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ABSTRACT 

Respiratory-Correlated cone beam computed tomography (4D-CBCT) is an emerging image-guided radiation therapy 

(IGRT) technique that is used to account for the uncertainties caused by respiratory-induced motion in the radiotherapy 

treatment of tumors in thoracic and upper-abdomen regions. In 4D-CBCT, projections are sorted into bins based on their 

respiratory phase and a 3D image is reconstructed from each bin. However, the quality of the resulting 4D-CBCT images 

is limited by the streaking artifacts that result from having an insufficient number of projections in each bin. In this work, 

an interpolation method based on Convolutional Neural Networks (CNN) is proposed to generate new in-between 

projections to increase the overall number of projections used in 4D-CBCT reconstruction. Projections simulated using 

XCAT phantom were used to assess the proposed method. The interpolated projections using the proposed method were 

compared to the corresponding original projections by calculating the peak-signal-to-noise ratio (PSNR), root mean square 

error (RMSE), and structural similarity index measurement (SSIM). Moreover, the results of the proposed method were 

compared to the results of existing standard interpolation methods, namely, linear, spline, and registration-based methods. 

The interpolated projections using the proposed method had an average PSNR, RMSE, and SSIM of 35.939, 4.115, and 

0.968, respectively. Moreover, the results achieved by the proposed method surpassed the results achieved by the existing 

interpolation methods tested on the same dataset. In summary, this work demonstrates the feasibility of using CNN-based 

methods in generating in-between projections and shows a potential advantage to 4D-CBCT reconstruction.  
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convolutional neural networks (CNNs), deep learning  

1. INTRODUCTION

Respiratory motion introduces uncertainties in radiotherapy treatment of tumors in thoracic and upper-abdomen regions 1. 

Image-guided radiotherapy (IGRT) uses imaging during radiation therapy to reduce these uncertainties and improve the 

accuracy of treatment delivery. Respiratory-Correlated (4D)-CBCT is an emerging IGRT technique used to account for 

respiratory motion 2. In 4D-CBCT, projections are sorted into bins based on their respiratory phase and a 3D image is 

reconstructed from each bin 3–5. However, 4D-CBCT has a limited applicability in the current radiation therapy practices, 

mainly because of the poor quality of the images that are reconstructed using an insufficient number of projections 6–8. 

Several developments of 4D-CBCT reconstruction techniques have been proposed in the literature for image quality 

improvement 9. Moreover, interpolating additional projections and using them in 4D-CBCT reconstruction has been 

suggested to improve the quality of the resulting images. 

The topic of image interpolation has been studied in medical imaging literature 10–15. These interpolation methods can 

be classified as traditional methods such as linear and spline interpolation 13,14, directional interpolation 10,11, motion-based 

and registration-based interpolation 12,15. Deep learning and CNNs, in particular, are powerful tools that have demonstrated 

their superiority in many healthcare applications 16. The objective of this work is to develop a CNN-based method for 

interpolating in-between projections to increase the total number of projections used to reconstruct 4D-CBCT images. The 

use of the CNNs in this work was driven by the need to improve the quality of 4D-CBCT images in order to improve the 

overall quality of radiotherapy treatment and motivated by the promising results of CNNs in the field of video frame 

interpolation. The rest of the paper is organized as follows. Section 2 discusses the materials and methods used. Section 3 

presents and discusses the experimental results. Section 4 concludes the paper. 
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2. MATERIALS AND METHODS 

In this work, a CNN-based method for generating in-between interpolated projections is proposed. The following sections 

2.1 – 2.3 present the datasets used in this work, the proposed method, and the evaluation metrics. 

2.1 Datasets  

The proposed method were tested on a phantom dataset that simulates a free-breathing CBCT scan. In this work, the dataset 

was generated using 4D extended cardiac-torso (XCAT) phantom 17,18. The dataset used for all experiments consists of 

projections forwarded from 3D images generated by XCAT phantom at six respiratory phases. The dataset consists of 360 

projections taken at different angles over a 360-degree rotation. The projections are of size 512 × 512 pixels with pixel 

intensity values varying between 0 and 8.6122.  

2.2 CNN-based Interpolation Method 

The CNN-based interpolation method proposed in this work is inspired by the video frame interpolation work reported by 

Niklaus et al. 19. Figure 1 shows the CNN architecture used in this work. As can be seen in the figure, the network takes 

two consecutive projections, I1 and I2, as input to the network, and for each output pixel it generates a pair of 2D kernel, 

k1 and k2, carrying extracted features information. To reduce the amount of memory consumption, the network is followed 

by four subnetworks that each estimate one of the 1D kernels carrying the extracted features information. Thus, each of 

k1 and k2 would be estimated as <K1,v,K1,h> and <K2,v,K2,h>. Finally, the interpolated projection is generated by 

convolving the output kernels with their respective input projections and adding them as follows:  

