ON WEAKLY 1-ABSORBING PRIMARY IDEALS OF COMMUTATIVE RINGS

AYMAN BADAWI AND ECE YETKIN CELIKEL

Abstract

Let R be a commutative ring with $1 \neq 0$. In this paper, we introduce the concept of weakly 1 -absorbing primary ideal which is a generalization of 1 -absorbing primary ideal. A proper ideal I of R is called a weakly 1-absorbing primary ideal if whenever nonunit elements $a, b, c \in R$ and $0 \neq a b c \in I$, then $a b \in I$ or $c \in \sqrt{I}$. A number of results concerning weakly 1 -absorbing primary ideals and examples of weakly 1 -absorbing primary ideals are given. Furthermore, we give the correct version of a result on 1-absorbing primary ideals of commutative rings.

1. Introduction

Throughout this paper, all rings are commutative with nonzero identity. Let R be a commutative ring. By a proper ideal I of R, we mean an ideal I of R with $I \neq R$. Let I be a proper ideal of R. By \sqrt{I}, we mean the radical of R, that is, $\left\{a \in R \mid a^{n} \in I\right.$ for some positive integer $\left.n\right\}$. In particular, $\sqrt{\{0\}}$ denotes the set of all nilpotent elements of R. We define $Z_{I}(R)=\{r \in R \mid r s \in I$ for some $s \in R \backslash I\}$. A ring R is called a reduced ring if it has no nonzero nilpotent elements; i.e., $\sqrt{\{0\}}=\{0\}$. For two ideals I and J of R, the residual division of I and J is defined to be the ideal $(I: J)=\{a \in R \mid a J \subseteq I\}$. Let R be a commutative ring with identity and M a unitary R-module. Then $R(+) M=R \times M$ with coordinatewise addition and multiplication $(a, m)(b, n)=(a b, a n+b m)$ is a commutative ring with identity $(1,0)$ called the idealization of M. A ring R is called a quasilocal ring if R has exactly one maximal ideal. As usual, \mathbb{Z} and \mathbb{Z}_{n} will denote the ring of integers and integers modulo n, respectively.

Since prime and primary ideals have key roles in commutative ring theory, many authors have studied generalizations of prime and primary ideals (see [1], [2], [3], [5], [6],[7], [8], [9], [10], and [11]). Anderson and Smith introduced in [2] the notion of weakly prime ideals. A proper ideal I of R is called a weakly prime ideal of R if whenever $a, b \in R$ and $0 \neq a b \in I$, then $a \in I$ or $b \in I$. Then Atani and Farzalipour introduced in [5] the concept of weakly primary ideals. A proper ideal I of R is called a weakly primary ideal of R if whenever $a, b \in R$ and $0 \neq a b \in I$, then $a \in I$ or $b \in \sqrt{I}$. For a different generalization of prime ideals and weakly prime ideals, the contexts of 2 -absorbing and weakly 2 -absorbing ideals were defined. According to [6] and [7], a proper ideal I of R is called a 2-absorbing (weakly 2-absorbing) ideal of a commutative ring R, if whenever $a, b, c \in I$ and $a b c \in I(0 \neq a b c \in I)$,

[^0]then $a b \in I$ or $b c \in I$ or $a c \in I$. As a generalization of 2 -absorbing and weakly 2 absorbing ideals, 2 -absorbing primary and weakly 2 -absorbing primary ideals were defined in [8] and [9], respectively. A proper ideal I of a commutative ring R is said to be 2-absorbing primary (weakly 2-absorbing primary) if whenever $a, b, c \in R$ and $a b c \in I \quad(0 \neq a b c \in I)$, then $a b \in I$ or $b c \in \sqrt{I}$ or $a c \in \sqrt{I}$. In a recent study [10], we call a proper ideal I of a commutative ring R a 1-absorbing primary ideal if whenever nonunit elements $a, b, c \in R$ and $a b c \in I$, then $a b \in I$ or $c \in \sqrt{I}$.

In this paper, we introduce the concept of weakly 1-absorbing primary ideal of a commutative ring R. A proper ideal I of a commutative ring R is called a weakly 1-absorbing primary ideal of R if whenever nonunit elements $a, b, c \in R$ and $0 \neq a b c \in I$, then $a b \in I$ or $c \in \sqrt{I}$. It is clear that a 1 -absorbing primary ideal of a commutative ring R is a weakly 1 -absorbing primary ideal of R. However, since $\{0\}$ is always weakly 1 -absorbing primary, a weakly 1 -absorbing primary ideal of a commutative ring R needs not be a 1 -absorbing primary ideal of R (see Example $1)$.

Among many results, we show (Theorem 2) that if a proper ideal I of a commutative ring R is a weakly 1 -absorbing primary ideal of R such that \sqrt{I} is a maximal ideal of R, then I is a primary ideal of R, and hence I is a 1 -absorbing primary ideal of R. We show (Theorem 3) that if R is a commutative reduced ring and I is a weakly 1 -absorbing primary ideal of R, then \sqrt{I} is a prime ideal of R. If I is a proper nonzero ideal of a commutative von Neumann regular ring R, then we show (Theorem 4) that I is a weakly 1 -absorbing primary ideal of R if and only if I is a 1 -absorbing primary ideal of R, if and only if I is a primary ideal of R. We show (Theorem 5) that if R be a commutative non-quasilocal ring and I is a proper ideal of R such that ann $(i)=\{r \in R \mid r i=0\}$ is not a maximal ideal of R for every element $i \in I$, then I is a weakly 1 -absorbing primary ideal of R if and only if I is a weakly primary ideal of R. If I is a proper ideal of a commutative reduced divided ring R, then we show (Theorem 7) that I is a weakly 1 -absorbing primary ideal of R if and only if I is a weakly primary ideal of R. If I is a weakly 1 -absorbing primary ideal of a commutative ring R that is not a 1 -absorbing primary ideal of R, then we give (Theorem 10) sufficient conditions so that $I^{3}=\{0\}$ (i.e., $I \subseteq \sqrt{\{0\}}$). In Theorem 9, we obtain some equivalent conditions for weakly 1-absorbing primary ideals of u-rings. We give (Theorem 13) a characterization of weakly 1 -absorbing primary ideals in $R=R_{1} \times R_{2}$, where R_{1} and R_{2} are commutative rings with identity that are not fields. If $R_{1}, R_{2}, \ldots, R_{n}$ are commutative rings with identity for some $2 \leq n<\infty$ and $R=R_{1} \times \cdots \times R_{n}$, then it is shown (Theorem 14) that every proper ideal of R is a weakly 1 -absorbing primary ideal of R if and only if $n=2$, and R_{1}, R_{2} are fields. For a weakly 1 -absorbing primary ideal of a ring R, we show (Theorem 17) that $S^{-1} I$ is a weakly 1 -absorbing primary ideal of $S^{-1} R$ for every multiplicatively closed subset S of R that is disjoint from I, and we show that the converse holds if $S \cap Z(R)=S \cap Z_{I}(R)=\emptyset$. We give (Remark 1) the correct versions of [10, Theorem 17(1), Corollary 3, and Corollary 4].

