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Abstract

In this thesis, we investigate the numerical solution of fractional differential equations

subject to initial and boundary conditions. For the solution of such equations, we use

two iterative approaches. First, we apply the Laplace Decomposition Method, which is a

combination of two approaches, namely the Laplace Transform and the Adomian Decom-

position Methods. Then, we implement the Differential Transformation Method. Finally,

we apply the above mentioned methods to real life problems such as solving complex non-

linear Enzyme Inhibitor Reactions Model and a COVID-19 Model.

Keywords: Fractional derivatives, Fractional integration, Caputo fractional deriva-

tive, Liouville fractional derivative, Laplace transform, Adomian Decomposition.
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Chapter 1: Introduction

In various areas of science and engineering, differential equations are used to model dy-

namical systems. Throughout the last two decades, many scholars have focused their at-

tention on fractional differential equations. Most of the numerical methods used to solve

ordinary differential equations have been modified to solve fractional differential equa-

tions to provide approximate solutions. Fractional Calculus is a branch of mathematics

that evolved from the standard definitions of calculus derivative and integral operators just

as fractional exponents emerged from integer-value exponents. It investigates the prop-

erties of derivatives and integrals of fractional order known as differintegrals. It has a

history that spans more than three centuries. Despite its difficult mathematical basis, Frac-

tional Calculus originated from some basic derivation-related questions, such as: what

does the half order derivative represent if the first-order derivative represents geometri-

cally the slope of a tangent line? [1] The origins of this question may be traced back to

Leibniz’s initial suggestion of fractional derivatives in 1695 [2]. Those types of questions

have widened the broads for understanding the connection between mathematical model-

ing and real life problems. Fractional Calculus is used in a broad range of engineering and

science domains, including optics, viscoelasticity,  fluid mechanics, electromagnetics, sig-

nal processing, and biological population models [3]. It is also used as a tool for modeling

a variety of complex systems.

The aim of the thesis is three folded. Firstly, we will talk about mathematical modeling.

Everything in mathematical biology, mathematical chemistry, physics, and engineering

starts with a model. In specific, Fractional Calculus has been used as a tool for modeling

a variety of complex systems. Secondly, we will discuss different numerical solutions

of fractional derivatives. We will analyze two specific methods. The Laplace Adomian

Decomposition method and the Fractional Differential TransformationMethod. Lastly, we

will highlight some applications of Fractional Derivatives. Wewill implement the methods

discussed onto an Enzyme Inhibitor Reaction Model and a COVID-19 model.

1.1 Mathematical Modeling

Mathematical modeling is the discipline in Mathematics that allows translating and in-

terpreting problems from an application perspective into flexible mathematical formula-

tions which can be analyzed to offer better insight and useful guidance for the originating

application. Models express our perceptions about how the world works. By applying
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mathematical modeling, we transfer these views into the mathematical language to help in

formulating concepts and understanding underlying assumptions. Mathematical modeling

may be utilized for a variety of purposes. The degree to which a certain goal is met is de-

termined by both the state of information about a system and the quality of the modeling.

Scientists use mathematical modeling to enhance their understanding and test the effect of

system adjustments to help in their decision making [4]. Mathematical modeling is essen-

tial in various applications. It provides precision and allows a thorough understanding of

the model. Furthermore, it organizes the model so we can have better control of the system

[5].

Mathematical models are classified into various types. For example, a continuous

model means the dependent variable is defined over a continuous space time, a stochastic

model means some elements are probabilistic, a deterministic model means it is based on

cause-effect analysis, while lumpedmodelmeans the dependent variables are not a function

of spatial position. The creation of models such as ours began in the late 19th century. The

first book explaining mathematical models was by Brill and Kline from the Royal Tech-

nical University in Munich in 1904. In the last century, mathematical modeling has been

intensively utilized in natural sciences, engineering, medicine, social sciences, business,

military operations, music, and philosophy [6]-[19]. In this thesis, we discuss fractional

differential equations which are the new trend in modeling physical phenomena because

of the non-locality of the fractional derivatives. This allows us to measure the hereditary

properties of the system. Fractional derivatives have been intensively used for modeling

the physical properties of various systems. The main advantage of the applications of frac-

tional calculus is that the mathematical models based on fractional-order are usually more

accurate than the ones based on integer orders. Furthermore, there are several cases in

which integer-order mathematical models, including nonlinear models, fail to perform ef-

fectively [20, 21, 22]. Numerous effective analytical and numerical approaches have been

established and presented, but further inquiry and research are still required [23]. Under-

standing the mathematical modeling of different systems is a crucial step in transitioning

from a theoretical perspective to mathematical applications.

1.2 Numerical Solutions of Fractional Differential Equations

When analytical approaches fail, numerical methods can be used to get approximate an-

swers. Although they will never be as generic as analytical solutions, they can be just as
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effective in certain situations. The processes represented in the model are typically repli-

cated via numerical solution of model equations [4]. The numerical solution of difference

equations is precise because we can follow the evolution of the system using the principles

provided out in the equations. Since mathematical models are usually nonlinear, exact

solutions are difficult to acquire. In addition, those kinds of systems do not have exact

solutions because they do not have bounded variations. Although numerical methods are

widely utilized, they have some disadvantages. In fact, numerical stability is not guaran-

teed and matching the data to the numerical solution is costly in terms of time. As a result,

numerical approaches are used to reach approximate solutions. For instance, Abukhaled

solved a nonlinear singular two-point boundary value problem by employing the Vari-

ational Iterative Method [24]. Later, his work was modified by Khuri and Wazwaz to

solve boundary value problems that arise in electric conducting solids, elliptic BVPs, and

Volterra integro-differential equations of Lane-Emden and the Emden-Fowler problems

[25, 26, 27, 28]. Kafri and Khuri solved the nonlinear one-dimensional Bratu’s problem

by coupling Green’s Function and fixed-point iterative methods (GFIM) [29]. Abukhaled

et al. employed the GFIM to construct a semi-analytical solution of amperometric enzy-

matic reactions, the one-dimensional curvature equation, strong nonlinear oscillators, and

a class of boundary value problems that occur in heat transfer [30, 31, 32, 33]. Last but

not least, Khuri et al. successfully solved Toresh’s problem, Bratu-like equations orig-

inating in electrospinning process equations, and boundary value problems using GFIM

[35, 36, 34]. Analytically, solving fractional differential equations can be done in a variety

of ways. The efficiency of numerical approaches is traditionally assessed using concepts

like convergence, consistency, and stability. The method’s consistency order is frequently

used as a benchmark for comparing approaches. The order of the method informs the user

of the rate at which the error over a fixed interval would decrease when the step length is

reduced [37]. In this thesis, we are implementing the Laplace Adomian Decomposition

Method and the Differential Transformation Method on different mathematical models.

1.3 Application of Fractional Differential Equations

Fractional Calculus has applications in practically every discipline of scientific and social

sciences, economics, finance, health sciences, and engineering [38, 39, 40]. It is been used

to simulate physical and technical processes that are best characterized by fractional differ-

ential equations.  These types of models are utilized for systems that need precise damping
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modeling. Various analytical and numerical approaches, as well as their applicability to

novel problems, have been suggested in recent years. It is believed that the first appli-

cation of Fractional Calculus was presented by Abel in 1823 with his tautochrone prob-

lem. The problem entails establishing a curve shape such that the time taken for an object

to slide down the curve under uniform gravity and without friction is independent of the

starting position on the curve [41, 42]. The use of the memory effect of fractional deriva-

tives in building simple mathematical models occurs at a significant cost in terms of nu-

merical solvability. Any method of a non-integer derivative must, among other things,

care for its non-local structure, which entails a large amount of storage and high total al-

gorithm complexity [43]. Therefore, Fractional Calculus has shown to be a useful tool for

describing novel and recent applications in control theory, viscoelasticity, and generalized

voltage dividers in the past few decades [44]. To tackle Fractional Initial Value Prob-

lems, Abdulaziz et al. [45] adopted the Homotopy Perturbation Method. It is also been

modified to solve a variety of fractional differential equations, both linear and nonlinear

[46]. Sakar et al. [47] proposed a Legendre reproducing kernel method to solve fractional

Bratu-type equations and obtained an extremely accurate approximation. Quasi-Method

Newton’s [48], and Bezier CurveMethod [49] are some of the other approaches for solving

fractional differential equations. The harmonic oscillator is also a basic model in classical

mechanics that may be used to a wide range of physical, chemical, and engineering appli-

cations. Generalizing to fractional derivatives, that entails replacing the second derivative

in a classical oscillator equation with a fractional-order derivative, is still under investiga-

tion, and the properties of the fractional oscillator for various types of differintegrals are

currently being studied by different scholars [1]. There are a variety of other approximate

analytical solutions like the Adomian decomposition for solving nonlinear fractional dif-

ferential equations [50], or by using Differential Transformation Method [51] which we

will discuss in detail later on. In this thesis, we will implement the later methods into

solving an Enzyme Inhibitor Reaction Model and a COVID-19 model.
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Chapter 2: Literature Review

2.1 Gamma Function

In the early 16th century, the Gamma function was first introduced by the Swiss mathe-

matician Leonhard Euler. It is essentially a generalization of the factorial to all non integer

values. Due to its significant, it is used in various areas like number theory, definite inte-

gration, asymptotic series, and the Riemann zeta function.

The Gamma function is defined as follows

Γ(x) =

∫ ∞

0

e−ttx−1dt, x ∈ R+. (2.1)

The improper integral (2.1) converges for x > 0.

