

Mediterranean Journal of Chemistry 2016, 5(3), 450-457

Efficient and simple protocol employing borohydride systems to design a selective osthol-zirconium (OST-Zr) library from potential natural products

Radhakrishnan Viswanathan ^{1,2}, Imad A. Abu-Yousef^{3,*}, Amin F. Majdalawich ³, Prince E. Das ¹ and Srinivasan Narasimhan ^{1,*}

¹Asthagiri Herbal Research Foundation, 162A, Perungudi Industrial Estate, Perungudi, Chennai, India 600096

² Department of Chemical Engineering, University of Pretoria, Pretoria 0002, South Africa

³Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates

Abstract: "Drug likeness" of a molecule is the prime criterion for a molecule to exhibit the desired pharmaceutical activity. A pharmacophore, which describes molecular features that are necessary for molecular recognition of a ligand by a biological macromolecule, is well altered by the Structure Activity Relationship (SAR) guidelines through Hydrophobic Lipophilic Balance (HLB) demonstrated by the system. The tailoring is best accomplished by organic functional group interconversion on a potent natural product via a variety of synthetic methodologies available to date. Metal borohydrides (MBH₄) in particular are promising compounds as they can potentially serve varying HLB systems. The reagent acts on the substrate to cause reduction, hydroboration, or a combination of both outcomes for the purpose of rearrangement and fragmentation. Indeed, $Zr(BH_4)_4$ is expected to be more active and selective as a reducing agent compared to NaBH₄. This study aims at evaluating zirconium borohydride ($Zr(BH_4)_4$) in tetrahydrofuran (THF) as a reducing system to realize a more selective, meaningful and combinatorial osthol (OST) library from potential natural products and attempt to alternate preparation of the same in THF from known metal borohydrides, limiting reduction of the metal center versus metathesis.

Keywords: SAR (Structure Activity Relationship); HLB (Hydrophobic Lipophilic Balance); HTS (High Throughput Screening); metal borohydrides (MBH₄); metathesis

Introduction

Both electrophilic and nucleophilic boron reagents have been extensively utilized for modifying carbonyl-enes and -ynes to arrive at an appropriate product depending upon the reagent and conditions¹. Metal borohydrides of Ca and Li $(Ca(BH_4)_2 \text{ and LiBH}_4)$ are also known to hydroborate unsaturated systems in presence of esters with the exception being zinc borohydride ^{2,3}. The technique owes its superiority in avoiding borane dimethyl sulfide (BMS) and borane tetrahydrofuran (BTHF), which are relatively difficult systems to handle.

The anomalous nature of $Zn(BH_4)_2$ is well explained by its structure in contrast to other classes of borohydrides ⁴.

In a natural product with plethora of functionalities capable of being treated by metal

borohydrides and very reactive to promote hydroboration, reduction, or both in tandem, rearrangement followed by fragmentation is sought to generate a meaningful cocktail, which can be subjected to High Throughput Screening (HTS). Although this strategy is very simple and not robust, it is rather very efficient in scanning the permutation leading to a single entity. In our study, Zr(BH₄)₄-THF was chosen for analysis owing to high coordinating ability of Zr^{4+} . Due to its oxidizing in nature, Zr^{4+} can transform simple borohydride to borane, which can be used for functional group interconversion, being structurally similar to $Zn(BH_4)_2$ (Figure 1). The high reactivity exhibited by Zr(BH₄)₄ towards unsaturated and carbonyl compounds can well be exploited to arrive at the desired outcome.

*Corresponding author : *Imad A. Abu-Yousef, Srinivasan Narasimhan* Email adress : *iabuyousef@aus.edu, narasimhan_s@yahoo.com* DOI : <u>http://dx.doi.org/10.13171/mjc53/016041721/abuyousef</u> Received Mars 14th, 2016 Accepted April 4th, 2016 Published April 17th, 2016

Table 1. Structure of metal borohydrides ⁵

Figure 1. Structural similarity between $Zn(BH_4)_2$ and $Zr(BH_4)_4$.

