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Abstract 

With the incredible surge of the internet and surveillance footage, there is a vast number 

of digital videos. The need to summarize these videos within databases is very crucial. 

This is where video summarization comes in handy. Video summarization can be 

achieved by a number of techniques. This study proposes a novel solution for the 

detection of key-frames for static video summarization. We preprocessed the well-

known video datasets by coding them using the HEVC video coding standard. During 

coding, 64 proposed features were generated from the coder for each frame. 

Additionally, we extracted RGB frames from the original raw videos and fed them into 

pre-trained CNN networks for feature extraction. These include GoogleNet, AlexNet, 

Inception-ResNet-v2, and VGG16. The modified datasets are made publicly available 

to the research community.  A subset of the proposed HEVC feature set was used to 

identify duplicate or similar frames and eliminate them from the video. We also propose 

an elimination solution based on the sum of the absolute differences between a frame 

and its motion-compensated predecessor. The proposed solutions are compared with 

existing works based on an SIFT flow algorithm that uses CNN features. Subsequently, 

an optional dimensionality reduction based on stepwise regression was applied to the 

feature vectors prior to detecting key-frames. The proposed solution is compared with 

existing studies that use sparse autoencoders with CNN features for dimensionality 

reduction. The accuracy of the proposed key-frame detection system was assessed using 

the Positive Predictive Values, Sensitivity, and F-score metrics. Combining the 

proposed solution with Multi-CNN features and using a Random Forests classifier, it 

was shown that the proposed solution achieved an average F-score of 0.98. 

 

Key words: Static Video Summarization, Convolution Neural Networks (CNN), 

Duplicate Frames, Sparse Autoencoders, Random Forests classifier, Video Coding, 

High Efficiency Video Codec (HEVC), Motion estimation, Motion compensation, 

Stepwise regression. 
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Chapter 1.  Introduction 

With the incredible surge of the internet and surveillance footage, there is a vast number 

of digital videos. According to the latest estimates in 2020, over 500 hours of video are 

uploaded to YouTube every minute, or over 700,000 hours per day. YouTube is not the 

only digital video host on the internet of course, there are tens and hundreds of other 

social network platforms with huge amounts of video content. Another source of huge 

video content is in security or surveillance applications, where there are millions of 

cameras around the globe recording footage at all times during the day. Hence, the need 

to summarize these videos within databases is very crucial for easier navigation and 

retrieval for both general users and database administrators. This is where video 

summarization comes in handy. Video summarization is the process of generating a 

meaningful summary of the original video, which in return facilitates video retrieval, 

anomaly detection [1] and activity monitoring. Some real-life applications of video 

summarization in the entertainment field are, but not limited to, automatic generation 

of movies or TV shows trailers or highlights of a sports or musical event. There are also 

other applications of video summarization in the digital surveillance field like automatic 

summary generation of the last 24-hours of surveillance footage for time-sensitive 

security monitoring. 

1.1. Overview 

Video summarization can be achieved by a number of methods or techniques. These 

techniques can be categorized into two groups [2]. The first is selecting sections or short 

cuts of the original video, and the second is selecting key-frames that represent the 

original video. Key-frame selection techniques require manual human annotation of the 

videos in order to automate the training of frame selection. This technique is the more 

common one of the two video summarization techniques mentioned. Therefore, this 

research focuses on video summarization by automatically selecting key-frames in a 

video. 

The video summarization task is computationally demanding, and newer, more efficient 

approaches are always needed. If all frames within a video are examined for selection, 

the summarization process can be slow, and time and computational power are wasted 

on redundant or similar frames. Additionally, for any set of features, space reduction 
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should be used to accelerate the process and ensure that only meaningful features are 

considered [3]. This study aims to address these two issues. 

Deep Learning has gained tremendous popularity in recent years when it comes to 

generation tasks in image and video processing. There are many tools that can be used 

either independently or in combination to achieve the desired results. Most notably, 

Conventional Neural Networks (CNN) [4] and Random Forests [5]. 

1.2. Problem Statement 

Because of social media and video monitoring, the number of digital videos is growing 

at an exponential rate. To make information retrieval easier and decrease data storage 

needs, video summarization is required. However, the video summarization task is 

computationally taxing. If all frames within a video are to be examined for selection 

then the summarization process can be extremely slow and precious time and 

computational power is wasted on redundant or similar frames. Also, for any set of 

features, space reduction should be used to speed-up the process and ensure that only 

meaningful features are considered. This research aims at addressing these two issues.  

