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Abstract

We introduce a new model named the Kumaraswamy Pareto IV distribution which
extends the Pareto and Pareto IV distributions. The density function is very flexible and
can be left-skewed, right-skewed and symmetrical shapes. It has increasing, decreasing,
upside-down bathtub, bathtub, J and reversed-J shaped hazard rate shapes. Various
structural properties are derived including explicit expressions for the quantile function,
ordinary and incomplete moments, Bonferroni and Lorenz curves, mean deviations, mean
residual life, mean waiting time, probability weighted moments and generating function.
We provide the density function of the order statistics and their moments. The Rényi
and q entropies are also obtained. The model parameters are estimated by the method of
maximum likelihood and the observed information matrix is determined. The usefulness
of the new model is illustrated by means of three real-life data sets. In fact, our proposed
model provides a better fit to these data than the gamma-Pareto IV, gamma-Pareto,
beta-Pareto, exponentiated Pareto and Pareto IV models.
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1. Introduction

The Pareto distribution and its generalizations are tractable statistical models for scien-
tists, economists and engineers. These distributions cover a wide range of applications espe-
cially in economics, finance, actuarial science, risk theory, reliability, telecommunications and
medicine. Arnold (1983) established a hierarchy of the Pareto distribution by starting with
the classical Pareto (I) to Pareto (IV) distributions by subsequently introducing additional
parameters related to location, scale, shape and inequality (Gini index). A very generalized
form of the Pareto model is the four-parameter Pareto IV (PIV) distribution defined by the
cumulative distribution function (cdf)

Hµ,α,γ,θ(x) = 1−

{
1 +

(
x− µ
θ

)1/γ
}−α

, x > µ, (1)

where α, γ, θ > 0, −∞ < µ < ∞ is the location parameter, θ is the scale parameter, γ is
the inequality parameter and α is the shape parameter which characterizes the tails of the
distribution.
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The other Pareto special models and the Burr XII distribution can be obtained from the PIV
cdf (1) using the following relations:

Pareto I (α, θ) = Pareto IV (θ, α, 1, θ)
Pareto II (µ, α, θ) = Pareto IV (µ, α, 1, θ)
Pareto III (µ, γ, θ) = Pareto IV (µ, 1, γ, θ)
Burr XII (θ, α, λ) = Pareto IV (0, α, λ = 1

γ , θ).

For convenience, we omit the location parameter by setting µ = 0. A random variable Z
having this distribution is denoted by Z ∼PIV(α, γ, θ). Its cdf is given by

Gα,γ,θ(x) = 1−
{

1 +
(
x/θ
)1/γ}−α

. (2)

The probability density function (pdf) corresponding to (2) becomes

gα,γ,θ(x) =
α

γ θ

(
x/θ
)1/γ−1 {

1 +
(
x/θ
)1/γ}−α−1

, x > 0, α, γ, θ > 0. (3)

The survival function S(t) and the hazard rate function (hrf) h(t) of Z are given by

S(t) =
{

1 +
(
x/θ
)1/γ}−α

and

h(t) =
α

γ θ

(
x/θ
) 1
γ
−1
{

1 +
(
x/θ
)1/γ}−1

,

respectively.

The rth moment of Z (for r < α/γ) comes from (3) as

E(Zr) = α θr B(r γ + 1, α− r γ), (4)

where B(p, q) =
∫∞
0 wp−1 (1 − w)−(p+q)dw is the beta function. The mean and the variance

of Z can be expressed as E(Z) = α θB(γ + 1, α− γ) and

V ar(Z) = θ2α2
{
B(2γ + 1, α− 2γ)−B2(γ + 1, α− γ)

}
.

In many practical situations, classical distributions do not provide adequate fit to real data.
For example, if the data are asymmetric, the normal distribution will not be a good choice. So,
several generators for introducing one or more parameters to generate new distributions have
been studied recently in the statistical literature. Some well-known generators are the beta-G
by Eugene, Lee, and Famoye (2002) and Jones (2004), Kumaraswamy-G (Kw-G for short) by
Cordeiro and de Castro (2011), McDonald-G (Mc-G) by Alexander, Cordeiro, Ortega, and
Sarabia (2012), gamma-G (type 1) by Zografos and Balakrishnan (2009), gamma-G (type 2)
by Ristić and Balakrishnan (2012), gamma-G (type 3) by Torabi and Montazari (2012), log-
gamma-G by Amini, MirMostafaee, and Ahmadi (2014), logistic-G by Torabi and Montazari
(2014), exponentiated generalized-G by Cordeiro, Ortega, and da Cunha (2013), Transformed-
Transformer (T-X) by Alzaatreh, Lee, and Famoye (2013), exponentiated (T-X) by Alzaghal,
Lee, and Famoye (2013) and Weibull-G by Bourguignon, Silva, and Cordeiro (2014).

Among these generators, the Kw-G family has received increased attention after the convinc-
ing debate on the pitfalls of the beta-G family by Jones (2009).

For a baseline random variable having pdf g(x) and cdf G(x), Cordeiro and de Castro (2011)
defined the two-parameter Kw-G cdf by

F (x) = 1−
{

1−G(x)a
}b
. (5)

The pdf corresponding to (5) becomes

f(x) = a b g(x)
{
G(x)

}a−1 {
1−G(x)a

}b−1
, (6)
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where g(x) = dG(x)/dx and a > 0 and b > 0 are two extra shape parameters whose role are
to govern skewness and tail weights.