An attempt has been made to prepare pure $Zr(BH_4)_4$ -THF from other available metal borohydrides via metathesis and selection of a reducing system by monitoring their reaction profiles and species obtained ⁶. In the literature, preparation of $Zr(BH_4)_4$ is claimed to be achieved by reacting NaZrF₅ with excess Al(BH₄)₃ ⁷ or reacting LiBH₄with ZrCl₄ either in solid state or in presence of a small quantity of ether ⁸. Pure solid Zr(BH₄)₄ is highly pyrophoric and is known to decompose rapidly in solid state ⁹. Hence, a solution of borohydride with prolonged shelf life in appropriate solvent, namely THF, becomes mandatory.

Experimental Section

ZrCl₄ was purchased from Fluka Fine Chemicals. THF of analytical grade from Merck was

distilled over benzophenone ketyl radical to ensure that it is moisture-free. The metal borohydrides of Li, Ca, and TBAB (tetra-*n*-butylammonium bromide) were prepared as per well documented methods ^{10,11}. HPLC analysis was performed on a Shimadzu LC10ATVP liquid chromatography fitted with a Luna 5µm column and UV-VIS detector. Acetonitrile:Water (60:40) (HPLC grade) was used as the mobile phase.

Preparation of metal borohydride/ZrCl₄ reducing systems

To a flame-dried assembly of 100 mL two-neck round-bottom flask with a magnetic pellet fitted with a condenser leading to a gas bubbler attachment, a gentle stream of nitrogen was passed. ZrCl₄ (6 mmol) was charged under nitrogen followed by 24 mmol of corresponding MBH₄. Dry THF (25 mL)

452

was introduced into the flask through double-pointed needle and the content was stirred at room temperature for 48 hours or refluxed for 7 hours. The clear supernatant solution was estimated for its H-(hydride) content by quenching aliquots with 2N H_2SO_4 and estimating the hydrogen evolved using a gas burette. The supernatant solution was used for the corresponding reaction.

Kinetic study

A mixture *m*-nitro of 2.5 mmol of methylbenzoate and а certain volume of MBH₄/ZrCl₄/THF solution were taken in a pre-dried side-arm flask and the volume was adjusted to 10 mL. The reaction mixture was stirred at ambient temperature and aliquots were withdrawn for the hydride estimation at suitable time intervals. The volume of MBH₄/ZrCl₄/THF solution was decided by estimating the hydride content of the reducing system and adding 5.2 volume of hydride (stoichiometry for ester reduction with allowances for loss in hydride due to moisture).

Design of combinatorial osthol-Zr (OST-Zr) library

Oven-dried 50 mL round-bottom flask equipped with a side arm and a magnetic pellet was connected to a take-off adaptor leading to a mercury bubbler. The entire assembly was cooled under stream of nitrogen, and 2.0 mmol of osthol was introduced instantaneously. Dry THF (10 mL) followed by 2.0 M of NaBH₄/ZrCl₄/THF reducing system (9.5 mL) was introduced into the flask via a syringe through a rubber septa fitted on the side arm. The content was stirred for 2 hours at room temperature and aliquots were drawn intermittently to monitor the disappearance of the starting material by Thin Liquid Chromatography (TLC). The reaction was quenched with ice-cold water while the reaction vessel was cooled with crushed ice. When hydrogen evolution ceased, 25% of ammonium hydroxide was added after complete precipitation of Zr(OH)₄. The entire content was subsequently diluted with water and extracted with ethyl acetate/THF (EA/THF) mixture followed by EA. The organic layer was washed with brine and dried with anhydrous Na₂SO₄ and evaporated to yield the corresponding combinatorial library of OST-Zr in good yield.

