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Abstract: Fiber-reinforced polymer (FRP) composites do not only possess superior mechanical
properties, but can also be easy to tailor, install, and maintain. As such, FRPs offer novel and attractive
solutions to facilitate strengthening and/or retrofitting of aging, weakened, and upgraded structures.
Despite the availability of general code provisions, the design and analysis of FRP-strengthened
concrete structures is both tedious and complex—especially in scenarios associated with unique
loading conditions. As such, designers often leverage advanced finite element (FE) simulation as
a mean to understand and predict the performance of FRP-strengthened structures. In order to
narrow this knowledge gap, this paper details suitable strategy for developing and carrying out
advanced FE simulations on FRP-strengthened concrete structures. The paper also covers techniques
related to simulating adhesives (bonding agents), material constitutive properties and plasticity
(cracking/crushing of concrete, yielding of steel reinforcement, and delamination of FRP laminates),
as well as different material types of FRP (CFRP, GFRP, and their hybrid combinations), and FRP
strengthening systems (sheets, plates, NSM, and rods) under various loading conditions including
ambient, earthquake, and fire. The principles, thumb rules, and findings of this work can be of
interest to researchers, practitioners, and students.

Keywords: FRP; finite element modeling; strengthening; concrete; seismic; fire

1. Introduction and Background

Fiber reinforced polymers (FRPs) composites comprise of continuous fibers with load
bearing capabilities embedded in binder (i.e., polymer matrix that protects the fibers and
facilitates transferring tensile and shear stresses to-and-between these fibers) [1]. FRPs,
which are resistant to chemical corrosion and have low weight-to-high modulus and
strength ratios, were initially developed as alternatives to metals often used in aerospace
and automotive industries [2,3]. With recent advancements in manufacturing and materials
sciences, FRPs have emerged as an attractive alternative for strengthening and retrofitting
of structures, most notably those made from concrete, steel, and masonry [4,5].

In such applications, FRP systems are externally bonded by means of adhesives
to the sides and/or soffit of load bearing structural members (i.e., beams, girders, etc.).
The installation of FRP systems provide the structural members with additional stiffness
through confinement effect [6]. Overall, there are two types of FRP strengthening systems:
the first type utilizes FRP plates and/or sheets while the second type employs near-surface
mounted (NSM) bars or plates. In the first case, FRP plates or sheets can be applied to
grinded external surfaces, while in the second case (NSM), FRP rods/strips are installed
into pre-cut grooves via epoxy adhesives. Both of these systems have been shown to
have comparable performance, with the second having a much improved resistance to
weathering and harsh weathering conditions [7,8].
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In all cases, the contribution of an FRP strengthening system to the overall sectional
capacity of strengthened members heavily relies upon the presence of an adequate adhe-
sive/bonding agent. This has not only been well-documented over the last few years, but
has been also noted in a number of codal provisions including the American Concrete
Institute (ACI) 440.2R [9], International Federation for Structural Concrete (FIB) [10], and
Japanese code [11]. As such, FRP-strengthened structures are commonly labeled under
“bond critical” as they rely on the bond action developed at the interface, or FRP and
external layers, or grooves. In other words, an FRP system may continue to fully contribute
as long as the adhesive layer is properly maintained [12,13].

Given that both the FRP system and adhesive have limited strain reserve and can only
be used within certain environmental conditions—as opposed to metals—then accounting
for such factors become critical in the design and analysis of FRP-strengthened structures.
This is due to the fact that debonding could potentially occur at low levels of axial strains
of FRP, thus externally bonded systems often do not exploit the full tensile strength of FRP
and may in fact lead to premature failure [14,15]. This discussion infers the complex nature
of modeling FRP strengthening systems at working conditions and especially under harsh
loading conditions, such as cyclic and fire loading.

While the open literature contains a number of attempts that managed to model FRP-
strengthened concrete structures, there does not seem to be a uniform understanding on
which researchers agree upon when modeling such structures. For example, an early work
carried out by Kachlakev et al. [16] did not account for the presence of a bonding agent
and assumed that the FRP system is perfectly bonded to strengthened concrete beams.
This crude assumption indeed simplifies the simulation process and hence continued to
be applied till the present day [17,18]. This assumption overestimates the contribution of
the FRP system and is incapable of accurately predicting debonding of FRP system from
adjacent concrete surfaces. One should also note that this assumption was common in
the era where FE simulation packages did not offer compatible elements and simulation
solutions that can model adhesion and bonding mechanisms, and the required tremendous
computational resources.

