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Abstract 

 

The Fourth Industrial Revolution (Industry 4.0) intends to help different industries 

monitor, control, and run their production systems efficiently. Most of the currently 

available Industry 4.0 implementation frameworks focus on providing users with an 

implementation plan that do not include information regarding technology selection or 

readiness assessment. In this work, a comprehensive Industry 4.0 implementation 

framework is developed to help manufacturing firms improve their current state of 

production. The framework developed consists of five main stages. These stages are 

gap analysis, Industry 4.0 technology selection, Industry 4.0 readiness assessment, 

Industry 4.0 reference architecture selection, and pilot project assessment. An Industry 

4.0 technology selection model is developed that uses Fuzzy Analytical Hierarchy 

Process (FAHP) to assign weights to the production, social, economic, and 

environmental indicators. Fuzzy Technique for Order of Preference by Similarity to 

Ideal Solution (FTOPSIS) is used to aggregate the results and rank the technology 

alternatives based on their scores. Furthermore, a novel Industry 4.0 readiness tool is 

developed to assess how capable the facility is to implement Industry 4.0 technologies. 

A case study was carried out by applying the developed Industry 4.0 technology 

selection and readiness assessment procedures on an aluminium extrusion factory. 

Cyber-Physical Systems, Big Data Analytics, and Autonomous/Industrial Robots were 

the top three ranked technologies to be implemented having closeness coefficient scores 

of 0.964, 0.928, and 0.601, respectively. The firm obtained a readiness score of 45.8% 

based on the developed readiness assessment model revealing that the firm is at an 

intermediate readiness level. 

Keywords: Industry 4.0; Multi Criteria Decision Making; Sustainable 

Manufacturing; Fuzzy Logic; Technology Selection. 

  



7 

 

Table of Contents 

Abstract 6 

List of Figures 9 

List of Tables 10 

List of Abbreviations 11 

Chapter 1. Introduction 13 

1.1. Introduction 13 

1.2. Overview 13 

1.3. Thesis Objectives 14 

1.4. Research Contribution 14 

1.5. Thesis Organization 15 

Chapter 2. Background and Literature Review 16 

2.1. Industry 4.0 Technologies 16 

2.1.1. Big data analytics 16 

2.1.2. Cloud computing 17 

2.1.3. Cyber physical systems 17 

2.1.4. Internet of things 17 

2.1.5. Computer simulations 18 

2.1.6. Blockchain 18 

2.1.7. Autonomous and industrial robots 19 

2.1.8. Additive manufacturing 19 

2.2. Application of Industry 4.0 Technologies in Overcoming Pandemic 

Challenges on Manufacturing Sector 21 

2.3. Industry 4.0 Technology Selection Frameworks 23 

2.4. Industry 4.0 Readiness and Maturity Models 24 

2.5. Industry 4.0 Reference Architectures 27 

2.6. Industry 4.0 Roadmaps/Frameworks 28 

Chapter 3. Methodology and Framework Development 31 

3.1. Fully Developed Framework 31 

3.2. Gap Analysis 32 



8 

 

3.3. Industry 4.0 Technology Selection Section 33 

3.4. Industry 4.0 Readiness Assessment Section 34 

3.5. Industry 4.0 Reference Architecture Selection Section 35 

3.6. Pilot Project Assessment 35 

3.6.1. KPIs selection 36 

3.6.2. Materiality matrix creation 36 

3.6.3. KPIs weight assignment 37 

3.6.3.1. Analytical hierarchical process 37 

3.6.3.2. Entropy weight method 39 

3.6.4. Data aggregation and alternatives ranking using MCDM analysis 40 

3.6.4.1. SAW method 40 

3.6.4.2. TOPSIS method 41 

3.6.4.3. COPRAS method 42 

3.6.5. Sensitivity analysis 43 

3.6.5.1. Linear regression analysis 43 

3.6.5.2. Differential sensitivity analysis 44 

3.6.5.3. Sensitivity index 44 

3.7. Final Decision and Industry 4.0 Technologies Implementation 45 

Chapter 4. Case Study Implementation 46 

4.1. Industry 4.0 Technology Selection Methodology and Implementation 46 

4.1.1. KPI selection for criteria and sub-criteria assignment 48 

4.1.2. Fuzzy AHP for criteria/sub-criteria weight assignment 48 

4.1.3. Fuzzy TOPSIS for aggregating results and ranking technologies 52 

4.1.4. Sensitivity analysis 56 

4.2. Industry 4.0 Readiness Assessment Methodology and Implementation 57 

4.2.1. Developed questions for the Industry 4.0 readiness assessment 58 

4.2.2. Analysis and results obtained 61 

Chapter 5. Conclusion and Future Work 64 

References 65 

Vita 74 

 



9 

 

List of Figures 
 

Figure 1-1: Different Industrial Revolutions. 13 

Figure 1-2: Industry 4.0 Technologies. 14 

Figure 2-1: Additive Manufacturing Roadmap. 19 

Figure 2-2: Challenges Brought by Pandemic on Manufacturing Sector [46]. 21 

Figure 2-3: Predictive Algorithm Creation Schematics [46]. 23 

Figure 2-4: Industry 4.0 Maturity Model Developed in [61] Schematic. 26 

Figure 2-5: Sample Radar Chart after Industry 4.0 Maturity Assessment [61]. 26 

Figure 2-6: RAMI 4.0 Reference Architecture [38]. 27 

Figure 2-7: Industry 4.0 Roadmap Developed in [66]. 29 

Figure 2-8: Categorical Framework for Industry 4.0 Developed in [68]. 29 

Figure 2-9: Industry 4.0 Roadmap for SMEs Proposed in [69]. 30 

Figure 3-1: Developed Framework for the Industry 4.0 Implementations. 32 

Figure 3-2: Sample Materiality Matrix. 37 

Figure 4-1: Developed Model for the Industry 4.0 Technology Selection. 47 

Figure 4-2: Considered Criteria and Technologies for Technology Selection Model. 48 

Figure 4-3: Sub-Criteria Global Weights Bar Chart. 51 

Figure 4-4: Normalized Local Weights Obtained for (a) Production (b) Environmental 

(c) Social and (d) Economic Dimensions. 52 

Figure 4-5: Industry 4.0 Technologies Rankings. 56 

Figure 4-6: Sensitivity Results for (a) Experiment 1 and (b) Experiment 2. 57 

Figure 4-7: CPS Technology Readiness Questions. 58 

Figure 4-8: Additive Manufacturing Technology Readiness Questions. 59 

Figure 4-9: IoT Technology Readiness Questions. 60 

Figure 4-10: Industrial/Autonomous Robots Technology Readiness Questions. 61 

Figure 4-11: Calculated Readiness Scores for each Technology. 62 

Figure 4-12: Schematic Representation of Readiness Level Index. 63 

 

  



10 

 

List of Tables 
 

Table 2-1: Industry 4.0 Technologies Possible Impact on Manufacturing Firms. 20 

Table 2-2: Examples of COVID-19 Pandemic Challenges on Different Sectors. 22 

Table 3-1: Examples of TBL KPIs [70]. 36 

Table 3-2: Fundamental Scale for AHP Method Proposed by Saaty [72]. 38 

Table 3-3: AHP Method R Coefficient Values [73]. 39 

Table 4-1: Membership Functions Defined for Fuzzy AHP Method [88]. 48 

Table 4-2: Decision Matrix Created for Criteria. 49 

Table 4-3: Calculated Geometric Mean Values. 49 

Table 4-4: Calculated Fuzzy and Crisp Weight Values for Criteria. 50 

Table 4-5: Production Criteria Decision Matrix. 50 

Table 4-6: Environmental Criteria Decision Matrix. 50 

Table 4-7: Social Criteria Decision Matrix. 50 

Table 4-8: Economic Criteria Decision Matrix. 50 

Table 4-9: Finalized Calculated Local and Global Weights. 51 

Table 4-10: Membership Functions Defined for Fuzzy TOPSIS Method [91]. 52 

Table 4-11: Fuzzy TOPSIS Decision Matrix (Linguistic Values). 53 

Table 4-12: Fuzzy TOPSIS Decision Matrix (Fuzzy Numerical Values). 53 

Table 4-13: Normalized Fuzzy Decision Matrix. 54 

Table 4-14: Weighted Normalized Fuzzy Decision Matrix. 54 

Table 4-15: Calculated FPIS and FNIS Values. 55 

Table 4-16: Obtained Rankings for the Technologies. 55 

Table 4-17: Experiment 1 Sensitivity Analysis Results. 56 

Table 4-18: Experiment 2 Sensitivity Analysis Results. 57 

Table 4-19: Readiness Assessment Results Obtained [46]. 62 

Table 4-20: Readiness Level Index [46]. 63 

 

  



11 

 

List of Abbreviations 
 

AHP  Analytical Hierarchy Process 

AM  Additive Manufacturing 

ANP  Analytical Network Process 

B2B  Business-to-Business 

CM  Cloud Manufacturing 

COPRAS Complex Proportional Assessment 

CPS  Cyber Physical Systems 

DoE  Design of Experiment 

FAHP  Fuzzy Analytical Hierarchy Process 

FDT  Fuzzy Decision Tree 

FNIS  Fuzzy Negative Ideal Solution 

FPIS  Fuzzy Positive Ideal Solution 

FTOPSIS Fuzzy Technique for Order of Preference by Similarity to Ideal Solution 

GP  Goal Programming 

GRI  Global Report Initiative 

IIRA  Industrial Internet Reference Architecture 

IoT  Internet of Things 

ISO  International Organization for Standardization 

IVRA  Industrial Value Chain Reference Architecture 

KPI  Key Performance Indicator 

LASFA LAsim Smart FActory 

MCDM Multi-Criteria-Decision-Making 



12 

 

OAT  One-Factor-At-a-Time 

PPE  Personal and Protective Equipment 

RAMI 4.0 Reference Architectural Model Industrie 4.0 

RFID  Radio Frequency Identification 

SAW  Simple Additive Weighting 

SITAM Stuttgart IT-Architecture for Manufacturing 

SME  Small and Medium Sized Enterprise 

TBL  Triple Bottom Line 

TOPSIS Technique for Order of Preference by Similarity to Ideal Solution 

WSN  Wireless Sensor Network 

  



13 

 

Chapter 1. Introduction 

1.1. Introduction 

In this chapter, an overview on the topic of Industry 4.0 is provided in which different 

Industry 4.0 technologies are introduced. Next, the specific objectives and the main 

contributions of this thesis to the literature are presented. Lastly, the organization of 

this thesis is laid out. 

1.2. Overview 

The world has gone through three different phases of industrialization. Started by the 

mid-eighteenth century in Great Britain, the first industrial revolution took place by the 

introduction of steam engines into different industries which led to the emergence of 

different industries across Europe [1]. The second industrial revolution started around 

1870 and lasted for a century. Introduction of electricity and mass production were the 

two most important features of this revolution. The third industrial revolution also 

known as the “Digital” revolution occurred in the late 1960s, in which computers 

played a significant role in the automation of different industries [2]. Figure 1-1 

illustrates different industrial revolutions throughout history. 

 

Figure 1-1: Different Industrial Revolutions. 

The core of Industry 4.0 is its contributing technologies. Internet of Things (IoT), Cyber 

Physical Systems (CPS), and Additive Manufacturing (AM) are few examples of such 

technologies. The benefits of implementing such technologies into different types of 

firms is optimizing different dimensions involved in the production. For example, 

research done by Nara et al. on Brazil’s plastic industry showed the positive influence 

of Industry 4.0 technologies implementation mostly on economic dimension followed 

by the environmental and social dimensions [3]. Increase in customer satisfaction by 
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having a better response to their needs is an indicator of social dimension. Decreased 

solid waste, reduced greenhouse gas emissions, and more sustainable energy 

management are considered as indicators for environmental dimension [4]. Figure 1-2 

shows the main Industry 4.0 technologies. 

 

Figure 1-2: Industry 4.0 Technologies. 