Results and Discussion

Metathesis studies of ZrCl₄ with other metal borohydrides in THF

Previously, Narasimhan and co-workers reacted $ZrCl_4$ with NaBH₄ (SBH) in THF to obtain $Zr(BH_4)_4$ and BH₃ mixture ⁶. The course of $Zr(BH_4)_4$ formation from $ZrCl_4$ and SBH was followed by measuring the hydrogen evolved from the reaction and estimating the H⁻ produced in the solution. The results are shown in **Figure 2**.

Figure 2. Kinetics of the formation of $Zr(BH_4)_4$.

Even though the solution contained 3.0 M of hydride, no clear discrete signal for BH_4^- was noticed until the 7th hour, which confirms initial

redox reaction and concomitant metathesis. Hence, the stoichiometry of the sequence was arrived as depicted in **Scheme 1**.

$$ZrCl_4 + 4NaBH_4 \xrightarrow{\text{THF}} Zr + 4BH_3 + 2H_2 + 4NaCl$$

$$25^{\circ}C$$

Scheme 1. Attempted synthesis of Zr(BH₄)₄.

Accordingly, 25% of H_2 liberation occurred and only 75% of BH_4^- was formed. The corresponding observation has been constructed by ¹¹B-NMR.

Boron-11 NMR Study

¹¹B-NMR experiments with clear supernatant THF solution of $Zr(BH_4)_4$ exhibited 3 resonance states (**Table 2**). BF₃-OEt₂ is used as a reference sample.

Table 2	Snecies	envisaged	during Zr	(BH.).	formation	in THF
1 abic 2.	species	chivisageu	uuring Li	(D114)4	Iomation	III IIII.

S. No.	Species	δ(ppm)	Multiplicity
1	BH ₃	-2	Quartet
2	BH_4	-7	Quintet
3	B_2H_7	-26	Septet

Hence, and as seen in **Table 2**, suppression of borane formation to predominantly drive metathesis is the objective. Metal borohydrides were employed to bring about metathesis exclusively avoid reduction of Zr^{4+} ion. Ca(BH₄)₂, Zn(BH₄)₂, LiBH₄, and Bu₄NBH₄ were chosen as the representative borohydride reagents to drive metathesis with ZrCl₄ in THF. As mentioned earlier, LiBH₄ in ether was utilized for synthesis of Zr(BH₄)₄⁸, and we proposed to obtain the same results using a polar aprotic solvent like THF. It is well documented that the formation of Bu₄N[Zr(BH₄)₅] can be accomplished by reacting Zr(BH₄)₄ and Bu₄NBH₄ in benzene at

ambient conditions ¹². Both LiBH₄ and Bu₄NBH₄ were chosen to evaluate their behavior in THF and any combination that excels in its reactivity towards multifunctional molecule will therefore be best suited for our purpose.

With the exception of Bu_4NBH_4 , which is prepared in an aqueous medium, all other metal borohydrides to drive metathesis were prepared, as shown in **Scheme 2**, by reacting SBH with metal halide salt in THF for a stipulated period of time as per the literature ¹⁰.

$$nNaBH_4 + MX_n \xrightarrow{THF} nNaX + M(BH_4)_n$$

$$M = Li, Ca, Zn$$
 $n = 1, 2, 3...$

Scheme 2. Preparation of precursor metal borohydrides from the corresponding halide salt.

The prepared metal borohydrides were and the solutions were analyzed using ¹¹B-NMR subsequently reacted with $ZrCl_4$ in THF (Scheme 3) (Table 3).

$$4 \operatorname{Bu}_{4}\operatorname{NBH}_{4} + \operatorname{ZrCl}_{4} \xrightarrow{\operatorname{THF}} 4 \operatorname{Bu}_{4}\operatorname{NCl} + \operatorname{Zr}(\operatorname{BH}_{4})_{4}$$

$$4 \operatorname{Ca}(\operatorname{BH}_{4})_{2} + 2 \operatorname{ZrCl}_{4} \xrightarrow{\operatorname{THF}} 4 \operatorname{Ca}(\operatorname{Cl}_{2} + 2 \operatorname{Zr}(\operatorname{BH}_{4})_{4}$$

$$4 \operatorname{LiBH}_{4} + \operatorname{ZrCl}_{4} \xrightarrow{\operatorname{THF}} 4 \operatorname{LiCl} + \operatorname{Zr}(\operatorname{BH}_{4})_{4}$$

Scheme 3. Attempted synthesis of $Zr(BH_4)_4$ from representative metal borohydrides.