                            𝐼 = ((𝐾1, 𝑣 ∗ 𝐾1, ℎ) ∗ 𝐼1) + ((𝐾2, 𝑣 ∗ 𝐾2, ℎ) ∗ 𝐼2).  (1) 

where 𝐼 is the output projection, I1 and I2 are the input images to the network, K1,v and K2,v are the 1D vertical 

kernels, and K1,h and K2,h are the 1D horizontal kernel. In this work, a CNN that generates separable convolution kernels 

is utilized as it has a lower space and time complexity 19. The CNN architecture is a U-net encoder-decoder network which 

consists of a contracting component, also referred to as the encoder, and an expanding component, also referred to as the 

decoder. The encoder extracts features by down-sampling via average pooling. The expanding component incorporates 

bilinear up-sampling to complete the dense prediction. Relu is the activation function used in all layers. As for the loss 

functions, we used and compared between sum of absolute difference, also known as L1, and VGG-19 as per the 

recommendations and results generated in several related studies 19–21. The kernel size used for the 1D kernels is 51 pixels. 

Although a bigger kernel size can accommodate for bigger movements, this kernel size was found to account for the 

breathing lung movement found in the datasets. 

Holdout method is used to split the datasets into 80% for training and the remaining is preserved for testing the models. 

Triplets of projections <I1, ground truth projection, I2> are extracted from the training dataset and used to train the model. 

Moreover, data augmentation approaches are adopted to maximize the gained knowledge similar to the work reported by 

Kartašev et al. 21. Random vertical, horizontal, and +90- and -90-degree transformations are applied whenever a triplet is 

read. In addition to that, temporal order swaps of the first and third projections of triplets are applied to enhance and boost 

the dataset used in training the models. 

 
Figure 1. An overview of the CNN-based interpolation method. The network architecture is proposed by Niklaus et al. 19 and used in 

this work (reprinted with permission from IEEE). The input to the model in this work is triplets of x-ray projections <I1, ground truth 

projection, I2> and output is the interpolated frame.  
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2.3 Evaluation Metrics 

Several evaluation metrics are considered to examine the interpolated projections including peak signal-to-noise ratio 

(PSNR), root mean square error (RMSE), structural similarity index measurement (SSIM), and a difference image 

computed between the original and the interpolated projection. PSNR measures the quality difference between the original 

and the interpolated projection. The higher the value of the PSNR, the better the quality of the interpolated projection. 

PSNR is calculated as follows:  

                                               𝑷𝑺𝑵𝑹 = 𝟏𝟎. 𝑳𝒐𝒈𝟏𝟎 (
𝑴𝑨𝑿𝟐𝒊

𝑴𝑺𝑬
),                                            (𝟐) 

where 𝑴𝑨𝑿𝟐𝒊 is the maximum pixel value and the 𝑴𝑺𝑬 is the cumulative mean square error between the interpolated 

projection I and the original ground truth projection J as shown in equation (3) below: 

                                    𝑴𝑺𝑬 =
𝟏

𝒎𝒏
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where i and j are the pixels’ intensity values of I and J, and m and n are the dimensions of the projections. 

RMSE is calculated as the square root of MSE shown in equation (3). A low RMSE indicates a high-quality projection 
22. SSIM measures the level of similarity between the ground truth and the interpolated projections. It could be defined as 

the percentage of pixels in the interpolated projection that match the pixels in the ground truth one. Hence, the closer the 

SSIM value to 1.0, the better the interpolation results 23,24. The SSIM of a projection I compared to the ground truth 

projection J is computed using the following formula: 

                    𝑺𝑺𝑰𝑴(𝑰, 𝑱) =  
(𝟐𝝁𝑰𝝁𝑱+𝑪𝟏)(𝟐𝝈𝑰𝑱+𝑪𝟐)

(𝝁𝑰
𝟐+𝝁𝑱

𝟐+𝑪𝟏)(𝝈𝑰
𝟐+𝝈𝑱

𝟐+𝑪𝟐)
 ,                            (𝟒) 

where C1 and C2 are constants, μ𝐼 , σ𝐼 , σIJ refer to the mean, standard deviation, and the cross-correlation, respectively.  

The difference image contributes to the visual evaluation of the interpolated projections’ quality. The difference image 

is a greyscale image that is calculated by simply subtracting the original projection from the interpolated one. The smaller 

the difference, the better the interpolation. 

3. RESULTS 

In this section, the experimental results of the proposed CNN-based interpolation method are presented. Moreover, the 

performance of the proposed method is compared to existing standard interpolation methods found in the literature.   

3.1 Experiment Settings 

The proposed CNN-based interpolation method was implemented in Python and using PyTorch library. The network 

parameters used for all training experiments, including AdaMax optimizer with β1 = 0.9, β2 = 0.999 and a learning rate 

of 0.001, were reported by Niklaus et al. 19. MATLAB 2019, the MathWorks, Inc., Natick, Massachusetts, United States, 

was also used to complete some experiments and analyze the performance results. 