In this context, we propose an extension of the Pareto-IV model called the Kumaraswamy
Pareto-IV (“KwPIV” for short) distribution based on equations (5) and (6). The paper is
outlined as follows. In Section 2, we define the KwPIV distribution. The shapes of the density
and hazard rate functions are discussed in Section 3. We provide a mixture representation
for its density function in Section 4. Mathematical properties such as the quantile function
(qf), ordinary and incomplete moments, Bonferroni and Lorenz curves, mean deviations,
mean residual life, mean waiting time, probability weighted moments (PWMs) and generating
function are derived in Section 5. The density of the order statistics is determined in Section
6. In Section 7, we obtain the Rényi and q entropies. The maximum likelihood estimation of
the model parameters is discussed in Section 8. We explore its usefulness by means of three
real-life data sets in Section 9. Finally, Section 10 offers some concluding remarks.

2. The Kumaraswamy Pareto IV distribution

Inserting (2) in (5), the five-parameter KwPIV cdf is defined by

F (x; a, b, α, γ, θ) = 1−
[
1−

{
1−

[
1 +

(
x/θ
)1/γ]−α}a]b

, x > 0, (7)

where a, b, α > 0 are shape parameters, θ is the scale parameter and γ is the inequality
parameter.

The pdf corresponding to (7) becomes

f(x; a, b, α, γ, θ) =
a bα

γ θ
(x/θ)1/γ−1

[
1 +

(
x/θ
)1/γ]−(α+1)[

1−
{

1 +
(
x/θ
)1/γ}−α]a−1

×
[
1−

{
1−

[
1 +

(
x/θ
)1/γ]−α}a]b−1

. (8)

Henceforth, we denote by X ∼KwPIV(a, b, α, γ, θ) a random variable having pdf (8). We
omit the dependence of the pdf and cdf of X on the parameters.

The Kw-PIV distribution contains as special models the following known and unknown dis-
tributions:

(i) For a = b = 1, equation (8) gives the PIV density (3);

(ii) For a = 1, equation (8) yields the Lehmann type II PIV density, not known in literature
yet;

(iii) For b = 1, equation (8) gives the exponentiated PIV density, not known in literature yet;

(iv) For b = 1, and a is an integer, equation (8) reduces to the distribution of the maximum
of a random sample of size “a” from the PIV distribution.

An interpretation of the KwPIV cdf defined by (7) (for a and b positive integers) can be given
as follows. Consider that a system is formed by b series independent components and that
each component is made up of a parallel independent subcomponents. For j = 1, . . . , b, let
Xj denote the lifetime of the jth component. Suppose that Xj1, . . . , Xja denote the lifetimes
of the subcomponents within the jth component (for j = 1, . . . , b) having a common PIV cdf
given by (2). Let X denote the lifetime of the entire system. Then, the cdf of X is given by

Pr(X ≤ x) = 1− Prb (X1 > x) = 1− {1− Pr (X1 ≤ x)}b

= 1− {1− Pra (X11 ≤ x)}b = 1− {1−Gα,γ,θ(x)a}b .

So, the KwPIV distribution given by (7) represent precisely the time to failure distribution
of the entire system.
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The survival function (sf) (S(x)), hrf (h(x)) and cumulative hazard rate function (chrf) (H(x))
of X are given by

S(x; a, b, α, γ, θ) =
[
1−

{
1−

[
1 +

(
x/θ
)1/γ]−α}a]b

, (9)

h(x) =
a bα

γ θ

(
x/θ
)1/γ−1 [

1 +
(
x/θ
)1/γ]−(α+1)[

1−
{

1 +
(
x/θ
)1/γ}−α]a−1

×
[
1−

{
[1−

[
1 +

(
x/θ
) 1
γ
]−α}a]−1

and

H(x) = − b log

[
1−

{
1−

[
1 +

(
x/θ
)1/γ]−α}a]

,

respectively.

Plots of the KwPIV density for some parameter values are displayed in Figure 1 (a)-(c). The
density plots show left-skewed, right-skewed and symmetrical shapes. Plots of the KwPIV
hrf for some parameter values are displayed in Figure 2 (a)-(c). The hazard rate plots show
increasing, decreasing, upside-down bathtub, bathtub, J and reversed-J shapes.

3. Shapes of the density and hazard rate functions
We derive the shapes of the density and hazard rate functions. The first derivative of
log {f(x)} for X is

d log{f(x)}
dx

=

(
1
γ − 1

)
x

− (α+ 1)

γθ w

(x
θ

) 1
γ
−1

+
α (a− 1)

γθ [1− w−α]

(x
θ

) 1
γ
−1
w−(α+1)

−aα(b− 1)

γθ

(x
θ

) 1
γ
−1
w−(α+1)

[
1− w−α

]a
,

where w =
[
1 +

(
x
θ

) 1
γ

]
. So, the modes of f(x) are the roots of the equation(

1
γ − 1

)
x

+
α (a− 1)

γθ

w−(α+1)

[1− w−α]

(x
θ

) 1
γ
−1

=
(α+ 1)

γθ w

(x
θ

) 1
γ
−1

+
aα(b− 1)

γθ

(x
θ

) 1
γ
−1
w−(α+1)

[
1− w−α

]a
. (10)

There may be more than one root to (10). If x = x0 is a root of (10), then it corresponds
to a local maximum, local minimum or a point of inflexion depending on whether ω1(x0) <

0, ω1(x0) > 0 or ω1(x0) = 0, where ω1(x) = d2 log{f(x)}
dx2

.

The first derivative of log {h(x)} for X takes the form

d log{h(x)}
dx

=

(
1
γ − 1

)
x

− (α+ 1)

γθ w

(x
θ

) 1
γ
−1

+
α (a− 1)

γθ

w−(α+1)

[1− w]

(x
θ

) 1
γ
−1

+
aα

γθ

w−(α+1) [1− w−α]
a−1

{1− [1− w−α]a}

(x
θ

) 1
γ
−1
.