S. No.	System	¹¹ BNMR Signal * (ppm)	Species
1	Zn(BH ₄) ₂ /ZrCl ₄	-42	Zn(BH ₄) ₂ quintet
		-16	
		-2	Borane quartet
2	Ca(BH ₄) ₂ /ZrCl ₄	-36	Ca(BH ₄) ₂ quintet
		-28	B ₂ H ₇ -septet
		-15	
		-8	Trace of $Zr(BH_4)_4$
		-0	Borane quartet
3	LiBH ₄ /ZrCl ₄	-42	LiBH ₄ quintet
		-25	B_2H_7 -septet
		-15	
		-12	
		-1	Borane quartet
4	TBAB/ZrCl ₄	-37	TBAB quintet
		-24	B_2H_7 -septet
		-15	
		-8	Trace of $Zr(BH_4)_4$

Table 3. Boron species envisaged during metathesis reaction between ZrCl₄ and representative metal borohydrides in THF

*BF₃.OEt₂ was used as a reference.

In all cases studied, except NaBH₄, the precursor metal borohydride remained in high concentration with trace quantities of $Zr(BH_4)_4$, and signals at -25 ppm and -1 ppm corresponding to B_2H_7 and BH_3 clearly suggest reduction of Zr^{4+} . Signals in the range of -10 to -15 ppm can presumably arise from the mono anionic species.

Evaluation of the reagent systems towards reduction

The reactivity of metal borohydride solutions from metathesis reaction were assessed by reacting

them with an aromatic ester, namely *m*-nitromethylbenzoate (**Scheme 4**). *m*-Nitro methyl benzoate was chosen as the representative substrate to evolve kinetics of reduction with various borohydride/ZrCl₄ systems in THF. Aliquots were obtained at various time intervals and quenched with 2M $(NH_4)_2SO_4$. The evolved hydrogen gas was measured using gas burette (**Table 4**). Upon completion of the reaction, the nitro group remained untouched as confirmed by IR measurements.

Scheme 4. Reactivity of metal borohydrides obtained from metathesis reactions.

Table 4. Kinetics of reduction of *m*-nitromethylbenzoate with a reducingcMBH₄/ZrCl₄/THF system

Time (min)	0	10	15	30	45	60	75	90	115	130	145	160	175	190
System	% Reaction													
NaBH ₄ /ZrCl ₄ /THF	0	40		68		80		92						
LiBH ₄ /ZrCl ₄ /THF	0		46.6		52	68	68		76				76	81.3
Zn(BH ₄) ₂ /ZrCl ₄ /THF	0	0	0	20			37	46		46.6	46.6	46.6		82.2
TBAB/ZrCl ₄ /THF	0		84	84	84		84							
Ca(BH ₄) ₂ /ZrCl ₄ /THF	0		40		40		60	60	60	60	60	60	60	

In all the reactions, the nitro group was unaffected. The order of reactivity of various

reducing systems in THF is as follows:

$TBAB/ZrCl_4 > LiBH_4/ZrCl_4 > Ca(BH_4)_2/ZrCl_4 > Zn(BH_4)_2/ZrCl_4$

It is well documented in literature that $Zr(BH_4)_4$ behaves as Lewis acid in a reaction with R_4NBH_4 and LiBH₄, yielding [NBu₄][Zr(BH₄)₅] and LiZr(BH₄)₅¹². This explains the order of reactivity towards esters. Even though a reducing system comprised of TBAB marginally surpasses SBH, NaBH₄/ZrCl₄/THF system was chosen for designing the combinatorial library due to cost effectiveness and better ¹¹B-NMR profile. It is noteworthy that a trivalent species can aid in enhancing reduction capabilities of a BH₄- and *vice versa* ¹³. A powerful "combinatorial reagent" containing BH₃/BH₄- is well realized through NaBH₄/ZrCl₄/THF system.