Proof. we start by dividing the integral as a sum of two terms

Γ(x) =

∫ 1

0

tx−1e−tdt+

∫ ∞

1

tx−1e−tdt

For the first term, since the function e−t is decreasing, it attains its maximum on the interval

[0, 1] at t = 0, so

Γ(x) =

∫ 1

0

tx−1e−tdt <

∫ 1

0

tx−1dt

=
tx

x

∣∣∣∣1
0

=
1

x

(2.2)

Since x > 0, by Direct Comparison Test we conclude that
∫ 1

0
tx−1e−tdt converges. As for

the second term, the exponential grows faster than any polynomial, for every x so we can

find N ∈ N, big enough so that e t
2 ≥ tx−1, for t ∈ [N,+∞). Thus∫ ∞

1

tx−1e−tdt =

∫ N

1

tx−1e−tdt+

∫ ∞

N

tx−1e−tdt

≤
∫ N

1

tx−1e−tdt+

∫ ∞

N

e
t
2 e−tdt

=

∫ N

1

tx−1e−tdt+

∫ ∞

N

e
−t
2 dt

The first term
∫ N

1
tx−1e−tdt is finite real number because the function tx−1et is continuous

on [1, N ],

∫ ∞

N

e
−t
2 dt = − 1

2
e

−t
2

∣∣∣∣∞
N

=
1

2
e

−N
2 is convergent. Hence,

∫ ∞

1

tx−1e−tdt < ∞
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The Gamma functions holds some fundamental properties. From (2.1) we can conclude

that

Γ(n) =

∫ ∞

0

xn−1e−xdx = (n− 1)!, for n ∈ N and

Γ(n+ 1) =

∫ ∞

0

xne−xdx = n!.
(2.3)

Also, the Gamma function satisfies the recursive property

Γ(n+ 1) = n Γ(n). (2.4)

Proof. Using (2.3) we have [52]:

Γ(n+ 1) =

∫ ∞

0

xne−xdx = n!. (2.5)

Now, let u = xn, dv = e−xdx, du = nxn−1dx and v = −e−x we get

Γ(n+ 1) = − xne−x
∣∣∞
0
−
∫ ∞

0

xn−1n
(
−e−x

)
dx,

= n

∫ ∞

0

xn−1e−xdx = nΓ(n).

(2.6)

Thus,

Γ(n+ 1) = nΓ(n). (2.7)

We know that Γ(n + 1) = n! where n is a non-negative integer. We will introduce some

remarkable values of theGamma function that are important in probability and engineering.

One of the most useful values Γ(1) = 1

Proof. Using the definition (2.1)

Γ(1) =

∫ ∞

0

x1−1e−xdx,

Γ(1) =

∫ ∞

0

e−xdx,

Γ(1) = − 1

e−x

∣∣∣∣∞
0

,

Γ(1) = − 1

e−∞ − (−e)−0 = 0− (−1) = 1.

(2.8)

Another special value of Gamma function that is frequently used is

Γ

(
1

2

)
=

√
π. (2.9)
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Proof. [53]

Γ

(
1

2

)
=

∫ ∞

0

t
1
2
−1e−xdx,

Γ

(
1

2

)
=

∫ ∞

0

1√
t
e−xdx.

(2.10)

We let x = y2, dx = 2ydy and we obtain

Γ

(
1

2

)
=

∫ ∞

0

1

y
e−y22ydy = 2

∫ ∞

0

e−y2dy, (2.11)

Simplifying, we obtain [
Γ

(
1

2

)]2
= 4

∫ ∞

0

∫ ∞

0

e−
(
x2+y2

)
dxdy (2.12)

Using polar coordinates, with r2 = x2 + y2, (2.12) becomes

[
Γ

(
1

2

)]2
= 4

∫ π
2

0

∫ ∞

0

e−r2rdrdθ = 4 [θ]
π
2
0

[
e−r2

−2

]∞
0

= 4(
π

2
)(
1

2
) = π. (2.13)

As for the negative numbers z, Γ(z) is not defined. Therefore, we need to use the recursion

relation to define it as follow:

Γ(z) =
1

z
Γ(z + 1) for z < 0. (2.14)

Example 2.1.

Γ(−0.2) =
1

−0.2
Γ(0.8),

Γ(−1.2) =
1

(−0.2)(−1.2)
Γ(0.8).

(2.15)

2.2 Mittag Leffler Function

The Mittag-Leffler function was introduced to address a classical complex analysis prob-

lem, specifically, how to represent the technique of analytic continuation of power series

outside of their convergence disk. Its significance was rediscovered when the connection

between the Mittag-Leffler function and Fractional Calculus was completely established.

It is considered a generalization of the exponential function ex. It also has a significant

role in solving fractional differential equations and fractional integral equations of integer

order known as differintegrals. Its significance lies in its direct involvement in physics,

chemistry, biology, and engineering [54].
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The Mittag-Leffler function of one parameter and two parameter equation are the most

common and extensively applicable functions. The generalization of the Mittag-Leffler

function of one parameter is defined as follows:

Eα(z) =
∞∑
n=0

zn

Γ(nα + 1)
, where α, z ∈ C with Re(α) > 0

The Mittag-Leffler function of two parameters α, β ∈ C with Re(α) > 0 is defined by

Eα,β(z) =
∞∑
n=0

zn

Γ(nα + β)
.

We obtain some well known functions by choosing specific values for α and β [54].

Example 2.2.

E1,1(z) = ez,

E1,2(z) =
ez − 1

z
,

E2,1

(
z2
)
= cosh(z),

E2,2

(
z2
)
=

sinh(z)

z
.

(2.16)

2.3 Laplace Transform

Laplace Transform is an integral transform commonly used in physics and engineering. It

was developed by Abel, Heaviside, Lerch, and Bromwich in the 19th century [55]. It is

named after the mathematician and astronomer Pierre-Simon Laplace. Although Laplace

Transform was known since the 19th century, the current use of it came about after World

War II.

Laplace Transform can be seen as an operator acting on functions. We shall see later

that when we apply Laplace Transform to differential equations, the later become algebraic

equations, and hence easier to handle. ,

Definition 2.3.1. For a function f defined on [0,+∞] and for s ∈ C, we define the Laplace

Transform of f at s b:

F (s) = L{f(t)} =

∫ ∞

0

e−stf(t)dt. (2.17)

For this integral to exist, we must have e−αt|f(t)| ≤ M for all t ≥ T , where α, M

and T are positive constants.
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Example 2.3. If f(t) = 1 for t ≥ 0, for all s > 0, we have

L{f(t)} =

∫ ∞

0

e−stdt

= lim
τ→∞

(
e−st

−s

∣∣∣∣τ
0

)
= lim

τ→∞

(
e−sτ

−s
+

1

s

)
=

1

s
.

(2.18)

Therefore, L{1} = 1
s
for s > 0

The inverse Laplace transform is the transformation into a function of time. If f(t) is

the inverse Laplace Transform of F (s), then L{f(t)} = F (s) and inverse can be written

as f(t) = L−1{F (s)}

Example 2.4. Let f(t) = eat for some a ∈ R. Then

L
{
eat
}
=

∫ ∞

0

e−steat dt

=

∫ ∞

0

e−(s−a)t dt

= − 1

s− a
e−(s−a)t

∣∣∣∣∞
0

, when s > a.

=
1

s− a
.

(2.19)

Example 2.5. Let f(t) = sint. Using Euler’s formula eit = cos t+ i sin t, we write

sin t =
eit − e−it

2i
.

Then

L{sin t} =
1

2i

∫ ∞

0

(
eit − e−it

)
e−st dt

=
1

2i

(
1

s− i
− 1

s+ i

)
=

1

s2 + 1
.

(2.20)

2.3.1 Solving Differential Equations Laplace Transformation is a powerful tool

for solving ordinary linear differential equations algebraically.

Theorem 2.3.1. Suppose f is of integer order, and that f is continuous and f ′ is piecewise

continuous on any interval 0 ≤ t ≤ A. The Laplace Transform of integer order derivatives

L{f ′(t)} = sL{f(t)} − f(0).
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Generalizing the theorem for any integer order derivative by applying the theoremmul-

tiple times we get:

L
{
f (n)(t)

}
= snL{f(t)} − sn−1f(0)− sn−2f ′(0),

− . . .− s2f (n−3)(0)− sf (n−2)(0)− f (n−1)(0).
(2.21)

Example 2.6. We shall solve the following IVP y′(t) = 5 − 2t, y(0) = 1 using Laplace

Transform. We start by applying Laplace Transform to both sides of the DE and we obtain

L{y′(t)} = L{5− 2t}

=
5

s
− 2

s2
.

Using Theorem 2.3.1, we have

sL{y(t)} − y(0) =
5

s
− 2

s2.

Since y(0) = 1, we divide both sides by s and we obtain

L(y(t)) = 1

s
+

5

s2
− 2

s3
.

Finally, we apply the inverse Laplace Transform to conclude that

y(t) = L−1{1
s
}+ L−1{ 5

s2
} − L−1{ 2

s3
}

= 1 + 5t− t2.

Example 2.7. Solve the initial value problem y′ + 2y = 4te−2t, y(0) = −3 using Laplace

Transformation method [53]. We start by applying Laplace Transform to both sides of the

DE and we obtain

L{y′}+ L{2y} = L
{
4te−2t

}
. (2.22)

Using Theorem 2.3.1, we have

sL{y} − y(0) + 2L{y} =
4

(s+ 2)2
. (2.23)

Simplifying

(sL{y} − (−3)) + 2L{y} =
4

(s+ 2)2
,

L{y}(s+ 2) + 3 =
4

(s+ 2)2
,

L{y}(s+ 2) =
4

(s+ 2)2
− 3.Hence

L{y} =
4

(s+ 2)3
− 3

(s+ 2)
=

4− 3(s+ 2)2

(s+ 2)3
=

−3s2 − 12s− 8

(s+ 2)3
.