With the advent rise of computational intelligence, FE software offer unique solutions
that can accommodate varying levels of simulation complexities through time and resource-
efficient solvers [19–24]. This opened new opportunities for researchers and designers and
allowed them to carry out realistic and improved modeling of FRP-strengthened concrete
structures in which due consideration will be given to specifics related to adhesive/bonding
agent as well as various failure mechanisms, including FRP debonding. As a result, recent
studies employed modern simulation techniques to realize realistic modeling of FRP-related
phenomenon [6,25–29].

In one study, Bui et al. [30] presented a numerical and 3D FE models of FRP-
strengthened Reinforced Concrete Beams (RC beams) using ANSYS environment. This
study examined design methods for hybrid FRP-steel beams and examined the ultimate
moment capacity, load-deflection response, crack width, and ductility in these beams.
Bui et al. [30] specifically investigated reinforcement ratio, concrete compressive strength,
layout of reinforcement, and the length of FRP bars on the mechanical performance of RC
reinforced hybrid beams. Kim and Aboutaha [31] developed a similar 3D FE model to ex-
amine how the addition of CFRP composites to enhance the flexural capacity and ductility
of the beams. These researchers simulated the internal reinforcement and concrete, together
with bond, using a smeared relationship with good accuracy. Shrestha et al. [32] explored
the adequacy of strengthening of RC beam-column connections. These researchers man-
aged to successfully capture the overall behavior of RC specimens and noted difficulties in
modeling the failure mechanisms.

In a recent work, Lu et al. [33] proposed a fine-meshed meso-scale FE model that can be
used to simulate the debonding phenomenon at the FRP-concrete interface in FRP-bonded
joints. The outcome of this study achieved good correlation when compared to measured
experiments. Similarly, Chen et al. [34] explored a variety of modeling assumptions to
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simplify the complexity commonly associated with the FRP-concrete interface in shear
bonded FRP-strengthened RC beams. In this study, Chen et al. used contact elements
were to simulate the bond between internal steel reinforcement (flexure bars and stirrups)
and concrete as well as between the FRP and concrete interfaces. The authors [6,35,36]
also developed a series of 3D nonlinear FE models that incorporate springs and cohesive
elements to trace the debonding of FRP plates as well as NSM-strengthened systems. In
these studies, spring elements were used to simulate the bond-slip action between the FRP
NSM bars and the surrounding resin or mortar surfaces. The success of these studies is the
motivation behind this work.

The aim of this paper is to develop a systematic approach that can be viewed as a guide
to properly model FRP-strengthened concrete structures. This paper lays out the different
simulation techniques that can be applied, with varying complexities, and showcases their
use in practical case studies. Hence, a number of 3D FE models were developed while
taking into account realistic material constitutive laws for concrete in tension (cracking)
and compression, steel yielding, and the FRP and adhesive orthotropic material properties.
Furthermore, proper material models to trace the bond-slip action between the steel bars
and surrounding concrete surfaces, as well as bond-slip between the FRP plates/sheets or
NSM reinforcement and adjacent concrete interfaces are also considered in the developed
FE models. This work showcases three environments and loading conditions, namely,
ambient, earthquake, and fire, and hence is applicable to most loading conditions one
might experience in practical scenarios.

2. Finite Element Model Development Strategies

In general, modeling FRP-strengthened concrete structures requires the development
of a proper FE model. Such a model can be developed using freely available or commercial
simulation packages. The majority of these packages share similar features with few
differences with regard to solvers, element types, material constitutive properties, etc.,
hence it is a matter of the designer’s/practitioner’s preference to select a simulation package.
In this work, we will showcase, as an example, the use of ANSYS and ABAQUS finite
element simulation software, since this simulation environment have be extensively tested
and validated in modeling FRP-strengthened structures by the authors [6,31,32], as well as
by other researchers [16,18,32,37–44].