2. Properties of Weakly 1-absorbing primary ideals

Definition 1. Let R be a commutative ring and I be a proper ideal of R. We call I a weakly 1-absorbing primary ideal of R if whenever nonunit elements $a, b, c \in R$ and $0 \neq a b c \in I$, then $a b \in I$ or $c \in \sqrt{I}$.

It is clear that every 1 -absorbing primary ideal of a commutative ring R is a weakly 1 -absorbing primary ideal of R, and $I=\{0\}$ is a weakly 1 -absorbing primary ideal of R. In the following example, we construct a weakly 1 -absorbing primary ideal of a commutative ring R that is neither 1 -absorbing primary nor weakly primary.

Example 1. (1) $I=\{0\}$ is a weakly 1-absorbing primary ideal of $R=\mathbb{Z}_{6}$ that is not a 1-absorbing primary ideal of R. Indeed, $2 \cdot 2 \cdot 3 \in I$, but neither $2 \cdot 2 \in I$ nor $3 \in \sqrt{I}$. Note that I is a weakly primary ideal of R.
(2) Let $A=\mathbb{Z}_{2}[[X, Y]], I=\left(X Y^{2}, Y X^{2}\right) A, R=A / I$, and $J=(X Y) A / I$. We show that J is a weakly 1-absorbing primary ideal of R that is neither 1 -absorbing primary nor weakly primary. Assume that abc $\in J$ for some nonunit elements $a, b, c \in R$. Then abc $=X Y Z+I$ for some nonunit element $Z \in A$. Hence $a b c=I \in J$ by construction of J. Thus J is a weakly 1-absorbing primary ideal of R. Since $(X+I)(X+I)(Y+I)=I \in J$ and neither $X^{2}+I \in J$ nor $Y+I \in \sqrt{J}$, we conclude that J is not a 1absorbing primary ideal of R. Since $I \neq(X+I)(Y+I)=X Y+I \in J$ and neither $X+I \in J$ nor $Y+I \in \sqrt{J}$, we conclude that J is not a weakly primary ideal of R.
We begin with the following trivial result without proof.
Theorem 1. Let I be a proper ideal of a commutative ring R.
(1) If I is a weakly prime ideal, then I is a weakly 1-absorbing primary ideal.
(2) If I is a weakly primary ideal, then I is a weakly 1-absorbing primary ideal.
(3) If I is a 1-absorbing primary ideal, then I is a weakly 1-absorbing primary ideal.
(4) If I is a weakly 1-absorbing primary ideal, then I is a weakly 2-absorbing primary ideal.
(5) If R is an integral domain, then I is a weakly 1-absorbing primary ideal if and only if I is a 1-absorbing primary ideal of R.
(6) Let R be a quasilocal ring with maximal ideal $\sqrt{\{0\}}$. Then every proper ideal of R is a weakly 1-absorbing primary ideal of R.
We recall that a proper ideal I of a commutative ring R is called a semiprimary ideal of R if \sqrt{I} is a prime ideal of R. For an interesting article on semiprimary ideals of commutative rings, see [12]. For a recent related article on semiprimary ideals, we recommend [11]. We have the following result.
Theorem 2. Let R be a commutative ring and I be a weakly 1-absorbing primary ideal of R. If \sqrt{I} is a maximal ideal of R, then I is a primary ideal of R, and hence I is a 1-absorbing primary ideal of R. In particular, if I a weakly 1-absorbing primary ideal of R that is not a 1-absorbing primary ideal of R, then \sqrt{I} is not a maximal ideal of R.
Proof. Suppose that \sqrt{I} is a maximal ideal of R. Then I is a semiprimary ideal of R. Since I is a semiprimary ideal of R and \sqrt{I} is a maximal ideal of R, we conclude that I is a primary ideal of R by [14, p. 153]. Thus I is a 1 -absorbing primary ideal of R.

Theorem 3. Let R be a commutative reduced ring. If I is a nonzero weakly 1absorbing primary ideal of R, then \sqrt{I} is a prime ideal of R. In particular, if \sqrt{I} is
a maximal ideal of R, then I is a primary ideal of R, and hence I is a 1-absorbing primary ideal of R.
Proof. Suppose that $0 \neq a b \in \sqrt{I}$ for some $a, b \in R$. We may assume that a, b are nonunits. Then there exists an even positive integer $n=2 m(m \geq 1)$ such that $(a b)^{n} \in I$. Since $\sqrt{\{0\}}=\{0\}$, we have $(a b)^{n} \neq 0$. Hence $0 \neq a^{m} a^{m} b^{n} \in I$. Thus $a^{m} a^{m}=a^{n} \in I$ or $b^{n} \in \sqrt{I}$, and therefore \sqrt{I} is a weakly prime ideal of R. Since R is reduced and $I \neq\{0\}$, we conclude that \sqrt{I} is a prime ideal of R by [2, Corollary 2]. The proof of the "in particular" statement is now clear by Theorem 2.

Recall that a commutative ring R is called a von Neumann regular ring if and only if for every $x \in R$, there is a $y \in R$ such that $x^{2} y=x$. It is known that a commutative ring R is a von Neumann regular ring if and only if for each $x \in R$, there is an idempotent $e \in R$ and a unit $u \in R$ such that $x=e u$. For a recent article on von Neumann regular rings, see[4]. We have the following result.
Theorem 4. Let R be a commutative von Neumann regular ring and I be a nonzero ideal of R. Then the following statements are equivalent.
(1) I is a weakly 1-absorbing primary ideal of R.
(2) I is a primary ideal of R.
(3) I is a 1-absorbing primary ideal of R.

Proof. (1) $\Rightarrow(2)$ Since R is a commutative von Neumann regular ring, we know that R is reduced. Hence \sqrt{I} is a prime ideal of R by Theorem 3 . Since every prime ideal of a von Neumann regular ring is maximal, we conclude that \sqrt{I} is a maximal ideal of R. Hence I is a primary ideal of R by Theorem 2 .
$(2) \Rightarrow(3) \Rightarrow(1)$ It is clear.
Let A, I, R, and J be as in Example 1(2). Then R is a quasilocal ring with maximal ideal $M=(X, Y) A / I$, and $\operatorname{ann}(X Y+I)=\{a \in R \mid a(X Y+I)=0\}=M$. We have the following result.

Theorem 5. Let R be a commutative non-quasilocal ring and I be a proper ideal of R such that ann $(i)=\{r \in R \mid r i=0\}$ is not a maximal ideal of R for every element $i \in I$. Then I is a weakly 1-absorbing primary ideal of R if and only if I is a weakly primary ideal of R.

