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ON n-SEMIPRIMARY IDEALS AND n-PSEUDO VALUATION
DOMAINS

DAVID F. ANDERSON AND AYMAN BADAWI

ABSTRACT. Let R be a commutative ring with 1 # 0 and n a positive integer.
A proper ideal I of R is an n-semiprimary ideal of R if whenever z™y" € I for
z,y € R, then 2™ € I or y™ € I. Let R be an integral domain with quotient
field K. A proper ideal I of R is an n-powerful ideal of R if whenever z"™y™ € I
for z,y € K, then 2™ € R or y™ € R; and [ is an n-powerful semiprimary ideal
of R if whenever z"y™ € I for z,y € K, then 2™ € I or y™ € I. If every prime
ideal of R is an m-powerful semiprimary ideal of R, then R is an n-pseudo-
valuation domain (n-PVD). In this paper, we study the above concepts and
relate them to several generalizations of pseudo-valuation domains.

1. INTRODUCTION

Let R be a commutative ring with 1 # 0 and n a positive integer. Recall that
an ideal I of R is a semiprimary ideal of R if /I is a prime ideal of R. In this
paper, we introduce and study n-semiprimary ideals (resp., n-powerful semiprimary
ideals in integral domains), where a proper ideal I of R is n-semiprimary (resp.,
n-powerful semiprimary) if whenever z"y™ € I for z,y € R (resp., z,y € K, the
quotient field of R), then 2™ € I or y™ € I. These concepts generalize prime ideals
and are generalized by semiprimary ideals. We also investigate several other “n”
generalizations obtained by replacing x with 2™ in the definition.

In Section 2, we give some basic properties of n-semiprimary ideals. For example,
we show that an n-semiprimary ideal is semiprimary, and the converse holds when
R is Noetherian. We also show that an n-semiprimary ideal is m-semiprimary for
every integer m > n. In Section 3, we characterize n-semiprimary ideals in several
classes of commutative rings. In particular, we investigate n-semiprimary ideals in
zero-dimensional commutative rings, Dedekind domains, valuation domains, and
idealizations. In Section 4, we study n-powerful semiprimary ideals in integral
domains and introduce n-pseudo-valuation domains (n-PVDs), a generalization of
pseudo-valuation domains (PVDs). We also study n-valuation domains (n-VDs).
In the final section, Section 5, we introduce pseudo n-valuation domains (PnVDs),
another generalization of PVDs. Many examples are given throughout the paper
to illustrate the theory.

Throughout, R will be a commutative ring with 1 # 0, vI = {z € R | 2" € I for
some n € N} for I an ideal of R, ideal of nilpotent elements nil(R) = \/m, group
of units U(R), (Krull) dimension dim(R), and characteristic char(R). An overring
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of an integral domain R with quotient field K is a subring of K containing R, and
we denote the integral closure of R (in K) by R. In particular, if I is an ideal of R,
then (I : I) = {z € K | I C I} is an overring of R. Other definitions will be given
throughout the paper as needed. As usual, N, Z, Z,,, Fp», Q, R, and C will denote
the set of positive integers, the rings of integers and integers mod n, the finite field
with p™ elements, and the fields of rational numbers, real numbers, and complex
numbers, repectively. For any undefined terminology, see [23], [26], [27], or [28].

2. BASIC PROPERTIES OF n-SEMIPRIMARY IDEALS

In this section, we give some basic properties of n-semiprimary ideals. We begin
with the definition.

Definition 2.1. Let I be a proper ideal of a commutative ring R and n a positive
integer. Then I is an n-semiprimary ideal of R if whenever 2™y™ € I for z,y € R,
then 2™ € I or y™ € I.

Note that a 1-semiprimary ideal is just a prime ideal. For convenience, call a
commutative ring R an n-ring if £™y"™ = 0 for x,y € R implies ™ = 0 or y" = 0.
Then a 1-ring is just an integral domain, R is an n-ring if and only if {0} is an
n-semiprimary ideal of R, and R/I is an n-ring if and only I is an n-semiprimary
ideal of R. We start with some elementary results that follow directly from the
definitions.

Theorem 2.2. Let I be a proper ideal of a commutative ring R.

(a) Let I be an n-semiprimary ideal of R. Then I is an mn-semiprimary ideal
of R for every positive integer m. (See Theorem 2.14 for a stronger result.)

(b) Let J C I be proper ideals of R. Then I is an n-semiprimary ideal of R if
and only if 1/J is an n-semiprimary ideal of R/ J.

(¢) Let I be an n-semiprimary ideal of R and S a multiplicatively closed subset
of R with INS = (. Then Ig is an n-semiprimary ideal of Rg.

We next show that an n-semiprimary ideal is indeed semiprimary.

Theorem 2.3. Let I be an n-semiprimary ideal of a commutative ring R. Then
VT is a prime ideal of R and " € I for every x € VI. In particular, I is a
semiprimary ideal of R, and x € /T if and only if 2™ € I.

Proof. Let xy € /T for z,y € R. Then there is a positive integer k such that
(@F)"(yF) = (wy)*™ € I. Thus 2F* = (2F)" € I or y*™ = (y*)* € I since I is
an n-semiprimary ideal of R. Hence = € v/T or y € v/T; so VT is a prime ideal
of R. Let € VI and m be the least positive integer such that ™" € I. Then
™ (xm ) = grg(m=n = g™ ¢ T and thus 2™ € I or (™~ D" € T since I is an
n-semiprimary ideal of R. Hence m = 1; so ™ € I. The “in particular” statement
is clear. (]

The following is an example of a semiprimary ideal of a commutative ring R
that is not an m-semiprimary ideal for any positive integer n. Note that R is not
Noetherian. In fact, Corollary 2.6 shows that semiprimary ideals in a commutative
Noetherian ring are n-semiprimary for all large n.
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Example 2.4. Let R = Zo[{X,,}52,] and T = ({X7}22,). Then vT = ({X,}2,)
is a prime ideal of R; so I is a semiprimary ideal of R. However, I is not an n-
semiprimary ideal of R for any positive integer n since X% X5 = X3 € I, but
X5, & 1.

The next theorem gives a sufficient condition for a semiprimary ideal to be
an n-semiprimary ideal. As a consequence, n-absorbing semiprimary ideals are
n-semiprimary and semiprimary ideals in commutative Noetherian rings are n-
semiprimary for all large n.

Theorem 2.5. Let I be a proper ideal of a commutative ring R such that P = \/T is
a prime ideal of R and P™ C I for a positive integer n. Then I is an m-semiprimary
ideal of R for every integer m > n. In particular, Q™ is an m-semiprimary ideal
of R for every prime ideal Q of R and integer m > n.

Proof. Let 2"y™ € I C Pforz,y € R. Thenxz € Pory € P. Thus 2™ € P* C [ or
y™ € P™ C I, and hence [ is an n-semiprimary ideal of R. Moreover, P C P" C [
for every integer m > n; so I is also an m-semiprimary ideal of R for every integer
m > n. The “in particular” statement is clear. O

Corollary 2.6. Let I be a semiprimary ideal of a commutative Noetherian ring R.
Then there is a positive integer n such that I is an m-semiprimary ideal of R for
every integer m > n.

Proof. Since I is a semiprimary ideal of R, P = /I is a prime ideal of R, and
P"™ C I for some positive integer n since P is finitely generated. Thus I is an
m-semiprimary ideal of R for every integer m > n by Theorem 2.5. ]

Recall ([15], [9]) that a proper ideal I of a commutative ring R is an n-absorbing
ideal of R if whenever 1 - 2,41 € [ for x1,...,2,41 € R, then the product of
n of the z;’s is in I (for a related concept, also see [10]). Both n-semiprimary
and n-absorbing ideals generalize prime ideals, but in rather different ways. An
n-semiprimary ideal need not be an n-absorbing ideal (see Example 2.9); and an n-
absorbing ideal need not be n-semiprimary since, for example, (6) is a 2-absorbing
ideal of Z, but not a 2-semiprimary ideal since \/@ = (6) is not a prime ideal of
7. However, we next show that if /T is a prime ideal, then an n-absorbing ideal T
is n-semiprimary.

Corollary 2.7. Let I be an n-absorbing ideal of a commutative ring R. If /T is a
prime ideal of R, then I is an m-semiprimary ideal of R for every integer m > n. In
particular, an n-absorbing ideal is n-semiprimary if and only if it is semiprimary.

Proof. Let P = /I be a prime ideal of R. Then P" = (\ﬁ)" C I since I is an
n-absorbing ideal of R ([18], [22]). Thus [ is an m-semiprimary ideal of R for every
integer m > n by Theorem 2.5. The “in particular” statement now follows from
Theorem 2.3. Il

Corollary 2.8. Let P, C --- C Py be prime ideals of a commutative ring R and
ni,...,ny positive integers. Then I = P{"* --- P'* is an m-semiprimary ideal of R
for every integer m > ny + - - - 4+ ny.

Proof. Note that VT = P, is a prime ideal of R and Pj* C P/ --- P/"* = I, where
n=mny+---+ng. Thus I is an m-semiprimary ideal of R for every integer m > n
by Theorem 2.5. (]
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The converse of Theorem 2.5 need not be true, i.e., if I is an n-semiprimary ideal
of R for some integer n > 2, then (v/I)" need not be a subset of I. Let p > 2 be
a prime integer. In the following example, we show that there is a proper ideal I
of a commutative ring R such that I is a p-semiprimary ideal of R, but (\ﬁ Y I,
and thus T is not a p-absorbing ideal of R ([18], [22]).

