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Abstract
Conventional damage detection techniques are gradually being replaced by state-of-the-art smart monitoring and decision-
making solutions. Near real-time and online damage assessment in structural health monitoring (SHM) systems is a
promising transition toward bridging the gaps between the past’s applicative inefficiencies and the emerging technologies of
the future. In the age of the smart city, Internet of Things (IoT), and big data analytics, the complex nature of data-driven civil
infrastructures monitoring frameworks has not been fully matured. Machine learning (ML) algorithms are thus providing the
necessary tools to augment the capabilities of SHM systems and provide intelligent solutions for the challenges of the past.
This article aims to clarify and review the ML frontiers involved in modern SHM systems. A detailed analysis of the ML
pipelines is provided, and the in-demand methods and algorithms are summarized in augmentative tables and figures.
Connecting the ubiquitous sensing and big data processing of critical information in infrastructures through the IoT
paradigm is the future of SHM systems. In line with these digital advancements, considering the next-generation SHM and
ML combinations, recent breakthroughs in (1) mobile device-assisted, (2) unmanned aerial vehicles, (3) virtual/augmented
reality, and (4) digital twins are discussed at length. Finally, the current and future challenges and open research issues in
SHM-ML conjunction are examined. The roadmap of utilizing emerging technologies within ML-engaged SHM is still in its
infancy; thus, the article offers an outlook on the future of monitoring systems in assessing civil infrastructure integrity.
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Introduction

Machinery equipment and structures, particularly lifelines,
fabricate the most critical components in this modern age,
and they have become an indispensable part of the present
day. In the case of utility lifelines, such as roadways,
bridges, and powerlines, any threats that could cause a
failure in any part of the system, no matter the extent, can
eventually lead to the disruption of a whole city or a country.
This means that if it was possible to predict future failures
and detect the existing ones, this could potentially lead to a
reduction in direct and indirect economic costs and human
life fatalities. The key to doing so lies in identifying damage
in structures. Damage is typically defined, in simple terms,
as any change to the material or geometry, such as the
boundary condition that can alter the dynamic properties or
the response of the structure,1 thus adversely affecting the
current or future performance of the system.2 In the past,
identifying damage was only based on a periodical

inspection either carried out using non-destructive testing
/non-destructive evaluation (NDE) or by visual observation.
The latter method, although it performs well for straight-
forward applications, is susceptible to subjectivity, human
errors, prolonged duration, and occupant’s safety for more
complex systems. Prior knowledge of the damaged area is
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necessary for such techniques which would be impossible
for small and unreachable regions without completely
dismantling part of that area first. Such damage detection is
localized, meaning it cannot represent the global behavior or
the system’s response.

The impracticality of visual inspection for large and
complex civil infrastructures and long biennial inspection
intervals has opened up the possibility of incorporating
condition-based assessment techniques. As such, struc-
tural health monitoring (SHM) has emerged to provide
the transition from offline damage identification to near
real-time and online damage assessment. In layman’s
terms, SHM is a damage detection strategy that can
observe a structure over a long period using a series
of continuous measuring devices. Sensitive features
extracted from these continuous measurements and the
statistical analysis of such measures can provide the
ability to assess the current performance of structures.
Figure 1 represents the typical components of an SHM
system. It starts with a selection of sensors and the
placement of them in strategic locations on the structure.
The collected data through the data acquisition system are
transmitted to the processing unit and stored and managed
in a database system. The evaluation of the collected data
and the health state of the system is determined through
several techniques and algorithms. In the end, based on
the location and severity of the identified damage and
how it can propagate in the future, inspection and
maintenance during the decision-making process will be
decided and carried out.

Model-driven SHM versus data-driven SHM

As stated earlier, to identify the damage, the undamaged
state of the structure must either be assumed or developed.
Similarly, the extent of the damage is nearly impossible to
quantify or assess if the previous “undamaged state” is
unknown. Therefore, the ability to identify a damaged
structure from the given measurements ultimately lies in
realizing the previously recorded information and the pat-
tern of changes it follows throughout the measuring period.
In certain SHM applications, a prior model, typically the
finite element model (FEM) of the structure, is useful as a
baseline. Model updating is then performed, replacing the
initial assumptions with the measured values. This is then
considered as the original state of the structure. Further
updating of the model can, therefore, identify the damage by
considering the structural changes. This process of SHM
implementation is a model-driven method. Therefore, an
accurate analytical model of the structure is required.3

There are numerous works related to model-driven
SHM. To name a few, Cao et al.4 developed a piezoelec-
tric impedance measurement for structural damage identi-
fication through an inverse analysis. Similarly, Moore et al.5

identified cracks in a thin plate by model updating. Gen-
erally, coming up with an accurate model is burdensome.
Model discrepancies, especially for complex structures, are
inevitable with little to no information about joints and
bonds. Such an inverse problem is not well-posed6 and
requires regularization and simplification.7 An alternative to
a model-driven SHM system is a data-driven model. Other
than relying on the physical model of the structure, the
model construction is dependent on statistical pattern rec-
ognition (PR), which is usually applied by machine learning
(ML) algorithms.

In contrast to having an FEM and updating the model
later, the sensing devices’ data from the structures are used
more conveniently in the undamaged state and under few
circumstances in the damaged state. In cases where insuf-
ficient labeled data exists, the data-driven approach can take
an unsupervised form, or a hybrid model can be utilized for
generating additional data. Augmentation of data-driven
SHM systems with FEM can generate labeled datasets
for training validation and testing phases. However, it is
crucial to highlight that physical models are computation-
ally intensive and need validation with experimental re-
sults.8 On the other hand, not every ML algorithm is capable
of damage prognosis, meaning data-driven approaches are
not always predictive models. Therefore, the decision be-
tween employing model-driven or data-driven SHM sys-
tems or both ultimately boils down to realizing (1) the
proposed system’s requirements, (2) the complexity of
the application where the system is deployed, and (3) if the
existing data and models can support and provide valuable
inferences about the health state of the structure. ForFigure 1. Typical components of SHM.
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example, suppose one prefers a hybrid combination of the
two methods. In that case, the system’s predictive accuracy
depends on the performance of the physics-based model and
if the measured data from the data-driven approach is rel-
evant and usable for training and validation.

Damage definition and identification

A vertical hierarchy is typically considered in order to
identify damage. A pioneered damage typology scheme was
offered by Rytter.9 Damage state was categorized into four
levels, namely:

1. Existence of damage—Detection
2. Position of damage—Location
3. Severity of damage—Extent
4. Prognosis of damage—Prediction

In such a hierarchy, knowledge of the previous level is
generally essential for complete damage identification.
Thus, the success at each level is likely to depend on the
performance of the lower levels. With the advent of ML and
PR algorithms, a new level can be added to the above.
Determination of the type or classification of damage is the
level that is possible through the use of ML algorithms.10

This new step lies between steps 2 and 3 introduced above.
Figure 2 depicts the 5-step hierarchical damage identifi-
cation from detection to prediction transactions.

Given that both damaged and undamaged information is
available, a supervised learning algorithm can effectively go
through all five damage detection levels. This, as explained
before, requires extensive data to be readily available from
the sensing systems, the physical-based models, or the
experiments. Nevertheless, this is not possible in many

cases, and the current information for damage state is
limited, if not unavailable. For such situations, there exists a
method called unsupervised learning. Instead of learning the
models and train based on the data, a relatively simple
approach, novelty, or outlier detection is applied.11 An
initial baseline of the model is therefore created assuming
normal operative conditions. Later, upon receiving new
data from the sensing systems during the operation mode,
the algorithm detects any outlier given the set threshold
defined by the system.12 One example of an unsupervised
algorithm was tested on an aircraft fuselage and multi-
layered carbon fiber–reinforced plastic (CFRP) plate for
damage detection.13

Compared to supervised learning, the unsupervised
method provides a clear advantage as it no longer requires
having prior information about the damaged state of the
structure. However, this learning model can only be used to
detect and sometimes, but not always, locate damage.14 In
addition, many of the implemented ML approaches for
damage detection do not consider environmental and op-
erational factors (EOFs) and only rely on the severe
damages that occur on the structures. Temperature effect
and traffic loading are a few of the neglected variabilities
that, in reality, have a significant influence on the in-service
structures’ response.15 Some works16–19 have extensively
studied the effect of such variabilities for an extended period
ranging from 1 to 2 years. Thus, an unsupervised approach
cannot effectively be used on its own when external factors’
dependency requires consideration while identifying dam-
age.20 Rather, a coupled approach of model-driven and data-
driven algorithms can work together to achieve a reasonable
damage identification level.19

Objectives of this study

The application of PR is not a new topic and dates back to
the early 70s and 80s. In simple terms, PR is a tool to
represent and recognize regularities in data. Sometimes,
simple mathematical models based on a shared domain
about a specific application can be used to infer patterns
from a set of data and classify accordingly. During the
1990s, however, instead of relying on models derived by an
expert (usually researchers) to classify data, machines were
used to learn from the data, generate the most probable
outcome, and validate the model based on unseen set data.
The most likely outcome is a result of statistical PR al-
gorithms, which are generally referred to as ML techniques.

This review aims to generalize these applications har-
moniously using ML and SHM frameworks. Many methods
with different results exist in the rich body of literature.
Several approaches and techniques for feature extraction,
data normalizations, and dimensionality reductions are
employed for various civil infrastructures. This review
brings a systematic collection of different SHM applicationsFigure 2. Five-step hierarchical damage identification scheme.

Malekloo et al. 3



compatible with the statistical PR perspective. The readers,
therefore, are introduced to the concept of ML and its
utilization in the SHM paradigm. Moreover, model-driven
and data-driven approaches in SHM will be discussed, but
an emphasis will be placed on data-driven SHM ap-
proaches. In addition, tables and figures refine the ML
taxonomy behind the vast SHM literature complementing
the article. Next-generation SHM potentials such as un-
manned aerial vehicle (UAV)-assisted SHM, mobile-SHM,
and virtual/augmented reality–supported SHM are also
addressed in this study together with the digital twin, smart
city, and big data era.

For better readability, the abbreviations used in this
survey, along with their definitions, are provided in Table 1.
In summary, the review aims to consider:

1. The pipeline ofML in each component that makes up
SHM systems.

2. The different tools and algorithms used in ML and
DL processes for each level of SHM damage
identification.

3. The different learning algorithms proposed for
context-dependent applications.

4. Extension into IoT age-related and next-generation
emerging technologies and data science prospects for
SHM.

Comparison of past relevant reviews

Many works in the past years or so have reviewed ML
aspects of SHM. Nevertheless, there is a growing need for

Table 1. List of used abbreviation.

Abbreviation Definition Abbreviation Definition

AANN Auto-associative neural network MLR Multiple linear regression
AI Artificial intelligence mRMR Minimum redundancy feature selection
ANN Artificial neural networks MSD Mahalanobis squared distance
ANOVA Analysis of variance NB Naı̈ve Bayes
AR Augmented reality NDT Non-destructive testing
ARMA Autoregressive moving-average model NLPCA Nonlinear principal component analysis
BD Big data NN Neural networks
CART Classification and regression tree PCA Principal component analysis
CFRP Carbon fiber–reinforced plastic PCR Principal component regression
CNN Convolutional neural network PPCA Probabilistic principal component analysis
CCF Cross-correlation function PR Pattern recognition
CSD Cross spectral density PSD Power spectral density
DA Deep autoencoders QDA Quadratic discriminant analysis
DL Deep learning QP Quadratic programming
DT Decision tree RDA Regularized discriminant analysis
EOF Environmental and operational factor RF Random forest
FA Factor analysis ROC Receiver operating characteristic
FDD Fervency domain decomposition SA Stacked autoencoders
FEM Finite element model SFA Slow feature analysis
FRF Frequency response function SHM Structural health monitoring
GA Genetic algorithms SNR Signal to noise ratio
GKPCA Greedy kernel principal component analysis SSI Stochastic subspace identification
GMM Gaussian mixture modeling SVD Singular value decomposition
GP Gaussian process SVDD Support vector data description
ICA Independent component analysis SVM Support vector machine
IoT Internet of things SVM Support vector machine
IRF Impulse response function SVR Support vector regression
kNN K-nearest neighbor UAV Unmanned aerial vehicle
KPCA Kernel principal component analysis UmRmR Unsupervised redundancy–maximum

relevance
LDA Linear discriminant analysis VR Virtual reality
LLE Locally linear embedding WIM Weigh-in-motion
LQD-RKHS Log quantile-density of reproducing kernel Hilbert space WSN Wireless sensor network
ML Machine learning — —

MLP Multilayer perceptrons — —
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an up-to-date survey connecting the algorithmic advance-
ments with the forthcoming SHM trends utilizing emerging
technologies in a collective form. Noel et al.21 and Arcadius
Tokognon et al.22 provided a general review of SHM in the
context of wireless sensor networks (WSNs) and IoT, re-
spectively. Data acquisitions, processing, and network
connectivity were among the topics that were discussed in
detail. However, there was no explicit link between SHM
and ML in these two articles, although some basic aspects
were defined. Gomes et al.23 and Fan and Qiao24 reviewed
vibration-based damage detection techniques in the model-
driven approach through optimization algorithms and ar-
tificial neural networks (ANN). In other works, Feng and
Feng25 and Ye et al.26 summarized data-driven SHM
methods using machine vision in the literature. In a most
recent and comprehensive review of computer vision for
SHM at both local and global levels, Dong and Catbas27

presented a detailed breakdown of DL and the challenge and
opportunities in the field. The work by Ghiasi et al.28 re-
viewed artificial intelligence (AI) techniques for damage
detection and applied common prognostics algorithms for
several case studies. The authors did not explicitly link their
findings to the benefits AI could offer in global damage
detection for large-scale SHM despite their several tests. A
short review of prognostics methods based on both model-
driven and data-driven approaches was discussed by An
et al.29 The authors described some ML benefits and
standard algorithms in SHM; however, a more compre-
hensive analysis was not conducted. Moughty and Casas30

overviewed the model-driven damage detection and alter-
native solutions. Kerle et al.31 reviewed how UAV-based
damaged mapping could provide a flexible solution for
damage identification with advanced deep learning (DL)
approaches. Khan and Yairi32 used a different approach to
review DL research on system health management. Al-
though the authors centered their systematic review on
aerospace applications, yet it still provides plausible benefits
for fault diagnosis and prognostics in different disciplines.
Similarly, Ye et al.33 reviewed DL application in SHM of
civil infrastructures, including the history and how it de-
veloped throughout the years. Both reviews lack extension
to mobile data-driven and UAV-assisted SHM systems. Hou
et al.34 examined the usefulness of DL applications to
address structure inspection and on-site safety monitoring
challenges in the current era. In contrast to the previous DL
papers, the recent review by Sony et al.35 emphasizes on the
convolutional neural network (CNN) application in SHM.
Owning to its specificity, major key points that were
overlooked by the previous DL reviews were comprehen-
sively covered.

Salehi and Burgueño36 discussed, in great detail, the
power of AI in ML, PR, and DL. However, a specific
breakdown of ML and PR, especially in SHM, was not
explicitly examined. The recent review by Sun et al.37 is

very similar to the previous paper and can be considered a
comparable survey to ours. The authors acknowledged the
vital role of AI and big data in SHM applications. Analysis
of ML and PR procedures is also depicted in a general way.
However, alternative applications in this era were not re-
viewed, and the connection to the ultimate goal of SHM in
the context of smart cities and emerging technologies was
not recognized. Data-driven SHM damage identification
with DL was reviewed in a recent survey by Azimi.38 The
authors in their paper discussed in great length the usage of
DL and machine vision and the new methods of monitoring
damages, that is, mobile sensors and UAVs in SHM ap-
plication. Avci et al.39 reviewed the vibration-based damage
detection in the literature while considering ML and DL
algorithms. In the paper by Tibaduiza Burgos,40 a brief
overview of data-driven SHM applications and a summary
of ML procedures were presented. In contrast to the papers
above, the authors discussed some of the implementation
steps of data-driven SHM. However, some important as-
pects of ML processes, such as feature selection and ex-
traction, were not comprehensively analyzed. Hou and
Xia41 reviewed vibration-based damage identification for
civil engineering structures in the last decade. A thorough
learning algorithms analysis in different steps of ML-
enhanced SHM system was not present. Sony et al.42 re-
viewed the next-generation smart sensing technology in
SHM. In their paper, the authors included emerging tech-
nologies for collecting data from structures. Alavi and
Buttlar43 overviewed smartphones’ deployment in major
civil engineering areas. An emphasis was placed on the
sensing capabilities of smartphones and their crowdsourc-
ing power in SHM applications.

As summarized in Table 2, the majority of the past
surveys did not assess some of the important aspects of ML
in SHM systems. Necessary details, systemic explanation of
implementation steps, and available methods for an ML-
engaged SHM system are the notable items that were
missing or partially provided by the previous works.
Moreover, the shift to the new era of the Internet of Things
(IoT) and smart city necessitates a connection to be drawn
that links data-driven SHM systems to the future paradigm
and emerging technologies. ML, DL, and machine vision
can provide the necessary algorithms for condition moni-
toring of many structures for SHM purposes, with big data
and digital twins as the cornerstone of the future.44

The authors imagine that the roadmap of utilizing new
technologies such as ML is not limited to cases where
damage is to be detected. The method used for data col-
lection, either through WSNs or UAVs, the novelty of the
processing type, and lastly, the expected utilization of the
result obtained are the factors that this review article hopes
to achieve.