Proof. If I is a weakly primary ideal of R, then I is a weakly 1-absorbing primary ideal of R by Theorem $1(2)$. Hence suppose that I is a weakly 1 -absorbing primary ideal of R and suppose that $0 \neq a b \in I$ for some elements $a, b \in R$. We show that $a \in I$ or $b \in \sqrt{I}$. We may assume that a, b are nonunit elements of R. Let $a n n(a b)=\{c \in R \mid c a b=0\}$. Since $a b \neq 0, a n n(a b)$ is a proper ideal of R. Let L be a maximal ideal of R such that $\operatorname{ann}(a b) \subsetneq L$. Since R is a non-quasilocal ring, there is a maximal ideal M of R such that $M \neq L$. Let $m \in M \backslash L$. Hence $m \notin a n n(a b)$ and $0 \neq m a b \in I$. Since I is a weakly 1-absorbing primary ideal of R, we have $m a \in I$ or $b \in \sqrt{I}$. If $b \in \sqrt{I}$, then we are done. Hence assume that $b \notin \sqrt{I}$. Hence $m a \in I$. Since $m \notin L$ and L is a maximal ideal of R, we conclude that $m \notin J(R)$. Hence there exists an $r \in R$ such that $1+r m$ is a nonunit element of R. Suppose that $1+r m \notin \operatorname{ann}(a b)$. Hence $0 \neq(1+r m) a b \in I$. Since I is a weakly 1 -absorbing primary ideal of R and $b \notin \sqrt{I}$, we conclude that $(1+r m) a=a+r m a \in I$. Since $r m a \in I$, we have $a \in I$ and we are done. Suppose that $1+r m \in a n n(a b)$. Since $a n n(a b)$ is not a maximal ideal of R and $a n n(a b) \subsetneq L$, there is a $w \in L \backslash a n n(a b)$.

Hence $0 \neq w a b \in I$. Since I is a weakly 1 -absorbing primary ideal of R and $b \notin \sqrt{I}$, we conclude that $w a \in I$. Since $1+r m \in \operatorname{ann}(a b) \subsetneq L$ and $w \in L \backslash a n n(a b)$, we have $1+r m+w$ is a nonzero nonunit element of L. Hence $0 \neq(1+r m+w) a b \in I$. Since I is a weakly 1 -absorbing primary ideal of R and $b \notin \sqrt{I}$, we conclude that $(1+r m+w) a=a+r m a+w a \in I$. Since $r m a, w a \in I$, we conclude that $a \in I$.

Question. Is Theorem 5 still valid without the assumption that ann $(i)=\{r \in$ $R \mid r i=0\}$ is not a maximal ideal of R for every element $i \in I$? We are unable to give a proof of Theorem 5 without this assumption.

In light of the proof of Theorem 5, we have the following result.
Theorem 6. Let I be a weakly 1-absorbing primary ideal of a commutative ring R such that for every nonzero element $i \in I$, there exists a nonunit $w \in R$ such that $w i \neq 0$ and $w+u$ is a nonunit element of R for some unit $u \in R$. Then I is a weakly primary ideal of R.

Proof. Suppose that $0 \neq a b \in I$ and $b \notin \sqrt{I}$ for some $a, b \in R$. We may assume that a, b are nonunit elements of R. Hence there is a nonunit $w \in R$ such that $w a b \neq 0$ and $w+u$ is a nonunit element of R for some unit $u \in R$. Since $0 \neq w a b \in I$, $b \notin \sqrt{I}$, and I is a weakly 1 -absorbing primary ideal of R, we conclude that $w a \in I$. Since $0 \neq(w+u) a b \in I, I$ is a weakly 1 -absorbing primary ideal of R, and $b \notin \sqrt{I}$, we conclude that $w a+u a=(w+u) a \in I$. Since $w a \in I$ and $w a+u a \in I$, we conclude that $u a \in I$. Since u is a unit, we have $a \in I$.

Corollary 1. Let R be a commutative ring and $A=R[X]$. Suppose that I is a weakly 1-absorbing primary ideal of A. Then I is a weakly primary ideal of A.
Proof. Since $X i \neq 0$ for every nonzero $i \in I$ and $X+1$ is a nonunit element of A, we are done by Theorem 6 .

Recall that a commutative ring R is called divided if for every prime ideal P of R and for every $x \in R \backslash P$, we have $x \mid p$ for every $p \in P$. We have the following result.
Theorem 7. Let R be a commutative reduced divided ring and I be a proper ideal of R. Then the following statements are equivalent.
(1) I is a weakly 1 -absorbing primary ideal of R.
(2) I is a weakly primary ideal of R.

Proof. (1) $\Rightarrow(2)$ Suppose that $0 \neq a b \in I$ for some $a, b \in R$ and $b \notin \sqrt{I}$. We may assume that a, b are nonunit elements of R. Since \sqrt{I} is a prime ideal of R by Theorem 3, we conclude that $a \in \sqrt{I}$. Since R is divided, we conclude that $b \mid a$. Thus $a=b c$ for some $c \in R$. Observe that c is a nonunit element of R as $b \notin \sqrt{I}$ and $a \in \sqrt{I}$. Since $0 \neq a b=b c b \in I, I$ is weakly 1 -absorbing primary, and $b \notin \sqrt{I}$, we conclude that $a=b c \in I$. Thus I is a weakly primary ideal of R.
$(2) \Rightarrow(1)$ It is clear by Theorem $1(2)$.
Recall that a commutative ring R is called a chained ring if for every $x, y \in R$, we have $x \mid y$ or $y \mid x$. Every chained ring is divided. So, if R is a reduced chained ring, then a proper ideal I of R is a weakly 1 -absorbing primary ideal if and only if it is a weakly primary ideal of R.

Theorem 8. Let R be a Dedekind domain and I be a nonzero proper ideal of R. Then I is a weakly 1-absorbing primary ideal of R if and only if \sqrt{I} is a prime ideal of R.

Proof. Suppose that I is a weakly 1 -absorbing primary ideal of R. Then \sqrt{I} is a prime ideal of R by Theorem 3. The converse follows from [10, Theorem 14].

Let R be a commutative ring with $1 \neq 0$. If an ideal of R contained in a finite union of ideals must be contained in one of those ideals, then R is said to be a u-ring [13]. In the next theorem, we give some characterizations of weakly 1-absorbing primary ideals in u-rings.

Theorem 9. Let R be a commutative u-ring, and I a proper ideal of R. Then the following statements are equivalent.
(1) I is a weakly 1 -absorbing primary ideal of R.
(2) For every nonunit elements $a, b \in R$ with $a b \notin I,(I: a b)=(0: a b)$ or $(I: a b) \subseteq \sqrt{I}$.
(3) For every nonunit element $a \in R$ and every ideal I_{1} of R with $I_{1} \nsubseteq \sqrt{I}$, if $\left(I: a I_{1}\right)$ is a proper ideal of R, then $\left(I: a I_{1}\right)=\left(\{0\}: a I_{1}\right)$ or $\left(I: a I_{1}\right) \subseteq$ $(I: a)$.
(4) For all ideals I_{1}, I_{2} of R with $I_{1} \nsubseteq \sqrt{I}$, if $\left(I: I_{1} I_{2}\right)$ is a proper ideal of R, then $\left(I: I_{1} I_{2}\right)=\left(\{0\}: I_{1} I_{2}\right)$ or $\left(I: I_{1} I_{2}\right) \subseteq\left(I: I_{2}\right)$.
(5) For all ideals I_{1}, I_{2}, I_{3} of R with $0 \neq I_{1} I_{2} I_{3} \subseteq I, I_{1} I_{2} \subseteq I$ or $I_{3} \subseteq \sqrt{I}$.