Example 2.9. Let p > 2 be a prime integer, R = Z,[X,Y], and I = (X?,Y?).
Then I is a proper ideal of R with prime ideal P = /T = (X,Y) and PP ¢ I since
YXP~1 ¢ I. Thus I is not a p-absorbing ideal of R ([18], [22]). Let fPg? € I C
(X,Y) for f,ge R. Then f € (X,Y)orge (X,Y);s0 fP € IorgP eI, and hence
I is a p-semiprimary ideal of R.

Recall [19] that a proper ideal I of a commutative ring R is a uniformly primary
ideal of R if there is a positive integer n such that whenever zy € I for x,y € R,
then z € I or y™ € I. If I is a uniformly primary ideal of R for a positive integer
n, then we say that I is an n-primary ideal of R. By the following theorem, an
n-primary ideal is also n-semiprimary.

Theorem 2.10. Let I be an n-primary ideal of a commutative ring R. Then I is
an n-semiprimary ideal of R.

Proof. Let x"y™ € I for z,y € R with ™ ¢ I, and let m be the least positive
integer such that "y™ € I. Then (z"y™ 1)y = 2"y™ € I. Since 2"y™ ! ¢ I and
I is an n-primary ideal of R, we have y™ € I. Thus [ is an n-semiprimary ideal of
R. O

In the following example, we show that there is a commutative ring R with ideals
{I,,}22_, such that every I,, is an n-semiprimary ideal of R with (v/I,,)" C I,,, but
I, is not a primary ideal of R. In particular, I,, is not an m-primary ideal of R for
any positive integer m.

Example 2.11. Let R = Zy[X,Y]. For every integer n > 2, I,, = (XY,Y") is an
ideal of R with prime ideal P = /T, = (Y). Thus [,, is an n-semiprimary ideal of
R by Theorem 2.5 since P" C I,,. However, YX € 1,,Y ¢ I,,, and X™ ¢ I, for
every positive integer m; so I, is not a primary ideal of R, and hence I,, is not an
m-primary ideal of R for any positive integer m.

The next definition generalizes the “n-semiprimary” concept from elements to
ideals.

Definition 2.12. Let I be a proper ideal of a commutative ring R and n a positive
integer. Then I is a strongly n-semiprimary ideal of R if whenever J"K™ C I for
proper ideals J and K of R, then J*" C I or K™ C I.

A strongly 1-semiprimary ideal is just a prime ideal, a strongly n-semiprimary
ideal is an m-semiprimary ideal, and a strongly n-semiprimary ideal is also strongly
mn-semiprimary for every positive integer m. However, the following example
shows that an n-semiprimary ideal need not be strongly n-semiprimary.

Example 2.13. Let R = Z,[X,Y] and I = (X2,Y?). By Example 2.9, I is a
2-semiprimary ideal of R with prime ideal P = VT = (X,Y). Clearly, P2P? =
P* C I, but P> ¢ I. Thus I is not a strongly 2-semiprimary ideal of R. Note
that I is an n-semiprimary ideal of R for every integer n > 3 by Theorem 2.5 since
P3 C I, and hence [ is an n-semiprimary ideal of R for every integer n > 2.
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We have already observed in Theorem 2.2 that an n-semiprimary ideal is also
mn-semiprimary for every positive integer m. We next give a much stronger result.

Theorem 2.14. Let I be an n-semiprimary ideal of a commutative ring R.
(a) If 2™y* € I for x,y € R and positive integers m and k, then x™ € I or
y™ € I. In particular, if ™ € I for x € R and m a postive integer, then x™ € I.
(b) I is an m-semiprimary ideal of R for every positive integer m > n.

Proof. (a) Let x™y* € I for z,y € R; we may assume that m > k. Then (zy)™ =
zMy™ = (xyF)y™F € I . Thus zy € VI; so ™y" = (zy)" € I by Theorem 2.3.
Hence ™ € I or y™ € I since [ is an n-semiprimary ideal of R. The “in particular”
statement is clear.

(b) Let 2™y™ € I for z,y € R with m > n. Then 2™ € I or y™ € I by part
(a). Thus 2™ = 2™ ™2™ € [ or y™ = y™ "y" € I since m > n; so I is an
m-semiprimary ideal of R. (]

An ideal may be n-semiprimary for many different values of n. We now make
that statement more precise. For a proper ideal I of a commutative ring R, let
Wgr(I) = {n € N | I is an n-semiprimary ideal of R} and dr(I) = minWg(I) (let
O0r(I) =00 if Wg(I) =0). Then Wr(I) = [0r({),00) NN by Theorem 2.14(b).

3. N-SEMIPRIMARY IDEALS IN SOME CLASSES OF RINGS

In this section, we study n-semiprimary ideals in several important classes of
commutative rings. We have already observed in Corollary 2.6 that for commutative
Noetherian rings, a semiprimary ideal is n-semiprimary for all large n. The first
two results concern the case when dim(R) = 0.

Theorem 3.1. Let I D nil(R) be an ideal of a commutative ring R with dim(R) =
0. Then I is an n-semiprimary ideal of R if and only if I is a prime ideal of R
(i.e., I is a 1-semiprimary ideal of R).

Proof. A prime ideal is certainly n-semiprimary for every positive integer n. Con-
versely, we show that an n-semiprimary ideal I of R is a prime ideal of R. Let zy € I
forz,y € R; soa™y™ € I. Thenz™ € I or y™ € I; say 2™ € I. Since dim(R) = 0, we
have x = eu+w for an idempotent e € R, u € U(R), and w € nil(R) [13, Corollary
1]. Thus 2" = (eu+w)" = eu™ +ajeu ‘w+ageu™ 2w +- - - +a,_jeuw™ t+w" =
e(u +aju" tw+agu 2w+ +a,_quw™ ) +w™ € I, where the a;’s are positive
integers, and v = u™ + aju™ " tw + au" 2w? + -+ + ap_uw™ "t € U(R). Hence
2" = (eu +w)" = ev + w" with w™ € nil(R) C I. Thus ev = 2™ —w" € I, and
hence eu = (ev)(v~'u) € I. Thus = eu +w € I; so I is a prime ideal of R. (]

Corollary 3.2. Let R be a commutative von-Neumann reqular ring. Then a proper
ideal I of R is an n-semiprimary ideal of R if and only if I is a prime ideal of R.

Proof. A commutative ring R is von Neumann regular if and only if nil(R) = {0}
and dim(R) = 0 [26, page 5]. O

However, if I is an n-semiprimary ideal of a zero-dimensional commutative ring
R for some integer n > 2 and nil(R) ¢ I, then I need not be a prime ideal of R.
We have the following example.
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Example 3.3. Let R = Z4 X Zs. Then dim(R) = 0 and I = {0} x Zg is a 2-
semiprimary ideal of R with nil(R) = {0,2} x {0} € I. However, I is not a prime
ideal of R.

It is easy to determine the n-semiprimary ideals in a Dedekind domain R since
every nonzero proper ideal of R is (uniquely) a product of prime (maximal) ideals
[28, Theorem 6.16].

Theorem 3.4. Let I be a nonzero proper ideal of a Dedekind domain R. Then I
is an n-semiprimary ideal of R if and only if I = P*, where P = /I is a prime
(mazimal) ideal of R and n > k. Moreover, dr(I) =n if and only if I = P™.

Proof. Let I be a nonzero proper ideal of a Dedekind domain R. Then /I = P is
a prime (maximal) ideal if and only if I = P* for some positive integer k. Thus by
Theorem 2.3 and Theorem 2.5, I is n-semiprimary if and only if I = P* for some
positive integer k, where n > k. The “in particular” statement is clear. O

Next, we give a characterization of Dedekind domains in terms of 2-semiprimary
ideals.

Theorem 3.5. Let R be a Noetherian integral domain. Then the following state-
ments are equivalent.

(1) R is a Dedekind domain.
(2) If I is an ideal of R with dr(I) = 2, then I = M? for some mazimal ideal
M of R.

Proof. (1) = (2) This follows directly from Theorem 3.4.

(2) = (1) Let I be an ideal of R with M? C I C M for a maximal ideal M of R.
Then I is 2-semiprimary by Theorem 2.5 and not prime (maximal); so dg(I) = 2.
Thus I = M? by hypothesis. Hence there are no ideals of R strictly between M and
M? for every maximal ideal M of R; so R is a Dedekind domain by [28, Theorem
6.20). O

It is also easy to describe the n-semiprimary ideals in a valuation domain. Recall
that every proper ideal in a valuation domain is semiprimary [23, Theorem 17.1(2)].

Theorem 3.6. Let I be a proper ideal of a valuation domain R with P = /1.

(a) I is an n-semiprimary ideal of R if and only if P™ C 1.

(b) If P is idempotent, then I is an n-semiprimary ideal of R if and only if
I1=P.

(¢) If P is not idempotent, then I is an n-semiprimary ideal of R for some
positive integer n. Moreover, every ideal of R between P and the prime ideal directly
below P is an n-semiprimary ideal for some positive integer n.

