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Simple Summary: Discovering new drugs and innovating medical technology which targets the
nervous system can be a challenge due to its complex nature. Over time, equations have been
developed to model the behavior of neurons, the most basic units of the nervous system. Among
these equations is the leaky integrate and fire model. Therefore, this research aims to compare two
methods for estimating this model’s solution, which depicts the neurons’ behavior. The findings
showed that Heun’s method estimated the model’s solution faster with higher accuracy and hence is
more suitable for the leaky integrate and fire model.

Abstract: The human nervous system is one of the most complex systems of the human body.
Understanding its behavior is crucial in drug discovery and developing medical devices. One
approach to understanding such a system is to model its most basic unit, neurons. The leaky integrate
and fire (LIF) method models the neurons’ response to a stimulus. Given the fact that the model’s
equation is a linear ordinary differential equation, the purpose of this research is to compare which
numerical analysis method gives the best results for the simplified version of this model. Adams
predictor and corrector (AB4-AM4) and Heun’s methods were then used to solve the equation. In
addition, this study further researches the effects of different current input models on the LIF’s
voltage output. In terms of the computational time, Heun’s method was 0.01191 s on average which
is much less than that of the AB-AM4 method (0.057138) for a constant DC input. As for the root
mean square error, the AB-AM4 method had a much lower value (0.0061) compared to that of Heun’s
method (0.3272) for the same constant input. Therefore, our results show that Heun’s method is best
suited for the simplified LIF model since it had the lowest computation time of 36 ms, was stable
over a larger range, and had an accuracy of 72% for the varying sinusoidal current input model.

Keywords: computational neuroscience; numerical analysis; neuroinformatics; leaky integrate and
fire (LIF); Adams predictor and corrector; Heun’s method

MSC: 37N25

1. Introduction

From a biological perspective, the dendrites, soma, and axon are the three functionally
distinct parts of a typical spiking neuron. The dendrites are the receiving ends of the
neuron, which function as signal-collecting terminals (i.e., input terminals). The signals
are then passed to the soma, which acts as the central processing unit that implements a
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nonlinear signal-refining process. As the signal propagates through the soma, an output
is generated when the input exceeds a certain threshold. The output signal is then “fired
off” or transmitted to the receiving neurons through the axon-terminal, manifested as
short electrical pulses. These electrical pulses are also known as output spikes or action
potentials, with voltages of about 100 mV that persist for 1 to 2 ms [1,2]. Synapses are
defined as the interconnecting junctions between neurons, where signals are passed from
one neuron’s end terminal to another neuron’s receiving terminal. Figure S1a shows an
oversimplified illustration of the anatomy of the neuron [2], including the dendrites, soma,
and axon, while Figure S1b visualizes the depicted block diagram of a neuron [3].

Neurotransmitters are chemical messenger molecules that transmit signals between
different neurons or between neurons and other recipient cells (e.g., muscle cells). The
process of neuron signaling is based on the generation of synapses which are fundamental
in constructing more complex neural networks. There are two types of synapses: electrical
and chemical [4]. Chemical synapses (Figure S2) occur when a presynaptic action potential
propagates through the sending neuron and stimulates the release of neurotransmitters,
which are stored at the presynaptic terminal in synaptic vesicles. While resting, neurons
have a negative membrane potential [5]. When a nerve impulse reaches the axon’s terminal,
depolarization effects cause the voltage-gated calcium ion channels to open and allow an
influx of Ca2+ ions into the presynaptic terminal. The increased concentration of calcium
ions induces the fusion of the loaded-synaptic vesicles with the membrane, thus the release
of neurotransmitters [6]. These chemical messengers then diffuse through the synaptic
cleft and bind to the postsynaptic receptors abundant on the signal-receiving side. The
interaction between the neurotransmitter and the receptor is akin to the lock-and-key
mechanism, as specific receptors bind specific signaling molecules. Thus, a physiological
signal is generated in response to that certain neural activity. Generally, neurotransmitters
can rapidly induce activation of ion channels and spawn fast synaptic transmission (e.g.,
acetylcholine (Ach) and epinephrine), or can modulate longer-lived actions that act on a
protracted time scale (e.g., dopamine) [4,6]. Upon delivering the message, these neurotrans-
mitters are terminated/inactivated to avoid excess buildup or diffusion to inappropriate
synapses by (i) drifting and diffusing away from the synaptic cleft, (ii) moving away by
transporter molecules, (iii) being reabsorbed by the sending neuron in a process known as
reuptake, or (iv) being degrading by enzymes [6].