1.3. Thesis Objectives 

Implementation of Industry 4.0 on manufacturing firms will positively affect 

environmental, social, and economic dimensions of sustainability. Currently, there is a 

research gap existing in literature on a comprehensive framework or roadmap for 

Industry 4.0 implementation/transformation. Most roadmaps developed are either 

theoretical without quantitative analysis or are too complex, which disables Small and 

Medium Sized Enterprises (SMEs) from following along and successfully upgrading to 

Industry 4.0. Hence, the main aim of this thesis is to develop an Industry 4.0 

implementation framework that covers different aspects related to Industry 4.0 such as 

technology selection, readiness assessment, and reference architecture selection. 

1.4. Research Contribution 

The main contributions of this thesis work are summarized as below: 

• Create an Industry 4.0 implementation framework that covers different aspects 

of Industry 4.0 such as technology selection, readiness assessment, and 

reference architecture selection. 
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• Discuss possible solutions that Industry 4.0 technologies provide to tackle 

challenges brought by pandemic on manufacturing sector. 

• Develop a novel Industry 4.0 technology selection model and implement it on a 

case study. 

• Build a novel Industry 4.0 readiness assessment model and implement it on a 

case study. 

1.5. Thesis Organization 

The rest of the thesis is organized as follows: Chapter 2 of the thesis includes a literature 

review on different Industry 4.0 technologies and different components/procedures 

associated with Industry 4.0. Chapter 3 presents the developed framework and the 

methodology behind it. Chapter 4 showcases the results obtained from the case study 

implementation. Lastly, chapter 5 concludes the thesis and talks about the work to be 

carried out in future. 
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Chapter 2. Background and Literature Review 

A detailed literature review is required to understand the characteristics of Industry 4.0 

and its technologies functionalities. In this chapter, important Industry 4.0 technologies 

characteristics, and their contributions in solving pandemic challenges have been 

discussed. Further, a literature review on different Industry 4.0 attributes such as 

readiness/maturity models, reference architectures, and technology selection 

frameworks have been conducted. Lastly, some of the currently available Industry 4.0 

roadmaps have been shown and discussed in this chapter. 

2.1. Industry 4.0 Technologies 

In this section, a brief description of each Industry 4.0 technology is provided. These 

technologies include Big Data Analytics, Cloud Computing, Cyber Physical Systems, 

Internet of Things, Computer Simulations, Blockchain, Autonomous/Industrial Robots, 

and Additive Manufacturing. Industry 4.0 technologies can play a positive role in the 

transition to sustainable manufacturing. The reduction of the environmental impact of 

a product by light weighting, use of clean energy resources, waste elimination, 

recycling, and embracing Industry 4.0 technologies and circular economy principles is 

becoming a high priority for manufacturing companies [5-34]. 

2.1.1. Big data analytics 

It is known that this technology helps in speeding up different processes while making 

sure of reducing production complexity [35]. Another main advantage of Big Data 

Analytics is corelating data in order to determine the influence of certain variables in 

the production structure [36]. Big Data Analytics technology also play an important 

role in manufacturing and production sectors of supply chain. Real-time data 

monitoring and analysis is one of the most crucial aspects of Industry 4.0. Real-time 

data acquisition from manufacturing sector can reduce the costs of faulty production 

unit and can prevent mistakes in production that are happening continuously. In order 

to analyse and sort real-time data acquired from different machines and services within 

the industry, a powerful tool is needed to handle such huge amount of data poured at 

once. Hence, Big Data Analytics technology can be implemented into the industry to 

handle and analyse data successfully. From such analysis, feedbacks can be created and 

sent to the production line to make necessary changes. 
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2.1.2. Cloud computing 

The adoption of this CPS technology into manufacturing sector is by two means of 

either direct adaptation of the Cloud Computing technology or adaptation in form of 

Cloud Manufacturing (CM). Cloud Computing technology can provide flexible 

commerce transactions alongside the ease of scaling up/down the production per 

demand. Moreover, Cloud Computing facilitates in creating more transparent 

communication in the organization [37]. One challenge to industries is huge amount of 

data that is obtained and needed to be stored. Storing data in traditional ways require 

considerable amount of storing devices and physical space. Hence, Cloud Computing 

technology is integrated into different factories to accommodate for above mentioned 

issues. Another crucial role of Cloud Computing in industries is its ability to collect and 

process data which eases the data transfer among industries [36]. Therefore, Cloud 

Computing can enable industries to communicate with one another. Making 

communications possible among industries helps in determining shortcomings in 

production of certain products which might affect another industry’s production. Most 

of industry 4.0 technologies like IoT, Additive Manufacturing, Autonomous Robots are 

based on real-time data acquisition and collection. Thus, Cloud Computing is used as 

the main database to increase the speed of data transfer among different sectors within 

one industry. 

2.1.3. Cyber physical systems 

Cyber Physical Systems or CPS often refer to a group of embedded systems, controllers, 

sensors, and connection networks which enable the connection between physical and 

digital world [38]. CPS acts as a core of Industry 4.0 technologies due to dependability 

of other technologies to it. 

2.1.4. Internet of things 

Initially, Internet of Things (IoT) was known for the technology which can help in 

tracking different products (objects) within different manufacturing stages. By time, the 

idea of IoT has enhanced and described as a tool or technology which connect physical 

with digital world. This linking between two different worlds become possible by use 

of transducers and sensors. The role of sensors is to obtain information from physical 

world whereas actuators are responsible to act upon given instructions. As mentioned 

earlier, IoT is known as technology for tracking objects. These objects are characterized 
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into four main groups of Trackable Objects, Data Objects, Interactive Objects, and 

Smart Objects [39]. Trackable Objects were things which would have contain simple 

RFID chips in order to provide information about the location of the product. Data 

Objects refers to things which can produce data using sensors and provide information 

to user on the current state of the product. With more developments in technology, 

Interactive Objects have been created which are able to collect information using 

sensors and react to the situation using actuators. Finally, Smart Objects are identified 

as things which are able to process data obtained from sensors and take action upon the 

condition with help of transducers [39]. 

2.1.5. Computer simulations 

Computer Simulation is a technology that uses algorithms to give predictions about 

possible outcomes regarding different case scenarios [40]. Nowadays, simulations have 

transformed from static to dynamic environment with rise of real time data collection 

and cloud technologies. Different scenarios can be programmed in order to be simulated 

based on different variables. These variables can differ from machine’s conditions to 

labour issues and resources limitations [36]. Simulating different scenarios can help 

industries to have improved control over their resources. Computer generated models 

of new products can be simulated before the product is first manufactured. Hence, 

implementing Computer Simulation technology into industries can possibly reduce raw 

material usage and faulty production costs while increasing the overall quality of the 

product manufactured. 

2.1.6. Blockchain 

Development of technology and immerse use of different technologies within industries 

has itself brought new challenges to industries. One such challenge for firms is 

protecting digital data within the industry from possible cyber-attacks. Blockchain is 

an Industry 4.0 technology which is mainly responsible for facilitating data security 

within the industry of interest. It is known that Blockchain can affect industries in other 

different aspects rather than data security. One such aspect is at enterprise level which 

Blockchain technology can make a trusted network for the industry to have connection 

with different manufacturers [41]. Transparency in data transaction, decentralization of 

an industry, and process automation are other different features associated with 

Blockchain technology. Transparency feature leads to having a more agile industry 
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which all sectors are enabled to access real-time data. With help of Blockchain, data is 

transferred directly from peer-to-peer leading to a decentralized industry in which 

different sectors are less dependent on one another [42]. 

2.1.7. Autonomous and industrial robots 

Industrial Robots are becoming more integrated into different industries due to the 

advantages that they can provide. As an example, robots are used in hazardous 

production environment which due to safety reasons, humans are not permitted to enter. 

Robots used in such applications have ability to collaborate with humans remotely [43]. 

2.1.8. Additive manufacturing 

Additive Manufacturing is one of the emerging technologies in Industry 4.0. With help 

of this technology, computer-made 3D models can be produced through placing 

consecutive layers of material. Previously, Additive Manufacturing was mainly used 

for creating fast and less expensive prototypes for testing purposes. These prototypes 

were used in different industries to reduce material waste and costs [36]. To make a 

workpiece using Additive Manufacturing technology, the model should be 3D 

designed, printed, and post processed if required. The post processing step involves 

different manufacturing processes such as machining, heat-treatment, polishing, and 

painting [44,45]. Figure 2-1 illustrates steps required for having a successful 

implementation of Additive Manufacturing into a firm. Table 2-1 summarizes the 

positive impacts of Industry 4.0 technologies on manufacturing firms. 

 

Figure 2-1: Additive Manufacturing Roadmap. 
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Table 2-1: Industry 4.0 Technologies Possible Impact on Manufacturing Firms. 

Index Name Description 

T1 Big Data Analytics Being able to handle and analyze raw data is becoming 

important for different industries. The Big Data 

Analytics technology can help to evaluate and 

examine the obtained data form production floor in 

order to assist decision makers. 

 

T2 Cloud Computing Data storage is becoming a new concern for many 

industries with rapid advancements in the technology. 

Hence, Cloud Computing can be used to provide an 

additional storage space for industries to store 

important data. 

 

T3 Cyber Physical Systems Group of technologies which enable the connection 

between digital and physical components within one 

manufacturing firm allowing the digitalization of the 

production line. 

 

T4 Internet of Things Internet of Things (IoT) is one of the crucial 

technologies in Industry 4.0 that can act as a bridge 

between different components among the industry. 

IoT usually involves Wireless Sensor Networks 

(WSN) and RFID chip technology to make the 

connection possible.  

 

T5 Computer Simulations Use of computer simulations can save industries time 

and money. Prior to producing a unit, simulations can 

be performed to obtain results which are highly similar 

to the actual results. With that, industries can visualize 

the defects and problems before starting the actual 

production which leads in saving time and funds. 

Computer simulations can also appear in terms of 

digital twin which also enable other beneficial features 

for the firms. 

 

T6 Blockchain One of the main abilities of Blockchain technology is 

enabling secure B2B transactions among different 

industries by eliminating the intermediaries in 

between through the digital distributed ledgers.  

 

T7 Autonomous and Industrial 

Robots 

Industrial and Autonomous Robots are becoming an 

integral element in different industries. Being able to 

perform tasks remotely and autonomously without 

human contribution can increase the agility of the 

production within the firm. 

 

T8 Additive Manufacturing Additive Manufacturing is a rapidly growing 

technology used in Industry 4.0 since it can benefit 

different firms in sustainability and economic 

dimensions. Improvement in product life cycle is 

another important contribution of Additive 

Manufacturing technology. 
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2.2. Application of Industry 4.0 Technologies in Overcoming Pandemic Challenges 

on Manufacturing Sector 

Industry 4.0 gained more popularity at time of the COVID-19 pandemic. Many 

researchers shifted their focus on how Industry 4.0 technologies can assist in 

overcoming some of the challenges brought by pandemic to the manufacturing sector 

in specific. Figure 2-2 illustrates some of the challenges brought by pandemic on 

manufacturing firms. 

 

Figure 2-2: Challenges Brought by Pandemic on Manufacturing Sector [46]. 

Most of the countries implemented air travel ban which affected the shipping of 

materials and goods worldwide. According to UNICEF [47], different airlines tried to 

interchange the cargo flights with passenger flights to compensate for losses occurred 

during peak of pandemic period [47]. Due to virus outbreak, demand for certain 

products have been increased which brought operational challenges to many 

manufacturing firms. Another important challenge of the pandemic on manufacturing 

firms was the shortage of raw material which consequently led to a decrease in 

production units. China is considered as Tier 1 and Tier 2 supplier for many 

manufacturing firms worldwide. Hence, factories closure in China can have a domino 

effect on other manufacturing firms specially in industries such as bioengineering and 

opto-electronics [48]. Table 2-2 summarizes some examples of challenges that have 
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been brought by COVID-19 on different industries. Disruption in supply chain and 

shortage of manpower were among the top two most common challenges faced by 

industries. 

Table 2-2: Examples of COVID-19 Pandemic Challenges on Different Sectors. 