Proof. (1) $\Rightarrow(2)$ Suppose that I is a weakly 1 -absorbing primary ideal of $R, a b \notin I$ for some nonunit elements $a, b \in R$, and $c \in(I: a b)$. Then $a b c \in I$. Since $a b \notin I, c$ is nonunit. If $a b c=0$, then $c \in(0: a b)$. Assume that $0 \neq a b c \in I$. Since I is weakly 1 -absorbing primary, we have $c \in \sqrt{I}$. Hence we conclude that $(I: a b) \subseteq(0: a b) \cup \sqrt{I}$. Since R is a u-ring, we obtain that $(I: a b)=(0: a b)$ or $(I: a b) \subseteq \sqrt{I}$.
$(2) \Rightarrow(3)$ If $a I_{1} \subseteq I$, then we are done. Suppose that $a I_{1} \nsubseteq I$ for some nonunit element $a \in R$ and $c \in\left(I: a I_{1}\right)$. It is clear that c is nonunit. Then $a c I_{1} \subseteq I$. Now $I_{1} \subseteq(I: a c)$. If $a c \in I$, then $c \in(I: a)$. Suppose that $a c \notin I$. Hence $(I: a c)=(0: a c)$ or $(I: a c) \subseteq \sqrt{I}$ by (2). Thus $I_{1} \subseteq(0: a c)$ or $I_{1} \subseteq \sqrt{I}$. Since $I_{1} \nsubseteq \sqrt{I}$ by hypothesis, we conclude that $I_{1} \subseteq(0: a c)$; i.e. $c \in\left(\{0\}: a I_{1}\right)$. Thus $\left(I: a I_{1}\right) \subseteq\left(\{0\}: a I_{1}\right) \cup(I: a)$. Since R is a u-ring, we have $\left(I: a I_{1}\right)=\left(\{0\}: a I_{1}\right)$ or $\left(I: a I_{1}\right) \subseteq(I: a)$.
$(3) \Rightarrow(4)$ If $I_{1} \subseteq \sqrt{I}$, then we are done. Suppose that $I_{1} \nsubseteq \sqrt{I}$ and $c \in\left(I: I_{1} I_{2}\right)$. Then $I_{2} \subseteq\left(I: c I_{1}\right)$. Since $\left(I: I_{1} I_{2}\right)$ is proper, c is a nonunit. Hence $I_{2} \subseteq\left(\{0\}: c I_{1}\right)$ or $I_{2} \subseteq(I: c)$ by (3). If $I_{2} \subseteq\left(\{0\}: c I_{1}\right)$, then $c \in\left(\{0\}: I_{1} I_{2}\right)$. If $I_{2} \subseteq(I: c)$, then $c \in\left(I: I_{2}\right)$. So, $\left(I: I_{1} I_{2}\right) \subseteq\left(\{0\}: I_{1} I_{2}\right) \cup\left(I: I_{2}\right)$, which implies that $\left(I: I_{1} I_{2}\right)=\left(\{0\}: I_{1} I_{2}\right)$ or $\left(I: I_{1} I_{2}\right) \subseteq\left(I: I_{2}\right)$, as needed.
$(4) \Rightarrow(5)$ It is clear.
$(5) \Rightarrow(1)$ Let $a, b, c \in R$ be nonunit elements and $0 \neq a b c \in I$. Put $I_{1}=a R$, $I_{2}=b R$, and $I_{3}=c R$. Then (1) is now clear by (5).

Definition 2. Let I be a weakly 1-absorbing primary ideal of a commutative ring R and a, b, c be nonunit elements of R. We call (a, b, c) a 1-triple-zero of I if $a b c=0$, $a b \notin I$, and $c \notin \sqrt{I}$.

Observe that if I is a weakly 1-absorbing primary ideal of a commutative ring R that is not 1-absorbing primary, then there exists a 1-triple-zero (a, b, c) of I for some nonunit elements $a, b, c \in R$.

Theorem 10. Let I be a weakly 1-absorbing primary ideal of a commutative ring R and (a, b, c) be a 1-triple-zero of I.
(1) $a b I=\{0\}$.
(2) If $a, b \notin(I: c)$, then $b c I=a c I=a I^{2}=b I^{2}=c I^{2}=\{0\}$.
(3) If $a, b \notin(I: c)$, then $I^{3}=\{0\}$.