While there are more than 100 well-identified neurotransmitters, they can be classified
according to their chemical group [7]. Some of the common classes are (i) monoamines
and acetylcholine, such as dopamine, serotonin, and histamine, (ii) amino acids, such as
glutamate and glycine, (iii) purines, such as adenosine, (iv) lipids, such as anandamide,
and (v) peptides such as oxytocin, somatostatin, and orexin [7]. Neurotransmitters can
also be broadly categorized into excitatory, inhibitory, and modulatory based on the action
they trigger at the postsynaptic end [8]. An excitatory neurotransmitter causes a neuron to
“fire off” a signal that propagates to the next receiving neuron. For example, acetylcholine
is an excitatory neurotransmitter that effectuates motivation, attention, and memory. On
the contrary, an inhibitory neurotransmitter halts firing off an action potential; thus, the
neural activity is terminated, and relaxation-like effects are induced [8]. Serotonin is an
inhibitory neurotransmitter that plays a key role in mood regulation, sleep patterns, and
sexual desire. Serotonin deficiency has been associated with anxiety, depression, appetite,
and schizophrenia. Modulatory neurotransmitters, also known as neuromodulators, are
unique in that they can simultaneously act on a larger number of target neurons [7].

Table 1 lists some of the most common neurotransmitters associated with key functions
in the human body. It is noteworthy to mention that some neurotransmitters, such as
dopamine, can induce excitatory or inhibitory effects depending on the receptors present
at the postsynaptic end. To elaborate, dopamine can inhibit the secretion of prolactin
and mediate natural rewards in the brain [9]. Likewise, acetylcholine can have inhibitory
effects on the heart (i.e., control the heart rate) or excitatory effects on neuromuscular
junctions. Glutamate is the primary excitatory neurotransmitter, while GABA is the major
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inhibitory neurotransmitter in the central nervous system. Adrenaline and noradrenaline
are excitatory neurotransmitters that play key roles in the fight or flight mechanism, whereas
serotonin is an inhibitory neurotransmitter that aids in modulating mood and appetite [8].

Table 1. List of common neurotransmitters and their functions [5–7].

Neurotransmitter Function

Dopamine The pleasure neurotransmitter, associated with satisfaction,
motivation, and addiction.

Acetylcholine The learning neurotransmitter, associated with thought,
memory, attention, and sensory perception.

Gamma-Aminobutyric
acid (GABA)

The calming neurotransmitter, associated with mental focus
and relaxation.

Noradrenaline
The concentration neurotransmitter, also known as
norepinephrine. Associated with attention and involved in the
fight or flight action mechanism.

Serotonin
The mood neurotransmitter, associated with happiness,
well-being, and regular sleep patterns. Deficiency can cause
depression and anxiety.

Adrenaline The fight or flight transmitter, associated with exciting
stimulations, high-stress rates, and elevated awareness.

Glutamate The memory transmitter, associated with cognitive functions,
learning, and memory.

The challenge of clearly understanding the brain’s complexity has long been a neu-
roscience focus. Using simplified models, researchers can investigate the computational
processes associated with single neuron activity to aid in understanding the brain’s com-
plexity. Then, single-neuron models can be used in larger network models that attempt
to explain network computation, in addition to the benefits of clarifying mechanisms for
single-neuron behavior [10].