Proof. (a) If P™ C I, then [ is n-semiprimary by Theorem 2.5. Conversely, suppose
that I is n-semiprimary. Then z™ € I for every = € P by Theorem 2.3; so P™ =
{ra™|r € R,z € P} C I (cf. [12, Proposition 2.1 and Corollary 2.2]).

(b) This follows directly from part (a).

(¢) If P = /T is not idempotent, then P* C I for some positive integer n [23,
Theorem 17.1(5)], and thus I is n-semiprimary by Theorem 2.5. For the “moreover”
statement, P™ C I for some positive integer n since the prime ideal directly below
Pis Q =N, P™ [23, Theorem 17.1(3)(4)]. O
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The following example illustrates the possible behavior of n-semiprimary ideals
in valuation domains R with dim(R) < 2. The details follow directly from Theo-
rem 3.6 and well-known facts about the value group of a valuation domain (cf. [23,
Chapter 3]). It is interesting to compare Theorem 3.6 (resp., Example 3.7) with
[9, Theorem 5.5] (resp., [9, Example 5.6]) which concerns n-absorbing ideals in a
valuation domain. There are n-semiprimary ideals that are not n-absorbing ideals
in some valuation domains R since I is an n-semiprimary (resp., n-absorbing) ideal
of a valuation domain R if and only if P* C I (resp., P" = I).

Example 3.7. (a) Let R be a one-dimensional valuation domain with maximal
ideal M. If M is principal, then R is a DVR, and thus every proper ideal of
R is an n-semiprimary ideal for some positive integer n. If M is not principal,
then M? = M, and hence {0} and M are the only proper ideals of R that are
n-semiprimary for some positive integer n.

(b) Let R be a two-dimensional valuation domain with prime ideals {0} C P C M
and value group G. If G = Z ® Z (all direct sums have the lexicographic order),
then P2 # P and M? # M; so every proper ideal of R is n-semiprimary for some
positive integer n. If G = Q ® Q, then P? = P and M? = M; so {0}, P, and
M are the only ideals of R that are n-semiprimary for some positive integer n. If
G =7Z&Q, then P2 # P and M? = M; so M and every ideal of R contained in
P is n-semiprimary for some positive integer n, but no ideal properly between P
and M is n-semiprimary for any positive integer n. If G = Q @ Z, then P2 = P
and M? # M; so every ideal of R between P and M is n-semiprimary for some
positive integer n, but {0} and P are the only ideals of R contained in P that are
n-semiprimary for some positive integer n.

We end this section with two results on idealization. Let M be an R-module over
a commutative ring R. The idealization of M is the commutative ring R(+)M =
R x M with addition and multiplication defined by (a,m) + (b,n) = (a + b, m +n)
and (a, m)(b,n) = (ab,bm+an), respectively, and identity (1,0) (cf. [2], [26, Section
25]). Note that ({0}(+)M)? = {0}; so {0}(+)M C nil(R(+)M).

Theorem 3.8. Let I be a proper ideal of a commutative ring R, M an R-module,
and S = IM a submodule of M. If I is an n-semiprimary ideal of R, then I(+)S is
an (n+ 1)-semiprimary ideal of R(+)M. Moreover, if I(+)S is an n-semiprimary
ideal of R(+)M, then I is an n-semiprimary ideal of R.

Proof. Let I be an n-semiprimary ideal of R and (a, m)"**(b, )"t = (a" T+ 2) €
I(+)S for (a,m), (b,h) € R(+)M. Then o™ € I or b € I by Theorem 2.14(a) since
I is an n-semiprimary ideal of R. We may assume that a™ € I; so (n 4+ 1)a"m €
IM = S. Thus (a,m)"*! = (a"™!, (n + 1)a™m) € I(+)S; so I(+)S is an (n + 1)-
semiprimary ideal of R(+)M. The “moreover” statement is clear. 0O

Theorem 3.9. Let I a proper ideal of a commutative ring R with char(R) =n > 2,
M an R-module, and S a submodule of M. Then I(4)S is an n-semiprimary ideal
of R(+)M if and only if I is an n-semiprimary ideal of R.

Proof. If J = I(+)S is an n-semiprimary ideal of A = R(+)M, then clearly I is an
n-semiprimary ideal of R. Conversely, assume that I is an n-semiprimary ideal of
R. Let (a,m)™(b,h)" = (a™b", z) € J for (a,m), (b,h) € A. Thena™ € [ or b” € I
since [ is an n-semiprimary ideal of R; assume that a™ € I. Since char(R) =n > 2,
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we have na"'m =0 € S. Thus (a,m)" = (a™,na""m) = (a",0) € J; so J is an
n-semiprimary ideal of A. O

4. n-POWERFUL SEMIPRIMARY IDEALS AND n-PVDs

In this section, we study n-powerful semiprimary ideals in integral domains and
two generalizations of valuation domains, namely, n-pseudo-valuation domains (n-
PVDs) and n-valuation domains (n-VDs).

Recall [17] (resp., [24]) that a proper ideal I of an integral domain R with quotient
field K is powerful (vesp., strongly prime) if whenever zy € I for z,y € K, then
x € Rory€ R (resp.,, x € I or y € I). We begin with an “n” generalization.

Definition 4.1. Let R be an integral domain with quotient field K and n a positive
integer. A proper ideal I of R is an n-powerful ideal of R if whenever x™y™ € I for
z,y € K, then 2" € R or y" € R; and I is an n-powerful semiprimary ideal of R if
whenever z"y" € I for z,y € K, then 2™ € I or y™ € I.

Thus a 1-powerful (resp., 1-powerful semiprimary) ideal is just a powerful (resp.,
strongly prime) ideal, and an n-powerful (resp., n-powerful semiprimary) ideal is
also an mn-powerful (resp., mn-powerful semiprimary) ideal for every positive in-
teger m. It is well known that prime ideals in a valuation domain are strongly
prime ideals. From this observation, it easily follows that n-semiprimary ideals
in a valuation domain are also m-powerful semiprimary ideals; so Theorem 3.6
and Example 3.7 also hold for n-powerful semiprimary ideals. However, an n-
semiprimary ideal need not be an n-powerful semiprimary ideal. For example,
let R = Z»[[X? X3]]. Then its maximal ideal M = (X2, X3) is a prime (1-
semiprimary) ideal, but not a strongly prime (1-powerful semiprimary) ideal. Also,
see Example 4.5 for a 2-semiprimary ideal that is not 2-powerful semiprimary.

We next give a stronger result.

Theorem 4.2. Let R be an integral domain with quotient field K.

(a) Let I be an n-semiprimary ideal of R. If \/T is a strongly prime ideal of R,
then I is an n-powerful semiprimary ideal of R.

(b) Let I C J be proper ideals of R. If J is an n-powerful ideal of R, then I is
an n-powerful ideal of R.

(c) Let I be an n-powerful (resp.,n-powerful semiprimary) ideal of R and S a
multiplicatively closed subset of R with INS = 0. Then Is is an n-powerful (resp.,
n-powerful semiprimary) ideal of Rg.

Proof. (a) Let P = VI and 2"y™ € I C P for z,y € K. Then z € P or y € P since
P is a strongly prime ideal of R. Thus ™ € I or y™ € I by Theorem 2.3; so [ is an
n-powerful semiprimary ideal of R.

(b) Let z™y™ € I C J for x,y € K. Then z"™ € R or y" € R since J is an
n-powerful deal of R. Thus [ is an n-powerful ideal of R.

(c) This follows easily from the definitions. O

Note that every ideal in a valuation domain is powerful; so an n-powerful ideal
need not be n-powerful semiprimary. However, for prime ideals, these two concepts
coincide.

Theorem 4.3. Let I be a prime ideal of an integral domain R with quotient field
K. Then I is an n-powerful semiprimary ideal of R if and only if I is an n-powerful

ideal of R.
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Proof. If I is an n-powerful semiprimary ideal of R, then I is certainly an n-powerful
ideal. Conversely, assume that I is an n-powerful prime ideal of R. Let z"y™ € I
for x,y € K. First, suppose that z",y" € R. Since I is a prime ideal of R,
then ™ € I or y™ € I. Thus we may assume that ™ ¢ R, and hence y" € R
since I is an n-powerful ideal of R. Since z" ¢ R and [ is an n-powerful ideal
of R, we have 22" = z"2" ¢ I. Assume that z?" € R; so y?",z?" € R. Since
22"y?" € [ and 22" ¢ I, we have y?" € I. Since y® € R, I is a prime ideal of
R, and y"y" = y?>" € I, we have y" € I. Now, assume that 22" ¢ R. Since
(y?/zy)" (2?)" = (y*" /2"y )z* = 2™y" € I, 2" ¢ R, and [ is an n-powerful ideal
of R, we have y?"/a"y™ € R. Thus y** = 2"y"(y*"/a"y") € I. Since y" € R, I is
a prime ideal of R, and 3?" = y"y™ € I, we have y" € I. Hence I is an n-powerful
semiprimary ideal of R. O

Theorem 4.4. Let P C @ be prime ideals of an integral domain R. If Q) is an
n-powerful semiprimary ideal of R, then P is an n-powerful semiprimary ideal of
R.

