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Abstract: To improve currently available cancer treatments, nanomaterials are employed as smart
drug delivery vehicles that can be engineered to locally target cancer cells and respond to stimuli.
Nanocarriers can entrap chemotherapeutic drugs and deliver them to the diseased site, reducing
the side effects associated with the systemic administration of conventional anticancer drugs. Upon
accumulation in the tumor cells, the nanocarriers need to be potentiated to release their therapeutic
cargo. Stimulation can be through endogenous or exogenous modalities, such as temperature, electro-
magnetic irradiation, ultrasound (US), pH, or enzymes. This review discusses the acoustic stimulation
of different sonosensitive liposomal formulations. Emulsion liposomes, or eLiposomes, are liposomes
encapsulating phase-changing nanoemulsion droplets, which promote acoustic droplet vaporization
(ADV) upon sonication. This gives eLiposomes the advantage of delivering the encapsulated drug
at low intensities and short exposure times relative to liposomes. Other formulations integrating
microbubbles and nanobubbles are also discussed.

Keywords: drug-delivery; eLiposomes; emulsion liposomes; ultrasound

1. Introduction

Recent statistics show that cancer is the second leading cause of death globally, with
18,094,716 million diagnosed cancer cases. It is responsible for one in six deaths, up to
approximately 10 million deaths in 2020 [1]. This multifactorial disease has become a global
burden with high cancer morbidity and mortality rates. The heterogeneity of cancer re-
quires extensive research to develop effective treatment methods to reduce the detriment to
patients’ lives. Currently, available cancer treatment strategies include chemotherapy [2], ra-
diotherapy [3,4], surgery [5], hormonal therapy, targeted therapy (e.g., immunotherapy) [6],
or a combination of these methods [7–9].

Chemotherapy is the most used cancer treatment, especially for advanced-stage malig-
nancies, i.e., metastasis, where other treatment methods like surgery and radiation cannot
be employed. It uses anticancer drugs to intervene with the cancer cell cycle [10]. Anti-
cancer drugs are highly toxic, have short half-lives in vivo, have poor biodistribution, and
have low bioavailability. Moreover, these highly toxic drugs lack selectivity, distribute in
the entire body, and kill both cancerous and healthy cells, inducing severe temporary or
permanent side effects among long-term cancer survivors [11–13]. Some of the long-term
side effects include pain, hair loss, nausea, vomiting, pulmonary toxicity, neuropathy,
and cardiotoxicity [13–17]. Cancer cells possess self-renewal properties and evade drug-
induced cytotoxicity, enabling them to develop resistance against a wide range of anticancer
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drugs in a multidrug resistance (MDR) phenomenon, rendering the chemotherapeutic drug
ineffective [18]. Thus, conventional cancer treatments are not optimal and suffer from
limitations, including the lack of specificity, systemic toxicity, harmful side effects, and
tumor recurrence. To combat these limitations, drugs must be targeted and temporally
released at the tumor site using safe trigger mechanisms [19].

Research aims to develop less toxic alternative treatment platforms, including smart
nanotechnology for anticancer drug delivery, that can potentially address the challenges
posed by cancer cells’ uncontrolled proliferation, metastasis, and MDR [20,21]. Smart
nanotechnology enables the encapsulation and targeted delivery of anticancer drugs.
Chemotherapeutic drugs act on healthy and tumor cells, thus reducing the treatment
selectivity towards diseased cells. Doxorubicin (DOX) is a commonly used anthracycline
that is usually administered to patients via intravenous injections, either as a continuous
infusion or a single dose [22]. Although it is an effective antitumor agent, its side effects
are most evident in cells exhibiting high division rates, such as hair follicles and the gas-
trointestinal tract lining; thus, hair loss, digestive tract ulcerations, vomiting, nausea, and
diarrhea are all common complications/side effects [23]. Moreover, it has been known to
induce cardiotoxicity by the upregulation of apoptosis receptors in cardiomyocytes [23].
The therapeutic index of chemotherapeutic drugs, defined as the ratio of the toxic dosage to
the therapeutic dosage, is close to one. Therefore, maximum tumor cell killing while protect-
ing healthy cells cannot be achieved due to the side effects limiting the chemotherapeutic
drug dosage [23]. A study investigating the toxicity profiles of free chemotherapeutics
versus chemotherapeutics delivered in nanovehicles reported safer and more effective
chemotherapy using nanoparticles, in vitro and in vivo [24]. Nanoparticles were loaded
with 30% of the standard dose of cisplatin and administered for 4 weeks and were found
to eradicate as many cancer cells as the higher dosage of cisplatin. Another in vivo study
on rats employed chemotherapy using inactive cisplatin (a prodrug that activates upon
release). The drug was injected as a free drug and via nanoparticles [25,26]. Figure 1
illustrates the concept of nanoparticle-based chemotherapy delivery to solid tumors. After
encapsulating the drug into the nanocarriers, they can be steered to localize at the diseased
site. Upon accumulation, internal or external triggers can stimulate the release of the loaded
drugs. These nanoplatforms allow for targeted delivery of the anticancer agents as well as
controlled dosing.

The United States Food and Drug Administration (FDA) has approved the use of some
nano-drug formulations to treat various diseases, including cancer. Current FDA-approved
nanocarriers include 56% lipid-based, 38% protein-based, and 6% metal-based formulations.
Some of the lipid-based nano-drugs, namely liposomal formulations approved by the
FDA and/or EMA from 1995 to May 2022 for the treatment of cancer, include Doxil,
DaunoXome, Myocet, Mepact, Marqibo, Onyvide, and Vyxeos (Table 1) [27,28]. Table 1
provides a summary of the liposomal nanopharmaceuticals approved by the FDA and/or
EMA for cancer treatment. These nanopharmaceuticals showed clinical success due to
their biocompatibility, selective toxicity, stability, biodegradability, and prolonged blood
circulation times [29]. Moreover, high drug loading capacity and bioavailability at the
tumor site by crossing physiological barriers leads to efficient, targeted drug delivery and
pared down off-target effects [30,31].
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Figure 1. Schematic illustration of liposome-based drug delivery system for the treatment of
solid tumors.

Table 1. Summary of the liposomal drugs approved by the FDA and/or EMA for cancer treatment
[28–40].

