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ABSTRACT This paper presents two battery energy management (BEM) techniques for an electric
vehicle (EV) traction system which incorporates an indirect field-oriented (IFO) induction motor (IM)
drive system. The main objective of the proposed BEM techniques is to regulate the IM’s speed while
minimizing the lithium-ion (Li-ion) battery bank state of charge (SOC) reduction and state of health (SOH)
degradation. In contrast to most of the existing work, the proposed BEM techniques operate without any
prior knowledge of driving profiles or road information. The first BEM technique incorporates two cascaded
fuzzy logic controllers (CSFLC). In CSFLC, the first fuzzy logic controller (FLC) generates the reference
current signal for regulating the motor speed, while the second FLC generates a variable gain that limits the
current signal variation based on the battery SOC. The second BEM technique is based on model predictive
control (MPC) which generates the current signal for the speed regulation. However, this work introduces
a new way of tuning the MPC input weight using battery information. It features a fuzzy tuned model
predictive controller (FMPC), where an FLC adjusts the input weight in the MPC objective function such
that the battery SOC is considered while generating the command current signal. Furthermore, this work
utilizes a model-in-loop strategy comprising a Chen and Mora (CM) battery model and the experimentally
obtained battery bank power consumption to estimate the increase in battery bank runtime and lifetime.
A real-time implementation is carried out on a prototype EV traction system using the New European Drive
Cycle (NEDC) and the Supplemental Federal Test Procedure (US06) drive cycles. The experimental results
validate that the proposed CSFLC and FMPC BEM techniques exhibit a lower reduction in the battery
SOC and SOH degradation, thus prolonging the battery bank runtime and lifetime as compared to the
conventional FLC and MPC speed regulators. Further experimentation demonstrates the superiority of the
FMPC technique over the CSFLC technique due to the lesser computational burden and higher average
energy saving.

INDEX TERMS Battery energy management, electric vehicle traction system, field oriented control, model
predictive control, fuzzy logic control, fuzzy weight tuning, state of charge, state of health.

I. INTRODUCTION
A major consequence of fossil fuel consumption is envi-
ronmental pollution, which can be attributed to emissions
by the transportation industry [1]. Numbers from the Inter-
governmental Panel on Climate Change ascribe nearly 14%
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of greenhouse gas emissions as a direct result of fossil
fuel consumption by the transportation industry [1]. Conse-
quently, there has been an emphasis on a shift toward cleaner
sources of energy in this sector. Battery powered electric
vehicles (BEV) have been an attractive alternative for several
reasons ranging from lower operating and maintenance costs,
lack of air pollution, and a lowered dependence on fossil
fuels [1], [2]. A significant shortcoming of BEVs is the
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limited driving range resulting from the low energy density
of batteries found today; 200-300 Wh/L for Lithium-ion
(Li-ion) batteries as opposed to 8800 Wh/L for gasoline
fuel [3], [4]. To combat these issues, this project presents two
battery energy management (BEM) strategies that decrease
battery energy consumption and state of charge (SOC)
decline, thus lowering battery state of health (SOH) degra-
dation. Furthermore, a model-in-loop strategy is employed to
estimate the battery bank runtime and lifetime. The runtime
represents the time required to go from 100% SOC to 20%
SOC. The battery lifetime is directly related to its SOH [5].
Therefore, it is important to keep track of the battery’s SOH
because it indicates the maximum releasable battery capacity.
For EV applications, a battery reaches its end-of-life (EOL)
when its SOH drops by 20% [5], [6]. In other words, a longer
runtime means that a vehicle is capable of traveling longer
distances before requiring recharging.While a longer lifetime
means that the batteries will operate for a longer time before
requiring replacement.

The majority of electric vehicle (EV) BEM techniques can
be categorized into rule-based strategies and optimization-
based strategies [7], [8]. The rule-based strategies involve
using rule tables which require development by an experi-
enced user. However, it is difficult for a rule-based strategy
to find the optimal solution without intricate design and
repetitive iterations to improve the BEV performance [8]. The
optimization-based strategies are utilized to obtain optimal or
near optimal solutions for the system’s objective [9], [10].

Some of the rule-based techniques in the literature involve
using a fuzzy logic controller (FLC) in the management of
multiple sources such as fuel cells, combustion engines, ultra-
capacitors and batteries. An FLC divides the power demand
over the multiple sources such that each source operates at
its highest efficiency. In the works of [11], [12], an FLC was
used to share the power demand with an ultra-capacitor or
an engine, such that the load current does not exceed the
maximum battery current and to prevent the battery from over
discharging. In [13], a super capacitor (SC) is added to an EV
traction system to absorb the current discharge stress on the
battery due to unplanned situations. The FLC in [13] shifts the
abrupt energy demand to an SC to reduce the discharge stress
on the battery during the acceleration phase. On the other
hand, [14] proposes an adaptive fuzzy controller which shares
the energy consumption between a battery and an SC by
means of a DC-DC converter. A contour positioning system
was used to obtain the road slope information which was
used to estimate the energy required to reach the destination.
The control algorithm split the energy demand between the
battery and the SC such that the battery supplies a constant
current while the SC supplies the peak current and absorbs
the regenerated current during braking thus reducing the fast
charging and discharging effects on the battery. The authors
in [15] proposed a predictive protection algorithm that used
an FLC to monitor the road information and the SOH of
the battery, then produced a signal to charge or discharge
the battery. In [16], an FLC is designed which takes into

account the SOC of the battery, the input reference speed,
and the commanded vehicle acceleration then produced a
setpoint for the battery output power. Thework in [17] created
an intelligent energy management system that monitors the
torque signal and the battery SOC then generates the electric
throttle signal to regulate the motor speed. Furthermore, [18]
introduced a neural FLC to manage regenerative braking
in a hybrid EV. The controller monitors the engine speed
and power delivered then accurately determines the required
torque for the application [18]. Once the delivered power
exceeds the required value, the regenerative braking system
starts charging the battery bank using the excess power gen-
erated by the engine [18]. A common aspect in the literature
is the utilization of the FLC’s ability to incorporate the user’s
expertise to dictate the system’s operation without requiring
an accurate system model [19]. In our case, a cascaded FLC
that incorporates the motor speed error, change in speed
error, and the battery SOC was developed based on user
experience to regulate the motor speed while reducing the
energy consumption. Due to the FLC’s ability at handling
induction motor (IM) drive non-linearities, speed variations,
and parameter changes, it is preferred over the conventional
PI controller [19]. It is worth noting that the previous events
tend to detune the PI controller and degrade its performance
with the IM drive [19].

Regarding the use of optimization-based strategies, [20]
develops a driving pattern recognition system using artificial
neural networks which monitors the driver’s behavior and
estimates a driving cycle for the specified user. A stochastic
predictive model is used in [21] to predict the driving profile
of a bus using Markov Chain Monte Carlo methods. Also,
in [21] the SOC consumption is optimized using dynamic
programming (DP). Furthermore, the neural networks and
Markov ChainMonte Carlo methods are dependent on histor-
ical data collected from the driving profile of the consumer.
An adaptive equivalent consumption minimization strategy
(A-ECMS) is introduced in [22], as an upgrade to the original
ECMS. The A-ECMS compares the current battery SOCwith
the desired SOC and generates a new optimal equivalent
factor that minimizes the error. The authors in [23] combined
historical data of the SOC trajectory and torque demand of
a city bus to create a batch iterative learning control algo-
rithm. The algorithm is used in conjunction with an MPC
such that the MPC performs its real-time predictive control
while exploiting the repetitive nature of the historical data to
perform a batch-wise feedback control. The driving velocity
profile is obtained using a synthesized velocity profile predic-
tion (SVPP) method and DP is used to calculate the optimal
battery SOC constraints at every iteration [24]. In [25], the
energy management strategy contained a long short term
memory-based (LSTM) velocity predictor. The vehicle load
power is obtained by combing information from vehicle
velocity with the vehicle parameters. An MPC allocated the
load power to an ultra-capacitor and a battery through a
DC-DC converter such that the three components operate
at maximum efficiency, and the total power dissipation is
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minimized. An MPC-based strategy is used to manage the
energy consumption using the route information in [26].
The road slope information is loaded into the MPC which
accelerated the vehicle in advance such that an abrupt accel-
eration does not have a substantial impact on the energy
consumption.

Furthermore, [27] generates a new reference velocity for
the vehicle at different road slopes using the previously
obtained road slope information. When a road slope is
encountered, the reduction in speed due to the road slope
results in the desired vehicle speed. In contrast, the road
information is used to generate the optimal battery SOC
using DP at different setpoints in [28]. The setpoints are then
loaded into an MPC which controls the maximum battery
output power such that the battery’s SOC follows the optimal
SOC at each setpoint. Similarly, [29] created an adaptive
energy management strategy for an MPC controlled EV. The
MPC follows an SOC reference trajectory which is generated
through DP and historical data of the vehicle velocity. Fur-
thermore, the current traffic information is incorporated and
processed through deep neural networks which predict the
future vehicle velocity then update the SOC reference trajec-
tory. In [30], a nonlinear-MPC combines vehicle-to-vehicle
communication and road slope information. This method
optimizes the vehicle acceleration such that the battery SOC
consumption is minimized. The authors in [31] created a
time series model that forecasts the power demand based on
the vehicle speed and acceleration, road slope information,
brake pedal position, historical power demand, and present
power demand. A nonlinear predictive controller determined
the optimal power demand over the prediction horizon, while
a receding horizon algorithm limited the vehicle’s power
consumption. In [32], a sequence-based velocity profile pre-
dictor is introduced. It identifies the different power losses
associated with the hybrid energy storage system and battery
capacity due to the changing velocity profile, then formulates
and solves a power split cost function through chaotic particle
swarm optimization. The work of [33] formulates a power
split function involving the battery SOC and the vehicle speed
then uses sequential programming to solve the problem. The
optimal position for the brake and acceleration pedals is
regulated accordingly.