Proof. Let @ be an n-powerful ideal of R; so P is an n-powerful ideal of R by
Theorem 4.2(b). Thus P is an n-powerful semiprimary ideal of R by Theorem
4.3. |

Let I be a proper ideal of an integral domain R. As the “powerful” analogs of
Wr(I) and Sg(I), we define Wr(I) = {n € N | I is an n-powerful semiprimary
ideal of R} and dr(I) = minW r(I) (let dr(I) = oo if Wx(I) = 0). Note that
Wr(I) C Wr(I) and dr(I) < Sr(I). The next example shows that the analogs of
Theorem 2.14(b) and Theorem 4.2(b) do not hold for n-powerful semiprimary ideals.
In particular, if I is an n-powerful semiprimary ideal, then [ is an n-semiprimary
ideal. Thus I is also an m-semiprimary ideal for every integer m > n, but I need
not be an m-poweful semiprimary ideal.

Example 4.5. Let R = F[[X2, X%]| = F + FX? + X*F[[X]], where F is a field.
Then R is quasilocal with maximal ideal M = (X2, X%) = FX? + X*F[[X]] and
quotient field K = F[[X]][1/X]. Clearly M is a 2-semiprimary ideal of R, but not a
3-powerful semiprimary ideal of R since X3X?3 = X% € M, but X® & M. Moreover,
M is a 2-powerful semiprimary ideal of R if and only if char(F) = 2, and M is an n-
powerful semiprimary ideal of R for every integer n > 4. So, for R = Zo[[X?, X?]],
M is a 2-powerful semiprimary ideal, but not a 3-powerful semiprimary ideal, and
Wgr(M) =N\ {1,3}. Thus the “powerful” analog of Theorem 2.14(b) fails for M.
Let I = X*F[[X]]. Then I is a 2-semiprimary ideal of R, but not a 2-powerful
semiprimary ideal of R since X2X?2 € I, but X2 ¢ I. So the “semiprimary” analog
of Theorem 4.2(b) fails for I C J = M when char(F) = 2.

Recall [24] that an integral domain R is a pseudo-valuation domain (PVD) if
every prime ideal of R is strongly prime. A PVD is neccessarily quasilocal [24,
Corollary 1.3]. A quasilocal integral domain R with maximal ideal M is a PVD <
M is strongly prime [24, Theorem 1.4], and R is a PVD < (M : M) is a valuation
domain with maximal ideal M [11, Proposition 2.5]. Let T = K+ M be a valuation
domain, where K is a field and M is the maximal ideal of T. Then for a proper
subfield k of K, the subring R = k 4+ M is a PVD which is not a valuation domain
[24, Example 2.1]. By Theorem 4.2(a), every n-semiprimary ideal in a PVD is an
n-powerful semiprimary ideal.
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We next give an “n” generalization of PVDs.

Definition 4.6. Let R be an integral domain and n a positive integer. Then R is
an n-pseudo-valuation domain (n-PVD) if every prime ideal of R is an n-powerful
semiprimary ideal of R.

Note that a 1-PVD is just a PVD and an n-PVD is also an mn-PVD for every
positive integer m. The next several results show that n-PVDs behave very much
like PVDs (cf. [1], [6], [8], [11], [17], [24], and [25]).

Theorem 4.7. Let R be an n-PVD. Then R is quasilocal.

Proof. By way of contradiction, assume that M and IV are distinct maximal ideals
of R. Let z € M\ N and y € N\ M. Then (x/y)"(y*)" = (z"/y")y*" = 2"y" €
M, and thus (z/y)"™ € M since M is an n-powerful semiprimary ideal of R and
(y )" ¢ M. Hence 2" = (z/y)"y™ € N; so x € N, a contradiction. Thus R is
quasilocal. O

In view of Theorem 4.3, Theorem 4.4, and the proof of Theorem 4.7, we have
the following result.

Corollary 4.8. An integral domain R is an n-PVD if and only if some mazimal
ideal of R is an n-powerful semiprimary ideal of R, if and only if some mazimal
ideal of R is an n-powerful ideal of R.

Recall ([20], [14]) that a prime ideal P of a commutative ring R is a divided
prime ideal of R if x |p (in R) for every z € R\ P and p € P (i.e., (x) is comparable
to P for every x € R), and R is a divided ring if every prime ideal of R is divided.

[13e))

We next give the “n” generalization.

Definition 4.9. Let R be a commutative ring and n a positive integer. Then
a prime ideal P of R is an n-divided prime ideal of R if z™|p™ (in R) for every
x € R\ P and p € P. Moreover, R is an n-divided ring if every prime ideal of R is
an n-divided prime ideal of R.

A 1-divided prime ideal (resp., ring) is just a divided prime ideal (resp., ring),
and an n-divided prime ideal is mn-divided for every positive integer m. Thus an
n-divided ring is mn-divided for every positive integer m.

The next several results show that n-divided rings behave very much like divided
rings (cf. [14], [20]).

Theorem 4.10. Let R be an n-divided commutative ring. Then the set of prime
ideals of R is linearly orderd by inclusion. In particular, R is quasilocal.

Proof. Let P and @ be prime ideals of an n-divided commutative ring R with
P Z Q. We show that @ C P. Let € P\ Q; then ™ | ¢" for every ¢ € @ since @
is an n-divided prime ideal of R. Thus ¢" € (z™) C P; so ¢ € P for every q € Q.
Hence Q C P. ([l

Theorem 4.11. Let P a prime ideal of an integral domain R. If P is an n-powerful
semiprimary ideal of R, then P is an n-divided prime ideal of R. Moreover, the set
of prime ideals of R that are contained in P is linearly ordered by inclusion.

Proof. Let x € R\ P and p € P. Then (p/x)"a™ = (p"/z™)z™ = p" € P. Thus
p"/x™ € P since 2™ ¢ P and P is an n-powerful semiprimary ideal of R. Hence
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p" = (p"/x™)x™; so 2™ |p" (in R). Thus P is an n-divided prime ideal of R. Now
suppose that F' and H are distinct prime ideals of R contained in P. Then F' and
H are n-powerful semiprimary ideals of R by Theorem 4.4, and hence are n-divided
prime ideals. The proof of Theorem 4.10 shows that F' and H are comparable under
inclusion. ([l

Corollary 4.12. Let R be an n-PVD. Then R is an n-divided domain and the set
of prime ideals of R is linearly ordered by inclusion. Moreover, if R is Noetherian,
then dim(R) < 1.

Proof. We need only prove the “moreover” statement; it follows directly from [27,
Theorem 144]. O

Let R be an integral domain with quotient field K, S C R, and n a positive in-
teger. Define E,,(S) ={z | 2" ¢ S,z € K} and A,(S) = {2" | 2" € S,z € K}. We
next use these two sets to give another characterization of n-powerful semiprimary
ideals. Note that actually = "d € A, (P) in Theorem 4.13 and Corollary 4.15(4),
and x7"d € A, (M) in Corollary 4.16(3).

Theorem 4.13. Let P a prime ideal of an integral domain R with quotient field
K. Then P is an n-powerful semiprimary ideal of R if and only if x="d € P for
every ¢ € E,(P) and d € A,(P).

Proof. Suppose that x~™d € P for every x € E,(P) and d € A, (P). Let 2"y™ € P
for z,y € K with 2™ € P; so x € E,(P). Since 2"y" = (xy)" € A,(P), we have
y" =z~ "(z"y™) € P. Thus P is an n-powerful semiprimary ideal of R.
Conversely, suppose that P is an n-powerful semiprimary ideal of R. Let d €
A, (P); so d = a™ € P for some a € K and 2" (x~!a)" = 2"z "a" = a" € P for
every 0 # x € K. Suppose that z € E,(P). Then 2" ¢ P; so (z71a)" € P since P
is an n-powerful semiprimary ideal of R. Thus 27 "d = 2™ "a" = (z~1a)" € P. O

The proof of the following result is similar to that of Theorem 4.13, and thus
will be omitted.

Theorem 4.14. Let I a proper ideal of an integral domain R. Then I is an n-
powerful ideal of R if and only if x~"d € R for every x € E,(R) and d € A, (I).

In view of Theorem 4.3, Theorem 4.13, and Theorem 4.14, we have the following
result.

Corollary 4.15. Let P be a prime ideal of an integral domain R. Then the fol-
lowing statements are equivalent.

(1) P is an n-powerful semiprimary ideal of R.

(2) P is an n-powerful ideal of R.

(3) x7"d € R for every x € E,(R) and d € A,(P).

(4) x="d € P for every x € E,(P) and d € A,(P).

In view of Corollary 4.8, Theorem 4.13, and Theorem 4.14, we have the following
result.

Corollary 4.16. Let R be a quasilocal integral domain with mazimal ideal M.
Then the following statements are equivalent.

(1) R is an n-PVD.

(2) x7"d € R for every x € E,(R) and d € A,(M).
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(3) x™"d € M for every x € E,(M) and d € A,(M).

If Ris a PVD, then R/P is also a PVD for P a prime ideal of R [21, Lemma
4.5(1)]. The analogous result holds for n-PVDs.

Theorem 4.17. Let P be a prime ideal of an n-PVD R. Then R/P is an n-PVD.

