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Abstract. In this paper, we present sufficient conditions for the
existence of pth powers of a quasihomogeneous Toeplitz operator
Teisθψ where ψ is a radial polynomial function and p, s are natural
numbers. A large class of examples is provided to illustrate our
results. To our best knowledge those examples are not covered by
the current literature. The main tools in the proof of our results
are the Mellin transform and some classical theorems of Complex
Analysis.

1. Introduction

Let dA(reiθ) = rdr
dθ

π
be the normalized Lebesgue area measure in the

open unit disk D of the complex plane C. The Bergman space L2
a(D) is

the closed subspace of L2(D, dA) consisting of all holomorphic functions
on D and it has the set {zn}n∈N as an orthogonal basis.

Let P denote the Bergman projection which is the orthogonal pro-
jection from L2(D, dA) onto L2

a(D). For f ∈ L2(D, dA), the Toeplitz
operator Tf , with symbol f , acting on L2

a(D) is defined by

Tfg = P (fg)

for all g in L2
a(D) such that the product fg is in L2(D, dA). It is easy

to see that any bounded holomorphic function is in the domain of Tf .
Therefore, Tf is a densely defined operator on L2

a(D). Moreover, if the
symbol f is bounded, then Tf is a bounded operator and ||Tf || ≤ ||f ||∞.

A Toeplitz operator Tf is called quasihomogeneous Toeplitz operator
of degree an integer p if its symbol f can be written as f(reiθ) =
eipθφ(r) where φ is a radial function in L2([0, 1], rdr). Such class of
Toeplitz operators has been extensively studied. The reader can refer
to [3, 5, 6, 7, 8, 9].

In [5], the third author has introduced the notion of the pth root (or
power) of a quasihomogeneous Toeplitz operator which turns out to be
very useful in investigating the question of commutativity of Toeplitz
operators. In fact, I. Louhichi proved the existence of pth roots for the
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case φ(r) = rn, n ∈ N and for any p ∈ N. Later with N. V. Rao in [6]
they extended this result to a more general class of φ(r).

The aim of this work is to study the powers of quasihomogeneous
Toeplitz operators when the radial part of the symbol is a linear com-
bination of rα and rβ logγ(r), where α, β, γ are nonnegative integers.
Under certain conditions, we show the existence of pth powers for any
p ∈ N.

2. Preliminaries

For a function φ ∈ L1([0, 1], rdr) we define the Mellin transform of

φ, denoted φ̂, by

φ̂(z) =

∫ 1

0

φ(r)rz−1dr.

It is clear that for φ ∈ L1([0, 1], rdr), φ̂ is a bounded holomorphic
function on the half-plane Π = {z;<z > 2}. Moreover, the Mellin

transform φ̂ is uniquely determined by its values on any arithmetic
sequence of integers. In fact we have the following classical theorem
[10, p.102].

Theorem 2.1. Suppose f is a bounded holomorphic function on {z :
<z > 0} that vanishes at the pairwise distinct points z1, z2, . . . , where

(1) inf{|zn|} > 0
(2)

∑
n≥1<(1/zn) =∞.

Then f vanishes identically on {z : <z > 0}.

The inversion formula of the Mellin transform is given by

(2.1) φ(r) =
1

2πi

∫ c+i∞

c−i∞
φ̂(z)r−zdr,

where the integration is along a vertical line through <(z) = c in Π.
For the sake of completeness we choose to state the following classical

lemma of Complex Analysis ([2, Lemma 2.2, p.29]) which we will use
later to prove our results.

Lemma 2.2. Let f(s) be a holomorphic function in the right half-plane
<s > γ. If |f(reiθ)| < Cr−ν with −π ≤ θ ≤ π and r > R0 for some
constants R0, C and ν(> 0), then for all t > 0 we have

lim
r→∞

∫
Γ1

estf(s) ds = 0 and lim
r→∞

∫
Γ2

estf(s) ds = 0

where Γ1 and Γ2 are respectively the arcs BCD and DEA of Γ as shown
in Figure 1.
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Figure 1. The standard Bromwich contour

We will also need the following easy lemma.