In the preceding optimization-based strategies, DP is used
as a benchmark for comparison with the newly devel-
oped energy management strategies [1], [8], [25]. However,
DP cannot be implemented in real-time due to its high com-
putational cost [25]. Other optimization strategies include the
equivalent consumption minimization strategy (ECMS) and
convex programming (CP), which are used in conjunction
with an MPC to optimize energy saving and reach a near
optimal solution. In these strategies, the accuracy is com-
promised for a lower computational burden, as compared
to DP [8]. However, the ECMS strategy requires choosing
an optimal equivalent factor which is obtained by solving
a two point boundary value problem [8]. The solution to
this problem may be difficult to obtain and in some cases

impossible [8]. The optimal equivalent factor is usually
obtained through rigorous experimentation and may not be
effective throughout the entire drive cycle [8]. The CPmethod
can obtain the global optimal solution. However, it requires
the representation of the whole system by single or mul-
tiple convex functions in addition to the prior knowledge
of the drive cycle [8]. Furthermore, the MPC-based energy
management strategies revolve around forecasting velocity
profiles or driving behaviors, and planning SOC reference
trajectories or maximum battery output power before the
operation of the vehicle. Consequently, the techniques in [20],
[21], [23], [24], [26]–[28], [30]–[32] are dependent upon stor-
ing and pre-processing historical data, which has a substan-
tial memory requirement, before initiating the optimization
algorithm.

A real-time BEM strategy needs to have a low computa-
tional cost and a lowmemory requirement [23], [34]. Further-
more, the strategy must adapt to varying driving styles and
cannot be limited to specific driving profiles or known road
information, unlike the techniques in [20], [24], [26]–[28],
as this kind of information may be difficult to obtain [27].
Table 1 contains a comparison between the proposed BEM
techniques and similar techniques in the literature in terms
of road information, computational effort, and type of oper-
ation. Due to the difficulty in calculating the battery SOH’s
instantaneous value, the SOH degradation is often ignored in
the literature [5]. Another issue neglected by the MPC-based
techniques is the selection of the input weights in the MPC
objective function [23], [26], [28], [30]–[32]. At the present,
the selection of these weights presents a challenge and there
is no clear way of determining their values [35]. Recently,
an FLC has been used to tune the MPC objective function
weights depending on the d-axis and q-axis current errors
to reduce the overall motor torque ripples [36]. Furthermore,
a self-tuned FLC is introduced in [37], to improve the tran-
sient performance of an IM drive by generating an output
scaling factor for the control signal. The primary objective
in [37] is to achieve a superior speed performance in terms of
overshoot, rise time, settling time, and recovery time. In addi-
tion, [38] addresses the effects of the long sampling time
required for the execution of the FLC on the performance of
the IM drive, and then it introduces a multiple timer strategy
to combat these effects. The IM drive was run on a small
sampling time so that the motor speed performance is not
degraded [38]. On the other hand, the FLC controllers were
run on a separate timer with a larger sampling time [38].
The same strategy is adopted, and a comparison between
the proposed and conventional techniques is presented in
this work. Although an FLC has been used in conjunction
with an MPC in the past, and a self-tuned FLC strategy was
already proposed, the effects of such uses on reducing SOH
degradation or reducing the battery SOC consumption have
so far not been addressed. To sum up, the current literature
deals with the EV traction system IM drive components as a
black box [8]. Since the detailed IM drive system dynamics
are not considered in [15]–[18], [22], [30]–[33], this work
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TABLE 1. Comparison between the proposed BEM techniques and the existing approaches in the literature.

features experimental modifications to an actual EV traction
IM drive system powered by a 400 V Li-ion battery bank.

The main contributions of this work are:
1) Two BEM techniques that run in real-time without

requiring driving profiles or road information.
2) BEM strategies that manipulate the architecture of the

conventional FLC and MPC speed regulators of induc-
tion motor-driven EV traction system.
a) The first technique is based on the cascaded

FLC (CSFLC) which comprises a conventional
FLC speed regulator and a second variable gain
FLC placed in cascade. The second FLC acts as an
auto tuner which modifies the torque regulating
current signal variations based on the battery bank
SOC.

b) The second technique is the FLC tuned
MPC (FMPC) energy management system.
An FLC generates the input weight in the cost
function of theMPC based on the first and second
order derivatives of the battery bank’s SOC. The
resulting current signal regulates the speed of the
IM while conserving the battery energy.

3) A new way of tuning the MPC input weight and FLC
output scaling factor using the battery information.

4) The SOH’s instantaneous value for the battery bank is
estimated, and a model-in-loop strategy is employed
using the Chen and Mora (CM) battery model to esti-
mate the number of hours till the EOL of the battery
bank.

The remainder of the paper is organized as follows;
section II contains the EV traction system components and
hardware specifications, section III describes the BEM strate-
gies, section IV shares the experimental results and related
discussion followed by the concluding remarks in section V
of this paper.

II. EV TRACTION SYSTEM COMPONENTS AND MODELING
A. INDUCTION MOTOR DRIVE
The IMmodeled in the synchronously rotating dq-coordinate
system can be shown by equations (1) - (6) [39].

Vsd = Rsisd +
dλsd
dt
− ωeλsq (1)

Vsq = Rsisq +
dλsq
dt
− ωeλsd (2)

Vrd = Rr ird +
dλrd
dt
− ωslλrq (3)

Vrq = Rr irq +
dλrq
dt
− ωslλrd (4)

Tem =
3p
2
Lm
Lr

(λrqird − λrd irq) (5)

dωm
dt
=

1
J
(Tem − TL − Bωm) (6)

where V , i, λ are the dq-components for the stator and
rotor voltages, currents and flux respectively. The Rs and Rr
terms are the stator and rotor resistances respectively and
J , B, Tem, TL are the motor inertia, coefficient of friction,
electromagnetic torque, and load torque while, ωm, ωe, ωsl
represent the mechanical speed, d-axis rotation speed and
rotor axis rotational speed. Here ωe is selected to be equal
to the synchronous speed ωsync = 2π f radians per second.
Equations (1) - (5) represent the electrical equations and (6)
shows the mechanical coupling equation of the induction
machine. Equation (7) represents the dq-fluxes as a function
of the dq-currents in matrix form.

λsd
λsq
λrd
λrq

 =

Ls 0 Lm 0
0 Ls 0 Lm
Lm 0 Lr 0
0 Lm 0 Lr



isd
isq
ird
irq

 (7)

Applying the principle of indirect field-orientation (IFO) by
setting λrq = 0, (8) can be derived from (3) and (7) and is used
to estimate the rotor flux. Furthermore, (4) can be combined
with (7) yielding (9) [39]. Equation (9) is used for calculating
the rotor slip.

λrd = Lmisd (8)

ωsl =
Lm
τr

isq
λrd

(9)

where τr is the rotor time constant.
We can derive the state-space representation of the IFO IM

drive by combining (5) and (7) yielding

Tem =
3p
2
Lm
Lr

(λrd isq) (10)

A relation governing the speed ωm and the current isq can be
derived by combining (6) and (10).

dωm
dt
=

1
J

(
3p
2
Lm
Lr

(λrd isq)− TL − Bωm

)
(11)
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FIGURE 1. Overall EV traction IM drive system.

At a given load TL , taking the derivative of (11) yields

d2ωm
dt2
= −

B
J
dωm
dt
+

3p
2
Lm
Lr

λrd

J
disq
dt

(12)

The state-space representation of the IFO IM drive is given
by (13) and (14) [40], [41].[

ω̈m
ω̇m

]
=

[
−
B
J

0

1 0

][
ω̇m
ωm

]
+

3p
2
Lm
Lr

λrd

J
0

 disq
dt

(13)

ωm =
[
0 1
] [ω̇m
ωm

]
(14)

The overall EV traction system containing the IFO IM
drive and the battery bank is shown in Fig. 1. The slip cal-
culation block performs the rotor flux estimation using (8),
then calculates the slip using (9). The d-axis current i∗sd and
q-axis current i∗sq regulate the flux and torque of the induction
motor respectively. The two inner PI controller loops compare
the motor isd and isq currents with the reference i∗sd and i∗sq
currents and ensure that they are equal during the operation
of the EV traction system. The errors produced by the two
inner PI controllers are used to generate the reference voltage
commands V ∗sd and V ∗sq respectively. The reference voltages
are converted using the dq/abc transformation to V ∗a , V

∗
b ,

and V ∗c reference sinusoidal voltages that are used to generate
pulse width modulation (PWM) signals for the inverter. The
outer controller loop generates the reference i∗sq torque regu-
lating current signal, and the performance of the MPC, FLC,
CSFLC, and FMPC controllers is assessed in this part of the
EV traction system. The speed regulator block contains the
FLC and MPC speed regulators which will be compared with
the CSFLC and FMPC BEM techniques. The final value, Isd ,
for a step command i∗sd , was obtained by running the IM at its
rated voltage and frequency with no load. Whereas, the final
value, Isq, for a step command i∗sq, was obtained by running
the IM at rated speed and rated voltage with a load. The Isd
and Isq current values used in this work are 1 A and 1.5 A
respectively. The inner loop PI current regulator for i∗sd was

TABLE 2. Three-phase inverter switching states.

tuned by applying the step command i∗sd , while setting i
∗
sq to

zero. The outer controller upper and lower saturation limits
are set to 2Isq and -2Isq respectively [42].