Proof. (1) Suppose that $a b I \neq\{0\}$. Then $a b x \neq 0$ for some nonunit $x \in I$. Hence $0 \neq a b(c+x) \in I$. Since $a b \notin I,(c+x)$ is nonunit element of R. Since I is a weakly 1 -absorbing primary ideal of R and $a b \notin I$, we conclude that $(c+x) \in \sqrt{I}$. Since $x \in I$, we have $c \in \sqrt{I}$, a contradiction. Thus $a b I=\{0\}$.
(2) Suppose that $b c I \neq 0$. Then $b c y \neq 0$ for some nonunit element $y \in I$. Hence $0 \neq b c y=b(a+y) c \in I$. Since $b \notin(I: c)$, we conclude that $a+y$ is a nonunit element of R. Since I is a weakly 1 -absorbing primary ideal of R, $a b \notin I$, and $b y \in I$, we conclude that $b(a+y) \notin I$, and hence $c \in \sqrt{I}$, a contradiction. Thus $b c I=\{0\}$. We show that $a c I=\{0\}$. Suppose that $a c I \neq\{0\}$. Then $a c y \neq 0$ for some nonunit element $y \in I$. Hence $0 \neq a c y=a(b+y) c \in I$. Since $a \notin(I: c)$, we conclude that $b+y$ is a nonunit element of R. Since I is a weakly 1-absorbing primary ideal of $R, a b \notin I$, and $a y \in I$, we conclude that $a(b+y) \notin I$, and hence $c \in \sqrt{I}$, a contradiction. Thus $a c I=\{0\}$. Now we prove that $a I^{2}=\{0\}$. Suppose that $a x y \neq 0$ for some $x, y \in I$. Since $a b I=\{0\}$ by (1) and $a c I=\{0\}$ by (2), $0 \neq a x y=a(b+x)(c+y) \in I$. Since $a b \notin I$, we conclude that $c+y$ is a nonunit element of R. Since $a \notin(I: c)$, we conclude that $b+x$ is a nonunit element of R. Since I is a weakly 1 -absorbing primary ideal of R, we have $a(b+x) \in I$ or $(c+y) \in \sqrt{I}$. Since $x, y \in I$, we conclude that $a b \in I$ or $c \in \sqrt{I}$, a contradiction. Thus $a I^{2}=\{0\}$. We show $b I^{2}=\{0\}$. Suppose that $b x y \neq 0$ for some $x, y \in I$. Since $a b I=\{0\}$ by (1) and $b c I=\{0\}$ by $(2), 0 \neq b x y=b(a+x)(c+y) \in I$. Since $a b \notin I$, we conclude that $c+y$ is a nonunit element of R. Since $b \notin(I: c)$, we conclude that $a+x$ is a nonunit element of R. Since I is a weakly 1-absorbing primary ideal of R, we have $b(a+x) \in I$ or $(c+y) \in \sqrt{I}$. Since $x, y \in I$, we conclude that $a b \in I$ or $c \in \sqrt{I}$, a contradiction. Thus $b I^{2}=\{0\}$. We show $c I^{2}=\{0\}$. Suppose that $c x y \neq 0$ for some $x, y \in I$. Since $a c I=b c I=\{0\}$ by (2), $0 \neq c x y=(a+x)(b+y) c \in I$. Since $a, b \notin(I: c)$, we conclude that $a+x$ and $b+y$ are nonunit elements of R. Since I is a weakly 1 -absorbing primary ideal of R, we have $(a+x)(b+y) \in I$ or $c \in \sqrt{I}$. Since $x, y \in I$, we conclude that $a b \in I$ or $c \in \sqrt{I}$, a contradiction. Thus $c I^{2}=\{0\}$.
(3) Assume that $x y z \neq 0$ for some $x, y, z \in I$. Then $0 \neq x y z=(a+x)(b+y)(c+$ $z) \in I$ by (1) and (2). Since $a b \notin I$, we conclude $c+z$ is a nonunit element of R. Since $a, b \notin(I: c)$, we conclude that $a+x$ and $b+y$ are nonunit elements of R. Since I is a weakly 1 -absorbing primary ideal of R, we have $(a+x)(b+y) \in I$ or $c+z \in \sqrt{I}$. Since $x, y, z \in I$, we conclude that $a b \in I$ or $c \in \sqrt{I}$, a contradiction. Thus $I^{3}=\{0\}$.

Theorem 11. (1) Let I be a weakly 1-absorbing primary ideal of a commutative reduced ring R. Suppose that I is not a 1-absorbing primary ideal of R and (a, b, c) is a 1-triple-zero of I such that $a, b \notin(I: c)$. Then $I=\{0\}$.
(2) Let I be a nonzero weakly 1-absorbing primary ideal of a reduced ring R. Suppose that I is not a 1-absorbing primary ideal of R and (a, b, c) is a 1 -triple-zero of I. Then ac $\in I$ or $b c \in I$.

Proof. (1) Since $a, b \in(I: c)$, then $I^{3}=\{0\}$ by Theorem $10(3)$. Since R is reduced, we conclude that $I=\{0\}$.
(2) Suppose that neither $a c \in I$ nor $b c \in I$. Then $I=\{0\}$ by (1), a contradiction since I is a nonzero ideal of R by hypothesis. Hence if (a, b, c) is a 1-triple-zero of I, then $a c \in I$ or $b c \in I$.

Theorem 12. Let I be a weakly 1-absorbing primary ideal of a commutative ring R. If I is not a weakly primary ideal of R, then there exist an irreducible element $x \in R$ and a nonunit element $y \in R$ such that $x y \in I$, but neither $x \in I$ nor $y \in \sqrt{I}$. Furthermore, if $a b \in I$ for some nonunit elements $a, b \in R$ such that neither $a \in I$ nor $b \in \sqrt{I}$, then a is an irreducible element of R.
Proof. Suppose that I is not a weakly primary ideal of R. Then there exist nonunit elements $x, y \in R$ such that $0 \neq x y \in I$ with $x \notin I, y \notin \sqrt{I}$. Suppose that x is not an irreducible element of R. Then $x=c d$ for some nonunit elements $c, d \in R$. Since $0 \neq x y=c d y \in I, I$ is weakly 1 -absorbing primary, and $y \notin \sqrt{I}$, we conclude that $x=c d \in I$, a contradiction. Hence x is an irreducible element of R

In general, the intersection of a family of weakly 1-absorbing primary ideals need not be a weakly 1 -absorbing primary ideal. Indeed, consider the ring $R=\mathbb{Z}_{12}$. Then $I=(2)$ and $J=(3)$ are clearly weakly 1-absorbing primary ideals of R, but $I \cap J=\{0,6\}$ is not a weakly 1-absorbing primary ideal of R (since $0 \neq 3 \cdot 3 \cdot 2 \in I \cap J$, but neither $3 \cdot 3 \in I \cap J$ nor $2 \in \sqrt{I \cap J})$. However, we have the following result.

Proposition 1. Let $\left\{I_{i} \mid i \in \Lambda\right\}$ be a finite collection of weakly 1-absorbing primary ideals of a commutative ring R such that $Q=\sqrt{I_{i}}=\sqrt{I_{j}}$ for every distinct $i, j \in \Lambda$. Then $I=\cap_{i \in \Lambda} I_{i}$ is a weakly 1-absorbing primary ideal of R.
Proof. Suppose that $0 \neq a b c \in I=\cap_{i \in \Lambda} I_{i}$ for nonunit elements a, b, c of R and $a b \notin I$. Then for some $k \in \Lambda, 0 \neq a b c \in I_{k}$ and $a b \notin I_{k}$. This implies that $c \in \sqrt{I_{k}}=Q=\sqrt{I}$.

Proposition 2. Let I be a weakly 1-absorbing primary ideal of a commutative ring R and c be a nonunit element of $R \backslash I$. Then $(I: c)$ is a weakly primary ideal of R.
Proof. Suppose that $0 \neq a b \in(I: c)$ for some nonunit $c \in R \backslash I$ and assume that $a \notin(I: c)$. Hence b is a nonunit element of R. If a is a unit of R, then $b \in(I: c) \subseteq \sqrt{(I: c)}$ and we are done. So assume that a is a nonunit element of R. Since $0 \neq a b c=a c b \in I, a c \notin I$, and I is a weakly 1-absorbing primary ideal of R, we conclude that $b \in \sqrt{I} \subseteq \sqrt{(I: c)}$. Thus ($I: c$) is a weakly primary ideal of R.

The next theorem gives a characterization for weakly 1-absorbing primary ideals of $R=R_{1} \times R_{2}$, where R_{1} and R_{2} are commutative rings with identity that are not fields.

