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Abstract. In this paper, we study a connection between graph theory and

linear transformations of finite dimensional vector spaces over R (the set of all

real numbers). Let Rm, Rn be finite vector spaces over R, and let L be the
set of all non-trivial linear transformations from Rm into Rn. An equivalence

relation ∼ is defined on L such that two elements f, k ∈ L are equivalent,

f ∼ k, if and only if ker (f) = ker (k). Let m,n ≥ 1 be positive integers
and Vm,n be the set of all equivalence classes of ∼. We define a new graph,

Gm,n, to be the undirected graph with vertex set equals to Vm,n, such that

two vertices, [x] , [y] ∈ Vm,n are adjacent if and only if ker (x) ∩ ker (y) 6= 0.
The relationship between the connectivity of the graph Gm,n and the values

of m and n has been investigated. We determine the values of m and n so that
Gm,n is a complete graph. Also, we determine the diameter and the girth of

Gm,n.

1. Introduction

Let R be a commutative ring with 1 6= 0. Recently, there has been consider-
able attention in the literature to associating graphs with commutative rings (and
other algebraic structures), as well as, studying the interplay between ring-theoretic
and graph-theoretic properties; see the survey articles [11], [10], [38] and [45]. In
particular, as in [17], the zero-divisor graph of R is the (simple) graph Γ(R) with
vertices Z(R)\{0}, and distinct vertices x and y are adjacent if and only if xy = 0.
This concept is due to Beck [28], who let all the elements of R be vertices and was
mainly interested in coloring. The zero-divisor graph of a ring R has been stud-
ied extensively by many authors, for example see([2]-[9], [12], [21]-[22], [37]-[43],
[46]-[53], [57]). David. F. Anderson and the first-named author [13] introduced the
total graph of R, denoted by T (Γ (R)). We recall from [13] that the total graph
of a commutative ring R is the (simple) graph Γ(R) with vertices R, and distinct
vertices x and y are adjacent if and only if x + y ∈ Z(R). The total graph (as
in [13]) has been investigated in [8], [7], [6], [5], [45], [47], [51], [34] and [55]; and
several variants of the total graph have been studied in [4], [14], [15], [16], [20], [27],
[33], [30], [31], [32], [35], [36], and [44].

Let a ∈ Z(R) and let annR(a) = {r ∈ R | ra = 0}. In 2014, A. Badawi [26]
introduced the annihilator graph of R. We recall from [26] that the annihilator
graph of R is the (undirected) graph AG(R) with vertices Z(R)∗ = Z(R) \ {0},
and two distinct vertices x and y are adjacent if and only if annR(xy) 6= annR(x)∪
annR(y). See the survey article [23]. It follows that each edge (path) of the classical
zero-divisor of R is an edge (path) of AG(R). For further investigations of AG(R),
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see [19], [50], and [56]. In 2015, A. Badawi, investigated the total dot product graph
of R [25]. In this case R = A×A×· · ·×A (n times), where A is a commutative ring
with nonzero identity, and 1 ≤ n <∞ is an integer. The total dot product graph of R
is the (undirected) graph denoted by TD (R), with vertices R∗ = R\ {(0, 0, . . . 0)}.
Two distinct vertices are adjacent if and only if x · y = 0 ∈ A, where x · y denote
the normal dot product of x and y. The zero-divisor dot product graph of R is the
induced subgraph ZD(R) of TD(R) with vertices Z(R)∗ = Z(R) \ {(0, 0, ..., 0)}. It
follows that each edge (path) of the classical zero-divisor graph Γ (R) is an edge
(path) of ZD(R). In [25], both graphs TD(R) and ZD(R) are studied. The total
dot product graph was recently further investigated in [1].

Other types of graphs attached to groups and rings were studied (for example)
in [6], [8],[27], [37], [39]–[43], and [44].

Let G be a graph. Two vertices v1, v2 of G are said to be adjacent in G if v1, v2
are connected by an edge of G and we write v1 − v2. For vertices x and y of G,
we define d(x, y) to be the length of a shortest path from x to y (d(x, x) = 0 and
d(x, y) = ∞ if there is no path). Then the diameter of G is diam(G) = sup{
d(x, y) | x and y are vertices of G}. The girth of G, denoted by gr(G), is the length
of a shortest cycle in G (gr(G) =∞ if G contains no cycles).

