2-dimensional maps of mixed monotonicity.
We present a result on globally attracting cycles and demonstrate its application to periodic
systems. The first application is a periodic rational difference equation of second order, and the
second application is a population model with periodic stocking. In both cases, we prove the
existence of a globally attracting cycle.
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1 Introduction

Two dimensional maps z = F (x, y) that are non-increasing in one component and non-decreasing

in the other are called maps of mixed monotonicity. Dynamics of maps with mixed monotonicity

have been considered in literature [12, 19, 20]. The main approach to dealing with maps of mixed

monotonicity is to embed the dynamical system generated by

xn+1 = F (xn, xn−1) (1.1)

into a higher dimensional symmetric and monotone dynamical system. The orbits of the symmetric

higher-dimensional system are used to squeeze the orbits of the original system and aid in the

establishment of a global attractor. For more details on the development history of this approach

and its applications in differential equations, integral equations and numerical analysis, we refer

the reader to Smith [19] and the references therein. To view Eq. (1.1) in vector form, define

T (x, y) = (F (x, y), x) and X = (x, y), then we have

Xn+1 = T (Xn), n ∈ N = Z+ ∪ {0}, (1.2)

An orbit of Eq.(1.2) through an initial condition X0 = (x0, x−1) is denoted by O+
F (X0). The

authors of [2] recently considered maps of mixed monotonicity with invariant compact domains,
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then extended the invariant domain from compact to rectangular-compact. This method can be

used to achieve global stability for certain maps with compact invariant domains in which the

positive orthant is not an invariant domain. In this paper, we will concentrate on periodic discrete

equations of the form

xn+1 = Fn(xn, xn−1), n ∈ N, (1.3)

in which Fn is p-periodic in n, i.e., Fn+p = Fn for all n. Again here, a vector form of Eq. (1.3) is

Xn+1 = Tn mod p(Xn), where n ∈ N, Tn(x, y) = (Fn(x, y), x) and X0 = (x0, y0) ∈ R2
+. (1.4)

An orbit of Eq. (1.4) through an initial condition X0 = (x0, x−1) is denoted by O+
Fn

(X0). We

emphasize here that p-periodic is meant to be of minimal period p. In Eq. (1.3), each map Fn

is non-decreasing in xn and non-increasing in xn−1. For short, we write Fn(↑, ↓). Furthermore, we

assume all maps Fn : [0,∞) × [0,∞) → [0,∞) to be continuous. It is worth noting that during

the last two decades, periodic systems in one dimension and their applications have been widely

studied in the literature [1, 3, 5, 6, 10]. Forcing between cycles, stability analysis, and the effect of

fluctuating environments on population dynamics received the most attention.

Throughout this paper, we consider R+ to denote the set of nonnegative real numbers, and

Fix(F ) is used to denote the set of fixed points of F. A compact subset Ω ⊂ [0,∞) × [0,∞) is

called invariant or forms an invariant domain of F if T (Ω) ⊆ Ω. Unlike autonomous discrete sys-

tems, the starting time n = n0 is crucial in nonautonomous discrete systems, and therefore, we

consider n0 = 0 throughout our paper. Another fact that is worth stressing here is the structure of

cycles in discrete periodic systems. A k-cycle Ck = {x0, x1, . . . , xk−1} of Eq. (1.1) means a periodic

solution of minimal period k and we can start at any point in time by taking F (xj , xj−1). However,

A k-cycle of Eq. (1.3) is an ordered set, which means a synchronization between time and space

must occur. Therefore, we write a k-cycle as Ck = [x0, x1, . . . , xk−1] and we start by F0(x1, x0).

Examples are given in the literature in which [x0, x1, . . . , xk−1] is a k-cycle of a periodic system,

but its phase shift [x1, x2, . . . , xk−1, x0] is not a k-cycle [3].

Consider the Euclidean metric on R2
+. A ball Br(x, y) denotes the disk centered at (x, y) with

radius r. An equilibrium solution x̄ of Eq. (1.1) is called stable if for each ε > 0, there exists δ > 0

such that for all (x0, x−1) ∈ Bδ(x̄, x̄), we obtain (xn, xn−1) ∈ Bε(x̄, x̄) for all n ∈ N. x̄ is called

attracting if there exists c > 0 such that for all (x0, x−1) ∈ Bc(x̄, x̄), we obtain limxn = x̄. x̄ is

called asymptotically stable if it is stable and attracting. x̄ is globally attracting with respect to an

invariant region Ω if for all (x0, x−1) ∈ Ω, we obtain limxn = x̄. x̄ is globally stable (or a global at-

tractor) if it is stable and globally attracting with respect to a specific invariant domain. A k-cycle

[x̄0, . . . , x̄k−1] of Eq. (1.3) is called stable, attracting, asymptotically stable, globally attracting or

globally stable if the equilibrium solution (x̄0, x̄0) of Xn+1 = T̂0(Xn), where T̂0 = Tp−1 ◦ · · · ◦ T0, is

stable, attracting, asymptotically stable, globally attracting or globally stable, respectively. Note

that the continuity of the maps Fj extends the dynamics of Xn+1 = T̂0(Xn) at (x̄0, x̄0) to the

dynamics of Xn+1 = T̂j(Xn) at (x̄j , x̄j), where T̂j = Tj−1 ◦ · · · ◦ T0 ◦ Tp−1 ◦ · · · ◦ Tj .

The structure of this paper is as follows: In section two, we go through the embedding strategy

for maps F (↑, ↓). We introduce the concept of artificial cycles and present some preliminary results.
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In addition, we discuss some recent results regarding extensions of such maps. In section three,

we investigate the dynamics of the p-periodic difference equation (1.3), and embed the periodic

dynamical system into a 4-dimensional periodic symmetric system. We demonstrate the connec-

tion between the orbits, generalize the concept of artificial cycles to the periodic case, then give

a classification result for cycles when p = 2. In section four, we develop the needed machinery for

establishing globally attractive cycles and give some results. In section five, we consider two illus-

trative examples of p-periodic equations, and investigate their dynamics using the methodologies

and results presented in the preceding sections. Finally, we give a conclusion section in which we

summarize our findings, then discuss some answered and unanswered questions.

2 Embedding in higher dimension

Consider ≤se to denote the southeast partial order on the positive orthant R2
+ = [0,∞) × [0,∞),

i.e, (x1, y1) ≤se (x2, y2) if and only if x1 ≤ x2 and y2 ≤ y1. When F : R2
+ → R+ satisfies F (↑, ↓),

the symmetric map G∗ : R2
+ → R2

+ defined by

G∗(u, v) = (F (u, v), F (v, u))

is non-decreasing with respect to ≤se . However, the orbits of G∗ are not related to the orbits

of F [12]. To make the notion of symmetric maps more fruitful, we need to embed in a higher

dimension [19, 20]. Consider both R2
+ and R2

+ × R2
+ with ≤se . Then define g : R4

+ → R2
+ as

g((x, y), (u, v)) = (F (x, y), u). We obtain g(↑, ↓) with respect to the ≤se . Next, let X = (x, y),

U = (u, v), and define the symmetric map G : R4
+ → R4

+ as

G(X,U) = (g(X,U), g(U,X)). (2.1)

Then G is non-decreasing in the sense that (X1, U1) ≤se (X2, U2) implies G(X1, U1) ≤se G(X2, U2).

Observe that we have G(X,U) ≤se (X,U) if and only if F (x, y) ≤ x, u ≤ F (u, v), y ≤ u and x ≤ v.
Also, (X,U) ≤se G(X,U) if and only if x ≤ F (x, y), F (u, v) ≤ u, v ≤ x and u ≤ y. The iterates of

the map G give us a first order difference equation in four dimensions, namely

ξn+1 = G(ξn)), n ∈ N, ξ0 ∈ R4
+. (2.2)

If F : [a, b]2 → [a, b], then for any (x, y) ∈ [a, b]2, we obtain

a ≤ F (a, b) ≤ F (x, y) ≤ F (b, a) ≤ b.