Theorem 13. Let R_{1} and R_{2} be commutative rings with identity that are not fields, $R=R_{1} \times R_{2}$, and I be a nonzero proper ideal of R. Then the following statements are equivalent.
(1) I is a weakly 1-absorbing primary ideal of R.
(2) $I=I_{1} \times R_{2}$ for some primary ideal I_{1} of R_{1} or $I=R_{1} \times I_{2}$ for some primary ideal I_{2} of R_{2}.
(3) I is a 1-absorbing primary ideal of R.
(4) I is a primary ideal of R.

Proof. (1) $\Rightarrow(2)$ Suppose that I is a weakly 1-absorbing primary ideal of R. Then I is of the form $I_{1} \times I_{2}$ for some ideals I_{1} and I_{2} of R_{1} and R_{2}, respectively. Assume that both I_{1} and I_{2} are proper. Since I is a nonzero ideal of R, we conclude that $I_{1} \neq\{0\}$ or $I_{2} \neq\{0\}$. We may assume that $I_{1} \neq\{0\}$. Let $0 \neq c \in I_{1}$. Then $0 \neq(1,0)(1,0)(c, 1)=(c, 0) \in I_{1} \times I_{2}$. This implies that $(1,0)(1,0) \in I_{1} \times I_{2}$ or $(c, 1) \in \sqrt{I_{1} \times I_{2}}=\sqrt{I_{1}} \times \sqrt{I_{2}}$, that is $I_{1}=R_{1}$ or $I_{2}=R_{2}$, a contradiction. Thus either I_{1} or I_{2} is a proper ideal. Without loss of generality, assume that $I=I_{1} \times R_{2}$ for some proper ideal I_{1} of R_{1}. We show that I_{1} is a primary ideal of R_{1}. Let $a b \in I_{1}$ for some $a, b \in R_{1}$. We can assume that a and b are nonunit elements of R_{1}. Since R_{2} is not a field, there exists a nonunit nonzero element $x \in R_{2}$. Then $0 \neq(a, 1)(1, x)(b, 1) \in I_{1} \times R_{2}$ which implies that either $(a, 1)(1, x) \in I_{1} \times R_{2}$ or $(b, 1) \in \sqrt{I_{1} \times R_{2}}=\sqrt{I_{1}} \times R_{2}$; i.e, $a \in I_{1}$ or $b \in \sqrt{I_{1}}$.
$(2) \Rightarrow(3)$ Since I is a primary ideal of R, I is a 1-absorbing primary ideal of R by [10, Theorem 1(1)].
$(3) \Rightarrow(4)$ Since I a 1-absorbing primary ideal of R and R is not a quasilocal ring, we conclude that I is a primary ideal of R by [10, Theorem 3].
$(4) \Rightarrow(1)$ It is clear.
Theorem 14. Let R_{1}, \ldots, R_{n} be commutative rings with $1 \neq 0$ for some $2 \leq n<\infty$, and let $R=R_{1} \times \cdots \times R_{n}$. Then the following statements are equivalent.
(1) Every proper ideal of R is a weakly 1-absorbing primary ideal of R.
(2) $n=2$ and R_{1}, R_{2} are fields.

Proof. (1) \Rightarrow (2) Suppose that every proper ideal of R is a weakly 1-absorbing primary ideal. Without loss of generality, we may assume that $n=3$. Then $I=R_{1} \times\{0\} \times\{0\}$ is a weakly 1 -absorbing primary ideal of R. However, for a nonzero $a \in R_{1}$, we have $(0,0,0) \neq(1,0,1)(1,0,1)(a, 1,0)=(a, 0,0) \in I$, but neither $(1,0,1)(1,0,1) \in I$ nor $(a, 1,0) \in \sqrt{I}$, a contradiction. Thus $n=2$. Assume that R_{1} is not a field. Then there exists a nonzero proper ideal A of R_{1}. Hence $I=A \times\{0\}$ is a weakly 1 -absorbing primary ideal of R. However, for a nonzero $a \in A$, we have $(0,0) \neq(1,0)(1,0)(a, 1)=(a, 0) \in I$, but neither $(1,0)(1,0) \in I$ nor $(a, 1) \in \sqrt{I}$, a contradiction. Similarly, one can easily show that R_{2} is a field. Hence $n=2$ and R_{1}, R_{2} are fields.
$(2) \Rightarrow(1)$ Suppose that $n=2$ and R_{1}, R_{2} are fields. Then R has exactly three proper ideals, i.e., $\{(0,0)\},\{0\} \times R_{2}$, and $R_{1} \times\{0\}$ are the only proper ideals of R. Hence it is clear that each proper ideal of R is a weakly 1-absorbing primary ideal of R.

Since every ring that is a product of a finite number of fields is a von Neumann regular ring, in light of Theorem 4 and Theorem 14, we have the following result.

Corollary 2. Let R_{1}, \ldots, R_{n} be commutative rings with $1 \neq 0$ for some $2 \leq n<\infty$, and let $R=R_{1} \times \cdots \times R_{n}$. Then the following statements are equivalent.
(1) Every proper ideal of R is a weakly 1-absorbing primary ideal of R.
(2) Every proper ideal of R is a weakly primary ideal of R.
(3) $n=2$ and R_{1}, R_{2} are fields, and hence $R=R_{1} \times R_{2}$ is a von Neumann regular ring.
Theorem 15. Let R_{1} and R_{2} be commutative rings and $f: R_{1} \rightarrow R_{2}$ be a ring homomorphism with $f(1)=1$.
(1) Suppose that f is injective, $f(a)$ is a nonunit element of R_{2} for every nonunit element $a \in R_{1}$, and J is a weakly 1 -absorbing primary ideal of R_{2}. Then $f^{-1}(J)$ is a weakly 1 -absorbing primary ideal of R_{1}.
(2) If f is an epimorphism and I is a weakly 1 -absorbing primary ideal of R_{1} such that $\operatorname{Ker}(f) \subseteq I$, then $f(I)$ is a weakly 1 -absorbing primary ideal of R_{2}.
Proof. (1) Since $f(1)=1, f^{-1}(J)$ is a proper ideal of R_{1}. Let $0 \neq a b c \in f^{-1}(J)$ for some nonunit elements $a, b, c \in R$. Since $\operatorname{Ker}(f)=0$, we have $0 \neq f(a b c)=$ $f(a) f(b) f(c) \in J$, where $f(a), f(b), f(c)$ are nonunit elements of R_{2} by hypothesis. Hence $f(a) f(b) \in J$ or $f(c) \in \sqrt{J}$. Hence $a b \in f^{-1}(J)$ or $c \in \sqrt{f^{-1}(J)}=f^{-1}(\sqrt{J})$. Thus $f^{-1}(J)$ is a weakly 1 -absorbing primary ideal of R_{1}.
(2) Let $0 \neq x y z \in f(I)$ for some nonunit elements $x, y, z \in R$. Since f is onto, there exist nonunit elements $a, b, c \in I$ such that $x=f(a), y=f(b), z=f(c)$. Then $f(a b c)=f(a) f(b) f(c)=x y z \in f(I)$. Since $\operatorname{Ker}(f) \subseteq I$, we have $0 \neq a b c \in I$. Hence $a b \in I$ or $c \in \sqrt{I}$. Thus $x y \in f(I)$ or $z \in f(\sqrt{I})$. Since f is onto and $\operatorname{Ker}(f) \subseteq I$, we have $f(\sqrt{I})=\sqrt{f(I)}$. Thus we are done.