Product™
Encapsulated Drug,

Administration
Route

Approved Year/Area Indication Composition Size

Doxil Doxorubicin, IV 1995, FDA Ovarian, breast cancer,
Kaposi’s sarcoma HSPC, PEG-DSPE, chol SUVs (100 nm)

Caelyx Doxorubicin, IV 1996, EMA Ovarian, breast cancer,
Kaposi’s sarcoma HSPC, PEG-DSPE, chol SUVs (100 nm)

DaunoXome Daunorubicin, IV 1996, FDA Kaposi’s sarcoma HSPC, DSPC, Chol SUVs (45–80 nm)

Myocet Mifamurtide, IV 2000, EMA Metastatic breast cancer EPC, Chol MLVs (80–90 nm)

Mepact Mifamurtide PE 2009, EMA Osteosarcoma POPC, OOPS MLVs (2.0–3.5 µm)

Marqibo Vincristine, IV 2012, FDA Acute lymphoid
leukemia SM, Chol SUVs (130–150 nm)

Lipusu Paclitaxel 2013, FDA Gastric, ovarian, and
lung cancer Non-modified liposomes 400 nm

Onyvide Irinotecan, IV 2015, FDA
2016, EMA

Metastatic
adenocarcinoma of the

pancreas

DSPC, MPEG2000-DSPE,
Chol SUVs 110 nm

Vyxeos Daunorubicin and
cytarabine

2017, FDA
2018, EMA Acute myeloid leukemia DSPC, DSPG, Chol 110 nm

Zolsketil Adriamycin, IV 2022, EMA

Metastatic breast and
ovarian cancer, multiple
myeloma, and Kaposi’s

sarcoma

HSPC, PEG-DSPE, chol SUVs (100 nm)

Abbreviations: IV intravenous; FDA Food and Drug Administration; EMA European Medicines Agency;
HSPC hydrogenated soy phosphatidylcholine; PEG polyethylene glycol; DSPE 1,2-distearoyl-sn-glycero-3-
phosphoethanolamine; SUVs small unilamellar vesicles; MLVs multilamellar vesicles.
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2. Liposomal-Based Smart Drug Delivery

Smart drug delivery systems (SDDSs) are nanoplatforms with essential characteristics
and bio-functions that make them optimal for encapsulating and shielding the proper
dosage of chemotherapeutic agents from healthy tissues, while remotely delivering drugs
to targeted tumor sites under controlled release conditions. SDDSs overcome shortcomings
of traditional treatment approaches, as they are designed to deliver appropriate dosages
to specific anatomical locations, combat systemic side effects, prolong the circulation time
of the drug and make it more bioavailable [18]. They incorporate nanoparticles (NPs) as
drug-delivery vehicles, usually ranging in size from 1 nm to 800 nm. The synthesis routes
of these NPs vary and are generally divided into chemical and biological ways, where the
latter are preferred as they are safer and innocuous [19].

The morphologies of the NPs play a substantial role in the success of the SDDS. For
instance, size and shape properties determine essential parameters such as circulation
time, the efficiency of targeting, and internalization by the cells. The optimal size range
for NPs is between 100 and 200 nm; as NPs exceeding 7 µm are expelled by the lungs, less
than 6 nm are filtered by the kidneys, and between 0.1 and 7 µm are recognized by the
reticuloendothelial system (RES) and phagocytized [23]. Moreover, regularly shaped NPs,
as in spherical or cylindrical NPs, exhibit better performance than irregularly shaped ones,
as the former are promptly internalized by the cells and move easily through the endothelial
lining of the blood vessels. Likewise, surface functionalities such as hydrophobicity, charge,
and targeting moieties can potentially alter the performance of the NPs [19,23].

Among the most researched NPs are lipid-based nanocarriers, including FDA-approved
liposomes, which have shown significant success in the pharmaceutical industry. These
nanocarriers are nanoscale spherical vesicles primarily compromising one or more phospho-
lipid bilayers similar to the structure of the cell membranes [41,42]. They can be synthesized
using natural substances or sometimes synthetic surfactants that entrap molecules with
low molecular weights, drugs, imaging agents, vaccines, plasmid DNA, hormones, an-
tibodies, etc. [43,44]. Phospholipids are the main structural components of liposomes,
where the most commonly used are soy phosphatidylcholine (soy PC) [39], egg phos-
phatidylcholine (egg PC) [40], phosphatidylcholine (PC), and milk fat phospholipids [41].
Phospholipids occur abundantly in nature; however, their synthetic derivatives also exist,
such as 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-Dipalmitoyl-sn-
glycero-3-phosphocholine (DPPC) as derivatives of PC, and 1,2-Dimyristoyl-sn-glycero-3-
phosphoethanolamine (DMPE) as a derivative of PE, etc. [42].

Liposomes are versatile drug delivery vehicles as they have adequate stability, can
prolong the drug’s bioavailability and protect its rapid clearance from the body, are easily
tunable, and exhibit controlled release profiles that lead to remarkable therapeutic effects
with minimum unwanted side effects [43,44]. Due to the resemblance of cell membranes,
liposomes are also referred to as artificial cells and were previously called Banghasomes;
Alec D. Bangham discovered them in the 1960s when Bangham and colleagues observed
the swelling of lipid vesicles upon hydration. They were later named liposomes originating
from the Greek words “lipos” and “soma,” meaning fat and body, respectively [45].

Liposomes are amphiphilic in nature and consist of a hydrophilic head (water-loving)
and a hydrophobic/lipophilic (water-repelling) tail [46,47]. In an aqueous solution, lipid
molecules self-assemble due to hydrophobic interactions, forming bilayer spheres with the
hydrophobic tails directed inwards, acting as a permeability barrier, and hydrophilic heads
facing outwards. The bilayer structure enables liposomes to encapsulate lipid-soluble and
aqueous-soluble drugs simultaneously [48]. The hydrophilic, amphipathic, and lipophilic
molecules can be entrapped within the inner aqueous core or within the phospholipid
bilayer, which forges the effectiveness of drug loading ahead [49–51]. Encapsulating active
biomedical drugs within liposomes enables control over targeting cancer cells as it stabilizes
the encapsulated chemotherapeutic and can spatially release the payload in a controlled
manner, which will not only enhance the efficacy and therapeutic index of drugs but also
eliminate or minimize systemic toxicity [52,53].



