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Abstract. In this article, a fixed point iterative scheme involving Green’s function
is applied to reach a solution for the buckling of nano-actuators under nonlinear forces.
Our solution is convergent. The nano-actuators problem under consideration is governed
by a general type equation that contains nonlinear forces and integro-differential terms.
The equation, we adopted and which governs the nano-actuators, is a nonlinear integro-
differential BVP of fourth order. Our scheme enjoys important features such as high
accuracy, robustness, and fast convergence. Numerical tests are performed and compared
with other results that exist in the current literature.

1. Introduction

In recent years, a wide spectrum of articles have been devoted to investigate the buck-
ling of doubly clamped nano-actuators with an integro-differential governing equation.
Ansari et al. [2] and Bacciocchi et al. [3] applied the Generalized Differential Quad-
rature (GDQ) method to numerically solve the governing equations of nanoplates. The
governing equations were discretized along with simply-supported and clamped boundary
conditions using the GDQ method which was proven to be an accurate, stable and reliable
numerical tool. In contrast, Shanab et al. [25] implemented the Generalized Differential
Quadrature technique to discretize the nonlinear nonclassical governing differential equa-
tions and the nonclassical boundary conditions, and then used the Hamilton’s principle
to obtain nonclassical boundary conditions. SoltanRezaee et al. [27] applied the Hamil-
tonian principle to derive the nonlinear governing equations of nano-cantilevers. After
validation of their results by previous available numerical results, the pull-in voltages and
fundamental natural frequencies of the actuated nano-beam were achieved numerically
using the Step-by-Step Linearization Method. Mohebshashedin and Farrokhabadi used
two different numerical approaches to solve the differential governing equation, namely
Runge Kutta Method (RKM) and an approximated Reduced Order Method (ROM) [20].
Quite a few papers (see [7], [18], [19], [24], [28], and [30]) used the modified Adomian
Decomposition Method (MADM) to obtain an analytical solution for the bucking and
pull-in instability of the actuator. The MADM’s semi–analytical series solutions were
compared with the existing numerical ones and they were found to be compatible and in
good agreement . Younis et al. [31] presented an analytical approach and a reduced-order
model (macromodel) to investigate the behavior of electrically actuated microbeam-based
MEMS. Ghalambaz et al. [8] utilized a power series solution to study the deflection and
pull–in instability of nano-cantilever electromechanical switches using a distributed pa-
rameter model, while Noghrehabadi et al. [23] used a power series solution to study
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the effect of intermolecular forces on the instability of multi walled carbon nanotube
(MWCNT) probes/actuators in the vicinity of thin and thick graphite. In [26], Shivanian
and Ansari transform the governing equation into an equivalent problem whose boundary
conditions are homogeneous in the internal [−1, 1], and then use optimized Chebyshev
polynomials to construct approximate series solution with unknown weights. Other tech-
niques have been also employed for the differential governing equations: those methods
include but not limited to Variational Iteration Method (VIM) [11], Homotopy Perturba-
tion Method (HPM) [22], Adomian Decomposition Method and Padé approximants [24],
Monotone Positive Method [21], and Rayleigh-Ritz Method [12]. Alternative strategies
that can be exploited to tackle our investigated problem as well as other engineering mod-
els can be found in [15], [16], [29], [5], [6], and the references therein.

Some applications of the differential governing equations arise in many scientific and
engineering applications including physical oceanography, in the framework of heat con-
duction, multi-layer beam, the deflection of a curved beam with a constant or varying
cross-section, , the theory of variational inequality , the rocket’s motion, thin liquid film,
aerospace engineering, civil engineering, mechanical engineering, naval engineering, chem-
ical engineering, biomedical implants, energy, defense, optoelectronics, bio-engineering,
medicine, electronics, nano-scale fabrications, sensing, mass-detecting, underground wa-
ter flow, thermoelasticity, plasma physics, electromagnetic waves, gravity-driven flows,
the study of boundary layer theory, draining and coating flows, stellar interiors, control
and optimization theory and flow networks in biology and in many branches of pure and
applied mathematics (see [4] and [12] and the references therein).