B. SPACE VECTOR PWM (SVPWM) INVERTER
A simple three-phase inverter is shown in Fig. 2. The first
leg contains switches Qa and Q̄a, the second leg contains
switches Qb and Q̄b, the third leg contains Qc and Q̄c, and
Vd is the DC bus voltage. The switches on the same leg are
complementary and cannot be turned on at the same time
[39]. The inverter’s output voltage vectors are a result of the
eight switching states of the inverter. The switching states are
presented in Table 2 where 1 represents ON/Closed condition
and 0 represents OFF/Open condition.

Furthermore, the voltage vectors resulting from the inverter
switching states in Table 2 are denoted by Evswitching state (Qc
Qb Qa). The inverter’s output voltage vectors are Ev0(000),
Ev1(001), Ev2(010), Ev3(011), Ev4(100), Ev5(101), Ev6(110), Ev7(111)
and they are shown in black on the vector diagram in Fig. 3.
Since Ev0 and Ev7 are zero in magnitude, they are not visible
in Fig. 3. The V ∗a , V

∗
b , V

∗
c reference sinusoidal voltages

produced by the the IM drive, are converted to their vector
format Ev∗s through (15) [39]. The reference voltage vector Ev∗s
is displayed in red on the vector diagram in Fig. 3. The angle
θs is the angle between Ev∗s and Ev1. On the other hand, α is
the angle between Ev∗s and the starting vector in the sector in
which Ev∗s lies. The starting vector is the first vector to cross
the angle θs in the sector where Ev∗s lies. Since vector Ev2 is the
first vector to cross the angle θs in sector 3 (the sector where
Ev∗s lies), then the angle α is formed between vectors Ev2 and Ev∗s .

Ev∗s = V ∗a e
j0
+ V ∗b e

j
2π
3 + V ∗c e

j
4π
3 =

∥∥Ev∗s∥∥ ejθs (15)

The purpose of displaying Ev∗s along with the inverter’s
output voltage vectors is to locate and identify the inverter’s
output voltage vectors adjacent to Ev∗s . For example, when Ev∗s
is in sector 3, the adjacent inverter output voltage vectors
are Ev∗2, Ev

∗

6, Ev
∗

0, and Ev
∗

7. To synthesize the reference voltage
vector Ev∗s , a portion of the sampling time is allotted to each
inverter output voltage vector. Given the sampling time Ts
and variables x, y, z such that x + y+ z = 1, reference vector
Ev∗s can be produced if the vector Ev∗2 is ON for time xTs, and
vector Ev∗6 is ON for time yTs. The remainder of the sampling
time zTs = (1 − x − y)Ts is allotted to the zero magnitude
vectors Ev0 and Ev7. In other words, reference vector Ev∗s can be
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FIGURE 2. Three-phase inverter.

FIGURE 3. Space vector diagram for a three-phase inverter.

represented by (16). Furthermore, (17) - (19) derived in [39]
are used to obtain the values for x, y, and z.

Ev∗s =
1
Ts

[xTsEv2 + yTsEv6 + zTs · 0] (16)

x =
2
√
3

∥∥Ev∗s∥∥
Vd

sin(60− α) (17)

y =
2
√
3

∥∥Ev∗s∥∥
Vd

sin(α) (18)

z = 1− x − y (19)

Finally, the values of x and y can be used to generate the
duty cycle for each inverter leg. The inverter leg duty cycle
represents the time that an inverter leg produces a voltage Vd .
In other words, the upper switch is ON and the lower switch is
OFF. For example in leg one,Da is the time thatQa spends in
ON condition and Q̄a in OFF condition. Table 3 contains the
matrices used to obtain the duty cycles for each inverter leg
in all 6 sectors [39]. The overall process is summarized in the
flowchart in Fig. 4. Given V ∗a , V

∗
b , V

∗
c and the DC bus voltage

Vd , the reference voltage vector Ev∗s can be formed using (15).
The angle θs of the voltage vector Ev∗s is used to deduce the
sector number and the angle α is obtained accordingly. The
values of x and y are computed through (17) and (18) using
the magnitude of Ev∗s , the angle α and the DC bus voltage
Vd . Finally, the inverter leg duty cycles Da, Db and Dc are
obtained by using x, y, the sector number and Table 3.

TABLE 3. Matrices for obtaining the duty cycle for each inverter leg in the
6 sectors [39].

C. AUTOMOTIVE RURAL/URBAN DRIVE CYCLES
Two driving cycles are selected for assessing the BEM tech-
nique’s energy saving proficiency. A driving cycle comprises
data points representing a real life vehicle velocity measured
versus time. Drive cycles are commonly used to estimate the
fuel consumption andCO2 emissions of different vehicles for
a standardized comparison of vehicle performance. Further-
more, drive cycles have been recently used to compare differ-
ent EV energy management strategies [7], [8], [23], [24].

The New European Drive Cycle (NEDC) and the Supple-
mental Federal Test Procedure (US06) drive cycle in Fig. 5
are chosen to compare the BEM techniques in this work.
The NEDC drive cycle comprises an urban and extra-urban
driving stage. The length of the urban driving cycle is 760 sec-
onds, it starts at second 110 and ends at second 870. The
extra-urban driving stage spans a period of 360 seconds start-
ing from second 900 till second 1260. The NEDC drive cycle
is a compilation of straight acceleration and constant speed
periods and is shown in Fig. 5a. The US06 drive cycle is a
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FIGURE 4. Flowchart for the generation of duty cycles for the SVPWM
inverter.

FIGURE 5. (a) NEDC drive cycle, (b) US06 drive cycle.

more aggressive drive cycle as compared to the NEDC drive
cycle. It contains high transient accelerations that result in
many speed variations, which is typical of on-road driving
conditions. The US06 drive cycle starts at second 155 and
ends at second 745 with a total duration of 590 seconds. The
US06 drive cycle imitates an aggressive driving behavior as
shown in Fig. 5b. The speed tracking performance on the
NEDC andUS06 drive cycles for the FLC,MPC, CSFLC, and
FMPC techniques is quantified using the absolute average
error given by (20).

Absolute average error =
1
N

∑
‖e(t)‖ (20)

where N is the number of samples and e(t) is the motor speed
error.

D. LI-ION BATTERY BANK MODEL AND MEASUREMENTS
1) CHEN AND MORA’s MODEL
The Chen andMora (CM) circuit model captures the dynamic
characteristics of the battery’s terminal voltage, battery
parameters variation relative to SOC, and has been the subject

FIGURE 6. Chen and Mora equivalent circuit battery model.

of extensive experimentation in the past decade [43]. Fur-
thermore, the CM model has the ability to incorporate the
number of charge/discharge cycles and capacity loss due to
self-discharge [43]. These advantages make the CM model
an appealing choice for this work. Fig. 6 shows the CM
equivalent circuit battery model used in this work. The left
half of the circuit shows the battery’s SOC dynamics and
its behavior in response to a load current. Whereas, the
right half of the circuit shows the battery’s output voltage
with regards to the changing load current. The state x1 rep-
resents the battery’s SOC, while x2 represents the voltage
across Rts||Cts, and finally, x3 represents the voltage across
Rtl ||Ctl . The parallel combination of Rts||Cts represents the
short-term terminal voltage dynamics in response to changes
in the discharge current. Similarly, the parallel combination
Rtl ||Ctl represents the long-term terminal voltage dynamics
in response to changes in the discharge current [43]. The CM
model is given by (21) - (24) [44].

ẋ1(t) = −
1
CC

i(t), CC = 3600Cf1f2f3 (21)

ẋ2(t) = −
x2(t)

Rts(x1)Cts(x1)
+

i(t)
Cts(x1)

(22)

ẋ3(t) = −
x3(t)

Rtl(x1)Ctl(x1)
+

i(t)
Ctl(x1)

(23)

y = Eo(x1)− x2(t)− x3(t)− i(t)Rs(x1) (24)

where the SOC, x1, is between [0, 1]. The states x2 and x3 are
non-negative real numbers when the current is flowing out
of the battery. The variable C in (21) represents the capacity
(A.h) of the battery, while the factors f1, f2, f3 ∈ [0, 1] in (21)
account for the effects of temperature, number of charge and
discharge cycles, and self-discharge respectively and they are
set to 1 for simplicity. The battery terminal voltage is given
by (24) and it is dependent on the states x2, x3, the battery
current i(t), the series resistance Rs, and the open circuit
voltage Eo. The battery parameters Eo, Rts, Rtl , Cts, Ctl and
Rs are given by (25) - (30) [43].