Pharmaceutics 2023, 15, 421 5 of 22

They can be classified based on lamellarity, size, and preparation method. However,
size and lamellarity significantly affect the blood circulation time and drug encapsulation
efficiency, whereas the preparation method determines the liposome type. Liposomes can
be classified as unilamellar vesicles (UV) with a single phospholipid bilayer membrane or
multilamellar vesicles (MLV) with several bilayer membranes resembling an onion-like
structure. ULVs can be further classified as small unilamellar vesicles (SUV, diameter of
20–100 nm), large unilamellar vesicles (LUV, diameter 100 nm–1 µm), giant unilamellar
vesicles (GUV diameter > 1 µm, [24], and multivesicular vesicles (MVV, 1.6–10.5 µm) that
demonstrate a honeycomb-like structure with multiple vesicles embedded in a single lipid
bilayer structure [47,54–56]. Liposomes ranging between 50 and 450 nm3 in volume are
used for medical applications. SUVs are most commonly used in drug-delivery applications
due to their uniform encapsulation of drugs and longer circulation times [54–56].

Moreover, liposomes are among the most researched NPs partly because of the ease
of their surface modification and functionalization to better fit the application as per the
tumor pathophysiology. Functionalized liposomes showed significant improvement in
physiological behavior when compared to non-functionalized conventional ones (Figure 2).
To enhance the liposomes’ physical stability in the bloodstream, increase the fluidity of
their membranes, and prolong their retention time, natural sterols such as cholesterol are
added. Cholesterol is a hydrophobic molecule that interacts with the core of the liposomal
membrane and helps reduce its permeability to water [36,42]. This, in turn, increases the
liposomal membrane micro-viscosity and fluidity by making them less rigid, prevents
crystallization of the phospholipid acyl chains, and increases their stability in the presence
of blood/plasma, both in vivo and in vitro. [57,58]. Furthermore, cholesterol can anchor
or attach polyethylene glycol (PEG) chains, shielding them from abrupt recognition and
elimination from the body and rendering them thermodynamically and sterically stable.
PEGylation enhances the half-life of the nanocarrier in the bloodstream, as non-stealth
liposomes get rapidly phagocytosed by the reticuloendothelial system (RES) and cleared
from the body [42,59,60].

PEG chains are soluble in aqueous and organic solvents, highly biocompatible, easily
synthesized, have a linear or branched structure, and show low immunogenicity [61].
The chains can vary in length and configuration, and they are grafted into the liposomes
through linkers to create the PEGylated liposomes, commonly referred to as stealth li-
posomes. Noble et al. [62] claimed that optimum circulation times could be achieved
by incorporating five mol% polyethylene glycol with a molecular weight of 2000 g/mol,
PEG2000, into the formulation and elaborated the use of PEG2000 is “based more on tra-
dition rather than scientific reasoning.” The choice of the linker is essential, as it alters
the extent to which the PEG chains are implanted into the liposomal membranes and can
also impose behavioral changes on the liposomes. For example, phosphate linkages are
suspected of provoking opsonization, while ester linkages, which are pH-sensitive, are
vulnerable to biological decomposition [62].
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Figure 2. A schematic illustration of liposomes, their functionalization, and common triggering
modalities to release the encapsulated payload from liposomes.

A study [61] compared the in vivo pharmacokinetic performance of free DOX with
PEGylated and non-PEGylated liposomal formulations. Interestingly, the PEGylated liposomal
DOX clearance rate decreased by 100-fold (Cl = 0.023 L/h), and its half-life (t1/2 = 83.7 h)
was prolonged by eightfold, compared to free DOX (Cl = 25.3 L/h, t1/2 = 10.4 h). Moreover,
the distribution volume decreased significantly from 364 L to 139 L to 3.0 L in the free DOX,
non-PEGylated, and PEGylated liposomal DOX, respectively. This conclusion demonstrated
that PEGylation prevents premature drug release and that most of it remained entrapped
without leakage. Another study by Awad et al. [59] investigated the effects of PEGylation
on the US-mediated release kinetics from calcein-loaded liposomes. This research concluded
that the calcein (model drug) PEGylated liposomes were more sonosensitive and presented
significantly enhanced release profiles when exposed to pulsed US at 20 kHz. The release
profiles of the PEGylated liposomes were higher than the non-PEGylated ones at all tested
power densities. It was reported that the PEGylated liposomes released 57.5% ± 4.5 of their
contents, whereas the non-PEGylated ones released only 22.7% ± 1.7 by the end of the third
US pulse at 12 W/cm2 power density. The conclusions of this study further emphasize the
effectiveness of PEGylation in enhancing the overall performance of the SDDS.

Passive and Active Targeting

Primarily targeting cancer cells follows the natural course by targeting anatomical and
physiological feature differences between the normal cells and tumor microenvironment.
Controlling the physicochemical factors such as size, charge, and hydrophobicity of the
liposomes enables passively targeting cancer microvasculature with larger pores sizes
compared to normal capillaries’ cells. The tumor vasculature is characterized by its porous
and leaky structuring, allowing liposome passage, permeability, and retention, typically
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<200 nm [63]. This effect is known as the enhanced permeability and retention (EPR) effect,
which forms the basis for passive targeting mechanisms (Figure 3A). Since healthy tissues
do not allow liposomes to extravasate through their non-porous and tight junctions, this
leads to a differentially higher concentration and accumulation of the drug in tumor cells
compared to the rest of the body [64].
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Figure 3. (A) Passive targeting. Liposomes accumulate and retain at the target site with the help
of leaky vasculature and a defective lymphatic drainage system (EPR effect); (B) Active targeting.
Liposomes accumulate via a passive targeting mechanism; drug carriers are endocytosed by spe-
cific receptor-mediated interactions between the overly-expressed tumor cell-surface receptors and
targeting ligands on the liposomes’ surface.

Some tumor-related factors to consider when utilizing the EPR effect include, but
are not limited to, tumor type and density and its vascular permeability as a function
of secretion of permeability factors. As far as the nanocarrier design is concerned, their
chemical properties, surface functionalization, and charge and morphologies are all consid-
erably impactful aspects [64]. However, designing SDDSs with complete dependence on
passive targeting has significant limitations, such as the possible accumulation of the NPs
in the spleen and liver as these organs have fenestrated vasculature and the incapability
of the NPs to sufficiently penetrate deep enough through the complex tumoral network
due to heterogeneities in structure [65]. Moreover, the EPR effect may result in a slower
uptake of nanocarriers and delayed drug pharmacokinetics, where the slow drug release
would not allow the drug to reach the desired therapeutic concentration. Moreover, passive
targeting is limited to certain solid tumors larger than approximately 4.6 mm, with porosity
depending on the type and location of the tumor. Furthermore, non-vascularized sites are
questionable when taking advantage of the EPR effect; therefore, facilitating the uptake of
nanocarriers by the tumor cells and protecting healthy cells by other means of targeting
becomes essential. Active targeting mechanisms allow functionalizing the surface of the
nanocarriers to make them more affinized towards cancer cells than healthy ones. It can
compromise the inadequacies mentioned above, as it depends on specific receptor-ligand
interactions between highly expressed cell-surface receptors on the tumor cells and the
engineered drug carrier’s surface. NPs can be functionalized with ligands, or moieties,
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including proteins, poly-peptide sequences, antibodies, enzymes, vitamins, and carbohy-
drates [66–69]. Since tumor cells are known to overexpress receptors that participate in
growth and survival pathways, such receptors make promising active targets. To this end,
nanocarriers could be conjugated to the natural ligands of these receptors to ensure their
accumulation and internalization at the tumor site [70]. Ideally, these receptors would be
tumor neoantigens as these are overexpressed on tumor cells compared to healthy cells.
Therefore, for this system to work, the ligand in question must have a high affinity to the
target receptor to elicit a specific response akin to a lock-and-key mechanism (Figure 3B).