Lemma 2.3. Let f be a linear combination of rα and rβ logγ(r) where
α, β, and γ are in Z. If α ≥ −1 and β, γ ∈ N, then f ∈ L2([0, 1], rdr).

The following lemma determines the values of powers of a bounded
quasihomogeneous Toeplitz operator evaluated at any element of the
orthogonal basis of L2

a(D). In fact quasihomogeneous Toeplitz operator
and its powers maps the space of polynomials in z into itself.

Lemma 2.4. Let p, s ∈ N and let ψ be a radial function in L1([0, 1], rdr).
Then, for all n ∈ N, we have

(
Teisθψ

)p
(ξn)(z) =

[ p−1∏
j=0

2(n+ js+ s+ 1)ψ̂(2n+ 2js+ s+ 2)
]
zn+ps

=

∏p−1
j=0 ψ̂(2n+ 2js+ s+ 2)∏p−1
j=0 1̂(2n+ 2js+ 2s+ 2)

zn+ps.

where 1 denotes the constant function with value one.
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3. Main Results

With respect to the definition of the pth root in [5], we analogously
say that a quasihomogeneous Toeplitz operator Teisθψ has a pth power
if and only if there exists a radial function φ such that

(Teisθψ)p = Teipsθφ.

In particular, (Teipθψ)0 = I where I the identity operator in L2
a(D).

We are now ready to state our main result which can be seen as an
extension of [5, Corollary 18, p.1474].

Theorem 3.1. Let ψ(r) =
m∑
i=1

air
ki be a nonzero radial polynomial

function and let Pψ̂ = {−ki : i = 1, . . . ,m} and Zψ̂ be the sets of

poles and zeros of its Mellin transform ψ̂, respectively. Assume that:

(1) for i = 1, . . . ,m at least one ki is an odd number. We denote
by ki0 the biggest odd number.

(2) there exists a set of integers {αi}i=mi=1,i 6=i0, such that :

(i) {αi}i=mi=1,i 6=i0 ⊆ Zψ̂, and

(ii) for all i ∈ {1, . . . ,m} \ {i0}, we have −ki < αi ≤ ki + 1
and ki and αi have the same parity.

Then, (Teiθψ)p is always a Toeplitz operator for all p ∈ N.

Proof. Since ψ(r) =
m∑
i=1

air
ki , we have

ψ̂(z) =

∫ 1

0

ψ(r)rz−1dr

=

∫ 1

0

m∑
i=1

air
kirz−1dr

=
m∑
i=1

ai
z + ki

,

and hence Pψ̂ = {−ki : i = 1, . . . ,m}. Clearly (see [4, p.105-106]) the

function ψ̂ can be extended to a meromorphic function in C . This

implies, together with the hypothesis of the theorem, that ψ̂ can be
written as

ψ̂(z) =

m∏
i=1,i 6=i0

(z − αi)

m∏
i=1

(z + ki)
f(z),

where f is holomorphic and nonzero in a neighborhood of each pole
−ki, with i = 1, . . . ,m. Next, for any integer p ≥ 1, we show the
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existence of φ in L2([0, 1], rdr) such that
(
Teiθψ

)p
= Teipθφ. Indeed,

Lemma 2.4 implies that for all integers n ≥ 0, we have

p−1∏
j=0

(2n+ 2j + 4)ψ̂(2n+ 2j + 3) = (2n+ 2p+ 2)φ̂(2n+ p+ 2).