(2.24)
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Using partial fractions decomposition

L{y} =
−3s2 − 12s− 8

(s+ 2)3
=

a

(s+ 2)3
+

b

(s+ 2)2
+

c

(s+ 2)

=
−3s2 − 12s− 8

(s+ 2)3
=

a

(s+ 2)3
+

b(s+ 2)

(s+ 2)2
+

c(s+ 2)2

(s+ 2)

=
−3s2 − 12s− 8

(s+ 2)3
=

a+ bs+ 2b+ cs2 + 4cs+ 4c

(s+ 2)3

=
−3s2 − 12s− 8

(s+ 2)3
=

cs2 + (b+ 4c)s+ (a+ 2b+ 4c)

(s+ 2)3
.

(2.25)

Equating the numerators, we obtain

c = −3, a = 4, b = 0.

Substituting the values back in L{y}, we have

L{y} =
−3s2 − 12s− 8

(s+ 2)3
=

4

(s+ 2)3
− 3

(s+ 2)
. (2.26)

Using inverse Laplace, we deduce that

y(t) = 4L−1

(
1

(s+ 2)3

)
− 3L−1

(
1

(s+ 2)

)
= 2t2e−2t − 3e−2t.

(2.27)
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Chapter 3: Fractional Calculus and Fractional Differential Equations

Fractional Calculus is the theory of having integrals and derivatives of arbitrary order,

which generalizes the concepts of integer-order differentiation and integration. The history

of Fractional Calculus dates back to 1695. It first appeared in a letter L’Hôpital wrote to

Leibniz asking about the nth derivative of the function

Dnf(x)

Dxn
(3.1)

and what would the result be if n = 1
2
. Leibniz responded that it would be “an apparent

paradox, from which one day useful consequences will be drawn” [56]. Later, Lacroix

mentioned fractional derivative in a paper published in 1819. He found the nth derivative

for y = xm whenm is a positive integer [56]. His formula is given by

dny

dxn
=

m!

(m− n)!
xm−n, m ≥ n

The idea behind this lies in generalizing the power rule. In fact, we have that

d

dx
(xn) = nxn−1,

d2

dx2
(xn) = n(n− 1)xn−2,

d3

dx3
(xn) = n(n− 1)(n− 2)xn−3.

(3.2)

By identifying the pattern, d3

dx3 (x
n) can be written as

d3

dx3
(xn) =

n(n− 1)(n− 2)(n− 3)(n− 4) . . . 3 · 2 · 1
(n− 3)(n− 4) . . . 3 · 2 · 1

xn−3. (3.3)

Using the factorial notation, we obtain that

dny

dxn
(xm) =

m!

(m− n)!
xm−n, m ≥ n

Then, Lacroix generalized the factorial using the Gamma function to extend the factorial to

any real number. As a result, we can write the derivative in terms of the Gamma function

dny

dxn
(xm) =

Γ(m+ 1)

Γ(m− n+ 1)
xm−n. (3.4)

Moreover, Lacroix gave an example where y = x and n = 1
2
[56], and he obtained

d
1
2y

dx
1
2

=
2
√
x√
π
. (3.5)
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Nevertheless, the first mathematician who used the applications of Fractional Calculus

was Abel, not Lacroix. Abel used fractional operations for the first time in 1823 when he

applied Fractional Calculus to solve an integral equation that appeared in the formulation

of the tautochrone problem.

Example 3.1. Let us find the half derivative of f(x) = x5. Using (3.4) we have

d
1
2

dx
1
2

(
x5
)
=

Γ(5 + 1)

Γ
(
5 + 1− 1

2

)x5− 1
2

=
Γ(6)

Γ
(
11
2

)x 9
2 =

5!
945

√
π

32

x
9
2 .

(3.6)

Example 3.2. To find the half derivative of a constant f(x) = 1, we observe that x0 = 1

for x 6= 0. Then (3.4) implies

d
1
2

dx
1
2

(1) =
d

1
2 (x0)

dx
1
2

=
Γ(0 + 1)

Γ
(
0 + 1− 1

2

)x0− 1
2

=
Γ(1)

Γ
(
1
2

)x− 1
2

=
Γ(1)

Γ
(
1
2

) 1√
x
.

(3.7)

3.1 The Grünwald-Letnikov Derivative Operator

We will derive the Grünwald-Letnikov Fractional Derivative . The proof is based on the

backwards difference definition given by

d

dx
f(x) = lim

h→0

f(x)− f(x− h)

h
. (3.8)

Using the definition (3.8), the second derivative is

d2

dx2
f(x) =

d

dx
f ′(x)

= lim
h→0

f ′(x)− f ′(x− h)

h

= lim
h→0

f(x)−f(x−h)
h

− f(x−h)−f(x−2h)
h

h
.

(3.9)

Thus,
d2

dx2
f(x) = lim

h→0

1

h2
[f(x)− 2f(x− h) + f(x− 2h)]. (3.10)
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Similarly, the limit definition of the third derivative using the backwards difference is given

by
d3

dx3
f(x) = lim

h→0

1

h3
[f(x)− 3f(x− h) + 3f(x− 2h)− f(x− 3h)]. (3.11)

Hence, we deduce the general case of the limit definition of the nth derivative using the

backwards difference as

dk

dxk
f(x) = lim

h→0

(
1

h

)k k∑
l=0

(−1)l

 k

l

 f(x− lh),wherek ∈ Nand

 k

l

 =
k!

l!(k − l)!

(3.12)

In order to extend the natural numbers in (3.12) to all real numbers α ∈ R, we use the fact

that Γ(n+ 1) = n! and we obtain

dk

dxk
f(x) = lim

n→0

(
1

h

)k k∑
l=0

(−1)l
Γ(k + 1)

l!Γ(k + 1− l)
f(x− lh). (3.13)

Mapping k to α , where α ∈ R, we get

dα

dxα
f(x) = lim

h→0

(
1

h

)α k∑
l=0

(−1)l
Γ(α + 1)

l!Γ(α + 1− l)
f (x− lh) , (3.14)

At this stage, we introduce the change of variables kh = x−awhere a is a constant. Then,

k = x−a
h

and 1
h
= k

x−a
. Thus, our equation becomes

dα

dxα
f(x) = lim

k→∞

(
k

x− a

) k∑
l=0

(−1)l
Γ(α + 1)

Γ(α + 1− l)l!
f

(
x− l

k
(x− a)

)
. (3.15)

Finally, the Grünwald-Letnikov Differential Operator is given by

aD
α
xf(x) = lim

n→∞

(
n

x− a

)α n∑
l=0

(−1)l
Γ(α + 1)

l!Γ(α + 1− l)
f

(
x− l

n
(x− a)

)
. (3.16)

Similarly, we define the Grünwald-Letnikov Differential Operator for negative base points

by

aD
−α
x (f) = lim

n→∞
(hα)

∞∑
l=0

Γ(a+ l)

l!Γ(α)
· f
(
x− l

n
(x− a)

)
,where α ≥ 0 (3.17)

3.2 Connection between Derivatives and Integrals

In this section, we derive the integral operator of fractional order and investigates its con-

nection to the fractional derivative operator. Take α = 1. Then

aD
−1
x (f) = lim

n→∞

(
h1
) n∑

l=0

Γ(1 + l)

l!Γ(1)
f(x− lh)

= lim
n→∞

n∑
l=0

f(x− lh)h.

(3.18)
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We notice that the right hand side is a Riemann sum, and the equation becomes

aD
−1
x (f) =

∫ x−a

0

f(x− t)dt. (3.19)

Applying the substitution u = x− t, we obtain

aD
−1
x (f) = −

∫ a

x

f(u)(−du) =

∫ x

a

f(t)dt. (3.20)

Now, consider α = 2 in the equation (3.17). Then,

aD
−2
a (f) = lim

n→∞

(
h2
) n∑

l=0

Γ(l + 2)

l!Γ(2)
f(x− lh)

= lim
n→∞

(
h2
) n∑

l=0

(l + 1)f(x− lh)

=
1

2
lim
n→∞

n+1∑
l=1

(lh)f(x− lh)h.

(3.21)

We notice that the right hand side is half of the Riemann sum, and the equation becomes

aD
−2
x (f) =

∫ x

a

(x− t)f(t). (3.22)

Similarly, for α = 3

aD
−3
x =

1

2!

∫ x

a

(x− t)2f(t)dt. (3.23)

When α = 4, we get

aD
−4
x =

1

3!

∫ x

a

(x− t)3f(t)dt. (3.24)

Generally, we have

aD
−(k+1)
x (f) =

1

k!
·
∫ x

a

(x− t)kf(t)dt. (3.25)

Lastly, in order to extend the connection between derivatives and integrals to the frac-

tional order, we use the Gamma function to obtain the fractional integral operator which is

referred to as Riemann-Liouville fractional integral.

Definition 3.2.1. Let f be a continuous function, 0 < α ≤ 1, and t, x ∈ R+. The fractional

integral of order α is defined as

aD
−α
x (f) =

1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt. (3.26)

Definition 3.2.2. Let f ∈ Cn[a, b], α ≥ 0, and n − 1 < a ≤ n. The Riemann-Liouville

fractional derivative is given by
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Dα
Lf(t) =

1

Γ(n− α)

dn

dtn

∫ t

a

f(x)

(t− x)α+n−1
dx, a < t < b. (3.27)

Example 3.3. Let f(x) = x. Then,

Dα
Lf(t) =

1

Γ(n− α)

dn

dtn

∫ t

0

(t− x)n−α−1f(x)dx

For n = 1 and α = 1
2
, we get

D
1
2
Lf(t) =

1

Γ
(
1− 1

2

) d

dt

∫ t

0

(t− x)1−
1
2
−1xdx,

By substitution, we obtain

D
1
2
Lf(t) =

1

Γ
(
1
2

) d

dt

(
4t

3
2

3

)

=
2
√
t√
π
.