2.1. Considerations for Element Types

A typical FE model requires accommodation of concrete, steel reinforcement, FRP system
type (plate, sheet, NSM), and loading/boundary support conditions (see Figure 1). Each of
these components needs to be appropriately modeled to reflect the unique characteristics
associated with each of them. From this perspective, concrete is often modeled using a 3D
brick (designated as SOLID65 in ANSYS and C3D8 in ABAQUS) elements—an element
specifically developed to simulate rock-like materials. This cubic element is defined by
eight nodes, each having three degrees of freedom at each node; translations in the nodal
x, y, and z directions and has 2 × 2 × 2 integration scheme. This element type adopts the
William and Warnke’s [45] mathematical material model and hence is capable of modeling
cracking (in three orthogonal directions), crushing, plastic deformation, and creep. It
should be noted that to exhibit the nonlinear behavior of concrete, concrete damaged
plasticity (CDP) or concrete smeared crack models should be implemented when defining
concrete material in ABAQUS.

The brick concrete element accommodates defining steel reinforcement by means
of smeared or discrete rebars and hence can be used to model concretes with or without
reinforcing rebars [46,47]. There are additional optional concrete-based material parameters
that can be used to finetune element’s behavior, such as concrete shear transfer coefficients,
tensile stress, and compressive strength. The shear transfer coefficients represent the degree
of cracking (i.e., loss of shear transfer) simulated by this element. For example, in order to
simulate concrete with smooth crack development, a small shear transfer coefficient can be
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input (close to 0.0). On the other hand, a larger transfer coefficient with a value close to
unity represents a rough crack.
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Figure 1. Typical finite element (FE) models developed in ANSYS for fiber-reinforced polymer (FRP)-strengthened Rein-
forced Concrete Beams (RC beams) showing different components.

Steel as well as FRP rebars (often used in NSM applications) are modeled using
spar/link (designated as LINK8 in ANSYS and T3D2 in ABAQUS) elements. The spar two
nodal uniaxial bar-like element has three degrees of freedom at each node. These degrees of
freedom include translations in the nodal x, y, and z directions. Such reinforcing elements
are capable of simulating common nonlinear effects such as plasticity, creep, swelling, stress
stiffening, and large deflection. The link element is usually defined by its cross-sectional
area and can accommodate pre-stressing effects (i.e., input of initial strain level).

FRP sheets and/or plates can be modeled using shell (designated as SHELL99 in
ANSYS and S4 in ABAQUS) elements, since this element considers orthotropic material
properties. The element has the capability to input material properties in a local coordinate
system, where the primary axis can be aligned parallel to the main FRP fibers [30,32]. This
element can also be used to model different varying layers (where the first layer can consist
of adhesive and following layers can consist of FRP sheets, etc.). The shell elements usually
have six translations and rotations degrees of freedom at each node.

Solid brick elements in general (designated as SOLID45 or SOLID185 in ANSYS and
C3D8 in ABAQUS) can be used for the 3D modeling of loading/end supports and, in some
instances, have been also shown to be appropriate to model FRP plates as well as bonding
agents [28]. Such elements are defined by eight nodes having three translations degrees of
freedom at each node. Similar to concrete brick elements, these elements can also simulate
nonlinear effects such as plasticity, creep, swelling, stress stiffening etc.

As discussed earlier, the bond interface of steel/FRP rebars-concrete is an important
component to be accounted for. This bond-slip behavior can be simulated using spring
(designated as COMBIN14 in ANSYS) elements. The spring elements have longitudinal
stretching/compressing capabilities and, hence, have three degrees of translations freedom
at each node [48]. In ABAQUS, the bond interface of steel/FRP rebars-concrete is defined
by assigning an embedded region constraint with the concrete as the host region and the
steel/FRP bars as embedded region. Similarly, the bond behavior between the FRP system
and adjacent concrete surfaces is also of importance as this will govern the mode of failure
and prediction of debonding surface. This interface FRP/concrete interface can be modeled
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using contact elements. One such element is the cohesive (designated as INTER205 in
ANSYS and COH3D8 in ABAQUS) element [46]. The cohesive element is a 3D eight-node
zero-thickness linear interface element, with the capability to simulate bonded interfaces
and any associated delamination that could occur between them. Such elements require the
nodes of both surfaces to coincide. Then, this element traces normal stresses and slippage
between these interfaces arising from bending or shear actions. Separation between two
adjacent surfaces is represented by increasing the displacement between the nodes, within
the interface element itself.