The ultimate goal of this study is to implement a newly developed method (see [1], [9],
[10], [13], [14], [17] and the references therein) for the solution of the equation that governs
clamped-clamped nano-actuators, in which the latter are obeying nonlinear forces. Such
forces could be applied voltage, electrostatic forces, the fringing field effect, the Casimir ef-
fect, the capillary effect and the dielectric layer effect. Furthermore, the nonlinear integral
term in our equation that governs nano-actuators is due to the existence of axial loads.
The method is an iterative scheme based on applying well-known fixed point iterative
procedures, e.g., Picard’s and Mann’s iterative schemes, to some linear integral operator.
This linear operator involves the Green’s function of the linear differential term in the
model equation. In this article, we consider a governing equation of general form that
includes an integro-differential component. The proposed method is utilized to obtain
highly accurate solution of the buckling of nano-actuators and to overcome the short-
comings of other methods, particularly the deterioration of the error as we move away
from the initial left endpoint of the interval or as the domain becomes large. As a case
study, we compared our results with the results of other numerical methods that exist
in the literature. Our solution produces relations that describe how the nano-actuator
depends on the free-dimensional parameters. These relations are useful in the conception
of nano-actuators.

The manuscript is arranged as follows. In Section 2, we present the mathematical
model under investigation. In section 3, we give an overview of the construction of the
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Green’s function, then present and describe the fixed point iterative method. Section
4 is devoted to a numerical case study to confirm and illustrate the convergence of our
method. The concluding remarks are reported in Section 5 in which we summarize the
numerical outcomes.

2. Our model

Under the presence of nonlinear forces and axial loads, we consider the following free-
dimensional equation that governs a nano-actuator beam [7]

(2.1)
d4u

dx4
−

(
η

∫ 1

0

(
du

dx

)2

dx+ P

)
d2u

dx2
= − α

uζ
− β

(κ+ u)2
− γ

u
.

In the case of the clamped-clamped nano-actuators, this equation satisfies the boundary
conditions (BCs)

(2.2) u(0) = 1, u(1) = 1, u′(0) = 0, u′(1) = 0.

Here the independent variable x is the length of the beam and the dependent variable
u is its deflection. The free-dimensional parameters η, P, β, γ and κ are such that: P
and η denote the axial loads, β is the voltage applied externally, κ is the dielectric layer
force, and γ represents the capillary action or the force due to fringing field. Finally, ζ
is a natural number. In the case of ζ = 3, the free-dimensional parameter α denotes the
effects of van der Waals, and when ζ = 4, α denotes the Casimir force.

3. Illustration of the Iterative method

In what follows we describe the proposed fixed point iterative scheme that is expressed
using the Green’s function of the linear term in (2.1).

3.1. Green’s Function. First, we shall explain how to obtain the Green’s function for
a class of linear 4th order BVPs. We start with the following linear equation

(3.3) L[u] = u(4)(x) + s1(x)u(3)(x) + s2(x)u′′(x) + s3(x)u′(x) + s4(x)u(x) = f(x),

for 0 ≤ x ≤ 1, and with the boundary conditions

(3.4) u(0) = l1, u′(0) = l2, u(1) = l3, u′(1) = l4.

The general solution of (3.3)-(3.4) is given by u = uh + up, where uh satisfies the homo-
geneous equation L[u] = 0 with BCs (3.4), and up is a particular solution to L[u] = f(x)
subject to the corresponding homogeneous BCs

(3.5) u(0) = u′(0) = u(1) = u′(1) = 0.

In order to find a particular solution up, we compute the Green’s function G(x, s) which
satisfies the equation

(3.6) −L[u] = δ(x− s),
subject to the BCs (3.5). Then, up is given by
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(3.7) up =

∫ 1

0

G(x, s)f(s) ds.

When x 6= s, G(x, s) satisfies L[u] = 0. Hence, G(x, s) can be written as

G(x, s) =

{
a1u1 + a2u2 + a3u3 + a4u4 0 ≤ s ≤ x ≤ 1

b1u1 + b2u2 + b3u3 + b4u4 0 ≤ x ≤ s ≤ 1
,

where u1, u2, u3 and u4 are solutions to L[u] = 0 and linearly independent. The values of
the constants a1, a2, a3, a4, b1, b2, b3, b4 are determined as follows:

1. G satisfies the four BCs (3.5).
2. G is continuous at s = x:

a1u1(x) + a2u2(x) + a3u3(x) + a4u4(x) = b1u1(x) + b2u2(x) + b3u3(x) + b4u4(x).