(3.28)

Another integral operator that is an alternative to the Riemann-Liouville operator was in-

troduced in 1967, by an Italian Mathematician Caputo, who adjusted the definition of the

Riemann–Liouville operator.

Definition 3.2.3. Let f ∈ Cn[a, b], α ≥ 0, and n − 1 < a ≤ n. The Caputo Fractional

Derivative is given by

Dαf(t) =
1

Γ(n− α)

∫ t

a

(t− x)n−α−1d
nf(x)

dxn
dx,

=
1

Γ(n− α)

∫ t

a

f (n)(x)

(t− x)α+1−n
dx, a ≤ t < b.

(3.29)

Example 3.4. Let f(x) = x3. Using Definition (3.2.3), the half derivative of f is

D
1
2f(t) =

1

Γ
(
3− 1

2

) ∫ t

0

(t− x)3−
1
2
−1d

3f(x)

dx3
dx

=
1

Γ
(
5
2

) ∫ t

0

(t− x)
3
26dx

=
6

Γ
(
5
2

) ∫ t

0

(t− x)
3
2dx

=
12

5Γ
(
2 + 1

2

) [(t− x)
3
2
+1
]t
0

=
12

53
4
Γ
(
1
2

)(−t)
5
2 =

8

15
√
π
.

(3.30)
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3.3 Riemann-Liouville Fractional Integral

Definition 3.3.1. Let f be a continuous function, 0 < α ≤ 1, and t, x ∈ R+. The fractional

integral of order α is defined as

aD
−α
x (f) =

1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt. (3.31)

There are some alternate forms of the Riemann-Liouville fractional derivative.

aI
α
x (f(x)) =

1

Γ(x)

∫ x

a

(x− t)α−1f(t)dt, when x > a, (3.32)

aI
α
x (f(x)) =

1

Γ(α)

∫ a

x

(x− t)α−1f(t)dt, when x < a. (3.33)

Example 3.5. Let f(x) = x3. Using Definition (3.3.1), we have

aI
1/2
x

(
x3
)
=

1

Γ(1
2
)

∫ x

0

(x− t)−
1
2 t3dt. (3.34)

Taking x = 1, we obtain

aI
1/2
1

(
x3
)
=

1

Γ(1
2
)

∫ 1

0

(1− t)
−1
2 t3dt. (3.35)

Using the Beta function definition

B(α, β) =

∫ 1

0

tα−1(1− t)β−1dt,

we deduce that

aI
1/2
1

(
x3
)
=

1

Γ(1
2
)

∫ 1

0

t4−1(1− t)
1
2
−1dt

=
1

Γ(1
2
)
B(4,

1

2
)

(3.36)

Since B(4,
1

2
) =

Γ(4)Γ(1
2
)

Γ(4 + 1
2
)
, we conclude that

aI
1/2
1

(
x3
)
=

1

Γ(1
2
)

Γ(4)Γ(1
2
)

Γ(4 + 1
2
)

=
3!

Γ(1
2
)

=
32

35
√
π
.

(3.37)
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The Riemann-Liouville fractional integral holds some essential properties.

Properties

1. Identity operator: aIxI
0f(x) = f(x).

2. Constant multiple: aI
α
x (cf(x)) = c ·a Iαx (f(x)).

3. Linear operator: aI
α
x (f(x)± g(x)) =a I

α
x (f(x))±a I

α
x (g(x)).

4. Composition: aI
α
x (aI

β
x (f(x))) =a I

α+β
x (f(x)).

Proof. (of property "4"). We choose to prove (4) since the other properties are

straightforward consequences of the definition.

aI
α
x (aI

β
x (f(x))) =

1

Γ(α)

∫ x

0

(x− t)α−1
[
aI

β
t (f(t))

]
dt,

=
1

Γ(α)

∫ x

0

(x− t)α−1

[
1

Γ(β)

∫ t

a

(t− ξ)β−1f(ξ)dξ

]
dt,

(3.38)

Rearranging the integral:

aI
α
x (aI

β
x (f(x))) =

1

Γ(α)Γ(β)

∫ x

0

∫ t

a

(x− t)α−1(t− ξ)β−1f(ξ)dξdt

=
1

Γ(α)Γ(β)

∫ x

a

∫ 1

0

(x− ξ)α+β−1(1− u)α−1uβ−1f(ξ)dudξ

(3.39)

Using Fubini’s theorem, we obtain

aI
α
x (aI

β
x (f(x))) =

1

Γ(α)Γ(β)

(∫ 1

0

(1− u)α−1uβ−1du

)(∫ x

a

(x− ξ)α−β−1f(ξ)dξ

)
=

1

Γ(α)Γ(β)
B(α, β)

∫ x

a

(x− ξ)α+β−1f(ξ)dξ.

(3.40)

Since B(α, β) = Γ(α)Γ(β)
Γ(α+β)

, we conclude that

aI
α
x (aI

β
x (f(x))) =

1

Γ(α, β)

∫ x

a

(x− t)α+β+1f(t)dt

=aI
α+β
x (f(x)).

(3.41)

3.4 Fractional Integrals of Exponential Functions

Consider f(x) = ex. Then

aI
α
0 (ex) =

1

Γ(x)

∫ x

a

(x− t)α−1etdt. (3.42)
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Let u = x − t. Then du = −dt. When t = a = −∞, u = x − a = ∞ and when t = x,

u = 0. Thus

aIα0 (ex) =
1

Γ(a)

∫ 0

∞
uα−1ex−u(−du)

=
1

Γ(α)

∫ ∞

0

uα−1exe−udu

=ex
1

Γ(α)

∫ ∞

0

uα−1e−udu.

(3.43)

Since
∫∞
0

uα−1e−udu = Γ(α), we get

aI
α
0 (ex) = ex. (3.44)

We also notice that

Dα (ex) = ex, ∀ α > 0.

Now, we can generalize the definition of the integral of ex as follows

aI
α
0 (eax) =

1

Γ(α)

∫ x

−∞
(x− t)α−1eatdt. (3.45)

Similarly, as in the previous examples, we obtain

aI
α
0 (eax) =

1

Γ(α)

∫ ∞

0

uα−1ea(x−u)du

=
1

Γ(α)

∫ ∞

0

uα−1eaxe−audu

=eax
1

Γ(α)

∫ ∞

0

u2−1e−audu.

(3.46)

Using substitution, w = au, we obtain that

aI
α
0 (eax) =eax

1

Γ(α)

∫ ∞

0

(w
a

)α−1

e−w 1

a
dw

=eax
1

Γ(α)

∫ ∞

0

wα−1

aα−1
e−w 1

a
dw

=
eax

aα
1

Γ(a)

∫ ∞

0

wα−1e−wdw.

(3.47)

Notice that Γ(w) =
∫∞
0

wα−1e−wdw. Therefore

Iα (eax) =
eax

aα
. (3.48)
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3.5 Fractional Integrals of Sine and Cosine

We will start by using the Riemann-Liouville definition

aI
α
x (sinx) =

1

Γ(α)

∫ x

a

(x− t)α−1 sin tdt. (3.49)

Then, applying the Taylor series expansion of sin x yields

aI
α
x (sinx) =

1

Γ(α)

∫ x

a

(x− t)α−1

∞∑
k=0

t2k+1

(2k + 1)!
(−1)kdt. (3.50)

Interchanging the summation and the integral,

aI
α
x (sinx) =

∞∑
k=0

[
(−1)k

(2k + 1)!

1

Γ(α)

∫ x

a

(x− t)α−1t2k+1dt

]
. (3.51)

Notice that 1
Γ(α)

∫ x

a
(x − t)α−1t2k+1dt =a Iαx

(
x2k+1

)
. Let v = 2k + 1. When a = 0, we

have

aI
α
x

(
x2k+1

)
=

Γ(v + 1)

Γ(v + 1 + α)
xv+α

=
Γ(2k + α)

Γ(2k + 2 + α)
x2k+1+α.

(3.52)

Therefore, equation (3.51) becomes:

0I
α
x (sinx) =

∞∑
k=0

[
(−1)k

(2k + 1)!

Γ(2k + 2)

T (2k + 2 + α)
x2k+1+α

]
=

∞∑
k=0

[
(−1)k

Γ(2k + 2 + α)
x2k+1+α

]
.

(3.53)

Example 3.6. When a = 0 and α = −1, we have

I−1
x (sinx) =

∞∑
k=0

(−1)k

Γ(2k + 1)
x2k

=
∞∑
k=0

(−1)k

(2k)!
x2k = cosx.

(3.54)

Example 3.7. When a = 0 and α = 1, we have
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0I
1
x(sinx) =

∞∑
x=0

(−1)k

Γ(2k + 3)
x2k+2

=
∞∑
k=0

(−1)k

(2k + 2)!
x2k+2

=
∞∑
k=1

(−1)k−1

(2k)!
x2k

= −
∞∑
k=1

(−1)kx2k

(2k)!

= −(cosx− 1)

= 1− cosx

(3.55)

Let

Ga(x) =
1

Γ
(
1
2

) ∫ x

a

(x− t)
1
2
−1(sin t)dt

=a I
1
2
x (sinx),

(3.56)

Comparing the functionGa(x), for various values of a, with the function g(x) = sin(x−π
4
),

we notice that

lim
a→−∞

Ga(x) = g(x). (3.57)

As a result, we can define the fractional integral of sine and cosine as

Iα(sinx) =−∞ Iαx (sinx) = sin
(
x+

απ

2

)
,

Iα(cosx) =−∞ Iαx (cosx) = cos
(
x+

απ

2

)
.