Then, the roots of the following equation are the modes of h(x)(
1
γ − 1

)
x

+
α (a− 1)

γθ

w−(α+1)

[1− w]

(x
θ

) 1
γ
−1

+
aα

γθ

w−(α+1) [1− w−α]
a−1

{1− [1− w−α]a}

(x
θ

) 1
γ
−1

=
(α+ 1)

γθ w

(x
θ

) 1
γ
−1
. (11)

There may be more than one root to (11). If x = x0 is a root of (11), then it corresponds
to a local maximum, local minimum or a point of inflexion depending on whether ω2(x0) <

0, ω2(x0) > 0 or ω2(x0) = 0, where ω2(x) = d2 log{h(x)}
dx2

.
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Figure 1: Plots of KwPIV density with varying parameters.

4. Mixture representation

We define A =
[
1−

[
1−

{
1 +

(
x
θ

) 1
γ
}−α]a]b−1

.

By using the binomial expansion (1− z)b−1 =
∑∞

0 (−1)i
(
b−1
i

)
zi (for −1 < z < 1 and b > 0)

in A, we can write

A =
∞∑
j=0

(−1)j
(
b−1
j

)[
1−

[
1 +

(x
θ

) 1
γ
]−α]ja

.

Inserting this expansion in equation (8) and, after some algebra, we obtain

f(x; a, b, α, γ, θ) =
∞∑
j=0

(−1)j a b
(
b−1
j

) α
γ θ

(x
θ

) 1
γ
−1 [

1−
{

1 +
(x
θ

) 1
γ
}−α]a(j+1)−1

︸ ︷︷ ︸
Bj

.

The quantity Bj in the last equation, after a binomial expansion, becomes

Bj =

∞∑
k=0

(−1)k
(a(j+1)−1

k

) [
1 +

(x
θ

) 1
γ
]−k α

.
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Figure 2: Hazard rate plots for KWP-IV model with varying parameters.

Combining the last two results, we can write

f(x; a, b, α, γ, θ) =
∞∑

j,k=0

(−1)j+k a b

(k + 1)

(
b−1
j

)(a(j+1)−1
k

)
︸ ︷︷ ︸

v+,k

× (k + 1)α

γ θ

(x
θ

) 1
γ
−1 [

1 +
(x
θ

) 1
γ
]−(k+1)α−1

︸ ︷︷ ︸
gα(k+1),γ,θ(x)

.

The last equation can be rewritten as

f(x; a, b, α, γ, θ) =

∞∑
k=0

v+,k gα(k+1),γ,θ(x), (12)

where v+,k =

∞∑
j=0

(−1)j+k a b

(k + 1)

(
b−1
j

)(a(j+1)−1
k

)
.

Equation (12) is the main result of this section. It gives the KwPIV pdf as a mixture of PIV
densities. So, several of its mathematical properties can be derived form those of the PIV
distribution. The coefficients v+,k depend only on the generator parameters.
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5. Some mathematical properties

Established algebraic expansions to determine some mathematical properties of the KwPIV
distribution can be more efficient than computing those directly by numerical integration of
(8), which can be prone to rounding off errors among others.

5.1. Quantile function

The qf of X is obtained by inverting (7) as

Q(u) = θ

[{
1−

[
1− (1− u)1/b

]1/a}−1/α]γ
. (13)

Simulating the KwPIV random variable is straightforward. If U is a uniform variate on the
unit interval (0, 1), then the random variable X = Q(U) follows (8).

5.2. Moments

The rth moment of X can be written from (12) as

µ′r = E(Xr) =

∞∑
k=0

v+,k

∫ ∞
0

xr gα(k+1),γ,θ(x) dx.

Using (4), we obtain (for r < α/γ)

µ′r = α θr
∞∑
k=0

v+,k B(r γ + 1, (k + 1)α− r γ). (14)

Setting r = 1 in (14), we have the mean µ′1 of X. The central moments (µn) and cumulants
(κn) of X follow from (14) as

µn =
n∑
k=0

(
n

k

)
(−1)k µ′k1 µ

′
n−k

and

κn = µ′n −
n−1∑
k=1

(
n− 1

k − 1

)
κk µ

′
n−k,

respectively, where κ1 = µ′1. Thus, κ2 = µ′2 − µ′21 , κ3 = µ′3 − 3µ′2µ
′
1 + 2µ′31 , etc. The

skewness and kurtosis measures can be calculated from the ordinary moments using well-
known relationships.

5.3. Incomplete moments

The answers to many important questions in economics require more than just knowing the
mean of the distribution, but its shape as well. The rth incomplete moment of X follows
from (12) (for r < α/γ) as

mr(z) = α θr
∞∑
k=0

v+,k Bz(r γ + 1, (k + 1)α− r γ), (15)

where Bz(a, b) =
∫ z
0 w

a−1 (1− w)b−1 is the incomplete beta function.

The main application of the first incomplete moment refers to the Bonferroni and Lorenz
curves. These curves are very useful in several fields. For a given probability π, they are
defined by B(π) = m1(q)/(π µ

′
1) and L(π) = m1(q)/µ

′
1, respectively, where m1(q) follows
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from (15) with r = 1 and q = Q(π) is calculated from (13). The plots of Bonferroni curve
with fixed parameters b = 1, α = 2, γ = 1.5 and θ = 2, and Lorenz curve with fixed parameters
α = 2, γ = 1.5 and θ = 2 are given in Figure 3.