3. G′ is continuous at s = x:

a1u
′
1(x) + a2u

′
2(x) + a3u

′
3(x) + a4u

′
4(x) = b1u

′
1(x) + b2u

′
2(x) + b3u

′
3(x) + b4u

′
4(x).

4. G′′ is continuous at s = x:

a1u
′′
1(x) + a2u

′′
2(x) + a3u

′′
3(x) + a4u

′′
4(x) = b1u

′′
1(x) + b2u

′′
2(x) + b3u

′′
3(x) + b4u

′′
4(x).

5. G(3) has a unit jump discontinuity at s = x:

b1u
(3)
1 (x)+b2u

(3)
2 (x)+b3u

(3)
3 (x)+b4u

(3)
4 (x)−a1u(3)1 (x)−a2u(3)2 (x)−a3u(3)3 (x)−a4u(3)4 (x) = −1.

For a nonlinear 4th order BVP

(3.8) u(4) + p(x)u(3) + q(x)u′′ + r(x)u′ + s(x)u = f
(
x, u, u′, u′′, u(3)

)
,

a particular solution, subject to the BCs (3.5), is given by

(3.9) up =

∫ 1

0

G(x, s) f
(
s, up, u

′
p, u
′′
p, u

(3)
p

)
ds.

For the sake of completeness, we evaluate the Green’s function for the following family of
BVPs:

(3.10)

{
u(4) = f

(
x, u, u′, u′′, u(3)

)
,

u(0) = u(1) = 2, u′(0) = −1, u′(1) = 5.

Observe that the general solution of the associated homogeneous equation u(4)(x) = 0 is
uh = ax3 + bx2 + cx+ d. The Green’s function is given by

(3.11) G(x, s) =

{
a1s

3 + b1s
2 + c1s+ d1, 0 ≤ s ≤ x ≤ 1

a2s
3 + b2s

2 + c2s+ d2, 0 ≤ x ≤ s ≤ 1
.
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The previous five conditions yield:

(3.12)



d1 = 0,

a2 + b2 + c2 + d2 = 0,

c1 = 0,

3a2 + 2b2 + c2 = 0,

a1x
3 + b1x

2 + c1x+ d1 = a2x
3 + b2x

2 + c2x+ d2,

3a1x
2 + 2b1x+ c1 = 3a2x

2 + 2b2x+ c2,

6a1x+ 2b1 = 6a2x+ 2b2,

6a2 − 6a1 = −1.

After solving this linear system, we obtain that
(3.13)

G(x, s) =


(

1

3
x3 − 1

2
x2 +

1

6

)
s3 −

(
1

2
x3 − x2 +

1

2
x

)
s2, 0 ≤ s ≤ x ≤ 1(

1

3
x3 − 1

2
x2
)
s3 −

(
1

2
x3 − x2

)
s2 − 1

2
x2s+

1

6
x3, 0 ≤ x ≤ s ≤ 1

3.2. Picard-Green’s Scheme (PGS). In this subsection, we describe our proposed
method. We consider the following family of 4th order BVPs

(3.14) L[u] ≡ u(4) + a1(x)u(3) + a2(x)u′′ + a3(x)u′ + a4(x)u = f
(
x, u, u′, u′′, u(3)

)
with the BCs (3.4). We then define the integral operator

(3.15) K[u] =

∫ 1

0

G(x, s)L[u] ds,

G is the Green’s function for the corresponding L[u] = 0. Observe that u is a fixed point of
K if and only if u is a solution of (3.14). By adding and subtracting f from the integrand,
we have

(3.16)
K[u] =

∫ 1

0
G(x, s)

[
L[u]− f

(
s, u(s), u′(s), u′′(s), u(3)(s)

)]
ds

+

∫ 1

0
G(x, s) f

(
s, u(s), u′(s), u′′(s), u(3)(s)

)
ds.

Using (3.9), equation (3.16) implies

(3.17) K[up] =

∫ b

a

G(x, s)
[
L[up]− f

(
s, up(s), u

′
p(s), u

′′
p(s), u

(3)
p (s)

)]
ds+ up,

where up is a particular solution. At this stage, we apply Picard’s iterative scheme which
is

un+1 = K[un], n = 0, 1, . . .

on the operator in (3.17). This results in the following iterative scheme, which we will
refer to by PGS

(3.18) un+1 = un +

∫ b

a

G(x, s)
[
L[un]− f

(
s, un(s), u′n(s), u′′n(s), u(3)n (s)

)]
ds.