2.2. Considerations for Material Parameters
2.2.1. Concrete

Concrete is often simulated using a built-in concrete model. As discussed above, this
material model was derived by Williams and Warnke [45]. Williams and Warnke’s model
accounts for the nonlinear behavior of concrete material in response to cracking in tension,
crushing in compression, and any plasticity development in internal reinforcement [49].
In the first case and before the initiation of the first crack, the behavior of concrete can be
assumed to be linear elastic. Afterwards, and with the occurrence of cracks, concrete softens
and turns nonlinear. To account for this plasticity effect, a multi-nonlinear stress-strain
curve is often defined in the concrete material model [50]. Such stress-strain curves can
be plotted following a number of formulae, such as the model from Hognestad et al. [51],
presented below.

fc = f ′c

[
2εc

εco
−
(

εc

εco

)2
]

where 0 ≤ εc ≤ εco (1)

fc = f ′c −
[

0.15 f ′c
εc − εco

]
(εc − εco) where εc > εco (2)

εco =
2 f ′c
Ec

(3)

where, fc = concrete compressive stress in MPa corresponding to a specified strain value εc,
f ′c = concrete compressive strength in MPa.

ANSYS and other finite element software also accommodate finetuning the nonlinear
tensile (cracking) behavior of concrete. The tensile behavior of concrete is modeled in a
tri-linear manner. The first portion of the tensile stress-strain curve starts as linear elastic
up to the concrete tensile (rupture) strength ft. Once the value of the tensile strength of
concrete is reached, stress relaxation is simulated with a steep drop of 40% of ft and then
followed by linear descending curve up to a strain value of 6εt, where εt is the concrete
strain value at ft as shown in Figure 2 [28,48,52]. From this view, the tensile strength of
concrete ft is computed as per Equation (4). Knowing this value, as well as modulus
property of concrete, then the strain at this particular tensile strength can be estimated in
addition to that at failure. Other properties of concrete include Poisson’s ratio, which can
vary between 0.18–0.22 [53].

ft = 0.62
√

f ′c (4)

2.2.2. Steel Reinforcement

The nonlinear response of steel reinforcement material is oftentimes presumed to be
linear elastic-perfectly plastic, and in some cases may account for strain hardening effects.
In general, steel reinforcement can be assumed to have a Poisson’s ratio of 0.28–0.3 and an
elastic modulus of 200–210 GPa. Plasticity in steel reinforcement follows the Von-Misses
failure criterion to define yielding of steel. Another property to steel reinforcement includes
bond-slip action at the steel rebars/surrounding concrete interface. This longitudinal bond-
slip can be taken into account using the spring elements discussed above. These elements
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require defining a longitudinal stiffness (k). This longitudinal stiffness can be calculated
from the secant of the following equation as proposed by Nie et al. [54]:

k =
π

su
p dr Nrτu

(
L1 + L2

2

)
(5)

where, p is the horizontal distance between the tension steel reinforcement bars in (mm), dr
the diameter of the mentioned reinforcements in (mm), Nr the number of reinforcements
bars and L1 and L2 is the lengths of two adjacent reinforcement link elements in (mm).J. Compos. Sci. 2020, 4, x FOR PEER REVIEW 6 of 15 
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In some cases, accounting for bond-slip action could be complex, and hence prove trou-
blesome. In such scenario, a designer might option to employ a perfect bond between the
reinforcement and concrete [55]. Achieving such perfect bond assumption, both the nodes
of steel and adjacent concrete elements are merged together. One should keep in mind
that the above assumption is valid in traditional beams given that dowel action of flexural
reinforcement is only dominant in deep beams and beams with large sized reinforcement.

It is worth noting that the elastic properties of steel can also be used to model
rigid/loading supports. Such supports can come in handy to reduce stress concentra-
tion around these highly stressed locations and facilitate smoother convergence, especially
in narrow and shallow RC beams [56].

2.2.3. FRP and Adhesive

Since FRPs are elastic materials, the mechanical properties of FRP laminates are
taken as orthotropic and elastic with a sudden drop to zero once reaching the ultimate
strength/strain [57]. On the other hand, the bonding interface between FRP and concrete
can be simply modeled to represent that there is a perfect bond between these compo-
nents, and can also be modeled using commonly accepted bond-slip models with varying
complexities such as those proposed by CEB-FIP model [58] or Lu et al. [20] which are
listed below:

CEP-FIP model (1993) [52]:

τ = τu

(
s
su

)0.4
(6)

where, τ is the bond stress at a given slip (s) in (MPa), τu is the maximum bond stress in
(MPa), s is the relative slip at a given shear stress in (mm), and su is the ultimate slip at τu
in (mm).