Using Theorem 2.1, it is easy to see that if p = 1 then φ ≡ ψ. So we let
p ≥ 2, we complexify the previous equality by letting z = 2n + p + 2,
and we obtain

φ̂(z) =
[ p−2∏
j=0

(z − p+ 2j + 2)
][ p−1∏

j=0

ψ̂(z − p+ 2j + 1)
]

=

[ p−2∏
l=0

(z − p+ 2l + 2)
][ (m,p−1)∏

(i,s)=(1,0),i 6=i0
(z − αi − p+ 2s+ 1)

]
(m,p−1)∏

(d,j)=(1,0)

(z + kd − p+ 2j + 1)

h(z),

where h(z) =
∏p−1

j=0 f(z − p + 2j + 1). Thus φ̂ is a meromorphic func-
tion in C and has simple poles at the integers −kd + p − 2j − 1, with
(d, j) = (1, 0), . . . , (m, p−1). Moreover, the line of integration in the in-
version formula (2.1) is shifted to the left while taking residues into the
Bromwich contour (see Figure 1). Using Lemma 2.2 and the Residue
Theorem, we conclude that φ is determined by the sum of the residues
at all poles to the left of <z = c and we have

(3.1) φ(r) =

(m,p−1)∑
(d,j)=(1,0)

Res φ̂(z)
∣∣∣
z=−kd+p−2j−1

rkd−p+2j+1.

Claim : φ belongs to L2([0, 1], rdr).
To prove this, it is sufficient, using Lemma 2.3, to show that Pφ̂ ⊆ Z−.
Without loss of generality, we may assume that k1 < k2 < . . . < km.
Then, we have the following cases:

Case 1: p ≤ k1. We have

p ≤ k1 < k2 < . . . < km

and so

kd − p ≥ 0, for all d ∈ {1, . . . ,m}.

Therefore,

kd − p+ 2j + 1 ≥ 1, for all d ∈ {1, . . . ,m} and all j ∈ {0, . . . , p− 1}.

Case 2: kn < p ≤ kn+1 for n ∈ {1, . . . ,m − 1}. Here, we consider two
sub-cases.
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Case A: n ∈ {1, . . . ,m− 1} \ {i0}. From Case 1 we know that

kd − p+ 2j + 1 ≥ 1, ∀d ∈ {n+ 1, . . . ,m} and ∀j ∈ {0, . . . , p− 1}.
Now, for d ∈ {1, . . . , n}, we have

kd − p+ 2j + 1 < 0 i.e. j <
−kd + p− 1

2
.

If we let j0 = b−kd+p−1
2
c to be the greatest integer func-

tion of −kd+p−1
2

, then for all d ∈ {1, . . . , n} and all j ∈
{0, . . . , j0}, we have

(3.2) kd − p+ 2j + 1 < 0.

Next, we shall prove that the poles of φ̂ in (3.2) are canceled

by zeros of φ̂. In other words,

∀(j, d) ∈ {(0, 1), . . . , (j0, n)},∃(i, s) ∈ {(1, 0), . . . , (m, p−1)}, and i 6= i0

such that

−αi + 2s = kd + 2j.

To do so, we take i = d and we let s =
kd + αd + 2j

2
. Then,

by the hypothesis (2)(ii), s ∈ N. Moreover,

2s = kd + αd + 2j

≤ kd + αd + 2j0

≤ αd + p− 1

< 2p,

which implies s ≤ p− 1.

Case B: n = i0. Then for all j ∈ {0, . . . , j0 = b−ki0+p−1

2
c}, we have

(3.3) ki0 − p+ 2j + 1 < 0.

Similarly to the previous sub-case, those poles of φ̂ are

canceled by zeros of φ̂. In fact, by taking l =
ki0 + 2j − 1

2
,

it is easy to see that l ∈ {0, . . . , p−2} and also that 2l+2 =
ki0 + 2j + 1 for all j ∈ {0, . . . , j0}.

Case 3: p > km. We follow the same argument as in Case 2.