6 ABDELRAHMAN, KHURI, AND LOUHICHI

Here up is replaced by u for convenience.

Remark 1. If we apply instead of Picard’s Mann’s fixed point iterative scheme on K[u]
i.e.

(3.19) un+1 = (1− αn)un + αnK[un], ∀n ≥ 0,

where αn is a sequence in [0, 1], then by simple calculations, we obtain the following
iterative scheme, which we denote by MGS

(3.20) un+1 = un + αn

∫ b

a

G(x, s)
[
L[un]− f

(
s, un(s), u′n(s), u′′n(s), u(3)n (s)

)]
ds.

In general, Mann’s iterative scheme has the advantage of overcoming divergence of Picard’s
scheme. In fact, it can speed the rate of convergence when the sequence αn is carefully
chosen. Observe that when αn = 1, Mann’s becomes Picard’s. For both PGS and MGS,
the initial point u0, is chosen to satisfy L[u] = 0 with the BCs in (3.4). Moreover, to
find the optimal values of αn that assure the fastest rate of convergence, we minimize the
L2[a, b]-norm of the residual error, Rn(x;αn), of the nth iteration un, e.g., if u1 is the first
iterate, we minimize for α1 the corresponding L2-norm of the residual error R1(x;α1),
which is given by

‖R1(x;α1)‖2L2 =

∫ b

a

|R1(x;α1)|2dx.

The other values of αn are obtained in a similar way. Nevertheless, for the equations in
study and when running our numerical codes, it turns out for us that the best αn is 1.
This is why we shall stick to PGS from now on.

4. Convergence Analysis

Without loss of generality, we consider the following 4th order nonlinear BVP

u(4)(x) = f(x, u, u′, u′′, u(3)), for 0 < x < 1,

subject to

u(0) = u(1) = 1 and u′(0) = u′(1) = 0.

Then the Green’s function is

G(x, s) =

 (1
3
x3 − 1

2
x2 + 1

6
)s3 − (1

2
x3 − x2 + 1

2
x)s2, 0 ≤ s ≤ x ≤ 1

(1
3
x3 − 1

2
x2)s3 − (1

2
x3 − x2)s2 − 1

2
x2s+ 1

6
x3, 0 ≤ x ≤ s ≤ 1

and the Picard-Green’s iterative scheme is given by

un+1 = un +

∫ 1

0

[
G(x, s)u(4)(s)−G(x, s)f(s, u, u′, u′′, u(3))

]
ds.(4.21)
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Because G(x, 0) = G(x, 1) = ∂G
∂s

(x, 0) = ∂G
∂s

(x, 1) = 0, −L(G(x, s)) = δ(x− s), and using
integration by parts four times, we obtain∫ 1

0

G(x, s)u(4)(s)ds = G(x, s)u(3)(s)
∣∣1
0
−
∫ 1

0

G′(x, s)u(3)(s)ds

= −∂G
∂s

(x, s)u′′(s)

∣∣∣∣1
0

+

∫ 1

0

∂2G

∂s2
(x, s)u′′(s)ds

=
∂2G

∂s2
(x, 1)u′(1)− ∂2G

∂s2
(x, 0)u′(0)−

∫ 1

0

∂3G

∂s3
(x, s)u′(s)ds

=
∂3G

∂s3
(x, 1)u′(1)− ∂3G

∂s3
(x, 0)u′(0) +

∫ 1

0

∂4G

∂s4
(x, s)u(s)ds

= (3x2 − 2x3) + (2x3 − 3x2 + 1)−
∫ 1

0

δ(x− s)u(s) ds

= 1− u(x).

We then define the linear operator KG, from C4([0, 1]) into itself, by

KG(u)(x) = u(x) +

∫ 1

0

[
G(x, s)u(4)(s)−G(x, s)f(s, u, u′, u′′, u(3))

]
ds.

Thus the iterative scheme (4.21) becomes

(4.22) un+1 = KG(un).