Connecting the paradigm of sensing and processing
critical information in infrastructures in a new domain with
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the features of the current IoT era, such as cloud (edge)
computing or Industry 4.0, such as digital twin modeling
and blockchain, is the next stage of SHM. In light of these
achievements, this article is organized such that: the “SHM
and machine learning, a detailed overview” section exhibits
a detailed overview of the ML and DL pipeline in each
component-level of SHM; ML learning algorithms are
discussed in length in the “ML-supported pattern recog-
nition techniques” section and connection to each level of
damage identification in SHM is also provided; in the “IoT-
related applications” section, related IoT, big data, and
hybrid approaches applications in SHM are reviewed.
Similarly, in the “Next-generation SHM applications with

ML/DL enhancements” section, three next-generation SHM
applications are briefly summarized. Finally, an open re-
search discussion for the future of SHM andML is provided
in the “Open research issues” section, and the “Conclusion”
section concludes the review.

SHM and machine learning,
a detailed overview

Ubiquitous data is everywhere. Given the amount of data
gathered from numerous possible sources, it is essential to
understand the pattern that underlines it. Day by day, with
the increasing complexity of structures and the sheer

Table 2. Summary of related surveys.

Reference
Model-
driven

Data-
driven

Application of
ML and DL

Detailed
ML/DL

breakdown
Mobile

applications
Machine
vision

Novel
applications

(UAV, VR, AR,
etc.)

Smart
city and
IoT

Open
issues

Noel et al.21 3* 3** — — — — — — 3

Tokognon
et al.22

3* 3** — — — — — 3 —

Gomes et al.,23

Fan and
Qiao24

3 — 3* — — — — — —

Feng and
Feng25

— — 3 — — 3 — — —

Ye et al.26 — — 3* — — 3* — — —

Dong and
Catbas27

— 3 3 3 — 3 3 — 3

Sony et al.35 — 3 3 3 3** 3 3 — 3

Ghiasi et al.28 — 3 3 — — — — — —

An et al.29 3* 3* 3* — — — — — —

Moughty and
Casas30

3* 3* 3* — — — — — —

Kerle et al.31 — — 3 — — 3* UAV only — —

Khan and
Yairi32

— 3 3 3 — 3* — — 3

Ye et al.33 — 3 3 3 3** 3 — — —

Hou et al.34 — 3* 3 — — — — — 3*
Salehi and
Burgueño36

— 3 3* 3** — 3** — 3** 3

Sun et al.37 — 3 3 3* — — — — 3

Azimi38 — 3 3 — 3** 3 3** — 3

Avci et al.39 — 3 3 — — — — — 3*
Tibaduiza
Burgos40

3* 3 — 3* — — — — —

Hou and Xia41 3 3 3 — — — — — 3

Sony et al.42 — — — — 3* — UAV only 3** 3*
Alavi and
Buttlar43

— — — — 3 — — 3* 3

Our survey 3* 3 3 3 3 3* 3 3 3

— indicates not considered. 3 indicates fully discussed. 3* indicates partially discussed.3** indicates an insufficient discussion or was discussed briefly in
the open research issues.
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amount of data collected, without automatic (or sometimes
semiautomatic) processes to discover patterns using com-
puters, such tasks would be infeasible and impractical. ML
is considered a tool to recognize/classify information based
on a learned pattern through the use of different algorithms.
In general, ML algorithms are based on either (1) statistical,
(2) neural, or (3) synthetic approaches. The first two
methods are generally considered as the main pattern
classifiers for SHM.8 In detecting damages using ML,
initially, a pattern class or category is defined. For SHM, one
establishes training data through which all the attributes
defining the structure are gathered (sensing). At this stage,
depending on the collected data, class labels may or may not
be assigned to the data. These data are then pre-processed to
remove any noise or outliers and to reduce the dimensions
of the damage vectors (pre-processing). The next stage is
feature extraction. At this step, damage-sensitive features
are selected either based on engineering judgment or
mathematical and transformation procedures, or a combi-
nation of both. Postprocessing may also be applied after
feature extraction to further compress, normalize, or fuse
data as needed. After these stages, an algorithm is used to
identify the damage state using one or more of the following
techniques:

1. Classification: Discrete class label (damaged/
undamaged)

2. Regression (location of the damage, size of the fa-
tigue crack, etc.)

3. Novelty/outlier detection

Finally, from the processed output data, one can deter-
mine, if necessary, whether a decision has to be made to
rectify the identified damages and which subsequent actions

to take. Figure 3 illustrates a statistical PR classification
model for a typical damage assessment scenario.

The subsections below describe the necessary proce-
dures for any ML application, emphasizing SHM statistical
PR. It should be noted that there are several methods
available in any of the following procedures; however, only
the popular methods are expressed here. Figure 4 sum-
marizes the necessary steps that an ML model for SHM has
to go through, along with a few examples of the techniques
used in the literature. As shown in the figure, the first seven
steps are introduced in this section, whereas step 8 is
presented in a more detailed manner in the “ML-supported
pattern recognition techniques” section. The material pre-
sented here offers the readers the chance to discover some of
the commonMLmethods and techniques utilized in the vast
body of SHM literature. Methods and techniques are in-
troduced and summarized such that, in essence, the readers
can prioritize and quickly grasp how each part of the ML
process is implemented in SHM systems specific to their
needs.

Excitation methods

The very first step in detecting the existence of damage is to
excite the structure in place. Bridge condition monitoring,
seismic performance assessment of bridges, and verification
of the numerical models with the measured data are some of
the factors, especially in vibrational-based applications, that
require careful consideration of the method of excitation. In
general, there are two ways to achieve dynamic excitation
of civil infrastructures,45 (1) ambient excitation and
(2) measured-input test. Ambient excitation is suitable for
real structures, whereas measured-input test is more often
restrained to a laboratory experiment. Damage is considered

Figure 3. A general statistical PR classification model.
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a local phenomenon; however, local excitations tend to have
little to no effect on low-frequency global response. Par-
ticularly in large-scale structures, ambient excitation is the
only source that is capable of providing the necessary inputs
that lead to identifying damage in terms of global behavior.
However, the problem with such excitations is that, unlike
local excitation, they are nonstationary, and the variabilities
of their inputs need to be taken into account. Thus, for
small-scale structures, measuring devices such as piezo-
electric materials that can act as both force transducers and
actuators can simplify the first two steps of implementing an
SHM system.

Dynamic excitation of the civil structures, such as
bridges, can be achieved with (1) the ongoing vehicle or
pedestrian traffic on the structure, (2) ambient wind and
waves excitation, and lastly, (3) seismic ground motion, that
is, earthquake or micrometer excitation. These types of
excitations are output-only modal-based analyses that can
be used to estimate modal parameters such as mode shape or
resonance frequencies. In terms of local excitation, popular
methods are (1) shakers with a variety of input patterns and
frequencies, (2) direct impact to the structure at the point of
interest, and nowadays, (3) input–output sensors capable of
producing known input forces with high signal to noise ratio
(SNR). Often, in these input–output methods, given the
nature of the structure, disruption of traffic or on-structure
activities are followed. Therefore, it is not practical to
implement such excitation methods on a large structure.
However, in exceptional cases and depending on the extent
of the damage, it may be necessary to perform both exci-
tation techniques in a combined approach.46 Further

advantages and disadvantages of these excitation methods
can be found in Farrar et al.45 and Maas et al.47

Data acquisition

It is well understood that without sufficient and accurate
data, a clear understanding of the damage-sensitive features,
excitation methods, types of sensors, and, lastly, sensor
configuration, SHM may not reveal the optimal informa-
tion. For example, the method of global damage detection
through standard accelerometers, which often are described
as continuous measuring devices, differs from other sources
of data collection such as strain sensors, a local measuring
instrument, where an average data over a short period is
gathered. In other words, monitoring of dynamic parameters
may imply different needs compared with the static ones.
Thus, it is essential to identify how the data can be collected
and utilized. Therefore, the performance indicators of any
sensors, as listed below,48 need to be scrutinized.

1. Sensitivity
2. Dynamic range
3. Accuracy
4. Linearity
5. Stability
6. Response time

In addition to the items listed, two essential elements of
data acquisition: (1) the number of sensors and (2) their
locations must also be optimized. Redundant and unnec-
essary data would burden the data acquisition system and

Figure 4. A summary of the necessary and optional steps and techniques involved in a data-driven SHM system with ML augmentation.
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hinder the subsequent processes of the SHM system.
Moreover, these sensors are typically permanently installed,
and consequently, any unsystematic approach to designing
a data acquisition system would introduce additional
challenges.

Traditionally, wired-based sensing equipment was
widespread over other means. Especially for important
structures and long-term monitoring, expensive wired-
based systems are still preferred over wireless ones.21

However, with the advancement of technology in many
aspects of WSNs (size, energy storage/generation, etc.),
they are becoming increasingly attractive to researchers
as they provide portable, practical, and efficient
alternatives.49,50 Generally, sensors are categorized into
passive or active sensors. Usually, a combination of the
sensing technologies is used for SHM solutions. A detailed
review of the currently used SHM sensors and next-
generation smart sensing technologies is given in
Moreno-Gomez et al.51 and Sony et al.42 Additionally,
Abdulkarem et al.52 discussed the state-of-the-art WSNs in
SHM from a different perspective such as academic and
commercial wireless platform technologies.

Passive operation of sensors is described as a mea-
surement that inflicts no input energy to the structure.
Accelerometers, strain gauges, and acoustic emission are
examples of this type of sensor. They only detect damages
with no interaction with the actual structure. Usually, these
nonstationary sensors cannot precisely determine the dy-
namic response of the structure53 that could otherwise be
due to EOFs. Additionally, in the early stages of SHM
applications, passive sensors had difficulties directly
identifying the damage. It relies on variable ambient ex-
citation, which may or may not output the desired data to be
evaluated.

On the other hand, very similar to the NDE approach,
active sensors localize the excitation tailoring the overall
damage detection process. The main advantage over passive
systems is that, with known excitation force and location, it
is much easier to detect damages and minimize the effect of

EOFs. Examples of standard active sensors are piezoelectric
ultrasonic sensors which can be utilized either as an
impedance-based method54,55 or Lamb wave-propagation
method.56–59

ML adaptations in data acquisition systems are generally
observed in sensor layout optimization. The goal is to use a
minimal number of sensors while ensuring maximum
damage sensing capabilities or, as referred by Farrar et al.,10

“maximizing damage observability.” A range of input
sensors at different locations is trained, and based on the
most relevant feature an optimal sensor position is located.
Recent studies tackled this daunting task. In the paper by
Bigoni et al.,60 the authors utilized a sparse Gaussian
process and one-class support vector machine (SVM) for a
reduced model. The most widely used ML algorithms in
sensor optimizations are genetic algorithms (GA) in coor-
dination with neural networks (NN),61 as shown in Table 3.
Different computational methodologies in optimal sensor
placement along with the advantages and disadvantages of
each algorithm are reviewed in Bigoni et al.62 and Soman
et al.63 In practice, ML models are typically adapted to
reposition the existing sensor locations to increase overall
system performability in terms of damage detection. It
offers simple, adaptable, and low-cost solutions over tra-
ditional approaches.

Data normalization

Some of the collected data for learning is generated by
numerical simulations, which often disregard EOFs (e.g.,
temperature and traffic load, respectively). Many re-
searchers investigated these nonstationary sources of var-
iations. Several works15,19,72–74 have shown that the
dynamic performance of bridges varies significantly de-
pending on the condition that the bridge is subjected to
daily. The effect of these trends on damage-sensitive fea-
tures could be removed by utilizing different linear and
nonlinear correction models. Data normalization at the first
stage tries to bring every data at a common scale since the

Table 3. A few examples of sensor layout optimization algorithms for SHM systems.

ML algorithms References Advantages Disadvantages

GA Banik and Das,61 Soman et al.,63 Gomes
et al.,64 Yang et al.65

Blind search method Premature convergence with larger search
spaceHighly parallel

Global optimum and
discreteness

NN Banik and Das,61 Blanloeuil et al.,66 Mallardo
and Aliabadi67

Nonlinearity Unexplained behavior
Robustness Over-training
Fuzzy information

Bayesian
models

Flynn and Todd,68,69 Capellari et al.70 Easy to implement Computationally expensive
Easy to interpret Assumptions about prior

Others Bigoni et al.,60 Semaan71 - -
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data from various sensors are inconsistent depending on the
size and location of the damage. The simplest way is the Z-
score normalization as shown in equation (1), where x
represents the original feature vector, x represents the mean
of the feature vector, and σ represents the standard devia-
tion. The numerator is also known as DC offset filtering

x0 ¼ x� x

σ
(1)

The next stage is to take into account the EOFs. De-
pending on the presence of the variabilities, either the
damage-sensitive features are parameterized as a function of
the EOFs (measured and known variables) and later com-
pared with a new set of extracted data, or they are developed
indirectly with the help of ML algorithms. Table 4 shows
some examples in dealing with EOFs in linear and nonlinear
behavior for data normalization. To achieve full data-driven
analysis, EOFs have to be analyzed in a data-driven manner
as well. However, certain conditions, such as long-term
behavior of EOFs, lack of data, and insufficient data nor-
malization, necessitate the usage of model-driven analysis.
In hybrid use-cases, the FEM of a structure is used to
generate damage scenarios resulting from EOFs. These
scenarios are then fed to an ML algorithm to classify the
existence of the damage better. Moreover, to validate the
results, damage data from FEM are used as test data.
Minimizing the misclassification of both Type I and Type II
errors heavily depend on the model that is used to normalize
the data from EOFs75—Type I refers to a false-positive
indication of damage, whereas Type II is a false-negative
indication of damage. In their article, the authors’ nonlinear
ML algorithms performed better when compared with their
linear counterparts (less than 3% of total error for combined
Type 1 and Type 2), meaning it better illustrated the con-
formity to the nonlinearity of EOFs. It appears that the
consideration of EOFs and their patterns appear the be
nonlinear in nature. For example, freezing temperature can
heavily influence the natural frequency, and therefore, a
linear correlation between the EOFs and damage cannot be
assumed. The best performance models, according to the
works, are those that utilize nonlinearly separable clustering
techniques such as KPCA or GKPCA.

Data cleaning

One should not expect that collected data from sensors are
always satisfactory and up to par. Loosely mounted sensors
or external effects can reduce the quality of the data. Data
cleaning, in simple terms, refers to implying hard limits in
which the data is not usable and must be discarded (noise/
outlier treatment) or missing data to be imputed.37,79 In the
context of SHM and big data, five distinct quality standard
indicators,80 namely: (1) availability, (2) usability, (3)
reliability, (4) relevance, and (5) presentation-quality, must
be taken into consideration before any SHM im-
plementation. Unification of data ensures the efficiency
and accuracy of an ML algorithm. In SHM, typical data
cleaning is performed via either software or hardware
filtering methods.81 Embedded in data acquisition devices,
noise rejections with low/high bandpass filters, resam-
pling, or other techniques can be employed. Unusable data
can be decimated, and missing data can be statistically
imputed, if necessary. Due to the requirement of com-
pression for big data, in many applications, data recon-
struction using ML algorithms is utilized to make
incomplete data (irregular) to corresponding complete data
(regular). DL applications82,83 in data imputation work
great for categorical and non-numerical features such as
the case in SHM. However, they are rarely used due to their
slow nature when dealing with extensive datasets. Other
methods such as k-nearest neighbors (kNN), stochastic
regression, extrapolation and interpolation, and many
others can be employed to correct or remove irrelevant
data. Recently, Tan et al.84 investigated the effectiveness of
multiple supervised learning methods (Ridge, RF, SVR,
MLP, and XGBoost) for data augmentation under different
missing rates of the inputted database. All models were
able to capture the missing trend when the missing data are
uniformly distributed, and SVR and MLP performed best
on average with root mean square error (RMSE) of less
than 2. Some examples of data cleaning and data recon-
struction techniques are presented in Table 5.

Perhaps, one of the critical challenges that data cleaning
faces is when the process is scaled to large and complex
structures.95 In the context of big data analysis, traditional

Table 4. Linear and nonlinear algorithms for EOFs.

