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Abstract
We investigate higher-order corrections to the effective potential of the tricriticalO(N)-symmetric F6

model in 3-2ε dimensions in its phase exhibiting spontaneous breaking of its scale symmetry. The
renormalization groupβ-function and the anomalous dimension γ of thismodel are computed up to
the next-to-next-to-leading order in the1/Nexpansion technique and using a dimensional
regularization in aminimal subtraction scheme.

1. Introduction

TheO(N)-symmetricmodel ofN components scalar fields ( )f f fF = ¼, , , N1 2 with a Landau-Ginzburg
potential in three space-time dimensions given by ( ) ∣ ∣ ∣ ∣ ∣ ∣hF = F + F + FV r u2 4 6 has an interesting phase
diagram.When >u 0, there is a line of second order phase transition at =r 0.When <u 0 there is a line of
first order phase transition. These lines of transition terminate at a tricritical point where = =r u 0 at which the
potential has only a sextic interaction term ∣ ∣h F .6 At the classical level, this phase structure persists for all
positive values of η and the sextic term ismarginal. Thismodel offers a unique platform to study several
interesting aspects of quantum field theory [1], as well as critical and tricritical behavior in condensedmatter
systems observed, e.g., in liquid helium and inmetamagnets [2].

TheO(N)model has a soluble largeN limit. This is facilitated by using auxiliary fields, which offer the
advantage of containing no implicit N dependence. Consequently, the integration over the original field
variables yields an effective theory in terms of the auxiliary fields inwhich all-N dependence is fully explicit,
enabling the analysis of higher order corrections in a systematic 1/Nexpansion [3]. This technique leads to non-
perturbative results, and has a long history in the study of critical phenomena, going back to thework of Stanley
[4], who studied theN vectormodel using the saddle point technique andMa [5], who calculated 1/N
corrections to the critical exponents and clarified in the same context theWilson renormalization group ideas.
Large-N analysis was also applied successfully tomodel field theories such as theGross-Neveu and theCPN-1

models [6], as well as to the topological Ginzburg–Landau theory of self-dual Josephson junction arrays [7].
In the strict = ¥N limit, the tricriticalmodel has a nonperturbativeUVfixed point at which amass is

dynamically generated, resulting in the spontaneous breaking of scale symmetry and the appearance of a
massless dilaton, which is aGoldstonemode [8]. Several aspects of that phenomenon including 1/Ncorrections
were analyzed in [9, 10]. Other related investigations includedmodels with abelian and non-AbelianChern-
Simons gaugefields [11] and the fate of light dilaton under 1/Ncorrections [12].We should also refer to recent
work in [13] donewithin the functional renormalization group framework, which interprets themodel’sfixed
point (BMBFP) in [8] as the intersection between a line of regular FPs and another linemade of singular FPs. It
delineates the dependence onN and on the space-time dimension d to preserve the critical behavior, and it
shows the existence of non-perturbative fixed points withwhich the BMBFP can collide in the (N, d) phase space
asN varies from infinity tofinite values. In this work, we focus on higher-order corrections to the effective
potential that were not considered before.We compute the renormalization group beta (β) and anomalous
dimension (γ) functions up to the next-to-next-to-leading order in 1/Nexpansion. These are important not

OPEN ACCESS

RECEIVED

22March 2021

REVISED

28April 2021

ACCEPTED FOR PUBLICATION

5May 2021

PUBLISHED

14May 2021

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 4.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2021TheAuthor(s). Published by IOPPublishing Ltd

https://doi.org/10.1088/2399-6528/abfe4b
https://orcid.org/0000-0002-7651-4708
https://orcid.org/0000-0002-7651-4708
mailto:ssakhi@aus.edu
https://crossmark.crossref.org/dialog/?doi=10.1088/2399-6528/abfe4b&domain=pdf&date_stamp=2021-05-14
https://crossmark.crossref.org/dialog/?doi=10.1088/2399-6528/abfe4b&domain=pdf&date_stamp=2021-05-14
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0


only for understanding the behavior of the running coupling constant of themodel but also they can be used as
an input to perform a renormalization group improvement to the effective potential, which should clarify the
nature of the vacuum state of themodel.