In this case, consider A = (a, b), B = (b, a) and let X = (x, y), Y = (y, x) ∈ [a, b]2. We obtain

A ≤se X ≤se B and

(A,B) ≤se G(A,B) ≤se G(X,Y ) ≤se G(B,A) ≤se (B,A).

Now, the monotonicity of G and an induction argument give us

(A,B) ≤se Gn(A,B) ≤se Gn+1(A,B) ≤se Gn+1(X,Y ) (2.3)

and

Gn+1(Y,X) ≤se Gn+1(B,A) ≤se Gn(B,A) ≤se (B,A). (2.4)
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A fixed point of G is an equilibrium solution of Eq. (2.2) which will be a solution of G(X,U) =

(X,U). This means that we must have (y, x) = U and (F (x, y), F (y, x)) = (x, y). It is worth

mentioning that fixed points of G are known as coupled fixed points [11, 18]. Coupled fixed points

can be symmetric when x = y or asymmetric when x 6= y. The asymmetric ones have been denoted

by artificial fixed points of F [2]. The concept of artificial cycles plays a significant role in our

analysis and, therefore, we embolden and extend it in the following formal definition:

Definition 2.1. If F (x, x) = x, then x is a fixed point of F. If G(ξ) = ξ, then ξ is a fixed

point of G. If ξ = ((x, y), (y, x)) is a fixed point of G and x 6= y, then (x, y) is called an arti-

ficial fixed point of F. If T q(x1, x0) = (x1, x0) and T k(x1, x0) 6= (x1, x0) for all k ≤ q − 1, then

{x0, x1, . . . , xq−1} is a q-cycle of F. If ξ satisfies Gq(ξ) = ξ and Gk(ξ) 6= ξ for all k ≤ q − 1,

then Cq := {ξ,G(ξ), G2(ξ), . . . , Gq−1(ξ)} is called a q-cycle of G. We define the diagonal of R4
+

to be D := {((x, y), (x, y)) : (x, y) ∈ R2
+}, and we define DD = {((x, x), (y, y)) : x, y ∈ R+}. If

Cq := {ξ,G(ξ), G2(ξ), . . . , Gq−1(ξ)} is a q-cycle of G and ξ 6∈ D, then we say F has an artificial

q-cycle.

In general, cycles of G that are not generated by cycles of F produce artificial cycles. For the

case of 2-cycles, if ξ = ((x1, x0), (u1, u0) and {ξ,G(ξ)} is a 2-cycle of G, but {x0, x1} is not a 2-cycle

of F, then [(x1, x0), (u1, u0)] is an artificial 2-cycle of F. To clarify the general case further, suppose

{ξ0, ξ1, . . . , ξq−1} is a q-cycle of G for some q ≥ 3, and let ξ0 = (x0, y0, u0, v0). This means that

ξj+1 mod q = G(ξj mod q), and consequently

xj+1 = F (xj , yj), yj+1 = uj , uj+1 = F (uj , vj) and vj+1 = xj .

This gives us {(x0, y0), . . . , (xq−1, yq−1)} as a q-cycle ofxn+1 = F (xn, yn)

yn+3 = F (yn+2, xn),
(2.5)

where the initial conditions x0, y0, y1 and y2 must be given. Observe that if we start our initial

conditions x0, y0 = x−1, y1 = x0 and y2 = x1, then the two equations become identical which

gives us Eq. (1.1). Moreover, the diagonal D is invariant under G. Therefore, artificial cycles of

F are obtained from cycles of G in which the initial condition (x0, y0, u0, v0) 6∈ D. The next two

propositions and example provide more solid foundations for our notions in Definition 2.1.

Proposition 2.1. Consider the continuous map of mixed monotonicity z = F (x, y) and the map

G as defined in Eq. (2.1). Each of the following holds true:

(i) Let x 6= y. (x, y) and (y, x) are artificial fixed points of F if and only if (F (x, y), F (y, x)) =

(x, y).

(ii) If the one dimensional map y = f(x) = F (x, x) has a 2-cycle {x0, f(x0)}, then G has the

2-cycle {ξ0, ξ1}, where

ξ0 := (x0, x0, f(x0), f(x0)) and ξ1 := (f(x0), f(x0), x0, x0).

Furthermore, [(x0, x0), (f(x0), f(x0))] is an artificial 2-cycle of F.
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(iii) If the two dimensional map z = F (x, y) has a q-cycle {x0, x1, . . . , xq−1}, then G has the

q-cycle {ψ0, ψ1, . . . , ψq−1}, where

ψj := (xj , xj−1, xj , xj−1), j = 1, . . . , q − 1 and ψ0 := (x0, xq−1, x0, xq−1).

(iv) Let η = (x, y, u, v) and suppose that G2(η) = η. F has [(x, y), (v, u)] as an artificial 2-cycle if

and only if (u, v) 6= (y, x), (x, y).

(v) [(x, y), (u, v)] is an artificial 2-cycle of F if and only if [(y, x), (v, u)] is an artificial 2-cycle.

Proof. Part (i) is becoming trivial (cf. [2, 20]). (ii) Suppose that {x0, f(x0)} is a 2-cycle of the

one dimensional map y = f(x) = F (x, x). By considering ξ0 := (x0, x0, f(x0), f(x0)), we obtain

G2(ξ0) = ξ0 and G(ξ0) = ξ1. To prove Part (iii), Suppose that Cq := {x0, x1, . . . , xq−1} is a q-cycle

of the two dimensional map z = F (x, y), then we have F (xj , xj−1) = xj+1 for j = 1, . . . , q − 2,

and F (xq−1, xq−2) = x0. Now, define ψ0 := (x0, xq−1, x0, xq−1), we obtain Gj(ψ0) = ψj for all

j = 1, . . . , q − 1 and ψ0 = Gq(ψ0). Next, we show Part (iv). Observe that G2(η) = η if and only if

x = F (v, u), y = F (u, v), u = F (y, x) and v = F (x, y). (2.6)

Assume that F has [(x, y), (u, v)] as an artificial 2-cycle. This implies that η is not a fixed point of

G, and consequently, (u, v) 6= (y, x). Also, it implies {x, y} is not a 2-cycle of F, and consequently

(u, v) 6= (x, y) as given in Part (iii). The converse is trivial. Finally, we prove Part (v). Suppose

that [(x, y), (u, v)] is an artificial 2-cycle of F. Define η = (x, y, u, v), then {η,G(η)} is a 2-cycle of G

and (u, v) 6= (x, y), (y, x). Also, we must have the equations in (2.6) satisfied. Now, by considering

ηt = (y, x, v, u), we obtain

G(ηt) =(F (y, x), v, F (v, u), y)

=(u, v, x, y)

G2(ηt) =(F (u, v), x, F (x, y), u)

=ηt.

Since also (v, u) 6= (y, x), (x, y), we obtain [(y, x), (v, u)] as another artificial 2-cycle of F. The

converse is obvious.

Note that in Part (ii) of Proposition 2.1, we found that a 2-cycle of the one dimensional map

y = F (x, x) gives an artificial 2-cycle of F ; however, unlike the diagonal D, DD does not form an

invariant set under G. Another fact that is worth emphasizing is that an artificial fixed point cannot

exist without the existence of a fixed point. We give this simple fact in the following proposition.

Proposition 2.2. Let the map F of Eq. (1.1) be continuous and F (↑, ↓). If F has an artificial

fixed point (a, b), then F has a fixed point between a and b.

Proof. Suppose (a, b) is an artificial fixed point of F, i.e., (F (a, b), F (b, a)) = (a, b) where a 6= b.