�

Remark 3.2. If φ̂ has poles of multiplicity greater than 1, the expression
(3.1) becomes

φ(r) =

(m,p−1)∑
(d,j)=(1,0)

αd,j(log r)nrkd−p+2j+1,

where n ∈ N is the multiplicity of the pole z = −kd + p− 2j − 1; and
the same argument in the proof remains true.
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Examples 3.3. Let ψ(r) = 3r − 12r2 + 10r3. Then

ψ̂(z) =
3

z + 1
− 12

z + 2
+

10

z + 3
=

(z − 1)(z − 2)

(z + 1)(z + 2)(z + 3)

Using Lemma 2.4, we obtain for all n ≥ 0(
Teiθψ

)p
(ξn)(z) =

[ p−1∏
j=0

2(n+ j + 2)ψ̂(2n+ 2j + 3)
]
zn+p

=

p−1∏
j=0

(2n+ 2j + 4)(2n+ 2j + 2)(2n+ 2j + 1)

p−1∏
j=0

(2n+ 2j + 4)(2n+ 2j + 5)(2n+ 2j + 6)

zn+p

=

p−1∏
j=0

(2n+ 2j + 2)(2n+ 2j + 1)

p+1∏
j=2

(2n+ 2j + 1)(2n+ 2j + 2)

zn+p

=
(2n+ 2)(2n+ 1)(2n+ 4)(2n+ 3)

(2n+ 2p+ 2)(2n+ 2p+ 1)(2n+ 2p+ 4)(2n+ 2p+ 3)
zn+p.

Now we want to find a radial function φ such that(
Teiθψ

)p
(ξn)(z) = Teipθφ(ξn)(z)

for every integer p ≥ 1. This is equivalent to finding φ for which

Teipθφ(ξn)(z) = (2n+ 2p+ 2)φ̂(2n+ p+ 2)zn+p

=
(2n+ 2)(2n+ 1)(2n+ 4)(2n+ 3)

(2n+ 2p+ 2)(2n+ 2p+ 1)(2n+ 2p+ 4)(2n+ 2p+ 3)
zn+p,

and so for all n ≥ 0, we must have

φ̂(2n+p+2) =
(2n+ 2)(2n+ 1)(2n+ 4)(2n+ 3)

(2n+ 2p+ 2)2(2n+ 2p+ 1)(2n+ 2p+ 4)(2n+ 2p+ 3)
.

Using Theorem 2.1 and letting z = 2n+ p+ 2, we obtain

φ̂(z) =
(z − p)(z − p− 1)(z − p+ 2)(z − p+ 1)

(z + p)2(z + p− 1)(z + p+ 2)(z + p+ 1)
.

Clearly φ̂ is holomorphic on {z;<z > 0} and has simple poles at 1 −
p,−p − 2,−p − 1 and double pole at −p. Finally to find the function
φ, we use the inverse Mellin transform and the Residue Theorem and
we obtain

φ(r) = Res φ̂(z)
∣∣∣
z=1−p

rp−1 +Res φ̂(z)
∣∣∣
z=−p−1

rp+1

+ Res φ̂(z)
∣∣∣
z=−p−2

rp+2 +Res φ̂(z)r−z
∣∣∣
z=−p

= a1r
p−1 + a2r

p+1 + a3r
p+2 + (a4 + a5 log r)rp.
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where a1, a2, a3, a4 and a5 are real constants. It is worth mentioning
here that for all p ≥ 1, the function φ is ”nearly bounded” [1, p. 204]
and hence Teipθφ is a bounded Toeplitz operator.

In the following proposition, we prove the existence of non-polynomial
radial functions ψ for which

(
Teiθψ

)p
is always a Toeplitz operator for

all p ∈ N.

Proposition 3.4. There exist non-polynomial functions ψ such that
the power

(
Teiθψ

)p
is always a Toeplitz operator for all integers p ≥ 1.

Proof. Let ψ(r) = r + 4r2 log r. Then

ψ̂(z) =
−4

(z + 2)2
+

1

z + 1
=

z2

(z + 1)(z + 2)2
.