Eo(x1) = −a1e−a2x1 + a3 + a4x1 − a5x21 + a6x
3
1 (25)

Rts(x1) = a7e−a8x1 + a9 (26)

Rtl(x1) = a10e−a11x1 + a12 (27)

Cts(x1) = −a13e−a14x1 + a15 (28)

VOLUME 10, 2022 84021



A. S. Abdelaal et al.: BEM Techniques for an EV Traction System

TABLE 4. Chen and Mora parameters for a 22.2 V, 4 Ah Lithium-Polymer
battery [45].

Ctl(x1) = −a16e−a17x1 + a18 (29)

Rs(x1) = a19e−a20x1 + a21 (30)

The voltage relaxation test is performed to obtain the open
circuit voltage curve for the battery. Next, the curve fitting
toolbox is used in MATLAB to obtain the parameters a1 to
a6 in (25). The remaining Li-ion battery model parameters
described by (26) - (29) are obtained by the APE technique.
After estimating the battery’s parameters a7 to a18 using the
APEmethod, the battery series resistance parameters a19, a20
and a21 can be obtained from theRs(x1(t)) vs x1(t) curve using
curve fitting as described in [43]. The battery bank parameters
are recorded in Table 4.

2) SOC ESTIMATION
There are several techniques in the literature for comput-
ing the battery SOC as presented in [46]. Coulomb count-
ing (CC) is considered one of the conventional techniques and
is commonly used in EV literature due to its computational
simplicity [46]. A few notable works that compare different
energy management strategies and utilize CC to obtain the
SOC are [12], [14], [25], [32], [47]–[49]. The mathematical
formulation of the CC method is shown in (31).

SOC(t) = SOC(t0)−
1
Cc

∫ t

0
i(t)dt (31)

where SOC(t0) is the initial SOC, Cc is the battery capac-
ity (Ah) and i(t) is the discharge current which is positive
while discharging and negative while charging [50]. There-
fore, as it can be seen from (31), that the method depends on
the accuratemeasurement of the battery current and estimated
initial SOC of the battery [50].

TABLE 5. Parameter B with respect to battery Crate.

3) SOH ESTIMATION
The SOH is defined as the ratio of the maximum usable
capacity to the capacity of a new battery and is represented
by (32) [51].

SOH =
Cmax
Cc
× 100% (32)

where Cmax is the current maximum releasable capacity of
the battery and Cc is the capacity of a new battery.

An empirical model for online monitoring of SOH degra-
dation as a function of battery current was developed by [52],
[53]. The authors in [52], [53] performed numerous experi-
ments on a Li-ion battery where they investigated the effects
of the number of charge/discharge cycles, cycle life, rest
time/calendar life, battery temperature, depth of discharge,
and discharge rate. Furthermore, [52], [53] share theoreti-
cal justifications and derivations for the model. This SOH
empirical model is widely adopted in EV literature and is
represented by (33) [5], [6], [47], [54].

dSOH
dt
=

Crate × Cc ×

Be−EaRT


1
z

3600× 20

1
z

(33)

Crate =
|i(t)|
Cc

(34)

Ea = 31700− 370.3× Crate (35)

where Crate is the ratio of the battery current to the capacity
of a new battery Cc shown in (34), Ea is the Li-ion battery
activation energy shown in (35), T is the absolute temperature
in Kelvin, R is the gas constant 0.8314 Jmol−1K−1, z is the
power law factor of 0.55 and B is a parameter obtained from
empirically curve fitting the data in Table 5 [5], [6], [51],
[54]. A battery Crate of 1C is the battery current required
to discharge the battery in one hour [53]. Therefore, for
a 4 Ah battery, a Crate of 1C represents 4 A of current. In this
work, the range of current for the 4 Ah battery bank was
between [0, 1.2] A corresponding to a Crate range of [0, 0.3]
C. Furthermore, the parameter B varied between [36041.7,
33324.08] upon curve fitting based on the information in
Table 5. Equation (33) captures the impact of the instanta-
neous battery current on the battery capacity degradation and
is used in this work to obtain the SOH degradation at every
time instant.

4) ESTIMATION OF BATTERY BANK RUNTIME AND LIFETIME
The complete battery bank runtime and lifetime were
obtained offline using the CM battery model. The battery

84022 VOLUME 10, 2022



A. S. Abdelaal et al.: BEM Techniques for an EV Traction System

FIGURE 7. Battery power constructed in a repeating sequence.

power consumption recorded from the real-time implemen-
tation over the duration of the drive cycles is arranged in a
repeating sequence as shown in Fig. 7. The battery bank cur-
rent in Fig. 8a is obtained by dividing the repeating sequence
of battery bank power by the battery bank voltage obtained
from the CMmodel. The increase in battery current over time
due to a drop in battery bank voltage, shown in Fig. 8b, is cap-
tured and used with (31) to accurately compute the battery
bank SOC. The time required for the SOC to drop from 100%
to 20% represents the battery bank runtime. Furthermore, the
SOH was obtained by taking the average of the battery bank
current and substituting it in (33). The time required for the
SOH to drop from 100% to 80% represents the battery bank
lifetime and signals the EOL of the battery bank [5], [6]. The
overall process of estimating the battery bank runtime and
lifetime is summarized in Fig. 9.

E. HARDWARE SETUP SPECIFICATION
Fig. 10 shows the complete EV traction system that has been
developed in the Renewable Energy Research Center at the
American University of Sharjah. The detailed specifications
of the experimental setup are provided in Table 6. Starting
from the right, a 400 V, 4.0 Ah Li-ion battery bank powers a
three-phase IGBT inverter. The inverter converts the battery
bankDC voltage into the necessary AC voltage and frequency
required to drive the IM at the required speed. A dynamome-
ter is used to apply the mechanical load on the motor. The
dynamometer applied a constant 2 Nm load throughout the
duration of the NEDC and US06 drive cycles. The motor
speed and motor torque under the dynamometer load are
recorded and are displayed in Fig. 11. Figs. 11a and 11b
show that the motor is supplying the required 2 Nm load
while tracking the speed for the NEDC and US06 drive
cycles respectively. The control algorithm is created onMAT-
LAB/Simulink 2013b and is shown in Fig. 12. The maroon
blocks are the gains used for ADC conversion. The red
blocks represent the references in the system such as the drive
cycle and the reference motor d-axis current i∗sd . The slip

FIGURE 8. (a) Battery current sequence obtained from the Chen and Mora
equivalent circuit model, (b) Battery current in one cycle.

FIGURE 9. Flowchart for obtaining the battery bank runtime and lifetime.

frequency estimation block estimates the rotor flux and slip
using (8) and (9) respectively. The orange blocks represent the
dSPACE 1103 controller blocks. They are the ADC channels
17,18,19, 5 which measure the motor phase currents, the
battery bank current and voltage, the encoder block used to
measure the motor speed, and the PWM3 block used to gen-
erate the inverter gating signals from the duty cycles respec-
tively. The battery calculations block performs the SOC and
SOH estimation using (31) and (33) then sends the SOC
to the proposed controllers. The cyan blocks represent the
controllers in the system. The ‘Proposed Controllers’ block
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FIGURE 10. Li-ion battery bank powered EV traction system experimental setup.

FIGURE 11. (a) Motor speed and torque curves for the NEDC drive cycle,
(b) Motor speed and torque curves for the US06 drive cycle.

contains the proposed CSFLC and FMPC BEM controllers,
while the two inner PI controllers regulate the motor isd
and isq currents. The reference voltage commands V ∗sd and
V ∗sq produced by the two inner PI controllers are converted
through the dq/abc transformation to V ∗a , V

∗
b , and V

∗
c refer-

ence sinusoidal voltages that are used by the PWM genera-
tion block to generate the inverter duty cycles Da, Db, Dc.
The MATLAB/Simulink model is converted to C-language,
then uploaded into the dSPACE 1103 controller board. The
dSPACE 1103 controller board is interfaced with the com-
puter, this allows for real-time monitoring and control of the
EV traction system. The communication between the user
and the dSPACE 1103 controller board is done through the
ControlDesk 5.2 software. ControlDesk 5.2 performs various
real-time tasks such as displaying the measured current and
SOC of the Li-ion battery bank and controlling the IM drive.