Studied Sector Contribution 

Agricultural sector The paper talked about challenges brought by COVID-19 on agriculture 

sector in China. Shortage of manpower, disruption in sales, and reductions 

in harvest are considered as main causing factors to such problem [49]. 

 

Textile industries The study discussed the impact of COVID-19 on textile and clothing 

industries. The paper talked about the importance of China and its domino 

effect on clothing manufacturers all around the world since China is 

considered as the main supplier for different clothing materials such as: 

synthetic fibers, polyurethane tapes, dyes, etc. [50]. 

 

Medium-sized 

enterprises 

The paper discussed the impact of COVID-19 on Pakistan’s Medium Sized 

Enterprises and economy. Reports have shown that Pakistan’s exports have 

been decreased by 50% due to COVID-19 which also led to a decrease in 

the total revenue of the country by one third. Factories closure due to 

lockdown restrictions in Pakistan had also an impact on Pakistan’s economy 

in which only 50 out of 2700 factories remained functioning during 

lockdown in Karachi [51]. 

 

Personal and 

Protective Equipment 

manufacturing firms 

The study evaluated the impact of COVID-19 on supply chain of Personal 

and Protective Equipment (PPE) around the world and Republic of Ireland 

in more details. In order to fight the shortage of PPE, the study found that 

implication of technology can possibly increase the production 

sustainability in a way that meets the increased demands of PPEs at times 

of pandemics [52]. 

 

 

Implementation of different Industry 4.0 technologies on manufacturing sector can 

provide a possible solution to different challenges mentioned earlier. As an example, 

many manufacturers have used Additive Manufacturing technology to make PPEs such 

as face shields, faces masks, and nasopharyngeal swabs in order to successfully address 

the increased demand [53]. Computer simulations can simulate scenarios that might 

occur at times of pandemics which in return helps decision makers better prepare for 

the unforeseen crisis. Big Data Analytics can be used in different ways to assist in 

tackling pandemic challenges. One such ways is usage of machine learning and neural 

networks for predicting consumer behavior at times of pandemics. Blockchain 

technology can be utilized to track products and Cloud Computing can be used to 

facilitate collaboration between different firms at times pandemics. Different Industry 

4.0 technologies can also work simultaneously in order to overcome pandemic 
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challenges. As an example, Big Data Analytics can be used to study consumer behavior 

at times of pandemics. This knowledge helps in creating a predictive algorithm. 

Predictive analytics is a known phenomenon in literature which refers to an analytics 

that provides a foresight about the future based on current available data [54]. This 

predictive algorithm can be expanded using Cloud Computing and preserved using 

Blockchain. Figure 2-3 represents the schematics of how Industry 4.0 technologies can 

work alongside one another in order to solve a pandemic challenge. 

 

Figure 2-3: Predictive Algorithm Creation Schematics [46]. 

2.3. Industry 4.0 Technology Selection Frameworks 

One of the important aspects in Industry 4.0 implementation is the technologies 

selection. Often, there is a challenge associated with deciding on which technologies to 

choose from by manufacturing firms. Hence, the demand for having an approach on 

how to select the technologies have been increased. Currently, there are quite a few 

frameworks available in literature for advanced manufacturing/Industry 4.0 

technologies selection. As an example, Hamzeh et al. [55], have proposed a technology 

selection framework for the manufacturing firms which is uniquely designed for 

Industry 4.0 technologies. In this framework, the manufacturing owners will first 

evaluate the current situation of the production floor which is then followed by 

identifying the critical factors (strengths and weaknesses) of the firm. Next, a time range 

on fixing the weaknesses is defined based on firm’s business strategies and goals. Then, 

the technologies are selected and evaluated thoroughly in different aspects. These 
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aspects include social, financial, and environmental dimensions. Lastly, the risks 

involved with implementing such technologies on production floor are assessed by 

means of a risk assessment method which includes two main factors of manufacturing 

operational risks and information security [55]. 

Another example of frameworks available on literature is the framework developed by 

Evans, Lohse, and Summers [56], which uses Fuzzy Decision Tree (FDT) analysis for 

selecting the manufacturing technologies instead of traditional Multi-Criteria-Decision-

Making (MCDM) analysis. The authors argued that using this method will lead to less 

dependency on experts’ intuitive feelings (subjective perspectives) involved while 

making a decision [56]. In more details, this method uses historic technology decision 

data that is available to the industry to form the FDT. The outcome of the FDT will be 

the technologies ranked based on their attained score. The main disadvantage of this 

approach is that the historical decision-making data is mostly and only available for 

large manufacturing firms that allocate great funds toward implementations of 

technologies whereas in case of SMEs these data are too costly to be obtained and 

analysed. 

MCDM analysis are widely used in developing a technology selection framework for 

manufacturing firms. One example is the framework developed by Yurdakul [57] which 

uses Analytical Hierarchy Process (AHP) and Goal Programming (GP) methods to 

select between the computer-integrated manufacturing technology alternatives [57]. 

Tansel Ic has also developed a framework for computer-integrated manufacturing 

technologies selection which uses TOPSIS and Design of Experiment (DoE) methods 

to rank between different technologies under study [58]. 

2.4. Industry 4.0 Readiness and Maturity Models 

Often, there is a common ground between “Readiness” and “Maturity” models but still 

some differences exist to make a differentiation between two models. Maturity models 

capture and measure the company’s maturity on a specific target, whereas readiness 

models are mostly used as the start point of a development project [59]. An example of 

Industry 4.0 readiness model is the model created by Pacchini et al. [60]. In their model, 

for each statement (question), there are four possible answers that can be selected by 

the firm’s decision makers. Each enabling technology has its own sets of questions and 

prescribed possible answers to select from. Finally, based on the answers which are 
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eventually the maturity levels, the total degree of readiness can be calculated as below 

[60]: 

 𝑔𝑛 =
∑𝑃𝑜𝑖𝑛𝑡𝑠 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 (𝑒)

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑜𝑖𝑛𝑡𝑠 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒
 (1) 

 𝐷𝑅 =
𝑔1+𝑔2+𝑔3+.....+𝑔𝑛

𝑛
=

∑ 𝑔𝑛
𝑛
1

𝑛
 (2) 

where gn is the adoption degree of technology (n) and DR is the readiness degree of the 

company. 

In order to account for importance of the dimension under study to the specific industry, 

some maturity models available in literature also account for the weight of the 

dimension. As an example, Rafael et al. have proposed an Industry 4.0 maturity model 

that can be used for machine tool industries. In their framework, they have included six 

main dimensions (Employees, Smart Operations, Data Driven, Smart Factory, Strategy, 

and Optimization) that capture the essence of every manufacturing industry. For each 

dimension, there are multiple sub-dimensions defined. Each sub-dimension includes an 

assessment question which have to be answered by industry’s decision maker. Figure 

2-4 shows the Industry 4.0 maturity model developed by Rafael et al. [61]. The answer 

should be in term of maturity level where level 0 corresponds to no implementation and 

level 5 is the highest score which showcases that the industry is already fully developed 

in the sub-dimension of interest under Industry 4.0 constraints. Finally, the results of 

different dimensions are aggregated and final score as format of maturity level of 

industry is determined. Moreover, a radar chart which is shown in Figure 2-5 is also 

created based on maturity level obtained for each dimension to further showcase the 

degree of maturity of the industry on a specific defined dimension [61]. As an example, 

in the case study performed by Rafael et al., the firm under study achieved the highest 

level of maturity in the employees dimension by reaching to the target according to the 

radar chart shown in Figure 2-5. On the other hand, there is a huge gap existing between 

the target and maturity level obtained for the smart product dimension which indicates 

that the firm under study requires more investment and development toward this 

specific dimension.  
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Figure 2-4: Industry 4.0 Maturity Model Developed in [61] Schematic. 

 

Figure 2-5: Sample Radar Chart after Industry 4.0 Maturity Assessment [61]. 

More complicated maturity and readiness models are also available in literature. As an 

example, Caiado et al. [62], have proposed an Industry 4.0 maturity model that uses 

fuzzy rule-base to evaluate the outcome and is specific for operations and supply chain 

management [62]. Another example is the Industry 4.0 readiness assessment model 

created by Bastos et al. in which a preliminary knowledge in the RAMI 4.0 reference 

architecture is required prior answering the questionnaire [63]. 
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2.5. Industry 4.0 Reference Architectures 

In order to build a unified system in which industries can understand each other’s 

functionality better, Industry 4.0 reference architectures are created. Choosing a correct 

Industry 4.0 reference architecture is a crucial step in implementation of Industry 4.0 

technologies within one firm. RAMI 4.0, SITAM, IVRA, and IIRA are few examples 

of Industry 4.0 reference architectures available in literature [64]. IVRA is one the 

reference architectures available in literature developed by Industrial Value Chain 

Initiative. This reference architecture consists of Smart Manufacturing Unit system, 

General Function Block, and Function Mapping. The General Function Block can be 

considered as the most important component since it makes the visualization of 

industry’s activities possible. This block consists of three different axes named as: 

Demand/Supply Flow, Knowledge/Engineering Flow, and Hierarchical Levels [65]. 

RAMI 4.0 which stands for Reference Architectural Model Indsutrie 4.0 is one of the 

widely used Industry 4.0 reference architectures. RAMI 4.0 includes three main axes 

that encapsulate the essence of every firm’s functionality. One unique feature of RAMI 

4.0 is the usage of ISO standards in describing different aspects of reference 

architecture. Figure 2-6 demonstrates the RAMI 4.0 reference architecture schematics. 

 

Figure 2-6: RAMI 4.0 Reference Architecture [38]. 

The right axis is named as “Hierarchy Levels” which shows different components 

included in the production until the supply. In this axis, four categories (Control Device, 
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Station, Work Centers, and Enterprise) are from IEC 62264 which is an ISO standard 

for enterprise-control system integration. The other three categories are Product, Field 

Device and Connected World. The Product refer to the actual product or workpiece that 

is going to be manufactured. The Field Device is the smart machinery within the firm 

which enable the smart and intelligent manufacturing. Lastly, the Connected World 

category refer to the networking of the industry with other firms beyond the production 

[38]. The Life Cycle and Value Stream Axis is based on IEC 62890 which is a standard 

used for life cycle management. This axis divides into two main sections of Type and 

Instance. The first section is about the development and design phase of the product 

whereas the second section refers to the product, its maintenance and recycling. Lastly, 

the vertical axis consists of six different layers of ‘Business’, ‘Functional’, 

‘Information’, ‘Communication’, ‘Integration’, and ‘Asset’. These layers enable the 

digital mapping of the physical entities available in an industry and represent the 

functionality and business processes of an industry [38]. 

2.6. Industry 4.0 Roadmaps/Frameworks 

In order to implement Industry 4.0 technologies within the manufacturing firms, a 

roadmap or framework should be followed. Currently available roadmaps/frameworks 

in literature often do not contain any details or quantitative evaluations. The most 

important problem associated with currently available Industry 4.0 roadmaps is their 

lack of incorporating different aspects included within the Industry 4.0 paradigm such 

as: readiness assessment, technology selection, and reference architecture selection. 

One of the examples of roadmaps is the work done by Javaid Butt [66] in which there 

are seven different phases for successful implementation of Industry 4.0 technologies 

in a manufacturing firm. The seven phases of this roadmap proposed by Javaid Butt are 

shown in Figure 2-7. 

Another available strategic roadmap for Industry 4.0 is proposed by Ghobakhloo [67], 

in which the roadmap is divided into six different dimensions each consisting of a 

certain roadmap. Looking into Ghobakhloo’s roadmap, the preliminary stages of the 

roadmap focus more on managerial, business, and human resources aspects and later 

stages focus more on infrastructure and Industry 4.0 technologies. 
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Figure 2-7: Industry 4.0 Roadmap Developed in [66]. 

An available framework in literature is the work done by Qin et al. [68], in which a 

categorical framework for Industry 4.0 has been proposed. In their developed 

framework, three automation level and three intelligence level have been identified. 