We say G is connected if there is a path in G from u to v for every u, v ∈ V .
Therefore, a graph is said to be disconnected, if there exist at least two vertices
u, v ∈ V that are not joined by a path. We say that G is totally disconnected if no
two vertices of G are adjacent. We denote the complete graph on n vertices by Kn,
recall that a graph G is called complete if every two vertices of G are adjacent.

In this paper, we introduce a connection between graph theory and linear trans-
formations of finite dimensional vector spaces over R (the ring of all real numbers).
Let U and W be finite dimensional vector spaces over R, such that m = dim(U)
and n = dim(W ). Since every finite dimensional vector space over R with dimen-
sion k is isomorphic to Rk, we conclude that U is isomorphic to Rm and W is
isomorphic to Rn. Let m,n ≥ 1 be positive integers and L = {t : Rm → Rn | t is
a nontrivial linear transformation from Rm into Rn}. If s, t ∈ L, then we say that
s is equivalent to t, and we write s ∼ t if and only if Ker(s) = Ker(t). Clearly,
∼ is an equivalence relation on L. For each t ∈ L, the set [t] = {s ∈ L|s ∼ t} is
called the equivalence class of t. Let Vm,n be the set of all equivalence classes of ∼.
For positive integers m,n ≥ 1, let Gm,n be a simple undirected graph with vertex
set Vm,n such that two distinct vertices [f ], [k] ∈ Vm,n are adjacent if and only if
Ker(f) ∩Ker(k) 6= {(0, · · · , 0)} ⊂ Rm.

2. Results

Remark 2.1. If a graph G has one vertex, then we say that G is totally discon-
nected. Note that some authors state that such graph is connected.

We have the following result.

Theorem 2.2. The undirected graph Gm,1 is totally disconnected if and only if
m = 1 or m = 2. Furthermore, if m = 1, then V1,1 = {[t]} for some t ∈ L.

Proof. Assume m = 1. Let [t] ∈ V1,1. Since t ∈ L (i.e., t is a nontrivial lin-
ear transformation from R into R), we conclude that dim(Range(t)) = 1. Since
dim(Ker(t)) + dim(Range(t)) = m = 1 and dim(Range(t)) = 1, we conclude that
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Ker(t) = {0}. Thus f ∈ [t] for every f ∈ L. Hence V1,1 = {[t]} for some t ∈ L.
Thus G1,1 is totally disconnected by Remark 2.1.

Assume m = 2. Let [t], [f ] ∈ V2,1 be two distinct vertices. Since t, f ∈ L
(i.e., t, f are nontrivial linear transformations from R2 into R), we conclude that
dim(Range(t)) = dim(Range(t)) = 1. Since dim(Ker(t)) + dim(Range(t)) =
m = 2 and dim(Range(t)) = 1, we conclude that dim(Ker(t)) = 1. Similarly,
dim(Ker(f)) = 1. Since t, f ∈ L, and dim(Ker(t)) = dim(Ker(f)) = 1, we
conclude that Ker(t) and Ker(f) are distinct lines passing through the origin
(0, 0). Thus Ker(t) ∩Ker(f) = {(0, 0)}. Hence [t], [f ] are nonadjacent. Thus G2,1

is totally disconnected.
Now assume m > 2. We show that Gm,1 is connected. Let, [t] , [w] ∈ Vm,1

be two distinct vertices. We show that ker (f) ∩ ker (k) 6= {(0, · · · , 0)} for some
f ∈ [t] and k ∈ [w]. Let Mf be the standard 1 × m matrix representation of f
for some f ∈ [t] ∈ Vm,1 and Mk be the standard 1 ×m matrix representation of
k for some k ∈ [w] ∈ Vm,1. By hypothesis, Mf is not row-equivalent to Mk. Say,
Mf =

[
f11 f12 · · · f1m

]
and Mk =

[
k11 k12 · · · k1m

]
Let, Mfk =

[
Mf

Mk

]
and consider the system, Mfkx = 0, that is,

[
f11 f12 · · · f1m
k11 k12 · · · k1m

]
x1

x2

...
xm

 =


0
0
...
0


Since, m > 2, the number of equations < the number of unknown variables.