EOF behavior Reference Models Performance indicator Best performance

Linear Figueiredo et al.20 FA, MSD, SVD ROC MSD
Figueiredo and Cross76 PCA, MSD, GMM ROC GMM

Nonlinear Flexa et al.77 AANN, KPCA GKPCA, ROC KPCA GKPCA
Santos et al.75 Figueiredo et al.20 + SVM, SVDD, KPCA, GKPCA ROC KPCA, GKPCA
Figueiredo et al.20 AANN ROC —

Figueiredo and Cross76 NLPCA ROC —

Oh et al.78 KPCA N/A —
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data cleaning working sequentially cannot easily be applied
to ever-growing complicated structures.96 Thus, the parallel
execution of any method should be in line with the five big
data quality standards discussed previously. The data
cleaning process is always performed before initiating the
subsequent ML processes. However, it may also appear
after extracting features as well. In an ideal situation, one
data cleaning pipeline is enough assuming the selected
features, in the beginning, would lead to identifying
damages more efficiently. However, in reality, given the
judgment of the engineer and the required outcome from the
algorithm, it may be deliberately assumed that certain
features, although having passed the initial filtering process,
would not be helpful in determining damage. Therefore, the
second round of cleaning, referred to as postprocessing, is
carried out to ensure that individual decisions about the
nature of the ML implementation conform to the model’s
output. An example of how postprocessing led to better
damage identification was presented in the paper by Li
et al.97

Data compression

Structures equipped with SHM consist of tens or hundreds
of different sensors. Each produces single or multi-feature
data continuously with various sampling rates ranging from
around 10 Hz to 10–50 kHz. Over an extended period of
monitoring, a multitude of data is generated, although not
every generated feature is usable in the analysis. Adding to
this, EOFs would also play an essential role in increasing the
features’ dimensions.8 In this regard, data compression, or
simply put, dimensionality reduction of the features, allows
only the most statistically significant and damage-sensitive
features to be extracted. One way to tackle this is fusing
sensor arrays extracting similar features such as different
mode shapes that are collected at each sensor node that is
later compressed to produce a low-dimensional feature
vector containing only the first few mode shapes.

The most significant limitation in ML algorithms is when
they are used to learn from high-dimensional data vectors
with limited exogenous variables.98 Data compression
should not come at the cost of losing the ability to learn a
pattern. Without enough features extracted following
compression, it is not possible to deduce whether an al-
gorithm can serve as a damage identifier. An exponential
increase in the dimension of the data would blow up
enormously in the amount of training data needed to achieve
a reasonable and small error on the estimation; an issue
commonly referred to as Bellman’s curse of dimensional-
ity.99 Therefore, with inadequate training data, one cannot
achieve an ML implementation with a high degree of ac-
curacy. This effect, however, can be mitigated by im-
plementing linear or nonlinear projection transformation of
p-dimensional feature vectors onto a q-dimensional plane.
The most classical method used is the linear principal
component analysis (PCA). One might argue that, with the
addition of EOFs into the data vector, due to the nonlinear
behavior of temperature and external loading, linear PCA
would not be a feasible solution to reduce the dimensions.
This was, however, proven to be false in real-life scenarios
as comprehensively analyzed in the study by Van Der
Maaten and Postma.100 In their paper, the authors found out
the linear PCA works comparatively better than their
nonlinear counterparts. With enough analysis and perfor-
mance measures of different variations of nonlinear data
compression, future research can create better techniques to
identify nonlinear behaviors of structures as well as EOFs
that can lead to better data compression. Some recent ex-
amples of such techniques utilizing ML algorithms are
introduced.77,101,102 Figure 5 depicts how dimensionality
reduction models are categorized. In particular, to reflect the
nonlinearity of data, there are two approaches where
the high-dimensional data is transformed onto a low-
dimensional space work.103 In a local perspective, the lo-
cal geometry of data is preserved, and the model attempts to
map nearby points on a set of closely related points in the

Table 5. ML-based data decimation and imputation techniques.

Reference Decimate/Impute Method(s) Application

Ren et al.85 Impute Bayesian tensor learning Strain and temperature records of a concrete bridge
Chen et al.86 Impute Kernel regression Strain responses between sensors in SHM
Chen et al.87 Impute LQD-RKHS regression Probability distributions of missing SHM data
Martinez-Luengo et al.88 Impute ANN Offshore wind turbine
Oh et al.89 Impute CNN Strain structural response
Fan et al.90 Impute CNN Recovering lost vibration data
Li et al.91 Impute LSTM Stacked DL-based imputation framework for dams
Fan et al.92 Decimate Residual CNN Denoising SHM vibration data
Yang et al.93 Decimate/Impute 1) Chebyshev inequality Wind turbine

2) SVR
Batista et al.94 Decimate/Impute Ten different methods Balancing training models
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vicinity. In the global approach, in addition to the mapping
of nearby points, faraway points are also mapped to far-
away points, essentially keeping the geometry intact in all
scales.

Typically, there exist three methods to achieve data
compression: (1) linear transformation such as PCA, (2)
nonlinear transformation such as NPCA, and (3) au-
toencoders, where it is a nonlinear transformation based
mostly on ANN. Table 6 exhibits the most recent utilization
of widely used dimensionality reduction models in litera-
ture, emphasizing SHM applications. From reviewing the
literature, it was found that most SHM applications are
utilizing PCA, LDA, QDA, and ICA in the linear approach
and NPCA, LLE, and AANN in the nonlinear approach for
dimensionality reduction.

There is no clear cut between which dimensionality
reduction model is suitable. The variability in the nature of
the collected data and the size and resolution of the input
signals greatly influence the system’s overall performance.
For example, very few techniques (PCA and its variants,
autoencoders, etc.) are parametric; that is, there is a direct
mapping from the high-dimensional to low-dimensional
space. Therefore, it enables to verify, to some extent,
how much of the high-dimensional space was preserved
during the space reduction process. Being that majority of
the other techniques fall in the non-parametric domain, it
indicates a disadvantage along with other problems with
non-parametric modeling, such as the curse of dimen-
sionality. Moreover, the presence of free parameters in non-
parametric techniques (learning rate and the number of
iterations), which can impact the cost function in the
nonlinear convex optimization, introduces another burden.
The performance of the dimensionality reduction technique
depends on the optimization of the free parameters.

Although, it needs to be stated that these free parameters are
actually advantageous in various cases as they promise
flexibility in the reduction process. The other issue of non-
parametric techniques is in the computational process since
they require more data for better performance. One of the
important requirements in dimensionality reduction models
is the out-of-sample extension abilities. Simply, the out-of-
sample extension performs the reduction process on the
training set and applies the mapping directly on the test set
to lower the dimensions. Such a capability is very crucial to
SHM systems, as different signals can be embedded during
the monitoring process. This eliminates the need for re-
training the whole dataset to learn new mapping functions,
which is less computationally expensive. However, not
every dimensionality reduction technique contains out-of-
sample extensions (Isomap, LLE, etc.). The non-parametric
out-of-sample extension is therefore required for all non-
linear models. The approximation in the out-of-sample
extensions leads to an estimation error,104 so great care
must be taken in these cases. The out-of-sample extension is
not one of the deciding factors in selecting dimensionality
reduction models in the SHM application. In fact, only two
studies, Langone et al.,105 and Liu et al.,106 have directly
considered this capability in their proposed systems.

The majority of the examples of dimensionality reduc-
tion techniques used in the SHM domain do not provide a
definitive reason as to why one technique was preferred over
the other, except those that research and compare different
methods for reducing dimensions and filtering unwanted
data. Therefore, it becomes increasingly difficult to rec-
ommend one technique. Based on the authors’ observation,
linear and nonlinear variations of PCA can yield, in most
cases, an acceptable level of data compression. Nonlinear
and clustering approaches are mostly preferred in situations
where the data is highly irregular in nature, such as EOFs.
Having said that, other approaches can produce better re-
sults as this is highly dependent on the dataset and the
available computational resources. Interested readers are
referred to the recent comparative study of dimensionality
reduction techniques by Ayesha et al.107 for more detail.
Finally, the considerations below and the remarks in Table 6
can facilitate selecting an appropriate dimensionality re-
duction technique:

1. Understanding that some techniques are supervised
or unsupervised entailing their own limitations and
considerations.

2. Deciding which dimensions to retain and the reali-
zation and comprehension of the reduced model and
new dimensions.

3. Recognizing that these dimensionality reduction
techniques can sometimes negatively impact the
performance of the classifier.

Figure 5. Categorization of dimensionality reduction models.
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Table 6. Widely used dimensionality reduction models in the literature.

Technique References Model Remarks

Linear Figueiredo and Cross,76 Liu et al.,106 Güemes
et al.,108 Roberts et al.,109 Mei et al.,110 Li
et al.,111 Akintunde et al.,112 Deraemaeker and
Worden,113 Kullaa,114 Garcı́a-Macı́as and
Ubertini115

PCA Highly interpretable
Requires data standardization
Assumption of orthogonality

Huang et al.,116 Li et al.,117 Zhu et al.,118 Yao
et al.119

ICA Assumption of statistically independent and
normally distributed variables order of the
independent component is difficult to be
determined

Zhang et al.,120 Avendaño-Valencia et al.,121 Hu
et al.122

PCR Perform well for highly correlated and colinear
data

Imposes constraints on the coefficients of
nonrelated explanatory variables

Jiménez et al.,102 Yanez-Borjas et al.,123 Mboo and
Hameyer,124 Mangalathu et al.,125 Zheng and
Qian,126 Mishra et al.127

LDA Interpretable
Small sample size
Requires normal distribution assumption

Mangalathu et al.,125 Mishra et al.,127 Jiménez
et al.102,128

QDA Worse performance than LDA for large datasets

Mishra and colleagues127,129 RDA A comprise of LDA and RDA model
Noel et al.,21 Figueiredo et al.,20 Deraemaeker and
Worden,113 Garcı́a-Macı́as and Ubertini115

FA Unable to produce a meaningful pattern for
unrelated explanatory variables

Guo et al.,130 Zhao and Huang131 SFA Guaranteed optimal solution
Mapping is provided as functions directly

Nonlinear Figueiredo and Cross,76 Dervilis et al.,101 Li
et al.,132 Hsu and Loh,133 Ye et al.,134 Tibaduiza
et al.,135 Silva et al.136

NLPCA Does not require the a priori specification of a
time series

Performs poor in very large datasets
It incorporates nominal and ordinal variables

Borate et al.,137 Yang et al.138 PPCA Extends the scope of conventional PCA
It enables uncertainty assessment of the model

Fuentes et al.,139 Jeong et al.140 Isomap Preserves “true” relationship between data
points

Preserves the global data structure
Computationally expensive sensitive to “noise”

examples
Liu et al.106 Laplacian

Eigenmaps
No local optima
Less geometrically intuitive

Zhang et al.,120 Sun et al.,141 Chaabane et al.142 Partial least
squares
regression

Can handle multicollinearity
Lack of model test statistics

Flexa et al.,77 Oh et al.,78 Ghoulem et al.143 KPCA and its
variations

Mapping function does not need to be known a
priory

Choice of the kernel and multiple refitting are
required

Dervilis et al.,144 Xiao et al.145 Nonlinear ICA
and its
variations

Back projection/reconstruction can be
implemented

More complex than ICA
Dervilis and colleagues,146,147 Sun et al.148 LLE Accurate in preserving local structure

Less accurate in preserving global structure
difficulty on non-convex manifolds

Flexa et al.,77 Garcı́a-Macı́as and Ubertini,115

Nguyen et al.,149 Zhang et al.150
AANN Mapping function does not need to be known a

priory
High computational complexity

Autoencoders Ma et al.,151 Wang et al.152 DA Can find different levels of features
Liu et al.,106 Mboo and Hameyer124 SA Can be inefficient for massive data
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Feature extraction/selection

Identifying damage-sensitive features from the collected
data is not a trivial task. Not every quantity is significant in
indicating the presence of damage, nor do they correlate in
any way that leads to detecting damage even with the most
advanced ML algorithms. Feature extraction is a process
that enables the transformation of the collected data to a
form that is more identifiable and quickly picked up by any
simple ML algorithm. The most critical aspect of this step of
any ML-based SHM implementation is finding ways to
extract and select sensitive features that positively correlate
to damage. The challenge in this regard is that the extracted
features may also be vulnerable to changes in the system’s
response that do not necessarily relate to damage. Figure 6

illustrates the three different approaches in feature selection/
extraction.

Other than data-driven and model-driven techniques,
feature extraction can also be done using wave-propagation
and impedance-based methods. They are a subset of data-
driven techniques, but due to the unique devices and their
specific extraction methods, they can be quite different
relative to data-driven and model-driven methods. How-
ever, there have been many studies in the past that enhanced
the capabilities of these systems with ML and DL. A review
of the guided wave-based SHM is provided by Mitra and
Gopalakrishnan.153 Extraction of damage-sensitive features
in data-driven approaches can be carried out by using (1)
time-domain, (2) frequency-domain, (3) time-frequency
domain, or (4) ML algorithms. In classical time-series

Figure 6. Three different approaches at the feature extraction step.
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analysis, the variety of changes in the structures can be fitted
to a model that identifies damage. Low-order (dimension)
time-series modeling, techniques such as autoregressive
moving-average model (ARMA),154 cross-correlation
function (CCF),155 and stochastic subspace identifica-
tion (SSI)156,157 can be proven useful in extracting highly
damage-sensitive feature vectors. In scenarios where the
dimension of the vectors is high, using high-order time-
series modeling to capture the variations may result in
fitting the noise in the collected data.

In these cases, extracting features in the frequency do-
main can be used. Methods such as power spectral density
(PSD),158 cross spectral density (CSD),159 impulse response
function (IRF),160 frequency response function (FRF),161

and frequency domain decomposition (FDD),162 are few of
the methods that are frequently used. New techniques other
than the two described above are being developed and tested
to identify damage-sensitive features better. These methods
are based on time-frequency domain, such as wavelet or
phase shift in a linear and nonlinear fashion.163–166 A de-
tailed walkthrough of the wavelet technique is provided in
the paper by Taha et al.167 The constraints in time-domain,
and frequency-domain waveform analysis rises in signifi-
cance as the dimension of the data of these output-only
models increases. Moreover, they do not precisely indicate
the location of the damage and require a high quantity of
data for sensitivity analysis as the reproducibility of the
models in different time frames are inconsistent when
factoring the EOFs. These shortcomings can be overcome
by incorporating ML algorithms with their inherent features
in extracting data (dimensionality reduction) or feature
selection (filter, wrappers, and embedded).168

Model-driven techniques, on the other side of the
spectrum, solely depend on accurate physical models to
identify damage. They usually fall into the model updating
paradigm (linear and nonlinear), where mathematical
models with input–output or output-only measurements are
used to identify modal parameters (e.g., mode shape, mode
shape curvature, and resonance frequencies) given an un-
known system and then calibrate the physical parameters.
When a high fidelity physical model of the system is es-
tablished, numerical analysis such as FEM can be used to
update the initial model on the grounds of the identified
parameters from the system. Model-driven techniques, al-
though proven useful in scenarios where sufficient data is
unavailable, would become challenging when EOFs are
incorporated into the FEMs as described earlier. In an at-
tempt to develop accurate feature extraction methods, a
hybrid model of both data-driven and model-driven tech-
niques is used that could overcome the deficiency of each
approach. The two systems can be used jointly to validate
the presence of damage, or the model-driven system can be
exploited to generate training/testing data for the data-
driven system. Through this, a non-modal-based FEM

updating process can be developed to provide a better
representation of the system from both a global and local
perspective.169 One of the benefits of non-modal-based
FEM updating is that inherent to the classical modal
FEM updating, the strict assumption that structures must
exhibit linearity, reciprocity, and time–invariant properties
can therefore be lifted and eased for the systems that show
nonlinear and nonstationary response.

After extracting feature vectors that correlate to damage,
one must select the most appropriate feature(s) to be trans-
ferred to the damage detection process. Though previously an
implicit explanation of selection procedures was given, de-
termining a subset of collected data for detection purposes
can be established from mathematical models or based on
intuitive and engineering judgment. An overview of feature
selection techniques is given in the studies by Khalid et al.168

and Chandrashekar and Sahin.170 It should be noted that
while both feature extraction and feature selection are the
techniques used to reduce features and eliminate redundant
and irrelevant data, the contrasting point between the two is
that the former creates a brand-new set of data. In contrast, the
latter creates a subset of the original data. This way, there is
no clear boundary between them, and it ultimately boils down
to the application domain and the system’s requirement.

Moreover, feature selection and extraction can work co-
herently and synergistically to inform one another in the form
of change detectors.171 FewML algorithms, such as Lasso or
random forest (RF), have built-in selection algorithms that
fall under the category of the embedded selection method.
Filter and wrapper methods are the other two selection
procedures.172 Filters are employed in producing a most
promising subset before passing on to the damage detection
process as part of the pre-processing step.Whereas in the case
of the wrapper, as the name suggests, the selection procedure
is “wrapped” into an algorithm that is trained based on a
model. It either begins with no features and with each iter-
ation, features are added that translate to the best performing
model (forward selection). Alternatively, the model starts
with all features intact, and at each iteration, the least sig-
nificant feature is eliminated, thus improving the overall
model performance (backward elimination). Lastly, a form of
the greedy optimization algorithm can be used to rank the
feature subset at each iteration (recursive feature elimination).
To put it simply, these wrapper methods are used as a search
strategy, and the performance of each is dependent on the
quality of the given algorithm.