To illustrate, the Hodgkin–Huxley model describes how neurons initiate action poten-
tials and how these signals propagate from one neuron to another by mapping between
multiple variables, such as the membrane potential at equilibrium and the intracellular cal-
cium concentration. Although it provides an understanding of such neuron behavior, it is
complex, making it challenging to find suitable/accurate parameters and computationally
expensive [10]. The neuron model shares many similarities with the electrical circuit; hence,
it can be modeled using essential electrical components. The flow of the ions mimics the
current, and the capacitance can describe the difference in the potential.

Equation (1) and Figure 1 show the Hodgkin–Huxley Model where I(t) is the current
acting on the cell membrane, V(t) is the membrane potential, Cm is the membrane capaci-
tance, gL is the membrane conductance, and EL is the equilibrium potential, also known as
the “leak”. Hence, a more simplified model is required to simulate such behavior.

The leaky integrate and fire (LIF) model is the linearized and simplified version of
the Hodgkin–Huxley model. It is obtained from Equation (1) by replacing the INa + IK
with a threshold for spike emission followed by a reset to a fixed potential. The expression
IH + IAHP is omitted for simplification purposes. If included, the model is called the
generalized leaky integrate and fire model (GLIF) [11].
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Figure 1. Hodgkin–Huxley model describes the exchange of ionic species across the extracellular and
intracellular space separated by a biological membrane. Cm refers to the membrane capacitance, t is
time, Vm is the membrane voltage, VL is leakage voltage, and Ip is the ionic current through the ion
pumps. Figure inspired from [1].

Therefore, the equation becomes:

Cm
dV
dt

= −gL(V − EL) + I (2)

where EL is the resting potential. After dividing by gL, Equation (3) is obtained:

Cm

gL

dV
dt

= −(V − EL) +
I

gL
(3)

I = Cm
dV
dt

+ gL(V − EL) + INa + IK + IH + IAHP (1)

Since the membrane resistance Rm is inversely proportional to the conductance gL
(Rm = 1

gL
) and the time constant of the capacitor membrane is τm = RmCm, the equation

becomes:
τm

dV
dt

= −(V − EL) + Rm I (4)

The final ordinary differential equation (ODE) of the simplified LIF model is shown in
Equation (5):

dV(t)
dt = −(V−EL)+Rm I(t)

τm
i f V(t) ≤ Vth

V(t) = EL Otherwise
(5)

In addition, the following values of the parameters were found in the literature [12]:
EL = −75 mV, Rm = 10 MΩ, and τm = 10 µs such that at the beginning of time t = 0, the
voltage is equal to the resting value (−75 mV). Substituting Equation (5) with these values
will result in Equation (6):

dV(t)
dt

=
−(V(t)− (−75)) + (10)I(t)

10
i f V(t) ≤ Vth (6)
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Finally, the analytical or exact solution (7) of the LIF model with a current input with
the initial condition of VReset = EL can be obtained by using the separation of variables
with the necessary limits applied [12]:

V(t) = EL + Rm I + (VReset − EL − Rm I)e
−1
τm (7)

Once a voltage threshold is crossed, the LIF model often inserts a spike, followed by
decay, a step decrease, and/or a refractory period [13].

Many works have compared the different spiking conditions and computed the com-
putational cost of numerical methods (forward Euler, RK4, and exponential Euler) on the
LIF with regular spiking, Hodgkin–Huxley, and Izhikevich [14].

From a perspective of comparing the application of numerical analyses on different
neuron models, AbdelAty et al. studied the fractional-order LIF (FO-LIF) and fractional-
order Hodgkin–Huxley (FO-HH) model by applying numerical approximation methods,
including the L1 algorithm, the Grunwald–Letnikov (GL) method, the FO-PI rectangular
rule, and the Z-Transform approach [15]. It was found that the direction of adaptation varies
between numerical approaches; for instance, the L1 approximation exhibits an upward
spike frequency adaptation, while the PI-Rect rule exhibits a downward adaptation [15]. In
another comparative study, Prada et al. used forward Euler to estimate the Neuroid and
LIF models [16]. The Neuroid model is useful in understanding how functionally different
neuron populations contribute to sensory information processing, but it has not been
compared previously with other models in terms of computational cost and accuracy [16].
Their results showed that the Neuroid model is useful for a handful of applications. When
computational resources are limited, Chicco et al. in [14] concluded that the exponential
Euler method is more suitable for the Hodgkin–Huxley model, RK4 for the Izhikevich
modal, and forward Euler for the LIF model. Another example of examining multiple
models was that of Syahid and Yuniati. They applied the Euler method and Hodgkin–
Huxley, Izhikevich, and Wilson models to simulate the different spiking behaviors [17].
Their results show that both the LIF and Hodgkin–Huxley models can produce only regular
spikes, unlike the other models that produce fast-spiking and intrinsic bursting.