III. PROPOSED BEM STRATEGIES FOR EV TRACTION
SYSTEM
A. FUZZY LOGIC CONTROLLER (FLC)
The FLC architecture used for speed regulation is shown in
Fig. 13. The FLC produces the change in the torque regulating
current signal at instant k denoted by 1i∗sq(k). It monitors
the motor speed error e(k), and the change in error 1e(k),

TABLE 6. EV traction system experimental setup specifications.

between the reference speed ω∗r (k), and the motor speed
ωmech(k). Fig. 13 shows the 3 stages that the signal passes
through before a command is issued by the controller. The
first stage is the fuzzification stage and it converts the signal
into linguistic variables [19], [37]. The second stage is the
fuzzy inference engine which takes the linguistic variables
and compares them with the rule base then generates a lin-
guistic output [19], [37]. The final stage is the defuzzification
stage and it converts the linguistic outputs to the command
signal [55], [56]. The FLC produces the change in the control
signal 1i∗sq(k), and adds it to the current value isq(k − 1) to
form i∗sq(k).
The FLC is used in the speed regulator block in Fig. 1. The

surface summarizing the fuzzification, inference mechanism
for the normalized motor speed error e(k) and the normalized
change in speed error 1e(k), and the defuzzification into
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FIGURE 12. MATLAB/Simulink model for EV traction system experimental testing.

FIGURE 13. FLC speed regulator block diagram.

FIGURE 14. FLC speed regulator surface.

1i∗sq is shown in Fig. 14. The surface illustrates that when
e(k) and 1e(k) are between [0.5, 1], then 1i∗sq is positive
and a large increase in the torque regulating current 1i∗sq is
required. When e(k) and 1e(k) are between [-1, -0.5] then a
large decrease in 1i∗sq is required. When e(k) and 1e(k) are
between [-0.5, 0.5], then the magnitude of 1i∗sq is dependent
upon their intersection with the surface. A small increase or
decrease in1i∗sq is provided until e(k) and1e(k) approach 0.
The range of operation for e(k) and1e(k) before normalizing
was [-1500, 1500] RPM while the range of operation of1i∗sq
before normalizing was between [−3, 3] A.

The FLC speed regulator is implemented and the values of
the energy, SOC, and SOH are recorded and compared with
the CSFLC BEM technique. The proposed CSFLC technique
is presented in the next section, and it performs the energy
management operationwithminimal degradation in the speed
tracking performance.

FIGURE 15. Proposed CSFLC BEM IM drive system.

B. PROPOSED BEM TECHNIQUE 1: CASCADED FLC
(CSFLC)
The CSFLC technique is designed using two cascaded FLCs
as shown in the red box in Fig. 15. The first FLC labeled
‘‘FLC Speed’’ in Fig. 15, generates the desired current
i∗sq_ speed to regulate the motor speed. While the second FLC
labeled ‘‘FLC BEM’’ acts as a variable gain which limits the
variations in i∗sq_ speed based on the battery’s SOC, and pro-
duces i∗sq_ soc. The slip calculation block estimates the rotor
flux then calculates the slip using (8) and (9) respectively.
Furthermore, the d-axis current i∗sd regulates the motor flux
while the q-axis current i∗sq_ soc regulates the motor torque.
In contrast to the q-axis current i∗sq generated by a regular
speed controller, the q-axis current i∗sq_ soc generated by the
CSFLC BEM technique contains fewer current variations.
As a result, less battery bank current is consumed and the
battery energy is conserved. The two inner PI controller loops
compare the motor isd and isq currents with the reference i∗sd
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FIGURE 16. (a) Surface describing the ‘‘FLC Speed’’ block in the CSFLC IM
drive, (b) Surface describing the ‘‘FLC BEM’’ block in the CSFLC IM drive.

and i∗sq_ soc currents and ensure that they are equal during
the operation of the EV traction system. The errors pro-
duced by the two inner PI controllers are used to generate
the reference voltage commands V ∗sd and V ∗sq respectively.
These reference voltages are converted through the dq/abc
transformation to V ∗a ,V

∗
b , V

∗
c reference sinusoidal voltages

that are used to generate PWM signals for the inverter. The
surface describing the relationship between the inputs and
output of both FLCs is shown in Fig. 16. The first surface
shown in Fig. 16a, shows the relationship between the motor
speed error e(k) and change in motor speed error 1e(k), the
output is the desired change in the torque regulating current
signal 1i∗sq_ speed (k). The 1i

∗
sq_ speed (k) signal is added to

the current signal isq_ speed (k − 1) to form i∗sq_ speed which
regulates the motor speed without taking battery SOC into
account. This surface used is the same as the surface for
the conventional FLC speed regulator described in the pre-
vious section. While the second surface, shown in Fig. 16b,
displays the modification to i∗sq_ speed that incorporates the
battery’s SOC such that the energy saving signal i∗sq_ soc is
produced instead. The surface scales the i∗sq_ speed signal into
a smoother i∗sq_ soc with less ripples at all values. A spike
in the surface serves to suppress the high i∗sq_ speed ripples
that were observed during experimentation at zero i∗sq_ speed ,
such that they do not appear in i∗sq_ soc. An i

∗
sq_ speed signal

rippling between [2, 3] A has a ripple range of 1 A, while
an i∗sq_ soc signal will ripple between [1.3, 1.8] A which
has a ripple range of 0.5 A. This means that less current
is demanded, thus more battery SOC is conserved. Fig. 17
shows a flowchart integrating the CSFLC technique with the
EV traction system. The motor speed is measured, compared

FIGURE 17. Flowchart for the proposed CSFLC BEM technique.

with the drive cycle then the motor speed error and the change
in motor speed error are sent to the ‘‘FLC Speed’’ block.
The ‘‘FLC Speed’’ block generates the i∗sq_ speed required to
regulate the motor speed. On the other hand, the battery bank
current is measured, and an estimation of the SOC is sent
to the ‘‘FLC BEM’’ block which acts as a variable gain by
scaling the i∗sq_ speed signal into the new i∗sq_ soc signal, thus
taking the battery information into account when producing
i∗sq_ soc. The i

∗
sq_ soc signal regulates the motor speed while

conserving battery energy.

C. MODEL PREDICTIVE CONTROLLER (MPC)
An MPC uses the dynamic model of the system to compute
the optimal control signal required to make the system output
achieve a reference value. The MPC contains two parameters
that need to be chosen depending on the system. The first
parameter is the prediction horizon Np and it represents the
number of output future samples the controller can predict.
Whereas, the control horizon Nc is the number of output
future samples the controller can control (Np ≥ Nc).
Consider a system with an output that does not directly

depend on the control signal at sampling instant k . The system
is represented by the discrete time state-space model in (36)
and (37).

xm(k + 1) = Amxm(k)+ Bmu(k) (36)

y(k) = Cmxm(k) (37)
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The difference between the current and previous value of
the control signal 1u, and the state variable 1xm, is defined
in (38) and (39).

1u(k) = u(k)− u(k − 1) (38)

1xm(k) = xm(k)− xm(k − 1) (39)

Combining (36) - (39) we form (40) and (41).

1xm(k + 1) = Am1xm(k)+ Bm1u(k) (40)

y(k + 1) = y(k)+ Cm1xm(k + 1)

= y(k)+ CmAm1xm(k)+ CmBm1u(k)

(41)

Equations (40) and (41) can be used to form the augmented
state-space model of the system represented by (42) and (43).

x(k + 1) = Ax(k)+ B1u(k) (42)

y(k) = Cx(k) (43)

where

x(k) =
[
1xm(k)
y(k)

]
, A =

[
Am 0Tm

CmAm 1

]
,

B =
[
Bm

CmBm

]
, C =

[
0m 1

]
.

and 0m = [0, 0, · · · 0] is used to fill up the empty spaces in
the matrices.

Using the augmented model, the plant output is predicted
over the prediction horizon Np. Given that we are currently in
sampling instant k , the general form of the new system states,
as expressed in (44), is obtained by expanding x(k+1) in the
augmented state-space model in (42) for every future sample.

x(k + 1|k) = Ax(k)+ B1u(k)
...

x(k + Np|k) = ANpx(k)+ ANp−1B1u(k)+ · · ·

+ANp−NcB1u(k + Nc − 1) (44)

Similarly, the general form, in (45), of the predicted output
y is obtained by expanding y(k) for future samples in the
augmented state-space model in (43).

y(k + 1|k) = CAx(k)+ CB1u(k)
...

y(k + Np|k) = CANpx(k)+ CANp−1B1u(k)+ · · ·

+CANp−NcB1u(k + Nc − 1) (45)

The vector1U represents the current and future change in the
control signal, with dimensionNc, and the vector Y represents
the predicted future output, with dimension Np, are defined
by (46) and (47) respectively.

1U = [1u(k) 1u(k + 1) · · ·1u(k + Nc − 1)]T (46)

Y = [y(k + 1|k) y(k + 2|k) . . . y(k + Np|k)]T (47)

Combining (44) - (47) yields (48).

Y = Fx(k)+81U (k) (48)

where

F =


CA
CA2
...

CANp


and

8 =


CB 0 · · · 0
CAB CB · · · 0
CA2B CAB · · · 0
...

...
. . .

...

CANp−1B CANp−2B · · · CANp−NcB

 .

The vector containing the reference signal of the system has
a length of Np and is defined by (49).

RTs = [1 1 · · · 1]r(k) (49)

A cost function J , is defined to reflect the control objective
and is represented by (50).