Additionally, these approaches can be combined to
form an ensemble learning method built on the output of
different algorithms or learners and is believed to produce
a better selection process.173 Though not many cases of
ensemble feature selection are present in SHM, the pro-
liferation and advancement in this recent field can enable a
selection of features from large and complex structures that
comprise different sensors and measurement devices with
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high-dimensional datasets. Moreover, many feature selec-
tion techniques are based on supervised methods of
searching for the best subset of features. With no prior
knowledge about the collected features, the risk of over-
fitting the selected features can be reduced if unsupervised
or semi-supervised methods can be used instead.174 Similar
to the supervised models described earlier, unsupervised
feature selection techniques essentially follow the same
routine. A recent review of unsupervised feature selection
methods is provided by Solorio-Fernández et al.174 In the
context of SHM and ML, Bull et al.175 utilized an unsu-
pervised feature selection procedure in ensemble analysis,
specifically bagging and feature bagging. An unsupervised
filter method, namely unsupervised minimum redundancy–
maximum relevance (UmRmR), was used in the study by
Zugasti et al.176 to minimize redundant and irrelevant data
from offshore wind turbines. Based on our analysis, un-
supervised feature selection has not received enough at-
tention. As discussed in this section, classification based on
unsupervised learning is one of the hot topics in damage
identification in civil infrastructures through ML and SHM.
Table 7 shows some of the supervised feature selection
techniques used in the literature, emphasizing SHM.

Data fusion

As discussed previously, structures comprise a plethora of
sensors. In order to perform global damage identification,

sensors are subject to spatial and typological variation.
Multisensory systems are receiving increasing attention
since they provide a spectrum of advantageous features.
Higher SNR, higher data resolution, data redundancy, and
complementarity and timeliness are some of the potentials
of such systems.8,195 Additionally, the spatial distribution of
these sensors can enable engineers to increase the SHM
system’s observability. Additional information collected
from different sensors located on the structure can lead to
enhancement in the identifiability of the SHM system. Data
fusion is a technique of combing information in such a way
that the aforementioned benchmarks, that is, observability
and identifiability, would considerably improve the system
performance.196–198 As it can be derived from the norm of
the data fusion process, the steps taken to ensure high
system performance are correlated to data normalization as
well as data cleaning techniques that were discussed in the
prior sections. Similar ML techniques can be used in the
same way, and interested readers are recommended to read
the extensive review of the data fusion process by Wu and
Jahanshahi199 for ML-SHM conjunct review.

There are, in general, two ways to amalgamate data.
Multiples of a single chain of data processing scheme, for
example, steps 1 to 6 in Figure 4, are fused to have an
arbitrary number of chains with each processing their data
individually and feed-forwarding their outputs to a PR unit.
In the other type, a centralized batch processing system
accepts the chains of the sensor up to the data compression

Table 7. Supervised feature selection techniques in the literature.

Feature selection method Model Application and reference

Filters Pearson’s correlation (i) Sousa Tomé et al.177

(ii) Monaco et al.178

Mutual information (iv) Trendafilova et al.179

(v) Fang Qian and Gang Niu180

(vi) Zhao et al.181

ANOVA (v) Sbarufatti,182

(ii) Kessler and Agrawal183

mRMR (i) Babajanian Bisheh et al.184

ReliefF (i) Babajanian Bisheh et al.184

(vi) Yan and Jia185

Chi-squared (iii) Hoell and Omenzetter186

Wrappers Forward selection (i) Babajanian Bisheh et al.184

(i) Yun et al.187

(v) Park et al.188

Backward elimination (i) Babajanian Bisheh et al.184

Recursive feature elimination (v) Zhou et al.189

Embedded SVM-RFF (i) Babajanian Bisheh et al.184

(v) Mustapha et al.190

Lasso (i) Ni et al.191

(iv) Mustapha et al.192

(iv) Michau et al.193

Ridge (vi) Ma et al.194

Note: (i) Bridge; (ii) Composite plate; (iii) Wind turbine; (iv) Simulation; (v) Experimental testbed; (vi) Mechanical machinery.
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unit, for example, step 5 in Figure 4, then feeds all the
collected data to a feature extraction unit and finally passes
them to a PR step. It is also possible for data fusion to be
applied at each level individually or collectively if desired.8

Raw sensor data can be collected from multiple units and
combined to produce a more uniform data set (initial fu-
sion). It may also be applied in the same way as the data
normalization or data compression level, meaning the
feature vectors can be merged to produce a single vector
(feature-level fusion). Furthermore, many feature vectors
can be passed to a single PR algorithm (pattern-level fu-
sion). Lastly, damage classifiers resulting in the health state
of the structure can be fused to provide a high degree of
damage identification confidence level (decision-level
fusion).

ML-supported pattern
recognition techniques

The prior section described the seven initial steps that are
necessary for implementing a data-driven SHM system. As
it was previously shown in Figure 4, the last step of an ML-
augmented SHM system is the PR, that is, the identification
of the health state of the structure. The 5-step damage
identification hierarchy was introduced at the beginning of
this article. More specifically, in the context of statistical PR,
to accurately classify damage, one needs to ensure data
availability from either damaged, undamaged, or even both
conditions. Additionally, in order to be able to assess and
predict the damage caused to the system, the selected

damage-sensitive features fed into the PR unit have to
correlate to the choice of the algorithm used to learn from
the features. In general, there are four different types of
learning in the domain of ML, as depicted in Figure 7.

In the framework of SHM and statistical PR, the most
common learning algorithms are supervised, unsupervised,
and semi-supervised. In rare scenarios where both damaged
and undamaged data of a structure is available for engi-
neering structures, supervised learning is the preferred
learning method. In this case, group classification and re-
gression analysis are the primary methods of supervised
learning. However, for larger and more complex civil en-
gineering structures, unsupervised learning is required due
to the lack of damaged data.20 This is regarded as the go-to
method for most civil infrastructures, such as bridges, where
there is limited availability of damaged data from the
structure, or it is found not feasible to collect data on a
global scale in the first place. In this context, the unsu-
pervised method is commonly referred to as novelty de-
tection or outlier detection.14,200–202 A more recent learning
method, semi-supervised learning, has been introduced
where data label from damaged and undamaged states of the
system is partially available—a very common occurrence
with engineering structures.203

It is essential to understand the criteria for choosing an
algorithm. Specific to the problem and the type of data
available, different algorithms, or even a combination of
algorithms, are required, for example, the effect of EOFs on
identifying damages. The number of training data available,
the expected reasonable training time, and the amount of

Figure 7. Four different ML learning algorithms.
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accuracy required from a learner are some of the consid-
erations that must be meticulously thought about before
selecting an algorithm. Moreover, in a simple SHM for
small-scale systems, the number of parameters and fea-
tures is typically low. However, for many of the im-
plemented SHM systems, these two criteria can ultimately
make one algorithm superior to the other. Various papers
have shown the different cases of these ML algorithms in
their reviews.36,37 However, a clear cut between the uti-
lization of different learners is somewhat hidden in the
core of their review strategy. We, therefore, aim to expand
on why such leaners are chosen as the method of im-
plementing a data-driven SHM system. Also, several new
methods specific to the deep NN are introduced. When-
ever available, the authors will refer the readers to a
particular review paper about each type of ML algorithms.
In the subsequent sections, some of the widely used ML
algorithms are explained. The implementations of each
method provided are primarily from mid-2019 onwards.
In order to realize how each implementation relates to
different SHM damage identification levels, a snippet
next to each cited reference is provided, indicating the
SHM level (e.g., Levels 1–3). Furthermore, a separate
section is dedicated to SHM level 5 (damage prognosis),
where the recent ML-supported applications are sum-
marized. Finally, based on the reviewed papers, a rec-
ommended SHM system with the best examples of ML
and DL for each SHM component up to damage prognosis
stage is discussed at the end of the section. A summary of
the most common learning algorithms is depicted in
Figure 8.

Decision tree (supervised)

Decision tree (DT) is a well-established learning method
capable of partitioning datasets from a non-parametric point
of view. They are capable of targeting categorical variables
(classification: damaged/undamaged) and continuous vari-
ables (regression: source signal comparison with the healthy
state of the system). A tree starts with the root node rep-
resenting the input feature(s), such as acceleration data.
Given a threshold set by the algorithm, the root node is
partitioned into many child nodes (internal nodes). The
segmentation of each node is based on the node that results
in the most significant information gain, called purity. The
process is repeated until the last node (leaf node) is reached
such that the node becomes impure. In the context of SHM,
the input feature at the node could be wind direction and
wind speed, and the testing attribute for splitting each node
is the observed PSD of the measured vertical acceleration.
This example was demonstrated by Li et al.204 (Level 1) as a
means of classifying vortex-induced vibrations that may
result in long-term fatigue damage of long-span bridges
subjected to crosswinds. In their methodology, the root node
was assumed to be wind speed.

However, in cases where N multiple damage-sensitive
features are present, selecting the root node and the internal
nodes is not trivial. A random selection can undoubtedly
lead to poor results. For such cases, there exist many sta-
tistical attribute selection measures that can be used to solve
this issue. Entropy, Gini index, and Chi-square are some of
the ways to achieve selecting the most feasible starting root
node and internal nodes. Typically, in the SHM system, DT

Figure 8. Three common learning algorithms in SHM.
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learning is of the classification type due to the large high-
dimensional feature vector and stochastic behavior of
structures given ambient excitation. The study by Gordan
et al.205 (Levels 1-2,4) on a slab-on-girder bridge showed
that the classification and regression tree (CART) learning
method is incapable of competing with AI algorithms such
as ANN due to lack of capacity, flexibility, and complexity.
Another area that decision trees can be applied to is in
combining other MLmodels such that a higher accuracy can
be achieved sequentially by traversing down the tree by
assigning a model as a function of the input variables of the
preceding node.200 Zhang et al.206 (Level 1) demonstrated
that for real-time visible fatigue crack growth detection with
computer vision, DT performs the best when compared with
RF, kNN, NB, RF, NN, and an ensemble model. They
concluded that other than DT, the rest of the ML algorithms
used tend to overfit. Mariniello et al.207 (Levels 1-2) pro-
posed DT ensemble damage detection and localization
down to the single structural elements. The authors achieved
an accuracy score of 90% or more while recording limited
localization errors. As it can be observed, with the simplicity
of DT and flexibility it provides, damage detection and
partial localization can be achieved. However, there is still
no research on the utilization of DT when EOFs are
included.

The main problemwith DTs in a high-dimensional space,
such as the cases in engineering structures, is the overfitting
issue. In this situation, the model memorizes the training
data and returns an unrealistic representation of the domain
leading to poor predictions when tested with new data.
Although there are methods to overcome overfittings such
as cross-validation of a parameter204 or hyperparameter
optimization, a common way to tackle this is to use indi-
vidual trees as an ensemble, referred to as random forest.

Random forest (supervised)

As explained in the previous subsection, RF is an ensemble
of DTs capable of solving regression and classification
problems. The issue with DTwith extensive features can be
overcome by using RF, which works quite well with high-
dimensional sparse data. The main advantage of RF com-
pared to DT is that each tree is constructed from a random
set of training data and the splitting of nodes also happens
for a random subset of attributes. In the end, a simple
average of all the predictions can be used to find the most
probable outcomes of the model. RF works best if the trees
are not strongly dependent on each other and show a weak
correlation between the attributes selected at the splitting
node. An example of RF was demonstrated by Laory
et al.208 (Level 1) They showed the effect of EOFs on the
natural frequency of a suspension bridge, where they found
RF and support vector regression (SVR) to be more suitable
when compared to multiple linear regression (MLR), ANN,

and DT. However, the input–output model of a slender
coastal bridge presented by Lu et al.209 (Level 1-2,4) for
fatigue damage assessment due to EOFs showed the ran-
domness behavior of RF learner with a high degree of
variability (high standard deviations) when compared
strictly against the regressor function of SVM and Gaussian
process (GP). Relatively speaking, a higher amount of
training data and a better choice of the kernel would lead to
better results for SVR as it is susceptible to the initial pa-
rameters. This could explain the reason why these two
papers appear to contradict. Chencho et al.210 (Level 1-2,4)
developed a structural damage quantification based on RF
and PCA for dimensionality reduction. The authors
achieved an R-score of 89.2 and 95.3% for single-element
and two-element damage cases, respectively. Unlike DT, RF
is not at all interpretable, and for large datasets, they can take
a long time to train.

Support vector machine (supervised)

Perhaps, one of the most widely used types of ML algo-
rithms is SVM, both in its classifier and regressor form. It
can map both linear and nonlinear data to an n-dimensional
feature vector where the hyperplane separates features into
separate classes while maximizing the margin distance
between them. Kernel functions achieve the transformation
of the data into a higher space. As discussed before, the
accuracy of SVM highly depends on the choice of kernel.
Generally, in SHM applications where the features are both
abundant in amount and exist in the high-dimensional
domain, SVM usually outperforms supervised ML algo-
rithms when provided with a suitable choice of kernel
functions—which is not always trivial, as demonstrated in
the study by Lu et al.209 A polynomial kernel function was
used in Gordan et al.205 (Level 1-2,4) for damage identi-
fication of slab-on-girder bridge. The authors concluded that
SVM proved to be superior due to its capacity to perform
high-quality predictions compared to a CART method. One
of the downsides of SVM is that although the increased size
of training data leads to better predictions, the training time
increases exponentially as well. In order to overcome this
limitation, least-squares SVM (LS-SVM) was proposed.
This method finds the solution by optimizing a set of linear
equations rather than the quadratic programming (QP)
method used in SVM. An implementation of LS-SVM as a
hybrid model-driven and data-driven SHM system was
presented by Deng et al.211 (Level 1-2,4-5). In their paper,
the authors showed the daily fatigue damage due to traffic
using the weigh-in-motion (WIM) and regressor function of
SVM for highway suspension bridge hangers. SVM can
also enhance DL damage detection. In identifying damage
using DL, one of the drawbacks of such a method is the
misclassification of the input data of an unlearned pattern as
that of a learned pattern. Avalidation of this method using a
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shaking table and simulated training data of a steel frame
structure using deep NN was established by Kohiyama
et al.212(Level 1). SVM was used to detect an unlearned
damage pattern based on the feature data of a DNN. An
efficient and precise nonlinear multiclass SVM (NMSVM)
of nonlinear time-varying structures was proposed by
Chong et al.213 (Level 1). Their algorithms were trained
using many wavelet-based autoregressive coefficients that
were found from applying wavelet transform to signals
generated from healthy and damaged structures under
random excitation. Other than the above, SVM can also be
used in other parts of ML procedures such as sensor
placement optimization, data normalization, and feature
extraction/selection, as discussed in the previous sections.

k-Nearest neighbor (supervised)

k-Nearest neighbor (kNN) is one of the earliest and simplest
supervised learner methods. Similar to the previous algo-
rithms, it works well for regression or classification tasks. It
classifies the input training features based on their distance
from the testing set. kNN is based on the idea of similarities
in properties of features discriminated from the feature
space. The selection of how many neighbors to consider is a
function of noise in the data. Low-dimensional feature space
requires less training data. In SHM cases where the di-
mension of the features is high, higher training data is re-
quired, which results in a computationally expensive
process. kNN algorithm with Euclidean distance mea-
surement with six neighbors for damage detection of a
scaled-down cable-stayed bridge was demonstrated in Li
et al.214 (Level 1). The authors showed the performance of
traditional ML algorithms, mainly DT, RF, SVM, and kNN,
against their proposed CNN model. It was observed that the
accuracy imbalance of kNN was the most severe compared
to others due to the lack of complexity of the learner. The
study by Dogan et al.215 (Level 1-2,4) developed a model for
determining post-earthquake damage to RC columns. In the
form of cracks, the damage was identified employing a
camera and evaluated against the allowable ranges from the
building code. kNN, DT, SVM, and LDA were checked
against the ensemble of these algorithms. The success rate
of each one resulted such that the ensemble method was
found to be the best one, followed by kNN with a small
margin of error. One area in that kNN works surprisingly
well is data imputation in SHM systems. Inherent in its
algorithm, it looks for the closest data to infer the missing
value as demonstrated in different studies.216,217

Bayesian (supervised)

Bayes analysis is a probabilistic parametric learning method
and is considered a statistical learning approach on the basis

of measuring conditional probabilities of certain statements
given other statements, as shown in equation (2)

Posterior ¼ Prior × Likelihood

Evidence
(2)

Bayesian approach is widely used in SHM applications.
They are either used alone or are integrated with different
ML algorithms such as Bayesian clustering. The Bayesian
method can bring about numerous benefits, including
probabilistic inferences. For example, a pro-active SHM
solution using FEM and Bayesian network was proposed by
Sousa et al.218 (Level 1-4). The authors developed a
monitoring solution based on numerical analysis of a real
bridge and achieved acceptable performance when com-
pared with actual damage data. Their pro-active tool
managed to demonstrate the first four levels of damage
identification, which can provide useful information for
online bridge management and monitoring.