Spiking patterns with LIF have been used in the past in conjunction with neural
networks [13]. The authors choose to solve the model by explicit Euler. However, not an
intuitive choice, second-order numerical approximation methods such as shooting methods
have also been applied to find the LIF model’s most likely voltage path [18].

Vidybida developed an interesting technique in [19] to use their approximation algo-
rithm to solve the LIF model by replacing floating point numbers with integer values which
provided a more faithful representation of the binding neuron states and since floating
points cause inaccuracies preventing exact comparison of such quantities [19].

To focus more on the numerical analysis perspective, while the Euler method was
widely popular in determining the exact solution of other neuron models, it does not fall
short with several limitations, and hence, Heun’s method was developed. To provide
further details concerning the origin of Heun’s method, Heun’s approach is built upon
that of Euler’s [20]. Euler’s technique uses the line tangent to the function at the beginning
of the interval to estimate the slope of the function over the interval because a small step
size will result in a minor inaccuracy. However, even with minute step sizes, the estimate
tends to deviate from the real functional value after a significant number of steps because
of the accumulation of errors. In cases where the solution curve is concave upwards, its
tangent line will overestimate the subsequent point’s vertical coordinate. Furthermore, the
opposite will be true in cases where it is concave downwards. The vertical coordinates of
all the points along the tangent line of the left end point, including the right endpoint of
the interval under discussion, are smaller than those of the points that fall on the solution
curve. Slightly steepening the slope is the key to solving this issue. Heun’s method takes
into account the interval’s two tangent lines, one of which overestimates the ideal vertical
coordinates and the other of which underestimates it. The slope of the right endpoint
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tangent alone, estimated by Euler’s method, must be used to build a prediction line. The
result is too steep to be utilized as an ideal prediction line and overestimates the ideal
point if this slope is passed via the interval’s left endpoint [20]. Heun’s method has several
applications contributing to modern applications of science. For instance, it has been
applied in deep learning applications such as Maleki et al.’s newly developed “HeunNet”,
a neural network model that improves the performance of ResNet [21]. It has also been
applied to emerging health challenges similar to Fatoba’s study where it was used to solve
the model of the susceptible, infectious, recovery, and death (SIRD) COVID-19 model [22].
However, its potential has not been discovered in solving LIF models.

Another model worth highlighting is the Adams predictor and corrector method (AB4-
AM4). Yucedag and Dalkiran [23] applied several numerical analysis techniques (including
AB4-AM4) on the Hodgkin–Huxley, FitzHugh–Nagumo, Morris–Lecar, Hindmarsh–Rose,
and Izhikevich neuron models. They compared simulation and experimentation results
by implementing the models on a Raspberry Pi. This method yielded the least errors
for the implementation of the Izhikevich on Raspberry Pi compared to the simulation
results. However, their study was limited to the external digital-to-analog converter’s
sampling rate, which could have partially contributed to this error. It was needed since the
Raspberry Pi does not have existing analog outputs [23]. Similar implementation studies
also compared similar models but with different hardware, such as a field programmable
gate array [24]. In all cases, none of these studies explored AB4-AM4’s application on the
LIF model, which further emphasizes the novelty of this study.