Design of combinatorial OST-Zr library

The reagent was tested upon osthol, a coumarin class of molecules with an additional isoprenyl and methoxy moiety ¹⁴. Relevance of biological activity of osthol is well documented in the literature ¹⁵, and hence, it is worthy to study its analogs and arrive at a rationale with SAR formalism. To this end, osthol was treated with excess hydride to ensure completion of reaction as shown in **Scheme 5**. The reaction in THF with NaBH₄/ZrCl₄/THF reducing system was monitored periodically for 2 hours until the substrate vanished.

Scheme 5. Library of osthol analogs employing NaBH₄/ZrCl₄/THF reducing system.

The mixture was worked up using ammonium hydroxide to yield the mixture. As shown in **Figure 3** and **Table 5**, HPLC analysis on a reverse phase

(RP) phenomenex column with UV detector set at 205 nm exhibited 12 peaks with percentage peak areas.

Figure 3. HPLC chromatogram of OST-Zr library.

Peak No.	Retention	Area	Height	W05	Area	Height
	Time	[mV.s.]	[mV]	[min.]	[%]	[%]
1	2.733	994.4124	62.6049	0.1600	0.8499	1.1088
2	2.927	776.8155	67.4334	0.2200	0.6639	1.1943
3	3.173	1840.5976	117.9011	0.2000	1.5731	2.0881
4	3.973	15710.9129	1002.8093	0.2267	13.4273	17.7605
5	4.733	3790.1901	147.6512	0.3600	3.2393	2.6150
6	5.493	4427.7678	427.8726	0.1867	3.7842	7.5779
7	5.800	14659.1926	1002.2826	0.2200	12.5285	17.7512
8	6.412	10103.0176	910.4496	0.1667	8.6345	16.1247
9	7.007	3150.1744	120.6316	0.2867	2.6923	2.1365
10	7.767	776.7693	42.3989	0.3600	0.6656	0.7509
11	8.080	1223.7135	44.4892	0.6333	1.0458	0.7879
12	8.807	707.1614	31.8901	0.4133	0.6044	0.5648
13	9.507	1390.5606	35.5104	0.7200	1.1884	0.6289
14	10.173	3651.4934	116.0568	0.3000	3.1207	2.0555
15	11.160	1810.2434	47.4526	0.6800	1.5471	0.8404
16	12.273	676.3804	25.9815	0.5200	0.5781	0.4602
17	12.767	3131.9740	39.0271	1.7867	2.6767	0.6912
18	14.600	390.2025	18.4406	0.3733	0.3335	0.3266
19	14.960	458.3020	20.1146	0.4000	0.3917	0.3562
20	16.207	26173.3859	933.7167	0.3600	22.3691	16.5368
21	17.100	3941.8494	78.4846	0.8467	3.3689	1.3900
22	18.727	1121.5591	20.5466	1.0000	0.9585	0.3639
23	20.633	4037.6683	108.2753	0.4467	3.4508	1.9176
24	21.307	980.6145	20.6780	1.0733	0.8381	0.3662
25	22.553	1067.1210	15.4004	0.7467	0.9120	0.2728
26	26.240	7263.8617	150.4594	0.5733	6.2081	2.6647
27	28.047	324.8539	8.5089	0.7267	0.2776	0.1507
28	29.133	590.0719	16.9672	0.5467	0.5043	0.3009
29	36.233	738.9559	5.5480	1.5600	0.6315	0.0983
30	41.613	334.5785	2.7227	1.6200	0.2859	0.0482
31	44.840	760.7024	3.9630	1.9667	0.6502	0.0703

Table 5. HPLC analysis on a RP phenomenex column with UV detector set at 205 nm

The vast majority of polar peaks are spanned in the time range of 0 to 20 min. Our aim is to analytically understand the maximized product generation that could possibly result in *hit to lead*, which is one of the early stages of drug discovery. A powerful hyphenated chromatographic method (LC-MS) coupled with robust HTS is the ultimatum in the study.