Naı̈ve Bayes (NB) classification is one of the methods of
Bayes’ theorem. In this method, it is assumed there is no
dependency between the features. In the study by Man-
galathu et al.219 (Level 1), eight different ML algorithms,
including NB, kNN, DT, RF, and others, were used to
establish a classification model of seismic failure of RC
shear walls. It was found out RF had better accuracy while
NB classifier fell short and was ranked sixth. They stated
that the low accuracy of their parametric methods, that is,
NB, was because of the existence of a nonlinear decision
boundary between the failure methods. In a similar study by
Mangalathu et al.125 (Level 1), a rapid seismic assessment of
a two-span box girder bridge was analyzed based on
simulations from Open System for Earthquake Engineering
Simulation (OpenSees) platform. In their paper, the authors
evaluated their models using NB, kNN, QDA, and RF.
Analogous to their previous paper, RF performed the best,
while NB performed better while classifying the bridge as
unsafe. Although Bayesian analysis is found superior to
highly complicated learners, the main disadvantage is that
since it assumes no interdependency between the features,
the estimation of probabilities may not be accurate if the
assumption does not hold.

An extension of NB, Gaussian NB (GNB) was used in
the study by Nazarian et al.220 (Level 1-2,4) for a turn-of-
the-century building structure that was damaged due to
settlement of its foundation. The authors employed FEM to
generate stiffness and strain dataset and later train GNB in
addition to SVM and NN algorithms to effectively find the
location and the severity of the damage in each structural
component. Out of the three algorithms, NN yielded better
results; however, GNB was not far off. Soyoz et al.221

incorporated Bayesian updating into reliability estimation
of bridges through vibration-based SHM readings before
and after damage. While conditional independency in NB is
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imposed only on the selected features in the Bays nets,
Bayesian network, on the other hand, assumes an inde-
pendent relationship in every class. Although NB makes a
simplified assumption, both can perform equally in many
scenarios, provided that both are used for inference pur-
poses. Lee and Song222 (Level 1) demonstrated the Bayesian
network approach for system identification in a numerical
example. Compared with FEM updating and maximum
likelihood estimation, the authors’ approach provided a
more robust and stable system identification scheme. A
Bayesian network for near real-time seismic damage as-
sessment was proposed by Tubaldi et al.223 (Level 1-2,4). It
incorporates multiple heterogeneous data sources, namely,
ShakeMap, GPS, and accelerometers placed on a structure
for the response, damage, and loss estimation by comparing
prior and posterior statistical distributions. Each of the three
sources of information reduces different engineering de-
mand parameters defined in the article when used indi-
vidually. However, the proposed Bayesian network data
fusion techniques resulted in uncertainty reduction. Simi-
larly, Bayesian techniques can quantify uncertainties of
damage-sensitive features, for example, modal character-
istics224 and can merge multiple techniques in an ensemble
learning form to reduce algorithm-induced false positives
and negatives.225 For more detail in Bayesian methods,
especially considering natural hazards engineering, inter-
ested readers are, therefore, referred to the very recent re-
view by Zheng et al.226

As opposed to the “black-box” nature of other ML al-
gorithms, in contrast, since Bayesian methods assume the
prior knowledge or assumption of a hypothesis, this enables
for a more transparent statistical inference. Being that it
represents a probabilistic distribution for both data and the
model, various data types and parameters can be easily
integrated for a robust and flexible classifier. Although
different Bayesian approaches, as reported earlier, can
benefit many SHM systems, it still does not offer out-of-the-
box solutions for issues such as subjective selection of prior
probability distributions and the computationally expensive
procedures needed for integrations over uncertain param-
eters in the distribution.

Neural network (supervised/unsupervised)

ANN approaches in damage detection take after the
working components in a human brain. In general, ANN
consists of at least three layers, namely, (1) input layer, (2)
hidden layer(s), and (3) output layer. ANNs with one or
more hidden layers are called multilayer perceptrons
(MLP). ANN can be viewed as an optimization process that
identifies a set of network weights that minimize the cost
function.227 Such an approach has been widely used in past
works as it allows for various inputs and outputs to be
included. In a feed-forward ANN, with independent

variables at each input neuron, the processing and the
calculation depends on variables at hidden and output
layers(s), respectively. The model is trained with an error
propagation algorithm. This method of training is consid-
ered to be a supervised learning approach. In a recent study,
Hekmati Athar et al.228 (Level 1) experimentally collected
sensor data from both contact-based and contactless-based
sensors to identify damage on a lab-scaled bridge through an
ANN model. In another work, Malekjafarian et al.229 (Level
1-2,4) proposed a two-stage bridge damage detection based
on the response of a moving vehicle. In the first stage, ANN
is trained with backpropagation to predict the response of
the passage of a vehicle on the bridge. In the second stage,
however, with the help of a Gaussian process, the change in
the prediction errors’ distribution is detected; hence, the
damage is indicated. Although MLP and backpropagation
learning methods are typically employed in damage de-
tection of civil infrastructure, unsupervised NNs have also
been considered. Self-organizing map (SOM) approach is
an example of unsupervised NN. SOMs are observed as
grids of neurons where they attempt to show high-
dimensional data in a 2D or 3D map while preserving
the original feature(s) properties.172 The advantage of the
SOM learning method in comparison to the more traditional
ANN approach is that SOM training depends only on the
internal structure of the inputs rather than the input–output
samples with error propagation as there is no target defined.
Tibaduiza et al.230 (Level 1-4) used SOM by applying PCA
data reduction to classify damage on an aluminum plate in a
two-stage validation and diagnosis mode. In another work
by Avci et al.231 (Level 1-2), SOM was applied on a grid
structure based on the stiffness reduction and boundary
condition changes to identify and quantify the damage.
Even with optimized learning methods, a large amount of
training time and being computationally heavy can deter the
implementation of ANN in some SHM applications.

Other than ANN and MLP, several other shallow and
deep NN algorithms exist in the literature, although very
few are popular in the SHM community. Perhaps the most
common DL approach is CNN. Recently, more research is
being carried out in CNN for SHM systems. This is ex-
haustively covered in numerous review papers,25,26,32–35,41

as indicated before. Therefore, other deep NN algorithms
are introduced here. It should be noted that many appli-
cations can utilize both CNN and different deep NN al-
gorithms together. The benefits that such combined methods
provide are sometimes far more superior when CNN is used
alone. Therefore, the authors aim to provide examples of
those papers that use deep NN as their core damage de-
tection technique.

Sequential data or time series is a major part of many
SHM systems. In contrast to the classical feed-forwarding
ANN, recurrent neural networks (RNN) can use their in-
ternal memory to loop the output back into the prediction
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continuously. Although the looping can be computationally
expensive, it ensures that the sequence of data dependent on
each other, unlike ANN, which can prove to be a useful
feature in identifying damage in situations where the cor-
relation between multiple sources of signals and direct
relation with external factors, for example, EOF exist.
Mousavi and Gandomi232 (Level 1) used RNN to capture
and predict temperature variations. The numerical anal-
ysis of their nonlinear system showed that damage could
be identified when prediction errors of the temperature
signal deviate significantly from the expected value of the
error. In a similar study by Mousavi233 (Level 1), damage
was identified under the conditions of EOFs when Jo-
hansen cointegration of the frequency signals that were
used to train an RNNmodel failed to identify a relationship
among the frequency signals. Their implementation per-
formed well under noisy conditions when tested against
two experimental samples. However, as confirmed by
Zhang et al.,234 RNN suffers from exploding and
gradient-vanishing; that is, when the weights are assigned
at the node, they are either really small, which effectively
stops the training process (vanishing), or the weights
become too large which may lead to an unstable network
(exploding).

In order to remedy the gradient-vanishing issue, long
short-term memory (LSTM) network was introduced. In
short, LSTM has a special architecture allowing to re-
member information for long periods of time, which allows
for learning long-term temporal dependencies. The work
by Zhang et al.235 (Level 1-2,4) is of the first im-
plementations of LSTM network with limited data for
seismic response modeling of highly nonlinear complex
dynamic systems. Due to limited data, K-means clustering
was used to partition the dataset for generating training and
testing data. Their stacked LSTM network scheme per-
formed well with the prediction error of ±10% with
confidence intervals of 91%, 86%, and 84%, respectively.
Their approach, however, is computationally costly, with
50,000 epochs for training. A novel deep RRN encoder–
decoder approach with LSTM in sequence-to-sequence
(seq2seq) modeling was presented by Li et al.236 (Level
1-2). Their online SHM monitoring under seismic exci-
tation performed reliably to predict dynamic responses
subjected to future earthquakes when compared with
seven state-of-the-art methods for sequence learning and
prediction—reduction in prediction error and the standard
deviation by at least 13% and 15%. The major drawback of
LSTM is the need for huge resources and long training
time to perform well.

Another variant of LSTM architecture, named gated
recurring units (GRU) also exist. Having one fewer gate
than LSTM makes GRU’s internal structure much simpler;
therefore, it becomes easier to train with fewer computa-
tions. Generally, GRU performs better than LSTM for small

datasets. The superiority of GRU for smaller datasets was
shown in a recent paper by Choe et al.237 (Level 1-2).
Compared to LSTM and stacked LSTM, GRU managed to
achieve 10–30% in accuracy for structural damage detection
of floating offshore wind turbine blades. One limitation of
RNNs and its variants is unidirectionality of network; that
is, the output at a particular time step depends only on the
past information in the input sequence. To mitigate this,
bidirectional RNN was proposed. To fix the problems of
variation in structural response due to initial residual stress,
coupling effects of structure damage, and external loads,
Tian et al.238 (Level 1) proposed a global and partial bi-
directional LSTM model to relate the girder vertical de-
flection to cable tension. It was found out that the partial
model performed better with relative root mean square error
(RRMSE) of 3.24% in addition to performing consistently
with noise levels and traffic volumes under normal oper-
ational conditions. Although very popular in natural lan-
guage processing (NLP), it appears that bidirectional deep
NN algorithms, even though they provide better flexibility
in some aspects of SHM systems, are not widely adapted by
the community. This is perhaps due to the issue that the
entire sequence must be available before making predictions
and high computing cost of running such complicated
models.

The final deep NN to discuss is the generative adversarial
networks (GAN). The idea of GAN is that two sub-models,
namely, generator and discriminator, produce and distin-
guish fake images given a latent vector and the original
dataset. With training, the generator improves and pro-
duces images that are more real. The idea of using GAN
for SHM systems was studied by Tsialiamanis et al.239 It
was demonstrated that with prior knowledge, GAN can
reflect damage characteristics via categorical and con-
tinuous variables despite the presence of EOFs. There-
fore, GAN can be promising in training large datasets.
The current SHM system may benefit a lot by considering
GAN in the pipeline. For example, the very recent paper
by Fan et al.240 (Level 1) demonstrated the applicability
of GAN for structural dynamic response reconstruction
under ambient excitations or seismic loadings. Although
damage detection was a preliminary investigation and not
the goal of the article, the authors confirmed that such a
model can be used for identifying damage in SHM. Their
dynamic response reconstruction error was 15.7%
compared to the traditional CNN model with 69%.

K-means (unsupervised)

Clustering is a technique in which subgroups are assembled
based on either features or samples. It performs a partition of
data into K non-overlapping clusters. In an iterative process,
each element is assigned to a partition considering the
minimum distance between the element and the centroid of
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each cluster that is either defined or estimated initially.241

Once the assignment is over, the centroid is recalculated
based on the average of all elements in the cluster. Alamdari
et al.242 (Level 1) implemented a spectral-based clustering
SHM of the Sydney Harbour Bridge. In their approach,
offline datasets were adapted instead of live data streams
from the SHM devices due to the challenges in data
communication overhead, delay, and the overall system’s
resiliency. At the same time, multiple nodes indicate the
presence of damage. The effect of traffic loading on bridges
has been widely studied in the literature. However, a limited
number of them have incorporated the collected data from
the traffic to enhance SHM applications or fabricate separate
sensors dedicated to detecting vehicles. The study by
Burrello et al.243 (Level 1) leveraged the SHM data with an
anomaly detection technique to identify traffic load from the
acceleration peaks and utilize the K-means algorithm to
distinguish amplitude and damping duration associated with
heavy traffic and cars, respectively. K-means clustering is
heavily dependent on the choice of the K value, the initial
value of the centroid, and the distance metrics used to
determine the distance between each element and the
centroid of clusters. Moreover, implementations with K-
means clustering with high-dimensional data, including
EOFs, can hinder the method’s effectiveness. Dimension-
ality reduction techniques such as PCA or spectral clustering
methods244 are recommended before applying K-means
clustering.

Gaussian mixture (unsupervised)

Gaussian mixture model (GMM) is a parametric proba-
bility density function similar to kernel density estimates
but with a small number of components. In bridge mon-
itoring applications, the model tries to capture the primary
component that corresponds to the healthy state of the
bridge’s condition, even under varying EOFs. In an ex-
perimental study on the Z-24 bridge, Figueiredo and
Cross76 (Level 1) applied a mixture of supervised and
unsupervised learning approaches for nonlinear long-term
monitoring of bridges. The study utilized the supervised
NLPCA for characterizing the interdependency of iden-
tified features, as well as the consideration of EOFs, and
the unsupervised GMM for damage identification based on
outlier detection. Similarly, Figueiredo et al.19 (Level 1)
explored the integration of model-driven and data-driven
systems in a hybrid approach for damage detection of the
Z-24 bridge. The data from FEM was fed to the GMM to
improve the damage classification and the validation of the
model. GMM of acoustic emission for monitoring cracks
in an RC shear wall was tested in the study by Farhidzadeh
et al.245 (Level 1-3). The GMM was successful in clus-
tering two hidden classes of crack mode, that is, shear and
tensile.

Association analysis (unsupervised)

After data clustering, the association analysis method can be
used to find relationships and dependencies, that is, asso-
ciation rules.172 Especially in large dataset points, it be-
comes essential to leverage the scalability of association
rules to extract useful information for decision making. One
of the most widely used applications of association analysis
is the market basket data analysis. It is used to find asso-
ciations between customer’s purchasing patterns that can
provide interesting information to market owners to max-
imize profit and help design enticing advertisements. Jin
et al.246 (Level 1-2,4) employed the Pearson correlation-
based association analysis method for performance as-
sessment of an in-service bridge by mapping the structural
dependencies such as stress and displacement. Pearson
correlation is a simple process that is typically used as a
measure of finding linear correlations between a large
amount of data in association analysis methods. Pearson
correlation only measures the strength of the association
rather than the significance. Spearman, Kendall, and Chi-
square tests are other measures of correlation where in the
final test, one can expect to find the association’s signifi-
cance. Guéguen and Tiganescu247 (Level 1) considered
dynamic changes in a building concerning the temperature
effect. The authors analyzed the correlation of resonance
frequency using the association rule learning method to
detect damage. Finding appropriate parameters, discovering
too many rules, discovering insignificant rules, and com-
putationally inefficient numerical data are some of the
drawbacks of association analysis.

Semi-supervised

As mentioned in previous sections, it is rare and infeasible
to have fully labeled datasets in SHM applications ;hence,
supervised learning is illogical. On the other hand, unsu-
pervised approaches could take a great deal of effort to
implement. The possibility of having a small subset of
labeled data is not far-fetched203; therefore, to leverage both
aspects of the data, semi-supervised learning methods can
be used to take advantage of labeled and unlabeled data.
Bull et al.248 (Level 1) employed semi-supervised para-
metric GMM for improving the performance of damage
classification in risk-based applications. Rogers et al.249

(Level 1) proposed a Bayesian non-parametric clustering
technique to apply labels online to the clusters in a semi-
supervised manner with little to no data training. Chen
et al.250 (Level 1) presented an adaptive graph filtering for
semi-supervised damage classification in an indirect bridge
SHM application with improving classification accuracy. In
another indirect bridge monitoring study, Liu et al.106 (Level
1-2,4) analyzed stacked autoencoders as a nonlinear di-
mensionality reduction technique and a semi-supervised

Malekloo et al. 23



damage severity estimation model on a laboratory bridge
model. The authors concluded that their approach is feasible
and applicable to in-service bridge structures.

Blind source separation in SHM

Blind source separation (BSS) aims to separate individual
sources of signals from a set of mixed signals with little to
no information. It is assumed that the mixture of signals is
independent, and there exists no correlation between the
components. There are cases in which damage is detected,
and it usually is accompanied by other damages.251

Therefore, the acquired signals from the structures, along
with the noise, make it difficult to pinpoint and identify the
faulty component. BSS algorithm, in this sense, can be used
for output-only system identification and damage detec-
tion.252 Generally speaking, BSS is treated as an unsu-
pervised ML problem dealing with the time or frequency
domain.253 The difficulty in the BSS approach is the un-
certainty in the number of sensors relative to the number of
sources, especially when there are fewer sensors than there
are sources. ML algorithms are developed explicitly for
BSS applications to tackle different BSS issues such as
model complexity and heterogeneous environment and
address real-world applications such as SHM for civil in-
frastructures. To overcome the high amounts of transmitted
data in SHM systems, Sadhu et al.254 (Level 1) presented a
decentralized, high compression sensing tool for data re-
duction within BSS framework. Musafere et al.252 (Level 1)
developed time-varying autoregressive modeling to obtain
the mono-harmonic responses from the vibration data. They
validated numerical and experimental studies, as well as on
a full-scale earthquake-excited building. Liu et al.255 (Level
1) developed a BSS ML-based approach for modal iden-
tification and validated their results from the SHM data of a
cable-stayed bridge under ambient vibration. Ye et al.256

(Level 1) proposed an integrated ML-based single-channel
BSS algorithm for separating deflection components from
live load effects, temperature effects, and structural de-
flection for prestressed concrete bridges. Their approach
takes advantage of ensemble empirical mode decomposition
(EEMD), PCA, and ICA algorithms. Applications of AI and
DL for BSS approaches have also been studied in the past;
however, there seems to be very little work integrating them
with SHM systems. BSS can be seen as the middleware
framework between signal processing and ML. The im-
portance of BBS has led to novel developments in the field.