3.2 Results of CNN-based Interpolation Method 

Experiments were conducted using the phantom dataset described in Section 2.1. The trained model was tested using a 

testing set consisting of 60 projections, forming 20 triplets. In addition, we also experimented using different loss functions 

including L1 and VGG. Table 1 summarizes the quantitative results of testing the trained models at different epochs up to 

100 epochs. It was noticed that the model had already saturated after 100 epochs and started showing degradation in the 

quantitative results as well as the visual image quality.  

 



 

 
 

 

Table 1. Quantitative results of the trained CNN model tested on 20 triplets – with L1 loss function 

Number of epochs  PSNR [dB] RMSE SSIM 

1 20.8705 23.1879 0.6184 

30 28.1205 15.7174 0.8364 

60 34.2863 4.9597 0.9557 

100 35.9386 4.1149 0.9577 

 
Figures 2 shows a side by side comparison of a sample interpolated projection generated using the model trained for 100 

epochs, the corresponding original projection, and a difference image between the two. As can be seen, the difference 

image is almost black which means the difference between the original projection and the interpolated one is minimal. 

 
      a) Original projection        b) interpolated projection       c) difference image 

Figure 2. Visual results of the models trained using L1 loss function for 100 epochs at angle 301 degrees. 

Another experiment was conducted in which the VGG loss function was used instead of the standard baseline L1 function. 

All other parameters and training setup remained unchanged. Unfortunately, the results achieved in this experiment were 

worse than those obtained using the L1 loss function. The best results achieved using VGG loss function were at epoch 

100 where PSNR, RMSE, and SSIM were 29.3033, 16.2119, and 0.8302, respectively. Further experiments were run to 

evaluate the performance of the model to ensure that it is well-fitted. These experiments were accomplished by analyzing 

the training versus validation loss. Thus, the dataset was divided it into training, validation, and testing datasets where 

60% of the dataset was used as the training set, 20% as the validation set, and 20% as the testing set. The training dataset 

consists of 216 images, 72 triplets, while the validation and testing datasets both consist of 72 images, 24 triplets. L1 loss 

function was used to train the model. Figure 3 shows the training verses validation loss of the model. As shown in the 

figure, the training loss stabilized and did not show any further changes at the last few epochs. Moreover, it can be noticed 

that the validation loss and training loss reached to a point in which they are almost equal. These observations indicate that 

the trained model is well-fitted and no over-fitting or under-fitting were observed. 

  

 
Figure 3. Training and validation loss plot 

3.3 Comparison with the Existing Standard Interpolation Methods   

Three existing interpolation methods were implemented and compared with the proposed method, namely, linear 13, spline 
14, and registration-based interpolation 15. All experiments for the three methods were performed using the same dataset. 

For all the experiments, triplets of projections were selected such that the first and third projections are used to interpolate 

the middle projection. The second projection in the triplets was used as the ground truth.  



 

 
 

 

Tables 2 summarizes the average PSNR results for the existing interpolation methods compared to the proposed 

method. The results in the table imply that none of the tested algorithms achieved good results. Figure 4 shows the visual 

results of applying linear, spline, and registration-based interpolation methods to interpolate projections and compare them 

to the original ones. The figures demonstrate visually the dissimilarity between the original projections and the interpolated 

ones represented by the white areas in the difference images.  

The results of the linear and spline interpolation methods were expected since both methods interpolate the intensities 

of the intermediate projection with disregard to any motion. Surprisingly, the results of the registration-based method were 

not good either. This can be due to the assumption made in that study that all slices are parallel to the x-y plane 15. However, 

this assumption cannot be true in this work since each of the projections are acquired at a different projection angles over 

a 360-degree rotation. 

Table 2. PSNR results of the existing standard interpolation methods compared to the proposed method 

Algorithm  PSNR [dB] 

Linear 13   25.398 

Spline 14  25.393 

Registration-based 15 20.087 

Proposed CNN-based 35.939 

 

 

 

 
a) Original projection         b) interpolated projection        c) difference image 

Figure 4. Visual results of the standard interpolation methods: linear interpolation (top), spline interpolation (middle), and registration-

based interpolation (bottom). 

4. CONCLUSION 

In this work, we proposed a CNN-based in-between projection interpolation approach to increase the number of projections 

that can be used to generate a high-quality reconstructed 4D-CBCT images. This approach is inspired by the promising 

results of CNNs in video frame interpolation. The resulting generated projections were assessed both quantitatively and 

qualitatively. The interpolated projections were evaluated by calculating several quantitative measurements including 

PSNR, RMSE, and SSIM. The achieved results were compared to those of standard interpolation methods available in the 

literature. The proposed method achieved better results than these methods which demonstrates the feasibility of using 

deep learning and CNNs in particular for generating in-between projections. The future work for this research includes 

using the interpolated projections to reconstruct the 4D-CBCT images and comparing these images to those reconstructed 

using the original projections only. In addition to that, applying the work to clinical datasets would be beneficial and can 

prove the clinical viability of the method. 
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