One should note that CEP provisions stipulates that the maximum possible bond
stress achieved is governed by the reinforcement bar type as well as quality and strength
of the surrounding concrete. The same provisions recommend using values of

√
f ′c and

0.6 mm to substitute the τu and su, for the steel reinforcement and the values of τu and su
for the GFRP and CFRP materials can be assumed to roughly be 20.25 MPa, 10.1 MPa,
0.42 mm, 0.33 mm, respectively.

Lu et al. model (2005) [20]:
The bond-slip of FRP plates/sheets can be modeled via a variety of bond-slip models.

One such model was developed by Lu et al. [20] and this model is presented in the following
expressions and can be seen in Figure 3:

τ =

 τmax

√
S
S0

where S ≤ S0

τmaxe−α( S
S0
−1) where S ≤ S0

(7)

τmax = 1.5 βw ft (8)

S0 = 0.0195 β2
w ft (9)

α =
1

G f
τmaxS0

− 2
3

(10)

G f = 0.308 β2√ ft (11)

βw =

√√√√√2.25− b f
bc

1.25 +
b f
bc

(12)

where, τmax is maximum local bond stress in MPa, S is slip between concrete and FRP in
mm, S0 is local slip at τmax in mm, βw is width ratio, α is a factor depends on interfacial
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fracture energy, bond strength, G f interfacial fracture energy, b f width of FRP sheets in
mm, bc width of concrete section in mm, and ft is concrete tensile strength in MPa.
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Nabaka et al. (2001) [59]:
A similar model to that of Lu et al. [20] can also be employed. This model was

proposed in an earlier study by Nakaba et al. [59]. The bond strength value for this model
is obtained using Equation (13):

τ = τmax

(
s
s0

)[
3/

(
2 +

(
s
s0

)3
)]

(13)

where,
τmax = 3.5 f ′0.19

c s0 = 0.065 mm

s is the slip between the concrete and CFRP interfaces.
While the above models are suitable for FRP sheets/plates, the bond between NSM-

FRP rebars and concrete (or filling materials) can be modeled using a different approach.
In this approach, interface (or contact) elements can be placed along the perimeter of the
longitudinal direction of the NSM groove. The implemented interface elements are then
treated via an exponential form of the cohesive zone model. This model starts with an
increasing segment up to the ultimate shear stress (τmax) value. This τmax corresponds to
a slip (su) value. Beyond this point, a softening response is registered until the ultimate
attained slip (assumed to equal to four times the slip corresponding to the ultimate shear
stress) is reached. For transparency, τmax for round deformed FRP bars can be evaluated
using the following expression proposed by Hassan and Rizkalla [60].

τmax(epoxy-concrete) =
fctµ

G1
(14)

where fct is the concrete tensile strength in MPa, µ the coefficient of friction. A value of
µ = 1 is used as proposed by De Lorenzis and Teng [61] and G1 is a constant taken as 1.0.

2.3. Considerations for Boundary Conditions and Loadings

The majority of RC beams can be grouped under simply supported, cantilever, or
continuous conditions. Hence, the developed FE model needs to incorporate realistic
boundary conditions to accurately represent the experimental setup. In most loading
scenarios, RC beams can be modeled in symmetry. This can be realized by restraining the
beam with rollers along the axis of symmetry. At least, one plane of symmetry can be found
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and the displacement perpendicular to this plane of symmetry needs to be constrained
to zero.

2.3.1. Monotonic and Cyclic Loading

Applied loading at ambient conditions comprise of monotonic and cyclic loadings.
While the first is often used for most scenarios to represent day-to-day loading conditions,
the latter is often used to simulate earthquake events and/or fatigue conditions. Both types
of loadings can be applied via force-controlled or displacement control options. For exam-
ple, a designer can input a series of loads in uniform (or dispersed) increments (i.e., 5 kN,
10 kN etc.)—see Figure 4. Past experiences have shown that a good practice would be to
apply smaller magnitudes of loads up until reaching the cracking limit of concrete material,
and in some cases up to the yielding point of steel reinforcement. Beyond these points,
larger magnitude of loads can be applied. The magnitude of applied forces/displacements
can then be reduced upon reaching the ultimate stage where failure is expected. This
enables the designer to capture the exact load bearing capacity and failure mechanism of
the modeled FRP-strengthened beam.
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These loading are then applied onto a line or group of nodes (and could also be applied
onto their respective area). To neutralize any stress concentration effects, the loadings
can be applied at rigid supports such as those shown in Figure 1. Similar to applying a
monotonic loading, a cyclic loading history can also be applied (say at the free end of the
cantilever beam). Cyclic loads are broken down into a series of positive (upward) and
negative (downward) load steps and sub-steps. Using this method allows the stiffness
matrix of the FE model to be re-adjusted before proceeding to the next incremental load
step in order to reflect the nonlinear changes in the model’s structural stiffness.