Hence, the system Mfkx = 0 has infinitely many solutions. Therefore, ker (f) ∩
ker (k) 6= 0, that is, the vertices [t] and [w] are adjacent. Further, since [t], [w] were
chosen randomly, we conclude that the graph Gm,1 is complete for m > 2.

�

Theorem 2.3. For m = 1 or m = 2, the undirected graph G2,n is totally discon-
nected for every positive integer n ≥ 1.

Proof. Assume m = 1 and n ≥ 1 be a positive integer. Then by the proof of
Theorem 2.2, we conclude that V1,n = {[t]} for some t ∈ L. Hence V1,n is totally
disconnected by Remark 2.1.

Assume m = 2, and let [t] , [w] ∈ V be two distinct vertices. We want to show
ker (f) ∩ ker (k) = 0 for some f ∈ [t] and k ∈ [w]. We may assume that neither
Ker(f) = 0 nor Ker(k) = 0. Hence dim(Ker(f)) = dim(Ker(k)) = 1. Thus
Ker(f)∩Ker(k) = {(0, 0)}. Since [f ], [k] were chosen randomly, we conclude that
the graph G2,n is totally disconnected for m = 2. �

Theorem 2.4. The graph Gm,n is complete if and only if m ≥ 2n + 1.

Proof. Let [t] , [w] ∈ V such that Ker(f) 6= 0 and Ker(k) 6= 0 for some f ∈ [t] and
k ∈ [w]. Let Mf be the standard n ×m matrix representation of [f ], Mk be the

standard n×m matrix representation of [k], and let Mfk =

[
Mf

Mk

]
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Assume, (x1, x2, · · · , xm) ∈ Rm is a solution to Mfkx = 0, that is,

[
Mf

Mk

]
2n×m


x1

x2

...
xm


m×1

=


0
0
...
0


2n×1

Let r = rank (Mfk).

Assume m ≥ 2n + 1. We show ker (f) ∩ ker (k) 6= 0. Since r ≤ 2n and
m ≥ 2n+ 1, we have number of equations < number of unknown variables. Hence,
the system Mfkx = 0 has infinitely many solutions, or null (Mfk) 6= 0. Therefore,
ker (f) ∩ ker (k) 6= 0, that is the vertices [t] and [w] are adjacent. Since [t] and [w]
are chosen randomly, we conclude that the graph Gm,n is complete for m ≥ 2n+ 1.

Conversaly, assume that Gm,n is complete. We show that m ≥ 2n + 1. Suppose
that m < 2n + 1. We show that Gm,n is not complete. Let [t] , [w] ∈ V such that
Ker(f) 6= 0 and Ker(k) 6= 0 for some f ∈ [t] and k ∈ [w].

Case I: Suppose r = m.
We conclude that Mfk has m independent rows, say R1, R2, · · · , Rm.
Consider the system, 

R1

R2

...
Rm




x1

x2

...
xm

 =


0
0
...
0


Since

[
R1 R2 · · · Rm

]T
is an invertible m×m matrix, we have

null
([

R1 R2 · · · Rm

])T
= (0, 0, · · · , 0). Thus ker (t)∩ ker (w) = 0. Hence

the vertices [t] and [w] are nonadjacent

Case II: Suppose r < m. Thus we have the following system:
R1

R2

...
Rr




x1

x2

...
xm

 =


0
0
...
0


Since number of equations < number of unknown variables, we conclude that

null
([

R1 R2 · · · Rr

]T) 6= (0, 0, · · · , 0). This implies ker (f) ∩ ker (k) 6= 0.

Hence the vertices [t] and [w] are adjacent.

Since the vertices [t] and [w] can either be adjacent or nonadjacent, we conclude
that the graph Gm,n is not complete for every 1 ≤ m < 2n + 1. �

Theorem 2.5. Consider the undirected graph Gm,n. Assume m ≤ n and m 6= 1
or m 6= 2. Then Gm,n is connected and diam(Gm,n) = 2.