The three automation levels are named as machine, process, and factory. The three 

intelligence levels are named as control, integration, and intelligence. The combination 

of automation and intelligence levels create nine applications which showcase the 

degree of accomplishing Industry 4.0 [68]. The proposed roadmap by Qin et al. is 

shown in Figure 2-8.  

 

Figure 2-8: Categorical Framework for Industry 4.0 Developed in [68]. 
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Cotrino et al. [69] introduced an Industry 4.0 roadmap which is specifically designed 

for SMEs. Their roadmap includes six steps shown in Figure 2-9. In the very first step, 

the reasons that lead to decreasing the overall production efficiency is determined. This 

step is similar to gap analysis which is a well-known concept. Next, long-term planning 

is made, and Industry 4.0 technologies are selected based on the amount of funds 

available and other requirements. Then a pilot prototype is implemented, and the 

performance of the prototype is measures. If the performance of prototype is acceptable, 

operators in production lines are trained to learn about Industry 4.0 functionalities. In 

second last step, new KPIs will be introduced and measured. Finally, the Industry 4.0 

technologies are implemented on the production line. 

 

Figure 2-9: Industry 4.0 Roadmap for SMEs Proposed in [69]. 

As it can be seen in all the above examples, currently available roadmaps and 

frameworks for Industry 4.0 implementations lack detailed quantitative analysis and 

step by step approach which is easy to understand. Furthermore, most of such roadmaps 

do not include any information about readiness assessment, reference architecture, and 

correct technology selection methods and procedures. 
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Chapter 3. Methodology and Framework Development 

In this chapter, the fully developed framework is shown. The framework is divided into 

small sections in order to ease the discussion and methodology behind the stages 

described in the framework. 

3.1. Fully Developed Framework 

Starting from the top, the decision makers will first gather and store data on current 

state of the manufacturing firm. Different qualitative/quantitative KPIs can be 

identified at this stage to be measured and be used for the later assessment of the pilot 

project. After measuring the KPIs, it is crucial to check whether the measured KPIs 

meet the specified targets or not. If targets are met, then there is no reason in 

implementing Industry 4.0 technologies. If targets are not met (gap exist), then the firm 

can move to next stage of the framework to find solutions to the gaps through 

implementations of the Industry 4.0 technologies. Next, Industry 4.0 technologies are 

selected based on experts’ opinions and MCDM analysis. The very first step in the 

technology selection is to assign weights for the pre-selected criteria. Different 

objective/subjective methods can be utilized for the weight assignment. Once the 

weights are calculated, different MCDM methods can be utilized to aggregate results 

for technology selection. After selecting the technologies, a readiness model is selected 

from literature and the required questionnaire is filled. If the readiness percentage based 

on the given scale of model was within the acceptable range, then decision makers can 

proceed to choose an Industry 4.0 reference architecture. If not, some procedures are 

followed, and readiness score is evaluated again. After choosing the Industry 4.0 

reference architecture, the decision makers will implement a pilot project and will 

assess the outcome of the pilot project. The assessment is made by combining data 

obtained prior to pilot project and after it. These data are analysed by means of MCDM 

analysis and decision is made based on results on whether the pilot project was 

successful or not. If successful, then the industry can move on implementing the 

Industry 4.0 technologies at full scale. If not, some modifications have to be made and 

the previously described steps must be repeated. Figure 3-1 represents the full 

developed framework which consists of five different stages named as gap analysis, 

technology selection, readiness assessment, reference architecture selection, and pilot 

project assessment. 
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Figure 3-1: Developed Framework for the Industry 4.0 Implementations. 

3.2. Gap Analysis 

The very first stage in the framework is to acquire data from the current state of the 

manufacturing firm and compare them to the pre-defined targets. This stage is important 

since the data measured and obtained from this stage are later used in the pilot project 

assessment to measure the success of the pilot project. For this stage, different important 
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dimensions are first selected and considered. These dimensions cover different areas 

important to the manufacturing firm such as sustainability, operations, and finances. 

After selecting the dimensions, KPIs are selected. The selected KPIs are then measured 

through standards, expert’s opinions, or measuring devices. These measured KPIs are 

then compared to the pre-defined targets to analyse whether a gap exist or not. If targets 

are not met, the data from KPIs measurement are stored to be used later in the 

assessment of the pilot project section. Some examples of KPIs that can be chosen are 

shown in the pilot project assessment section. 

3.3. Industry 4.0 Technology Selection Section 

Selecting the appropriate technology can lead to a greater positive outcome after 

implementing the Industry 4.0 technologies into a manufacturing firm. In terms of 

functionality and operationality, not all manufacturing firms are same. Hence, not all 

manufacturing firms require to use all the proposed technologies by Industry 4.0. The 

novelty in this framework is incorporating MCDM analysis into the technology 

selection procedure alongside using the expert’s opinion. This incorporation will reduce 

the subjective/intuitive assessment of experts on given questionnaire. It has to be 

mentioned that the MCDM analysis being done in this section differs from traditional 

MCDM analysis. To recall, MCDM analysis are known to rank the alternatives based 

on the given data available. In the context of Industry 4.0 technology selection that 

means that each manufacturing firm must first implement each technology one at a time 

on the firm, measure the defined KPIs, and then rank the technology alternatives and 

select amongst them. This method is not feasible at least for SMEs since it requires 

huge amount of funds and immerse amount of time to implement each technology one 

at time and then perform measurements. Due to this reason, the MCDM analysis on this 

section is being done on the results obtained from the questionnaire filled by the experts. 

Details on different MCDM methods that can be utilized for this part will be later 

discussed in the pilot project assessment section. Below are the defined steps for the 

Industry 4.0 technology selection section: 

• KPIs Selection and Weight Assignment: At the beginning of technology 

selection section, quantitative/qualitative KPIs are selected based on their 

importance to the manufacturing firm under study. Next, the selected KPIs have 

to be further differentiated from one another by means of weight assignment. 
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Entropy and AHP weighting methods are the two most prominent methods 

available in literature that can be used.  

• Expert’s Input in the Questionnaire: As mentioned earlier, the MCDM analysis 

is performed on obtained results from experts’ opinions. Hence, a questionnaire 

must be created which asks experts to provide score on degree of impact of each 

Industry 4.0 technology on each selected KPI. 

• Aggregation of Results using MCDM Analysis: After obtaining the filled-out 

questionnaires, an average decision matrix is created. Next, MCDM analysis is 

performed on the average decision matrix to aggregate the results. The final 

outcome from the analysis will be the technologies ranks based on their impact 

in all of the pre-defined KPIs. It is obvious that the technologies with highest 

rankings are preferred to be chosen for the given manufacturing firm. 

• Sensitivity Analysis: In order to check the effect of independent variables on 

particular dependent variable, sensitivity analysis is performed. Linear 

Regression Analysis, Differential Sensitivity Analysis are two examples of 

sensitivity analysis methods that can be used for this part. 

3.4. Industry 4.0 Readiness Assessment Section 

In this section, the decision makers will choose a readiness model available in literature 

and fill the given questionnaire. It has to be mentioned that most of currently available 

models in literature account for implementation of all Industry 4.0 technologies within 

the firm. Hence, the decision makers should modify the chosen readiness model based 

on the technologies selected in previous section. After filling the questionnaire, the 

degree of readiness is calculated. If the readiness score was on acceptable range 

according to the model chosen, then the firm can proceed to the next stage in the 

Industry 4.0 implementation framework. If not, some steps have to be taken prior to 

doing the readiness assessment once again. Gathering information on topic of Industry 

4.0 technology enablers is one of such steps. Another step is to seek advice from experts 

in the field on how to improve the current state of the industry. Finally, more 

investments can be made toward upgrading the equipment within the firm so that 

different technologies can be implemented on them. 
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3.5. Industry 4.0 Reference Architecture Selection Section 

In chapter 2, the importance of having an Industry 4.0 reference architecture has been 

described. In short, the main objective of having a reference architecture is to ease 

communication, enable B2B connection, understand the business functionality, and 

enhance the feedback provision. Below are the main steps needed to be taken for this 

section of framework: 

• Knowledge/Information Acquisition: Acquiring knowledge in product life 

cycle, different industry layers, and the value chain is important in 

understanding the basics of every currently available Industry 4.0 reference 

architecture.  

• Regulations and Samples Check: In order to choose a suitable Industry 4.0 

reference architecture, two important considerations exist. First consideration is 

to check the reference architectures chosen by similar type of manufacturing 

firms to the firm under study. This can help decision makers to get a clear vision 

on how the business is broken down in different sections using certain reference 

architecture. The second consideration is to check the country specific 

regulations and reference architectures created and then proceed to choose the 

suitable reference architecture. As an example, if all the firms in certain country 

use same Industry 4.0 reference architecture model, then it advisable for 

decision makers to choose the same reference architecture to ease the domestic 

B2B communications. 

• Reference Architecture Selection: Decision makers proceed to select the 

suitable reference architecture based on findings of previous steps. 

3.6. Pilot Project Assessment 

The pilot project assessment section has the highest amount of the importance in the 

proposed framework since it can show whether the decisions made in previous sections 

of the framework were correct and accurate or not. The assessment utilizes MCDM 

methods to analyse the obtained data and rank between two states of the manufacturing 

firm; one prior to the implementation of Industry 4.0 technologies, and one after the 

technology implementations. The pilot project is considered successful if the 

assessment results indicate that manufacturing firm’s performance in different 

dimensions after the technology implementations has been enhanced. Following sub-
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sections showcase the detailed breakdown of every step needed to be taken place for 

the pilot project assessment. 

3.6.1. KPIs selection 

The key performance indicators selected to be studied must match the indicators chosen 

in the very first stage of the framework which was “Gap Analysis”. Generally, there are 

three main sustainable development dimensions known as Triple Bottom Line (TBL). 

These three dimensions are Economic, Social, and Environmental. The economic 

dimension focuses on the financial aspects of one firm such as profits and losses, 

earnings, and spendings. The social dimension focuses on employees and consumers. 

Lastly, the environmental dimension looks into different sustainability aspects 

regarding the production procedures and product’s life cycles. Table 3-1 tabulates 

sample of KPIs shown for each TBL dimensions. 

Table 3-1: Examples of TBL KPIs [70]. 

Economic Environmental Social 

Value Addition and Revenue CO2 Emissions Employee Satisfaction 

Product Quality Energy Consumptions Employee Safety 

Preventive Maintenance Waste Streams Consumer Satisfaction 

 Sustainable Packaging  

 

3.6.2. Materiality matrix creation  

Materiality matrices are used in materiality analysis of a given business or firm. 

Materiality assessment help firms to identify their most important topics/issues on hand 

that affects both stakeholders and the business. Usually, the traditional materiality 

matrix consists of two axes which the x-axis is the impact of the topic on the business 

and y-axis is the importance of the topic to the stakeholders. The newer version of 

materiality matrix proposed by Global Reporting Initiative (GRI) also includes the 

significance of economic, environmental, and social impact of topics alongside their 

importance to stakeholders [71]. In context of Industry 4.0 implementation framework, 

this materiality matrix can be created by each firm to showcase the degree of 

impact/importance of each selected KPI on TBL dimensions and stakeholders. This 

materiality matrix helps the experts in following steps to better judge about the weight 

of each KPI for MCDM analysis. Figure 3-2 showcases a sample materiality matrix. 
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Figure 3-2: Sample Materiality Matrix. 

3.6.3. KPIs weight assignment 

After selecting the KPIs and creating the materiality matrix, weights can be assigned to 

the indicators. The weighting process can be either subjective or objective. The 

subjective weighting techniques depend on experts’ opinions, and in this specific 

framework, it also depends on the materiality matrix created at the previous step. On 

the other hand, the objective weighting methods use quantitative analysis and perform 

pair wise comparison between indicators to assign the appropriate weight. Analytical 

Hierarchical Process (AHP), Analytic Network Process (ANP), and Entropy Weight 

Method are few examples of objective weighting methods used for weighting the 

indicators. 