Using Lemma 2.4, we obtain that for all n ≥ 0 and all p ≥ 1(
Teiθψ

)p
(ξn)(z) =

[ p−1∏
j=0

2(n+ j + 2)ψ̂(2n+ 2j + 3)
]
zn+p

=

p−1∏
j=0

(2n+ 2j + 4)(2n+ 2j + 3)2

p−1∏
j=0

(2n+ 2j + 4)(2n+ 2j + 5)2

zn+p

=

p−1∏
j=0

(2n+ 2j + 3)2

p−1∏
j=0

(2n+ 2j + 5)2

zn+p

=

p−1∏
j=0

(2n+ 2j + 3)2

p∏
j=1

(2n+ 2j + 3)2

zn+p

=
(2n+ 3)2

(2n+ 2p+ 3)2
zn+p.

We want to find a radial function φ such that(
Teiθψ

)p
(ξn)(z) = Teipθφ(ξn)(z),

for every integer p ≥ 1 and all n ≥ 0. This is equivalent to finding φ
for which

Teipθφ(ξn)(z) = (2n+ 2p+ 2)φ̂(2n+ p+ 2)zn+p

=
(2n+ 3)2

(2n+ 2p+ 3)2
zn+p.
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So for all n ≥ 0, we must have

φ̂(2n+ p+ 2) =
(2n+ 3)2

(2n+ 2p+ 2)(2n+ 2p+ 3)2
.

Using Theorem 2.1 and letting z = 2n+ p+ 2, we obtain

φ̂(z) =
(z − p+ 1)2

(z + p)(z + p+ 1)2
.

Clearly φ̂ is holomorphic on {z;<z > 0} and has simple pole at −p
and double pole at −p − 1. Finally, to recover the function φ, we use
the inverse Mellin transform and the Residue Theorem and we obtain

φ(r) = Res φ̂(z)
∣∣∣
z=−p

rp +Res φ̂(z)
∣∣∣
z=−p−1

rp+1

= (1− 2p)2rp + 4prp+1
(

(1− p) + p log r
)
.

Since for all p ≥ 1, the function φ is nearly bounded, Teipθφ is a genuine
Toeplitz operator. �

Remark 3.5. Note that in Example 3.3 (resp. Proposition 3.4), instead
of using the Inverse Mellin Transform and the Residue Theorem to
obtain the function φ, one can recover φ from its Mellin transform by

writing the partial fraction decomposition of φ̂(z) and then by using the

following identities namely r̂m(z) = 1
z+m

and ̂rm logn(r)(z) = (−1)nn!
(z+m)n+1

for all nonnegative integers m and n.

Using similar arguments and notation as in the proof of Theorem
3.1, we obtain the following corollary. The proof is omitted.

Corollary 3.6. Let ψ(r) =
m∑
i=1

air
ki be a nonzero polynomial function

and s ∈ N∗. Assume that:

(1) for i = 1, . . . ,m, there exists at least one ki such that ki − s is
a nonnegative integer and divisible by 2s. Let ki0 be the biggest
of such numbers.

(2) there exists a set of integers {αi}i=mi=1,i 6=i0, such that :

(i) {αi}i=mi=1,i 6=i0 ⊆ Zψ̂.

(ii) ∀i ∈ {1, · · · ,m} \ {i0}, we have −ki < αi ≤ ki + s and
αi + ki is divisible by 2s.

Then, (Teisθψ)p is always a Toeplitz operator for all p ∈ N.

Examples 3.7. Let m,n, be in N.

1) There exist α, β ∈ R and s ∈ N such that Teisθ(αrn+βrm) has

always a pth power for all p ≥ 1. For example, (Te3iθ(− 6
7
r2+ 13

7
r9))

p

is always a Toeplitz operator.
2) For all p, s ∈ N, the product (Teisθrm)p is a Toeplitz operator if

and only if m ≥ s and m− s is divisible by 2s.
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Remark 3.8. (i) In [5, Theorem 13, p.1472], the third author showed
that if Teiθψ has pth powers and if Tf is a bounded Toeplitz op-
erator such that TfTeiθψ = TeiθψTf , then Tf must be sum of
powers of Teiθψ. In the same spirit and under the hypothesis of
Theorem 3.1 (resp. Corollary 3.6), if Tf commutes with Teiθψ
(resp. Teisθψ), then Tf is sum of powers of Teiθψ (resp. Teisθψ)
as well.