The amount of scatter in a population is measured to some extent by the totality of deviations
from the mean and median defined by δ1 =

∫∞
0 |x−µ|f(x)dx and δ2(x) =

∫∞
0 |x−M |f(x)dx,

respectively, where µ′1 = E(X) is the mean and M = Q(0.5) is the median. These measures
can be determined from δ1 = 2µ′1F (µ′1)−2m1(µ

′
1) and δ2 = µ′1−2m1(M), where F (µ′1) comes

from (7).

A further application of the first incomplete moment is related to the mean residual life and
the mean waiting time given by m(t; a, b, α, β) = [1 − m1(t)]/S(t) − t and µ(t; a, b, α, β) =
t− [m1(t)/F (t; a, b, α, β)], respectively, where F (·; ·) and S(·; ·) = 1−F (·; ·) are obtained from
(7).
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Figure 3: Plots of the Bonferroni curve (a) and Lorenz curve (b) for KwPIV distribution.

5.4. Probability weighted moments

The (s, r)th PWM of X (for r ≥ 1, s ≥ 0) is formally defined by

ρr,s = E[Xr F (X)s] =

∫ ∞
0

xr F (x)s f(x)dx. (16)

For some specific distributions, the relations between the PWMs and the parameters are of a
simpler analytical structure than those between the conventional moments and the parame-
ters. The simpler analytical structure suggests that it may be possible to derive the relations
between the parameters and the PWMs even though it may not be possible to derive the
relations between the parameters and the conventional moments. Consider

F (x)s =
{

1− [1−Ga(x)]b
}s
.

Using the binomial expansion twice in the above equation, we obtain

F (x; a, b, α, γ, θ)s =

∞∑
i,m,n=0

τ
(s)
i,m,n

[
1 +

(x
θ

) 1
γ

]−nα
, (17)

where

τ
(s)
i,m,n = (−1)i+m+n

(
s

i

)(
bi

m

)(
ma

n

)
.
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Inserting (12) and (17) in (16), and after some algebra, ρs,r can be expressed as

ρr,s =
∞∑

n,k=0

η
(s)
n,k

∫ ∞
0

xr g(x; (n+ k + 1)α, θ, γ) dx,

where

η
(s)
n,k =

∞∑
i,m=0

(
k+1

n+k+1

)
v+,k τ

(s)
i,m,n.

By using (4), we obtain (for r < α/γ)

ρr,s = α θr
∞∑

n,k=0

(n+ k + 1) η
(s)
n,k B (rγ + 1, (n+ k + 1)α− rγ) .

5.5. Generating function

We obtain the moment generating function (mgf) MX(t) of X from (12) as

M(t) =

∞∑
k=0

v+,k

∫ ∞
0

α(k + 1)

γθ
(x/θ)

1
γ
−1
[
1 + (x/θ)

1
γ

]−α(k+1)−1
etxdx.

By expanding the binomial terms, we can write

M(t) =
∞∑

k,l=0

v+,k δl

∫ ∞
0

x
(l+1)
γ
−1

etx dx.

For t < 0, M(t) can be expressed as

M(t) =

∞∑
k,l=0

v+,k δl Γ
(
l+1
γ

)
(−t)−[l+1)/γ],

which is the main result of this section.

5.6. Reliability

Let X and Y be two continuous and independent random variables with cdfs F1(x) and F2(y)
and pdfs f1(x) and f2(y), respectively. The reliability parameter R = P (X > Y ) is defined
by

R =

∫ ∞
−∞

f1(t)F2(t)dt.

Suppose that X ∼KwPIV(a1, b1, α1, γ, θ) and Y ∼KwPIV(a2, b2, α2, γ, θ). We can use the
mixture representation (12) to obtain the power series expansion for the cdf of X as

F2(x) = 1−
∞∑

l,m=0

(−1)l+m
(
b2
l

)(
a2l

m

)
︸ ︷︷ ︸

=w+,m

[
1 +

(x
θ

) 1
γ
]−α2

.

Let w+,m =
∑∞

l=0(−1)l+m
(
b2
l

) (
la2
m

)
. By using again (12), the reliability of the KwPIV model

(for fixed values of γ and θ) can be expressed as

R = 1−
∞∑

k,m=0

(k + 1)α1 v+,k w+,m

(k + 1)α1 +mα2
.
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Here v+,k is obtained from (12) in terms of the parameters a1 and b1.

6. Order statistics

Here, we provide the density of the ith order statistic Xi:n, fi:n(x) say, in a random sample of
size n from the KwPIV distribution. By suppressing the parameters, we have (for i = 1, . . . , n)

fi:n(x) =
f(x)

B(i, n− i+ 1)

n−i∑
j=0

(−1)j
(
n− i
j

)
F (x)i+j−1. (18)

Following (17), we can write

F (x)i+j−1 =
∞∑

l,m,p=0

π
(i+j−1)
l,m,p

[
1 +

(x
θ

) 1
γ

]−pα
,

where

π
(i+j−1)
l,m,p = (−1)l+m+p

(
i+ j − 1

l

)(
lb

m

)(
ma

p

)
.

Then, by inserting (12) in (18), we obtain

fi:n(x) =
∞∑

p,k=0

α(p+ k + 1)

γθ
tp,k g(x;α(p+ k + 1), γ, θ), (19)

where

tp,k =
(k + 1)

(p+ k + 1)B(i, n− i+ 1)

n−i∑
j=0

∞∑
j1,l,m=0

(−1)j1 v+,k π
(i+j−1)
l,m,p

(
n− i
j1

)
,

where v+,k is given in (12) and g(x;α(p+ k + 1), γ, θ) denotes the PIV density function with
parameters α(p+ k+ 1), γ and θ. So, the density function of the KwPIV order statistics is a
mixture of PIV densities. Based on equation (19), we can obtain some structural properties
of Xi:n from those of the PIV properties.