3.6.3.1. Analytical hierarchical process 

One of the most well-known weighting technique in MCDM analysis is the AHP 

method. Making pairwise comparison as ratios between the set of indicators is the most 

important aspect of the AHP method [72]. This pairwise comparison is made using the 

fundamental scale of absolute numbers shown in Table 3-2. 
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Table 3-2: Fundamental Scale for AHP Method Proposed by Saaty [72]. 

Absolute 

Scale 
Definition Explanation 

1 Equal importance Two activities contribute equally to the 

objective. 

3 Moderate importance of one over 

another 

One activity is slightly favored over 

another. 

5 Essential or strong importance One activity is strongly favored over 

another. 

7 Very strong importance One activity is very strongly favored over 

another. 

9 Extreme importance One activity is extremely favored over 

another. 

2, 4, 6, 8 Intermediate values between the two 

adjacent judgments 

When comparison is needed. 

 

The results obtained from the comparisons are placed in square matrix A shown as 

below: 

 𝐴 = (

𝑎11 𝑎12 … 𝑎1𝑛

𝑎21 𝑎22 … 𝑎2𝑛

⋮
𝑎𝑛1

⋮
𝑎𝑛2

⋱
…

⋮
𝑎𝑛𝑛

) (3) 

For the matrix, the following relationships must be satisfied [73]. 

 𝑎𝑖𝑗 =
1

𝑎𝑗𝑖
       𝑎𝑛𝑑       𝑎𝑖𝑖 = 1 (4) 

Next, the eigenvalues of matrix A are calculated using the following equation: 

 𝑑𝑒𝑡(𝐴 − 𝜆𝐼) = 0 (5) 

where matrix I is the identity matrix with the rank similar to the matrix A. Next, the 

weights of each indicator can be calculated using the following equation. 

 𝐴𝑤 = 𝜆𝑚𝑎𝑥𝑤 (6) 

In order to evaluate the pairwise comparison, the matrix consistency index and the 

relative consistency ratio can be calculated as below [73]. 

 𝐶𝐼 =
𝜆𝑚𝑎𝑥−𝑛

𝑛−1
 (7) 

 𝐶𝑅 =
𝐶𝐼

𝑅
 (8) 
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R is a constant value based on the rank of matrix A and its values are shown in Table 3-

3. 

Table 3-3: AHP Method R Coefficient Values [73]. 

n 1 2 3 4 5 6 7 8 9 10 

R 0 0 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49 

 

The acceptable range for consistency ratio value is less than 0.1 according to AHP 

method and if values outside of this range is obtained, pairwise comparison must be 

repeated [74]. 

3.6.3.2. Entropy weight method 

Entropy weight method is another popular weighting technique developed by C. E. 

Shannon which is used in different engineering and social economy fields [75]. At the 

very first step of entropy analysis, the decision matrix has to be created considering 

having (m) alternatives and (n) criteria [76]. 

 𝑋 = [𝑋𝑖𝑗] = (

𝑋11 𝑋12 … 𝑋1𝑛

𝑋21 𝑋22 … 𝑋2𝑛

⋮
𝑋𝑚1

⋮
𝑋𝑚2

⋱
…

⋮
𝑋𝑚𝑛

) (9) 

where Xij is often referred to as performance value of the alternatives.  

Next, the decision matrix is required to be normalized by the following equation. 

 𝑟𝑖𝑗 =
𝑋𝑖𝑗

∑ 𝑋𝑖𝑗
𝑚
𝑖=1

 (10) 

The entropy value can then be calculated using the equation below where i=1, 2, ..., m 

and j=1, 2, ..., n. 

 𝑒𝑗 = −
1

𝑙𝑛(𝑚)
∑ 𝑟𝑖𝑗𝑙𝑛𝑟𝑖𝑗

𝑚
𝑖=1  (11) 

At last, the weight vectors can be calculated using the equation below where j=1, 2, ..., 

n. 

 𝑤𝑗 =
1−𝑒𝑗

∑ (1−𝑒𝑗)
𝑛
𝑗=1

 (12) 
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3.6.4. Data aggregation and alternatives ranking using MCDM analysis 

Up until this point of the pilot project assessment, different KPIs have been selected 

and weighted with help of different methods discussed earlier. MCDM analysis are now 

used in order to aggregate the data obtained and rank between alternatives which is the 

firm’s performance prior and after the technology implementations. There are variety 

of MCDM analysis available in literature which can be used in this sub-section. In the 

following part, few important MCDM methods are discussed and the procedure for 

results aggregation is shown for each method in more details. 

3.6.4.1. SAW method 

The simplest MCDM method developed is the Simple Additive Weighting (SAW) 

method. In this method, the decision matrix is normalized, and a weight vector is 

created which lead to finding the overall score for each available alternative [77]. This 

method is highly suggested and presented first since its simplicity can enable decision 

makers without background on MCDM analysis follow the steps clearly. The SAW 

method procedures are represented below [77]. 

The decision matrix shown in equation (9) has to be normalized using the following 

relations. 

 𝑟𝑖𝑗 = {

𝑥𝑖𝑗

𝑥𝑗
+ 𝑗 ∈ 𝛺𝑚𝑎𝑥

𝑥𝑗
−

𝑥𝑖𝑗
𝑗 ∈ 𝛺𝑚𝑖𝑛

 (13) 

In which the 𝑥𝑗
+is the maximum value of 𝑥𝑖𝑗in the jth column of benefit criteria, and 

𝑥𝑗
−is the minimum value in the jth column of cost criteria. 𝛺𝑚𝑎𝑥 and 𝛺𝑚𝑖𝑛 are sets of 

benefit and cost criteria. Next, for each criteria weights are assigned and the ranking 

score for the ith alternative is calculated. 

 𝑊 = [𝑤1, 𝑤2, . . . . . . . , 𝑤𝑛 ] (14) 

 𝑆𝑖 = ∑ 𝑤𝑗
𝑛
𝑗=1 𝑟𝑖𝑗 (15) 

The alternative with the highest value for the ranking score will be ranked the highest 

between the alternatives. 
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3.6.4.2. TOPSIS method 

Technique for Order of Preference by Similarity to Ideal Solution also known as 

TOPSIS is one of the available MCDM methods in the literature. This quantitative 

method was proposed by Hwang and Yoon to solve for multi-criteria decision-making 

problems [76]. In TOPSIS, the alternative that has the shortest Euclidean distance from 

the positive ideal solution and longest distance from the negative ideal solution is 

considered as the best alternative available to select [76]. The procedure for TOPSIS 

method is given as below [75, 76]. 

Set up a performance matrix for (m) alternatives and (n) criteria similar to the one 

shown in equation (9). 

Next, normalize the decision matrix using the following equation. 

 𝑋𝑖𝑗
̅̅ ̅̅ =

𝑋𝑖𝑗

√∑ 𝑋𝑖𝑗
2𝑚

𝑖=1

 (16) 

Create the normalized decision matrix which also takes the weights into consideration 

shown as below. 

 𝑉𝑖𝑗
̅̅ ̅ = 𝑤𝑗 × 𝑋𝑖𝑗

̅̅ ̅̅ = (
𝑥11̅̅ ̅̅ × 𝑤1 ⋯ 𝑥1𝑛̅̅ ̅̅ × 𝑤1

⋮ ⋱ ⋮
𝑥𝑚1̅̅ ̅̅ ̅ × 𝑤𝑚 ⋯ 𝑥𝑚𝑛̅̅ ̅̅ ̅ × 𝑤𝑚

) (17) 

The best positive and negative ideal solutions are then calculated as below. 

 𝐴+ = {(𝑚𝑎𝑥𝑖𝑉𝑖𝑗|𝑗 ∈ 𝐽), (𝑚𝑖𝑛𝑖𝑉𝑖𝑗|𝑗 ∈ 𝐽′)} = {𝑉1
+, 𝑉2

+, . . . . . . . , 𝑉𝑛
+} (18) 

 𝐴− = {(𝑚𝑖𝑛𝑖𝑉𝑖𝑗|𝑗 ∈ 𝐽), (𝑚𝑎𝑥𝑖𝑉𝑖𝑗|𝑗 ∈ 𝐽′)} = {𝑉1
−, 𝑉2

−, . . . . . . . , 𝑉𝑛
−} (19) 

In above equations, J represent the benefit criteria and J prime is the non-benefit 

criteria. 

The Euclidean distance can then be calculated by following equations which showcase 

the distance from the ideal best and worst values. 

 𝑆𝑖
+ = [∑ (𝑉𝑖𝑗 − 𝑉𝑗

+)2𝑚
𝑗=1 ]

0.5
          𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, 2, . . . . . . . . , 𝑛 (20) 

 𝑆𝑖
− = [∑ (𝑉𝑖𝑗 − 𝑉𝑗

−)2𝑚
𝑗=1 ]

0.5
           𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, 2, . . . . . . . . , 𝑛 (21) 
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Lastly, the relative closeness is calculated using the equation below. 

 𝐶𝑖 =
𝑆𝑖

−

𝑆𝑖
++𝑆𝑖

− (22) 

The range of values for this index is between 0 and 1. Alternatives are ranked based on 

their relative closeness score. The closer the value is to 1, the higher will be the rank of 

the alternative. Likewise, the closer the value is to 0, the lower the rank of the alternative 

will be. 

3.6.4.3. COPRAS method 

The Complex Proportional Assessment method also known as COPRAS is another 

MCDM method that can be used to assess the success of the pilot project. The COPRAS 

method is often known for its simplicity in calculation and very simple procedures. The 

steps for COPRAS method are shown below [78]. 

After obtaining the decision matrix X similar to the one shown in equation (9), the 

matrix can be normalized using equation (10). Next, the weights are incorporated into 

normalized matrix using the following equation. 

 𝑦𝑖𝑗 = 𝑤𝑗 × 𝑟𝑖𝑗         (𝑖 = 1, 2, . . . . . . . . . , 𝑚 ;  𝑗 = 1, 2, . . . . . . . . . . . , 𝑛) (23) 

The sums of weighted normalized scores (WNS) are calculated using below equations. 

 𝑆+𝑖 = ∑ 𝑦+𝑖𝑗
𝑛
𝑗=1  (24) 

 𝑆−𝑖 = ∑ 𝑦−𝑖𝑗
𝑛
𝑗=1  (25) 

The comparative significance for each alternative is calculated as below. 

 𝑄𝑖 = 𝑆+𝑖 +
∑ 𝑆−𝑖

𝑚
𝑖=1

𝑆−𝑖 ∑
1

𝑆−𝑖

𝑚
𝑖=1

 (26) 

Lastly, the utility level is calculated by using the following equation. 

 𝑈𝑖 =
𝑄𝑖

𝑄𝑚𝑎𝑥
× 100 (27) 

The alternatives in the study are ranked in the descending order based on their obtained 

utility level. 
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3.6.5. Sensitivity analysis 

Errors can happen in all sorts of measurements and analysis. These errors are amplified 

in MCDM analysis where qualitative and quantitative indicators co-exist. Hence, there 

need to be an analysis performed to make sure that previous steps were accurate and 

correct. One of the simplest and most well-known sensitivity analysis is the one-factor-

at-a-time (OAT) method in which one single parameter is changed per turn while 

keeping the other parameters constant [79]. The limitation with this specific type of 

sensitivity analysis is that it can results in high biases for non-linear systems. When 

sensitivity analysis is completed, the decision maker will have a list which includes the 

sensitivity rankings of the input parameter sorted by the amount of impact they have on 

the output [80]. For all the sensitivity analysis, below generalized model is used [80]. 

 𝑋 = (𝑋1, 𝑋2, . . . . . . , 𝑋𝑛) (28) 

 𝑌 = 𝑓(𝑋) (29) 

where X is the independent variables (input), and Y is the single dependent variable 

(output). 

3.6.5.1. Linear regression analysis 

One of the simple available sensitivity analysis is the linear regression analysis which 

constructs a linear relationship between independent variables and dependent variable. 

As the name implies, this method is not applicable for systems where the relationship 

between inputs and output is non-linear [79]. Below is the process on how to obtain the 

sensitivity measure [79]. 