3. Acoustic Stimulation by Ultrasound

Upon injection into the patient’s bloodstream, the nanocarriers tend to accumulate
at the tumor’s leaky vasculature due to the EPR effect. To unleash the full potential of
these drug-loaded vehicles, it is mandated to utilize a triggering mechanism to release
the encapsulated drug in a controlled, timely, and efficient manner. Ultrasound (US) has
gained considerable attention in research as one of the best drug release mechanisms due
to its non-invasiveness, safety record, and relatively low costs. Although it is best known
in the medical field for its imaging application, i.e., embryo monitoring and imaging, it has
developed to become a means of diagnostics and therapies. The US’s mechanism of action
relies on its waves. US waves are longitudinal mechanical sound waves that require a
medium for transmitting energy transducers containing piezoelectric crystals that produce
acoustic waves as an alternate electrical current is converted into mechanical energy. When
an electric pulse is generated and sensed by the crystal, it vibrates; consequently, the
surrounding medium experiences pull and push forces, and thus waves are generated [71].

There are two main mechanisms by which US impacts cells and tissues in therapeutic
applications, i.e., thermal and mechanical effects [71]. Sonicated tissues experience thermal
effects due to hyperthermia, whereby exposed tissues experience an overall increase in the
medium’s temperature. The extent to which the medium absorbs energy is a function of
multiple factors, such as the frequency of the US and the exposure time. Moreover, some
factors are intrinsic to the medium, such as its absorption coefficient; the higher the value of
this coefficient, the more thermal effects will be experienced by the tissues [71]. The impact
of US on drug release from liposomes is a well-developed area of research [72–74]. When
the acoustic waves interact with liposomes, some of the acoustic energy will be dissipated
and absorbed by the phospholipid bilayer, causing an increase in temperature, which in
turn slightly liquifies the microstructure of these nano vehicles and promotes drug release.
In drug-delivery applications and to achieve hyperthermia, the tissue temperature should
not exceed 43 ◦C. Within a temperature range of 40 to 43 ◦C, the increase in temperature
accompanied by the rise in blood flow causes vasodilation as well as an increase in the
permeability of the tumor’s vasculature, hence enhancing the accumulation of nanoparticles
at the diseased site. However, strong hyperthermia, which occurs when temperatures
increase beyond 43 ◦C, could cause necrosis to both healthy and cancerous cells and cause
severe burns [73].

The other mechanism by which US induces biological effects is mechanical, mainly
through cavitation events. Bubbles pre-exist or are generated in the fluid due to the pressure
dropping below the liquid’s vapor pressure. The pressure drop could be induced by
exposure to US waves. Acoustic cavitation occurs when these cavitation nuclei—gas-filled
bubbles in the insonated liquid media—form, grow, oscillate, and eventually collapse [75].
It has two primary modes; stable and transient [76]. A specific phenomenon of transient
cavitation occurs when the bubbles are bounded by any given biological boundary from
one side while the other side oscillates freely; it is referred to as asymmetric collapse.
The bursting bubbles do not generate a regular shock wave that propagates in spherical
dimensions, but rather the energy from the collapse is directed inwards towards the center
of the bubble from the free side, propagating linearly. This non-spherical collapse induces
high-speed energy-intensive acoustic microjets. The shock waves and shooting microjets
can cause neighboring liposomal membranes to burst, thus promoting drug release [77].
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Similarly, if the bubbles are close to the tumor site, their collapse can induce the formation
of pores in the plasma membranes of the cells in a process called sonoporation [78,79].
This further enhances the accumulation of the drug at the tumor site. When considering
the application of US in drug delivery, collapse cavitation has a more predominant role
compared to stable cavitation. The former has been shown to enhance drug uptake, and
the payload delivery to the individual cells as their permeability is altered with the aid of
shock waves and microjets. In contrast, stable cavitation has some effects on changing the
overall permeability of diseased vessels.

The application of ultrasound for the treatment of organs such as lungs pose obstacles
to acoustic energy due to their respiratory movement, access limitations offered by lung-
enclosing ribs, and air-filled spaces that derange the acoustic energy deposition due to
impedance mismatch between the ventilated lungs and the adjacent tissues, causing total
absorption or total reflection of the acoustic energy [80]. While research ventures to new
methods for utilizing US safely, an in vivo investigation tested a lung flooding technique
by infusing saline into the lungs prior to applying high-intensity focused ultrasound
(HIFU), which aided in matching the impedance while keeping the patient ventilated.
This helped eliminate the total absorbance or reflection of acoustic energy, with highly

selective penetration of HIFU causing a local increase in the temperature of ex vivo tumor
tissue by 7.5-fold than the flooded lung tissue. Furthermore, flooded lung tissues showed
a 100% successful sonographic tumor detection rate compared to atelectatic lungs, which
were only 43% [80,81].

Clinical studies conducted by Idbaih and colleagues [82,83] on patients with glioblas-
toma revealed improved penetration and enhanced efficacy of carboplatin chemotherapy
through the disrupted blood–brain barrier (BBB) with the help of the implantable low-
intensity pulsed ultrasound (LIPU) device SonoCloud-1 (SC1). The device emitted US
waves with a resonance frequency of 1.05 MHz, coupled with Sonovue microbubbles
(Bracco). Disruption of the BBB was observed to be proportional to an increase in acoustic
pressures, with no sign of dose-limiting toxicity [82]. Whereas, Sonocloud-9 (SC9), with a
similar concept currently undergoing clinical research, proves the potential of US-mediated
BBB disruption and enhancement of chemotherapeutic efficacy.