J = (Rs − Y )T Q̄(Rs − Y )+1UT R̄1U (50)

where R̄ = RNc×Nc and Q̄ = QNp×Np are the input and output
weight matrices. The weights can be modified depending on
the operation. The ratio of the input weight R to the output
weight Q, penalizes the control signal variations during the
system’s operation. Therefore in this work, the output weight
Q is set to unity, and the input weight R is manipulated during
operation. The cost function in (50) can be expanded by
substituting Y from (48) into (50). After such expansion, the
partial derivative with respect to 1U is taken and equated to
zero yielding equations (51) - (52).

∂J
∂1U

= −28T (Rs − Fx(k))+ 2(8T8+ R̄)1U (51)

∂J
∂1U

= 0→ 1U = (8T8+ R̄)−18T (Rs − Fx(k))

(52)

The first element of 1U is added to the previous con-
trol signal u(k − 1) to obtain the current control signal
u(k).

The MPC is used in the speed regulator block shown
in Fig. 1. The battery bank energy, SOC, and SOH results
were recorded and compared with the FMPC BEM tech-
nique. The proposed FMPC technique is presented in the
next section, and it performs the energy management oper-
ation with minimal degradation in the motor speed tracking
performance.
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FIGURE 18. Proposed FMPC IM drive system.

D. PROPOSED BEM TECHNIQUE 2: FUZZY MPC (FMPC)
The second BEM technique, shown in Fig. 18 in the red
box, employs an MPC which generates a reference current
i∗sq to regulate the motor speed. An FLC adjusts the input
weight of the MPC to penalize the i∗sq variations by taking
into account the battery’s dSOC/dt and d2SOC/dt2. The
battery’s dSOC/dt was evaluated by taking the difference
between the current SOC value and the previous SOC value
and the d2SOC/dt2 was evaluated by taking the difference
between the current and previous dSOC/dt . The dSOC/dt
and the d2SOC/dt2 are normalized between [0, 1]. The slip
calculation obtains the rotor flux and slip using (8) and (9)
respectively. In addition, the d-axis current i∗sd regulates the
motor flux while the q-axis current i∗sq regulates the motor
torque. Like the CSFLC technique, the FMPC BEM tech-
nique generates a reference q-axis current i∗sq with less current
fluctuations as compared to the q-axis current i∗sq generated
by the conventional MPC speed controller. The current fluc-
tuations vary depending on the value of the input weight
R. In other words, the input weight needs to be regulated
in real-time to reduce the i∗sq fluctuations. This will lead to
a lower battery current consumption, and preserve battery
energy. With regards to the two inner PI controller loops, they
regulate the motor isd and isq currents such that they are equal
to the reference i∗sd and i∗sq currents. Furthermore, the two
inner PI controllers generate the reference voltage commands
V ∗sd and V ∗sq which are converted through the dq/abc trans-
formation to V ∗a , V

∗
b , and V

∗
c reference sinusoidal voltages.

These sinusoidal voltages are used to generate PWM sig-
nals for the inverter. The surface describing the relationship
between the input weight and the battery’s dSOC/dt and
d2SOC/dt2 is shown in Fig. 19. The surface can be divided
into 3 regions, the first region occurs when the dSOC/dt is
between [0.5, 1] for all d2SOC/dt2 values and the second
region occurs when d2SOC/dt2 is between [0.5, 1] for all val-
ues of dSOC/dt . These regions indicate that there is an abrupt

FIGURE 19. Weight tuning FLC surface in the FMPC IM drive.

FIGURE 20. Flowchart for the proposed FMPC BEM technique.

increase in battery current and that the SOC is declining
rapidly which occurs due to motor acceleration. Therefore,
a limitation must be placed on i∗sq, thus a large input weight R
is produced from the controller. The third region is the input
weight transition region and it is responsible for producing
different input weights at different steady state values of the
system. The third region occurs when dSOC/dt is between
[0, 0.5] and d2SOC/dt2 is between [0, 0.5] and its objective
is to tune the input weight R for different motor speeds such
that the battery SOC consumption is minimized. The gain
GMPC is set by the user and it controls the maximum value
of the input weight R. The maximum GMPC value that made
a visible difference in i∗sq variations is 20. Therefore,GMPC is
set to 20 in this work. Fig. 20 shows a flowchart integrating
the FMPC technique with the EV traction system. The motor
speed and the drive cycle information are sent to the MPC
block. Furthermore, the battery bank current is measured and
the SOC is estimated. The first and second derivatives of the
SOC are sent to the fuzzy logic controller block which with
the gain GMPC , generates an input weight R for the MPC
block such that the battery information is taken into account
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FIGURE 21. (a) FLC speed response under the NEDC drive cycle, (b) CSFLC
speed response under the NEDC drive cycle, (c) FLC speed response under
the US06 drive cycle, (d) CSFLC speed response under the US06 drive
cycle.

when generating i∗sq. The MPC generates an i∗sq that regulates
the motor speed while preserving battery energy.

IV. EXPERIMENTAL VALIDATION OF ENERGY
MANAGEMENT TECHNIQUES ON EV TRACTION SYSTEM
A hardware implementation of the two BEM techniques
along with the conventional FLC and MPC speed regulators
is presented in this section. The motor’s speed performance,
current i∗sq and battery bank current, energy, SOC, and SOH
are recorded for both the NEDC and US06 drive cycles then
the runtime and lifetime were estimated. The experimental
results are discussed then a summary of the information is
tabulated in this section.

A. CSFLC BEM TECHNIQUE
1) SPEED REGULATION
Fig. 21 shows the speed response for the FLC and CSFLC
with the NEDC and US06 drive cycles. Figs. 21a - 21d show
that both controllers are tracking the drive cycle reference
speed as intended. Fig. 22 shows the error in speed tracking
for the FLC and CSFLC techniques. Figs. 22a - 22d show that
the speed errors converge to zero. The absolute average error
was 1.28 and 1.69 for the FLC, whereas it was 3.7 and 6.93 for
the CSFLC with the NEDC and US06 drive cycles respec-
tively. These values indicate that the CSFLC experiences a
degradation in speed tracking performance as compared to
the FLC speed regulator.

2) CURRENT CONSUMPTION
The motor’s torque regulating current command i∗sq, is dis-
played in Fig. 23. Figs. 23a and 23b show the extent of the
control effort applied by the FLC to regulate the speed of the
EV traction system during the drive cycles. While Figs. 23c
and 23d show the effect of taking the SOC into account while

FIGURE 22. (a) FLC speed error under the NEDC drive cycle, (b) CSFLC
speed error under the NEDC drive cycle, (c) FLC speed error under the
US06 drive cycle, (d) CSFLC speed error under the US06 drive cycle.

FIGURE 23. (a) FLC current i∗sq with the NEDC drive cycle, (b) FLC current
i∗sq with the US06 drive cycle, (c) CSFLC current i∗sq with the NEDC drive
cycle, (d) CSFLC current i∗sq with the US06 drive cycle.

deciding i∗sq. It is evident that the i
∗
sq variation has substantially

reduced when a second FLC is cascaded with the first FLC.
Figs. 23a and 23b clearly show that a large control effort
is exerted by the first FLC as it regulates the speed. While
Figs. 23c and 23d display a smaller control effort as it dimin-
ishes the current variation while regulating the motor speed.
To quantify this observation, the average of the absolute value
of i∗sq is taken and is denoted by i∗sq avg. For the NEDC and
US06 drive cycles respectively, the FLC had an i∗sq avg of
1.0741 A and 1.1842 A, while the i∗sq avg for the CSFLC is
1.0543 A and 1.1524 A. We can conclude that the CSFLC
BEM strategy demands less i∗sq than the conventional FLC
to regulate the motor speed. Fig. 24 shows the battery bank
current production with the NEDC and US06 drive cycles.
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FIGURE 24. (a) Li-ion battery bank current profile of FLC and CSFLC with
the NEDC drive cycle, (b) Li-ion battery bank current profile of FLC and
CSFLC with the US06 drive cycle.

FIGURE 25. (a) FLC and CSFLC battery energy consumption with the NEDC
drive cycle, (b) FLC and CSFLC battery energy consumption with the US06
drive cycle.

FIGURE 26. (a) SOC variation of the Li-ion battery bank with the NEDC
drive cycle for FLC and CSFLC, (b) SOC variation of the Li-ion battery bank
with the US06 drive cycle for FLC and CSFLC.

Figs. 24a and 24b show that the FLC consistently consumes a
higher current than the CSFLC in both drive cycles. The FLC
battery bank current ranges from [0, 1.04] A and [0, 1.14]
A, while it ranges between [0, 0.98] A and [0, 1.08] A for
CSFLC with the NEDC and US06 drive cycles respectively.
Furthermore, the average battery bank current ibat avg, occurs
at 0.3786A and 0.5939A for FLC, while it occurs at 0.3473A
and 0.5574 A for CSFLC with the NEDC and the US06 drive
cycles respectively. Thus, the proposed CSFLC consumes
an overall lower average current with both drive cycles as
compared to the conventional FLC controller controlling the
speed of EV traction system alone.