Without loss of generality, we consider a < b. Define g(x) = F (x, x)− x, then we obtain

g(a) = F (a, a)− a > F (a, b)− a = 0 and g(b) = F (b, b)− b < F (b, a)− b = 0.

Now, the continuity of g and the Intermediate Value Theorem gives us a point x̄ between a and b

such that g(x̄) = 0. Therefore, x̄ is a fixed point of F and the proof is complete.
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Example 2.1. (i) Consider

F (x, y) = xea−
y

b , x, y ≥ 0 and a, b > 0

Clearly, F is continuous, it satisfies F (↑, ↓) and F : R2
+ → R+. The fixed points x̄1 = 0

and x̄2 = ab of F create two fixed points of G given by ξ̄i = (x̄i, x̄i, x̄i, x̄i), i = 1, 2. Since

(F (x, y), F (y, x)) = (x, y) has no solution for x 6= y, then G has no other fixed points and

F has no artificial fixed points. Next, fix a = 5 and let b be the unique positive solution of

e−5+ 50

b (b − 5) = 5, then [50, 10b − 50] is a 2-cycle of the one dimensional map y = f(x) =

F (x, x). The 2-cycle of the map G is given by

{ξ0, ξ1} = {(50, 50, 10b− 50, 10b− 50), (10b− 50, 10b− 50, 50, 50)}.

Finally, it can be easily shown that (F (x, y), F (y, x)) = (y, x) has no solution for x 6= y, and

therefore, z = F (x, y) has no 2-cycles. Also, by investigating solutions of G2(ξ) = ξ, it can

be shown that F has no artificial 2-cycles.

(ii) Consider

F (x, y) = xe−ay +
b

1 + y2
, x, y ≥ 0.

Again here, F is continuous, it satisfies F (↑, ↓) and F : R2
+ → R+. For a = 4 and b = 1,

it can be shown that F (x̄, x̄) = x̄ has a unique solution, (F (x, y), F (y, x)) = (y, x) has no

solution while (F (x, y), F (y, x)) = (x, y) has two solutions. Based on our definition, F has a

fixed point, no 2-cycles and has two artificial fixed points. Therefore, G has three fixed points,

one coming from the fixed point of F and two coming from the two artificial fixed points.

Also, (F (x, x), F (y, y)) = (y, x) has no solution for x 6= y, which means y = F (x, x) has no

2-cycles. Thus, G has no 2-cycles of the type in Part (ii) of Proposition 2.1. Finally, it can be

shown graphically that F has no artificial 2-cycles by showing G2(ξ) = ξ has no solution for

which G(ξ) 6= ξ. Next, we keep a = 4 and increase b to 2. In this case, it is a computational

matter to find that G has a 2-cycle {ξ0, ξ1} derived from a 2-cycle of y = f(x) = F (x, x),

namely

ξ0 '(0.6264, 0.6264, 1.4875, 1.4875)

ξ1 = G(η0) '(1.4875, 1.4875, 0.6264, 0.6264)

and the two 2-cycles {η0, η1}, {ηt0, ηt1}, where

η0 '(0.8352, 0.5479, 1.1975, 1.6315)

η1 = G(η0) '(1.6315, 1.1975, 0.5479, 0.8352)

and

ηt0 '(0.5479, 0.8352, 1.6315, 1.1975)

ηt1 = G(ηt0) '(1.1975, 1.6315, 0.8352, 0.5479).

Those two 2-cycles of G correspond to two artificial 2-cycles of F, namely

[(0.8352, 0.5479), (1.6315, 1.1975)] and [(0.5479, 0.8352), (1.1975, 1.6315)], respectively.
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After illustrating the embedding technique and the notion of artificial cycles, we cite some

results on globally attracting cycles that are particularly relevant to our work here. The next result

can be found in [17].

Theorem 2.1. Suppose that F : [a, b]2 → [a, b] is continuous and F (↑, ↓). If (F (x, y), F (y, x)) =

(x, y) has a unique solution in [a, b]2, then Eq. (1.1) has a unique equilibrium solution which forms

a global attractor with respect to [a, b]2.

The method of Kulenovic and Merino in proving Theorem 2.1 was based on establishing two

monotonic sequences which converge to the unique solution of (F (x, y), F (y, x)) = (x, y), and the

two sequences are used to squeeze the orbits of Eq. (1.1). Under the umbrella of the embedding

technique [19, 20], Theorem 2.1 becomes simple since F has no artificial fixed points and the fact

that the domain is a box makes F (a, b) < b while F (b, a) > a. For initial conditions x−1, x0 of Eq.

(1.1), we have

G((x0, x−1), (x0, x−1)) = (F (x0, x−1), x0, F (x0, x−1), x0) = (x1, x0, x1, x0)

and in general

Gn((x0, x−1), (x0, x−1)) = (xn, xn−1, xn, xn−1). (2.7)

From the inequalities in (2.3), (2.4) and Eq. (2.7), the orbit of G through ξ0 = (x0, x−1, x0, x−1)

can be squeezed between the orbits of G through (A,B) and (B,A). The order convergence of

Gn(A,B) and Gn(B,A) to a unique fixed point leads to a topological convergence of orbits of Eq.

(1.1) to a unique equilibrium solution.

Plenty of examples can be found in which all components of Theorem 2.1 are satisfied except the

invariant domain is not a box [2]. In this case, a less restrictive condition is to have a specific orbit

of Eq. (1.1) with initial conditions x−1 < x0 that satisfy F (x0, x−1) < x0 and F (x−1, x0) > x−1.

Then an argument similar to inequalities (2.3) and (2.4) can still give us a globally attracting fixed

point with respect to a certain invariant domain. We extract the following result from [20].

Theorem 2.2. Let Ω be an ordered metric space with a closed order relation ≤C , and let the map

F : Ω × Ω → Ω of Eq. (1.1) be continuous and F (↑, ↓). Suppose there exists a, b ∈ Ω such that

a ≤ b, [a, b] ⊂ Ω, a ≤ F (a, b), F (b, a) < b and F ([a, b]2) has compact closure in Ω. If G has no

artificial fixed points in [a, b]4, then all orbits of Eq. (1.1) with x0, x−1 ∈ [a, b] converge to a fixed

point of F.

Whether in Theorem 2.1 or Theorem 2.2, it is crucial to have a square region as an invariant

domain, and a typical rectangular invariant domain for Eq. (1.1) is the positive orthant. A setback

can be faced when neither the positive orthant nor a rectangular domain can be found as an

invariant domain [2]. As a remedy, the authors in [2] gave an approach to extend the domain of

F without destroying the continuity of F or the monotonicity in its arguments. If an extension F̃

is found in which continuity and monotonicity is preserved, and the range of F̃ coincides with the

range of F, the extension is called a nice extension. Now, we extract the next theorem from [2].

Theorem 2.3. Let F of Eq. (1.1) be F (↑, ↓) and continuous on a compact and convex domain Ω

in the plane. If the boundary of Ω (∂Ω) is a piecewise smooth Jordan curve, circumscribed on a

rectangle R and has a parametrization r : [0, 1] → ∂Ω so that F ◦ r is differentiable on [0, 1] in

which the derivative has only finitely many zeros, then F admits a nice extension F̃ on R.
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According to Theorem 2.3, if the invariant domain is not a box, it may be extended into one,

and if the extension F̃ of F is a nice extension, the embedding technique may be used in conjunction

with Theorem 2.1. The essence of this conclusion is given in the next theorem which appears in [2].

Theorem 2.4. Let Ω be a compact subset of R2. Suppose the map F of Eq. (1.1) is continuous, F (↑
, ↓) and Ω is invariant under F. If F has a nice extension F̃ over a rectangular domain containing

Ω such that F̃ has no artificial fixed points and Fix(F ) = Fix(F̃ ), then for all (x0, x−1) ∈ Ω, the

orbits of Eq. (1.1) must converge to a fixed point of F.