Proof. Let M be the maximal ideal of R, K the quotient field of R, F = Rp/PRp
the quotient field of A = R/P, and H,(M/P) = {z™ € M/P | x € F}. Suppose
that t =a+ P,y =b+P € A and z" { y"™ in A. Then o {1b™ in R; so b"™ | a™d in R
for every d € A, (M) by Corollary 4.16. Thus y™ | z™h in A for every h € H,,(M/P);
so A is an n-PVD by Corollary 4.16 again. O

Let n be a positive integer. Recall that an integral domain R with quotient field
K is n-root closed if whenever ™ € R for x € K, then x € R; and R is root closed
if R is n-root closed for every positive integer n. For example, an integrally closed
integral domain is root closed. Note that R is mn-root closed if and only if R is
m-root closed and n-root closed. Thus C(R) = {n € N | R is n-root closed} is a
multiplicative submonoid on N generated by some set of prime numbers. Moreover,
for S any multiplicative submonoid of N generated by a set of prime numbers,
S = C(R) for some integral domain R [7, Theorem 2.7].

For n-root closed integral domains, the n-PVD and PVD concepts coincide.

Theorem 4.18. Let R be an n-root closed integral domain with quotient field K.
Then R is an n-PVD if and only if R is a PVD. In particular, an integrally closed
n-PVD is a PVD.

Proof. If R is a PVD, then clearly R is an n-PVD. Conversely, let R be an n-root
closed n-PVD with maximal ideal M. We show that M is a powerful ideal of R.
Let xy € M for z,y € K and ¢ R. Then 2™y" € M and 2™ ¢ R since R is
n-root closed. Thus y™ € M C R since M is an n-powerful semiprimary ideal of R,
and hence y € R since R is n-root closed. Thus M is a powerful ideal of R; so M
is a strongly prime ideal of R (i.e., M is a 1-powerful semiprimary ideal of R) by
Theorem 4.3. Hence R is a PVD. The “in particular” statement is clear. ([

Recall ([4], [3], [5], [29]) that an integral domain R with quotient field K is
an almost valuation domain if for every 0 # x € K, there is a positive integer
n (depending on z) such that 2™ € R or =" € R. We have the following “n”
generalization.

Definition 4.19. Let n be a positive integer. An integral domain R with quotient
field K is an n-valuation domain (n-VD) if 2™ € Ror ™" € R for every 0 # x € K.

It is clear that a valuation domain is an n-VD for every positive integer n, an
n-root closed n-VD is a valuation domain, an n-VD is an almost valuation domain,
an n-VD is also an mn-VD for every positive integer m, and an n-VD is an n-PVD.
Moreover, an n-VD is quasilocal, an overring of an n-VD is also an n-VD, and a
Noetherian n-VD has (Krull) dimension at most one.

We have the following elementary results about n-VDs which show that n-VDs
behave very much like valuation domains (cf. [23, Chapter 3]). In [1, page 3], it
was observed that R is a valuation domain if and only if R is a strongly prime ideal
of R (here, and in Theorem 4.20(a)(5), we drop the usual assumption that a prime
ideal is a proper ideal).
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Theorem 4.20. Let R be an integral domain with quotient field K and n a positive
integer.
(a) The following statements are equivalent.
(1) R is an n-VD.
(2) z™|y™ ory™|a™ for every 0 £ x,y € K.
(3) z™|y™ ory™|z™ for every 0 # x,y € R.
(4) Let G be the group of divisibility of R. Then for every g € G, either ng > 0
orng < 0.
(5) R is an n-powerful semiprimary ideal of R.
(b) Let R be ann-VD. Then R is an n-divided domain, and thus the prime ideals
of R are linearly ordered by inclusion.
(c) Let R be an n-VD and x € K. If ™ is integral over R, then 2" € R.

Proof. The proofs are essentially the same as for valuation domains. See [23, The-
orem 16.3] for part (a) and [23, Theorem 17.5] for part (c¢). Part (b) follows from
Corollary 4.12 since an n-VD is also an n-PVD. [

An n-VD is always an n-PVD, but an n-PVD need not be an n-VD. Also, an
almost valuation domain need not be an n-VD for any positive integer n.

Example 4.21. (a) Let R = Q + XR[[X]]. Then R is a PVD with maximal ideal
XR[[X]] and quotient field R[[X]][1/X], and thus R is an n-PVD for every positive
integer n. However, R is not an n-VD for any positive integer n since 7", 7~ " ¢ R
for every positive integer n.

(b) Let R = Z, + X F[[X]], where p is a positive prime integer and F = Z,, is the
algebraic closure of Z,. Then R is an almost valuation domain with maximal ideal
XF[[X]] and quotient field F[[X]][1/X], but not an n-VD for any positive integer
n. This follows from the fact that for every 0 # a € F, there is a positive integer
n such that a™ = 1; but for every positive integer n, there is a b € F' such that
b" ¢ Z, and b~ ¢ Z,. Note that R is also a PVD, and thus an n-PVD for every
positive integer n.

In some cases, an overring of an n-PVD is also an n-VD.

Theorem 4.22. Let R be an n-PVD with mazimal ideal M, quotient field K, and
V' an overring of R such that 1/s € V' for some 0 # s € M. ThenV is an n-VD,
and thus V s an almost valuation domain.

Proof. Let x € K with 2™ ¢ V; so v € E,(R). Then 27 "d € M for every d €
A, (M) by Corollary 4.16. In particular, a = x="s™ € M since d = s € A, (M),
and thus 7" = a/s™ € V since 1/s € V. Hence V is an n-VD, and thus V is an
almost valuation domain. O

By Theorem 4.2(c), if R is an n-PVD, then Rp is also an n-PVD for every
nonmaximal prime ideal P of R. We next give a stronger result; Rp is an n-VD.

Theorem 4.23. Let R be an n-PVD with mazimal ideal M and P C M a prime
ideal of R. Then Rp is an n-VD, and thus Rp is an almost valuation domain.
Moreover, ™ € R for every x € Pp, and hence Pp C R.

Proof. Since P C M, there is an s € M \ P. Thus 1/s € Rp; so Rp is an n-VD
(and hence also an almost valuation domain) by Theorem 4.22. Let x € Pp; so
x =a/s for some a € P and s € R\ P. Thus s™|a™ (in R) since P is an n-divided
prime ideal of R by Theorem 4.11. Hence 2" = a"/s" € R; so Pp C R. (]
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We next show that n-divided principal prime ideals are actually maximal ideals.

Theorem 4.24. Let R be an integral domain R with quotient field K and (nonzero)
principal prime ideal P. If P is an n-divided ideal of R, then P is a mazximal ideal
of R. Moreover, if P is also an n-powerful semiprimary ideal of R, then P is a
mazimal ideal of R and R is an n-VD.

Proof. Let P = (p) for a prime element p of R. By way of contradiction, assume
that P is not a maximal ideal; so there is a nonunit x € R\ P. If P is an n-divided
prime ideal of R, then there is a y € R with p™ = 2™yp™ or p" = z"wp™ for some
positive integer m < n and w € R\ P. If p"* = z"yp"™, then 1 = 2"y, and thus
x € U(R), a contradiction. If p" = a"wp™, then z"w = p" ™ € P, which is a
contradiction since x ¢ P and w ¢ P. Hence P is a maximal ideal of R.

Now, suppose that P = (p) is an n-powerful semiprimary ideal of R. Then P is
an n-divided prime ideal of R by Theorem 4.11. Thus P is a maximal ideal of R,
and hence R is an n-PVD by Corollary 4.8. Finally, we show that R is an n-VD.
Let x € K, and suppose that ™ ¢ R. Then z" ¢ P, and thus 2= "p™ € P by
Theorem 4.13. Since ™ "p™ € P = (p), we have = "p™ = hp™ for some h € R or
x "p"™ = dp™ for some positive integer m < n and d € U(R). If a7 "p" = dp™,
then 2" = d~'p"~™ € R, a contradiction. Thus z—"p" = hp™ for some h € R, and
hence ™" = h € R. Thus R is an n-VD. g

We have already observed several parts of the next theorem. One interesting
consequence is that if P is an n-powerful semiprimary prime ideal of an integral
domain R with quotient field K, then {x € K | ™ € P for some positive integer
m} ={z € K | 2" € P} (cf. Theorem 2.3).

Theorem 4.25. Let P be a prime ideal of an integral domain R with quotient
field K. If P is an n-powerful semiprimary ideal of R, then P is an mn-powerful
semiprimary ideal of R for every positive integer m. Furthermore, if ™ € P for a
positive integer m and x € K, then x™ € P. In particular, if R is an n-PVD, then
R is an mn-PVD for every positive integer m.

Proof. Let m be a positive integer. Assume that z"y™" € P for z,y € K. Then
(™)™ (y™)™ € P. Since P is an n-powerful semiprimary ideal of R, (z™)" = ™" €
P or (y™)" = y™ € P. Thus P is an mn-powerful semiprimary ideal of R. Next,
assume that 2™ € P for x € K and some positive integer m; so ™" = (™))" € P.
Let d be the least positive integer such that 29" € P. Since (z%71)"a" = 29" € P
and P is an n-powerful semiprimary ideal of R, we have (z%~")" € P or 2™ € P.
Hence d = 1, and thus 2" € P. The “in particular” statement is clear. ([l

The next several results concern integral overrings of an n-PVD. In particular,
an integral overring of an n-PVD is an n-PVD, and the integral closure of an n-
PVD is a PVD. Note that {x € K | 2" € M} = {x € R | 2™ € M} in the next

several results and vVMB = VMR N B for B an integral overring of R.