3) BATTERY BANK ENERGY, SOC, SOH, RUNTIME AND
LIFETIME MEASUREMENTS
Fig. 25 shows the energy consumed from the battery bank
by the EV traction system. The FLC consumed 50.13 Wh
and 46.03 Wh, whereas the CSFLC consumed 46.01 Wh
and 43.56 Wh yielding an improvement of 8.2% and
5.4% with the NEDC and US06 drive cycles respectively.
Figs. 26 and 27 show the trend in SOC and SOH with the
NEDC and US06 drive cycles.

FIGURE 27. (a) SOH variation of the Li-ion battery bank with the NEDC
drive cycle for FLC and CSFLC, (b) SOH variation of the Li-ion battery bank
with the US06 drive cycle for FLC and CSFLC.

The FLC shows a larger degradation than the CSFLC for
both the SOC and SOH on both drive cycles. The final value
of the SOC for the FLC is 0.9668 and 0.9694 yielding an
SOC consumption of 0.0332 and 0.0306, while the final SOC
values for the CSFLC changed to 0.9695 and 0.9712 yielding
an SOC consumption of 0.0305 and 0.0288 with the NEDC
and US06 drive cycles respectively. The CSFLC has reduced
the SOC consumption by 8.1% and 5.9% with the NEDC and
US06 drive cycles. Furthermore, the final value of the SOH
for the FLC is 0.999908 and 0.9999145 yielding an SOH
degradation of 0.000092 and 0.0000855, while the CSFLC
final SOH values were 0.99991568 and 0.99992 yielding
an SOH degradation of 0.00008432 and 0.00008 with the
NEDC and US06 drive cycles respectively. The CSFLC
reduced the SOH degradation by 8.3% and 6.4% with the
NEDC and US06 drive cycles. In addition, the FLC runtime
is 7.208 hours and 3.981 hours, while the CSFLC runtime
is 7.857 hours and 4.193 hours with the NEDC and US06
drive cycles respectively. Therefore, there was an increase
in runtime by 0.649 hours (38 minutes 56 seconds) and
0.212 hours (12 minutes 43 seconds); in other words, 9% and
5.3% improvement in overall runtime. While the lifetime
for the FLC expires after 70075.5 hours and 34952.8 hours,
whereas for the CSFLC it ends after 73992.5 hours and
37098.5 hours with the NEDC and US06 drive cycles respec-
tively. The CSFLC resulted in an increase of 3917 hours and
2145.7 hours corresponding to a 5.6% and 6.1% increase in
battery lifetime over the course of the NEDC and US06 drive
cycles respectively.

It is clear from the graphical presentation that the motor
current has many fluctuations in Fig. 23a and 23b as com-
pared to 23c and 23d. The CSFLC technique managed to
eliminate such fluctuations which led to a lower consumption
in battery current. Consequently, less battery energy was
consumed. The decrease in battery current can be noticed in
Fig. 24. In Figs. 24a and 24b, the battery current consumed
by the CSFLC was lower than the battery current consumed
by the FLC with the NEDC and US06 drive cycles. Due
to a reduction in battery current consumption, the battery
energy, SOC, and SOH consumption were also reduced as
shown in Figs. 25, 26, and 27 respectively. In Figs. 25a
and 25b, 26a and 26b, and 27a and 27b the battery energy,
SOC, and SOH degradation were lower with the CSFLC than
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TABLE 7. Summary of the experimental results for FLC and CSFLC.

FIGURE 28. (a) MPC speed response under the NEDC drive cycle,
(b) FMPC speed response under the NEDC drive cycle, (c) MPC speed
response under the US06 drive cycle, (d) FMPC speed response under the
US06 drive cycle.

with the FLC for the NEDC and US06 drive cycles respec-
tively. Overall, the CSFLC technique consumed less energy,
SOC, and SOH from the battery bank while extending its
runtime and lifetime. We conclude that the CSFLC not only
enhances the IM drive energymanagement, but also elongates
the battery life. A summary of the results is presented in
Table 7.

B. FMPC BEM TECHNIQUE
1) SPEED REGULATION
Fig. 28 shows the speed response for the MPC and FMPC
with the NEDC and US06 drive cycles. Figs. 28a - 28d show
that both controllers are regulating the speed for the NEDC
and US06 drive cycles as intended. Fig. 29 shows the speed
error for the MPC and FMPCwith the NEDC and US06 drive
cycles. Figs. 29a - 29d show that the errors converge to zero
during the system operation. The absolute average error for
the MPC is 1.17 and 1.19 while the absolute average error for
the FMPC is 3.02 and 3.13 with the NEDC and US06 drive

FIGURE 29. (a) MPC speed error under the NEDC drive cycle, (b) FMPC
speed error under the NEDC drive cycle, (c) MPC speed error under the
US06 drive cycle, (d) FMPC speed error under the US06 drive cycle.

cycles respectively. Even though the FMPC errors converge
to zero, it experiences a degradation in speed tracking per-
formance as compared to the MPC speed regulator.

2) CURRENT CONSUMPTION
The torque regulating current signal i∗sq is displayed in Fig. 30.
Figs. 30a and 30b show the extent of the control effort
imposed by the MPC to regulate the speed of the EV trac-
tion system with the NEDC and US06 drive cycles respec-
tively. Whereas, Figs. 30c and 30d show the effect of taking
dSOC/dt and d2SOC/dt2 into account when producing the
signal i∗sq during the speed tracking process with the FMPC.
The control effort applied by the FMPC is very minimal,
as compared to the MPC, as it restricts the current drawn
by the motor from the battery bank while regulating the
motor speed. The i∗sq avg applied by the MPC is 1.0683 A and
1.1616 A, while that applied by the FMPC is 1.0512 A and
1.1363 A with the NEDC and US06 drive cycles respectively.
Fig. 31 shows the input weight R produced by the FMPC
with the NEDC and US06 drive cycles. As expected, the
weights display a similar pattern to the drive cycle speed
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FIGURE 30. (a) MPC current i∗sq with the NEDC drive cycle, (b) MPC
current i∗sq with the US06 drive cycle, (c) FMPC current i∗sq with the NEDC
drive cycle, (d) FMPC current i∗sq with the US06 drive cycle.

FIGURE 31. (a) FMPC input weight with the NEDC drive cycle, (b) FMPC
input weight with the US06 drive cycle.

FIGURE 32. (a) Li-ion battery bank current profile of MPC and FMPC with
the NEDC drive cycle, (b) Li-ion battery bank current profile of MPC and
FMPC with the US06 drive cycle.

profile. When the speed increases, the dSOC/dt increases
which also increases the weight R. A larger R limits the i∗sq
variation and thus lowers the current drawn from the battery
bank. Fig. 32 shows the battery bank current over the duration
of the NEDC and US06 drive cycles. Figs. 32a and 32b show
that the MPC consistently consumes a higher current than the
FMPC with the NEDC and US06 drive cycles. Furthermore,
Fig. 32a shows that the battery current gap between the MPC
controller and FMPC widens during the extra-urban stage
[900, 1260] seconds of the drive cycle. The same effect can
be seen in figure 32b with the US06 drive cycle during the

FIGURE 33. (a) MPC and FMPC battery energy consumption with the
NEDC drive cycle, (b) MPC and FMPC battery energy consumption with
the US06 drive cycle.

highway section [300, 600] seconds. This is attributed to
the constant input weight R placed on the torque regulating
current command i∗sq during the speed regulation process. The
battery current consumed by the MPC spans from [0, 1.02] A
and [0, 1.08] A, while it spans from [0, 0.94] A and [0, 1] A
for the FMPC with the NEDC and US06 drive cycles respec-
tively. Furthermore, the mean value of the battery current
ibat avg occurs at 0.33455 A and 0.5575 A for the MPC, while
ibat avg occurs at 0.3305 A and 0.5228 A for the FMPC with
the NEDC and the US06 drive cycles respectively. In other
words, the FMPC consumes an overall lower average battery
current with both drive cycles as compared to MPC.

3) BATTERY BANK ENERGY, SOC, SOH, RUNTIME AND
LIFETIME MEASUREMENTS
Fig. 33 shows the energy consumed from the battery by the
EV traction system with the NEDC and US06 drive cycles.
The MPC consumed 45.72 Wh and 43.41 Wh, whereas
the FMPC consumed 43.72 Wh and 40.76 Wh yielding an
improvement of 4.4% and 6.1% with the NEDC and US06
drive cycles respectively. Figs. 34 and 35 show the change
in SOC and SOH over the course of the NEDC and US06
drive cycles. The MPC shows a larger degradation than the
FMPC in both SOC and SOHwith both drive cycles. The final
value of the SOC for the MPC is 0.9697 and 0.9711 yield-
ing an SOC consumption of 0.0303 and 0.0289, while the
FMPC changed the SOC value to 0.9710 and 0.973 yielding
an SOC consumption of 0.029 and 0.027 with the NEDC
and US06 drive cycles respectively. The FMPC has reduced
the SOC consumption by 4.3% and 6.6% over the dura-
tion of the NEDC and US06 drive cycles. Furthermore, the
final value of the SOH for the MPC is 0.99991624 and
0.9999202 yielding an SOH degradation of 0.00008376 and
0.0000798, while the FMPC final SOH values were
0.99991985 and 0.999925 yielding an SOH degradation of
0.00008015 and 0.000075 with the NEDC and US06 drive
cycles respectively. The FMPC has reduced the SOH degra-
dation by 4.3% and 6.0% with the NEDC and US06 drive
cycles.