Thus, the critical concern becomes whether it is possible to create artificial fixed points of F̃ or

whether it is possible to create fixed points of F̃ that are not fixed points of the original map F. In

fact, the contrapositive of Theorem 2.4 can be useful to conclude the following corollary.

Corollary 2.1. Let Ω be a compact subset of R2. Suppose the map F of Eq. (1.1) is continuous,

F (↑, ↓) and Ω is invariant under F. If F has a unique fixed point in Ω that is not a global attractor,

then any nice extension F̃ of F over a rectangular domain containing Ω must have either artificial

fixed points or Fix(F̃ ) 6= Fix(F ).

3 Embedding periodic maps of mixed monotonicity

In this section, we focus on Eq. (1.3), in which Fj : R2
+ → R+ is a p-periodic sequence of

continuous maps that satisfy Fj(↑, ↓) for each j. A region Ω ⊆ R2
+ is called an invariant region of Eq.

(1.3) if Tj(Ω) ⊆ Ω for all j. As for the autonomous case, we define gn((x, y), (u, v)) = (Fn(x, y), u)

and

Gn(X,U) = (gn(X,U), gn(U,X)) = ((Fn(x, y), u), (Fn(u, v), x)) . (3.1)

This gives a p-periodic system in 4-dimensions, namely

ξn+1 = Gn mod p(ξn), where ξn = (Xn, Un) = ((xn, yn), (un, vn)) . (3.2)

An orbit of Eq. (3.2) is given by

OGn
(ξ) = {ξ,G0(ξ), G1(G0(ξ)), G2(G1(G0(ξ))), . . . }. (3.3)

The orbits of Eq. (3.3) can be partitioned based on the orbits of p autonomous systems, namely

ξn+1 = Ĝj(ξn) where Ĝj = Gj−1 ◦ · · · ◦G0 ◦Gp−1 ◦ · · · ◦Gj (3.4)

and j = 0, 1, . . . , p − 1. The connection between the orbits of Eq. (1.3) and Eq. (1.4) is obvious.

Also, the connection between the orbits of Eq. (3.2) and the orbits of the equations in (3.4) is easy

to observe. For instance, when p = 2 and n starts at 0, the even terms of the orbits in Eq. (3.2)

give the orbits of ξn+1 = Ĝ0(ξn), and the odd terms give the orbits of ξn+1 = Ĝ1(ξn). It remains

to establish the connection between the orbits of Eq. (1.3) and Eq. (3.2). Equilibrium points and

cycles in first order nonautonomous periodic systems have been explored in the past two decades.

We refer the interested reader to [1, 3, 5, 6]. Here, the second order and the embedded maps Gn in

Eq. (3.2) add another factor of complexity to the structure of cycles and the notion of artificial

cycles. We begin by extending Definition 2.1 to periodic systems.
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Definition 3.1. If Fj(x, x) = x for all j = 0, . . . , p−1 then x is an equilibrium solution (equilibrium

point) of Eq. (1.3). Similarly, if Gj(ξ) = ξ for all j = 0, . . . , p− 1 then ξ is an equilibrium solution

(equilibrium point) of Eq. (3.2). If ξ = ((x, y), (y, x)) is an equilibrium point of Eq. (3.2) and

x 6= y, then (x, y) is called an artificial equilibrium point of Eq. (1.3). If there exists x0, . . . , xq−1

such that q is the smallest positive integer for which Fn+1 mod p(xn+1 mod q, xn mod q) = xn+2 mod q

for all n ∈ N, then [x0, x1, . . . , xq−1] is a q-cycle of Eq. (1.3). Similarly, Cq := [ξ0, ξ1, . . . , ξq−1] is

a q-cycle of Eq. (3.2) if q is the smallest positive integer for which Gn mod p(ξn mod q) = ξn+1 mod q

for all n ∈ N. If Cq := [ξ0, ξ1, . . . , ξq−1] is a q-cycle of Eq. (3.2) and ξ0 6∈ D, then we say that Eq.

(1.3) has an artificial q-cycle.

As in the autonomous case, an equilibrium point ξ̄ = (x̄, ȳ, ū, v̄) of Eq. (3.2) means (ū, v̄) = (ȳ, x̄)

and (Fj(x̄, ȳ), F̄j(ȳ, x̄)) = (x̄, ȳ) for all j. Therefore, an equilibrium point of Eq. (3.2) comes as a

consequence of an equilibrium point or an artificial equilibrium point of Eq. (1.3). On the other

hand, if ξ = ((x, y), (u, v) and {ξ,G0(ξ)} is a 2-cycle of Eq. (3.2), but [x, y] is not a 2-cycle of Eq.

(1.3), then [(x, y), (u, v)] is an artificial 2-cycle of Eq. (1.3). Now, we give the analog of Proposition

2.1 in the following lemma:

Lemma 3.1. Consider the p-periodic difference equations in (1.3) and (3.2). Each of the following

holds true:

(i) An equilibrium solution ξ̄ of Eq. (3.2) is a common fixed point for all maps Gj . Furthermore,

ξ̄ must be of the form ξ̄ = (x̄, ȳ, ȳ, x̄).

(ii) Suppose that ξ̄ = (x̄, ȳ, ȳ, x̄) is an equilibrium solution of Eq. (3.2). If x̄ = ȳ, then x̄ is a

common fixed point for all maps Fj ; otherwise, (x̄, ȳ) and (ȳ, x̄) are two common artificial

fixed points for all maps Fj .

(iii) Let p = 2. If [ξ0, ξ1] is a 2-cycle of Eq. (3.2), then we must have ξ0 := (x0, y0, y1, x1) and

ξ1 := (x1, y1, y0, x0), where

F0(x0, y0) = x1, F0(y1, x1) = y0, F1(x1, y1) = x0 and F1(y0, x0) = y1.

(iv) Let fj(x) = Fj(x, x) for all j = 0, . . . , p − 1. If the equation xn+1 = fn(xn) has [x0, x1] and

[x1, x0] as 2-cycles, then Eq. (3.2) has the 2-cycles [ξ0, ξ1] and [ξ1, ξ0], where

ξ0 := (x0, x0, x1, x1) and ξ1 := (x1, x1, x0, x0).

(v) Let fj(x) = Fj(x, x) for all j = 0, . . . , p− 1. If {x0, x1} is a common 2-cycle for all maps fj ,

then Eq. (3.2) has the 2-cycles [ξ0, ξ1] and [ξ1, ξ0], where

ξ0 := (x0, x0, x1, x1) and ξ1 := (x1, x1, x0, x0).

(vi) If Eq. (1.3) has a p-cycle [x0, x1, . . . , xp−1], then Eq. (3.2) has the p-cycle [ψ0, ψ1, . . . , ψp−1],

where

ψj := (xj+1, xj , xj+1, xj), j = 0, . . . , p− 2 and ψp−1 := (x0, x1, x0, xp−1).

(vii) Let p = 2, η = (x, y, u, v) and suppose that G1(G0(η)) = η. Eq. (1.3) has [(x, y), (u, v)] as an

artificial 2-cycle if and only if (u, v) 6= (y, x), (x, y).
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(viii) Let p = 2. [(x, y), (u, v)] and [(y, x), (v, u)] are two artificial 2-cycles of Eq. (1.3) if and only

if they are common artificial 2-cycles for both maps F0 and F1.

Proof. (i) From the orbit in Eq. (3.3), a fixed point ξ̄ must satisfy Gj(ξ̄) = ξ̄ for all j. Now, Unfold

Gj(ξ) = ξ to obtain

Gj(ξ) = (gj(X,U), gj(U,X)) = ((Fj(x, y), u), (Fj(u, v), x)) = ((x, y), (u, v)).

Thus, we need (u, v) = (y, x) which means ξ̄ must be of the form ξ̄ = (x̄, ȳ, ȳ, x̄). Part (ii) follows

from Part (i) and by unfolding Gj(ξ) = ξ. To prove Part (iii), let ξj = (xj , yj , uj , vj) for j = 0, 1.