Although modeling neurons with the Hodgkin–Huxley model and others have many
disadvantages/drawbacks, the LIF model requires 95% fewer computations than the other
neuron models [14], and their full capacity with different numerical approximations is a
compelling branch of work. This research aims to study which numerical analysis method
is best suited for solving the LIF ordinary equation by applying Heun and Adams predictor
and corrector (AB4-AM4) methods and calculating their error values as the computation
time. This research also studies the effect of different input current models on the output
membrane potential voltage using the same LIF model.

2. Materials and Methods

Researchers have previously applied numerical analysis to the family of LIF models.
For example, Sharma et al. [25] compared the finite element method (FEM) and the weighted
essentially non-oscillatory (WENO) finite difference approximation on a nonlinear noisy LIF
model and found that the FEM approach might yield better results compared to WENO. In
addition, a postgraduate summer computational neuroscience summer school [12] applied
the implicit Euler method to calculate the neurons’ membrane potential (V). On the other
hand, no study has attempted to apply Heun’s method and other numerical approximation
methods to the simplified LIF model. Therefore, we chose Heun’s method and AB4-AM4
for our analysis.

2.1. Heun’s Method

Heun’s method, also known as the improved Euler’s method, is a numerical technique
for analyzing first-order ordinary differential equations [26]. Heun’s method is also consid-
ered the 2nd-order Runge Kutta (RK2) method and is more accurate than the original Euler
methods by correcting the error of these methods through a mean slope [15].

Equation (8) shows the mathematical expression of this method:

yc
n+1 = yn +

dt
2

[
( f (xn, yn) + f

(
xn+1, yp

n+1

)]
f or n = 0, 1, 2, 3 . . .

(8)

where dt is the step size, yc is the corrector, and yp is the predictor.
Stability is a concern in ordinary differential equations such that an equation is

considered stable if its solution behaves in a controlled and bounded way. Concern-
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ing the stability of Heun’s method, according to [27], it is conditionally stable based on
Equations (9) and (10), given that y′ = λy (λ ∈ ⊆) where S is the stability function:

S(hλ) = 1− dtλ+
1
2
(hλ)2 (9)

stable i f 0 < dtλ < 2 (10)

Based on [16], Equation (11) shows the time step values that ensure stability using
Heun’s method.

Figure 2 shows the stability plot for Heun’s method. For our specific equation,
λ = 1

τm
= 1

10 since V is multiplied by 1
τm

in Equation (5). Therefore, the stability con-
dition becomes as shown in Equation (11).

0 < dt× 0.1 < 2
0 < dt < 20

(11)
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The region of absolute stability for Heun’s method, presented in Figure 2, is the
region translated in the complex z plane. The figure depicts that the absolute region for
Heun’s method is centered around −1 and has an interval of {−2,0}, as concluded from
Equation (11). However, each ODE will depend on “λ× dt” where λ is allowed to be
complex as, in reality, it portrays the eigenvalue of the Jacobi matrix.

2.2. The AB4-AM4 Method

Adams methods belong to the family of multipoint methods. They were also devel-
oped over the finite grid rather than finite-element-based approaches but are coupled with
Newton’s difference polynomial. They can be understood as the aggregation of the kth-
degree Newton back difference polynomial. Like Euler’s methods, they can be classified as
explicit and implicit, where the explicit is termed as the Adams–Bashforth (AB) method
and the latter is termed as the Adams–Moulton (AM) method [28].

The implicit AM does not suffer from numerical instability, whereas AB is unstable
for relatively large values of differential time (dt). Since both AM and AB are fourth-order
accurate, they are best used in conjunction as predictors and correctors. More specifically,
AB is used as the predictor, whereas AM is used as a corrector.

The number of steps can be chosen to be two or four, which is dictated by k; in the
two-step method, only the last step and the point itself are considered, whereas when using
the four-step method, the consecutive three previous time stamps need to be considered.
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Adams methods are widely used in targeting stiff equations. The capacitance mod-
eled in the equation can exhibit stiff behavior and thus motivates using Adam. Another
motivation for using AB4-AM4 is that it solves multiplicative initial value problems, which
is the case of the LIF model [29]. They are also known to be less computationally extensive
compared to Runge–Kutta methods [28].