(ii) Let ψ be a nonzero polynomial function and let s be a natural
number. If Teisθψ has pth powers for all p ∈ N, then by Theorem
3.1 and Corollary 3.6 it is easy to see that, there exists a positive
integer n such that (Teinθψ)p is a Toeplitz operator for all p.

(iii) We recall that T ∗f = Tf̄ , where f̄ is the complex conjugate of f .

So by taking the adjoint, Te−iθψ has a pth power if and only if
Teiθψ has it as well. Therefore, the previous results remain true
for quasihomogeneous Toeplitz operator of negative degrees.

In what follows, we discuss the case of radial Toeplitz operators.

Theorem 3.9. Let ψ(r) =
m∑
i=1

air
ki be a nonzero polynomial symbol.

Then, for all p ∈ N, there exists a radial symbol φ ∈ L2([0, 1], rdr),
such that

(Tψ)p = Tφ.

Moreover, when p ≥ 2 we have

φ(r) =
∑
i,j

αi,jr
βi(log r)γj , where βi, γj ∈ N and αi,j ∈ R.

Proof. As shown at the beginning of the proof of Theorem3.1, ψ̂ can
be written as

ψ̂(z) =
1

m∏
i=1

(z + ki)
f(z),

where f is holomorphic and nonzero in a neighborhood of every pole
−ki, i = 1, . . . ,m. Now, we prove the existence of φ in L2([0, 1], rdr) for
which

(
Teiθψ

)p
= Teipθφ for any integer p ≥ 1. If such φ exists, Lemma

2.4 implies that we must have

(2n+ 2)p−1
[
ψ̂(2n+ 2)

]p
= φ̂(2n+ 2), ∀n ≥ 0.

Note that p is a positive integer and that our discussion is trivial for
p = 1 since in this case φ ≡ ψ. So we assume p ≥ 2. By setting
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z = 2n+ 2, we obtain

φ̂(z) = zp−1
[
ψ̂(z)

]p
=

zp−1

m∏
i=1

(z + ki)p
h(z),

where h(z) = (f(z))p. In a similar way as in the proof of Theorem 3.1
and using Leibniz formula, we have that

φ(r) =
m∑
i=1

Res φ̂(z) · r−z
∣∣∣
z=−ki

=
m∑
i=1

 1

(p− 1)!
lim
z→−ki

∂p−1

∂zp−1

 zp−1

m∏
l=1,l 6=i

(z + kl)p
h(z) · r−z




=
m∑
i=1

(
1

(p− 1)!
lim
z→−ki

p−1∑
j=0

[
(p− 1)!

j!(p− 1− j)!
g(j)(z) · (r−z)(p−1−j)

])

=
m∑
i=1

(
p−1∑
j=0

[
1

j!(p− 1− j)!
g(j)(−ki) · (−1)p−1−j(log r)p−1−j(rki)

])
,

where g(j) is the jth derivative of the function g(z) =
zp−1

m∏
l=1,l 6=i

(z + kl)p
h(z).

Finally, by letting αi,j =
(−1)p−1−j

j!(p− 1− j)!
g(j)(−ki), βi = ki ≥ 0 and

γi = p− 1− j ≥ 0, we obtain the desired result.
�

Remark 3.10. Theorem 3.9 remains true in the case where ψ is a linear
combination of functions of the form rβ logγ(r), where β, γ are nonneg-
ative integers.

Examples 3.11. Let ψ(r) = rm with m ∈ N. Then ψ̂(z) = 1
z+m

. Again,
Lemma 2.4 implies that for all p ≥ 1 and all n ≥ 0, we have

(Tψ)p (ξn)(z) =

[
p−1∏
j=0

(2n+ 2)ψ̂(2n+ 2)

]
zn

=
(2n+ 2)p

(2n+ 2 +m)p
zn.