Aryal et al. [84] investigated the delivery of liposomal doxorubicin (Lipo-DOX) for the
treatment of glioma in rats through disrupted BBB induced by focused US (US parameters:
0.69 MHz frequency, 10 ms bursts, pulse repetition frequency 1 Hz, 0.55–0.81 MPa, 60 s)
coupled with microbubbles. The study reported the absence of side effects such as neu-
rotoxicity; however, capillary damage was observed during sonication due to inertial
cavitation. It was recommended to use lower-pressure amplitude ultrasound to avoid
inertial cavitation.

Perfluorocarbon (PFC) gas nanobubbles, ranging in size from 450–690 nm, are used
as US contrast agents, as they allow enhancement of image contrast upon vaporization
and backscattered echoes. First exploited by Effinger and Wheatley [85], they found that
these nanobubbles extravasated through leaky tumor vasculatures and contributed to
in vitro image enhancement of breast cancers. Wheatley et al. [86] further investigated
ST68 nanobubble-assisted acoustic enhancement in vitro and in vivo and demonstrated
nanobubble oscillation upon US irradiation, which resulted in an enhancement of more
than 20 dB. Besides enhancing imaging efficiency, nanobubbles can improve the therapeutic
performance of nanocarriers when accompanied by US. Wang et al. [87] discovered the
significant inhibition of cell growth in human prostate cancer cell lines (C4-2, LNCaP, and
PC-3 cells) by employing 609.5 ± 15.6 nm-sized nanobubbles coupled with ultrasound.
Upon sonication, nanobubbles encapsulated with AR siRNA showed the lowest expression
of AR mRNA in the C4-2 prostate tumor xenograft mouse model compared to the rest of
the groups in the study.

To increase liposomal sonosensitivity, microbubbles/nanobubbles or phase shift emul-
sion droplets that are highly sensitive to ultrasound can be incorporated or coupled with
liposomes and can enhance liposomal sonosensitivity and dramatically increase the drug
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uptake by cancer cells [88]. Several studies have been conducted on these enhancers of
ultrasound-mediated drug delivery [89] in targeting renal cell carcinoma [90], prostate
cancer cell lines [87], breast cancers [91], and brain cancers [92].

Along the same lines, echogenic liposomes and bubble liposomes increased the sen-
sitivity to ultrasound by sonoporation of liposomes and cancer cell membranes. FDA-
approved microbubbles filled with a hydrophobic gas phase, e.g., PFC stabilized by a
shell of lipid or polymer, can oscillate and generate contrast in response to US pressure
variations. However, the microbubbles’ larger size relative to pores in the tumor’s leaky
vasculature did not allow extravasation into cancer cells [93–95]. This limitation was, how-
ever, overcome by employing multifunctional nanocarriers with perfluorocarbon gas cored
or PFC nanodroplets/emulsions that convert into echogenic microbubbles upon heating to
physiological temperatures or/and ultrasonic negative peak pressures. The coalescence of
microbubbles in tumor cells, followed by cavitation and eventual disintegration, results in
the release of the encapsulated drug at the tumor site [96–99].

Microbubbles can be introduced into the liposomes with other therapeutic compounds
to promote cavitation and sonoporation (pore formation by applying acoustic US) and
release the drug at the tumor site. A study by Ingram and colleagues showed a significant
increase in the efficacy of cytotoxic low-dose medicines, irinotecan, and SN38, by triggering
microbubbles using the US in colorectal cancer mouse models [99].

Olsman et al. investigated the effect of focused ultrasound (FUS), and microbubbles
on the transferrin (Tf) targeted liposomes in enhancing the permeability of the blood–
brain barrier in rats, overexpressing TfR in the BBB. The study revealed that FUS and
microbubbles helped safely increase blood–brain barrier permeability and recorded a 40%
increase in the accumulation of Tf-targeted liposomes in the brain hemisphere compared
with isotype immunoglobulin G (IgG) liposomes. However, the size of microbubbles, i.e.,
1 µm or above, limits them within the tumor vasculature and prevents microbubbles from
penetrating the tumor cells. Thus, they have been used as intra-vascular agents to actively
target endothelial markers such as VEGFR2 and αvβ3 integrin. The size restriction of
microbubbles introduced the use of nano-scale-sized nanobubbles and nanoemulsions
that would easily extravasate into the tumor tissues and get endocytosed into the tumor
cells [100–103].

Emulsions on a nanoscale are called nanoemulsions, and they have nanodroplets of
liquid dispersed through another immiscible liquid. Liposomes encapsulate phase shift
nano-sized liquid droplets such as perfluorocarbons (PFCs, with a low boiling point) for
drug delivery applications. PFCs enhance the sensitivity of liposomes to the US waves.
Upon exposure to the US, during the low-pressure wave, the pressure around emulsion
droplets falls below the vapor pressure, and they vaporize, resulting in the expansion and
explosion of the liposome. Lipid bilayer liposomes can only undergo 3% expansion in their
structure before they break or puncture; this aids in releasing the encapsulated drug at the
tumor site [35,66].

Perfluorocarbons (PFCs) are considered excellent candidates for emulsions in drug
delivery applications due to their biocompatibility, non-toxicity, and hydrophobic behavior;
hence, they have a very low solubility in aqueous solutions or even blood. In medicine,
PFCs find their application as ultrasound imaging contrast agents and oxygen carriers in
blood substitutes [35,66,102,103].

In a study by Lattin et al. [103], the behavior of PFC5 emulsion droplets upon exposure
to the US demonstrates that only tiny emulsion droplets were visible before the application
of US; however, upon exposure to the US, tiny emulsion droplets had vaporized into
large gas bubbles. Gracia et al. [104] investigated the phase-transitioning behavior of
perfluorocarbon nanodroplets to microbubbles under US negative peak pressure and their
application as ultrasound contrast agents for in vitro human breast carcinoma-derived cell
line SK-BR-3, confirming their stability with significant image enhancement in B mode
of US.
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4. Ultrasound-Activated Agents as Nanocarriers