The paper is organized as follows: In section 2we introduce our notation for theO(N)-invariant scalarfield
theorywith sextic interaction in the Euclidean formulation andwe derive the effective action in terms of
auxiliaryfields, including higher order interaction terms. In section 3, we analyze the effective potential andwe
evaluate the renormalization group flow functions including corrections up to 1/N2. In section 4, we give our
conclusion and suggest further developments.

2.General formalism

Weare interested in a theory with the followingHamiltonian density in Euclidean space

( ) ( ) ( )/ /= ¶F + FH NV N2 12 2

whereΦ is anN-component scalarfield.We restrict ourselves to themodel with renormalized = =u r 0 and
henceforward the potential is given by

( ) ( )c
h
c=V

6
23

Thismodel is renormalizable in (2+1)-dimensional space-time by the standard power counting procedure
and possesses the usual UVdivergences. It’s worth noting that the ∣ ∣F 6 termwith a critical dimension d=3 is a
special case of F n2 -like interactions that can be renormalized perturbatively in ( )/= -d n n2 1 ,c and its
renormalization gives the critical properties in terms of an ε-expansion in e= -d dc dimensions. To derive an
effective field theory in a form inwhichN appears explicitly as a parameter, we exploit the idea that forN large,
O(N) invariant quantities like ∣ ∣F 2 self-average and therefore have smallfluctuations [3]. This suggests taking
∣ ∣F 2 as a dynamical variable rather thanΦ. To implement this idea, we start from the generating functional of

Euclidean correlation functions ofHamiltonian density (1), inside of whichwe insert ( )/ò c d c= - FD N1 2

and use a Fourier representation of the δ-function bymeans of an integral over an auxiliaryfieldσ along the
imaginary axis as follows
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where

( ) [ ( )] ( )/òs sc c= -¶ + + - +S
N

N d x V a
2

Tr ln 2 4eff
d2

( )xG , y is theGreen function defined by

( ) ( ( )) ( ) ( )s d= -¶ + --G x y x x y b, 4x
1 2

Such transformationsweremotivated in order tomake the action quadratic in theΦ scalar fields and
facilitate the functional integration over them, resulting in a functional determinant, whichwas recast as the Tr
ln(.) term in equation (4a).

In the effective action (4a),N plays the role of 1 ; hence, for largeN, we can use the saddle-pointmethod to
expand the path integral around the configurations thatmake the effective action extremum. This yield the gap
equations

( )
d
ds

=
c c s= =

S
a0 5

eff

m, 2

( )
d
dc

=
c c s= =

S
b0 5

eff

m, 2
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which give, after Fourier transform,

( )
( )ò p

c
+

=
d p

p m
a

2

1
6

3

3 2 2

( ) ( )c= ¢m V b2 62

The integral overmomentum space on the left hand side of (6a) is ultraviolet divergent and needs to be
regularized. Introducing a cut-offΛ followed by a non-multiplicative renormalization of the field,

( )/c c p= - L 2 ,R
2 leads to the dynamical generation of amass for theΦfields given by pc= -m 4 , provided

that the renormalized fieldχ takes a negative vacuumexpectation value. Furthermore, these steps necessitate
fine-tuning the coupling constant η to the Bardeen-Moshe-Bander fixed-point value h p= 16 2 [8].

3. The 1/Ncorrections

Having established a vacuum structure consisting of constant fields configurations forχ andσ, which give the
main non-perturbative properties of the theory, in order to go beyond the strict = ¥N limit, we expand the
effective action around the vacuumand compute the radiative corrections to the effective potential and the
scalar propagators in the shifted theory: / /s j c c j +  +m i N N, .2

1 2 At an intermediate stepwe
find
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WhereΔ represents a two-point function that arises from the quadratic term of the expansion of the Tr ln(K) in
(4a) andwhich can be visualized as a Feynman graph as shown in thefirst diagram infigure 1. The same
expansion also generates higher order terms involving S(n), which represent the cubic, quadratic, etc interactions
as shown in the second and third diagrams offigure 1.