We want to find a radial symbol φ such that

(Tψ)p (ξn)(z) = Tφ(ξn)(z),
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for all n ≥ 0. This is equivalent to finding φ such that

φ̂(2n+ 2) =
(2n+ 2)p−1

(2n+ 2 +m)p
.

Using Theorem 2.1 and letting z = 2n+ 2, we obtain

φ̂(z) =
zp−1

(z +m)p
.

Clearly φ̂ has a pole of order p at z = −m. In order to obtain φ we
choose to proceed as follows (but one can also use the partial fraction

decomposition of φ̂(z) as mentioned in Remark 3.5)

φ(r) = Res φ̂(z) · r−z
∣∣∣
z=−m

=
1

(p− 1)!
lim
z→−m

∂p−1

∂zp−1

[
zp−1r−z

]
=

1

(p− 1)!
lim
z→−m

p−1∑
j=0

[
(p− 1)!

j!(p− 1− j)!
(zp−1)(p−1−j)(r−z)(j)

]

=
1

(p− 1)!
lim
z→−m

p−1∑
j=0

[
(p− 1)!

j!(p− 1− j)!
(p− 1)(p− 2) . . . (j + 1)zj(−1)j(log r)jr−z

]

= rm
p−1∑
j=0

[
(p− 1)(p− 2) . . . (j + 1)mj

j!(p− 1− j)!
(log r)j

]

= rm
p−1∑
j=0

αj,m(log r)j,

where αj,m = (p−1)(p−2)...(j+1)mj

j!(p−1−j)! . Finally, it is easy to see that φ is a

nearly bounded function and therefore Tφ is a genuine Toeplitz opera-
tor.

We conclude by a simple but interesting consequence of our main
results.

Corollary 3.12. Let s ∈ N∗ and let ψ(r) =
m∑
i=1

air
ki be nonzero poly-

nomial function. Then, there exists an integer N ∈ N∗ such that Teisθψ
has pth powers for all integers 1 ≤ p ≤ N .

Proof. Since ψ(r) =
m∑
i=1

air
ki , we can write ψ̂(z) = f(z)

m∏
i=1

(z+ki)
, where the

numerator f is a polynomial function of degree less or equal to m− 1.
Obviously, if ψ satisfy the conditions of Corollary 3.6, then N can be
any integer in N. Now, assume the hypothesis of Corollary 3.6 don’t
hold. We want to find N ∈ N such that for any random integer p
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between 1 and N there exists a radial function ϕ satisfying
(
Teisθψ

)p
=

Teipsθϕ. If this is the case, then by using Lemma 2.4 and by letting
z = 2n+ ps+ 2, we must have that for all integers n ≥ 0(
Teisθψ

)p
(ξn)(z) =

[ p−1∏
j=0

2(n+ js+ s+ 1)ψ̂(2n+ 2js+ s+ 2)
]
zn+ps

=
[p−1∏
j=0

(z − ps+ 2js+ 2s)f(z − ps+ 2js+ s)

(m,p−1)∏
(i,j)=(1,0)

(z − ps+ ki + 2js+ s)

]
zn+ps

= (z + ps)ϕ̂(z).

Similarly, and as in the proof of Theorem 3.1, we deduce that ϕ must
be of the from

(3.4) ϕ(r) =

(m,p−1)∑
(i,j)=(1,0)

αi,jr
ki−ps+2js+s.

where αi,j are constants. Furthermore, since k1−ps+s ≤ ki−ps+2js+s
for all (i, j) = (1, 0) · · · (m, p−1), the function ϕ will be in L2([0, 1], rdr)
if k1 − ps + s ≥ 0. Otherwise Teipsθϕ will not be bounded and hence
not a genuine Toeplitz operator. Therefore, it is sufficient to take
N = b s+k1

s
c. �
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