eLiposomes are liposomes with encapsulated nanoemulsions that help in the rupturing
of the drug-carrying liposomal membrane upon sonication, leading to the vaporization
of PFC liquid. The bursting of the liposome membrane causes a faster release of the
encapsulated drug compared to conventional liposomes, as liposomes sustain only a 3%
expansion in volume and consequently rupture due to expansion [105]. Nanoemulsions are
nano-sized emulsions with two immiscible phases, a hydrophilic phase and a hydrophobic
phase, that are thermodynamically unstable. Protein and lipids are used as surfactants
to stabilize nanoemulsions [106]. PFCs are commonly used as nanoemulsions, because of
their hydrophobic nature, biocompatibility, and non-toxic, and stable organic compounds.
PFC droplets are non-carcinogenic fluoroalkanes extensively used as contrast enhancers in
ultrasound imaging. These nanoemulsions undergo phase shifts and convert into echogenic
microbubbles, making them good candidates for ultrasonic imaging or nuclei for cavitation
events necessary for effective smart drug delivery. PFCs’ high interfacial energy in water
makes them an attractive choice; perfluoropentane (PFP), in particular, has been extensively
used due to its low boiling point close to physiological temperatures of 29 ◦C and requires
low acoustic amplitude to induce vaporization [105–110]. Koroleva and Plotniece [111]
studied the stability of nanoemulsions within liposomes using Langevin dynamics. It
was reported that the stability of nanoemulsions with higher fractions of dispersed phase
highly depends on their ζ-potentials. It was found to be higher than 40 mV, in addition to a
surfactant layer, to reduce the toxicity of dispersed phase droplets.

The phase transition of PFC droplets from liquid to gas under the effect of an acoustic
wave is called acoustic droplet vaporization (ADV) (Figure 4). This occurs when the gas’s
vapor pressure is no longer in equilibrium with its liquid state at a specified temperature,
and the liquid quickly escapes to the gaseous phase [112]. Furthermore, Laplace pressure
is the pressure imposed on the interior of the droplet because of the interfacial energy of
surface tension between the two immiscible phases compressed within the droplet. This
phenomenon is widely being used to increase the efficacy of drug delivery applications.
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Gao et al. enhanced the ultrasonic sensitivity of DOX micelles by incorporating
perfluoropentane (PFP) emulsion nanodroplets. Nanodroplets with block copolymers
poly(ethylene oxide)-block-poly(L-lactide) (PEG-PLLA) and poly(ethylene oxide)-block-
poly(caprolactone) (PEG-PCL) vaporized into nanobubbles upon insonation by acoustic
droplet vaporization [96,112,113], which passively accumulated at the tumor site and
demonstrated a 15% decrease in size from 770 ± 86 nm to 674 ± 72 nm after heating for
4 h at 37 ◦C. Nanobubbles coalesced into microbubbles and synergistically enhanced the
ultrasound-mediated DOX delivery in ovarian cancer A2780 cells in vitro. For in vivo
studies of breast cancer, MDA MB231 in nu/nu mice reveals a regression of tumor size post
administration of drug-loaded microbubbles and sonication for 150 s, with 2 W/cm2 at
3 MHz with a duty-cycle of 20%. However, in the absence of ultrasound, drug release did
not occur and was retained [97]. This was confirmed by Rapoport et al., where non-thermal
pulsed ultrasound (20% duty cycle) was used to vaporize PFP and (perfluoro-15-crown-
ether) PFCE nanodroplets to larger-sized microbubbles, as a result of the coalescence of
nanobubbles, which can further enhance echogenicity [114].

Several studies have reported the acoustically stimulated response of eLiposomes
due to the acoustically induced thermal and mechanical effects. Upon exposure to a
lower ultrasound pressure wave, nanoemulsions encapsulated inside liposomes vaporize,
resulting in an increased radius by fivefold and reduced interfacial tension 3 dyn/cm (for
DPPC). This causes the liposomes to expand and burst, releasing the drug at short exposure
times. Blasting of liposomes produces shockwaves or liquid jets that induce sonoporation
of the cell membrane, further enhancing membrane permeability [66,72,115,116]

Lattin et al. [105] were the first to utilize the novel technique of encapsulating monodis-
perse phase-shifting perfluorocarbons (PFC6) nanoemulsion droplets within the liposomes
to enhance liposomal sensitivity to ultrasound. PFC emulsion droplets were reported to
undergo acoustic droplet vaporization within the liposomal core, a phenomenon by which
liquid emulsion vaporizes to gas bubbles and cavitates upon exposure to the low-pressure
phase of ultrasound. Upon endocytosis and US exposure, expansion of PFC gas helps
rupture the endosomal membrane and release the drug directly into the cytosol of the
cell, thus, as discussed earlier, increasing ultrasound responsiveness and overcoming size
limitations posed by microbubbles. The authors discussed the properties of eLiposomes
which highly depend on the type of lipid and emulsion droplet employed. Experimental
research has suggested that using PFC5 emulsion droplets with a lower boiling point (29 ◦C)
and high vapor pressure can allow controlled vaporization and efficient drug release at
physiological temperatures.

Subsequently, they studied the release of a model drug, i.e., calcein, from eLiposomes
and explored the role of PFC emulsion droplets in drug release [117]. PFC emulsions
interacted with ultrasound and demonstrated sonosensitive behavior by undergoing a
phase transition from liquid to large gas bubbles up to 20 µm upon exposure to ultrasound.
Lattin et al. varied ultrasound power density and exposure times to demonstrate the release
of calcein from eLiposomes with different emulsions droplet sizes and control liposomes
with large or small emulsion droplets to their exterior. PFC5/PFC6 eLiposomes with large
and small emulsion droplets showed a significant increase of calcein release of up to three
to fourfold compared to control liposomes. The ultrasound exposure time of up to 10 s
demonstrated efficient calcein release (94% and 47%) from large/small-PFC5 eLiposomes,
respectively, compared to control liposomes. This was attributed to rupturing of the
liposomal membrane as a result of emulsion vaporization and sonoporation by ultrasound.
Calcein release was also proportional to ultrasound power densities, with control liposomes
showing the lowest release at every power density compared to eLiposomes. It should also
be noted that there was no significant difference in calcein release from control liposomes
with and without exterior emulsion droplets.

In another study, Javadi et al. [116] used the technique carried out by Lattin et al. [117]
to enhance drug delivery into HeLa cells by encapsulating perfluorocarbon emulsion
droplets (perfluoropentane PFC5/perfluorohexane PFC6) within the liposomal core. This
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study used low-frequency (1 W/cm2 power density and 20 kHz frequency) ultrasound
to irradiate folated emulsion liposomes in HeLa cells for 2 s. The researchers also demon-
strated the phase transition of PFC emulsion droplets from the liquid to gaseous phase
with liquid-to-gas expansion ratios of 137-fold and 125.9-fold PFC5 and PFC6. Sonication of
folate-conjugated eLiposomes demonstrated an improved in vitro uptake calcein delivery
in HeLa cells compared to non-targeted eLiposomes or targeted conventional liposomes
without PFC5 emulsions. It should be noted that targeting ligands on the surface and
phase-transitioning emulsions in the core had a synergistic effect on calcein delivery to
HeLa cells. eLiposomes were found to be ultrasound responsive to low power densities
and short exposure duration and overcome the size limitation posed by microbubbles in
helping extravasation through tumor vasculature.