2.3.2. Fire Loading

For the thermal-structural transient fire analysis, a two-stage procedure is usually fol-
lowed. In the first stage, a thermal analysis is carried out and this analysis requires the use
of thermal elements and associated thermal properties for concrete, steel, and FRP reinforce-
ment. The thermal elements of interest include cubic (designated as SOLID70 in ANSYS)
elements capable of modeling concrete material as well as FRP/adhesive/insulation mate-
rial (with nodal temperature as a degree of freedom), 3D uniaxial 2-node conduction bar
often used to model steel/FRP rebars (designated as LINK33 in ANSYS), and a 3D thermal
surface (designated as SURF152 in ANSYS) element that can be used to simulate radiation
and convection effects.

Under fire conditions, both the thermal and mechanical properties vary with rise in
temperature and thus, this variation needs to be incorporated into the FE model. For-
tunately, Eurocode 2 [62] provides such properties for various concrete types and steel
reinforcement. However, the temperature-dependent material properties for FRP, as well
as commonly used insulation materials, can be found from the open literature [63–67].
The material properties needed to properly carry out a heat transfer analysis include the
thermal conductivity, specific heat and density.

In the first stage, the designer may option to simulate heat transfer from the fire source
to the FRP-strengthened beam (i.e., via convection and radiation) or, for simplicity, may
simply apply a nodal temperature versus time (i.e., ASTM E119, ISO 834 etc.) scenario
is often applied to the bottom and side surfaces of a beam or depending on the fire
incident [68]. Here, the thermal boundary conditions can be applied via a combination
of convection and radiation heat flux. The convective heat transfer coefficient (h) at the
fire exposed surface can be assumed to be 25 W/m2K for standard fire conditions and in
the range of 40–50 W/m2K for hydrocarbon fires [69]. The value of the same coefficient
is 4 W/m2K the unexposed cold surfaces. Heat transfer via radiation requires the input
of emissivity (ε) and Stefan-Boltzman radiation (σ) coefficientS with values of 0.7–0.9 and
5.669 × 10−8 W/m2K4, respectively [70,71].

The outcome of the thermal analysis is often evaluated by examining the temperature
history and temperature gradients between the key locations of the model. The key
locations of interest may include the rebar, FRP/concrete interface, and mid-depth of the
beam. Then, the resulting nodal temperatures are used as input effects into the second
stage of analysis.

In this stage, a structural stress analysis is carried out taking nodal temperatures
obtained in the thermal analysis into account to trace the effect of temperature rise on
degrading the mechanical properties (strength, modulus) of the different components of
the FRP-strengthened beams. A key point to remember is that FRP-strengthened beams are
often mechanically loaded with a constant (fixed) magnitude of loading that represents a
percentage of its capacity (30–60%). The element types often selected to carry out the stress
analysis are those compatible with their thermal counterparts.

2.4. Considerations for Failure Criteria and Convergence Limits

As discussed above, the highly nonlinear response of FRP-strengthened beams re-
quires dividing the applied loading into a series of load steps and sub-steps. The nonlinear
change in the structural stiffness is simulated by adjusting the stiffness matrix at the end of
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each load sub-step using Newton-Raphson equilibrium iterations. The onset of debonding
often initiates a large disturbance to the FE simulation and a major difficulty to the solution
algorithm. Hence, the designer might option to utilize the automatic time stepping option
to predict and to control load step sizes in different sizes. Thus, convergence of the solution
can be achieved using the program default force convergence value of 0.005, however may
turn difficult to obtain due to materials nonlinearity and large deformations. In order to
obtain convergence of the equilibrium iterations, the force convergence tolerance limit
value can be increased to (0.05–0.2) to achieve convergence of the solution [72].