Since [ξ0, ξ1] is a 2-cycle of Eq. (3.2), we must have G0(ξ0) = ξ1 and G1(ξ1) = ξ0. Unfold the two

equations to obtain the result. Next, we prove Part (iv), If fi = fj for all 0 ≤ i, j ≤ p − 1, then

the equation xn+1 = fn(xn) becomes autonomous and [x0, x1], [x1, x0] become the same cycle, i.e.,

{x0, x1}. However, there is no loss of generality if we consider xn+1 = fn(xn) to be non-autonomous.

In this case, having [x0, x1], [x1, x0] as 2-cycles means {x0, x1} is a common 2-cycle for all maps fj .

Now, define ξ0 as given and observe that

G0(ξ0) = (f0(x0), x1, f0(x1), x0) = (x1, x1, x0, x0) = ξ1.

Then use induction on Gj(ξj mod 2) = ξj+1 mod 2 to obtain the 2-cycle [ξ0, ξ1]. Similarly for the

other 2-cycle. Part (v) becomes obvious from Part (iv) since having [x0, x1], [x1, x0] as 2-cycles

of xn+1 = fn(xn) is equivalent to having {x0, x1} as a common cycle for both maps f0 and f1.

Next, we prove Part (vi), assume Eq. (1.3) has the 2-cycle [x0, x1]. This means x0 6= x1 and

(F0(x1, x0), F1(x0, x1)) = (x0, x1). On the other hand, G1(G0(ψ)) = ψ = (x, y, u, v) is equivalent to

F0(x, y) = v, F0(u, v) = y, F1(y, x) = u and F1(v, u) = x. (3.5)

Now, consider (x, y) = (x1, x0), then define ψ0 and ψ1 as given to obtain the 2-cycle [ψ0, ψ1] of

Eq. (3.2). To prove Part (vii), we depend on Eqs. (3.5) since they are obtainable by unfolding

G1(G0(η)) = η, then assume that Eq. (1.3) has [(x, y), (u, v)] as an artificial 2-cycle. This implies η

is not an equilibrium point of Eq. (3.2), and consequently, (u, v) 6= (y, x). It also implies that [x, y]

is not a 2-cycle of Eq. (1.3), and consequently (u, v) 6= (x, y) as given in Part (vi). The converse

is obvious. Finally, we prove Part (viii). Consider [(x, y), (u, v)] to be an artificial 2-cycle of Eq.

(1.3). We have (u, v) 6= (x, y), (y, x) and Eqs. (3.5) are valid. To have [(y, x), (v, u)] as another

artificial 2-cycle, we need

F1(x, y) = v, F1(u, v) = y, F0(y, x) = u and F0(v, u) = x.

Now, the rest of the proof becomes obvious.

In part (iv) of Lemma 3.1, the two 2-cycles [x0, x1], [x1, x0] of the equation xn+1 = fn(xn) were

sufficient to give two 2-cycles for Eq. (3.2). This fact raises the question whether the existence of

the two cycles is necessary. Our next example settles this question.

Example 3.1. Consider the 2-periodic difference equation xn+1 = Fn(xn, xn−1), where

F0(x, y) =
p0 + qx

1 + x+ y
and F1(x, y) =

p1 + qx

1 + x+ y
.
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Since the difference equation is 2-periodic, must have p0 6= p1. If we fix q = 2p1, then we obtain

f0(x) = F0(x, x) =
p0 + 2p1x

1 + 2x
and f1(x) = F1(x, x) =

p1 + 2p1x

1 + 2x
= p1.

The 2-periodic system xn+1 = fn(xn) has the unique 2-cycle [x0, x1], where x0 := p1 and x1 :=
p0+2p21
1+2p1

. In fact, every orbit converges in finite time to this 2-cycle. Since [x1, x0] is not a 2-cycle of

xn+1 = fn(xn), it is easy to observe that Eq. (3.2) has no 2-cycles of the type given in parts (iv)

and (v) of Lemma 3.1.

4 Global stability

This section focuses on the asymptotic behavior of orbits of Eq. (3.2) and their effect on the orbits

of Eq. (1.3). As shown by Lemma 3.1 and the partitioned orbits in Eqs (3.4), an equilibrium

solution ξ̄ of Eq. (3.2) requires all maps Gj to agree on ξ̄, which is rather restrictive. Therefore,

rather than an equilibrium solution, we consider a q-cycle for some q that divides p. In fact, to

have less restriction on the intersections between the maps Gj , it is natural to consider q = p. This

means the folded map

Ĝ0 := Gp−1 ◦ · · · ◦G1 ◦G0 : [a, b]4 → [a, b]4

has a fixed point, say ξ0, which forms the first element of a p-cycle. The second element of the

p-cycle will be ξ1 := G0(ξ0) which must be a fixed point of the folded map Ĝ1. In general, an

element ξj in the p-cycle Cr := [ξ0, ξ1, . . . , ξj , . . . , ξp−1] implies the folded map Ĝj has a fixed point

at ξj . Observe that the continuity of all maps Fj leads to the continuity of all maps Gj . Thus, if

ψn+1 = Ĝ0(ψn) converges to the fixed point ξ0 for some initial condition ψ0, we obtain convergence

in ψn+1 = Ĝj(ψn) to ξj for each j. Consequently, the orbit of Eq. (3.2) through ψ0 converges to

the p-cycle Cr. Therefore, it is sufficient to focus on the orbits of ψn+1 = Ĝ0(ψn). Now, we give the

following global stability result:

Theorem 4.1. Consider the p-periodic difference equation in Eq. (1.3). Suppose that Ω := [a, b]2

is an invariant region and the folded map Ĝ0 = Gp−1 ◦ · · · ◦G1 ◦G0 has a unique fixed point. Then

Eq. (1.3) has a globally attracting q-cycle for some q that divides p. In particular, if the q-cycle is

locally stable, then it is globally stable.

Proof. Consider Eq. (1.4) which is the vector form of Eq. (1.3). The map T := Tp−1 ◦ · · · ◦ T1 ◦ T0
maps Ω into itself. By Brouwer fixed-point theorem, T has a fixed point in Ω, say X0 = (x1, x0).

Unfold the map T into its Tj components to obtain a q-cycle for some q that divides p. The cycle

will be

[(x1, x0), (x2, x1), . . . , (xq−1, xq−2), (x0, xq−1)],

which gives a q-cycle of Eq. (1.3), namely Cq := [x0, x1, . . . , xq−1]. This cycle Cq creates a q-cycle

for Eq. (3.2), namely

[(X0, X0), . . . (Xq−1, Xq−1)], where Xj−1 = (xj , xj−1), j = 1, . . . , q − 1

and Xq−1 = (x0, xq−1). Since the folded map Ĝ0 has a unique fixed point, then it must be the one

derived from Cq, namely ξ0 = (X0, X0). Furthermore, the cycle Cq of Eq. (1.3) must be unique.

Now, it remains to show that the obtained q-cycle is globally attracting. From the inequalities in
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(2.3) and (2.4), consider G to be the folded map Ĝ0, and consider an arbitrary orbit of Eq. (1.3)

through (y0, y−1) ∈ Ω. If y0 ≤ y−1, consider X = (y0, y−1) and Y = (y−1, y0), then X ≤se Y and

we obtain

Ĝn0 (A,B) ≤se Ĝn0 (X,Y ) ≤se Ĝn0 (X,X) ≤se Ĝn0 (Y,X) ≤se Ĝn0 (B,A),

where A = (a, b) and B = (b, a). On the other hand, if y0 ≥ y−1, consider Y = (y0, y−1) and

X = (y−1, y0), then X ≤se Y and we obtain

Ĝn0 (A,B) ≤se Ĝn0 (X,Y ) ≤se Ĝn0 (Y, Y ) ≤se Ĝn0 (Y,X) ≤se Ĝn0 (B,A).