The rth moment of Xi:n (for r < α/γ) can be obtained from (4) and (19) as

E(Xr
i:n) = α θr

∞∑
p,k=0

tp,k (p+ k + 1) B(r γ + 1, α(p+ k + 1)− r γ). (20)

The L-moments are analogous to the ordinary moments but can be estimated by linear com-
binations of order statistics. They exist whenever the mean of the distribution exists, even
though some higher moments may not exist, and are relatively robust to the effects of out-
liers. Recently, L-moments have been noticed as appealing alternatives to the conventional
moments. Based upon the moments (20), we can determine closed-form expressions for the
L-moments of X as finite weighted linear combinations of KwPIV expected order statistics
given by (for s ≥ 1)

λs = s−1
s−1∑
p=0

(−1)p
(
s− 1

p

)
E(Xs−p:p).

The first four L-moments are:
λ1 = E(X1:1),
λ2 = 1

2E(X2:2 −X1:2),
λ3 = 1

3E(X3:3 − 2X2:3 +X1:3) and
λ4 = 1

4E(X4:4 − 3X3:4 + 3X2:4 −X1:4).

We can easily obtain the λ’s for X from (20) with r = 1.
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7. Rényi and q-entropies

The entropy of a random variable X is a measure of the uncertain variations. The Rényi
entropy is defined by

IR(δ) =
1

1− δ
log [I(δ)],

where I(δ) =
∫
< f

δ(x) dx, δ > 0 and δ 6= 1.

Consider
f δ(x) = (a b)δ gδ(x) G(x)(a−1)δ [1−G(x)a](b−1)δ .

Applying the power series used before twice to the last result, we obtain

f δ(x) =

∞∑
k2=0

v∗+,k2 gδ(x) [1−G(x)a]k2 , (21)

where v∗+,k2 =
∑∞

j=0 v
∗
j2,k2

and

v∗j2,k2 = (−1)j2+k2 (ab)δ
(
δ(b− 1)

j2

) (
δ(a− 1) + a j2

k2

)
.

Inserting (2) and (3) in equation (21) and integrating, we obtain∫ ∞
0

f δ(x) dx =

∞∑
k2=0

v∗+,k2

(
α

γθ

)δ ∫ ∞
0

(
x
θ

) 1
γ
(δ−γδ)[

1 +
(
x
θ

) 1
γ

]δ(α+1)+α+k2
dx.

Computing the last integral for

δ >min{γ/(γ − 1), γ/(α+ γ)},

I(δ) = αδ (γθ)1−δ
∞∑
k2=0

v∗+,k2 B
(
δ(1− γ) + γ, δ(α+ 1) + αk2 − δ(1− γ)− γ

)
.

Hence, the Rényi entropy reduces to

IR(δ) =
1

1− δ
log
[
αδ (γθ)1−δ

∞∑
k2=0

v∗+,k2 B
(
δ(1− γ) + γ, δ(α+ 1) + αk2 − δ(1− γ)− γ

)]
.(22)

The q-entropy, say Hq(f), is defined by

Hq(f) =
1

q − 1
log [1− Iq(f)] ,

where Iq(f) =
∫
< f

q(x) dx, q > 0 and q 6= 1.

From equation (22), we can easily obtain

Hq(f) =
1

q − 1
log

[
1− αq (γθ)1−q

∞∑
k2=0

v′+,k2 B
(
q(1− γ) + γ, q(α+ 1) + αk2 − q(1− γ)− γ

)]
,

where

v′+,k2 =
∞∑
j2=0

(−1)j2+k2 (ab)q
(
q(b− 1)

j2

) (
q(a− 1) + a j2

k2

)
.

8. Estimation

Here, we consider the estimation of the unknown parameters of the new distribution by
the method of maximum likelihood. Let x1, . . . , xn be a random sample of size n from the
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KwPIV distribution given by (8). The log-likelihood function for the vector of parameters
Θ = (a, b, α, γ, θ)ᵀ can be expressed as

` = n log (abα)− n log γ −
n∑
i=1

log xi + 1
γ

n∑
i=1

log
(xi
θ

)
− (α+ 1)

n∑
i=1

log
[
1 +

(xi
θ

)1/γ ]
+(a− 1)

n∑
i=1

log

{
1−

[
1 +

(xi
θ

)1/γ ]−α}

+(b− 1)
n∑
i=1

log

[
1−

{
1−

[
1 +

(xi
θ

)1/γ ]−α}a]
.

Let zi = 1−
[
1 +

(
xi
θ

)1/γ]−α
. Then, we can write ` as

` = n log (abα)− n log γ −
n∑
i=1

log(xi) +
1

γ

n∑
i=1

log
(xi
θ

)
(α+ 1)

n∑
i=1

log

[
1 +

(xi
θ

) 1
γ

]

+(a− 1)

n∑
i=1

log zi + (b− 1)

n∑
i=1

log (1− zai ) . (23)

The components of the score vector U(Θ) are given by

Ua =
n

a
+

n∑
i=1

zi − (b− 1)

n∑
i=1

[
z−ai − 1

]−1
(log zi) ,

Ub =
n

b
+

n∑
i=1

log (1− zai ) ,

Uα =
n

α
−

n∑
i=1

log

[
1 +

(xi
θ

)1/γ]
+ (a− 1)

n∑
i=1

[
z′iα
zi

]
− a(b− 1)

n∑
i=1

[
za−1i z′iα
1− zai

]
,

Uγ = −n
γ
− 1

γ2

n∑
i=1

log
(xi
θ

)
+
α+ 1

γ2

n∑
i=1

[
1 +

(xi
θ

)−1/γ]−1 [
log

(xi
θ

)]
+(a− 1)

n∑
i=1

[
z′iγ
zi

]
− a(b− 1)

n∑
i=1

[
za−1i z′iγ
1− zai

]
,

and

Uθ = − n

γθ
+
α+ 1

γθ

n∑
i=1

[
1 +

(xi
θ

)−1/γ]−1
+ (a− 1)

n∑
i=1

[
z′iθ
zi

]
− a(b− 1)

n∑
i=1

[
za−1i z′iθ
1− zai

]
.