Proof. Let [t], [w] ∈ V such that [t] and [w] are nonadjacent. Choose f ∈ [t] and
k ∈ [w]. Then rank (Mf ) 6= m and rank (Mk) 6= m, where Mf and Mk are the
standard matrix representations of f and k, with size n×m.
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Assume rank (Mf ) = m − i, where i ∈ N, i 6= 1, and rank (Mk) = m − j, where
j ∈ N, j 6= 1. Then choose any non-zero row from Mf or Mk, say Y , to form the
n×m matrix Md, where:

Md =


Y
0
...
0


is the standard matrix representation of some d ∈ [h] ∈ Vm,n, such that [t]−[h]−[w].

Assume that rank (Mf ) = m − 1 and rank (Mk) = m − 1. Then Mf has m − 1
independent rows, R1, R2, . . . , Rm−1. Since [t] and [w] are nonadjacent, Mk has
one row say R such that, {R1, R2, . . . , Rm−1, R} is an independent set which forms
a basis for Rm. Let K 6= R be a non-zero row in Mk. Hence K ∈ rowspace (Mk).
Since K ∈ Rm, we have:

K = c1R1 + c2R2 + · · ·+ cm−1Rm−1 + cmR

Let Y = K − cmR. Thus Y ∈ rowspace (Mk), (since both K and cmR are ∈

rowspace (Mk)), and Y ∈ rowspace (Mf ). Let Md =


Y
0
...
0


n×m

, be the standard

matrix representation of some d ∈ [h] ∈ Vm,n. Since Y ∈ rowspace (Mf ), Y becomes
a zero row through row operations using the rows in Mf . Thus null (Mfd) 6= 0,
since rank (Mfd) = m− 1. Hence ker (f)∩ ker (d) 6= 0. Hence [t], [h] are connected
by an edge. Similarly, since Y ∈ rowspace (Mk), Y becomes a zero row through row
operations using the rows in Mk. Thus null (Mkd) 6= 0, since rank (Mkd) = m− 1.
Hence ker (d) ∩ ker (k) 6= 0. Thus [h] and [w] are adjacent. Therefore, we have
[t]− [h]− [w].

�

Example 2.6. Suppose m = 3 and n = 4. So we are considering the graph
G
(
[t] : R3 → R4

)
, where m ≤ n, and m 6= 1 or m 6= 2, as given in Theorem 2.5.

Let [T ] , [L] ∈ V , such that [T ] and [L] are not adjacent (ker (T )∩ ker (L) = 0m=3),
and [T ] 6= 0, [L] 6= 0. Let f ∈ [T ], and k ∈ [L]. Since [T ] and [L] are non-trivial
vertices, then rank (Mf ) 6= m and rank (Mk) 6= m, where Mf and Mk are the
standard matrix representations of f and k.
Suppose,

Mf =


1 0 0
0 1 1
0 0 0
0 0 0


4×3

,Mk =


0 0 0
0 0 1
1 1 0
0 0 0


4×3

Let Mfk =

[
Mf

Mk

]
8×3

It can be easily seen that rank (Mfk) = 3, which implies that null (Mfk) = 0.
Therefore, ker (f) ∩ ker (k) = 0, that is the vertices [T ] and [L] are not adjacent.
We have:
rank (Mf ) = 2 = 3− 1 = m− 1, and rank (Mk) = 2 = 3− 1 = m− 1.
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Then Mf has 2 independent rows R1 and R2, such that R1 =
[

1 0 0
]
and

R2 =
[

0 1 1
]
. The vertices [T ] and [L] are not adjacent, thus Mk has one

row R, such that {R1, R2, R} are independent and form a basis for Rm, where
m = 3. In this example, R =

[
0 0 1

]
. Let K 6= R be a non-zero row in Mk,

K =
[

1 1 0
]
. K ∈ rowspace (Mk) and since K ∈ R3 it can be written as a

linear combination of {R1, R2, R} as follows:

K = 1.R1 + 1.R2 −R =
[

1 0 0
]

+
[

0 1 1
]
−
[

0 0 1
]

=
[

1 1 0
]

Let Y = K − (−1) .R = K + R =
[

1 1 0
]

+
[

0 0 1
]

=
[

1 1 1
]
.