(3.58)
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Chapter 4: Analytical solutions of Fractional Differential Equations

4.1 Laplace Adomian Decomposition Method

The Laplace Adomian Decomposition Method is a technique that generates an efficient

approximate analytical solution for nonlinear systems of ordinary and partial differential

equations [70].

Consider the following equation

Dαy + f(y) = g(x), where 1 < α ≤ 2, (4.1)

with the boundary conditions

y(0) = c, y(1) = d.

The solution can be expressed as an infinite series of the form

y(x) =
∞∑
n=0

yn(x). (4.2)

The nonlinear term can be written as an infinite series of polynomials in yn of the form

[f(y)] =
∞∑
n=0

An. (4.3)

and the An terms are called the Adomian polynomials and are given by the formula

An =
1

n!

dn

dλn

[
N

(
∞∑
i=0

λiyi

)]
λ=0

, n = 0, 1, 2, . . . (4.4)

Applying Laplace transform L to both sides of equation (4.1), we obtain

{L} [Dαy] + L{f(y)} = L{g(x)}. (4.5)

Then, using Caputo’s definition of fractional derivative and rearranging, we acquire the

following

s2L{y} − sy(0)− y′(0)

s2−α
= L{g(x)} − L{f(y)}. (4.6)

Substituting the boundary conditions y(0) = c, y(1) = d, we obtain the following

s2L[y]− cs− k

s2−α
+ L[f(y)] = L[g(x)]. (4.7)
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Rearranging the equation in terms of L{y} implies

L{y} =
c

s
+

k

s2
− 1

sα
L{f(y)}+ 1

sα
L{g(x)}. (4.8)

Substituting Equations (4.2) and (4.3) into (4.8) yields

L

{
∞∑
n=0

yn

}
=

c

s
+

k

s2
− 1

sα
L

{
∞∑
n=0

An

}
+

1

sα
L{g(x)}. (4.9)

By applying the inverse Laplace, the recurrence relation is defined by

y0 = L−1

{
k

s2
+

1

sα
L{g(x)}

}
,

y1 = L−1

{
− 1

sα
L{A0}

}
,

...

yn+1 = L−1

{
− 1

sα
L{An}

}
.

(4.10)

In order to obtain the Adomian polynomials, we first write Taylor series expansion of the

nonlinear function f(y) about y0 to get

f(y) = f (y0)+f ′ (y0) (y − y0)+
1

2!
f ′′ (y0) (y − y0)

2+
1

3!
f ′′′ (y0) (y − y0)

3+ . . . (4.11)

Substituting an expansion of Equation (4.2) into Equation (4.11) and simplifying imply

f(y) = f (y0)+f ′ (y0) (y1 + y2 + . . .)+
1

2!
f ′′ (y0) (y1 + y2 + . . .)2+

1

3!
f ′′′ (y0) (y1 + y2 + . . .)3+. . .

(4.12)

Expanding Equation (4.12)

f(y) = f (y0) + f ′ (y0) y1 + f ′ (y0) y2 +
1

2!
f ′′ (y0) y

2
1 + f ′ (y0) y3

+
2

2!
f ′′ (y0) y1y2 +

1

3!
f ′′′ (y0) y

3
1 + f ′ (y0) y4 +

1

2!
f ′′ (y0) y

2
2

+
2

2!
f ′′ (y0) y1y3 +

3

3!
f ′′′ (y0) y

2
1y2 +

1

4!
f ′′′′ (y0) y

4
1 + f ′ (y0) y4

+
2

2!
f ′′ (y0) y2y3 +

2

2!
f ′′ (y0) y1y4 +

3

3!
f ′′′ (y0) y1y

2
2

+
3

3!
f ′′′ (y0) y

2
1y3 +

4

4!
f ′′′′ (y0) y

3
1y2 +

1

5!
f ′ (y0) y

5
1 + . . .

(4.13)

Rearranging the terms based on their order will help extract the Adomian polynomials.

The subscript of the Adomian polynomial needs to match all the terms with the same order
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[53] . So An includes all the terms in the series of order n. Therefore, the first six terms of

the Adomian polynomials are as follows [57]

A0 = f (y0) ,

A1 = f ′ (y0) y1,

A2 = f ′ (y0) y2 +
1
2!
f ′′ (y0) y

2
1,

A3 = f ′ (y0) y3 +
2
2!
f ′′ (y0) y1y2 +

1
3!
f ′′′ (y0) y

3
1,

A4 = f ′ (y0) y4 +
1
2!
f ′′ (y0) (2y1y3 + y22) +

3
3!
f ′′′ (y0) y

2
1y2 +

1
4!
f ′′′′ (y0) y

4
1,

A5 = f ′ (y0) y5 +
1
2!
f ′′ (y0) (2y1y4 + 2y2y3) +

1
3!
f ′′′ (y0) (3y

2
1y3 + 3y1y

2
2) ,

+ 4
4!
f (4) (y0) y

3
1y2 +

1
5!
f (5) (y0) y

5
1,

(4.14)

The general formula of the Adomian polynomials is given by

An (y0, y1, . . . , yn) =
1

n!

dn

dλn

[
N

(
∞∑
k=0

ykλ
k

)]
λ=0

, n = 0, 1, 2, . . . (4.15)

The Adomian Polynomial are obtained using the general formula as follows [57]

A0 = N (y0) ,

A1 =
d
dλ
N (y0 + y1λ)

∣∣
λ=0

= N (y0) y1,

A2 =
1
2!

d
dλ

((y1 + 2y2λ)N
′′ (y0 + y1λ))

∣∣
λ=0

= N ′ (y0) y2 +
1
2!
N ′′ (y0) y

2
1,

...

(4.16)

4.2 Fractional Differential Transformation Method

The Fractional Differential Transformation method is used to obtain an approximate ana-

lytical solution of linear and nonlinear ordinary differential equations of fractional order. It

is based on Taylor series expansion that generates polynomials as the analytical solutions

[64].

We recall that the fractional derivative of Reimann-Liouville is defined by

Dq
x0
f(x) =

1

Γ(m− q)

dm

dxm

[∫ x

x0

f(t)

(x− t)1+q−m
dt

]
, (4.17)

where m − 1 6 q < m,m ∈ Z+ and x > x0. By expanding the continuous analytical

function f(x) as fractional power series we obtain the following [64]

f(x) =
∞∑
k=0

F (k) (x− x0)
k/α , (4.18)

Where α is the fractional order and F(k) is representing the fractional differential transfor-

mation of f(x).
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The fractional derivative in the Caputo sense is defined to avoid the fractional initial and

boundary conditions. The Riemann–Liouville fractional derivative and  Caputo’s frac-

tional derivative have the following relationship

Dq
∗x0

f(x) = Dq
x0

[
f(x)−

m−1∑
k=0

1

k!
(x− x0)

k f (k) (x0)

]
. (4.19)

Let

f(x) = f(x)−
m−1∑
k=0

1

k!
(x− x0)

k f (k) (x0) . (4.20)

Substituting (4.20) into (4.17) and using (4.19), we obtain the Caputo’s fractional deriva-

tive as follows

Dq
∗x0

f(x) =
1

Γ(m− q)

dm

dxm

{∫ x

x0

[
f(t)−

∑m−1
k=0 (1/k!) (t− x0)

k f (k) (x0)

(x− t)1+q−m

]
dt

}
.

(4.21)

The initial conditions, which are originally given as integer derivatives, are transformed as

follows

F (k) =


1

(k/α)!

[
dk/αf(x)

dxk/α

]
x=x0

, for k = 0, 1, 2, . . . , (qα− 1), if
k

α
∈ Z+

0 if
k

α
/∈ Z+

(4.22)

where q is the fractional order derivative. Using (4.17) and (4.18), we have the following

results [64]

Theorem 4.2.1. If f(x) = g(x)± h(x), then F (k) = G(k)±H(k).

Theorem 4.2.2. If f(x) = g(x)h(x), then F (k) =
∑k

l=0G(l)H(k − l).

Theorem 4.2.3. If f(x) = g1(x)g2(x) . . . gn−1(x)gn(x), then

F (k) =
∑k

kn−1=0

∑kn−1

kn−2=0 · · ·
∑k3

k2=0

∑k2
k1=0G1 (k1)G2 (k2 − k1) . . . Gn−1 (kn−1 − kn−2)Gn (k − kn−1)

Theorem4.2.4. If f(x) = (x− x0)
p
, thenF (k) = δ(k−αp) where δ(k) =

 1, if k = 0

0, if k 6= 0.

Theorem 4.2.5. If f(x) = Dq
x0
[g(x)], then F (k) = Γ(q+1+k/α)

Γ(1+k/α)
G(k + αq).

Theorem 4.2.6. If the product of the general form of fractional derivatives,

f(x) =
dq1

dxq1
[g1(x)]

dq2

dxq2
[g2(x)] · · ·

dqn−1

dxqn−1
[gn−1(x)]

dqn

dxqn
[gn(x)] ,
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then

F (k) =
k∑

kn−1=0

kn−1∑
kn−2=0

· · ·
k3∑

k2=0

k2∑
k1=0

Γ (q1 + 1 + k1/α)

Γ (1 + k1/α)

Γ [q2 + 1 + (k2 − k1) /α]

Γ [1 + (k2 − k1) /α]

. . .
Γ [qn−1 + 1 + (kn−1 − kn−2) /α]

Γ [1 + (kn−1 − kn−2) /α]

Γ [qn + 1 + (k − kn−1) /α]

Γ [1 + (k − kn−1) /α]
G1 (k1 + αq1)

×G2 (k2 − k1 + αq2) · · ·Gn−1 (kn−1 − kn−2 + αqn−1)

×Gn (k − kn−1 + αqn) .