In all cases, the following assumptions are often followed when simulating FRP-
strengthened structures. These assumptions are adopted from best practices suggested by
ACI 440.2R-17 standard [9] and Fib provisions [73]:

1. Yielding of steel reinforcement in tension is followed by concrete crushing when strain
in the top compression fibers exceeds 0.003.

2. Shear/tension delamination of the concrete cover may occur once the filling layer or
substrate cannot sustain the forces induced in the reinforcing steel/cfrp rebars.

3. Debonding of the FRP systems from the concrete substrate (delamination of plates/
sheets or NSM bar pull-out).

These failure modes can be predicted by examining the deformed shape, strain,
and stress levels in the concrete, FRP bars, and adhesive along their interfaces as shown
in Figure 5.
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2.5. Considerations for Post-Processing of Results

In order to examine the validity and predictability of a FE model, the FE and ex-
perimental results are to be compared. In the case of monotonic or cyclic loading, the
mid-span deflection as predicted from the FE analysis and measured in tests are compared
throughout the loading history to check if predictions match test observations [74]. An
additional comparison can also be carried out to evaluate hysteresis response and energy
dissipation. In all cases, the authors also recommend comparing cracking response and
stress/strain distributions as measured in the laboratory tests against that obtained in FE
simulations. It should be noted that the above can also be carried out in the case of fire
analysis. Additional checks should also be considered to verify predicted temperature rise
(with exposure time) against that measured in fire tests, as well as comparing mid-span
deflection (and rate of deflection) against codal provisions listed in fire testing standards
(i.e., ASTM E119 and ISO834).
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3. Challenges, and Future Research Needs

The above literature review indicates that FRPs have great potential for continual
integration into civil engineering applications. These materials have superior properties,
and thus can be employed in a variety of constructions. Unfortunately, properly modeling
the behavior and response of FRP composites is challenging [43,75] and may hinder
designers of utilizing these systems to their full potential. This section aims at highlighting
few of these limitations, associated challenges, and required future research needs.

The topics related to FRP in which there is a lack of sufficient experimental data are
mainly related to external strengthening of RC beams with FRP laminates bonded with
different types of anchorage systems.

The challenges associated with FE modeling are mainly related to the simulation of
debonding between the FRP laminates and concrete surfaces. This is due to the lack of
data on the coefficient of friction and appropriate range of values for the contact stiffness.
Other challenges are associated in the modeling of strengthened RC structures under
elevated temperatures. This is due to the several assumptions made due to the limited
data on the thermal and mechanical properties of FRP laminates. Moreover, the modeling
of FRP splay anchors is another challenge due to the complicated geometry and lack of
knowledge on the bond between the anchor and concrete surfaces and between the anchor
and FRP laminates.

Future experimental and numerical research studies on FRP-strengthened RC beams
are still needed in areas that are not clear or in need of further development to examine
and validate performance. The following is a summary of the needed topics:

• Experimental and numerical studies on the thermal and mechanical response of
FRP-strengthened beams under cold and hot temperatures.

• Experimental and numerical studies on the creep-rupture behavior and endurance
times of FRP-strengthened RC beams.

• Modeling the effects of high concrete strength on the shear and flexural performance
of FRP-strengthened beams.

• Experimental and numerical studies on the effects of lightweight concrete on the shear
and flexural performance of FRP-strengthened beams.

• Experimental and numerical studies on the long-term deflection behavior of flexural
members strengthened with different types of FRP systems.

• Modeling the performance of externally strengthened RC beams anchored with FRP
splay anchors under static, cyclic, and fire loadings.

4. Summary and Conclusions

FRP strengthening systems present effective solutions to rehabilitate aging and trauma-
weakened concrete structures. However, the integration of these systems can be hindered
by our minute capability of properly modeling their behavior. This paper presents effective
strategies and guidelines to allow proper simulation of FRP-strengthened structures. The
outcomes of this work can be summarized in the following points:

1. FRP materials offer unique solutions to aging and new structures that exceed those
constructed by traditional materials.

2. Developing appropriate modeling techniques is warranted given that the performance
of FRP-strengthened concrete structures is complicated and complex.

3. There is a need for development of appropriate and validated FE models since they
provide more economical solutions than testing. It is beneficial in design oriented
parametric studies and could be used in lieu of tests in the laboratory.
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