Since {Ĝn0 (A,B)} must converge to a fixed point of Ĝ0, the uniqueness condition makes

lim Ĝn0 (A,B) = lim Ĝn0 (X,X) = lim Ĝn0 (B,A)

in the first case and

lim Ĝn0 (A,B) = lim Ĝn0 (Y, Y ) = lim Ĝn0 (B,A)

in the second case. Therefore, in both cases, we obtain (y0, y−1) attracted to the first element of the

cycle Cq through the folded map Ĝ0. Similarly, each initial point (y0, y−1) ∈ Ω is attracted to the

jth element of the cycle Cq through the folded map Ĝj . Hence, Eq. (1.3) has a globally attracting

q-cycle for some q that divides p. Finally, if the attracting cycle is locally stable, then it becomes

globally stable with respect to Ω.

Next, if the invariant region Ω of Theorem 4.1 is just a compact region (not necessarily a box),

we assume the positive orthant R2
+ to be invariant, and we assume the existence of two points

A := (a, b), B := (c, d) ∈ R2
+ such that a ≤ c, d ≤ b and (A,B) ≤se Ĝ0(A,B). Define the set Ω̃ to

be the union of all orbits that emanate from [a, c]× [d, b], i.e.,

Ω̃ := {X : X ∈ O+
Fn

(X0), A ≤se X0 ≤se B}. (4.1)

This aids us in obtaining the following result.

Theorem 4.2. Consider the p-periodic difference equation in Eq. (1.3). Suppose that R2
+ is an

invariant region, Ω̃ is precompact, and there exists a point ξ0 = ((a, b), (c, d)) such that a < c, d < b

and ξ0 ≤se Ĝ0(ξ0). If the folded map Ĝ0 = Gp−1◦· · ·◦G1◦G0 has a unique fixed point in [a, c]×[d, b],

then Eq. (1.3) has a globally attracting q-cycle with respect to Ω̃. Furthermore, q is a divisor of p,

and if the q-cycle is locally stable, then it is globally stable with respect to Ω̃.

Proof. Suppose there is a point ξ0 = ((a, b), (c, d)) such that a ≤ c, d ≤ b and ξ0 ≤se Ĝ0(ξ0). In this

case, all initial conditions (y0, y−1) ∈ [a, c]× [d, b] lead us to

ξ0 ≤se Ĝ0(ξ0) ≤se Ĝ0(X,X) ≤se Ĝ0(ξ
t
0) ≤se ξt0,

where ξt0 = ((c, d), (a, b)), X = (y0, y−1). Thus, Ĝn0 (ξ0) and Ĝn0 (ξt0) converge to the unique fixed

point. This forces Ĝn0 (X,X) = (ynp, ynp−1, ynp, ynp−1) to converge to the unique fixed point. There-

fore, we obtained a subsequence of the orbit of Eq. (1.3) through (y0, y−1) to converge to a point.

On the other hand, the unique fixed point of the folded map Ĝ0 gives a q-cycle of Eq. (1.3) for

some q that divides p. This shows that the orbit of Eq. (1.3) through (y0, y−1) is partitioned into

q subsequences, each of which converges to an element of the q-cycle. Also, the region [a, c]× [d, b]

is attracted to the q-cycle. Moreover, if an orbit leaves [a, c]× [d, b], then it comes back to the set

in finite time. This means Ω̃ as defined in 4.1 is attracted to the q-cycle.
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It is worth noting that the condition ξ0 ≤se Ĝ0(ξ0) can be replaced by the more tempting

condition a ≤ Fj(a, b) ≤ Fj(b, a) ≤ b for all j. In this case, ξ0 = ((a, b), (b, a)). However, this will

be strong, sufficient and computationally manageable but unnecessary, and could be vacuous.

5 Applications

In this section, we analyze two examples to demonstrate applicability of our developed approach.

The first is a periodic rational difference equation, whereas the second is a population model with

periodic stocking. Because our goal here is to demonstrate the application of our theory, we give

ourself the liberty to restrict the periodicity.

5.1 A rational equation

Consider the periodic difference equation

xn+1 = Fn(xn, xn−1) =
pn + qxn

1 + xn + xn−1
, x0, x−1 ≥ 0, n ∈ Z+, (5.1)

where {pn} is a p-periodic sequence of non-negative real numbers. Since our intention here is to show

the applicability of the developed theory, we limit our attention to p = 2. The periodicity can be

forced on both parameters, or either one of them, but here, we consider it on {pn}. An autonomous

version (pn = p and Fn = F ) of Eq. (5.1) has been widely discussed in the literature [7–9, 15, 16].

Different choices of the parameters p and q give various scenarios of stability. When 0 < p ≤ q, it

can be easily shown that the rectangular region [0, q]× [0, q] is invariant, F is increasing in its first

component and decreasing in its second one. Therefore, Theorem 2.1 is applicable here [2]. Under

the forced periodicity that we have in Eq. (5.1), we assume 0 < pj ≤ q for j = 0, 1, then appeal to

the developed theory in sections 3 and 4. For the reader’s convenience, we summarize the following

facts.

Proposition 5.1. Consider Fn as defined in Eq. (5.1) and Gn as defined in Eq. (3.1). Suppose

p = 2 and p0 6= p1, then each of the following holds true:

(i) Eq. (3.2) has no equilibrium solutions.

(ii) Eq. (5.1) has neither equilibrium solutions nor artificial equilibrium solutions.

(iii) We have F0 : [0, q]2 → [0, q], F1 : [0, q]2 → [0, q] and [0, q]4 is an invariant region for Eq.

(3.2).

(iv) Eq. (5.1) has a unique 2-cycle in the region [0, q]2.

(v) Eq. (5.1) has no artificial 2-cycles.

Proof. (i) Based on parts (i) and (ii) of Lemma 3.1, Eq. (3.2) has an equilibrium solution ξ̄ if

ξ̄ = (x, y, y, x) and (Fj(x, y), Fj(y, x)) = (x, y) for both j = 0 and j = 1. However, it is elementary

computations to show that p0 6= p1 forces the nonexistence of solutions. Since equilibrium solutions

of Eq. (3.2) give either equilibrium solutions or artificial equilibrium solutions of Eq. (5.1), the proof

of Part (i) makes Part (ii) obvious. Part (iii) follows from the fact that x−1, x0 ≥ 0, p0, p1, q > 0

and

Fj(xn, xn−1) ≤ q
1 + xn

1 + xn + xn−1
≤ q, for j = 0, 1.
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To prove Part (iv), we depend on Part (vi) of Lemma 3.1 and equations (3.5) in its proof. We need

to solve (F0(x, y), F1(y, x)) = (y, x) for x and y. This gives us

y = −x− q − 1 +
q2 + q − p1
q − x

and x = −y − q − 1 +
q2 + q − p0
q − y

. (5.2)

The curves of both equations intersect at a unique point in the region [0, q]2 (Fig. 1) gives an

illustration). In fact, the 2-cycle can be given explicitly, but we are not concerned with a formidable

expression here. Finally, we rely on Part (vii) of Lemma 3.1 to prove Part (v). Indeed, Eqs. (3.5)

lead us to

F0(F1(y, x), F0(x, y)) = y and F1(F0(x, y), F1(y, x)) = x,

which give us same solution as (F0(x, y), F1(y, x)) = (y, x). This completes the proof.

It is worth mentioning that if we take f0(x) = F0(x, x) and f1(x) = F1(x, x), then the system

xn+1 = fn(xn) has a unique 2-cycle. A special case was given in Example 3.1. However, since the

2-cycle is not for each individual map fj , then it does not contribute to creating artificial cycles of

Eq. (5.1). Now, we are ready to apply Theorem 4.1 and show that the 2-cycle is globally attracting.