The following example shows that the hypothesis in Theorem 15(1) is crucial.
Example 2. ([10, Example 1]) Let $A=K[x, y]$, where K is a field, $M=(x, y) A$, and $B=A_{M}$. Note that B is a quasilocal ring with maximal ideal M_{M}. Then $I=x M_{M}=\left(x^{2}, x y\right) B$ is a 1-absorbing primary ideal of B (see [10, Theorem 5]) and $\sqrt{I}=x B$. However $x y \in I$, but neither $x \in I$ nor $y \in \sqrt{I}$. Thus I is not a primary ideal of B. Let $f: B \times B \rightarrow B$ such that $f(x, y)=x$. Then f is a ring homomorphism from $B \times B$ onto B such that $f(1,1)=1$. However, $(1,0)$ is a nonunit element of $B \times B$ and $f(1,0)=1$ is a unit of B. Thus f does not satisfy the hypothesis of Theorem 15(1). Now $f^{-1}(I)=I \times B$ is not a weakly 1-absorbing primary ideal of $B \times B$ by Theorem 13 .

Theorem 16. Let I be a proper ideal of a commutative ring R.
(1) If J is a proper ideal of R with $J \subseteq I$ and I is a weakly 1-absorbing primary ideal of R, then I / J is a weakly 1-absorbing primary ideal of R / J.
(2) Let J be a proper ideal of R with $J \subseteq I$ such that $a+J$ is a nonunit element of R / J for every nonunit $a \in R$. If J is a 1-absorbing primary ideal of R and I / J is a weakly 1-absorbing primary ideal of R / J, then I is a 1-absorbing primary ideal of R.
(3) If $\{0\}$ is a 1-absorbing primary ideal of R and I is a weakly 1-absorbing primary ideal of R, then I is a 1-absorbing primary ideal of R.
(4) Let J be a proper ideal of R with $J \subseteq I$ such that $a+J$ is a nonunit element of R / J for every nonunit $a \in R$. If J is a weakly 1 -absorbing primary ideal of R and I / J is a weakly 1-absorbing primary ideal of R / J, then I is a weakly 1-absorbing primary ideal of R.

Proof. (1) Consider the natural epimorphism $\pi: R \rightarrow R / J$. Then $\pi(I)=I / J$. So we are done by Theorem 15 (2).
(2) Suppose that $a b c \in I$ for some nonunit elements $a, b, c \in R$. If $a b c \in J$, then $a b \in J \subseteq I$ or $c \in \sqrt{J} \subseteq \sqrt{I}$ as J is a 1-absorbing primary ideal of R. Now assume that $a b c \notin J$. Then $J \neq(a+J)(b+J)(c+J) \in I / J$, where $a+J, b+J, c+J$ are nonunit elements of R / J by hypothesis. Thus $(a+J)(b+J) \in I / J$ or $(c+J) \in$ $\sqrt{I / J}$. Hence $a b \in I$ or $c \in \sqrt{I}$.
(3) The proof follows from (2).
(4) Suppose that $0 \neq a b c \in I$ for some nonunit elements $a, b, c \in R$. If $a b c \in J$, then $a b \in J \subseteq I$ or $c \in \sqrt{J} \subseteq \sqrt{I}$ as J is a weakly 1-absorbing primary ideal of R. Now assume that $a b c \notin J$. Then $J \neq(a+J)(b+J)(c+J) \in I / J$, where $a+J, b+J, c+J$ are nonunit elements of R / J by hypothesis. Thus $(a+J)(b+J) \in$ I / J or $(c+J) \in \sqrt{I / J}$. Hence $a b \in I$ or $c \in \sqrt{I}$.

In the following remark, we give the correct version of [10, Theorem 17(1), Corollary 3, and Corollary 4].
Remark 1. Mohammed Tamekkante pointed out to the first-named author that in [10], we overlooked the fact that if $f: R_{1} \rightarrow R_{2}$ is a ring homomorphism such that $f(1)=1$, then it is possible that $f(a) \in U\left(R_{2}\right)$ for some nonunit element $a \in R_{1}$. Overlooking this fact caused a problem in the proof of [10, Theorem 17(1), Corollary 3 , and Corollary 4]. We state the correct version of [10, Theorem 17(1), Corollary 3, and Corollary 4].
(1) ([10, Theorem 17(1)]). Let R_{1} and R_{2} be commutative rings and $f: R_{1} \rightarrow$ R_{2} be a ring homomorphism with $f(1)=1$ such that if R_{2} is a quasilocal ring, then $f(a)$ is a nonunit element of R_{2} for every nonunit element $a \in$ R_{1}. If J is a 1-absorbing primary ideal of R_{2}, then $f^{-1}(J)$ is a 1-absorbing primary ideal of R_{1}. (Note that if R_{2} is not a quasilocal ring, then J is primary by [10, Theorem 3], and hence $f^{-1}(J)$ is a primary ideal of R_{1}. Since every primary ideal of a commutative ring A is a 1-absorbing primary ideal of A, we conclude that $f^{-1}(J)$ is a 1-absorbing primary ideal of R_{1}.)
(2) ([10, Corollary 3]). Let I and J be proper ideals of a commutative ring R with $I \subseteq J$. If J is a 1-absorbing primary ideal of R, then J / I is a 1 -absorbing primary ideal of R / I. Furthermore, assume that if R / I is a quasilocal ring, then $a+I$ is a nonunit element of R / I for every nonunit $a \in R$. If J / I is a 1-absorbing primary ideal of R / I, then J is a 1-absorbing primary ideal of R.
(3) ([10, Corollary 4]). Let R be a commutative ring and $A=R[x]$. Then a proper ideal I of R is a 1-absorbing primary ideal of R if and only if $(I[x]+x A) / x A$ is a 1-absorbing primary ideal of $A / x A$. (The claim is clear since R is ring-isomorphic to $A / x A$.)