We shall show that, under some hypothesis on the function f , the operatorKG is a contrac-
tion on the Banach space C4([0, 1]) with respect to the norm ||u||C4 =

∑3
k=0 sup[0,1] |u(k)(x)|,

and therefore the sequence (un) defined by (4.22) with u0(x) = 1 converges strongly to
the fixed point of KG.

Theorem 1. Assume that the function f , in the expression of the operator KG, satisfies
a Lipschitz condition of the form

|f(x, u, u′, u′′, u(3))− f(x, v, v′, v′′, v(3))| ≤
3∑

k=0

Lk|u(k)(x)− v(k)(x)|,

where the Lk’s are positive constants such that

1

192
max
0≤k≤3

{Lk} < 1.

Then the operator KG is a contraction on the Banach space (C4([0, 1]), ||.||C4), and hence
the Picard-Green’s iteration (un)n of (4.21) converges strongly to the fixed point of KG.
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Proof.

|KG(u)(t)−KG(v)(t)| =

∣∣∣∣u(x) +

∫ 1

0

G(x, s)
[
u(4)(s)− f(s, u, u′, u′′, u(3))

]
ds

− v(x)−
∫ 1

0

G(x, s)
[
v(4)(s)− f(s, v, v′, v′′, v(3))

]
ds

∣∣∣∣
=

∣∣∣∣∫ 1

0

G(x, s)
[
f(s, v, v′, v′′, v(3))− f(s, u, u′, u′′, u(3))

]
ds

∣∣∣∣
≤

∫ 1

0

|G(x, s)|
∣∣f(s, v, v′, v′′, v(3))− f(s, u, u′, u′′, u(3))

∣∣ ds
≤ sup

[0,1]×[0,1]
|G(x, s)|

∫ 1

0

∣∣f(s, v, v′, v′′, v(3))− f(s, u, u′, u′′, u(3))
∣∣ ds

= G(
1

2
,
1

2
)

∫ 1

0

∣∣f(s, v, v′, v′′, v(3))− f(s, u, u′, u′′, u(3))
∣∣ ds

=
1

192

∫ 1

0

∣∣f(s, v, v′, v′′, v(3))− f(s, u, u′, u′′, u(3))
∣∣ ds

≤ 1

192

∫ 1

0

(
3∑

k=0

Lk|v(k)(s)− u(k)(s)|

)
ds

≤ 1

192
max
0≤k≤3

{Lk}
∫ 1

0

(
3∑

k=0

|v(k)(s)− u(k)(s)|

)
ds

≤ 1

192
max
0≤k≤3

{Lk}
3∑

k=0

sup
[0,1]

|v(k)(s)− u(k)(s)|

< ||u− v||C4 .

�

5. Numerical Results

In this section, we present our numerical results for some case studies as have been
adopted in [7] and [30].

In [30], the authors analyzed how a nano-actuator behaves when there is a layer of
water beneath of it. For this case, the equation which governs of the nano-actuator is
given by

d4u

dx4
−

(
η

∫ 1

0

(
du

dx

)2

dx

)
d2u

dx2
= − α

u4
− β

(κ+ u)2
− γ

u
,

with α, β, γ, η and κ being the free-dimensional parameters of Casmir effect, externally
applied voltage, the force due to fringing field , the axial loads, and the dielectric layer
effect, respectively. Note P = 0 which means that the effect of its axial load is neglected.
In this study, we use our proposed PGS (3.18) to solve this problem numerically, in the
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typical case when P = 0. In this case, the iterative scheme (3.18) is given by:

un+1(x) = un(x) +

∫ x

0

[(
1

3
x3 − 1

2
x2 +

1

6

)
s3 −

(
1

2
x3 − x2 +

1

2
x

)
s2
]

[
u(4)n (s)−

(
η

∫ 1

0

(u′n(s))2 ds

)
u′′n(s) +

α

u4n(s)
+

β

(κ+ un(s))2
+

γ

un(s)

]
ds

+

∫ 1

x

[(
1

3
x3 − 1

2
x2
)
s3 −

(
1

2
x3 − x2

)
s2 − 1

2
x2s+

1

6
x3
]

[
u(4)n (s)−

(
η

∫ 1

0

(u′n(s))2 ds

)
u′′n(s) +

α

u4n(s)
+

β

(κ+ un(s))2
+

γ

un(s)

]
ds,(5.23)

where, according to Remark 1, u0 is the solution to the homogeneous equation

L[u] = u(4)(x) = 0

subject to the BCs (2.2), namely u(0) = u(1) = 1 and u′(0) = u′(1) = 1. This yields
u0(x) = 1.