Corollary 5.1. Consider Eq. (5.1) in which x−1, x0 ≥ 0, and 0 < p0, p1 ≤ q. The 2-cycle assured

by Part (iv) of Proposition 5.1 is globally attracting with respect to R2
+.

Proof. It is clear that orbits of Eq. (5.1) enter the region [0, q]2 in finite time. Now, inside the

region [0, q]2, orbits are attracted to the 2-cycle by Theorem 4.1.

x

y

q

q

Figure 1: This figure shows the intersection between the curves of equations (5.2). The curves
were captured at p0 = 1, p1 = 3 and q = 4. In this case, the unique 2-cycle of Eq. (5.1) is
≈ [2.111, 1.889]. Based on Part (vi) of Lemma 3.1, the corresponding 2-cycle of Eq. (3.2) is [ψ0, ψ1],
where ψ0 ≈ (1.889, 2.111, 1.889, 2.111) and ψ1 ≈ (2.111, 1.889, 2.111, 1.889).

14



5.2 A population model

Equations of the form xn+1 = xnf(xn) are used in mathematical ecology to model single species

with non-overlapping generations [13, 14]. In this case, xn represents sexually mature individuals

at discrete time n, while f(xn) represents the density dependent growth rate. Biological or envi-

ronmental factors are commonly used to determine the nature of the function f . A prototype of

f(x) is β
c+x or βe−cx, which motivate us to proceed with the assumption that f : R+ → R+,

f(0) = β > 1, f is continuous and decreasing. When a significant amount of time is required for

sexual maturation, a delay effect must be included in the density function f, and in this case, we

can consider xn+1 = xnf(xn−1). Furthermore, when a species is subject to constant stocking as a

result of refuge or immigration, the equation becomes

xn+1 = F (xn, xn−1) = xnf(xn−1) + h, where h > 0, n ∈ N, x0, x−1 ∈ R+. (5.3)

By forcing seasonal stocking, we obtain the p-periodic equation

xn+1 = Fn(xn, xn−1) = xnf(xn−1) + hn, where n ∈ N, hn > 0, x0, x−1 ∈ R+. (5.4)

Both equations were considered in [4] in which the emphasis was on global stability, and the general

case was left open. Here, we show how to implement our developed approach. We focus on the

stocking parameter as the controlled or regulated parameter. Observe that a vertical segment (γ, t)

of the domain is mapped to (T (γ, t), γ) = (γf(t) + h, γ), and since f(0) = β > 1, γf(t) + h cannot

be smaller than γ at t = 0. This implies that we cannot obtain an invariant domain of the form

Ω = [0, γ]2. However, we appeal to Theorem 2.2. We look for a point (a, b), a < b such that

a < F (a, b) = af(b) + h < F (b, a) = bf(a) + h < b. (5.5)

Or alternatively, (a, b), b < a such that

b < F (b, a) = bf(a) + h < F (a, b) = af(b) + h < a. (5.6)

We continue by considering a specific form of f which is f(t) = β
1+t . In this case, Eq. (5.3) has

a unique positive equilibrium solution given by x̄ = 1
2

(
β + h− 1 +

√
(β + h+ 1)2 − 4β

)
. When

h 6= β−1, F in Eq. (5.3) has no artificial fixed points, but when h = β−1, we obtain an uncountable

set of artificial fixed points given by{(
t,

(β − 1)(t+ 1)

t− (β − 1)

)
: β > 1, t > β − 1, t 6= x̄

}
.

The inequalities in (5.5) give us

1− h

a
< f(b) < f(a) < 1− h

b

and the ones in (5.6) give us

1− h

b
< f(a) < f(b) < 1− h

a
.

The first inequality has a feasible region when h > β − 1, and the second one has a feasible region

when h < β − 1. We plot the feasible regions of both cases in Fig. 2. It has been shown in [4]

(Proposition 1) that the equilibrium solution x̄ is locally asymptotically stable, and a lim inf, lim sup

argument were used to show that it is globally attracting. Here, the same problem can be tackled

using our approach. For the reader’s convenience, we give the details in the following proposition:
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a

b

(i) h := 2, β = 2 (h > β − 1)
a

b

(ii) h := 1, β = 3 (h < β − 1)

Figure 2: The shaded region in Figure (i) shows the points (a, b), a < b that satisfy the inequalities
in (5.5), while the shaded region in Figure (ii) shows the points (a, b), b < a that satisfy the
inequalities in (5.6). Figures (i) and (ii) have been captured at b = h = 2 and b = 2, h = 1

2 ,
respectively.

Proposition 5.2. Consider Eq. (5.3) in which f(t) = β
1+t , β > 1. If h 6= β−1, then the equilibrium

solution x̄ = 1
2

(
β + h− 1 +

√
(β + h+ 1)2 − 4β

)
is globally attracting.

Proof. For all (x0, x−1) ∈ R2
+, we have x1 > h. Thus, we can focus on the invariant region [h,∞)2.

Consider the case h > β − 1. For each (x0, x−1) ∈ [h,∞)2, we find (a, b) such that x0 ≥ a, x−1 ≤ b
and a < F (a, b) < F (b, a) < b. Indeed, we can take β − 1 < a < h and b > x−1 such that (a, b)

belongs to the feasible region of Fig. 2 (i). Now, depend on Theorem 4.2 to obtain that (x0, x−1)

is attracted to (x̄, x̄). The case h < β − 1 can be handled in a similar way based on Fig. 2 (ii) and

Theorem 4.2.

Theorem 4.2 does not cover the case h = β − 1 because the artificial fixed points prevent the

iterates of G from squeezing the orbits of Eq. (5.3). Now, we turn our attention to the periodic

case as given in Eq. (5.4), and we focus on the case p = 2.

Lemma 5.1. Consider Eq. (5.4) with p = 2, β > 1 and h0, h1 > 0. Define β0 :=
√

(h0 + 1)(h1 + 1),

then each of the following holds true:

(i) Eq. (5.4) has neither equilibrium solutions nor artificial equilibrium solutions.

(ii) If β = β0, then the 2-periodic equation has a unique 2-cycle and infinity many artificial

2-cycles.

(iii) If β 6= β0, then the 2-periodic equation has a unique 2-cycle and no artificial 2-cycles.

Proof. Part (i) follows from the fact that h0 6= h1. The existence of a 2-cycle in Part (ii) and

Part (iii) can be obtained by Brouwer fixed-point theorem (cf. [4]); however, the uniqueness can be

established from the solution of the system F0(x, y) = y and F1(y, x) = x. This gives us

y =
1

β
(x− h1)(x+ 1) and x =

1

β
(y − h0)(1 + y). (5.7)
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The intersection between the two curves shows the uniqueness in both cases. Next, we proceed to

test the existence artificial 2-cycles. Solve

G1(G0(ξ)) = ξ, where ξ = ((x, y), (u, v)), Gj(ξ) = (Fj(x, y), u, Fj(u, v), x), j = 0, 1.

This leads us to the system

v = F0(x, y), u = F1(y, x), x = F1(v, u) and y = F0(u, v).

Substitute u and v from the first two equations in the latter ones to obtain x = F1(F0(x, y), F1(y, x))

and y = F0(F1(y, x), F0(x, y)). Then eliminate y to obtain a single equation. Factor the obtained

equation, and ignore the factors that generate the 2-cycle, i.e., the factor that appear when elim-

inating y from the two equations in (5.7). The elimination and factoring can be done using the

resultant command in MAPLE. This gives us

x(x+ 1)2(β2 − h0h1 − h0 − h1 − 1)2 = 0.

Thus, β = β0 makes the equation valid regardless of the x value, which means that we have

uncountable set of artificial 2-cycles. The other factors are positive and can be ignored. Hence,

β = β0 gives a unique 2-cycle and infinity many artificial 2-cycles. On the other hand, β 6= β0 gives

a unique 2-cycle and no artificial 2-cycles.