Setting these equations to zero and solving them simultaneously yields the MLEs of the five
parameters. For interval estimation of the model parameters, we require the 5 × 5 observed
information matrix J(Θ) = {Urs} (for r, s = a, b, α, γ, θ) given in Appendix A. Under stan-
dard regularity conditions, the multivariate normal N5(0, J(Θ̂)−1) distribution can be used to
construct approximate confidence intervals for the model parameters. Here, J(Θ̂) is the total
observed information matrix evaluated at Θ̂. Then, the 100(1− γ)% confidence intervals for

a, b, α, γ and θ are given by â± zα∗/2 ×
√
var(â), b̂± zα∗/2 ×

√
var(b̂), α̂± zα∗/2 ×

√
var(α̂)

γ̂ ± zα∗/2 ×
√
var(γ̂) and θ̂ ± zα∗/2 ×

√
var(θ̂), respectively, where the var(·)’s denote the

diagonal elements of J(Θ̂)−1 corresponding to the model parameters, and zα∗/2 is the quantile
(1− α∗/2) of the standard normal distribution.

The likelihood ratio (LR) statistic can be used to check if the KwPIV distribution is strictly
“superior” to the PIV distribution for a given data set. Then, the test of H0 : a = b = 1
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versus H1 : H0 is not true is equivalent to compare the KwPIV and PIV distributions and
the LR statistic becomes w = 2{`(â, b̂, α̂, γ̂, θ̂)− `(1, 1, α̃, γ̃, θ̃)}, where â, b̂, α̂, γ̂ and θ̂ are the
MLEs under H1 and α̃, γ̃ and θ̃ are the estimates under H0.

9. Applications

Here, we illustrate the usefulness of the KwPIV model by means of three applications to real
data sets. The MLEs and goodness-of-fit measures for some fitted models are computed to
compare them.

9.1. Application 1: Actuarial science data

This data set has been studied by Balakrishnan, Leiva, Sanhueza, and Cabrera (2009) to
show the flexibility of the mixture inverse Gaussian model, which describes the distributional
behavior of the mortality of retired people on disability of the Mexican Institute of Social
Security. The data set corresponding to lifetimes (in years) of retired women with temporary
disabilities, which are incorporated in the Mexican insurance public system and who died
during 2004, are: 22, 24, 25(2), 27, 28, 29(4), 30, 31(6), 32(7), 33(3), 34(6), 35(4), 36(11),
37(5), 38(3), 39(6), 40(14), 41(12), 42(6), 43(5), 44(7), 45(10), 46(6), 47(5), 48(11), 49(8),
50(8), 51(8), 52(14), 53(10), 54(13), 55(11), 56(10), 57(15), 58(11), 59(9), 60(7), 61(2), 62,
63, 64(4), 65(2), 66(3), 71, 74, 75, 79, 86.

9.2. Application 2: Annual maximum temperatures data

The data describe annual maximum temperatures at Oxford and Worthing (England), for
the period 1901 to 1980. The data are: 75, 89, 84, 84, 85, 81, 92, 79, 84, 85, 79, 95, 87,
83, 87, 82, 83, 89, 84, 86, 79, 89, 86, 93, 86, 85, 85, 80, 87, 87, 89, 95, 89, 86, 86, 83, 87,
84, 84, 85, 89, 88, 92, 87, 84, 84, 90, 90, 89, 86, 82, 89, 90, 83, 87, 82, 86, 80, 91, 82, 87,
77, 81, 87, 81, 80, 83, 89, 88, 88, 84, 77, 85, 77, 91, 94, 80, 80, 85, 83. The data is also
available from R-achieve http://www.R-project.org and has been used by Chandler and Bate
(2007) for modeling annual maximum temperatures using generalized extreme value (GEV)
distributions.