AB4-AM4 predictor and corrector formulas are given in Equations (12) and (13), respectively.

yp
i+1 = yi +

dt
24

(55 f (ti, yi)− 59 f (ti−1, yi−1) + 37 f (ti−2, yi−2)− 9 f (ti−3, yi−3)) (12)

yc
i+1 = yi +

dt
24

(9 f (ti+1, yi+1) + 19 f (ti, yi)− 5 f (ti−1, yi−1) + f (ti−2, yi−2)) (13)

The stability analysis is crucial for all of the techniques as they provide the validity of
the results in conjunction with the methods being applied.

A method qualifies to be stable if it produces bounded solutions for a stable ODE; the
amplification factor or gain (G) that describes the relationship between the solution at the
current time stamp with the preceding is employed [30]. Thus, the gain polynomial was
used to draw reasonable conclusions regarding the stability.

The gain equation (14) for stability yielded for AB4-AM4 is dependent on the variables
dt and α, the constant dictating our ODE. The α derived from the original ODE is 1/τ,
where τ was 10.

G4 +

(
55(αdt)

24
− 1
)

G3 −
(

59(αdt)
24

)
G2 +

(
37(αdt)

24

)
G−

(
9(αdt)

24

)
= 0 (14)

And dt is again the step size.
The equation was solved by finding the roots of the equations for a set of dt values;

the four gains were found, which were complex, and for concluding, the absolute polar
component of each G must be strictly less than one, as indicated by the horizontal line in
the figure.

Each G in the equation can be denoted as G1, G2, and so forth, depending on the
power. Solving for dt where Gs are equal or less than one will dictate the value of dt for
stable behavior. The last two Gs (G3 and G4) are equal by the nature of the equation. The
results obtained are presented in Figure 3, and they illustrate the conditions for stability
as well and dt required to maintain it. As seen from the graph, dt = 30 ms is the point that
satisfies the condition of all |Gs|to be less than one. The maximum timestamp 30 ms was
also indicated in the figure in a red dashed line.
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3. Results and Discussion
3.1. Heun’s Method

Based on Heun’s stability condition for this specific LIF model, step size values were
studied to see the instability effect. Figure 4 shows the effect of these values below and
above 20 ms, specifically dt = 0.2 ms and dt = 50 ms. At a step size of 0.2 ms and lower,
it was found that the numerical Heun’s solution had a similar behavior compared to the
true and exact graph. However, at a step size of 5 ms and above, it was shown that the
solution has an irregular behavior for a time interval of less than 100 ms, indicating an
error-prone behavior. The unstable behavior is declared in Figure 2 and therefore, it can be
concluded that Heun’s method is indeed conditionally stable, more precisely for step size
values between 0 and 20 ms. Though it is not a precise judgment of stability, it is a rough
approximation of the oscillation and finding the fallacy of solutions.
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behavior in matching true solutions observed.

The value that was tested beyond the stable region was 50 ms, and the solution
completely diverges for that case.

From Figure 5, the membrane potential exponentially increases from −75 mV, then
plateaus at 20 mV after a certain time, indicating that the neuron is excited, transmitting
this signal to a neighboring neuron. While it is not the most accurate representation of
the real behavior of a neuron (neurons are noisier and more complex), it does suffice for
efficient modeling.

3.2. AB4-AM4 Method

The AB4-AM4 method was implemented on MATLAB, where the four initial guesses
were sourced from RK4. Based on the stability analysis, the values for time stamps of
interest were less than 30 ms.

However, swept analyses were performed, as shown in Figure 6b to affirm the unstable
behavior of the solution obtained, passing the dt limit.
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Figure 5. Effect of the constant current on the membrane (top) and Heun’s method compared with
analytical solution (bottom) for step size (dt) = 0.2 ms.
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approximate the voltage in the membrane with the DC input current, and (b) error comparison
(exact-calculated) for different step size values of the AB4-AM4 numerical solution.