To execute this iterative scheme, we use the Computer Algebra System Maple. The
transition from one iteration to the next is done symbolically and numerically. The latter
occurs when approximating the integral appearing in (5.23) using Taylor polynomials. As
far as the CPU time is concerned, it was not an issue for us since Maple takes only a few
seconds to execute the iterations. To validate our results, we compute the residual errors.
The values reported in Table 2, Table 5, and Table 7 show that our numerical solution
satisfies the governing integro-differential equation with high accuracy within only a few
iterations. Moreover, Figure 1 is compatible with the result obtained in [26].

As a consequence of the symmetry of the beam, the maximum of the deflection occurs
when x = 0.5. At rest and when there are no applied forces, the shape of the beam is
a straight segment line and can be modeled as u(x) = 1. When forces are applied, the
beams deflects from its positions at rest and this deflection can then be expressed by the
term 1−u(x). Table 1, Table 4, and Table 6 present numerical values of 1−u(0.5), namely
the largest deflection of the beam for different values of α, β, ξ, γ, κ, and η. Observe that,
with 40 iterations, we obtain the maximum deflection accurate to 12 decimal places. A
comparison of the maximum deflection value obtained by our method versus those found
in Yazdanpanahi et al. [30] and Ghalambaz et al. [7] is reported in Table 3.
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Table 1. Largest deflection of a nano-actuator with α = 20, β = 5, ξ = 4, γ = 0.325,

P = 0, κ = −0.396, and η = 0.96.

Number of iterations Maximum deflection of a nano-actuator

n = 4 0.1316339364427780921939180

n = 8 0.1353514910594528869886904

n = 12 0.1355186727242044856787028

n = 16 0.1355263108589685780709277

n = 20 0.1355266600669528924646867

n = 24 0.1355266760328965285945035

n = 28 0.1355266767628675830024600

n = 32 0.1355266767962422326465214

n = 36 0.1355266767977681386882274

n = 40 0.1355266767978379038924547

Table 2. Residual errors for the case α = 20, β = 5, ξ = 4, γ = 0.325, P = 0,

κ = −0.396, and η = 0.96.

x n = 4 n = 8 n = 12 n = 16 n = 20 n = 24 n = 28 n = 32 n = 36 n = 40

0.1 9.15(−2) 4.04(−3) 1.85(−4) 8.43(−6) 3.86(−7) 1.76(−8) 8.06(−10) 3.69(−11) 1.71(−12) 9.82(−14)
0.2 3.00(−1) 1.32(−2) 6.01(−4) 2.75(−5) 1.26(−6) 5.75(−8) 2.63(−9) 1.20(−10) 5.49(−12) 2.51(−13)
0.3 6.45(−1) 2.86(−2) 1.31(−3) 5.97(−5) 2.73(−6) 1.25(−7) 5.71(−9) 2.61(−10) 1.19(−11) 5.45(−13)
0.4 1.01(+0) 4.52(−2) 2.07(−3) 9.45(−5) 4.32(−6) 1.98(−7) 9.03(−9) 4.13(−10) 1.89(−11) 8.63(−13)
0.5 1.17(+0) 5.28(−2) 2.41(−3) 1.10(−4) 5.04(−6) 2.30(−7) 1.05(−8) 4.82(−10) 2.20(−11) 1.01(−12)
0.6 1.01(+0) 4.52(−2) 2.07(−3) 9.45(−5) 4.32(−6) 1.98(−7) 9.03(−9) 4.13(−10) 1.89(−11) 8.63(−13)
0.7 6.45(−1) 2.86(−2) 1.31(−3) 5.97(−5) 2.73(−6) 1.25(−7) 5.71(−9) 2.61(−10) 1.19(−11) 5.45(−13)
0.8 3.00(−1) 1.32(−2) 6.01(−4) 2.75(−5) 1.26(−6) 5.75(−8) 2.63(−9) 1.20(−10) 5.49(−12) 2.51(−13)
0.9 9.15(−2) 4.04(−3) 1.85(−4) 8.43(−6) 3.86(−7) 1.76(−8) 8.06(−10) 3.69(−11) 1.71(−12) 9.82(−14)

Figure 1. The shape of the nano-actuator evaluated using the fixed point iterative scheme

(α = 20, β = 5, ξ = 4, γ = 0.325, P = 0, κ = −0.396, and η = 0.96).