The estimated runtime for the MPC was 7.907 hours
and 4.205 hours, while for the FMPC it was 8.256 hours
and 4.492 hours with the NEDC and US06 drive cycles
respectively. Therefore, there was an increase in runtime by
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TABLE 8. Summary of the experimental results for MPC and FMPC.

0.349 hours (20 minutes 56 seconds) and 0.287 hours (17
minutes 13 seconds); in other words, 4.4% and 6.8% improve-
ment in runtime. Furthermore, the estimate of the EOL for the
MPC is 74886 hours and 36921.5 hours, whereas the estimate
of the EOL for the FMPC occurs after 78045.5 hours and
39766.6 hours with the NEDC and US06 drive cycles respec-
tively. The FMPC resulted in an increase of 3159.5 hours and
2845.1 hours corresponding to a 4.2% and 7.7% increase in
battery lifetime over the course of the NEDC and US06 drive
cycles respectively.

The graphical presentation demonstrates that the high fluc-
tuations in motor current in Figs. 30a and 30b were reduced
as shown in Figs. 30c and 30d. The FMPC managed to
limit the motor current fluctuations which led to a lower
consumption in battery current. Consequently, less battery
energy was consumed. The input weight R in Fig. 31 adjusts
to changes in battery dSOC/dt . When the motor draws a high
i∗sq current, the battery bank current consumption increases
which also increases dSOC/dt . Therefore, the input weight
R increases to limit both the i∗sq variation and the current
drawn from the battery bank. Figs. 32a and 32b show that
the battery current consumed by the FMPC technique was
lower than the battery current consumed by the MPC with
the NEDC and US06 drive cycles respectively. Due to this
reduction in battery current consumption, the battery energy,
SOC, and SOH consumption were also reduced as shown
in Figs. 33, 34, and 35 respectively. Figs. 33a and 33b, 34a
and 34b,and 35a and 35b show that the FMPC reduced the
battery energy, SOC, and SOH degradation as compared
to the conventional MPC with the NEDC and US06 drive
cycles respectively. Since the FMPC technique consumes less
energy, SOC, and SOH from the battery bank, we conclude
that the FMPC BEM strategy adds energy saving capability
to IM drive and ultimately extends the battery bank runtime
and lifetime. Table 8 summarizes all the obtained results for
both the NEDC and US06 drive cycles.

C. CSFLC AND FMPC BATTERY ENERGY MANAGEMENT
TECHNIQUES
The experimental evidence proves that the application of
CSFLC and FMPC BEM techniques result in a significant

FIGURE 34. (a) SOC variation of the Li-ion battery bank with the NEDC
drive cycle for MPC and FMPC, (b) SOC variation of the Li-ion battery bank
with the US06 drive cycle for MPC and FMPC.

FIGURE 35. (a) SOH variation of the Li-ion battery bank with the NEDC
drive cycle for MPC and FMPC, (b) SOH variation of the Li-ion battery
bank with the US06 drive cycle for MPC and FMPC.

reduction in battery energy, SOC, and SOH degradation.
However, the aforementioned improvements do not come
at the same computational cost and degradation in motor
speed tracking performance. The average savings per abso-
lute average error in motor speed tracking is obtained and a
comparison is made between the CSFLC and FMPC BEM
techniques. Table 9 summarizes the absolute average errors
and the percentage savings in battery energy, SOC, and SOH
obtained from Tables 7 and 8. The percentage savings in
Table 9 are divided by the corresponding absolute average
error and the resultant percentage savings per absolute aver-
age error are displayed in Table 10.

Table 10 shows that with the NEDC drive cycle, the
CSFLC (abbreviated α) results in higher percentage sav-
ings per absolute average error as compared to the FMPC
(abbreviated µ). On the other hand, with the US06 drive
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TABLE 9. Summary of the absolute average errors and percentage savings in drive cycle energy, SOC, and SOH for the CSFLC and the FMPC with the NEDC
and US06 drive cycles.

TABLE 10. Percentage savings in drive cycle energy, SOC, and SOH per absolute average error for the CSFLC and the FMPC with the NEDC and US06 drive
cycles.

cycle, the CSFLC (abbreviated β) performance deteriorates
significantly as compared to the FMPC (abbreviated �).
The last two columns display an average of the CSFLC

percentage savings per absolute average error (
α + β

2
) with

the NEDC and US06 drive cycles and the FMPC (
µ+�

2
)

with the NEDC and US06 drive cycles. On average, the
FMPC provides a higher average savings per absolute aver-
age error in battery energy consumption, SOC reduction, and
SOH degradation as compared to the CSFLC. Furthermore,
the controllers were compared based on their computational
effort. The system was operated on a double timer scheme as
described by the procedure in [38]. A sampling time of 100µs
was set for the IM drive system operation and a larger sam-
pling time was set for the proposed controllers. The reason
why a double timer scheme was adopted instead of a single
timer scheme is that the performance of the IM drive system
degrades when the sampling time increases [38]. Therefore,
the computationally intensive part of the system is separately
run with a larger sampling time, while the rest of the system
is run with a smaller sampling time. That aside, the proposed
strategies with a large computational time can be executed
with a shorter sampling time if they had been implemented
with a processor that has larger processing capabilities than
dSPACE 1103. However, this will increase the cost of the IM
drive hardware setup. The execution and sampling times are
presented in Table 11. The MPC and FLC speed regulator
without any energymanagement have smaller execution time.
The proposed FMPC technique has a slightly larger execution

TABLE 11. Comparison between the sampling and execution times for
the controllers.

time than the FLC. Finally, the CSFLC displayed the largest
execution time. The sampling times are selected such that
they are slightly higher than the execution time. To sum up,
the FMPC BEM technique is superior to the CSFLC BEM
technique due to its lower computational cost and higher
average savings per absolute average speed error.

V. CONCLUSION
This work designed and demonstrated the effectiveness of
the proposed CSFLC and FMPC battery energy management
techniques on an EV traction system. The objectives of bat-
tery bank SOC conservation, and lesser SOH degradation
while estimating battery runtime and lifetime with the NEDC
and US06 drive cycles are achieved. The experimental results
showed that for the NEDC drive cycle, the CSFLC savings
in energy, SOC, and SOH are 8.2%, 8.1% and 8.3% which
extends the battery bank runtime and lifetime by 0.649 and
3917 hours respectively. The CSFLC BEM technique has
a slight compromise on the motor speed error, the average
speed error with the proposed BEM technique is 3.70 RPM
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while using FLC without any BEM technique it is 1.28 RPM.
Similarly, the FMPC savings for NEDC drive cycle are 4.4%,
4.3% and 4.3%with a battery runtime and lifetime elongation
of 0.349 and 3159.5 hours respectively, and an average speed
error of 3.02 RPM as compared to 1.17 RPM when MPC is
employed without any BEM technique. Regarding the US06
drive cycle, the CSFLC savings are 5.4%, 5.9% and 6.4%
with the battery bank runtime and lifetime elongation of
0.212 and 2145 hours for an average speed error of 6.93 RPM,
as compared to 1.69 RPM for the FLC without employing the
BEM technique. Likewise, the FMPC savings are 6.1%, 6.6%
and 6.0% with a runtime and lifetime elongation of 0.287 and
2845 hours, and an average speed error of 3.13 RPM, as com-
pared to 1.19 RPM for the MPC without using the proposed
energy management technique. These improvements for the
two drive cycles validated the effectiveness of CSFLC and
FMPC in reducing the battery energy consumption, SOC, and
SOH degradation, thus extending the battery bank runtime
and lifetime with a minor loss in the speed tracking perfor-
mance. Furthermore, the FMPC technique is superior to the
CSFLC technique due to its higher average energy saving and
lower computational effort. We conclude that the proposed
CSFLC and FMPC battery energy management techniques
not only increase the electric vehicle driving range, but also
enhances the battery bank life with a minor compromise in
the speed tracking performance.

Outlook and challenges:

1) The MPC can be updated to optimize the flux control
by adjusting the i∗sd for IM drive power efficiency.
In addition, field weakening can be the topic of future
work.

2) The CSFLC can have several other inputs influenc-
ing the scaling process. The SOH, increase in battery
temperature and peak battery power can take part in
the CSFLC decision making when scaling the motor
current.

The following are the work limitations:

1) The MPC/FMPC performance is dependent upon the
accuracy of the IM drivemodel. Therefore, the IM drive
model must be updated online to achieve the best speed
performance.

2) The CSFLC BEM technique is computationally
intensive and very tedious to tune. Furthermore,
it requires repetitive iterations to improve its perfor-
mance. In future work, it is recommended to use a
processor with higher capabilities than dSPACE 1103.

3) The BEM techniques in this paper can be incorporated
in an actual EV which will help in battery energy
conservation and extend the EV driving range. This is
an open problem for today’s EVs.

DISCLAIMER
This paper represents the opinions of the author(s) and does
not mean to represent the position or opinions of the Ameri-
can University of Sharjah.
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