The results observed in Table 2 show that for the DC input, the accuracy was highest
for dt = 0.01 ms, with the computational time being the most. Nonetheless, since the
errors for all the values of dt were within reasonable limits for 0.01 < dt < 30, any dt from
that range should suffice as a suitable choice. Though 30 ms is the maximum limit for
stability, it can be observed that the error starts increasing beyond 5 ms. Usually, a good
choice for the step size is at least 50% or less than the maximum size to prevent overshoot.
Since dt = 0.2 ms seemed to give the best results and the trade-off between the computational
cost and accuracy was minuscule, it was chosen for the comparative results and was plotted
against the exact solution, as shown in Figure 6a. The values of dt below 1 are all very
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accurate and generate a minimal error; it is even hard to distinguish between them, as in
Figure 6b, whereas the unstable error from dt = 10 is prevalent.

Table 2. Heun’s method and AB4-AM4 comparative analysis for DC input.

Numerical Method Step Size dt (ms) Computation Time (s) Absolute Mean
Percentage Error (%) Root Mean Square Error

Heun’s
0.01 0.0826 2.0387 × 10−7 8.3395 × 10−7

0.1 0.0064 6.6103 × 10−5 8.3958 × 10−5

0.2 0.0036 5.4455 × 10−5 3.3836 × 10−4

0.5 0.0022 0.0025 0.0022
1 0.0003 0.0208 0.0090
5 0.0001 0.4541 0.3128
10 63.5990 × 10−6 0.6498 1.9663
50 13.4590 × 10−6 8.3671 × 1019 8.5172 × 1019

0.01 0.3904 5.5039 × 10−12 1.1719 × 10−12

AB4-AM4 0.1 0.0403 5.4082 × 10−9 2.6940 × 10−10

0.2 0.0139 8.2763 × 10−8 4.3999 × 10−9

0.5 0.0067 3.1298 × 10−6 1.8161 × 10−7

1 0.0046 6.5745 × 10−5 3.1387 × 10−6

5 0.0008 2.2389 × 10−2 2.5725 × 10−3

10 0.0003 4.2699 × 10−1 4.0556 × 10−2

50 0.0001 6.9347 × 1024 1.7337 × 1024

3.3. Comparison of Numerical Methods

Table 1 summarizes the computation time, absolute mean percentage error, and ab-
solute root means square error results of both Heun’s method and the AB4-AM4 method
based on different dt values. To find the accuracy at each time step for each method, the
absolute mean percentage error is applied, Equation (15):

Absolute Percentage Error =
Vtrue −Vestimated

Vtrue
× 100 (15)

Averaging Equation (15) will result in the absolute mean percentage error.
Another metric for assessing the accuracy is the root mean square error (RMSE) [31],

which is governed by Equation (16):

RMSE =

√
1
m

m

∑
i=1

(Vtrue −Vestimated)
2 (16)

Based on Table 2 and the effect of the step size on the computation time and the two
types of errors, the smaller the step size is, the fewer errors both of the numerical methods
encounter, but the more computationally expensive it becomes to compute them with time.

Whist comparing Heun’s method and the AB4-AM4 method, Heun’s method is faster
in computation time than AB4-AM4, but AB4-AM4 has fewer errors compared to Heun’s
method. In that case, both methods have a trade-off between time and accuracy. In addition,
the execution of these methods also depends on the available computational resources. For
instance, a supercomputer might hypothetically be able to finalize computing both Heun’s
method and the AB4-AM4 method in relatively the same amount of time. In such a case,
one model could be more laborious and energy-intensive compared to the other. Therefore,
it depends on the purpose of using the LIF model. If it is for rapid prototyping of medical
devices for treating neuromuscular disorders, for instance, then Heun’s method would be
a better choice for solving the model, as it provides reasonable accuracy in a shorter time.