An insight into damage prognosis with ML

Many of the reviewed works in ML-augmented SHM re-
alize the first two levels of damage identification. Some also
consider the extent of the damage to some length, and very
few classify the damage. The reason for not including the

last stage of damage identification in many of the SHM
systems is simply because of the fact that the development
of SHM in different papers is not matured. Essentially,
understating damage propagation for determining the re-
maining useful life (RUL) of the structure is not feasible.
Moreover, in RUL estimation, the prediction is probabilistic
in nature and comes with a certain degree of uncertainty.
However, in other applications such as rotating machineries,
one can determine the exact future operational and loading
factors. This is proved to be very difficult in civil infra-
structures where slight deviations or external factors can
influence the properties of the whole system. Furthermore,
damage prognosis depends on the accurate global and local
model representation of the structure. Minimal research
studies exist which consider these phenomena. RUL pre-
diction is considered still an emerging technology. In this
part, we will introduce a few examples where successful
implementation of RUL based on ML algorithms in the
context of SHM is provided.

Atamturktur et al.257 used SVR on historic masonry fort
considering different support settlements. The prognostic
evaluation of the structural condition is based on an adaptive
weighting of the regressor classifier for settlement-induced
strains up to 100 mm. The study achieved as much as 50%
reduction in the prediction error compared to the vanilla
SVR method. NNs are also used for RUL estimation. In a
typical static NN, such as MLP, prediction is performed at
each time step independently. Although it would be wise to
use phase-space representation such as time-windowing for
generating a fixed sequence of instances, however, such an
approach gives rise to increased dimension and, subse-
quently, the problem of the curse of dimensionality. In the
context of prediction, it is rational that having a history of
the past data stored can greatly improve the prediction.
Therefore, deep NN can help to enhance the prediction
accuracy. This was precisely demonstrated in the study by
Wu et al.,258 where the LSTM approach for RUL of en-
gineered systems was proposed. The authors used aircraft
turbofan engines datasets from NASA with four damage
conditions. The performance of their approach was tested
against two other deep NN methods, namely: RNN and
GNU. The methodology described in this article can be
extended to civil structures as well.

Other than deep NN, there are also opportunities to le-
verage physics-informed data-driven SHM systems for
damage prognosis. For example, such a hybrid approach
was realized in the study by Das et al.259 The authors used
dynamic mode decomposition as well as computer vision
for the prediction of cracking in a mortar cube specimen. It
was observed that with more training frames, the L2 norm is
substantially reduced, indicating a more accurate validation
of prognosis. Crack prediction is one of the areas that
perhaps, RUL concept is more apparent. In such scenarios,
the spatiotemporal phenomena that exist among degrading
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infrastructures, especially bridges, RUL estimation could
provide valuable information about resource allocation,
planning, and retrofitting when a target risk level is reached.
The uncertainties involved with simplification and as-
sumption made during the RUL estimation process, can be
rectified by integrating probabilistic measures such as
Bayesian statistics. For instance, a two-phase gammas
process with Bayesian approach was used to predict the
remaining useful life of corroded reinforced concrete
beams.260 For more information about RUL estimation,
interested readers are recommended to read the bottom-top
review paper by Lei et al.,261 and the deep NN methods for
RUL estimation by Zhang et al.262

However, the biggest challenge in achieving complete 5-
stage damage identification is creating a pipeline that can
run each stage with an acceptable level of performance both
quantitatively and also qualitatively. Even with advances in
technology, the realization of damage prognosis into civil
structure monitoring systems currently does not necessitates
spending efforts. However, with challenges being intro-
duced to the already complex structural systems, damage
prognosis cannot be left behind.

Remarks on SHM system with ML pipeline

In this section, several of the widely used algorithms in
damage assessment in civil infrastructures are demon-
strated. There also exist different models in the literature,
where hybrid implementation or entirely different algorithms

are used (some examples are provided in the “Digital twin
and physics-guided ML-based SHM” subsection). There-
fore, only the most common models were chosen and
compared together. In the future, a more in-depth assess-
ment of damage classification will be studied. A summary of
the advantages and the disadvantages of the mentioned
algorithms in this article is provided in Table 8. It is quite
challenging to justify training time, as indicated in the table,
for different algorithms stated in this section as there may be
underlying optimization for different algorithms in the lit-
erature. The size and the type of the collected data can vary
by a significant margin from work to work. Therefore, the
training time was rated based on the general observation of
the authors while reviewing different papers, as well as the
authors’ experience in the past. The results of the reviewed
ML algorithms for different stages of SHM are depicted in
Figure 9, noting that it does not necessarily mean that
certain algorithms are incapable of addressing other levels.
As it can be observed, Level 1 can be achieved by virtually
every ML technique. Levels 2 and 3 are also considered in
most of the applications. For the case of Levels 3 and 5,
however, many works did not either take into account these
levels or believed that the algorithms were not suitable or
capable for damage classification and prognosis.

Based on 11 ML algorithms reviewed in this section,
only neural network (NN) algorithms can accomplish
complete 5-stage damage identification with DL approaches
considered as the first choice for several studies. Therefore,
based on the reviewed works, the authors recommend an

Table 8. Advantages and disadvantages of several ML algorithms.

Algorithm Advantages Disadvantages Training time

Decision tree Quicker pre-processing step Overfitting in high-dimensional space ***
Random forest Quick prediction/training speed Model interpretability *

Robust to outliers The high memory requirement for
extensive datasets

Support vector
machine

Effective in high-dimensional spaces. Choice of the good kernel **(exponentially more for
larger datasets)Memory efficient Difficult to understand and interpret

K-nearest
neighbor

Easy implementation Overfitting in high-dimensional space -
Sensitiveness to very unbalanced datasets

Bayesian Easy implementation No interdependency between the
features

**
Requires a small amount of training data

Neural network Ability to learn and model nonlinear and
complex relationships

Hardware dependence ***
Nonlinear functions that are not
straightforward to interpret

K-means Easy implementation Choosing the initial value manually **
Scales to large data sets Overfitting in high-dimensional space

Gaussian mixture Easy implementation Overfitting in high-dimensional space *
Requires a small number of parameters

Association
analysis

Quick and easy way to get meaningful
insights from the dataset

A considerable number of discovered
rules

**

Obtaining noninteresting rules

* represents a rating system for training time, * means quick, ** means average, and *** means long.
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SHM system with ML-/DL-pipeline, as shown in Figure 10.
It is suggested to utilize multisensory systems with non-
linear data normalization techniques to consider EOFs. Data
augmentations can also be employed with DL methods to
impute and increase the quality of the data that could have
been affected in earlier stages due to loss of signals or delays
caused by communication overhead or dense data com-
pression before transmission. Data compression by means
of dimensionality reduction is one of the important stages. It
is noticed that with the consideration of EOF, nonlinear
dimensionality reduction methods perform better compared
to other approaches. In the phase of feature extraction/
selection, several methods exist. Although the selected
path is data-driven techniques, however, as will be dis-
cussed later in the article, physics-guided data-driven
models can also be adapted. However, it has been only a
few years that this technique has gained popularity, and it is
still mostly under-development for large-scale SHM sys-
tems. Next, with data fusion techniques, a multitude of
collected data can be combined to increase the possibility
of detecting patterns and identifying outliers in the last stage
of the SHM system. Finally, based on the analysis of 11 ML
and DL algorithms, the authors consider that for Level 1-4
SHM, Bayesian and NN techniques can be considered for
PR. Whereas, for complete 5-stage SHM damage identifi-
cation, it is imagined that with the current sensor technology
and algorithms and their limitations, only deep NN would
be considered as a suitable solution.

IoT-related applications

Together with IoT and smart city monitoring systems, our
living conditions in terms of comfort and safety are con-
tinually improving. With increasing numbers of ubiquitous
connected devices, it is expected to face research challenges
simultaneously as innovative solutions are being developed.
Computational resources, energy management, optimal
sensor placement, interoperability, security and privacy,

open-standard protocols, and many others are today’s
challenges to overcome. For example, for seamless inte-
gration of different services and technologies, the ever-
present IoT needs to be open and exchange data with
other platforms.263 In today’s IoT ecosystem, efforts have to
be spent embracing and managing the fast-paced IoT ad-
vancement and integrating it with ML to expand the
boundaries.

ML for IoT in SHM systems

It can be said that WSNs with any intelligent software for
data collection, analysis, enhanced connectivity, and ac-
cessibility are considered to be an IoT application by
themselves. However, the authors believe that such IoT
implementations in SHM only scratch the surface of the
capabilities that IoT, in large, can provide. It goes beyond a
simple data acquisition system and software solutions for
feature extraction and damage prediction. Instead, it should
aim for a symbiotic connection between multisensory and
city-scale multi-infrastructural network monitoring sys-
tems. Such a paradigm cannot simply be achieved with
traditional SHM as it fails to provide any ubiquitous ser-
vices and powerful processing of sensing data stream. This
is a prime example of how ML and cloud-processing in-
frastructure can replace the old systems and achieve a higher
level of efficiency. The power of ML for IoT can be re-
alized in many implementations. The consideration of
EOFs was discussed at length, and it was proved to be a
major challenge and limitation in many SHM systems.
Without ML, it would be challenging to isolate external
variations that can influence the data received from the
sensors. Also, faulty sensors and missing data are other
aspects where ML can be beneficial. IoT is about inter-
connectivity. Therefore, there may be cases where multiple
sensors are being used to collect different data in different
sizes and resolutions. Interoperating and correlating such
as the massive amount of data can be computationally

Figure 9. Relation between SHM damage identification levels and ML algorithms based on reviewed papers.
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expensive. Here, ML can be used to make inferences and
make relations between multiple sources of signals for
identifying damage.

When discussing ML for IoT, the real challenge is
finding a way to seamlessly connect the two together in a
unified platform without sacrificing information and data.
Nonetheless, throughout this article, it has been realized
that many of the proposed ML-conjunct SHM methods do
not always meet the first and foremost important aspect of
IoT, and that is continuous monitoring. Many examples
just introduce new damage identification techniques but
fail to provide any objective justification if their system
can sustain continuous monitoring. With these obstacles,
civil structure asset management becomes really impor-
tant, and this warns for further research and understanding
as systems become more intricate. According to the
timeline envisioned by Xu et al.264 and Figure 11, IoT is
currently placed in the middle stage of different SHM
platforms. Damage identification started with fully cen-
tralized traditional methods, and now it has been rapidly
evolving to fully decentralized blockchain SHM systems.
ML utilization started in IoT-based SHM systems and will
be even more prominent in later stages. Insight on how the
stage evolvement occurs can be widely beneficial for
design solutions that can meet the future of big data
analysis.

Big data and SHM, a symbiotic strategy

There is no doubt that with the sheer amount of data from
SHM, many link the big data paradigm to such systems. The
misconception with the term “big data” is that only
the volume of data plays the most prominent role. With the
significant improvement in the current SHM systems, the
volume of data is no longer the critical factor. Instead,
the following additional 4 Vs combined with the volume of
the data make up the big data model.265,266

1. Variety: type and nature of the data, for example,
EOFs

2. Velocity: how fast the data are generated and ana-
lyzed, for example, excitation/extraction and sensor
optimization

3. Variability: discrepancy of the data, for example,
outliers

4. Veracity: the useability of the data, for example, data
cleaning and feature extraction methods

Big data and SHM share common grounds. Both are
considered to convey data-driven findings despite the un-
precedented computational expense and features non-trivial
to capture. They are interchangeable to some degree, and
big data solutions can come in handy for various SHM

Figure 10. A recommended SHM system with ML and DL enhancements at each component level.
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systems, such as decentralized learning with GPU parallel
computing. The pipeline for big data and that of SHM, as
was previously shown in Figure 4 and discussed in detail in
previous sections, are very similar. Table 9 shows how the
steps involved in big data relate to the different stages of the
ML-based SHM system.79 The challenges in any SHM
system are inherently some of the significant data issues in
the processing domain. Thus, with big data improvement, a
similar strategy can be developed for SHM, reinforcing
future applications.

In terms of variety, it is rarely the case where incoming
data are structured in any meaningful way. They can be
semi-structured, like the temperature, wind, and traffic
loading (EOFs), or unstructured, like data streams from
computer visions from changes in the pixels. Therefore,
feature extraction becomes a complicated task. In terms of
volume, assume a structure with multiple sensors at different
locations, in addition to external monitoring of weather and
traffic with sensor and computer vision. Together they can
include more than hundreds of sensors, and with 24 h
continuous monitoring of structure populations,267–270 they
can generate an enormous amount of data in terms of pe-
tabytes per week. Processing this many data, let alone the
vast storage required, is a major challenge for continuous
SHM monitoring solutions. In terms of velocity, modern
SHM data acquisition systems with high-resolution data
introduce a data transfer bottleneck and may cause data loss
during transmission. Delayed or missing data can heavily

impact damage identification pipelines. In terms of vari-
ability and veracity, complexity and evolving relationships
between the collected data introduce uncertainty and out-
liers, especially for long monitoring SHM systems. Low
data quality, in terms of missing and noisy data, leads to
reduced structural integrity decisions inferred from the
features. Generally, the challenges in big data and SHM
relate to each other, one way or another, as indicated in
Table 9. When appropriate data-processing techniques are
developed, it is expected that they would bridge the gap
between these two different fields, essentially providing
value to both systems.

Liang et al.271 proposed a big-data SHM platform for
serviceability assessment of a bridge. In their application,
the authors based their big-data system on sensor tech-
nology for data mining. Wang et al.272 approach for big data
in SHM was mainly focused on the data fusion (data ag-
gregation in big data) and learning stages (modeling in big
data). Their experimental testbed of a 12-story test structure
showed promising results in data reduction, energy effi-
ciency, cost, and quality. Ni et al.191 addressed the vari-
ability challenge in big data, for example, outlier and data
fusion, based on a DL method. The data recontraction of
anomalies after data compression is a significant task as it
may pose severe challenges for the high accuracy of the
model after reconstruction. Although the root of abnormal
data is a complex process, identifying them before data
compression is a vital task. The veracity of big data is

Figure 11. Stage-development of SHM systems with different performance measures.

Table 9. Similarities between SHM and big data pipeline and the main challenges, after Cremona and Santos.79.

SHM Big data Main challenges

Data acquisition Recording Volume: High data flow
Velocity: High-frequency sampling

Data normalization/cleaning Cleansing Variety: EOFs
Variability: Outlier detection
Veracity: Damage sensitive feature

Data fusion/compression Data aggregation Veracity: No dependency
Feature extraction/model learning Modeling Resource allocation

Long and heavy computations
Classification Interpretation Type I and type II errors
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usually linked to the feature extraction stage of SHM. High-
dimensional features, as present in SHM due to EOFs, can
make any system time-consuming and complicated. En-
tezami et al.273 proposed an ARMA model to tackle this
specific issue related to SHM and big data. For a general
overview, interested readers are recommended to read the
recent review by Sun et al.,37 which investigated some
aspects of big data and AI in bridge SHM.

Smart city and SHM, the bigger picture

One of the reasons for marching toward a smart city eco-
system is to use the potential of existing technologies and
infrastructures in providing the best utility to users and
improving their future. Some aspects of the involvement of
SHM in the current smart city era are reviewed by Du
et al.274 In their work, the authors tackled WSNs issues in
the monitoring system and posed many open-ended ques-
tions regarding the future of smart city monitoring. The
components of SHM encourage applications of data-driven
smart solutions in the context of the smart city. Together, a
smart city is expected to provide a seamless connection
between services and citizens, and monitoring is an essential
component of this connection. Combined with the power of
ML and DL, the adaptation and integrations of smart
monitoring applications are of increasing interest in civil
engineering.275 The novel approaches in SHM applications
involving ML and AI are becoming the pinnacle of research
today. As explored in different sections of this review, what
is being seen today is the result of decades of research from
which the recent works have at least some elements of the
common ground ML as their core.

In line with the discussion above, the current utilization
of SHM requires a change in definition and architecture.
With Industry 4.0 and cloud-based monitoring solution
already implemented or on the horizon, a transition toward
cyber-physical system (CPS)-based SHM design is envis-
aged. A decentralized, self-sustaining CPS is said to be the
next stage of smart monitoring systems. However, some
complications in the design and deployment stage have to
be considered and studied beforehand.276 A cloud-based
concept of bridge monitoring was presented by Furinghetti
et al.277 The cloud-computing interface developed for their
proof of concept with analysis of the software and hardware
requirement was shown to be a practical and appliable
approach for the future of smart monitoring. Ozer and
Feng278 proposed a mobile CPS-based SHM system for
structural reliability estimation of bridges. As the authors
stated, the ultimate goal is to integrate such a design with
cloud-computing power to increase efficiency and easy
integration with the smart city.