(4.23)

where αqi ∈ Z+ for i = 1, 2, 3, . . . n.

Example 4.1. We consider the system of fractional differential equations [64]

Dβ
∗x(t) = x(t) + y(t)

Dγ
∗y(t) = −x(t) + y(t),

(4.24)

subject to the initial conditions

x(0) = 0, y(0) = 1. (4.25)

Applying Theorem 1 and Theorem 5, we transform the system (4.24)

X (k + βα1) =
Γ(1+k/α1)

Γ(β+1+k/α1)
[X(k) + Y (k)],

Y (k + γα2) =
Γ(1+k/α2)

Γ(γ+1+k/α2)
[−X(k) + Y (k)],

(4.26)

where α1 is the unknown values of the fraction β and α2 is the unknown values of the

fraction γ. Transforming the initial conditions in (4.25), we get

X(k) = 0 for k = 0, 1, . . . , βα1 − 1,

Y (k) = 0 for k = 1, . . . , γα2 − 1,

Y (0) = 1.

(4.27)

We calculateX(k) and Y (k) using (4.26) and (4.27) up to k = 10, with β = 1 and γ = 1.

Then, using (4.18), we obtain x(t) and y(t) as follows

x(t) =t+ t2 +
t3

3
− t5

30
− t6

90
− t7

630
+

t9

22680
+

t10

113400
+ · · ·

y(t) =1 + t− t3

3
− t4

6
− t5

30
+

t7

630
+

t8

2520
+

t9

22680
+ · · ·

(4.28)

Example 4.2. We consider the following system [64]

D1.3
∗ y1 = y1 + y22,

D2.4
∗ y2 = y1 + 5y2,

(4.29)
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subject to the initial conditions

y1(0) = 0, y′1(0) = 1, y2(0) = 0, y′2(0) = 1, y′′2(0) = 1. (4.30)

Transforming the system (4.29), we obtain

Y1(k + 13) = Γ(1+k/10)
Γ(1.3+1+k/10)

[
Y1(k) +

∑k
k1=0 Y2 (k1)Y2 (k − k1)

]
,

Y2(k + 24) = Γ(1+k/10)
Γ(2.4+1+k/10)

[Y1(k) + 5Y2(k)] .
(4.31)

Transforming the initial conditions in (4.30), we have

Y1(k) = 0, for k = 0, 1, . . . , 9, 11, 12

Y1(10) = 1,

Y2(k) = 0, for k = 0, . . . , 9, 11, . . . , 19, 21, 22, 23,

Y2(10) = 1, Y2(20) =
1
2
.

(4.32)

Hence we obtain the series solution y1(k) and y2(k) using (4.30) and (4.32) with iterations

up to k = 50 as follows

y1(t) = t+ t23/10

Γ
(
33
10

) + 2t33/10

Γ
(
43
10

) + t18/5

Γ
(
23
5

) + 6t43/10

Γ
(
53
10

) + 2t23/5

Γ
(
28
5

) + · · · ,

y2(t) = t+ t2

2
+ 6t17/15

Γ
(
22
5

) + 5t22/5

Γ
(
27
5

) + t47/10

Γ
(
57
10

) + · · ·
(4.33)

4.3 Padé Approximation

Padé approximation PN
M (x) = [M/N ] is a procedure that expands a function as a ratio

of two power series. It provides a better approximation of a function than Taylor series

especially when it contain poles.

PN
M (x) =

∑N
n=0 anx

n∑M
n=0 bnx

n
. (4.34)

We can normalize the approximation by using b0 = 1 to generalize the Taylor series ex-

pansion. Hence

TM+N(x) =
M+N∑
n=0

cnx
n. (4.35)

The coefficients of Padé approximation can be found from Taylor series expansion

c0 + c1x+ c2x
2 + . . . =

a0 + a1x+ a2x
2 + . . .

1 + b1x+ b2x2 + . . .
. (4.36)
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Equivalently, we have

a0 = c0,

a1 = c1 + c0b1,

a2 = c2 + c1b1 + c0b2,

a3 = c3 + c2b1 + c1b2 + c0b3,

...

(4.37)

In order to solve the system, we need to specify the degree of the numerator and the denom-

inator to be N and M , respectively. Moreover, the degree of the truncated Taylor series

expansion is determined to beM +N .

Example 4.3. The [2/2] Padé approximation of sinx is

sinx ≈ A0 + A1x+ A2x
2

B0 +B1x+B2x2
= x− x3

6
+O

(
x5
)
. (4.38)

Then, by letting B0 = 1, we have

A0 + A1x+ A2x
2 =

(
1 +B1x+B2x

2
)(

x− x3

6
+O

(
x5
))

= x+B1x
2 +B2x

3 − x3

6
−B1

x4

6
+O

(
x5
)
.

(4.39)

Equating the coefficients, we obtain that

A0 = 0, A1 = 1, A2 = B1,

B2 =
1

6
, B1 = 0 = A2,

Substituting the values back in the [2/2] Padé approximation yields

P 2
2 (x) =

x

1 + x2

6

. (4.40)

This technique helps inminimizing the error and enables finding a better approximation

than Taylor approximation. Laplace Decomposition Method and the Differential Trans-

formation Method generate accurate solutions only over small domains. Therefore, when

dealing with large domains, combining the twomethods with Padé approximation prevents

obtaining a divergent series solution [62].
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Chapter 5: Applications

5.1 Enzyme Inhibitor Reaction Model

Mathematical modeling for enzyme inhibitor systems plays an important role in system

biology. The model consists of seven chemical components and thirteen chemical kinetic

constants [58].

Figure 5.1: A complex Enzyme Inhibitor Reaction Model

The components S stands for substrate, E for enzyme, P for product and I for inhibi-

tion. In addition, EI, ES and ESI represent the complex intermediate species. The seven

variables will be denoted by S=[S], E=[E], P=[P], I=[I], C1=[ES], C2=[EI] and C3=[ESI].

The system of the nonlinear differential equations based on the mass action law can be

written as:

dE
dt

= −k1ES + k2C1 + k3C1 − k4EI + k5C2S,

dS
dt

= −k1ES + k2C1 + k4EI − k5C2S − k8C2S + k9c3

dC1

dt
= k1ES − k2C1 − k3C1 − k6C1I + k7C3,

dP
dt

= k3C1,

dI
dt

= −k4EI + k5C2S − k6C1I + k7C3,

dC2

dt
= k4EI − k5C2S − k8C2S + k9C3,

dC3

dt
= k6C1I − k7C3 + k8C2S − k9C3,

(5.1)

We will take the complex enzyme inhibitor reaction model (5.1) and apply fractional

order system since it would be more realistic to take memory and hereditary properties

into account. It will result in having the following fractional differential equations.
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Dα
t E = −k1ES + k2C1 + k3C1 − k4EI + k5C2S,

Dα
t S = −k1ES + k2C1 + k4EI − k5C2S − k8C2S + k9c3,

Dα
t I = −k4EI + k5C2S − k6C1I + k7C3,

Dα
t P = k3C1

Dα
t C1 = k1ES − k2C1 − k3C1 − k6C1I + k7C3,

Dα
t C2 = k4EI − k5C2S − k8C2S + k9C3,

Dα
t C3 = k6C1I − k7C3 + k8C2S − k9C3,

(5.2)

where 0 < α ≤ 1.

5.1.1 SolutionViaLaplaceDecompositionMethod The system (5.2) will be solved

analytically using Laplace Adomian DecompositionMethod subject to the following initial

conditions

E(0) = e0, S(0) = s0, I(0) = i0 and C1(0) = C2(0) = C3(0) = P (0) = 0, (5.3)

and the parameters K1, K2, . . . , K9 represent the rate constants. We start by applying

Laplace to both sides of equation (5.2), we obtain

L[Dα
t E] = L[−k1ES + k2C1 + k3C1 − k4EI + k5C2S],

L[Dα
t S] = L[−k1ES + k2C1 + k4EI − k5C2S − k8C2S + k9c3],

L[Dα
t I] = L[−k4EI + k5C2S − k6C1I + k7C3],

L[Dα
t P ] = L[k3C1],

L[Dα
t C1] = L[k1ES − k2C1 − k3C1 − k6C1I + k7C3],

L[Dα
t C2] = L[k4EI − k5C2S − k8C2S + k9C3],

L[Dα
t C3] = L[k6C1I − k7C3 + k8C2S − k9C3],

(5.4)

which implies that for α = 1

sαL[E]− sα−1E(0) = L[−k1ES + k2C1 + k3C1 − k4EI + k5C2S],

sαLS]− sα−1S(0) = L[−k1ES + k2C1 + k4EI − k5C2S − k8C2S + k9c3],

sαL[I]− sα−1I(0) = L[−k4EI + k5C2S − k6C1I + k7C3],

sαL[P ]− sα−1P (0) = L[k3C1],

sαL[C1]− sα−1C1(0) = L[k1ES − k2C1 − k3C1 − k6C1I + k7C3],

sαL[C2]− sα−1C2(0) = L[k4EI − k5C2S − k8C2S + k9C3],

sαL[C3]− sα−1C3(0) = L[k6C1I − k7C3 + k8C2S − k9C3].