Theorem 4.26. Let R be an n-PVD with mazimal ideal M and quotient field
K. If B is an integral overring of R, then B is an n-PVD with maximal ideal
Mp=vVMB={xeB|a" e M}.

Proof. Let m € M. Then vmR is a prime ideal of R since the prime ideals of
R are linearly ordered (under inclusion) by Corollary 4.12, and thus vmR is an
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n-powerful semiprimary ideal of R since R is an n-PVD. We show that vmB
is an n-powerful semiprimary ideal of B and vVmB = {z € B | 2™ € vVmR}.
Let 2"y" € vVmB for 0 # x,y € K. Then 2" y"* = (2y)"* = fm for some
positive integer £ and 0 # f € B. Note that f=" ¢ M; for if f~" € M, then
1/a = f™ € B for some a € M, a contradiction since B is integral over R. Then
f"m"™ € VmR since f~™(fm)" =m"™ € VmR, f~" ¢ vVmR C M, and VmR is an
n-powerful semiprimary ideal of R. Thus ()" (y™*)" = (zy)"*" = f*m" € VmR;
so ™" € VYmR C v/mB or y”k” e vVmR C vmB. Hence 2" € vVmR C vVmB or
y" € vVmR C vVmB by Theorem 4.25. Thus vmB is an n-powerful semiprimary
ideal of B, and hence a prime ideal of B by Theorem 2.3. A slight modification of
the above proof also shows that vVmB = {z € B | 2" € vVmR}.

We next show that Mp = {x € B| 2™ € M} is an n-powerful semiprimary ideal
of B. First, we show that Mp is an ideal of B. Let 1,29 € Mp;so 2} =my € M
and 5§ = mg € M. Thus 1 € v/m1B and z2 € /moB. Since the prime ideals of
R are linearly ordered, we may assume that vvmi R C v/msoR, and hence /m1B C
vVmeB. Thus 21 + x5 € VmoB ={z € B | 2" € /maR} C Mp. Next, let z € Mp
andy € B. Then 2™ =mg € M;sox € /m3B. Thus xy € vmsB C Mp;so Mp is
an ideal of B. A similar argument to that for vmB above shows that if 2"y™ € Mp
for 0 # z,y € K, then 2" € vmR C M C Mp ory”E\/nTRQMQMB. Hence
Mp is an n-powerful semiprimary ideal of B, and thus Mpg is a prime ideal of B
since it is a radical ideal of B by Theorem 4.25. Hence Mp is a maximal ideal of B
since B is integral over R and Mp N R = M; so B is an n-PVD by Corollary 4.8.
Clearly Mp ={x € B|a2" € M} CvVMB, and VvMB C Mp since MB C B as B
is integral over R. Thus Mp =V MB. ]

Corollary 4.27. Let R be an n-PVD with mazimal ideal M and quotient field K .
Then R is a PVD (1-PVD) with mazimal ideal VMR = {zx € K | 2™ € M}.

Proof. By Theorem 4.26, R is an n-PVD with maximal ideal VMR = My ={x €
R|az"e M} ={z € K|a2" € M}. Thus R is a PVD by Theorem 4.18. O

Corollary 4.28. Let P be a nonzero finitely generated prime ideal of an n-PVD R.
Then W = (P : P) is an n-PVD with mazimal ideal VMW = {x € W | 2™ € M}.
In particular, if R is a Noetherian n-PVD with mazimal ideal M, then (M : M) is
an n-PVD.

Proof. Note that W = (P : P) is integral over R since P is finitely generated. Thus
W is an n-PVD with maximal ideal VMW = {x € W | 2™ € M} by Theorem 4.26.
The “in particular” statement is clear. (However, recall that a Noetherian n-PVD
R has dim(R) < 1 by Corollary 4.12). O

The converse of Corollary 4.27 also holds.

Theorem 4.29. Let R be a quasilocal integral domain with mazimal ideal M and
quotient field K. Then R is an n-PVD if and only if R is a PVD with maximal

ideal VMR = {z € K | 2" € M}.

Proof. Let R be an n-PVD. Then R is a PVD with maximal ideal VMR = {z € K |
™ € M} by Corollary 4.27. Conversely, suppose that R is a PVD with maximal
ideal N = VMR = {z € K | 2" € M}. Then M = RN N since M C N. Let
x™y" = (xy)” € M for z,y € K;s0 2y € N. Thus z € N or y € N since N is
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a strongly prime ideal of R. Hence 2 € M or y™ € M; so M is an n-powerful
semiprimary ideal of R. Thus R is an n-PVD by Corollary 4.8. d

Corollary 4.30. Let R be a quasilocal integral domain with mazximal ideal M and
quotient field K. Then the following statements are equivalent.

(1) R is an n-PVD.

(2) R is a PVD with mazimal ideal VMR = {z € K | 2™ € M}.

(3) N=VMR={z € K| 2" € M} is a mazimal ideal of R such that (N : N)
s a valuation domain with mazimal ideal N .

Proof. (1) & (2) is Theorem 4.29, and (2) < (3) is clear by [11, Proposition
2.5]. O

We have seen that integral overrings of an n-PVD are also n-PVDs. We next
determine when every overring of an n-PVD is an n-PVD. Note that an integrally
closed PVD need not be a valuation domain. For example, R = Q + XC[[X]] is a
PVD, and R = Q + XC[[X]] is a PVD, but not a valuation domain, where Q is the
algebraic closure of Q. In this case, Q[r] + XC[[X]] is a (non-integral) overring of
R which is not an n-VD or n-PVD for any positive integer n.

Theorem 4.31. Let R be an n-PVD with mazimal ideal M. Then every overring
of R is an n-PVD if and only if R is a valuation domain. Moreover, if R is a
valuation domain, then every non-integral overring of R is an n-VD.

Proof. Suppose that every overring of R is an n-PVD. Since R is a PVD by The-
orem 4.18, the proof of [25, Proposition 2.7] shows that if R is not a valuation
domain, then there is a non-quasilocal overring B of R (and hence B is an overring
of R). Thus B cannot be an n-PVD by Theorem 4.7; so R is a valuation domain.

Conversely, suppose that R is a valuation domain with maximal ideal N. Let B
be an overring of R. If B is integral over R, then B is an n-PVD by Theorem 4.26;
so assume that B is not integral over R. Let b € B\ R. Then b=! € N since R
is a valuation domain; so m = =" = (b=1)® € M by Corollary 4.27 since R is a
valuation domain (and thus a PVD). Hence 1/m = b" € B; so B is an n-VD, and
thus an n-PVD, by Theorem 4.22. The “moreover” statement is clear. O

Let R be a 1-PVD (i.e., PVD) and P a prime ideal of R. Then A;(P) = P;
so V.= (41(P) : A1(P)) = (P : P) is a 1-VD (i.e., valuation domain) by [8,
Proposition 4.3], and it is easily checked that P is the maximal ideal of V. We have
the following analogous result for n-PVDs.

Theorem 4.32. Let R is an n-PVD, P a prime ideal of R, and I = (A,(P)).
Then V.= (I : I) is an n-VD with mazimal ideal VIV = {x € V | 2™ € T}.
Moreover, VIV ={zx €V | 2" € P} = VPV.

Proof. Let x € K with 2™ ¢ V. Then 2™ ¢ P; so x=™1 C I by Corollary 4.15.
Thus =" € V; so V is an n-VD with maximal ideal Ny. Let y € Ny. Assume
that y™ & I; so y™ ¢ P. Thus y="I C I by Corollary 4.15 again; so y~"™ € V.
Hence y € U(V), a contradiction. Thus Ny C {z € V | 2" € I} C VIV. Also,
IV =1¢ V;s0 VIV C Ny. Hence Ny = VIV = {z € V | 2" € I}. Clearly
{zeV|znel} C{zreV |z" e P}since] CP. Also,z" € Pforz €V =2a" €
An(P);so{z eV ]zh e P} C{zeV|a"el}. Thus{zeV |z"ecl}={z¢€
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V0]ameP}. Clearlyx € P=a" € A,(P) CI=z" € VIV;s0 P C IV, and
hence VPV C vIV. Also, VIV C PV since I C P; so VIV = +PV. O

Recall that a quasilocal integral domain R with maximal ideal M is a PVD if and
only if (M : M) is a valuation domain with maximal ideal M [11, Proposition 2.5].
Example 4.34(c) below shows that if R is an n-PVD with maximal ideal M, then
(M : M) need not be an n-VD. And Example 4.34(d)(e) shows that V = (M : M)
may be an n-VD with maximal ideal VMV = {z € V | 2™ € M} when R is not
an n-PVD. However, since M = A;(M), the next theorem may be viewed as the
n-PVD analog. By adding the extra condition “(%),: if € K is a nonunit of R,
then 2™ € M, we get a converse to Theorem 4.32. Note that I = (4,(M)) C M
in general (see Example 4.34(a)(b)).

Theorem 4.33. Let R be a quasilocal integral domain with maximal ideal M,
quotient field K, and I = (A,(M)). Then the following statements are equivalent.