On the other hand, if the application does not have a strict time constraint and there is
a higher need for accuracy in understanding the behavioral mechanisms of a neuron, then
the AB4-AM4 method would be the appropriate method.
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3.4. Comparison of the Alternating Current (AC) Input Current with the Constant Current (DC)

In nature, the bioelectric current is not constant but rather varies with time. For
simplification purposes in this work, our study modeled the bioelectric current as a constant.
We also aim to study the effect of other commonly used input current models. Some
researchers [16] resorted to a simple sinusoidal current to simulate such signals’ varying
with time. Equation (17) [32] shows the alternating sinusoidal current model, also depicted
in Figure 7, with a frequency of 6 MHz:

IAC = sin
(

4 ∗ 2π

105 t
)
+ 2 (17)
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The simplified LIF model was numerically approximated with the AB4-AM4 method
with varying input for the same range. The results showed that the numerical method could
be approximated by varying the conditions of the model. Figure 8 shows the estimated
output voltage with varying current conditions.

Mathematics 2023, 11, x FOR PEER REVIEW 13 of 16 
 

 

 

 

Figure 7. The varying input current. 

The simplified LIF model was numerically approximated with the AB4-AM4 method 
with varying input for the same range. The results showed that the numerical method 
could be approximated by varying the conditions of the model. Figure 8 shows the esti-
mated output voltage with varying current conditions. 

 

Figure 8. The estimated voltage from the AM4-AB4 method versus the exact voltage plotted when 
the current is also varying. 

The MAE and RMSE were obtained to be 0.2796 and 0.0582, respectively. Though 
these results are good approximations, they show that more variables must be added to 
the original LIF model to manage more complex inputs and move closer to modeling the 
actual neuron behavior. 

Since these methods are based on the last or multiple last calculated values, the error 
aggregates and grows if the preceding value is not accurate. Therefore, it needs to be en-
sured that the error at each step is minimized, which gives room for adaptive techniques, 
which are a few techniques that can be explored in these methods.  

In one of their studies, Shelley and Tao studied the effect of the time step of RK2 and 
RK4 on a LIF model with spikes [16]. They found that to achieve a six-digit accuracy, a 
time step of 0.5 ൈ 10ିଷ 𝑠 for RK4 and 10ିହ 𝑠 for RK2 was required. As for the choices 

Figure 8. The estimated voltage from the AM4-AB4 method versus the exact voltage plotted when
the current is also varying.



Mathematics 2023, 11, 714 13 of 15

The MAE and RMSE were obtained to be 0.2796 and 0.0582, respectively. Though
these results are good approximations, they show that more variables must be added to
the original LIF model to manage more complex inputs and move closer to modeling the
actual neuron behavior.

Since these methods are based on the last or multiple last calculated values, the error
aggregates and grows if the preceding value is not accurate. Therefore, it needs to be
ensured that the error at each step is minimized, which gives room for adaptive techniques,
which are a few techniques that can be explored in these methods.

In one of their studies, Shelley and Tao studied the effect of the time step of RK2 and
RK4 on a LIF model with spikes [16]. They found that to achieve a six-digit accuracy, a time
step of 0.5× 10−3 s for RK4 and 10−5 s for RK2 was required. As for the choices on step
sizes, a smaller step size results in fewer approximation errors for the LIF model for the
numerical analysis [33–35], as it would intuitively. The results obtained in this study are
very close and provide a good approximation.

Whilst other researchers did apply numerical methods to LIF models with spikes and
sometimes with noise, this study also studies the computational cost and time step of the
AB4-AM4 method. It also compares its performance with Heun’s method in both constant
and varying inputs of the current of the LIF model.

4. Conclusions

In conclusion, this paper discusses the importance of modeling neurons, specifically
using the simplified LIF model, to understand their behavior better. Since the model is an
ordinary differential equation, we proposed two numerical methods that have not been
previously applied to this equation. It was found that Heun’s method (a second-order
method) provides reasonable and precise estimates with good computational costs for our
time-sensitive application. Since the tested models are still not extensively inclusive of real-
life mimicking of neurons, the future perspective involves incorporating a spike behavior
to the voltage for a more realistic model of the neurons’ behavior. Furthermore, simulating
various additive white gaussian noises along with current input are to be explored as those
aid in mimicking the most accurate behavior of a neuron.
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and neuro-signaling.
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