 𝑦 = 𝑏0 + ∑ 𝑏𝑖
𝑛
𝑖=1 𝑥𝑖 (30) 

The regression coefficients bi are estimated using the least square method. The absolute 

regression coefficient (SRC) is calculated as below. 

 𝑆𝑅𝐶𝑖 = |𝑏𝑖
𝑠𝑖̂

𝑠
| (31) 

In the above equation (𝑠𝑖̂) is the standard deviation for xi, and the (s) is the standard 

deviation for y. 
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3.6.5.2. Differential sensitivity analysis 

The differential sensitivity is another important method of sensitivity analysis. In 

reality, the sensitivity coefficient the ratio of change in output due to the change in a 

single input while holding all the other parameters constant [80]. For this method, the 

variance of the dependent variable Y is calculated as below [80]. 

 𝑉(𝑌) = ∑ (
𝜕𝑌

𝜕𝑋𝑖
)2  𝑉(𝑋𝑖)

𝑛
𝑖=1  (32) 

The problem associated with solving the above equation is the amount of effort that is 

needed for solving the partial derivatives of complex functions. If the relationship 

between the independent variables and dependent variable is defined by an explicit 

algebraic equation, then the sensitivity coefficient calculation will become much 

simpler shown as below.  

 𝜙𝑖 =
𝜕𝑌

𝜕𝑋𝑖
(
𝑋𝑖

𝑌
) (33) 

where the 𝜙𝑖 is the sensitivity coefficient and factor 
𝑋𝑖

𝑌
 is used to remove the effects of 

units.  

The partial derivatives can be approximated as finite difference if and only if large sets 

of equations exist. In this case, the equation for the sensitivity coefficient will be 

modified as below. 

 𝜙𝑖 =
%𝛥𝑌

%𝛥𝑋𝑖
 (34) 

3.6.5.3. Sensitivity index 

This simple method determines the sensitivity by varying one single input from its 

minimum value to its maximum value. The sensitivity index is basically the output 

percentage difference and is calculated as below [80]. 

 𝑆𝐼 =
𝐷𝑚𝑎𝑥−𝐷𝑚𝑖𝑛

𝐷𝑚𝑎𝑥
 (35) 

Dmin and Dmax are the minimum and maximum output values respectively. 
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3.7. Final Decision and Industry 4.0 Technologies Implementation 

After performing all the previous steps, the decision makers can finally decide whether 

the pilot project was successful or not. If successful, then Industry 4.0 technologies can 

be implemented on bigger scales. If the results from pilot project favored the state of 

firm prior to pilot technology implementations, then some procedures listed as below 

can be taken place prior to re-performing the analysis for another trial. 

• Elimination of Factors Leading to Unsuccessful Pilot Trial: Using the help from 

experts, decision makers can identify the possible factors that led to 

unsuccessful pilot project and eliminate them accordingly.  

• Removal of Similar KPIs from the Assessment: Some technologies affect 

specific dimensions/KPIs of the manufacturing firm. For example, Additive 

Manufacturing can have huge impact on sustainability dimension while having 

a low impact on financial dimension. Now if most of the KPIs defined are based 

on financial dimensions, the performance of pilot project which have 

implemented Additive Manufacturing will be deemed to be poor, whereas if 

most KPIs defined are based on sustainability dimension, the pilot project will 

be seemed to be a success. Hence, trying to balance the number of KPIs defined 

for each TBL dimensions, can possibly lead to more accurate results from pilot 

project assessment. 

• Implementation of Different Readiness Model: Most of the readiness models 

available in literature are for general cases. Hence, some readiness models might 

not be able to capture all aspects of certain manufacturing firm leading to in-

accurate readiness percentage analysis. Therefore, different readiness model can 

be selected to ensure the degree of readiness of the firm prior to the technology 

implementations. 

• Increase in Number of Experts Used in Technology Selection Section: Choosing 

incorrect technologies is one of the most obvious factors leading to having an 

unsuccessful pilot project. Hence, increase in the number of experts used in for 

the technology selection section can increase the accuracy of the results 

obtained for the technologies rankings. 
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Chapter 4. Case Study Implementation 

Due to the limited availability of time and resources, only two sections of the developed 

Industry 4.0 framework have been implemented on a real case study. Decision makers 

from an aluminium extrusion factory located in Jordan have been contacted to fill the 

required surveys. The methodology behind the work and results obtained for Industry 

4.0 technology selection and Industry 4.0 readiness assessment sections are discussed 

in this chapter. 

4.1. Industry 4.0 Technology Selection Methodology and Implementation 

As discussed in earlier chapters, Industry 4.0 technology selection problem can be 

counted as a MCDM problem since different technologies (alternatives) are selected 

based on different KPIs (criteria). Since technology selection involves subjective type 

of assessment, fuzzy MCDM methods are preferred over the conventional MCDM 

methods. The most well-known fuzzy MCDM approach to a given problem is the 

combined fuzzy AHP and fuzzy TOPSIS method. In this method, fuzzy AHP is used 

for criteria weighting and fuzzy TOPSIS is used for technology ranking and selection. 

Figure 4-1 illustrates the steps needed to be taken in the proposed Industry 4.0 

technology selection model. Initially a team of experts is formed, and different 

important criteria which are the KPIs that the firm is trying to improve are selected. 

Next, fuzzy AHP and fuzzy TOPSIS surveys are distributed among the experts. After 

collecting the responses, fuzzy pairwise comparison matrix is created to compute the 

fuzzy geometric mean values. The fuzzy geometric mean values help in determining 

the fuzzy local and global weights which can be later converted to crisp weight values 

to be used in later steps. From the fuzzy TOPSIS survey, fuzzy decision matrix is 

created which is then multiplied by crisp weight values from fuzzy AHP method. The 

weighted decision matrix is normalized which helps in calculating FPIS and FNIS 

values. Finally, the positive and negative distance values are calculated which help in 

obtaining the closeness coefficient for each technology. Technologies are finally ranked 

and selected based on their closeness coefficient scores. In this specific model, 8 

Industry 4.0 technologies and total of 10 sub-criteria have been considered. These 

technologies and selected criteria/sub-criteria can be altered at any time by firm owners 

based on their requirements and functionalities.  
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Figure 4-1: Developed Model for the Industry 4.0 Technology Selection. 
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4.1.1. KPI selection for criteria and sub-criteria assignment 

There are different indices available in literature which can be used as valid sources for 

KPIs. For this specific model, the KPIs have been collected from ISO22400, GRI 

sustainability reporting standards (2021), and conventional financial ratios [81-84]. 

These KPIs are counted as sub-criteria in this model which are divided into four main 

criteria of production, environmental, social, and economic. Figure 4-2 illustrates the 

selected criteria/sub-criteria and Industry 4.0 technologies. 

 

Figure 4-2: Considered Criteria and Technologies for Technology Selection Model. 

4.1.2. Fuzzy AHP for criteria/sub-criteria weight assignment 

Fuzzy AHP is a modified version of AHP method which fuzzy sets are used to obtain 

criteria weights. The geometric mean approach proposed by Buckley has been used in 

this model due to its simplicity [85]. In order to obtain weights using fuzzy AHP, 

linguistic variables should be first defined. Table 4-1 showcases the linguistic variables 

(membership functions) used in fuzzy AHP for criteria weighting. The steps for fuzzy 

AHP analysis are presented in this sub-section [86-87]. 

Table 4-1: Membership Functions Defined for Fuzzy AHP Method [88]. 

Linguistic Term Notation Fuzzy Value 

Equally Important ELI (1, 1, 1) 

Very Weakly Important VWI (1, 2, 3) 

Weakly Important WI (2, 3, 4) 

Weakly to Moderate Important WMI (3, 4, 5) 

Moderate Important MI (4, 5, 6) 

Moderate to Strongly Important MSI (5, 6, 7) 

Strongly Important SI (6, 7, 8) 

Very Strongly Important VSI (7, 8, 9) 

Extremely Important EI (8, 9, 10) 
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From the collected survey, a fuzzy AHP decision matrix can be constructed as [86-87]: 

 𝐴̃ = [𝑥̃𝑖𝑗] =

[
 
 
 
 

(1, 1, 1) (𝑙12,𝑚12, 𝑢12) … (𝑙1𝑛,𝑚1𝑛, 𝑢1𝑛)

(
1

𝑢12
,

1

𝑚12
,

1

𝑙12
) (1, 1, 1) … (𝑙2𝑛, 𝑚2𝑛, 𝑢2𝑛)

⋮

(
1

𝑢1𝑛
,

1

𝑚1𝑛
,

1

𝑙1𝑛
)

⋮

(
1

𝑢2𝑛
,

1

𝑚2𝑛
,

1

𝑙2𝑛
)

⋱
…

⋮
(1, 1, 1) ]

 
 
 
 

 (36) 

Table 4-2 showcases the obtained decision matrix based on survey results for criteria 

weights assignments. 

Table 4-2: Decision Matrix Created for Criteria. 

 C1 C2 C3 C4 

C1 ELI WI WMI ELI 

C2 WI-1 ELI ELI WMI-1 

C3 WMI-1 ELI ELI WI-1 

C4 ELI WMI WI ELI 

 

Next, the fuzzy geometric mean is calculated for each row of data using equation below: 

 𝑟̃𝑖 = (∏ 𝑥̃𝑖𝑗
𝑛
𝑗=1 )

1/𝑛
 (37) 

In the above equation, (n) represents the total number of criteria. Table 4-3 presents the 

calculations obtained for geometric mean values. 

Table 4-3: Calculated Geometric Mean Values. 

 C1 C2 C3 C4 𝒓̃𝒊 

C1 (1, 1, 1) (2, 3, 4) (3, 4, 5) (1, 1, 1) (1.57, 1.86, 2.11) 

C2 (1/4, 1/3, 1/2) (1, 1, 1) (1, 1, 1) (1/5, 1/4, 1/3) (0.47, 0.54, 0.64) 

C3 (1/5, 1/4, 1/3) (1, 1, 1) (1, 1, 1) (1/4, 1/3, 1/2) (0.47, 0.54, 0.64) 

C4 (1, 1, 1) (3, 4, 5) (2, 3, 4) (1, 1, 1) (1.57, 1.86, 2.11) 

Total 𝒓̃𝒊     (4.08, 4.80, 5.51) 

(Total 𝒓̃𝒊)
-1     (0.18, 0.21, 0.25) 

 

The fuzzy geometric mean values calculated will be used to obtain fuzzy and crisp 

weights using the following two equations: 

 𝑤̃𝑖 = 𝑟̃𝑖 × (𝑟̃𝑖=1 + 𝑟̃𝑖=2 + ⋯+ 𝑟̃𝑖=𝑛)−1 = (𝑙𝑤𝑖, 𝑚𝑤𝑖, 𝑢𝑤𝑖) (38) 

 𝐺𝑖 =
𝑙𝑤𝑖+ 𝑚𝑤𝑖+ 𝑢𝑤𝑖

3
 (39) 
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Table 4-4 shows the fuzzy and crisp weights calculated for criteria. 

Table 4-4: Calculated Fuzzy and Crisp Weight Values for Criteria. 

 𝒓̃𝒊 𝒘̃𝒊 = 𝒓̃𝒊× (Total 𝒓̃𝒊)
-1 Crisp Weight 

C1 (1.57, 1.86, 2.11) (0.284, 0.388, 0.518) 0.397 

C2 (0.47, 0.54, 0.64) (0.085, 0.112, 0.156) 0.118 

C3 (0.47, 0.54, 0.64) (0.085, 0.112, 0.156) 0.118 

C4 (1.57, 1.86, 2.11) (0.284, 0.388, 0.518) 0.397 

 

The exact above procedure is repeated to obtain the crisp weight values for sub-criteria. 

Tables 4-5, 4-6, 4-7, and 4-8 represent the decision matrices obtained for each criteria 

category with corresponding non-normalized crisp weight values. 

Table 4-5: Production Criteria Decision Matrix. 