9.3. Application 3: Sum of skin folds data

Weisberg (2005) discussed this data set which represents 102 male and 100 female athletes
collected at the Australian Institute of Sports, courtesy of Richard Telford and Ross Cunning-
ham. The data are: 28.0, 109.1, 102.8, 104.6, 126.4, 80.3, 75.2, 87.2, 97.9, 75.1, 65.1, 171.1,
76.8, 117.8, 90.2, 97.2, 99.9, 125.9, 69.9, 98, 96.8, 80.3, 74.9, 83.0, 91.0, 76.2, 52.6, 111.1,
110.7, 74.7, 113.5, 99.8, 80.3, 109.5, 123.6, 91.2, 49.0, 110.2, 89.0, 98.3, 122.1, 90.4, 106.9,
156.6, 101.1, 126.4, 114.0, 70.0, 77.0, 148.9, 80.1, 156.6, 115.9, 181.7, 71.6, 143.5, 200.8, 68.9,
103.6, 71.3, 54.6, 88.2, 95.4, 47.5, 55.6, 62.9, 52.5, 62.6, 49.9, 57.9, 109.6, 98.5, 136.3, 103.6,
102.8, 131.9, 33.8, 43.5, 46.2, 73.9, 36.8, 67, 41.1, 59.4, 48.4, 50.0, 54.6, 42.3, 46.1, 46.3, 109.0,
98.1, 80.6, 68.3, 47.6, 61.9, 38.2, 43.5, 56.8, 41.6, 58.9, 44.5, 41.8, 33.7, 50.9, 40.5, 51.2, 54.4,
52.3, 57.0, 65.3, 52.0, 42.7, 35.2, 49.2, 61.8, 46.5, 34.8, 60.2, 48.1, 44.5, 54.0, 44.7, 64.9, 43.8,
58.3, 52.8, 43.1, 78.0, 40.8, 41.5, 50.9, 49.6, 88.9, 48.3, 61.8, 43.0, 61.1, 43.8, 54.2, 41.8, 34.1,
30.5, 34.0, 46.7, 71.1, 65.9, 34.3, 34.6, 31.8, 34.5, 31.0, 32.6, 31.5, 32.6, 31.0, 33.7, 30.3, 38.0,
55.7, 37.5, 112.5, 82.7, 29.7, 38.9, 44.8, 30.9, 44.0, 37.5, 37.6, 31.7, 36.6, 48, 41.9, 30.9, 52.8,
43.2, 113.5, 96.9, 49.3, 42.3, 96.3, 56.5, 105.7, 100.7, 56.8, 75.9, 52.8, 47.8, 76.0, 61.2, 75.6,
43.3, 49.5, 70.0, 75.7, 57.7, 67.2, 56.5, 47.6, 60.4, 34.9.

In the following, we compare the KwPIV distribution with other lifetime models, namely the
gamma-Pareto IV (GPIV) (Alzaatreh and Ghosh 2016)), gamma-Pareto (GP) (Zografos and
Balakrishnan 2009), beta-Pareto (BP) (Akinsete, Famoye, and Lee 2008), PIV (see (3)) and
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Table 1: The statistics ˆ̀, AIC, CAIC , A∗ and W ∗ for Actuarial Science data

Distribution ˆ̀ AIC CAIC A∗ W ∗

KwPIV -1050.537 2111.073 2111.292 1.7492 0.3062

GPIV -1071.305 2148.610 2148.697 3.9887 0.7042

GP -1079.866 2163.732 2163.775 7.2898 1.2645

BP -1080.005 2166.011 2166.098 7.3081 1.2677

PIV -1198.439 2402.879 2402.966 9.8980 1.7144

EP -1100.237 2204.475 2204.518 9.7064 1.6881

Table 2: The statistics ˆ̀, AIC, CAIC, A∗ and W ∗ for Annual Maximum Temperatures data

Distribution ˆ̀ AIC CAIC A∗ W ∗

KwPIV -223.677 457.353 458.175 0.3213 0.0506

GPIV -339.376 684.751 685.071 0.3366 0.0542

GP -228.164 460.327 460.485 1.2495 0.2021

BP -228.196 462.392 462.712 1.2548 0.2029

PIV -227.878 461.756 462.076 0.7779 0.1250

EP -231.555 467.111 467.269 1.7749 0.2894

exponentiated Pareto (EP) (Gupta, Gupta, and Gupta 1998) with associated densities:

fGPIV (x) =
x

1
σ
−1

σ cαΓ(α)

[
1− x

1
σ

]−( 1
c
+1)

log
[
1− x

1
σ

]α−1
, x > 0, c, α, σ > 0,

fGP (x) =
(−1)σ−1 kσθk

Γ(σ)
x−(k+1)

[
log
(x
θ

)]σ−1
, x ≥ θ > 0, k, σ > 0,

fBP (x) =
α cbα

B(a, b)
x−(bα+1)

[
1−

(x
c

)−α]a−1
, x ≥ c > 0, a, b, α > 0,

fEP (x) = θ α cα x−(α+1)

[
1−

(x
c

)−α]θ−1
, x ≥ c > 0, α, θ > 0.

The maximum log-likelihood (ˆ̀) and measures of goodness of fit including Akaike information
criterion (AIC), consistent Akaike information criterion (CAIC), Anderson-Darling (A∗) and
Cramér–von Mises (W ∗) are computed to compare the fitted models. The statistics A∗ and
W ∗ are described in details in Chen and Balakrishnan (1995). In general, the smaller the
values of these statistics, the better the fit to the data. The required computations are carried
out in the R-language introduced by R (2009).

The numerical values of statistics AIC, CAIC, A∗ and W ∗ are listed in Tables 1, 2 and 3.
Tables 4, 5 and 6 list the MLEs and their corresponding standard errors (in parentheses) of
the model parameters.

In Tables 1, 2 and 3, we compare the KwPIV model with the GPIV, GP, BP, PIV and EP
models. We note that the KwPIV model gives the lowest values for the AIC, CAIC, A∗ and
W ∗ statistics among all fitted models. So, the KwPIV model could be chosen as the best
model for these three data sets. The histogram of the three data sets and their estimated
pdfs and cdfs for the fitted models are displayed in Figures 3 and 4. These plots indicate that
the KwPIV distribution gives a better fit to the histograms and therefore could be chosen to
explain these data sets.
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Table 3: The statistics ˆ̀, AIC, CAIC, A∗ and W ∗ for Skin Folds data

Distribution ˆ̀ AIC CAIC A∗ W ∗

KwPIV -945.200 1900.401 1900.709 0.9846 0.1452

GPIV -950.007 1906.014 1906.136 1.4053 0.2278

GP -948.980 1901.960 1902.021 1.8023 0.2363

BP -949.028 1904.057 1904.179 1.8087 0.2372

PIV -956.333 1918.666 1918.787 1.9236 0.2843

EP -951.878 1907.757 1907.818 2.1929 0.2924

Table 4: MLEs and their standard errors (in parentheses) for Actuarial Science data