Next, we gear towards proving that the existed 2-cycle is globally attracting. Recall the solution

of (F1(y, x), F0(x, y)) = (x, y) gives the 2-cycle, say [x0, x1]. Let (x, y) be chosen so that F1(y, x) > x

and F0(x, y) < y. Obviously, this is possible since the two inequalities are

y >
1

β
(x− h1)(1 + x) and x <

1

β
(y − h0)(1 + y),

whenever x > h0 and y > h0. In fact, the feasible region contains the region {(t, s) : t < x1, s > x0}.
Our next result becomes straightforward and simplifies our last result.

Lemma 5.2. Let y > 1
β (x− h1)(1 + x), x < 1

β (y− h0)(1 + y), X := (x, y) and define u := F1(y, x)

and v := F0(x, y). We obtain x < u, v < y and

ξ := ((x, y), (u, v)) ≤se (X,X) ≤se ξt = ((u, v), (x, y)).

Furthermore, if y ≥ F0(u, v) and x ≤ F1(v, u), then

ξ ≤se G1(G0(ξ)) ≤se G1(G0(X,X)) ≤se G1(G0(ξ
t)) ≤se ξt.

Finally, we reached the point where we can give the main result of this section.

Theorem 5.1. Under the assumptions of Lemma 5.1, if β 6= β0, then Eq. (5.4) has a globally

attracting 2-cycle with respect to [0,∞)2.

Proof. We give the proof for β < β0, and the case β > β0 can be handled in a similar way. By

Lemma 5.1, there exists a unique 2-cycle, and no equilibrium solutions nor artificial 2-cycles. Let

the 2-cycle be [x0, x1], where F0(x1, x0) = x0 and F1(x0, x1) = x1. We need to utilize Lemma

5.2, and then apply Theorem 4.2. Therefore, we need to find two points (a, b), (c, d) in which
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b > 1
β (a− h1)(1 + a), a < 1

β (b− h0)(1 + b), c = F1(b, a), d = F0(a, b) and b ≥ F0(c, d), a ≤ F1(d, c).

To obtain b ≥ F0(c, d) and a ≤ F1(d, c), we need to investigate the feasible region of the inequalities

α(x, h0)y
2 + β(x, h0, h1)y − γ(x, h0, h1) > 0 (5.8)

and

α(y, h1)x
2 + β(y, h1, h0)x− γ(y, h1, h0) < 0 (5.9)

where

α(t, r) =(t+ 1)(r + 1)− β2

β(t, r, s) =βt2 + (β + 1− r2 − βs)t− β2 − βs− r2 + 1

γ(t, r, s) =(t+ 1)(βrt+ βs+ r2 + r).

Focus on the elliptic curves y = F0 (F1(y, x), F0(x, y)) and x = F1 (F0(x, y), F1(y, x)) , which form

the boundary of the feasible region. The first equation has a vertical asymptote at x = b2

h0+1 − 1

and horizontal asymptote at y = h0, while the second one has a vertical asymptote at x = h1 and a

horizontal asymptote at y = b2

h1+1 − 1. Furthermore, the intersection between the two curves occur

at the point (x1, x0), which generates the 2-cycle [x0, x1]. Also, at β = β0, the two curves overlap.

This description is enough to sketch the feasible region for y > x; however, since we don’t need to

identify all the feasible region, we fix x = h1. Inequality (5.8) becomes

β(h1 + 1)(βh1 + h0y + h0) > 0

and Inequality (5.9) becomes

P (y) = α(h0, h1)y
2 +

(
(h1 + 1)(1− h20)− β2

)
y − (h1 + 1)(h0 + 1)(βh1 + h0) > 0.

Thus any y value larger than the positive root (say y = b0) of P (y) = 0 makes (x, y) within the

feasible region. By this choice, the inequalities y > 1
β (x− h1)(1 + x) and x < 1

β (y − h0)(1 + y) are

already satisfied. Now, we consider a = h1, b > b0, c = F1(b, a) and d = F0(a, b). In this case, the

region Ω =

[
h1,

βb

1 + h1
+ h1

]
×
[
βh1
1 + b

+ h0, b

]
is attracted to the fixed point ξ̄ = ((x0, x1), (x0, x1))

of Ĝ0 = G1◦G0. Observe that we are free to select b as large as we wish, but we know that Eq. (5.4)

has a compact region that attracts the positive orthant (cf. [4]). This makes the 2-cycle globally

attracting with respect to the positive orthant.

We close this section by an illustrative example. Consider h0 = 1, h1 = 5 and β = 3, then we

have β < β0. The 2-cycle is [x0, x1] ≈ [6.781, 4.620]. Now, consider a = 5, b > b0 = 1
2(3 +

√
265) ≈

9.639, c = 1
2b + 5 and d = 15

1+b + 1. The region Ω := [a, c] × [d, b] is attracted to the point (x0, x1)

under the subsequences {(x2n, x2n−1)} that result from the folded map Ĝ0 = G1 ◦G0. When b = 20,

the regions Ω and Ω̃ are shown in Figure 3.

6 Conclusion

In this paper, we considered the p-periodic difference equation

xn+1 = Fn(xn, xn−1), n ∈ N = {0} ∪ Z+, x−1, x0 ≥ 0, (6.1)
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Figure 3: In both figures, h1 = 1, h1 = 5, β = 3, a = 5; b = 20, c = F1(20, 5) = 15, d = F0(5, 20) =
12
7 . The figure to the left shows the rectangular region assured by Theorem 4.2 through the folded

map Ĝ = G1 ◦G0, while the figure to the right shows the region Ω̃ that is attracted to the 2-cycle.

where Fj : R2
+ → R+ is continuous and Fj(↑, ↓) for each j = 0, . . . , p−1. The embedding strategy is

based on the creation of a higher dimensional symmetric dynamical system that has the advantages

of establishing a comparison principle that may aid in obtaining globally attracting cycles. We

extended the embedding technique to cover Eq. (6.1). We found it convenient to introduce the

concept of artificial cycles. Artificial cycles are obtained from the cycles of the embedded symmetric

system, but are not cycles of Eq. (6.1). We illustrated the connection between normal cycles and

artificial cycles and gave some characterization results. The nonexistence of artificial cycles have

the advantage of making the notion of globally attracting cycles a manageable task. A global

stability result was given in Theorem 4.2 in addition to some illustrative examples that clarify

the developed theory. In particular, a global attracting 2-cycle has been obtained for each of the

2-periodic difference equations

xn+1 = Fn(xn, xn−1) =
pn + qxn

1 + xn + xn−1
, x0, x−1 ≥ 0, n ∈ Z+ (6.2)

and

xn+1 = Fn(xn, xn−1) = xnf(xn−1) + hn, where n ∈ N, hn > 0, x0, x−1 ∈ R+. (6.3)

The latter equation represents a population model with periodic stocking, and the characterization

was done when f(t) = β
1+t . As expected in scientific research, any scientific approach can address

certain problems, but at the same time, raises some new questions that need further investigation.

For instance, it is interesting to investigate the bifurcation of artificial cycles in both the autonomous

and nonautonomous cases. The cycles of the one dimensional map z = F (x, x) seem to play a role

in the existence of artificial cycles of z = F (x, y). Is it true that if the autonomous map z = F (x, x)

has no k-cycle, then z = F (x, y) has no artificial k-cycle? The answer was positive for the 1-cycle (

a fixed point). A positive answer means we can go one step further to conclude that if z = F (x, x)

has no k-cycle, then z = F (x, y) has no artificial q-cycles for all q to the left of k in the Sharkovsy’s

ordering of the positive integers. Finally, it is worth noting that in both of Eq. (6.2) and Eq. (6.3),

our analysis was confined to the period p = 2, but more technical computations can be used to

extend the analysis for larger values of p.
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