(5.5)
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Taking the inverse Laplace and using the initial conditions

E(0) = 0.1, S(0) = 0.2, I(0) = 0.01, P (0) = C1(0) = C2(0) = C3(0) = 0, (5.6)

we obtain the following

E(t) = E0 + L−1[
1

s
L[−k1ES + k2C1 + k3C1 − k4EI + k5C2S]],

S(t) = S0 + L−1[
1

s
L[−k1ES + k2C1 + k4EI − k5C2S − k8C2S + k9c3]],

I(t) = I0 + L−1[
1

s
L[−k4EI + k5C2S − k6C1I + k7C3]],

P (t) = L−1[
1

s
L[k3C1]],

C1(t) = L−1[
1

s
L[k1ES − k2C1 − k3C1 − k6C1I + k7C3]],

C2(t) = L−1[
1

s
L[k4EI − k5C2S − k8C2S + k9C3]],

C3(t) = L−1[
1

s
L[k6C1I − k7C3 + k8C2S − k9C3]].

(5.7)

Assuming the solutions E(t), S(t), I(t), P (t), C1(t), C2(t) and C3(t) are infinite power

series [59], we get:

E(t) =
∑∞

n=0 En(t), S(t) =
∑∞

n=0 Sn(t), I(t) =
∑∞

n=0 In(t), E(t) =
∑∞

n=0En(t),

C1(t) =
∑∞

n=0C1,n(t), C2(t) =
∑∞

n=0 C2,n(t), C3(t) =
∑∞

n=0C3,n(t),

(5.8)

The nonlinear terms ES(t), EI(t), C1(t) and C2(t) are obtained from Adomian polyno-

mials and are given by

ES(t) =
∑∞

n=0A1,n = 1
n!

(
d
dλ

)n (∑n
k=0 λ

kEk

∑n
k=0 λ

kSk

)∣∣
λ=0

,

EI(t) =
∑∞

n=0A2,n = 1
n!

(
d
dλ

)n (∑n
k=0 λ

kEk

∑n
k=0 λ

kIk
)∣∣

λ=0
,

C1(t) =
∑∞

n=0A3,n = 1
n!

(
d
dλ

)n (∑n
k=0 λ

kC1,k

∑n
k=0 λ

kSk

)∣∣
λ=0

,

C2(t) =
∑∞

n=0A4,n = 1
n!

(
d
dλ

)n (∑n
k=0 λ

kC2,k

∑n
k=0 λ

kIk
)∣∣

λ=0
.

(5.9)

5.2 Numerical Results

In this section, we solve the system using Laplace Decomposition Method and The Dif-

ferential Transformation Method. We discuss two examples where the nonlinear reaction

system (5.2) is solved for two different sets of parameters and initial conditions.

Example 5.1. We solve the system (5.2) for the integer derivative α = 1 subject to the

following initial conditions

E(0) = 0.1, S(0) = 0.2, I(0) = 0.01, P (0) = C1(0) = C2(0) = C3(0) = 0, (5.10)
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and the parameters ki for i = 1, 2, 3...9 are

k1 = 0.1, k2 = 2, k3 = 0.4, k4 = 0.9, k5 = 1, k6 = 0.4, k7 = 0.9, k8 = 0.2, k9 = 0.5

(5.11)

The Laplace Decomposition Method and the Differential Transformation Method give

identical solutions when α = 1. The analytical expressions of the nonlinear biochemical

reaction system are as follow

E(t) = 0.1− 0.0029t+ 0.00077805t2 − 0.000152t3 + 0.000024t4 − 0.000003t5,

S(t) = 0.2− 0.0011t+ 0.000073t2 − 0.000024t3 + 0.000004t4 − 0.0000003t5,

I(t) = 0.01− 0.0009t+ 0.00014t2 − 0.000011t3 − 0.000001t4 + 0.0000007t5,

P (t) = 0.0004t2 − 0.000085t3 + 0.000014t4 − 0.000002t5 + 0.0000003t6,

C1(t) = 0.002t− 0.000639t2 + 0.000141t3 − 0.000025t4 + 0.000004t5,

C2(t) = 0.0009t− 0.00016155t2 + 0.000024t3 − 0.000004t4 + 0.000001t5,

C3(t) = 0.000022t2 − 0.000014t3 + 0.000005t4 − 0.000002t5 + 0.000004t6.

(5.12)

Also, the solutions strongly agree with the results obtained from RK4. We notice that the

analytical solution is an exact fit to the numerical solution. Moreover, when solving the

nonlinear fractional system (5.2) with respect to the initial conditions (5.11) using LDM

and DTM where α = 1, we noticed that the solutions obtained from these methods were

identical for all variables. The analytical solution curves are presented in Figure 5.2 (a-g).
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(a) Substrate (b) Enzyme (c) Product

(d) Inhibitor (e) Intermediate Species ES (f) Intermediate Species EI

(g) Intermediate Species ESI

Figure 5.2: Analytical and numerical solution curves of the system (5.2) when α = 1.

The considered system (5.2) is also solved for the fractional derivatives when α = 0.9

andα = 0.8. Figure 5.3 (a-g) present the analytical solution curves for the fractional values

of α. One can clearly see strong agreements between LDM and DTM.
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(a) Substrate (b) Enzyme (c) Product

(d) Inhibitor (e) Intermediate Species ES (f) Intermediate Species EI

(g) Intermediate Species ESI

Figure 5.3: Analytical solution curves of the system (5.2) when α = 1, α = 0.9 and α = 0.8.

The dotted and solid curves correspond to the solutions of DTM and the LDM respectively.

42



The analytical expression solution of the nonlinear biochemical reaction system (5.2)

when α = 0.9 is

E(t) = 0.1− 0.003015t
9
10 + 0.000852t

19
10 − 0.000172t

29
10 + 0.000028t

39
10 − 0.000004t

49
10

S(t) = 0.2− 0.001144t
9
10 + 0.00008t

19
10 − 0.000027t

29
10 + 0.000004t

39
10 − 0.0000003t

49
10

I(t) = 0.01− 0.000936t
9
10 + 0.000153t

19
10 − 0.000012t

29
10 − 0.000001t

39
10 + 0.0000009t

49
10

P (t) = 0.000438t
19
10 − 0.000096t

29
10 + 0.000016t

39
10 − 0.000002t

49
10 + 0.0000003t

59
10

C1(t) = 0.00208t
9
10 − 0.000699t

19
10 + 0.00016t

29
10 − 0.000029t

39
10 + 0.000005t

49
10

C2(t) = 0.000936t
9
10 − 0.000177t

19
10 + 0.000028t

29
10 − 0.000005t

39
10 + 0.000001t

49
10

C3(t) = 0.000024t
19
10 − 0.000016t

29
10 + 0.000006t

39
10 − 0.000002t

49
10 + 0.000005t

59
10

(5.13)

and for α = 0.8, the solution becomes

E(t) = 0.1− 0.003114t
4
5 + 0.000929t

9
5 − 0.000194t

14
5 + 0.000032t

19
5 − 0.000005t

24
5

S(t) = 0.2− 0.001181t
4
5 + 0.000087t

9
5 − 0.00003t

14
5 + 0.000005t

19
5 − 0.0000004t

24
5

I(t) = 0.01− 0.000966t
4
5 + 0.000166t95− 0.000014t

14
5 − 0.0000016t

19
5 + 0.000001t

24
5

P (t) = 0.000477t
9
5 − 0.000109t

14
5 + 0.000019t

19
5 − 0.000003t

24
5

C1(t) = 0.002147t
4
5 − 0.000762t

9
5 + 0.00018t

14
5 − 0.000034t

19
5 + 0.000006t

24
5

C2(t) = 0.000966t
4
5 − 0.000193t

9
5 + 0.000031t

14
5 − 0.000001t

19
5 + 0.000001t

24
5

C3(t) = 0.000026t
9
5 − 0.000017t

14
5 + 0.000007t

19
5 − 0.000002t

24
5 + 0.000001t

29
5

(5.14)

The actual variations for the fractional cases between the LaplaceDecompositionMethod

and Differential Transformation Method when α = 0.9 and α = 0.8 are shown in Table

5.2 and 5.1.
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Table 5.1: Maximum variation between LDM and DTM computed concentrations when α = 0.8

Concentration Max difference Occurred at x

Enzyme 0.0000843 0.850

Substrate 0.0000049 0.600

Inhibition 0.0000206 1.000

Production 0.0000408 0.825

Complex ES 0.0000643 0.825

Complex EI 0.0000208 1.950

Complex ESI 0.0000009 0.450

Table 5.2: Maximum variation between LDM and DTM computed concentrations when α = 0.9

Concentration Max difference Occurred at x

Enzyme 0.0000424 1.000

Substrate 0.0000024 0.007

Inhibition 0.0000103 1.000

Production 0.0000205 0.925

Complex ES 0.0000323 0.925

Complex EI 0.0000105 1.000

Complex ESI 0.0000004 0.525

Example 5.2. We solve the system (5.2) subject to the following initial conditions

E(0) = 12, S(0) = 5, I(0) = 2, P (0) = C1(0) = C2(0) = C3(0) = 0, (5.15)

and where the k′
is are given by

k1 = 0.1, k2 = 0.2, k3 = 0.04, k4 = 0.19, k5 = 0.1, k6 = 0.4, k7 = 0.09, k8 = 0.22, k9 = 0.05,

(5.16)

The nonlinear system (5.2) is solved with respect to parameters (5.16) and subject to

initial conditions (5.15) using the twomethods. Whenα = 1, the analytical series solutions

for LDM and DTM are identical. However, the series solution diverges over a small time

domain. We can control this divergence using Padé approximation. The figures 5.4 and

5.5 show how Padé approximation helps overcoming the divergence obstacle.
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(a) Divergence Solution (b) Convergence Solution

Figure 5.4: Analytical concentration curve of Enzyme E(t) for the system (5.2) with initial

conditions (5.15) and parameters (5.16)

(a) Divergence Solution (b) Convergence Solution

Figure 5.5: Analytical concentration curve of Substrate S(t) for the system (5.2) with initial

conditions (5.15) and parameters (5.16).