This implies Y ∈ rowspace (Mk) and Y ∈ rowspace (Mf ). Let Md =


Y
0
0
0


4×3

=


1 1 1
0 0 0
0 0 0
0 0 0


4×3

, be the standard matrix representation of some d ∈ [W ].

Since Y ∈ rowspace (Mf ), Y becomes a zero row through row operations using the
rows in Mf . Thus null (Mfd) 6= 0 since rank (Mfd) = 2. Hence ker (T )∩ker (W ) 6=
0. Hence [T ] , [W ] are adjacent. Similarly, since Y ∈ rowspace (Mk), Y becomes
a zero row through row operations using the rows in Mk. Hence null (Mkd) 6= 0
since rank (Mkd) = 2. Thus ker (L) ∩ ker (W ) 6= 0. Thus [W ] , [L] are adjacent.
Therefore, we have [T ]− [W ]− [L].

Theorem 2.7. Consider the undirected graph Gm,n. Assume that n < m ≤ 2n
and m 6= 1 or m 6= 2. Then Gm,n is connected and diam(Gm,n) = 2.

Proof. Let [T ], [L] ∈ V , such that [T ] and [L] are not adjacent (ker (T )∩ ker (L) =
0m), and [T ] 6= 0, [L] 6= 0. Let, f ∈ [T ] and k ∈ [L], then rank (Mf ) < m and
rank (Mk) < m, where Mf and Mk are the standard matrix representations of f
and k, with size n×m.

Assume that n + 1 < m ≤ 2n. Then rank (Mf ) = n − i, where i = 0, 1, 2, . . .,
and rank (Mk) = n− j, where j = 0, 1, 2, . . .. Thus we can choose any non-zero row
from Mf or Mk, say Y , to form the n×m matrix Md, where:

Md =


Y
0
...
0


is the standard matrix representation of some d ∈ [W ], such that [T ]− [W ]− [L].

Assume that m = n + 1. Then we have three cases. Case I. Assume that
rank (Mf ) = n = m − 1, and rank (Mk) = n − j, where j = 1, 2, . . .. Then we can
choose any non-zero row, say Y from Mf , (Note that Mf is the matrix with the
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higher rank), to form the n×m matrix Md, where:

Md =


Y
0
...
0


is the standard matrix representation of some d ∈ [W ], such that [T ] − [W ] − [L].
Case II. Assume that rank (Mf ) = n− i, where i = 1, 2, . . . and rank (Mk) = n−j,
where j = 1, 2, . . .. In this case any non-zero row Y can be chosen either from Mf

or Mk, to form Md, where:

Md =


Y
0
...
0


. is the standard matrix representation of some d ∈ [W ], such that [T ]− [W ]− [L].
Case III. Assume that rank (Mf ) = n and rank (Mk) = n. Then Mf has n
independent rows R1, R2, . . . , Rn. Since [T ] and [L] are not adjacent, Mk has one
row say R such that, {R1, R2, . . . , Rm−1, R} is an independent set which forms
a basis for Rm = Rn+1. Let K 6= R be a non-zero row in Mk. Hence K ∈
rowspace (Mk). Since K ∈ Rn+1, we have:

K = c1R1 + c2R2 + · · ·+ cnRn + cn+1R

Let Y = K−cn+1R. Hence Y ∈ rowspace (Mk), (since both K, cn+1R ∈ rowspace (Mk)),

and Y ∈ rowspace (Mf ). Let Md =


Y
0
...
0


n×m

, be the standard matrix represen-

tation of some d ∈ [W ].

Since Y ∈ rowspace (Mf ), Y becomes a zero row through row operations using
the rows in Mf , null (Mfd) 6= 0 since rank (Mfd) = n. Hence ker (T )∩ker (W ) 6= 0.
Thus [T ] , [W ] are adjacent. Similarly, since Y ∈ rowspace (Mk), Y becomes a
zero row through row operations using the rows in Mk. Hence null (Mkd) 6= 0
since rank (Mkd) = n. Thus ker (L) ∩ ker (W ) 6= 0. Thus [W ] , [L] are adjacent.
Therefore, we have [T ]− [W ]− [L]. �

Example 2.8. Suppose m = 4 and n = 3 and consider the graph G4,3. Note that
n < m ≤ 2n, m 6= 1, 2 and and m = n+1. Thus m,n satisfy the given hypothesis in
Theorem 2.7. Let [T ] , [L] ∈ V , such that [T ] and [L] are not adjacent. Let f ∈ [T ],
and k ∈ [L]. Then rank (Mf ) < m and rank (Mk) < m, where Mf and Mk are the
standard matrix representations of f and k, with size n×m = 3× 4. Suppose,

Mf =

 1 0 0 0
0 1 0 1
0 0 1 0


3×4

,Mk =

 1 0 0 0
0 1 0 0
0 0 0 1


3×4

Let Mfk =

[
Mf

Mk

]
6×4

. It can be easily seen that rank (Mfk) = 4, which implies

that null (Mfk) = 0. Therefore, ker (f) ∩ ker (k) = 0, that is, the vertices [T ] and
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[L] are not adjacent. Hence rank (Mf ) = 3 = n, and rank (Mk) = 3 = n. Then
Mf has 3 independent rows R1, R2, and R3, such that R1 =

[
1 0 0 0

]
,

R2 =
[

0 1 0 1
]
, and R3 =

[
0 0 1 0

]
. The vertices [T ] and [L] are not

adjacent, thus Mk has one row, R =
[

0 0 0 1
]
, such that {R1, R2, R3, R}

is an independent set which forms a basis for R4. Let K 6= R be a non-zero row
in Mk, K =

[
0 1 0 0

]
. Since K ∈ rowspace (Mk) and K ∈ R4, it can be

written as a linear combination of {R1, R2, R3, R} as follows:

K = 0.R1+1.R2+0.R3+(−1) .R =
[

0 1 0 1
]
−
[

0 0 0 1
]

=
[

0 1 0 0
]

Let, Y = K−(−1) .R = K+R =
[

0 1 0 0
]
+
[

0 0 0 1
]

=
[

0 1 0 1
]
.

This implies Y ∈ rowspace (Mk) and Y ∈ rowspace (Mf ). Let, Md =

 Y
0
0


3×4

= 0 1 0 1
0 0 0 0
0 0 0 0


3×4

, be the standard matrix representation of some d ∈ [W ].

Since Y ∈ rowspace (Mf ), Y becomes a zero row through row operations using the
rows in Mf . Thus null (Mfd) 6= 0, since rank (Mfd) = 3. Hence ker (T )∩ker (W ) 6=
0. Thus [T ] , [W ] are adjacent. Similarly, since Y ∈ rowspace (Mk), Y becomes a
zero row through row operations using the rows in Mk. Thus null (Mkd) 6= 0 since
rank (Mkd) = 3. Hence ker (L) ∩ ker (W ) 6= 0. Thus [W ] , [L] are adjacent. There-
fore, we have [T ]− [W ]− [L].

Theorem 2.9. Assume that Gm,n is connected. Then gr(Gm,n)) = 3.

Proof. [T ] , [L] ∈ V , such that [T ] and [L] are adjacent, ker (T ) ∩ ker (L) 6= 0 and
[T ] 6= 0, [L] 6= 0. Let, f ∈ [T ] and k ∈ [L], then Mf and Mk are the standard
matrix representations of f and k with size n×m. Suppose, that each matrix Mf

and Mk, is composed of only one row, Rf and Rk that are independent of each
other since f and k are in different equivalence classes [T ] and [L]. Mf and Mk can
be written as follows:

Mf =


Rf

0
...
0


n×m

,Mk =


Rk

0
...
0


n×m

Let Y = Rf + Rk. Since Y is a linear combination of two linearly independent
rows, then the set {Y,Rf , Rk} is also linearly independent.

Let Md =


Y
0
...
0


n×m

, be the standard matrix representation of some non-trivial

linear transformation d. Since Y is independent of both Rf and Rk, Md is not row-
equivalent to either Mf or Mk, hence d is in a different equivalence class from both
f and k, say d ∈ [W ]. Since ker (T ) ∩ ker (L) 6= 0, we have null (Mfk) 6= 0, which
implies null (Mfd) 6= 0 and null (Mkd) 6= 0. Therefore, we have, [T ]−[L]−[W ]−[T ].
This forms the shortest possible cycle. Hence gr(Gm,n)) = 3. �
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