The Feynman rules for constructing such diagrams are represented infigure 2.
The representation of ( )D q m, in e= -d 3 2 momentum space is
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Figure 1.The Feynman diagrams representingj1fluctuations generated fromTrln(K).

3

J. Phys. Commun. 5 (2021) 055011 S Sakhi



where the functionGpossesses the properties
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This formusing dimensional regularizationwill be useful later when evaluating corrections of the effective
potential beyond the next-to-leading order in the 1/Nexpansion because calculation of graphswith a cutoff are
extremely complicated and nearly impossible to performwhen there aremany loops.

3.1. Next-to-leading order corrections
Integrating out the quadratic smallfluctuations of thej-fields is straightforward and gives the next-to-leading
order in the 1/Nexpansion correction to the effective potential

( )
[ ( ) ( )] ( )( ) ò p

c= +  DV
d p

V p
1

2 2
ln 1 2 9eff

d

d
2

The integration in (9) presents UVdivergence in the first three terms in the expansion of the logarithm in
terms of ( )cV given in (2). To handle such divergences, we express the effective potential in terms of a
renormalizedmassMdefined from the self-energyΣ shown in diagramoffigure 3.
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Where ( )D q11 is the propagator of thej1 field obtained by inverting the quadratic form in (7).
At this order of the 1/Nexpansion, the divergences in (10b) can be isolated either by a cutoff or by a

dimensional regularization in theMS scheme. Inwhat follows, we chose the latter technique because it ismore
practical later when calculating graphs at higher orders of the 1/Nexpansion technique.

Figure 2. Feynman rules. The dashed lines correspond to theσfield, while the thick lines correspond to theΦfield.

Figure 3. Scalar field self-energy.

4

J. Phys. Commun. 5 (2021) 055011 S Sakhi



⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠

( )
( )

( ( ) ( ) ( ) )

( ) ( )

ò p

p e
m

S 


+
- D +  D +

-


+ +

m
d q V

q m
V q V q

V

m
c

0,
2

4
1 2 2

8

1
4 ln finite terms 10

d

d1
2

2 2
2 2

2

2

We should note that ∣/¶S ¶ =p p
2

0 has no divergences and hence there is nowave-function renormalization at
this order. Using the renormalizedmass, the leading terms in the effective potential (7) are transformed in this
manner
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Similarly, we extract the divergences in (9) as follows

⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠

( )
([ ( ) ( )])

( )
( ) ( )

[ ]
( )

( ) [ ]
( )

( )

·
( )



ò ò

ò ò

p
c

p
c

p p
h c

p e
h c

p e
m

+  D   D

-  D +  D +

 + + +

d p
V p

d p
V p

V
d p

p V
d p

p

M

m

1

2 2
ln 1 2

1

2 2
2

2

4

3 2

2 3 2

1
8 ln Finite terms 12

d

d

d

d

d

d

d

d
2 2 3 3

2 2

6 3

3 3

11 2

Wenotice the cancelation of the diverging terms h c M2 2 appearing in (11) and (12). Thus, the only
remaining divergent terms involve only c ,3 which are cancelled by adding counterterms toV(χ) that in turn
directly give rise to a relation between the bare coupling constant η and the renormalized one ηR at a scaleμ as
follows
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Wenote the arbitrary parameterμ,which in dimensional regularization came from the fact that the coupling
constant η outside the critical dimension d=3 has amass dimension. That freedom in defining the coupling
constant at some arbitrary scaleμ leads to the renormalization group functions. In particular, to obtain the beta
function ( ) ∣/b h e m h m= h ed d, ,R R , we apply / md d on both sides of (13a); we obtain (after dividing by m e4 )
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Taking the limit e  0,we obtain the beta function as
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This reproduces the largeN limit of the knownperturbative beta function [14, 15]. The resulting effective
potential to the next-to-leading order expressed now in terms of the renormalizedmassM and renormalized
coupling is
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3.2. Next-to-next-to-leading order corrections
At the next-to-next-to-leading order in the 1/Nexpansion (NNLO), we include in our computation the cubic
and the quartic terms in (7). The diagrams shown infigure 4 give the new corrections to the effective potential
and the new Feynman rules of the theory of threefields with nontrivial propagators derived from (7) are
summarized infigure 5. It is clear onemust consider additional functions besides the effective potential in order
to determine the renormalization group parameters; wemust take account of also self-energy corrections, which
are shown infigure 6.
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Divergences also arise at this next order in the 1/Nexpansionwith some diagrams having double poles in ε.
Technically, we used themethod of dimensional regularization in theMS scheme to eliminate the logarithmic
divergences at d=3which showup as poles in ε (d=3−2ε) and by introducingwave function and coupling
constant renormalization. The bare fieldsΦ and couplings η are expressed via renormalized quantities as