Distribution a b c k α γ σ θ

KwPIV 37.977 136.644 - - 3.670 1.689 - 78.522
(40.142) (180.751) - - (2.221) (0.749) - (87.288)

GPIV - - 0.184 - 171.583 - 0.140 -
- - ( 0.051) - (24.631) - (0.038) -

GP - - - 44.178 - - 5.715 22
- - - (7.143) - - (0.884) -

BP 5.722 21.895 22 - 0.312 - - -
(0.890) (54.158) - - (4.145) - - -

PIV - - - - 0.103 0.060 - 26.688
- - - - (0.028) (0.016) - (1.272)

EP - - 22 - 19.470 - - 6.812
- - - - (1.881) - - (1.400)

Table 5: MLEs and their standard errors (in parentheses) for Annual Maximum Temperatures
data

Distribution a b c k α γ σ θ

KwPIV 31.560 47.616 - - 0.352 0.079 - 53.618
(11.215) (27.458) - - (0.130) (0.028) - (5.513)

GPIV - - 0.212 - 168.099 - 0.108 -
- - (0.048) - (3.902) - (0.023) -

GP - - - 11.250 - - 8.471 75
- - - (0.963) - - (0.703) -

BP 8.496 32.575 75 - 0.312 - - -
(0.709) (38.542) - - (0.336) - - -

PIV - - - - 0.469 0.023 - 82.802
- - - - (0.117) (0.004) - (0.857)

EP - - 75 - 3.879 - - 10.723
- - - - (0.185) - - (1.257)
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Table 6: MLEs and their standard errors (in parentheses) for Skin Folds data

Distribution a b c k α γ σ θ

KwPIV 2.928 21.746 - - 0.023 0.060 - 23.430
(1.188) (33.283) - - (0.019) (0.033) - (4.633)

GPIV - - 0.520 - 81.355 - 0.098 -
- - (0.198) - (8.071) - (0.035) -

GP - - - 3.243 - - 2.614 28
- - - (0.336) - - (0.245) -

BP 2.618 12.111 28 - 0.252 - - -
(0.247) (24.189) - - (0.475) - - -

PIV - - - - 0.463 0.182 - 46.812
- - - - (0.183) (0.041) - (5.595)

EP - - 28 - 2.155 - - 2.737
- - - - (0.154) - - (0.298)
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Figure 4: Plots of the estimated pdf for the KwPIV model for data sets 1, 2 and 3.
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Figure 5: Plots of the estimated cdf for the KwPIV model for data sets 1, 2 and 3.

10. Conclusions

In this paper, we propose a new five-parameter Kumaraswamy Pareto IV distribution (Kw-
PIV) distribution. We study some of its structural properties including an expansion for the
density function and explicit expressions for the quantile function, ordinary and incomplete
moments, mean residual life, mean waiting time, probability weighted moments and gener-
ating functions. Explicit expressions for the order statistics, Rényi entropy and q entropy
are also derived. The maximum likelihood method is employed for estimating the model
parameters. We also obtain the observed information matrix. We fit the KwPIV model to
three real life data sets to show the usefulness of the proposed distribution. The new model
provides consistently better fit than other lifetime models such as the gamma-Pareto IV,
gamma-Pareto, beta-Pareto, exponentiated Pareto and Pareto IV models. We hope that the
proposed model may attract wider application in areas such as economics, finance, actuarial
science, engineering, survival and lifetime data, among others.
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Appendix A

The elements of the 5 × 5 observed information matrix J(Θ) = {Urs} (for r, s = a, b, α, γ, θ)
are given by

Uaa = − n

a2
− (b− 1)

n∑
i=1

[z−ai − 1]−2 z−ai (log zi)
2, Uab = −

n∑
i=1

[z−ai − 1]−1 (log zi),

Uaα =

n∑
i=1

[z′iα
zi

]
− (b− 1)

n∑
i=1

{[z′iα
zi

]
(z−ai − 1)−1 + a

[z′iα
zi

]
z−ai (z−ai − 1)−2 (log zi)

}
,

Uaγ =

n∑
i=1

[z′iγ
zi

]
− (b− 1)

n∑
i=1

{[z′iγ
zi

]
(z−ai − 1)−1 + a

[z′iγ
zi

]
z−ai (z−ai − 1)−2 (log zi)

}
,

Uaθ =

n∑
i=1

[z′iθ
zi

]
− (b− 1)

n∑
i=1

{[z′iθ
zi

]
(z−ai − 1)−1 + a

[z′iθ
zi

]
z−ai (z−ai − 1)−2 (log zi)

}
,

Ubb = − n
b2
, Ubα = −a

n∑
i=1

[za−1i z′iα
1− zai

]
, Ubγ = −a

n∑
i=1

[za−1i z′iγ
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]
, Ubθ = −a

n∑
i=1

[za−1i z′iθ
1− zai

]
,

Uαα = − n

α2
+ (a− 1)
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i=1

{zi z′′iα − (z′iα)2

z2i

}
−a(b− 1)
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{(1− zai ) [za−1i z′′iα + (a− 1)za−2i (z′iα)2 ] + a z2a−2i (z′iα)2

(1− zai )2

}
,

Uαγ =
1

γ2
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i=1
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1 + (xi/θ)

− 1
γ

]−1
log (xi/θ)

}
+ (a− 1)
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[
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iγ

]
+ a z2a−2i z′iα z

′
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(1− zai )2

}
,

Uαθ =
1

γθ

n∑
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{
1 + (xi/θ)

− 1
γ
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+ (a− 1)

n∑
i=1

[zi z′′iαθ − z′iα z′iθ
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}
,
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Uθθ =
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