In a following study, the researchers [118] further investigated the delivery of cal-
cein and plasmid transfection into HeLa cells using low-frequency ultrasound (1 W/cm2

power density and 20 kHz frequency) to trigger eLiposomal vehicles with folate conjugated
to their surfaces. eLiposomes were prepared using the same method from the previous
study [116]. Javadi et al. conducted parallel experiments to study the role of emulsion
droplets, targeting ligands, and ultrasound for drug and plasmid transfection under identi-
cal optical conditions. By comparing relative fluorescence, it was found that non-insonated
eLiposomes showed negligible calcein release; on the other hand, insonated eLiposomes
showed significantly high calcein release. In this study, the authors demonstrated a more
efficient calcein release and plasmid transfection as folated eLiposomes were endocytosed
and released their cargo into the cytosol of cells upon exposure to ultrasound. In contrast,
negligible relative fluorescence was observed in the absence of emulsions or targeting
ligands. The authors also highlighted the stability of eLiposomes in retaining uncoated
plasmids without degradation post-endocytosis.

The in vitro release of doxorubicin from folated PFC5 eLipoDox (eLiposomes seques-
tering Dox) in HeLa cells upon exposure to low-intensity ultrasound was also investi-
gated [119]. Exposure to ultrasound (1 W/cm2, 20 kHz) at increasing exposure times from
2–60 s released 80% of Dox from eLipoDox and only 50% from LipoDox. This was attributed
to the vaporization of PFC5 nanoemulsions within the liposomal core. Dox release further
increased upon increasing power intensities; however, Dox release from both eLipoDox
and LipoDox was observed to decrease as frequencies were increased. Furthermore, it
was demonstrated that folate aided the uptake of eLipoDox by HeLa cells and raised the
fluorescence intensity sixfold when compared with the release from eLipoDox with blocked
folate receptors. The authors hypothesized that the disruption of liposomal and endosomal
membranes, as a result of acoustic droplet vaporization, was responsible for the Dox release
directly into the cytosol and significantly increased cytotoxicity compared to free Dox. Thus,
eLiposomes sequestered Dox, decreasing systemic toxicity and minimizing Dox-induced
side effects such as cardiotoxicity.

Along the same lines, Husseini et al. [120] investigated the behavior and stability of
eLiposomes at elevated temperatures by monitoring the release of calcein after incubat-
ing for 15 min in order to confirm the premature vaporization of PFC5 in the absence of
ultrasound. It was suggested that heterogenous nucleation might be the possible mecha-
nism responsible for the disintegration and release at high temperatures due to dissolved
oxygen/nitrogen in PFC5, the presence of contaminants in the emulsion droplets, or other
sources. Results showed that release increased exponentially as a function of temperature;
however, eLiposomes remained stable at physiological temperatures (37 ◦C), which was
above the boiling point of PFC5 (29 ◦C). This was attributed to the Laplace pressure im-
posed on the PFC5 droplets, which raises the boiling point, keeping them stable well above
their boiling point. eLiposomes do not show premature breakage or release content until
exposed to ultrasound, thus, potentially facilitating temporal and spatial control over drug
release in drug delivery systems.

In another study, eLiposomes were tested in vitro to investigate their uptake and
release of high-molecular-weight cytotoxic mistletoe lectin-1 (ML1) and protein horseradish
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peroxidase (HRP) when exposed to HIFU. Parallel experiments were conducted to study the
role of PFC nanoemulsions in drug release [121]. It was demonstrated that eLiposomes emit-
ted stronger signals at second harmonic, subharmonic, and broadband noise signals than
PFC nanoemulsions and conventional eLiposomes. eLiposome signals further increased
upon increasing peak negative pressure from 1.5 MPa to 3.0 MPa, thus helping in forming
cavitating bubbles inside the liposomes and confirming the importance of nanoemulsions
in the interior of liposomes. eLiposome with intermediate DSPE-PEG2000 amine was
reported to be highly stable and released the highest ML1 upon exposure to 24 MPa HIFU
for 1 min inhibiting CT26 cell growth. US thermal effects were reported to be negligible.
Table 2 provides a summary of the different US-enhancing agents used in medical appli-
cations, while Table 3 presents a summary of some in vitro reports about the response of
acoustically-stimulated eLiposomes due to induced thermal and mechanical effects.

Table 2. Comparison between different US-enhancing agents [87,97,106,115].

Microbubbles Nanobubbles Nanoemulsions

Size
1–10 µm which limits
accumulation to the tumor
vasculature (380–780 nm)

200–300 nm to pass through the
tumor vasculature and destruct
upon ultrasound irradiation

10–1000 nm to improve their
stability and vaporize to form
large microbubbles upon
US irradiation

Circulation stability Short circulation time (a couple
of minutes) longer circulation time

due to low solubility, PFC gases
remain stable for much longer in
aqueous solutions in comparison
with air bubbles

Physical structure

Micron-sized gas core stabilized
by polymer, lipid, or protein
surfactants with low drug loading
capacity

Sub-micron-sized gas core
stabilized by polymer, protein, or
lipid surfactants with high drug
loading capacity

Same lipid or different lipid layers
can be used as a surfactant for
nanodroplets as well as the
liposomes encapsulating them
with high drug-loading capacity

Echogenicity
Excellent echogenicity and
enhancement of membrane
permeability by sonoporation

Echogenicity is smaller compared
to micron-sized bubbles

limited echogenicity compared
to microbubbles

Action mechanism

Upon ultrasound irradiation,
micro-scaled microbubbles may
collapse and release the drug
outside the tumor cells, leading to
a decreased anticancer efficacy

Upon ultrasound irradiation,
nanobubbles cavitate, collapse,
and release the drug within the
tumor cells.

Upon local ultrasonic irradiation,
nanoemulsion droplets vaporize
into microbubbles and enhance
the intracellular drug uptake by
tumor cells, providing a spatial
control of up to a few millimeters
or sub-millimeters.