 C11 C12 C13 Crisp Weight Rank 

C11 (1, 1, 1) (3, 4, 5) (0.17, 0.20, 0.25) 0.22 2 

C12 (0.20, 0.25, 0.33) (1, 1, 1) (0.17, 0.20, 0.25) 0.09 3 

C13 (4, 5, 6) (4, 5, 6) (1, 1, 1) 0.70 1 

 

Table 4-6: Environmental Criteria Decision Matrix. 

 C21 C22 C23 Crisp Weight Rank 

C21 (1, 1, 1) (0.11, 0.13, 0.14) (0.25, 0.33, 0.50) 0.078 3 

C22 (7, 8, 9) (1, 1, 1) (4, 5, 6) 0.75 1 

C23 (2, 3, 4) (0.17, 0.20, 0.25) (1, 1, 1) 0.18 2 

 

Table 4-7: Social Criteria Decision Matrix. 

 C31 C32 Crisp Weight Rank 

C31 (1, 1, 1) (7, 8, 9) 0.89 1 

C32 (0.11, 0.13, 0.14) (1, 1, 1) 0.11 2 

 

Table 4-8: Economic Criteria Decision Matrix. 

 C41 C42 Crisp Weight Rank 

C41 (1, 1, 1) (0.13, 0.14, 0.17) 0.12 2 

C42 (6, 7, 8) (1, 1, 1) 0.88 1 

 

Table 4-9 tabulates the finalized local and global crisp weight values calculated for the 

criteria and sub-criteria available in this model. Furthermore, Figure 4-3 shows the 

overall global weights calculated for each sub-criteria. Figure 4-4 (a)-(d) illustrates the 

normalized local weights obtained for sub-criteria under the production, environmental, 

social, and economic criteria, respectively. 
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Table 4-9: Finalized Calculated Local and Global Weights. 

Code 
Criteria 

Name 

Normalize

d and 

Rounded 

Weights 

Code Sub-Criteria Name 

Normali

zed and 

Rounde

d Local 

Weights 

Global 

Weight 

Ran

k 

C1 Production 0.39 

C11 Rework Ratio 0.221 0.08619 4 

C12 Setup Ratio 0.089 0.03471 7 

C13 
Production Process 

Ratio 
0.690 0.2691 2 

C2 
Environme

ntal 
0.11 

C21 
Direct (Scope 1) 

GHG Emissions 
0.077 0.00847 10 

C22 
Energy Consumption 

within Organization 
0.739 0.08129 5 

C23 
Material used by 

Weight or Volume 
0.184 0.02024 8 

C3 Social 0.11 

C31 
Work-Related 

Injuries 
0.888 0.09768 3 

C32 

Hazard Identification, 

Risk Assessment, and 

Incident Investigation 

0.112 0.01232 9 

C4 Economic 0.39 
C41 Price Earnings Ratio 0.126 0.04914 6 

C42 Return on Assets 0.874 0.34086 1 

 

 

Figure 4-3: Sub-Criteria Global Weights Bar Chart. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4-4: Normalized Local Weights Obtained for (a) Production (b) Environmental (c) Social and 

(d) Economic Dimensions. 

4.1.3. Fuzzy TOPSIS for aggregating results and ranking technologies 

After obtaining crisp weight values from fuzzy AHP method, fuzzy TOPSIS is used to 

obtain the rankings of technologies. Similar to fuzzy AHP, linguistic variables are used 

in fuzzy TOPSIS to measure the degree of impact of each technology on the given 

criteria/sub-criteria. Table 4-10 presents the membership functions defined to be used 

in fuzzy TOPSIS procedure. The steps for fuzzy TOPSIS method will be discussed in 

this sub-section [89-91]. 

Table 4-10: Membership Functions Defined for Fuzzy TOPSIS Method [91]. 

Linguistic Term Notation Fuzzy Value 

Very Low Impact VLI (1, 1, 3) 

Low Impact LI (1, 3, 5) 

Medium Impact MI (3, 5, 7) 

High Impact HI (5, 7, 9) 

Very High Impact VHI (7, 9, 9) 

 

The very first step in fuzzy TOPSIS is creating a fuzzy decision matrix where each 

input to the matrix is a fuzzy number as shown below: 
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 𝑋̃ = [𝑥̃𝑖𝑗] = [
𝑥̃11 … 𝑥̃1𝑛

⋮ ⋱ ⋮
𝑥̃𝑚1 … 𝑥̃𝑚𝑛

] (40) 

The decision matrix obtained based on survey results from the firm of interest is 

represented in Table 4-11 and Table 4-12. 

Table 4-11: Fuzzy TOPSIS Decision Matrix (Linguistic Values). 

 C11 C12 C13 C21 C22 C23 C31 C32 C41 C42 

T1 HI MI VHI MI VHI HI HI LI MI HI 

T2 MI LI MI MI MI LI LI LI LI LI 

T3 VHI HI VHI MI HI MI VHI MI MI HI 

T4 LI LI LI LI LI VLI VLI VLI VLI VLI 

T5 LI LI HI MI MI MI LI LI VLI VLI 

T6 MI LI VLI LI LI VLI MI MI LI LI 

T7 HI HI HI MI LI HI VHI VHI LI LI 

T8 VLI VLI VLI VLI VLI VLI VLI VLI VLI VLI 

 

Table 4-12: Fuzzy TOPSIS Decision Matrix (Fuzzy Numerical Values). 

 C11 C12 ⸬ ⸬ C41 C42 
T1 (5, 7, 9) (3, 5, 7) ‥‥ ‥‥ (3, 5, 7) (5, 7, 9) 

T2 (3, 5, 7) (1, 3, 5) ‥‥ ‥‥ (1, 3, 5) (1, 3, 5) 

⸬ ‥‥ ‥‥ ‥‥ ‥‥ ‥‥ ‥‥ 

⸬ ‥‥ ‥‥ ‥‥ ‥‥ ‥‥ ‥‥ 

T7 (5, 7, 9) (5, 7, 9) ‥‥ ‥‥ (1, 3, 5) (1, 3, 5) 

T8 (1, 1, 3) (1, 1, 3) ‥‥ ‥‥ (1, 1, 3) (1, 1, 3) 

 

If multiple of experts are considered in fuzzy TOPSIS, below equation can be used to 

obtain the aggregated fuzzy decision matrix: 

 𝑎𝑖𝑗 = 𝑚𝑖𝑛𝑘(𝑎𝑖𝑗𝑘) ,          𝑏𝑖𝑗 =
1

𝐾
∑ 𝑏𝑖𝑗𝑘

𝐾
𝑘=1 ,          𝑐𝑖𝑗 = 𝑚𝑎𝑥𝑘(𝑐𝑖𝑗𝑘)  (41) 

where k corresponds to the decision maker and K is the total number of decision makers. 

The normalized fuzzy decision matrix and the weighted normalized fuzzy decision 

matrix are then obtained using following equations: 

 𝑟̃𝑖𝑗 = (
𝑎𝑖𝑗

𝑐𝑗
∗ ,

𝑏𝑖𝑗

𝑐𝑗
∗ ,

𝑐𝑖𝑗

𝑐𝑗
∗  )          ;           𝑐𝑗

∗ = 𝑚𝑎𝑥𝑖(𝑐𝑖𝑗) (42) 

 𝑟̃𝑖𝑗 = (
𝑎𝑗

−

𝑐𝑖𝑗
,
𝑎𝑗

−

𝑏𝑖𝑗
,
𝑎𝑗

−

𝑎𝑖𝑗
 )          ;           𝑎𝑗

− = 𝑚𝑖𝑛𝑖(𝑎𝑖𝑗)  (43) 
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 𝑣̃𝑖𝑗 = 𝑟̃𝑖𝑗 × 𝑤𝑗 (44) 

Equation (42) is used when dealing with benefit criterion and equation (43) is used 

when dealing with cost criterion. Table 4-13 represent the normalized fuzzy decision 

matrix, and Table 4-14 represents the weighted normalized fuzzy decision matrix 

obtained. 

Table 4-13: Normalized Fuzzy Decision Matrix. 

 C11 C12 ⸬ ⸬ C41 C42 
T1 (0.55, 0.77, 1) (0.33, 0.55, 0.77) ‥‥ ‥‥ (0.43, 0.71, 1) (0.55, 0.77, 1) 

T2 (0.33, 0.55, 0.77) (0.11, 0.33, 0.55) ‥‥ ‥‥ (0.14, 0.43, 0.71) (0.11, 0.33, 0.55) 

⸬ ‥‥ ‥‥ ‥‥ ‥‥ ‥‥ ‥‥ 

⸬ ‥‥ ‥‥ ‥‥ ‥‥ ‥‥ ‥‥ 
T7 (0.55, 0.77, 1) (0.55, 0.77, 1) ‥‥ ‥‥ (0.14, 0.43, 0.71) (0.11, 0.33, 0.55) 

T8 (0.11, 0.11, 0.33) (0.11, 0.11, 0.33) ‥‥ ‥‥ (0.14, 0.14, 0.43) (0.11, 0.11, 0.33) 

 

Table 4-14: Weighted Normalized Fuzzy Decision Matrix. 

 C11 C12 ⸬ ⸬ C41 C42 
T1 (0.047, 0.067, 

0.086) 

(0.011, 0.019, 

0.027) 
‥‥ ‥‥ (0.021, 0.035, 

0.049) 

(0.189, 0.265, 

0.340) 

T2 (0.028, 0.047, 

0.067) 

(0.003, 0.011, 

0.019) 
‥‥ ‥‥ (0.007, 0.021, 

0.035) 

(0.037, 0.113, 

0.189) 

⸬ ‥‥ ‥‥ ‥‥ ‥‥ ‥‥ ‥‥ 

⸬ ‥‥ ‥‥ ‥‥ ‥‥ ‥‥ ‥‥ 
T7 (0.047, 0.067, 

0.086) 

(0.019, 0.027, 

0.034) 
‥‥ ‥‥ (0.007, 0.021, 

0.035) 

(0.037, 0.113, 

0.189) 

T8 (0.009, 0.009, 

0.028) 

(0.003, 0.003, 

0.011) 
‥‥ ‥‥ (0.007, 0.007, 

0.021) 

(0.037, 0.037, 

0.113) 

 

The Fuzzy Positive Ideal Solution (FPIS) and Fuzzy Negative Ideal Solution (FNIS) 

values are next calculated to help in calculating the distance of each alternative from 

ideal solutions. 

 𝐹𝑃𝐼𝑆 = 𝐴∗ = (𝑣̃1
∗, 𝑣̃2

∗, . . . . , 𝑣̃𝑛
∗)          ;           𝑣̃𝑗

∗ = 𝑚𝑎𝑥𝑖(𝑣𝑖𝑗3) (45) 

 𝐹𝑁𝐼𝑆 = 𝐴− = (𝑣̃1
−, 𝑣̃2

−, . . . . , 𝑣̃𝑛
−)       ;           𝑣̃𝑗

− = 𝑚𝑖𝑛𝑖(𝑣𝑖𝑗1)  (46) 

 𝑑𝑖
∗ = ∑ 𝑑(𝑣̃𝑖𝑗, 𝑣̃𝑗

∗) 𝑛
𝑗=1  (47) 

 𝑑𝑖
− = ∑ 𝑑(𝑣̃𝑖𝑗, 𝑣̃𝑗

−) 𝑛
𝑗=1  (48) 
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 𝑑(Ã, 𝐵̃) = √
1

3
((𝑎1 − 𝑏1)2 + (𝑎2 − 𝑏2)2 + (𝑎3 − 𝑏3)2)  (49) 

Table 4-15 showcases the calculated values for FPIS and FNIS. 

Table 4-15: Calculated FPIS and FNIS Values. 