(1) R is an n-PVD.
(2) V. =(I:1) is an n-VD with mazimal ideal VMV = {x € V | 2™ € M},
and if x € K is a nonunit of R, then 2™ € M.

Proof. (1) = (2) By Theorem 4.32, V is an n-VD with maximal ideal VMV =
{x € V| 2™ € M}. Let x € K be a nonunit of R. Then 2 € M by Corollary 4.27.

(2) = (1) Let € K. Suppose that © € E, (M), i.e., 2™ ¢ M. First, assume that
2™ € V. Suppose that 2" € N = {z € V | 2" € M}; so z™ = (z")" € M. Thus
z € R and z is a nonunit of R; so 2™ € M by hypothesis, a contradiction. Hence
2™ € U(V), and thus "I C I. Hence z7"d € I C M for every d € A,,(M). Now,
suppose that 2™ € V. Then =™ € V since V is an n-VD. Thus z="1 C I, and
hence z7"d € I C M for every d € A,,(M). Thus z~"d € M for every © € E, (M)
and d € A,,(M); so R is an n-PVD by Corollary 4.16. O

We end this section with several examples.

Example 4.34. (a) Let R = Z»[[X?, X3]] = Zs + X?Z5[[X]]. Then R is quasilo-
cal with maximal ideal M = (X2 X3) = X2Z[[X]] and quotient field K =
Zo[[X]][1/X]. Tt is easily checked that R is an n-PVD if and only if n > 2
and an n-VD if and only if n is even. First, suppose that n is even. Then
I = (A,(M)) = ZoX"™ + X"2Zy[[X]] € M and V = (I : I) = R has maximal
ideal My = M. Also, My ={x €V |2" e M} C{z € K| 2" € M} = XZ[[X]].
Next, suppose that n > 3 is odd. Then I = (A,(M)) = X"Z3[[X]] € M and
V = (I :I) =Zs][X]] has maximal ideal My = XZs[[X]| ={z € K | 2™ € M}.

(b) Let R = F[[X?, X3]] = F+X?2F[[X]], where F is a field. Then R is quasilocal
with maximal ideal M = (X2, X3) = X?F[[X]] and quotient field F[[X]][1/X], and
R is an n-PVD if and only if n > 2. If char(F) = 2, then (A,(M)) C M for every
integer n > 2. However, M = (A2(M)) if char(F) # 2.

(c) Let R =Z, + Z,X + X2F[[X]], where F = Z,, is the algebraic closure of Z,.
Then R is quasilocal with maximal ideal M = Z,X + X2F[[X]] and quotient field
K = F[[X]][1/X]. Moreover, R is an n-PVD if and only if n > 2 by Theorem 4.29
since R = F[[X]] is a PVD (in fact, a valuation domain). However, V = (M : M) =
Z, + XF[[X]] is an almost valuation domain with maximal ideal X F[[X]] = {z €
K | 2™ € M}, but V is not an n-VD for any positive integer n by Example 4.21(b).
Note that V is a PVD, and thus an n-PVD for every positive integer n.
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(d) Let F be a field and N a positive integer. Then Ry = F + XN F[[X]] is
a quasilocal integral domain with maximal ideal My = XV F[[X]], quotient field
F[[X]][1/X], and integral closure Ry = F[[X]]. Note that Vy = (My : My) =
F[[X]] is a valuation domain with maximal ideal XF[[X]] = {z € Vy | 2V €
My} = VMV, and thus Vy is an n-VD for every positive integer n. However,
Ry is an n-PVD if and only if n > N, and Ry satisfies condition (x),, if and only
ifn>N.

(e) Let R = Zs + Z3X? + X'2Z3[[X]]. Then R is a quasilocal integral domain
with maximal ideal M = Z3X? + X'27Z3[[X]], quotient field Z3[[X]][1/X], and
integral closure R = Z3[[X]]. Note that V = (M : M) = Z3 + X3Z3[[X]] is a 3-VD
with maximal ideal X3Z3[[X]] = VMV = {z € V | 2 € M}. However, R is not a
3-PVD since (X?)3(X?)3 € M, but X° ¢ M, and R does not satisfy condition (*)3
since X2 ¢ M.

5. PSEUDO n-STRONGLY PRIME IDEALS, PnVDs, AND n-VDs

In this final section, we introduce and investigate pseudo m-valuation domains
(PnVDs), yet another generalization of PVDs. We also give some more results on
n-VDs.

Let R be an integral domain with quotient field K. Recall [16] that R is a
pseudo-almost valuation domain (PAVD) if every prime ideal P of R is pseudo-
strongly prime, i.e., if whenever xyP C P for x,y € K, then there is a positive
integer n such that ™ € R or y"P C P. Also, recall [17] that R is an almost
pseudo-valuation domain (APVD) if every prime ideal P of R is strongly primary,
i.e, if whenever xy € P for x,y € K, then ™ € P for some positive integer n or
y € P. Note that valuation domain = PVD =APVD = PAVD, and no implication
is reversible [16, page 1168].

The following is an example of an n-PVD for some integer n > 2 which is neither
an APVD, a PAVD, a PVD, nor an almost valuation domain.

Example 5.1. (cf. [16, Example 3.4]) Let R = Q + CX? + X*C[[X]]. Then R
is quasilocal with maximal ideal M = CX? + X*C[[X]] and quotient field K =
C[[X]][1/X]. One can see that R is neither an APVD, a PAVD, a PVD, an almost
valuation domain, nor an n-VD for any positive integer n. However, it is easily
checked that R is a n-PVD for n > 4 and R = Q+ XC[[X]] is a PVD with maximal
ideal N = {x € K | 2* € M} = XC[[X]], where Q is the algebraic closure of Q
in C. Note that R is not a valuation domain; in fact, R is not an n-VD for any
positive integer n, and R is not an n-PVD for n = 1,2, or 3.

We now give yet another “n” generalization of PVDs.

Definition 5.2. Let R an integral domain with quotient field K. A prime ideal
P of R is a pseudo n-strongly prime ideal of R if whenever zyP C P for z,y € K,
then 2" € R or y"P C P. If every prime ideal of R is a pseudo n-strongly prime
ideal of R, then R is a pseudo n-valuation domain (PnVD).

A P1VD is just a PVD [24, Proposition 1.2], an n-VD is a PnVD, a PnVD is
a PAVD, and a PnVD is also a P(mn)VD for every positive integer m. Moreover,
from Theorem 5.4 and Remark 5.6, it follows that a PnVD R is quasilocal, the
prime ideals of R are linearly ordered by inclusion, and dim(R) < 1 when R is
Noetherian.
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The following is an example of a PAVD which is not a PnVD for any positive
integer n.

Example 5.3. Let p be a positive prime integer and F = Z, the algebraic closure
of Zy. Then R = Z, + Z,X + X?F[[X]] is quasilocal with maximal ideal M =
Z,X + X?F[[X]] and quotient field K = F[[X]][1/X]. Let y € K with y" &€ R for
every positive integer n. Then y = z/X™, where z € U(F[[X]]) and m > 0. If
m > 0, then y=2M C M. If m = 0, then there is a positive integer n such that
z(0) =1; so y "M C M. Thus R is a PAVD by [16, Lemma 2.1 and Theorem
2.5]. We now show that R is not a PnVD for any positive integer n. For n a
positive integer, there is a b € F with " ¢ Z, and b" ¢ Z,. Hence b" ¢ R and
b="X ¢ M; so R is not a PnVD by Theorem 5.4(a)(b) below. However, R is an
n-PVD for every integer n > 2 by Example 4.34(c).

The proofs of the following results are similar to the proofs given in [16], and
thus the details are left to the reader.

Theorem 5.4. Let R an integral domain with quotient field K.

(a) Let P be a prime ideal of R. Then P is a pseudo n-strongly prime ideal of
R if and only if x=™"P C P for every x € E,(R) (see [16, Lemma 2.1]).

(b) R is a PnVD if and only if R is quasilocal with pseudo n-strongly prime
mazimal ideal (see [16, Theorem 2.5)).

(¢) Ris a PnVD if and only if for every a,b € R, we have a™ | b"™ in R or b |a™c
in R for every nonunit ¢ of R (see [16, Proposition 2.9]).

(d) Let P be a prime ideal of R. If R is a PnVD, then R/P is a PnVD (see [16,
Proposition 2.14)).

(d) An n-root closed PnVD is a PVD (see [16, Theorem 2.13]).

The next example gives some more n-PVDs that are not PnVDs.

Example 5.5. Let m > 2 be an integer. Then R = R + RX™~! + X™C[[X]]
is quasilocal with maximal ideal M = RX™~! + X™C[[X]], quotient field K =
C[[X]][1/X], and integral closure R = C[[X]]. By Theorem 4.29, R is an n-PVD
for every integer n > m. For a positive integer k, let y = e=“"/?*_ Theny* = —i ¢ R
and 4y *X™ 1 = {X™" 1 ¢ R: so R is not a PkVD for any positive integer k by
Theorem 5.4(a).

Remark 5.6. Let R an integral domain with quotient field K. Since A,,(P) C P
for every prime ideal P of R, every pseudo n-strongly prime ideal of R is also an
n-powerful semiprimary ideal of R by Corollary 4.15 and Theorem 5.4(a), and thus
a PnVD is an n-PVD. Hence, we have the following implications

n—=VD = PnVD = n—PVD.