Note that Example 2 shows that the hypothesis in (1) is crucial.
Theorem 17. Let S be a multiplicatively closed subset of a commutative ring R, and I be proper ideal of R.
(1) If I is a weakly 1 -absorbing primary ideal of R such that $I \cap S=\emptyset$, then $S^{-1} I$ is a weakly 1-absorbing primary ideal of $S^{-1} R$.
(2) If $S^{-1} I$ is a weakly 1 -absorbing primary ideal of $S^{-1} R$ such that $S \cap Z(R)=$ \emptyset and $S \cap Z_{I}(R)=\emptyset$, then I is a weakly 1-absorbing primary ideal of R.
Proof. (1) Suppose that $0 \neq \frac{a}{s_{1}} \frac{b}{s_{2}} \frac{c}{s_{3}} \in S^{-1} I$ for some nonunit $a, b, c \in R \backslash S$, $s_{1}, s_{2}, s_{3} \in S$ and $\frac{a}{s_{1}} \frac{b}{s_{2}} \notin S^{-1} I$. Then $0 \neq u a b c \in I$ for some $u \in S$. Since I is
weakly 1 -absorbing primary and $u a b \notin I$, we conclude $c \in \sqrt{I}$. Thus $\frac{c}{s_{3}} \in S^{-1} \sqrt{I}=$ $\sqrt{S^{-1} I}$. Thus $S^{-1} I$ is a weakly 1 -absorbing primary ideal of $S^{-1} R$.
(2) Suppose that $0 \neq a b c \in I$ for some nonunit elements $a, b, c \in R$. Hence $0 \neq \frac{a b c}{1}=\frac{a}{1} \frac{b}{1} \frac{c}{1} \in S^{-1} I$ as $S \cap Z(R)=\emptyset$. Since $S^{-1} I$ is weakly 1-absorbing primary, we have either $\frac{a}{1} \frac{b}{1} \in S^{-1} I$ or $\frac{c}{1} \in \sqrt{S^{-1} I}=S^{-1} \sqrt{I}$. If $\frac{a}{1} \frac{b}{1} \in S^{-1} I$, then $u a b \in I$ for some $u \in S$. Since $S \cap Z_{I}(R)=\emptyset$, we conclude that $a b \in I$. If $\frac{c}{1} \in S^{-1} \sqrt{I}$, then $(t c)^{n} \in I$ for some positive integer $n \geq 1$ and $t \in S$. Since $t^{n} \notin Z_{I}(R)$, we have $c^{n} \in I$, i.e., $c \in \sqrt{I}$. Thus I is a weakly 1 -absorbing primary ideal of R.

Definition 3. Let I be a weakly 1-absorbing primary ideal of a commutative ring R and $I_{1} I_{2} I_{3} \subseteq I$ for some proper ideals I_{1}, I_{2}, I_{3} of R. If (a, b, c) is not a 1-triple-zero of I for every $a \in I_{1}, b \in I_{2}, c \in I_{3}$, then we call I a free 1-triple-zero with respect to $I_{1} I_{2} I_{3}$.
Theorem 18. Let I be a weakly 1-absorbing primary ideal of a commutative ring R and J be a proper ideal of R with abJ $\subseteq I$ for some $a, b \in R$. If (a, b, j) is not a 1 -triple-zero of I for all $j \in J$ and $a b \notin I$, then $J \subseteq \sqrt{I}$.

Proof. Suppose that $J \nsubseteq \sqrt{I}$. Then there exists $c \in J \backslash \sqrt{I}$. Then $a b c \in a b J \subseteq I$. If $a b c \neq 0$, then it contradicts our assumption that $a b \notin I$ and $c \notin \sqrt{I}$. Thus $a b c=0$. Since (a, b, c) is not a 1 -triple-zero of I and $a b \notin I$, we conclude that $c \in \sqrt{I}$, a contradiction. Thus $J \subseteq \sqrt{I}$.
Theorem 19. Let I be a weakly 1-absorbing primary ideal of a commutative ring R and $\{0\} \neq I_{1} I_{2} I_{3} \subseteq I$ for some proper ideals I_{1}, I_{2}, I_{3} of R. If I is free 1-triple-zero with respect to $I_{1} I_{2} I_{3}$, then $I_{1} I_{2} \subseteq I$ or $I_{3} \subseteq \sqrt{I}$.

Proof. Suppose that I is free 1-triple-zero with respect to $I_{1} I_{2} I_{3}$, and $\{0\} \neq$ $I_{1} I_{2} I_{3} \subseteq I$. Assume that $I_{1} I_{2} \nsubseteq I$. Then there exist $a \in I_{1}, b \in I_{2}$ such that $a b \notin I$. Since I is a free 1-triple-zero with respect to $I_{1} I_{2} I_{3}$, we conclude that (a, b, c) is not a 1 -triple-zero of I for all $c \in I_{3}$. Thus $I_{3} \subseteq \sqrt{I}$ by Theorem 18 .

Acknowledgement. We would like to thank Mohammed Tamekkante for pointing out a problem in [10, Theorem $17(1)]$. Also, we are so grateful to the referee for his/her great effort in proofreading the manuscript.

References

[1] D. D. Anderson and M. Batanieh, Generalizations of prime ideals, Comm. Algebra, $\mathbf{3 6}$ (2008), 686-696.
[2] D.D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math., 29 (4) (2003), 831-840.
[3] D.F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra, 39 (2011), 1646-1672.
[4] D.F. Anderson and A. Badawi, Von Neumann regular and related elements in commutative rings, Algebra Colloq., 19(SPL. ISS. 1) (2012), 1017-1040.
[5] S. E. Atani and F. Farzalipour, On weakly primary ideals, Georgian Math. J., 12(3) (2005), 423-429.
[6] A.Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc., 75 (2007), 417-429.
[7] A. Badawi and A. Y. Darani, On weakly 2-absorbing ideals of commutative rings, Houston J. Math. 39 (2013), no. 2, 441-452.
[8] A. Badawi, Ü. Tekir and E. Yetkin, On 2-absorbing primary ideals in commutative rings, Bull. Korean Math. Soc., 51 (4) (2014), 1163-1173.
[9] A. Badawi, Ü. Tekir and E. Yetkin, On weakly 2-absorbing primary ideals in commutative rings, J. Korean Math. Soc., 52(1) (2015), 97-111.
[10] A.Badawi and E. Yetkin Çelikel, On 1-absorbing primary ideals of a commutative ring, J. Algebra Appl., 19(6) (2020), (12 pages).
[11] A. Badawi, D. Sonmez and G. Yesilot, On Weakly δ-Semiprimary Ideals of Commutative Rings, Algebra Colloq., 25(3) (2018), 387-398.
[12] R. W. Gilmer, Rings in which semiprimary ideals are primary, Pacific J. Math., 12(4) (1962) 1273-1276.
[13] P. Quartararo and H. S. Butts, Finite unions of ideals and modules, Proc. Amer. Math. Soc., 52 (1975), 91-96.
[14] O. Zariski and Pierre Samuel, Commutative Algebra. V.I. (Princeton, 1958).
Department of Mathematics \&Statistics, The American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.

Email address: abadawi@aus.edu
Department of Electrical-Electronics Engineering, Faculty of Engineering, Hasan Kalyoncu University, Gaziantep, Turkey.

Email address: yetkinece@gmail.com; ece.celikel@hku.edu.tr

[^0]: 2000 Mathematics Subject Classification. Primary 13A15, 13F05; Secondary 05A15, 13G05.
 Key words and phrases. 1-absorbing primary ideal, 2-absorbing primary ideal, 2-absorbing ideal, weakly 2 -absorbing primary ideal, weakly primary.