A simple demonstration of attempted library design with NaBH₄/ZrCl₄/THF reducing system on osthol resulted in 12 peaks with percentage peak area ≥ 2 . A wide variety of metal borohydride reducing systems with different reactivity potentials to influence functional group interconversion are best suited for conventional parallel synthetic strategies towards combinatorial libraries. Chances of reaction selectivity is welcome but the choice of work up and reaction parameter like solvent stoichiometry further widens the multiplicative factor of product formation. Moreover, when the libraries are profiled with hyphenated chromatographic techniques coupled with appropriate HTS, this will aid in achieving the *hit* molecule.

Conclusion

A simple demonstration of attempted osthol library design with NaBH₄/ZrCl₄/THF reducing system on osthol resulted in 12 peaks which are taken for HTS. The method is quiet simple with manageable chemical entities which are closely related structurally. Zr(BH₄)₄ is expected to be more active and selective as a reducing agent compared to NaBH₄. In principle, it can be expected to have a good SAR and mimic a fraction of potent natural product extract. A wide variety of metal borohydride reducing systems with different reactivity potentials to influence functional group interconversion are best suited for conventional parallel synthetic strategies towards combinatorial libraries. Chances of reaction selectivity depend on the nature and number of boron species formed which can aid in multiplicative product formation. Additionally the choice of reaction work-up allows the flexibility to achieve functionally different molecule which broadens the scope to realize a hit molecule. Our study demonstrates that Zr(BH₄)₄-THF is an effective reducing system that allows the design of a more selective, meaningful and combinatorial osthol (OST) library from potential natural products. Our study also shows that comparable results are achieved by preparing similar systems using other known metal borohydrides, limiting reduction of the metal center versus metathesis.

References

- 1- A. Pelter, K. Smith and H. C. Brown, Borane Reagents; Academic Press: New York, **1988**.
- 2- S. Narasimhan, K. G. Prasad, S. Madhavan, Synthetic. Commun., **1995**, 25(11), 1689-1697.
- 3- S. Narasimhan, K. G. Prasad, S. Madhavan, Synthetic. Commun., **1996**, 26(4), 703-706.
- 4- S. Narasimhan, R. Balakumar, *Alsrichimica Acta.*, **1998**, 31(1), 19-26.
- 5- T. J. Marks, J. R. Kolb, *Chem. Soc. Rev.*, **1977**, 77, 263-293.

- 6- S. Narasimhan, R. Balakumar, *Synthetic*. *Commun.*, **2000**, 30(23), 4387-4395.
- 7- H. R. Hoekstra, J. J. Katz, J. Am. Chem. Soc., 1949, 71, 2488-2492.
- B. D. James, B. E. Smith, Synth. React. Inorg. Metal-Org. Chem., 1974, 4, 461-465.
- 9- E. Jeon, Y. W. E. Cho, J. Alloys Compd., 2006, 422(1-2), 273-275.
- H. C. Brown, Y. M. Choi, S. Narasimhan, *Inorg. Chem.*, **1981**, 20, 4454- 4456.
- S. Narasimhan, S. Swarnalakshmi, R. Balakumar, S. Velmathi, *Synthetic. Commun.*, **1999**, 29(4), 685-689.
- 12- M. Ehemann, H. Noth, Z. Anrog. Allg. Chem., 1971, 386, 87-101.
- 13- H. C. Brown, S. C. Kim, S. Krishnamurthy, *J. Org. Chem.*, **1980**, 45, 1-12.
- 14- S. K. Kapwoor, *Phytochemistry*, **1968**, 7, 147-149.
- 15- W. C. Evans, Trease and Evans Pharmacognasy, 14th Edition; W. B. Saunders Co.: London, **1996**.