A NUMERICAL INVESTIGATION OF THE BUCKLING OF NANO-ACTUATORS 11

Table 3. Comparison of the value of the maximum deflection of a nano-actuator

obtained by other methods versus the proposed scheme (α = 25, ξ = 4, β = 15, γ = 0.65,

P = 0, κ = 0, and η = 0).

Method Maximum deflection of a nano-actuator

Our proposed PGS 0.135526676798

ADM [30] 0.13486

Numerical [30] 0.13536

Duan–Rach ADM [7] 0.13534

In the second case, we consider a nano-actuator with α = 25, ξ = 4, β = 0, γ = 0.65,
and P = κ = η = 0. In Table 4 we report the values of the maximum deflection of
the beam. Note that, with 40 iterations, we obtain the maximum deflection accurate
to 19 decimal places. In Table 5, we present the residual errors for different iterations,
which clearly confirms the high accuracy of the current method and the maximum value
of deflection of the beam. The shape of the nano-actuator, evaluated numerically by the
proposed approach, is depicted in Figure 2.

Table 4. Largest deflection of a nano-actuator whith α = 25, β = 0, ξ = 4, γ = 0.65,

P = 0, κ = 0, and η = 0.

Number of iterations Maximum deflection of a nano-actuator

n = 4 0.0882430673596190825275781

n = 8 0.0887803389918963525112867

n = 12 0.0887845409112837038553405

n = 16 0.0887845738309029334338163

n = 20 0.0887845740888126986300710

n = 24 0.0887845740908333008002999

n = 28 0.0887845740908491312715914

n = 32 0.0887845740908492552959169

n = 36 0.0887845740908492562675894

n = 40 0.0887845740908492562752442

Table 5. Residual errors for the case α = 25, ξ = 4, β = 0, γ = 0.65, P = 0, κ = 0,

and η = 0.

x n = 4 n = 8 n = 12 n = 16 n = 20 n = 24 n = 28 n = 32 n = 36 n = 40

0.1 1.61(−2) 1.25(−4) 9.80(−7) 7.68(-9) 6.01(−11) 4.71(−13) 3.69(−15) 2.89(−17) 2.27(−19) 1.78(−21)
0.2 5.99(−2) 4.67(−4) 3.66(−6) 2.86(-8) 2.24(−10) 1.76(−12) 1.38(−14) 1.08(−16) 8.45(−19) 6.62(−21)
0.3 1.22(−1) 9.52(−4) 7.46(−6) 5.84(-8) 4.58(−10) 3.59(−12) 2.81(−14) 2.20(−16) 1.73(−18) 1.35(−20)
0.4 1.80(−1) 1.41(−3) 1.10(−5) 8.65(-8) 6.77(−10) 5.31(−12) 4.16(−14) 3.26(−16) 2.55(−18) 2.00(−20)
0.5 2.04(−1) 1.60(−3) 1.25(−5) 9.82(-8) 7.69(−10) 6.03(−12) 4.72(−14) 3.70(−16) 2.90(−18) 2.27(−20)
0.6 1.80(−1) 1.41(−3) 1.10(−5) 8.65(-8) 6.77(−10) 5.31(−12) 4.16(−14) (3.26(−16) 2.55(−18) 2.00(−20)
0.7 1.22(−1) 9.52(−4) 7.46(−6) 5.85(-8) 4.58(−10) 3.59(−12) 2.81(−14) 2.20(−16) 1.73(−18) 1.35(−20)
0.8 5.99(−2) 4.67(−4) 3.66(−6) 2.86(-8) 2.24(−10) 1.76(−12) 1.38(−14) 1.08(−16) 8.45(−19) 6.62(−21)
0.9 1.61(−2) 1.25(−4) 9.80(−7) 7.68(-9) 6.01(−11) 4.71(−13) 3.69(−15) 2.89(−17) 2.27(−19) 1.78(−21)
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Figure 2. The shape of the nano-actuator is calculated via the fixed point iterative scheme

(α = 25, ξ = 4, β = 0, γ = 0.65, and P = κ = η = 0).