The dense sensor node structure of a smart city brings
about some challenges. With the deployment of different
kinds of sensors on structures all over the city, it becomes

necessary to apply smart asset management such that the
critical structures be prioritized in terms of hardware and
software allocation. Moreover, in the backbone of a perfect
smart city paradigm, it is expected that the services are
interoperable with open data standards, making the data
interpretation, analysis and sharing seamless. The smart
monitoring solutions proposed by different researchers as
shown throughout the article, demonstrate, in broad picture,
the capabilities of such systems for pursuing the goals of
smart infrastructure. The utilization of ML and DL has
granted the opportunity to take one step closer to having an
autonomous, self-learning, and self-sustaining smart city.

Intelligent transportation system and SHM,
a complementary addition

With the help of IoT applications, mobility and trans-
portation are considered to be the key influencing factors in
sustaining our surrounding environments, especially those
that utilize intelligent transportation systems (ITS).279 There
are two possible ways to merge these two systems into one.
The data collected through the ITS can be fed to the SHM
system and, in turn, improve the system’s reliability: this is
commonly known as the ITS-informed-SHM system. An
example of this approach was discussed by Lan et al.,280

which showed the impact of traffic load for fatigue damage
evaluation on bridges. On the other hand, when providing
the data collected from the SHM system to the ITS, in-
formation for real-time traffic management can be utilized,
especially under critical events such as an earthquake. This
form of integration is referred to as SHM-informed-ITS. In
this approach, further enhancement can be made when the
system is integrated as part of smart cities,281 where the
information could be used for other services provided in this
context. This, in turn, enables interoperability, leading to an
enhancement in the quality of service (QoS). A smart
pavement monitoring system based on a supervised ML
algorithm was demonstrated by Praticò et al.282 Approaches
and methodologies taken in this work were based on in-
tegration with current or future smart cities with ITS as a
backbone for data collection. In the study by Huang,283

different data-driven methods to assess the transportation
system’s health, efficiency, and safety were used. Using big
data and ITS, the author provided decision support for
practitioners. Interested readers are referred to the review
paper by Khan et al.284 for bridge conditions assessment
integrating SHM and ITS.

Next-generation SHM applications with
ML/DL enhancements

SHM discipline has come a long way in the past century
from conventional to mobile and smart systems. With the
continuous improvements in sensor technology fields,
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unprecedented new techniques have been introduced.
Starting with the first-ever SHM inspiration in the late 19th
century8,285 for detecting cracks in railroad wheels to the
implementation of the first NN machine by Marvin Min-
sky,286 SHM relied on two main tracks of advances, in-
cluding sensing devices and methods/algorithms. The
beginning of SHM systems started with the condition
monitoring of rotating machinery with the simple shock
pulse method in the 1960s and later vibration-based mea-
surements, with further extension into offshore oil plat-
forms. Beginning with aerospace and civil engineering
SHM applications in 1980, major innovations in ML, AI,
DL, and computer vision were initiated. The earliest use of
PR andML in civil engineering structures was developed by
Adeli and Yeh.287 Similarly, the first-ever computer vision
model for civil structures was developed by Stephen et al.288

and Olaszek289 in the 1990s for bridges.
With the introduction of cloud computing in 2002 and

Industry 4.0 in 2010, a giant leap toward a new generation of
computing and monitoring solutions was taken. The tran-
sition to CPS-based SHM design, machine-to-machine
communication, cognitive computing, virtual, and aug-
mented reality has enabled a paradigm shift in the last 10
years. The authors believe the future of sustainable SHM
systems with damage prognosis capabilities co-exists and
co-integrates with smart cities, big data, and services
and technologies such as interoperability,290 blockchain,291

and digital twin.292 Figure 12 depicts a summary of the
timeline of advancement in SHM and computing algo-
rithms. In the next subsections, state-of-the-art and
emerging technologies and services that have the potential
to augment the traditional existing SHM systems with next-
generation sensing and computation advents are introduced.
They are not limited to but receiving utmost attention from
the SHM community, according to the authors.

UAV-assisted SHM

Drone technology, also known as UAV, has seen a vast
increase in usage in recent years due to the advantages it can
offer, especially its deployment flexibility.293 Given their
versatility, low cost, and ease of deployment elements of a
flying piece of technology, they are becoming increasingly
accretive.294,295 UAVs can easily be integrated into the
design phase workflow of civil structures for simple im-
aging or scene reconnaissance, monitor the work-in-
progress and document phases of the construction, and
lastly, it can be used for monitoring and inspection. UAVs
enable investors to visit hard-to-access areas of many
structures, such as tall buildings or bridges with a river
flowing underneath. The use-cases of UAVs exceed the
imaging and video capabilities. They can also be equipped
with other sensors for vibration-based approaches. One of
the best applications of UAV is in disaster damage and loss

Figure 12. A timeline of advancement in technologies directly or indirectly affecting today’s SHM.
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estimation.31 Disaster mapping becomes essential in an area
where no monitoring of critical infrastructure was sought
out. UAVs can combine complicated components of a
stationary monitoring system and essentially create a mobile
and portable mini-SHM. The following list shows different
applications of UAVs typically used for damage detection/
localization in civil structures:

• Concrete crack detection
• Pavement crack detection
• Rust detection
• 3D reconstruction via laser or light detection and

ranging (LiDAR)
• Displacement measurement using camera-lens

configurations
• Displacement monitoring via lasers
• GPS for Level 2 SHM, geo-tagging
• Ultrasonic beacon for Level 2 SHM, geo-tagging

Some of the above applications can take advantage of
ML and DL. For example, crack and rust detection via
computer vision can be carried out in two different ways,
pixel processing or patch processing. A full image is pro-
cessed in the former and based on edge detection or pixel
separation on a single threshold is applied. In the latter,
using ML or DL, the original image is segmented into
patches, and crack patterns are identified. Vibration-based
approaches can also be achieved using displacement
monitoring via digital image correlation (DIC).296

Noncontact reference-free displacement estimation is
particularly important for the railroad industry.297,298 As a
low-cost solution, many researchers have directed their
efforts in developing new ways and utilizing emerging
technologies to capture vital information from railroad
bridges. Height of railroad bridges, being located in remote,
irregular, and sometimes inaccessible areas, are the issues
that the usage of many traditional wired data collection
methods such as linear variable differential transducers
(LVDTs) are becoming obsolete and replaced by next-
generation sensing devices such as laser Doppler vibr-
ometers (LDVs). These devices can also be mounted on
UAVs. Garg et al.299 installed LDVs on a UAV to collect
displacement measurements of a railway bridge in the event
of a train-crossing event. Displacement measurements can
be followed by modal analysis and identification of fre-
quencies and mode shapes. With LDVs, amplitude and
frequency are extracted from the Doppler shift and en-
hanced via ML and DL for modal analysis. For example,
CNN-LSTM was used to extract natural frequencies from a
variety of beam samples using a shaker, and LDVs.300

Displacement-based measurements using computer vision
only consider the plane perpendicular to the camera. The
superiority of the proposed technique was shown based on
the mean value for mean absolute error (MAE) that ranged

from 0.45 to 1.5. Hoskere et al.301 proposed a novel vision-
based data extraction pipeline for measuring modal prop-
erties of structures from a UAV. Compared to the fixed
accelerometers, the UAVs were able to show good results
with 1.6% error in natural frequency and modal assurance
criterion (MAC) values of above 0.925.

With the addition of a depth sensor such as an infrared
(IR) camera or LiDAR, the out-of-plane direction (the
distance from the object to the camera) can also be mea-
sured. This provided superior dynamic displacement
measurement on UAVs as demonstrated by Perry and
Guo.302 Having a 3D structure model can easily enable local
changes to be detected, and damage can be identified.
Furthermore, the 3D reconstruction model can produce 3D
FEM, which can effectively be integrated with different
damage identification methods for a hybrid approach.
Conventional 3D reconstruction models require high-
quality point clouds that are difficult to obtain. Therefore,
they may include defects and hence reducing the structural
information required to obtain satisfactory results for
damage detection. ML and DL can also be applied in these
scenarios to overcome the deficiencies above, as demon-
strated by Hu et al.303 for a structure-aware semantic 3D
model of a cable-stayed bridge using CNN.

To utilize UAVs and the power of ML together, Perry
et al.304 demonstrated a new approach to bridge inspection.
This way, by collecting pictures from a bridge and mapping a
3D point-cloud and photo-realistic model, with the help of
computer vision and ML algorithms, it becomes more ver-
satile and efficient to detect faults with little to no human
interaction. A new crack detection technique based on the
images taken from the UAV was proposed by Lei et al.305 In
their approach, environmental noise is considerably reduced
compared with the traditional edge detection methods and the
error rate of 5.43% was achieved. Augmentation of the new
approach with ML and real-time bridge inspection is the next
step of the author’s work. Other than point-cloud-based
methods of detecting faults, thermal-based imaging is also
used to capture information from bridges. Due to the
mechanism of horizontal cracking around the rebar level, the
change in the thermal properties of a bridge deck can indicate a
pattern of delamination. This idea was used by Cheng et al.,306

using UAV with a supervised deep learning approach to
capture the changes in the bridge deck. Due to the lack of
thermal images, experimental data augmentation was used in
this study to enrich the training dataset. Some of the
applications above may provide a methodology for damage
localization; however, dedicated units can be installed for geo-
tagging identified damages. GPS and real-time kinematic
global positioning system (RTKGPS) can be used to locate an
approximated position of the damaged location; however, they
are limited only to the outdoor environment. In GPS-denied
areas such as beneath a bridge, other methods such as ul-
trasonic beacon systems can be used for locating damage.307
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From the studies above, it becomes clear that UAV-based
damage detection techniques can be proven promising to
implement on many civil infrastructures, especially bridges.
The incorporation of UAVs into civil engineering demon-
strates exceptional and practical feasibilities in terms of
scalability and automation. Being able to carry different
kinds of sensors and devices makes UAVs an attractive low-
cost option for rapid monitoring of structures. It is envi-
sioned that with improvements in UAVs in the coming years
and their integration into a smart city and becoming au-
tonomous, self-sustaining monitoring solutions, they will be
able to provide streamlined as-built critical SHM systems. A
summary of the UAV-related sensor technology and its
application in SHM is shown in Table 10.

Mobile-assisted SHM

With the advancement in the IoT era, many citizens own a
smart device that can easily be integrated into the moni-
toring solution. Smartphones with built-in cameras and
measuring components, such as accelerometers, show
great potential in SHM applications. Smartphones can
capture video and images detecting faults and deformation
on bridges308,309; the embedded accelerometers can
identify dynamic characteristics of even very low-
frequency structures.310 Just like UAVs, SHM can benefit
smartphone capabilities in various ways. They contain
storage, advanced microprocessors, GPS, and wide ranges
of the communication network from the cellular network to
Wi-Fi and Bluetooth, in a small form factor. Smartphones
are also capable of higher spatial coverage compared to
stationary sensors. With data fusion, it would be possible to
design portable and massive network of monitoring solu-
tions being that the major advantage of smartphones is
scalability. Feng et al.158 performed small-scale, large-scale,
and filed test to evaluate smartphone acceleration fidelity.
Regarding small-scale shaking test, they reported accuracy
errors in terms of identifying frequency and signal ampli-
tudes for different device generation, where old smartphone
generation showed up to 44% amplitude error and 5%
frequency error. In contrast, these error ranges reduced to
17% for amplitude and only 1% for frequency in new

generation devices. The latter tests only considered fre-
quency evaluation and provided error percentages around
1%. Later on, Ozer et al.311 expanded the smartphone
scheme into crowdsourcing and provided modal frequency
estimation of less than 1.3% error, whereas, old generation
smartphones were incapable capturing ambient vibrations.
For SHM applications, accuracy validation was extended to
mode shape identification and modal assurance criteria
values near 0.90 with smartphone data312 and higher values
with multisensory data as well.313 The following lists the
potential applications of mobile-assisted SHM:

• Crack detection with computer vision
• Vibration measurement with embedded accelerometers
• Displacement measurement with computer vision
• Drive-by sensing for indirect identification
• Crowdsourcing for citizen-engaged operation
• Load detection from pedestrians using human activity

recognition (HAR)
• Supplementary information through multisensory

heterogeneous data feed

Due to their size and portability, smartphones can be
attached to moving vehicles and can provide two use-cases.
(1) Using their camera and computer vision algorithms,
enhanced with ML and DL, they can identify different types
of road damages and measure road roughness.314 (2) They
can also be used for indirect monitoring through vibration
measurements and can be integrated with the first use case to
include the effect of road roughness on the collected vi-
bration data.315 In addition to aforementioned mobile
sensing paradigms, monitoring of pedestrians can be as-
sociated with the dynamic bridge loading and cause dif-
ferent levels of excitation.316 Therefore, smartphones can
greatly help to extract damage-sensitive features by ana-
lyzing the pedestrians’ body movement and transfer loading
mechanism to the bridge with the help of built-in accel-
erometers for vibrations and gyroscope and magnetometer
for direction correction. Applications of ML and DL in
mobile SHM systems can alleviate some of the short-
comings with smartphones. In particular, for stationary
vibration monitoring with smartphones, sliding motion of

Table 10. Summary of UAV and smartphone sensors technology and use-cases in SHM.

Platform

SHM sensing capability Auxiliary
sensing
capability

Application type
SHM
level ApplicationVision Accelerometer Gyroscope Magnetometer GPS Noncontact Contact

UAV 3 — 3† 3† 3 3 **** * 1-2,4 CD, DM
Smartphone 3 3 3† 3† 3 — ** **** 1-2,4* CD, VB, DM,

LD

CD: crack detection; DM: displacement measurement; VB: vibration measurement; LD: load detection. † indicates for error correction only. * indicates
degree of applicability. In case of “SHM Level”, it indicates for some applications
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accelerometers due to smartphone not being fixed to the
ground is an issue that was tackled by Na et al.317 The
authors used SVM, NN, and RNN to detect the sliding
motion on a shaking table. With 93% accuracy, RNN was
able to classify the sliding motion correctly. Transfer
learning is a popular method in DL where the pre-trained
model developed for a specific problem is reutilized in other
related problems. Therefore, the initial model is trained with
a considerable amount of data which can take a long time
and later transferred to smaller devices, such as smartphones
for damage detection, for example, cracks or concrete
spalling in a fraction of a second, as demonstrated by Perez
and Tah.318

Other than the indirect and mobile approaches, smart-
phones with computer vision can be used for measuring
displacement on different structural elements. Validation
studies for evaluating mobile-SHM were carried out by Yu
et al.319,320 The results show the suitability of smartphones
for mini-SHM systems. A feasibility study of utilizing
smartphone cameras for seismic structural damage detection
was presented by Alzughaibi et al.321 With their experi-
mental vision-based solution for in-building damage de-
tection, the authors showed sub-millimeter accuracy
demonstrating the feasibility of smartphones for SHM. A
vision-based approach with smartphones for obtaining
dynamic characteristics of a cable-supported structure ac-
cording to its dynamic displacement responses in the fre-
quency domain was investigated by Zhao et al.322 A 3D
displacement monitoring system using the DIC technique
was proposed by Wang et al.323 A real-time damage de-
tection solution for masonry buildings using mobile DL was
demonstrated by Wang et al.324 Leveraging the state-of-the-
art DL technique on historic buildings, the high-precision
trained model was ported onto a smartphone and was
successful in detecting damage. This shows that with ev-
eryday improvement in object detection models and size
reduction of the trained models, mobile device-based
damage detection with DL can become a new attractive
approach in SHM. Some studies also use multisensory
capabilities in smartphone devices for monitoring solutions.
Ozer et al.313 proposed a hybrid vibration response mea-
surement and modal analysis system combining embedded
accelerometers and cameras. The features and computa-
tional power in smartphones can promote long-term
monitoring of bridges using smartphones. With extremely
low initial and running costs, and the ability to develop
custom analysis software, smartphones can essentially
provide a complete monitoring solution. Shrestha et al.325

investigated the feasibility of a long-term bridge health
monitoring of Japan’s Takamatsu bridge. In more than
1 year operation period, seismic and traffic-induced vi-
brations from the smartphones were captured and validated
against the reference seismometers to verify their viability
and accuracy.