Neither of the above two implications is reversible. A PnVD need not be an n-VD
by Theorem 5.13, and an n-PVD need not be a PnVD by Examples 5.3 and 5.5.
Also, note that the ring in Example 5.1 is a 4-PVD, but not a P4VD.

The next theorem gives a case where an n-PVD is a PnVD. Note that the n = 1
case is just [11, Proposition 2.5]. We may have M # (A,(M)) for every integer
n > 2 (see Example 4.34(a)(b)). Note that in the next two theorems, we need the
extra condition (%), (cf. Example 4.34(d)(e), and recall that if R is not an n-PVD,
then R is not a PnVD by Remark 5.6).
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Theorem 5.7. Let R be a quasilocal integral domain with mazimal ideal M =
(A, (M)) and quotient field K. Then the following statements are equivalent.

(1) Ris a PnVD.

(2) R is an n-PVD.

(3) V.=(M: M) is an n-VD with mazimal ideal VMV ={x €V | 2™ € M},
and if x € K is a nonunit of R, then ™ € M.

Proof. (1) = (2) A PnVD is an n-PVD by Remark 5.6.

(2) = (1) Let € E,(R); so ¢ € E,(M). Then 2~"A,,(M) C M by Corol-
lary 4.16, and thus ="M C M since M = (A, (M)) by hypothesis. Hence R is a
PnVD by Theorem 5.4(a)(b).

(2) < (3) This is clear by Theorem 4.33. O

The following result recovers that a quasilocal integral domain R with maximal
ideal M is a PVD if and only if (M : M) is a valuation domain with maximal ideal
M [11, Proposition 2.5]; its proof is an analog of the proof of [16, Theorem 2.15].

Theorem 5.8. Let R be a quasilocal integral domain with mazimal ideal M and
quotient field K. Then the following statements are equivalent.

(1) Ris a PnVD.
(2) V.=(M: M) is an n-VD with mazimal ideal VMV ={x € V | 2™ € M},
and if x € K is a nonunit of R, then x™ € M.

Proof. (1) = (2) Let R be a PnVD. Let x € E,(V); so z € E,(R). Then ="M C
M by Theorem 5.4(a); so =™ € V. Thus V is an n-VD with maximal ideal My .
Let € My. If 2" € R, then 2" € M. Otherwise, z € E,(R). Hence "M C M
by Theorem 5.4(a) again; so =™ € V. Thus x € U(V), a contradiction. Hence
My C{zeV]|az"e M} CVMV,and VMV C My since MV = M C V. Thus
My =VMV ={x €V |a2" € M}. If z € K is a nonunit of R, then 2" € M by
Corollary 4.27 since a PnVD is an n-PVD by Remark 5.6.

(2) = (1) Let V.= (M : M) be an n-VD with maximal ideal VMV = {z € V|
a™ € M}. Suppose that € E,(R); so 2™ ¢ M. If 2" € V and 2™ ¢ U(V), then
= (z™)" € M C R; so z € R. Thus 2™ € M by hypothesis, a contradiction.
Hence 2" € U(V); so ="M C M. If 2™ ¢ V, then 2™ € V since V is an n-VD.
Thus ="M C M in either case; so R is a PnVD by Theorem 5.4(a)(b). O

Corollary 5.9. Let R be a PnVD with maximal ideal M. If P is a prime ideal of
R, then Wp = (P : P) is an n-VD. Moreover, if P C Q are prime ideals of R, then
Wo=(Q:Q)C(P:P)=Wp.

Proof. We have V.= (M : M) C (P : P) = Wp by [6, Lemma 2.2] since P C
M. Thus Wp is an n-VD since V is an n-VD by Theorem 5.8. The “moreover”
statement is clear since (@ : @) C (P : P) by [6, Lemma 2.2] again. O

Let T be an overring of an integral domain R and n a positive integer. Then T’
is an n-root extension of R if 2™ € R for every x € T, and T is a root extension of
R if for every x € T, there is a positive integer m such that 2™ € R.

Theorem 5.10. Let R be a quasilocal integral domain with maximal ideal M and
quotient field K, n a positive integer, and V a valuation overring of R with maximal
ideal N ={x € V | 2™ € M}. Then R is an n-VD if and only if V is an n-root
extension of R.
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Proof. We may assume that R C V. Suppose that R is an n-VD. Let z € V' \ R.
If x € N, then 2™ € M C R. Thus, assume that x ¢ N. Since N is the maximal
ideal of V', we have v € U(V'). Thus 2™ ¢ M and =™ ¢ M. Since R is an n-VD,
we have 2™ € U(R) C R. Hence V is an n-root extension of R.

Conversely, suppose that V' is an n-root extension of R. Let z € K with 2™ ¢ R.
Then z ¢ V since V is an n-root extension of R, and thus x=! € V since V is a
valuation domain. Hence x~™ € R since V is an n-root extension of R, and thus R
is an n-VD. (]

Lemma 5.11. Let R be a quasilocal integral domain with mazimal ideal M and
quotient field K. If R is an n-VD, then R is a valuation domain with maximal

ideal VMR = {z € K | 2" € M} and R C R is an n-root extension.

Proof. Let R be an n-VD. Then R is an almost valuation domain; so R is a valuation
domain and R C R is a root extension by [4, Theorem 5.6]. Thus VMR = {z € K |
x™ € M} is the maximal ideal of R by Theorem 4.29 since an n-VD is an n-PVD.
Hence R is an n-root extension of R by Theorem 5.10. O

Theorem 5.12. Let R be a quasilocal integral domain with maximal ideal M and
quotient field K, and let V' be an n-VD overring of R with maximal ideal N = {x €
V|2™ € M}. Then R is an n-VD if and only if V =R={x € K | 2™ € R}.

Proof. We may assume that R C V. Suppose that R is an n-VD. Then R is a
valuation domain with maximal ideal W = {z € K | 2" € M} and R C R is an
n-root extension by Lemma 5.11. Similarly, since V is an n-VD, V is a valuation
domain with maximal ideal T = {z € K | 2" € N} and V C V is an n-root
extension by Lemma 5.11. First, we show that R C V' is an n-root extension. Let
x € V\R. If € N, then 2™ € M C R. Hence, assume that ¢ N. Since N is
the maximal ideal of V', we have z € U(V'). Since x € U(V), neither 2™ € M nor
™™ € M. Since R is an n-VD, 2™ € U(R) C R. Thus V is an n-root extension
of R. Since V is an integral overring of R, we have that V is integral over R, and
thus R=V ={z € K | 2" € R}.

Conversely, suppose that R =V = {z € K | 2" € R}, and let + € K with
2" ¢ R. Then 2 ¢ V, and thus 27! € V since V is a valuation domain by
Lemma 5.11. Hence ™" € R; so R is an n-VD. O

Let V be a valuation domain with maximal ideal M, residue field F' = V/M, and
7 : V — F the canonical epimorphism. If k is a subfield of F, then R = 7~ 1(k)
is a PVD with maximal ideal M [11, Proposition 2.6]. Moreover, every PVD arises
in this way. Let R be a PVD with maximal ideal M. Then V = (M : M) is a
valuation domain with maximal ideal M [11, Proposition 2.5]; so R = 7~ 1(R/M).
A similar result holds for PnVDs and n-VDs.

Theorem 5.13. Let V' be an n-VD with nonzero maximal ideal M, residue field
F=V/M, 7 :V — F the canonical epimorphism, k a subfield of F, and R =
7 Y(k). Then the pullback R = V xp k is a PnVD with maximal ideal M. In
particular, if k is properly contained in F and V is not an n-root extension of R,
then R is a PnVD which is not an n-VD.

Proof. In view of the construction stated in the hypothesis, it is well known that
M is a maximal ideal of R for any integral domain V. Also, it is clear that R
and V have the same quotient field K by [11, Lemma 3.1]. Let = € E, (R). Then
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2™ € Vor x7™ € V since V is an n-VD. Suppose that 2™ € V. Since x € E,(R)
and M is the maximal ideal of R, we have 2™ ¢ M. Thus z" € U(V), and hence
™™ e V;sox "M C M since M is an ideal of V. Now suppose that ™" € V.
Then z7"M C M since M is an ideal of V. Thus M is a pseudo n-strongly prime
ideal of R by Theorem 5.4(a), and hence R is a PnVD by Theorem 5.4(b). The
remaining part is clear from Theorem 5.12. t

The final example illustrates the previous theorem.

Example 5.14. (a) Let V = Z,(¢)[[X]]. Then V is a valuation domain; so R =
Zy + XZ,(t)[[X]] is a PnVD for every positive integer n, but not an n-VD for any
positive integer n, by Theorem 5.13 since V' is not an n-root extension of R. Note
that R is actually a PVD.

(b) Let T'= K + M be a quasilocal integral domain with maximal ideal M and
K a subfield of T. Let k be a subfield of K and R = k + M. Then R is also
quasilocal with maximal ideal M. Thus R is an n-PVD (resp., PnVD) if and only
if T is an n-PVD (resp., PnVD) by Corollary 4.8 (resp., Theorem 5.4(b)).

For example, T = R[[X?, X3]] = R + X?R[[X]] is an n-PVD < n > 2 (Exam-
ple 4.34(b)), and thus R = Q + X2R[[X]] is an n-PVD & n > 2.
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