 FPIS (A*) FNIS (A-) 

C11 (0.06704, 0.08619, 0.08619) (0.00958, 0.00958, 0.02873) 

C12 (0.01928, 0.027, 0.03471) (0.00386, 0.00386, 0.01157) 

C13 (0.2093, 0.2691, 0.2691) (0.0299, 0.0299, 0.0897) 

C21 (0.00363, 0.00605, 0.00847) (0.00121, 0.00121, 0.00363) 

C22 (0.06322, 0.08129, 0.08129) (0.00903, 0.00903, 0.0271) 

C23 (0.01124, 0.01574, 0.02024) (0.0022, 0.00225, 0.00675) 

C31 (0.07597, 0.09768, 0.09768) (0.01085, 0.01085, 0.03256) 

C32 (0.00958, 0.01232, 0.01232) (0.00137, 0.00137, 0.00411) 

C41 (0.02106, 0.0351, 0.04914) (0.00702, 0.00702, 0.02106) 

C42 (0.1893, 0.2651, 0.34086) (0.03787, 0.03787, 0.11362) 

 

Lastly the Closeness Coefficient (CCi) values are calculated to rank the technologies 

using equation: 

 𝐶𝐶𝑖 =
𝑑𝑖

−

𝑑𝑖
∗+𝑑𝑖

− (50) 

Closeness coefficient calculations and obtained rankings are presented in Table 4-16 

and Figure 4-5. 

Table 4-16: Obtained Rankings for the Technologies. 

Code Technology Name D* D- CCi Rank 
T1 Big Data Analytics 0.04849 0.63418 0.92897 2 

T2 Cloud Computing 0.42419 0.27547 0.39372 4 

T3 Cyber Physical Systems 0.02399 0.65484 0.96466 1 

T4 Internet of Things 0.60449 0.08748 0.12643 7 

T5 Computer Simulations 0.44754 0.24710 0.35573 5 

T6 Blockchain 0.52131 0.17184 0.24792 6 

T7 Autonomous/Industrial Robots 0.27892 0.42141 0.60174 3 

T8 Additive Manufacturing 0.67560 0 0 8 
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Figure 4-5: Industry 4.0 Technologies Rankings. 

The results obtained can help the firm to understand which technologies are the most 

suitable to be implemented based on the given criteria. 

4.1.4. Sensitivity analysis 

Sensitivity analysis is also performed in this model to measure the sensitivity of the 

developed model to the changes in criteria/sub-criteria weightings. Two sets of 

experiments have been considered. In the first experiment, in each trial, one sub-criteria 

weight is assigned to be as 0.64 while other weights are the same and equal to 0.04. In 

the second experiment, at each trial, one sub-criteria weight will be 0.37 while other 

sub-criteria will have the same weight equal to 0.07. Table 4-17 and Table 4-18 tabulate 

sensitivity results from experiments 1 and 2, respectively 

Table 4-17: Experiment 1 Sensitivity Analysis Results. 

 S1 

(W11=0.64) 
S2 
(W12=0.64) 

S3 
(W13=0.64) 

⸬ S8 
(W32=0.64) 

S9 
(W41=0.64) 

S10 
(W42=0.64) 

T1 0.551 0.713 0.934 ‥‥ 0.445 0.916 0.924 

T2 0.438 0.341 0.468 ‥‥ 0.298 0.432 0.341 

T3 0.554 0.95 0.956 ‥‥ 0.638 0.944 0.95 

⸬ ‥‥ ‥‥ ‥‥ ‥‥ ‥‥ ‥‥ ‥‥ 

T6 0.407 0.303 0.121 ‥‥ 0.434 0.39 0.303 

T7 0.533 0.892 0.76 ‥‥ 0.905 0.587 0.48 

T8 0 0 0 ‥‥ 0 0 0 
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Table 4-18: Experiment 2 Sensitivity Analysis Results. 

 S1 

(W11=0.37) 

S2 

(W12=0.37) 

S3 

(W13=0.37) 

⸬ S8 

(W32=0.37) 

S9 

(W41=0.37) 

S10 

(W42=0.37) 

T1 0.804 0.769 0.88 ‥‥ 0.624 0.865 0.871 

T2 0.441 0.378 0.441 ‥‥ 0.352 0.421 0.378 

T3 0.92 0.914 0.92 ‥‥ 0.754 0.91 0.914 

⸬ ‥‥ ‥‥ ‥‥ ‥‥ ‥‥ ‥‥ ‥‥ 

T6 0.38 0.313 0.218 ‥‥ 0.38 0.353 0.313 

T7 0.754 0.817 0.754 ‥‥ 0.829 0.672 0.616 

T8 0 0 0 ‥‥ 0 0 0 

 

Figure 4-6 (a) illustrate the radar chart obtained for experiment 1, and Figure 4-6 (b) 

illustrate the radar chart obtained for experiment 2. 

 
(a) 

 
(b) 

Figure 4-6: Sensitivity Results for (a) Experiment 1 and (b) Experiment 2. 

The radar chart for experiment 1 showcases high degree of sensitivity of developed 

model to changes in the criteria weight. On the other hand, radar chart for experiment 

2 showcases low sensitivity of the model to changes in criteria weights. This conclusion 

is apparent since the shape of lines in experiment 2 are more circular than experiment 

1. From Figure 4-6 it can be concluded that the technology selection model is relatively 

sensitive to the sub-criterion weights. This result is expected since this technology 

selection model should depend on firm’s requirements and goals. 

4.2. Industry 4.0 Readiness Assessment Methodology and Implementation 

Most of the readiness models found in literature are complex which make them not 

suitable for decision makers that are recently exposed to the idea of Industry 4.0. Hence, 

a simple readiness model is created in this section that includes discrete questions which 

can be replied by simple “yes” or “no” answers. For every “yes” answer, the firm obtain 

a single point whereas for every “no” answer, no points will be allocated to the firm 

[46]. According to the Industry 4.0 framework developed in this thesis, the readiness 
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assessment section comes after the technology selection section. The reason for this is 

to exclude the technologies that are not suitable for the firm from readiness assessment. 

In previous section, it has been concluded that additive manufacturing technology is 

the least important technology to the firm. Hence, this specific technology can be 

omitted from the readiness assessment. In here, since the readiness assessment was 

performed prior to technology selection section in the thesis timeline, additive 

manufacturing is also included as one of the technologies. 

4.2.1. Developed questions for the Industry 4.0 readiness assessment 

Questions developed in the readiness model cover four main technology areas named 

as: Cyber Physical Systems, Additive Manufacturing, Internet of Things, and 

Industrial/Autonomous Robots. The category of CPS technologies itself includes other 

technologies like: Computer Simulations, Big Data Analytics, Blockchain, and Cloud 

Computing [46]. For the CPS category, questions asked follow four main dimensions 

of data acquisition, security, connectivity, and infrastructure. Questions asked for this 

category of technology are shown in Figure 4-7. 

 

Figure 4-7: CPS Technology Readiness Questions. 
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Next category of technology is the Additive Manufacturing. Availability of 3D printers 

and 3D modeling software, availability of skilled workers that are familiar with 3D 

printing concepts, and availability of infrastructure in terms of post treatment 

equipment and raw material supply are counted as most important areas that the 

questions asked for this category tackle. Figure 4-8 represents the questions asked for 

the Additive Manufacturing technology. 

 

Figure 4-8: Additive Manufacturing Technology Readiness Questions. 

The IoT category includes RFID and WSN technologies [46]. Three categories of 

questions have been assigned for the IoT technologies. Infrastructure, data monitoring, 

and skilled workers are the categories of questions. Questions for the IoT readiness 

assessment are shown in the Figure 4-9. 
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Figure 4-9: IoT Technology Readiness Questions. 

The last category of technologies is the Industrial/Autonomous Robots category which 

includes following asked questions as shown in the Figure 4-10. 
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Figure 4-10: Industrial/Autonomous Robots Technology Readiness Questions. 

4.2.2. Analysis and results obtained 

After the firm has answered all the corresponding questions for each category of 

technology, below equations are used to calculate the readiness and weighted readiness 

score for each technology [46]. 

 𝑅𝑛 = 
∑ 𝑄𝑛𝑖

𝑚
𝑖=1

𝑍𝑛
 (51) 

 𝑊𝑅𝑛 = 𝑊𝑛 ×
∑ 𝑄𝑛𝑖

𝑚
𝑖=1

𝑍𝑛
 (52) 

Qni is the point obtained from answering the question for technology ‘n’. Zn is the 

maximum score possible for the technology ‘n’. Rn is the readiness score of the 

technology ‘n’. m is the total number of questions available for each technology. Lastly, 

Wn and WRn relate to weight assigned and weighted readiness score for the technology 

‘n’. 

Table 4-19 tabulates the results obtained from the survey response done by the expert 

from an aluminum extrusion factory in Jordan. 
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Table 4-19: Readiness Assessment Results Obtained [46]. 

 Cyber Physical 

System 

Additive 

Manufacturing 

Internet of 

Things 

Industrial and 

Autonomous Robots 

Zn 5 6 9 4 

Qni 2 3 4 2 

Wn 0.3 (30%) 0.1 (10%) 0.2 (20%) 0.4 (40%) 

Rn 0.4 0.5 0.44 0.5 

WRn 0.12 0.05 0.088 0.2 

 

The calculated readiness score for each technology show that the firm is more prepared 

toward implementation of Additive Manufacturing and Industrial/Autonomous Robots 

in comparison to other two categories of technologies due to higher degree of readiness 

obtained. Figure 4-11 provides a comparison between readiness scores obtained for 

each technology. 

 

Figure 4-11: Calculated Readiness Scores for each Technology. 

Next, the total readiness percentage for the firm can be calculated using equations 

below where k is the total number of technologies considered in the model: 

 𝑅𝑡 = ∑ 𝑊𝑅𝑛
𝑘
𝑛=1  (53) 

 %𝑅𝑡 = 𝑅𝑡 × 100 (54) 
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After obtaining the total degree of readiness percentage, firm owners can refer to Table 

4-20 and Figure 4-12 to understand the current readiness level of their industry. 

Table 4-20: Readiness Level Index [46]. 

Readiness 

Level 

Category Evaluation Percentage 

Readiness 

Range 

0 Not Prepared The firm has high shortage in infrastructure and skilled 

workers. 

0<Rt%<20 

1 Primary There is an indication of limited availability of 

infrastructure and skilled workers within the firm. 

20<Rt%<40 

2 Intermediate The firm is correctly working toward Industry 4.0 

technologies execution. 

40<Rt%<60 

3 Progressive The firm has improved knowledge and infrastructure 

but requires few modifications and investments. 

60<Rt%<80 

4 Prepared The firm is fully prepared to convert to Industry 4.0. 80<Rt%<100 

 

 

Figure 4-12: Schematic Representation of Readiness Level Index. 

Based on obtained answers for the questions, the total degree of readiness for the firm 

is calculated as: 

 𝑅𝑡 = ∑ 𝑊𝑅𝑛
𝑘
𝑛=1 = 0.12 + 0.05 + 0.088 + 0.2 = 0.458 

 %𝑅𝑡 = 𝑅𝑡 × 100 = 0.458 × 100 = 45.8 % 

Total readiness percentage of 45.8 indicates that the firm is currently at the intermediate 

level in the developed scale. Hence, it can be understood that the firm is moving 

correctly toward implementation of Industry 4.0 technologies but also needs more 

investment and knowledge in this field.  
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Chapter 5. Conclusion and Future Work 

In this thesis, a decision model for implementation of Industry 4.0 technologies on 

manufacturing firms have been developed. Different aspects in Industry 4.0 such as 

technology selection, readiness assessment, and reference architecture selection have 

been combined to create this comprehensive framework. This thesis work also 

introduces new decision models for Industry 4.0 technology selection and readiness 

assessment. Due to limited availability of funds in implementing the full framework on 

a manufacturing firm, only the technology selection and readiness assessment stages of 

the framework have been implemented on a case study. Cyber-Physical Systems, Big 

Data Analytics, and Autonomous/Industrial Robots were the top three rated 

technologies with closeness coefficient scores of 0.964, 0.928, and 0.601, respectively. 

The firm achieved a readiness score of 45.8% after implementing the readiness 

assessment model showing that the firm is at an intermediate readiness level. 

As for the future work, a decision model for Industry 4.0 reference architecture 

selection can be developed to further clarify the reference architecture selection stage 

for the decision makers. Furthermore, the framework can be expanded so that it also 

includes the costs associated with implementation of each technology. 
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