Table 3. A summary of some in vitro studies on eLiposomes triggered by US.

eLiposome
Composition

Targeting Ligand/
Targeted Cancer

Cells
US Parameters Load Remarks Ref.

DPPA/PFC5
emulsion droplets

(100 nm)
encapsulated by
DMPC, DSPE-

PEG2000-amine
liposomes (200 nm)

Folate/ HeLa
cancer cells

varying power
densities (0.25–1

W/cm2) and variable
exposure for 2–6.4 s

Calcein and
plasmid protein

• Low-intensity US insonated
eLiposomes showed signifi-
cantly higher uptake of cal-
cein or plasmid transfection
by HeLa cells relative to non-
insonated eLiposomes.

• The presence of encapsulated
emulsion droplets and folate
moiety had a synergistic effect
in acoustically-stimulated
drug delivery within the
cell’s interior.

[118]
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Table 3. Cont.

eLiposome
Composition

Targeting Ligand/
Targeted Cancer

Cells
US Parameters Load Remarks Ref.

DMPC/Cholesterol/
DSPE-PEG2000-
amine liposomes

(200 nm)
encapsulated with

DPPC/PFC5
nanoemulsions

(100 nm)

Non-
modified/murine

CT26 colon
carcinoma cells

High-intensity
focused ultrasound

(peak negative
pressure 2–24 MPa,

frequency
1.3 MHz)

Mistletoe lectin-1
(ML1) and protein

horseradish
peroxidase (HRP)

• It was demonstrated that
eLiposomes were emit-
ted stronger at second
harmonic, subharmonic,
and broadband noise
signals compared to PFC
nanoemulsions and con-
ventional eLiposomes
further increased with
the increase in ultrasound
peak negative pressures.

• HIFU-exposed liposomes
demonstrated fourfold
more cytotoxin uptake and
apoptosis than the ones
not exposed to HIFU.

• Ultrasound-sensitive lipo-
somal formulations with
less DSPE-PEG showed the
highest stability and ul-
trasound sensitivity with
the highest drug release of
80%.

• Studies reported negligible
thermal effects with inhibi-
tion of tumor cell viability
primarily induced by cav-
itation of echogenic PFC
emulsion droplets.

[72]

eLipoDox-
DPPC/Cholesterol/

DSPE-PEG2000-
amine liposomes

encapsulated with
DPPC/PFC5

nanoemulsions

Folate/HeLa
cancer cells

1 W/cm2 power
density, 20 kHz
frequency, and

100% duty cycle
for 2 s

Doxorubicin

• The cytotoxicity of
acoustically-stimulated
folated eLipoDox is sixfold
higher than non-folated
eLipoDox or free Dox.

• Acoustic stimulation helps
release 80% of the Dox
from folated eLipoDox,
whereas LipoDox without
encapsulated emulsions
only released 50% of the
encapsulated Dox.

[119]
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Table 3. Cont.

eLiposome
Composition

Targeting Ligand/
Targeted Cancer

Cells
US Parameters Load Remarks Ref.

DSPE-PEG2000
amine/ DMPC

liposomes (200 nm)
encapsulated with

DMPC/PFC5
nanoemulsions

Folate/HeLa
cancer cells

1 W/cm2 power
density, 20 kHz

frequency for 2 s

Calcein

• Ultrasound-mediated dis-
ruption of liposomes with
folated surfaces and emul-
sions encapsulated within
them showed significant
calcein delivery into HeLa
cells compared to conven-
tional liposomes or non-
targeted liposomes.

• Results demonstrate the ne-
cessity of both sonosensi-
tive emulsions and target-
ing ligand (folate) to en-
hance drug delivery.

[116]

DMPA/DPPC/
Cholesterol/DSPE-

PEG2000-amine
liposomes

encapsulated with
DPPA/PFC5

nanoemulsions

Avidin/
hemagglutinating

virus of Japan
(HVJ)/MCF-7
Human breast

cancer cells

1.2 W/cm2 power
density, 1 MHz

frequency, and 30%
duty cycle for 30 s

Calcein and
phenylphenanthri-
dinium diiodide

(PI)
fluorescent dyes

• Avidin/HVJ co-modified
ligands helped bind PFC5
emulsion liposomes to the
MCF-7 cells, whereas ultra-
sound irradiation caused
acoustic droplet vaporiza-
tion of PCF5 and lowered
the cell viability of MCF-7
cells by 43%.

• Ultrasound induces
cavitation-aided shear
force/mild hyperthermia
that can temporarily en-
hance the permeability of
tumor vasculature and aid
in liposomal endocytosis
and drug uptake

[121]

5. Concluding Remarks

Due to the detriment to the patient’s quality of life and the potential lethality of some
of the side effects associated with the common treatments, researchers and professionals are
always venturing to find alternative novel therapeutic modalities to preserve the quality of
cancer patients’ lives. Such ventures aim at reducing the adverse side effects associated
with the available therapies, as well as to have more targeted and efficient treatments.
One of the most well-established advances is state-of-the-art nanocarriers incorporated in
SDDSs. SDDSs are nanoplatforms with important characteristics and bio-functions that
make them optimal for the remote delivery of drugs to targeted sites under controlled
release conditions. Also, the release mechanisms of such systems are controlled and can be
tuned to be stimuli-responsive to endogenous or exogenous triggers, which is an added
controlling advantage. Disadvantages associated with traditional chemotherapy, such as
nonselective systemic activity, poor drug solubility, hepatic biodegradation, dose-limiting
toxicity, and the deterioration of healthy cells, can all be overcome using nanoparticles
(NPs) as drug delivery vehicles.

Conclusively, ultrasound-mediated eLiposomal drug delivery has the potential to
significantly improve the therapeutic effects of chemotherapeutic drug delivery. With
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comparatively faster drug release at short insonation times, it is a complex process that
requires acoustic activation of phase-shifting PFC nanoemulsion droplets to vapor, which
shear opens the nanocarriers and allows the release of the drug to the cells. eLiposomal
application still holds scope for improvement in order to fully exploit the benefits of ultra-
sound parameters for drug-delivery applications. Further research must be conducted on
eLiposomal design considerations, developing uniform-size phase-shift PFC nanoemul-
sion droplets and PFC emulsion droplet incorporation in combination with other PFCs.
Furthermore, PFC nanoemulsions droplets and their use in drug delivery require in vivo
proof with a focus on eLiposomal interaction with ultrasound in an in vivo mimicking
environment and associated bioeffects with acoustic droplet vaporization.
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