( )/F = FFZ a16R
1 2

( )h m h m h= =h
e e

F
Z

Z

Z
b16R R

4 3
3

4

TheZ factors are chosen to absorb all the poles at e = 0 in the expansion of the vertex functions. The
freedom in defining coupling at some arbitrary scaleμ leads to the renormalization group functions (beta and
anomalous dimension functions)

( ) ( ) ( )b h m
h
m
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= =
-

+ h

d

d d Z

d

a
4

1
ln

17

( ) ( ) ( )g b h
h

= Fd Z

d
b

ln
17d

Adetailed description of the renormalization scheme ofminimal subtraction of ε-poles for dimensionally
regularized vertex functions and the general rules used to derive the RG equations are given in [16].Wefind

Figure 4.Next-to-next-to-leading order corrections to the effective potential.

Figure 5. Feynman rules. The dashed (wiggly) lines stand forj1 (j2)fields. The thick lines stand forΦ field.
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Theβ-function and the anomalous dimension function γd are then obtained from (17a) and (17b) by
repeating similar calculation aswe did after equation (13a)

Figure 6. Self-energy diagrams at the next-to-next-to-leading order in the 1/Nexpansion.

7

J. Phys. Commun. 5 (2021) 055011 S Sakhi



⎛
⎝

⎞
⎠

⎡
⎣

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎛
⎝

⎞
⎠

( )
·

( ) ( )

b h
h
p

h h
p

h

h

= - + -
p

+

+ -
p

+ +
p

+

N N

N

3

2
1

3 2
11

53

2

17

2

3 ln 2

2

5

2

9

2
O

1
20

2

2 6

2

2 2 4 2 6

8 2 11 7 2
2

3

⎛
⎝

⎞
⎠·

( )g
h
p

= +
N N3 2

O
1

21d

2

7 4 2 3

4. Conclusion

In this paper we investigated higher-order corrections to the effective potential of themassless F3
6 scalarmodel in

its phase exhibiting spontaneous breaking of scale symmetry up to the next-to-next-to-leading order in the 1/N-
expansion. The use of the backgroundfieldmethod and dimensional regularization in theminimal subtraction
scheme simplified considerably the calculation of the renormalization group beta (β) and anomalous dimension
(γ) functions. Higher-order corrections to theβ and γ functions are useful not only in understanding the
behavior of the running coupling constant of a theory but also they can be used as an input to RG-improve the
effective potential. This is indeed the case since renormalization induces a scale parameterμ that did not exist in
the initial action, as a result the effective potentialmust satisfy a renormalization group partial differential
equation involving theβ-function of the renormalized coupling and the anomalous dimension γ. Thismeans
that the explicit dependence onRG scaleμ in the effective potential can be compensated by redefining the
coupling constant, through itsβ function, and rescaling thefield based on its anomalous dimension γ. From this
perspective, the knowledge ofβ and γ at a higher order in the 1/Nexpansion can be useful in the inverse
problemof recovering the effective potential, through themethod of characteristics as was done in the context of
F4

4 model in [17]. Namely, one can compute the potential tofixed order at a scaleμ0, in terms of η(μ0) andμ0 and
then evolve to some other scaleμ by solving the RG equation simultaneously with theRG equation for the
coupling constant. The solution of the RG equationwould give an improved effective potential that sums the
leading (and subleadingK) logarithms, whichwould extend its domain of perturbative credibility andmight
shedmore light onwhether the RG improved potential has any bearing on the issue of stability of the scale
symmetry-breaking phase.We hope to return to investigate this problem in the near future.
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