On the other hand, engaging consumer-grade devices
brings additional uncertainty due to the uncontrolled device
operator.312,326,327 The challenges in big data are compa-
rable to the mobile sensing paradigms.328 Compiling and
analyzing tens of thousands of generated smartphone data,
specifically when used in the context of crowdsourcing, can
sometimes challenge computational strategies in the field.
Despite these obstacles, mobile sensing presents many
opportunities. Having a variety of data can increase the
observation sources and yield more accurate results, sup-
porting the decision-making tasks with abundant infor-
mation. New innovative ways of generating data from
structures such as drive-by sensing329 are compatible with
the everyday smart devices placed in vehicles.330 If suc-
cessful crowdsourcing mechanisms are embedded into
vehicular SHM, smartphones are likely to occupy more
space in the next decade of SHM research.311,315,331

Smartphone-based SHM can digitally incorporate up-to-
date advances in system identification, ML, and data mining
that encompasses a fully connected smart city platform.332

A summary of the smartphone-related sensor technology
and its application in SHM is shown in Table 10.

Digital twin and physics-guided
ML-based SHM

The connection of the physical system (such as bridge el-
ements, sensors, etc.) and the cyber aspect (such as data
management, processing, and communication) is tightly
combined in modern SHM formulations. It was shown that
the isolation of cyber and physical aspects of a WSN-based
SHM solution is suboptimal.276 With the upcoming In-
dustry 4.0, the Industrial Internet of Things (IIoT) is going
to be the next major step for real-time performance mon-
itoring and better predictive maintenance with new solu-
tions in ML algorithms. The concept of the digital twin, as
part of IIoT, has granted the ability to achieve a greater level
of automation and transparency for infrastructure asset
management. A digital copy of the structure in the digital
twin domain is created to aggregate, process, and analyze
the information and generate new data.333 In some texts, a
digital twin is defined as a digital representation of a real-
world object in a CPS context.334 It is expected that the
current WSN-based SHM application is going to be inte-
grated with high fidelity ubiquitous digital twin in the future
to eliminate the hurdles in current designs.

Significant applications of digital twin are in manufactur-
ing, smart city, and healthcare applications.335 There is only
a handful of digital twin modeling of civil structures. The
necessary capabilities of designing the digital twin for
bridges for SHM purposes were discussed by Ye et al.336

The concept of a digital twin for cable-supported bridges
along with a pilot study was introduced by Shim et al.337

Using a 3D model and UAV with image processing, Shim
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et al.338 developed a digital twin model of a long-span
bridge utilizing reversed 3D-surface modeling to identify
the damage on the bridge. Data-driven analysis is of most
significant importance in the digital twin domain. In a
similar approach, the concept of the deep digital twin was
proposed by Booyse et al.292 to circumvent the practical
limitation of a model-driven digital twin. The authors’
generative adversarial network (GAN) as their deep
learning framework was used for detection, diagnostics, and
prognostic of damage in a gearbox.

There are cases where sole data-driven approaches might
be insufficient to meet today’s SHM expectations’ re-
quirements. One of the major obstacles in achieving pure
data-driven monitoring solutions is the lack of training data.
While in theory, one can develop high fidelity and inter-
pretable physics-based SHM systems and that the lack of
data is not a primary issue to begin with (in contrast to data-
driven methods), such a model-driven approach comprises
uncertainty and modeling error for simplification and
omission due to high computational cost. Therefore, in
recent years, there have been strides toward synergistically
integrating these two approaches such that they preserve
their merits while at the same time lessening the inadequacy
in a reasonable manner. Consequently, physics-guided ML-
based SHM systems have started to combine both damage
detection techniques. For example, in a recent study by
Zhang and Sun,339 FEM updating was used in an interactive
manner with NN such that the physics-based loss function
determines the difference between the output of the NN and
the results of FEM updating. Through this interaction, the
NN can learn well and detect damage when tested against
unseen data. The authors showed that their implementation
could both successfully improve the generality of NN (17%
increase) and also enhance the performance of FEM up-
dating by uncertainty reduction. Connecting this new wave
to the paradigm of digital twin, in the framework proposed
by Ritto and Rochinha,340 measurements are taken from a
physical twin (bar structure) to calibrate a stochastic
computational model to simulate the system’s response
considering different damage intensities and locations. The
virtual domain was assumed to be an ML classifier that can
detect damage with different classifiers such as SVM and
DT.

These two studies have shown that it is paramount for a
physics-based physical twin to exist together with an ML
classifier in a virtual domain for interpretability, flexibility,
and reduced complexity. For further information, readers
are recommended to read the recent comprehensive survey
about integrating physics-based modeling with ML as
presented byWillard et al.341 In the study by Zhang et al.,234

the authors proposed a physics-guided DL surrogate model
for seismic structural response prediction. The authors
employed the law of dynamics as their physics models for
training CNN on a reduced dataset. In order to alleviate

limited training data, K-means clustering was used to
partition the available data into training, testing, and pre-
diction categories. The computational efficiency and the
high prediction scores can enable developing fragility
function for building serviceability assessment. Another use
of DL algorithm in physics-guided SHM system can be
found in a previous study by the same authors. Zhang
et al.,342 proposed a deep LSTM network with the similar
physics model approach as before. Analogous to their
follow-up study, same testing procedures were applied, and
satisfactory performance was achieved. In modeling time
series of complex nonlinear dynamical systems, shallow
NN such as ANN have distinct limitations. Physics-guided
DL model such as CNN, RNN, and GAN may provide a
better approach, especially in the cases of constraint data.

In view of the authors, there is much potential in physics-
guided SHM with the integration of state-of-the-art ML and
DL algorithms. Based on the observation and the provided
examples, the progressive improvements of data-driven
approaches and digital twin over the years can persuade
researchers to design symbiotic systems such that actual
characteristics based on physics-informed mathematical
models can enhance the digital copy of structures.

Virtual reality and augmented reality
for SHM

Virtual reality (VR) refers to computer technologies and
interfaces to simulate a 3D and interactive environment;
whereas, augmented reality (AR) implies layering virtual
information on real-world objects.343 Initially inspired and
developed for the gaming community, VR and AR are now
finding their way into other fields, such as nuclear facili-
ties344 or medical fields.345 In SHM systems, such novel
approaches are becoming a trend. For example, the com-
bined VR and information model (IM) was used to visualize
and access SHM data and metadata in 3D.346 Such a system
allows users to intuitively view where SHM data is gen-
erated and how it is used to assess the damage. A conceptual
seismic impact simulator utilizing SHM, ITS, GIS, and VR
was proposed by Büyüköztürk and Yu.347 In a recent study
by Bacco et al.,348 the authors proposed architecture for IoT-
based remote monitoring with UAV and VR for locating
various sensors attached to a structure and displaying in-
stantaneous and historical records.

Despite being a mainstream condition assessment
technique, visual inspections have shortcomings: labor-
intensive, error-prone, tedious, etc. are to name a few.
AR has brought the opportunity to deliver new ways of
portraying information that was deemed far-fetched a few
years ago. This new content delivery paradigm has enabled
engineers to simultaneously immerse themselves in a fully
connected physical and digital world. An AR-enabled
infrastructure inspection interface was developed by
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Maharjan et al.349 The system was coupled with low-cost
smart sensors and QR code scanners to assist the workflow
of the inspectors. It is intuitive and much easier to apply ML
and DL algorithms and display AR devices’ results. A proof
of concept of application of AR in bridge monitoring
presented by Yuan et al.350 An AR framework was pre-
sented by Athanasiou et al.351 It was shown that with the
holographic reinforcement visualization, overall inspection
time could be reduced, improving the efficiency in col-
lecting and managing data. The enhancement to the visual
inspection brought by AR and its integration with ML and
DL is a promising technology for infrastructure inspection
based on the review by Mascareñas et al.352

The enhancements brought by VR and AR can offer
effective additions to other next-generation SHM applica-
tions, in particular, UAVs and smartphone-based systems,
for both visualization and deployment measures. Human
computer interaction can benefit from multisensory and
interconnected media which can deploy SHM data for the
operators, as well as users. With the power of ML and DL,
this interaction becomes real-time and more intuitive and
brings VR/AR opportunities provided in the context of
smart infrastructure and smart monitoring in the future
smart city.

Open research issues

With the increased variety of SHM instrumentation and
analytics approaches, traditional monitoring solutions are
becoming obsolete. The heterogeneous nature of the col-
lected data notifies the need for multivariate and asyn-
chronous processing strategies. One major problem related
to data-driven SHM approaches is that it is highly im-
practical to collect sufficient data to train ML algorithms in
real life. To compensate for this, data fusion or sensor fusion
has drawn the attention of the researchers. However,
multisensory applications still need maturity for widespread
use.353

• Concerning the data volume, big data research needs
further integration into SHM to meet the smart city
demands and to meet the aggregated knowledge de-
mands from smart cities. Integration data-driven and
model-driven approaches still need to find an optimal
level of contribution from each other. In that sense, the
extent of physics-informed foundations is still yet to be
determined.

• In addition to the above aspects of the modern SHM
paradigm, real-time or online learning, identification,
and monitoring, in general, are partially achieved so far
and expect further advancements. In parallel, the IoT
framework and cloud computing are believed to play a
vital role in minimal delays in digital twin’s perfor-
mance. Other than these, the use-cases of VR and AR

are apparent to a limited extent, and their purposes
other than sole visualization need to be investigated.

• Given that each civil infrastructure has a unique
presence and complex nature, the uncertainties in
structural and material behavior need systematic
quantification and reduction techniques. From a
present SHM perspective, modern and innovative
solutions have to tackle scalability and adaptiveness
concerns.

• Apart from the classical uncertainty problems associ-
ated with different SHM levels, novel SHM paradigm
proposing citizen engagement is still insufficiently
addressed according to the authors. The majority of
crowdsourcing research in SHM arena is still at the
conceptual level and there is growing need to establish
real-life applications with real citizens.

•Despite the fact that the comprehensiveness of the state-
of-the-art system identification and damage detection
techniques existed as of today, one can observe that
fully automated approaches are still uncommon and
mere. Even the data-centric methodologies rely on
human decisions and interactions in numerous phases
of implementations.

• Looking at the energy harvesting developments sup-
porting self-powered WSN, compromises can be seen
in terms of communication of data and remote pro-
cessing. More advancement in energy-aware algo-
rithms or routing protocols could effectively reduce
nodal and global energy consumption. In addition,
power-generating elements can attract more attention,
such as solar cells, piezoelectric, or thermoelectric
elements utilizing different energy sources such as
light, vibration, and heat, respectively. Prediction and
optimization of the performance of the energy har-
vesting system is the trend for WSNs, especially in
SHM applications.354

• Despite tremendous efforts in literature, combined
characteristics of damage-sensitive features and EOFs
are still partially uncovered. ML approaches combined
with long-term monitoring are believed to serve this
line of research. As expressed in the emerging tech-
nologies discussion, the ubiquitous and remote sensing
alternatives diminish practical and financial problems
related to the maintenance of permanently installed
systems.

• The major shortcoming with data-based SHM systems,
apart from the influence of EOF, is the data scarcity for
supervised PR algorithms. Potential remedies may
vary, but often include inefficient or infeasible work-
arounds. The idea of transferring knowledge between
similar and dissimilar structures in the context of
population-based SHM has provided solution as to no
longer be concerned with lack of data.267–270 With
being able to generate a relatively complete damage-
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labeled data from a set of structures in a population and
developing an abstract framework of metric space of
structures for mapping, knowledge transfer is possible,
facilitating the creation of a general ML/DL method for
the entire population. This idea is still at its infancy and
real-life application should prove its suitability as in-
teroperable SHM solution in the smart city.

• With the increase in the number of connected devices,
the IoT ecosystem must communicate and exchange
information with one another. SHM studies so far are
tailored as structure-specific; however, dense networks
can enable deducing identification findings in region-
scale frameworks. What is more, systemic features of
the civil infrastructure population can be grasped

thanks to the mobility and abundance of modern
measurement devices. Finally, developments of mul-
tifaceted technologies and services can open the paths
to interoperability and an open standard for data while
ensuring total security and privacy measures.

• Other than these primary and general directions re-
quiring future attention, partner disciplines can embed
recent advances in SHM better. The extension of ML
into earthquake engineering applications brings the
promise of incorporating physical knowledge into
data-driven models in seismic studies. The next-
generation SHM can be coupled with ML and revo-
lutionize earthquake engineering to solve some of the
significant challenges in the field.355

Figure 13. The system architecture of a ML-enhanced cloud-based SHM-GIS decision-making system for bridge monitoring
applications, modified after Malekloo et al.294.
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• Indirect-bridge monitoring and drive-by sensing have
gained popularity among researchers. Previous at-
tempts only considered Level 1 SHM. However, it is
envisioned that, with the utilization of ML and DL,
higher levels of SHM can be achieved. Concerning
drive-by SHM research, one can note that the utmost
effort is spent on individual vehicular data which does
not fully reflect the smart city theme. Therefore, more
research on vehicle-bridge-interaction (VBI) encom-
passing vehicle fleets is suggested.356

• For the transition toward the future of sustainable SHM
systems, integration of SHM with digital twin plus
blockchain is of utmost obscurity. Considering the
many aspects of the ecosystem, the coherent and
synergetic connection of multiple emerging technolo-
gies is detrimental, providing better QoS to the user and
increase overall system efficiency and integrity. As with
other IoT devices and services, creating a middleware
system that enables integration and interoperability of
SHM with other parts of the smart city ecosystem is not
far-fetched.

• The fifth and coming sixth generation (5Gand 6G)
mobile network is expected to be the center of the
emerging IoT devices in the near future. With the ever-
increasing applications in cloud computing and smart
devices, 5G promises to address the current issues of
telecommunications. 5G integration with SHM is
becoming widespread, although security aspects such
as integration need to be further evaluated.357 Mobile
edge computing and fog networks as part of the ca-
pabilities brought by 5G and 6G enable on-site device
deployment of models and algorithms used for rapid
assessment of civil infrastructures.358

• Versatile SHM systems require a robust data man-
agement scheme. It is one of the topics that receive
very little attention from the community. The con-
tinuous increase in the volume and types of data re-
ceived from many multisensory SHM applications
overwhelms the current capabilities of data acquisi-
tions’ storage size and computational power. Cloud
computing with a NoSQL database has granted the
ability to manage massive structured and structured
SHM data,359 and provide the necessary graphical
processing unit (GPU) power with parallel and multi-
threaded computation. The system architecture of a
cloud-based bridge monitoring system is depicted in
Figure 13.

• Multisensory SHM systems are closely related to the
5 Vs of big data. In this case, time synchronization of
different sensors despite clock imperfections, becomes
essential. Although this topic has been studied for
stationary WSNs in SHM systems, with the intro-
duction of next-generation SHM modules such as
smartphones and UAVs, time synchronization becomes

critical due to lack of centralized data acquisition.
Transmission delays due to communication overhead
and the differences between the target and achieved
sample rate introduced in the SHM system are exac-
erbated with multisensory systems.

Conclusion

This article provided an extensive overview of the ML-
engaged SHM systems with connections to the new tech-
nologies rapidly growing in the latest decade. A detailed
breakdown of techniques, methods, and algorithms from the
literature is presented and examined, emphasizing ML and
the data-centric advancements occupying the current re-
search trends. The survey included a systematic discussion
of the steps taken to implement an ML model for SHMwith
pathways, taxonomies, and breakdowns. Moreover, the
most common algorithms proposed for context-dependent
applications were overviewed. The survey revealed that the
extension of ML in SHM dramatically increased the sys-
tem’s capabilities, providing innovative solutions for dif-
ferent research challenges.

The ML pipeline and corresponding algorithms have the
potential to uncover the influence of EOFs due to their
multivariate encapsulation capabilities. EOFs, a long-
lasting problem in the SHM community, is one step
closer to a solution with ubiquitous data and their digital
extensions. Moreover, ML solutions also draw a pathway to
addressing nonstationary and nonlinear sources of varia-
tions, and compression/dimensionality reduction brings
gigantic inverse problems into solvable stages.

Forthcoming mobile and noncontact technologies are
arriving with their digital counterparts. They do not only
offer new sources of physical parameters being observed,
but also have their own embedded intelligence from
consumer-grade smart devices to UAVs. Likewise, IoT is no
longer a futuristic theme; it became a reality with the rapid
distribution of low-cost headless computers all over the
world. However, the community still has an unclear un-
derstanding of how these breakthroughs can serve the smart
city agenda as well as sustainability on the monitoring side.
The next decade is expected to provide alternative aspects,
which attracted rare attention, such as visualization and
interfaces.

Despite the intrinsic progress in ML, DL, and AI, there is
an apparent gap in unsupervised SHM frameworks. Unseen
conditions of real damage obstruct training possibilities,
which can be barely fulfilled by synthetic datasets or
physical-based realizations. Nevertheless, further ad-
vancements with label-free approaches such as population-
based SHM, can find remedies to the ongoing learning
problem in SHM systems. It is obsolete that a fully auto-
mated SHM relies on this direction yet has a long way to
propose its globally accepted frameworks.
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In conclusion, to understand where the next-stage SHM
is placed, this survey looks at the parallel developments in the
multidisciplinary world of SHM from the microelectronics
advancements to communication and from citizen science to
cloud and edge computing. Needless to say, uncertainty
reduction is boosted by revolutionary advances in regressors,
classifiers, and detectors. It is the authors’ opinion that the
new norms in SHM unite all aspects of the digital revolution
and Industry 4.0 together with the traditional lines of system
identification, advanced modeling, and damage assessment.
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