The nonlinear system (5.2) is also solved when α = 0.8 and α = 0.9 with respect

to parameters (5.16) and subject to initial conditions (5.15) using LDM and DTM. Figure

(5.6) (a-g) shows how these methods are in strong agreement for the fractional cases of α

for all seven variables.
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(a) Substrate (b) Enzyme (c) Product

(d) Inhibitor (e) Intermediate Species ES (f) Intermediate Species EI

(g) Intermediate Species ESI

Figure 5.6: Analytical and numerical solution curves of the system (5.2) when α = 1, α =

0.9 and α = 0.8.
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5.3 COVID-19 Model

COVID-19 is a worldwide pandemic that was first discovered in December 2019 inWuhan

province of China. It started emerging worldwide in the beginning of 2020 caused by the

SARS-CoV-2 virus and has been spreading globally since then. Scientists are learning

more about this virus every day since it is so new. It can cause serious illness and even

death, despite the fact that most people who have it have moderate symptoms. Mathe-

matical models are important for understanding how an infection behaves as it reaches a

population and determining if it can be eradicated or not. Based on some research done, we

conclude that human to human contact could be the most important cause of the outbreak

of COVID-19 [60]. Hence, isolating infected people was taken into account to potentially

reduce the spread of the disease. Based on this, A model is constructed based on five

compartments: susceptible, exposed, infected, isolated and recovered.

Table 5.3: Parameters and description

ParametersValue[61] Description

S 1.0 Susceptible population

E 1.0 Exposed population

I 0.00002 Infected population

Q 0.000095 Isolated population

R 0.000095 Recovered population

β 0.000002 Rate at which susceptible population moves to infected and exposed class

π 0.00567 Rate at which exposed population moves to infected one

γ 0.000095 Presents the rate at which exposed people take onside as isolated

σ 0.0028404 Rate at which infected people were added to isolated individual

θ 0.000095 Rate at which isolated persons recovered

µ 0.000001 Natural death rate plus disease-related death rate

The parameters used in our model are presented in Table (5.3) that contributed in con-

trolling the infection. In this section, we study a nonlinear fractional model of COVID-

19. We will use The Laplace Decomposition Method and the Differential Transformation

Method. It is a powerful technique used to get an approximate solution of the considered

system. Furthermore, The twomethods presented can be coupled with Padé approximation
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to avoid divergent solution over large intervals and to obtain convergent series solutions

[62]. In addition, a comparison will be made with fourth-order Runge-Kutta method.

The epidemicmathematical model with respect to the parameters and variables in Table

(5.3) is presented as follows[61]:

dS(t)
dt

= A− µS(t)− β(N)S(t)(E(t) + I(t))

dE(t)
dt

= β(N)S(t)(E(t) + I(t))− πE(t)− (µ+ γ)E(t)

dI(t)
dt

= πE(t)− σI(t)− µI(t),

dQ(t)
dt

= γE(t) + σI(t)− θQ(t)− µQ(t)

dR(t)
dt

= θQ(t)− µR(t)

(5.17)

We apply fractional derivatives to the model to get:



Dα
t S(t) = µ− µS(t)− β(N)S(t)(E(t) + I(t))

Dα
t E(t) = β(N)S(t)(E(t) + I(t))− πE(t)− (µ+ γ)E(t)

Dα
t I(t) = πE(t)− σI(t)− µI(t),

Dα
t Q(t) = γE(t) + σI(t)− θQ(t)− µQ(t)

Dα
t R(t) = θQ(t)− µR(t)

(5.18)

With respect to the initial conditions and parameter presented in Table (5.3).

We solved the nonlinear fractional system (5.18) with respect to the initial conditions

presented in Table (5.3) using LDM and DTM where α = 1. We noticed that the so-

lutions obtained from these methods were identical for all variables. Furthermore, they

strongly agree with the fourth-order Runge-Kutta method. The analytical solution curves

are presented in Figure (5.7) (a-e).
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(a) Susceptible (b) Exposed (c) Infected

(d) Isolated (e) Recovered

Figure 5.7: Analytical solution curves of the system (5.18) when α = 1, α = 0.9 and

α = 0.8where the dotted and solid curves correspond to the solutions of DTM and the LDM

respectively.

The analytical expressions for the system (5.18) solved via LDMandDTMwhenα = 1

is as follows:

S(t) = 1 + 0.000011t7 − 0.000316t5 + 0.008860t3 + 0.000143t2 − 0.298594t

E(t) = 1 + 0.000316t5 + 0.000024t4 − 0.008858t3 − 0.001109t2 + 0.291972t

I(t) = 0.00002− 0.000013t4 − 2.872898× 10−6t3 + 0.000820t2 + 0.005670t

Q(t) = 0.000095− 2.105717× 10−6t4 − 2.105717× 10−6t4 + 0.000147t2 + 0.000950t

R(t) = 0.000095 + 4.645267× 10−9t3 + 4.512726× 10−8t2 + 8.93× 10−9t

(5.19)
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Over a larger time domain, we notice that the solution curves diverges over small time

domain as shown in figure (5.8). However, the divergence is being controlled using [5/5]

Padé approximation for each analytical solution. Figure (5.8) shows the divergent solution

curve of S(t) obtained by RK4, LDM and DTM when α = 1 while Figure (5.9) shows

how using [5/5] Padé approximation fixes that obstacle.

(a) Susceptible (b) Exposed (c) Infected

(d) Isolated (e) Recovered

Figure 5.8: Divergent solution of the system (5.18) when α = 1 obtained from RK4, LDM

and DTM without using Padé approximation.
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(a) Susceptible (b) Exposed (c) Infected

(d) Isolated (e) Recovered

Figure 5.9: Convergence solution of (5.18) when α = 1 after being coupled with Padé

approximation

In order to obtain a convergence solution over a bigger time domain, a larger order

of Padé approximation is needed. Figures (5.10) (a-e) show the solution curves when

0 ≤ t ≤ 15 where we used [13/12] Padé approximation to get the convergence solu-

tion. Tables 5.4 and 5.5 show the maximum error in DTM and LDM. Its obvious that the

error decreases as we couple Padé approximation to the two methods and it decreases fur-

ther more as we increase the terms of the series solution and we couple the methods with

Padé approximation.
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(a) Susceptible (b) Exposed (c) Infected

(d) Isolated (e) Recovered

Figure 5.10: Analytical solution curve for the system (5.18) when α = 1 and 0 ≤ t ≤ 15

using [13/12] Padé approximation.

Table 5.4: Maximum error in DTM

Population Maximum error in DTM DTM followed by Padé More terms of DTM followed by Padé

Susceptible46103.96 0.0085159 0.0021529

Exposed 16040.35 0.0030087 0.0068216

Infected 119.1669 0.0364303 0.0004470

Isolated 19.87663 0.0100607 0.0001102

Recovered 0.0004452 0.0000065 0.0000002
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Table 5.5: Maximum error in LDM

Population Maximum error in LDM LDM followed by Padé More terms of LDM followed by Padé

Susceptible13492.98 0.0700698 0.0152590

Exposed 13356.19 0.0076430 0.0058501

Infected 117.2429 0.0756698 0.0031094

Isolated 19.55336 0.0242172 0.0007176

Recovered 0.0044967 0.0000065 0.0000009

(a) Susceptible (b) Exposed (c) Infected

(d) Isolated (e) Recovered

Figure 5.11: Analytical solution curves of the system (5.18) when α = 1, α = 0.9 and

α = 0.8where the dotted and solid curves correspond to the solutions of DTM and the LDM

respectively.

The considered system (5.18) is also solved for the fractional derivatives when α = 0.9

and α = 0.8. Figure (5.11) presents the analytical solution curves for the fractional values

of α where it shows strong agreements between LDM and DTM. Tables (5.6) and (5.7)

show the actual variations between the LDMandDTM for the fractional case whenα = 0.9

and α = 0.8.
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Table 5.6: Maximum variation between LDM and DTM when α = 0.9

Population Maximim Variation Occurred at x

Susceptible 0.011896467 0.400

Exposed 0.011632328 0.400

Infected 0.000233417 0.300

Isolated 0.000039366 0.400

Recovered 0.000000003 1.000

Table 5.7: Maximum variation between LDM and DTM when α = 0.8

Population Maximum Variation Occurred at x

Susceptible 0.008916089 0.300

Exposed 0.025544899 0.300

Infected 0.000514733 0.300

Isolated 0.000086447 0.300

Recovered 0.000000006 1.000
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Chapter 6: Conclusions and Future Work

In this thesis, we investigated the numerical solution of fractional differential equations

with initial and boundary conditions. Laplace Decomposition Method and the Differential

Transformation Method were implemented to obtain an analytical solution for a complex

nonlinear fractional Enzyme Inhibitor Reaction Model and a complex nonlinear COVID-

19 model.The two methods were in strong agreement with the fourth order Runge-Kutta

method. Then the systems were solved for the fractional order when α = 0.9 and α = 0.8

where the twomethods presented agreeable solutions. We also coupled the LDM andDTM

with Padé approximation to obtain a convergent solution over a larger time interval. We

can also acquire more accurate results by increasing the terms of the series solution. The

proposed methods were employed to obtain highly accurate results for fractional differen-

tial equations. Furthermore, it helped us guarantee convergence, stability, and helped us

reach a better understanding of the dynamical behavior of the systems.
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