In the third case, we consider a nano-actuator with α = 25, ξ = 4, β = 15, γ = 0.65,
and P = κ = η = 0. In Table 6 we report the values of the maximum deflection of
the beam. Note that, with 42 iterations, we obtain the maximum deflection accurate
to 10 decimal places. In Table 7, we report the residual errors for different iterations,
which clearly confirms the high accuracy of the current method and the maximum value
of deflection of the beam. The shape of the nano-actuator, evaluated numerically by the
proposed approach, is depicted in Figure 3.

Table 6. largest deflection of a nano-actuator with α = 25, β = 15, ξ = 4, γ = 0.65,

and P = κ = η = 0.

Number of iterations Maximum deflection of a nano-actuator

n = 6 0.1700611209876774644869314

n = 10 0.1710991396724976935269278

n = 14 0.1712765255468274478703479

n = 18 0.1712916993128571821325935

n = 22 0.1712929984644923664853627

n = 26 0.1712931097042059572261158

n = 30 0.1712931192291570173960935

n = 34 0.1712931200447357452011443

n = 38 0.1712931201145700875835736

n = 42 0.1712931201205496886079479
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Table 7. Residual errors for the case α = 25, ξ = 4, β = 15, γ = 0.65, P = 0, κ = 0,

and η = 0.

x n = 6 n = 10 n = 14 n = 18 n = 22 n = 26 n = 30 n = 34 n = 38 n = 42

0.1 3.32(−2) 2.76(−3) 2.36(−4) 2.02(-5) 1.73(−6) 1.48(−7) 1.27(−8) 1.09(−9) 9.29(−11) 7.96(−12)
0.2 1.37(−1) 1.14(−2) 9.75(−4) 8.35(-5) 7.15(−6) 6.12(−7) 5.24(−8) 4.49(−9) 3.84(−10) 3.29(−11)
0.3 3.14(−1) 2.64(−2) 2.25(−3) 1.93(-4) 1.65(−5) 1.41(−6) 1.21(−7) 1.04(−8) 8.88(−10) 7.60(−11)
0.4 5.12(−1) 4.32(−2) 3.69(−3) 3.16(-4) 2.71(−5) 2.32(−6) 1.98(−7) 1.70(−8) 1.45(−9) 1.25(−10)
0.5 6.03(−1) 5.10(−2) 4.36(−3) 3.74(-4) 3.20(−5) 2.74(−6) 2.34(−7) 2.01(−8) 1.72(−9) 1.47(−10)
0.6 5.12(−1) 4.32(−2) 3.69(−3) 3.16(-4) 2.71(−5) 2.32(−6) 1.98(−7) 1.70(−8) 1.45(−9) 1.25(−10)
0.7 3.14(−1) 2.64(−2) 2.25(−3) 1.93(-4) 1.65(−5) 1.41(−6) 2.81(−7) 1.04(−8) 8.88(−10) 7.60(−11)
0.8 1.37(−1) 1.14(−2) 9.75(−4) 8.35(-5) 7.15(−6) 6.12(−7) 5.24(−8) 4.49(−9) 3.84(−10) 3.29(−11)
0.9 3.32(−2) 2.76(−3) 2.36(−4) 2.02(-5) 1.73(−6) 1.48(−7) 1.27(−8) 1.09(−9) 9.29(−11) 7.96(−12)

Figure 3. The shape of the nano-actuator evaluated using the fixed point iterative scheme (

α = 25, ξ = 4, β = 15, γ = 0.65, P = 0, κ = 0, and η = 0).

6. Conclusion

In this study, a recently developed fixed point iterative scheme, based on Green’s func-
tions, has been successfully implemented for the numerical solution of the buckling of a
nano-actuator under nonlinear forces. The nano-actuators problem under study is gov-
erned by a general type equation that contains integro-differential terms and nonlinear
forces. The resulting equation is a nonlinear 4th order integro-differential BVP. The values
of the maximum deflection of the beam are obtained with high accuracy and a graph of the
nano-actuator is provided for different values of the parameters. Comparison with other
numerical methods was conducted and the outcomes confirm that the proposed scheme
is highly accurate, robust and converges fast. Finally, our method can be extended to a
wide spectrum of integro-differential BVPs.
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