The Deep Learning community happens to fall in the computer and data science field, 

while and video compression community falls in the electrical engineering field. The 

separation in these research areas leads the Deep Learning community to often lack 

sufficient or professional comprehension in video compression. In the Deep Learning 

world, and with the growth of the High Efficiency Video Codec (HEVC) [6] video 

standard, HEVC information found in the video bitstream is often ignored and not used 

to its full potential. This research intends on using low level HEVC features in 

combination with CNN features to aid in the video summarization task. 

1.3. Thesis Objectives 

This research’s main priority is the examination of low-level HEVC features, and how 

useful they can be in the video summarization task. The integration of HEVC features 

can take several forms, including merging bit stream information with CNN feature 

maps derived from image groups, or constructing a separate channel for deep leaning 

based on HEVC bit stream information and then fusing the output with classical CNN 

based results. This research also aims at introducing novel methods for the elimination 

of similar frames in the preprocessing stage of the methodology. The aforementioned 
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contributions should be massive enough, but the most influential contribution of this 

research is in the form of incorporating Deep Learning-based video summarization 

techniques with the use of HEVC features. The planned efforts will also look at the 

impact of the offered improvements on the video summarizing process' overall 

correctness and performance. 

1.4. Research Contribution 

A summary of this research contributions to the body of the literature is in the following 

points: 

• The introduction of the low-level HEVC feature sets suitable for video 

summarization. HEVC features could also be used in a variety of applications where 

image or video processing is involved. 

• The proposal of novel methods for frame elimination: 

o Frame elimination based on HEVC features. 

o Frame elimination based on motion estimation and compensation. 

• These contributions resulted in promising results that outperform state-of-the-art 

works in the literature. 

1.5. Thesis Organization 

This paper is structured as follows: Chapter 2 has the literature review, where the 

reviewed works are grouped based on the main architecture used. Followed by Chapter 

3 which has the proposed methodology and explains each component of the system in 

detail and at length. Then, we have Chapter 4 that presents our experimental results and 

compares them against previous state-of-the-art works in the literature. Finally, Chapter 

5 contains the conclusion summary and future work. 
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Chapter 2.  Literature Review 

Video summarization has been researched and studied extensively in the past decade 

due to the incredible surge of videos online and the challenges that come with sorting 

and saving these videos in huge databases. This section summarizes the efforts found 

in the literature that tackle the video summarization task, especially Deep Learning-

based methods. 

2.1. LSTM-based Video Summarization 

Long Short-Term Memory (LSTM) networks were employed by [7] to describe the 

variable-range temporal dependence among video frames and to create representative 

and concise video summaries, casting the job as a structured prediction problem. Their 

approach generates state-of-the-art performance on benchmark datasets by correctly 

accounting for sequential structure, which is essential for producing insightful video 

summaries. They also deal with the requirement for a sizable volume of annotated data 

for sophisticated training methods. The major goal was to make use of supplementary 

annotated video summarization datasets, despite the fact that they varied widely in 

terms of visual appearance and content. 

In the work by [8], they design a 2-layer network where they have a sliding bidirectional 

LSTM that acts as a 1D filter that slides through the frame to identify shots boundaries 

by a threshold and feature extraction. Shallow features are extracted by concatenating 

color histograms, SIFT and optical flow. Deep features are from the VGG16 pre-trained 

CNN network. The second layer is also a bidirectional LSTM, which captures the 

forward and backward temporal dependencies among shots, and predicts which shots 

are most representative to the video content. They achieve very acceptable results on 

the following datasets: SumMe, VTW and CoSum. 

Recurrent Neural Networks (RNNs) are limited with modelling long-term temporal 

dependencies due to the restricted memory storage unit, which is disadvantageous for 

summarizing videos with thousands of frames. Due to this, a stacked memory network 

called SMN is presented by [9] to model the long dependency among video frames so 

that redundancy could be minimized in the video summaries produced. SMN consists 

of two components: an LSTM layer and memory layer, where each LSTM layer is 

augmented with an external memory layer. In particular, multiple LSTM layers and 
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memory layers are stacked hierarchically to integrate the learned representation from 

prior layers. By combining the hidden states of the LSTM layers and the read 

representations of the memory layers, SMN is able to derive accurate video summaries 

for individual frames. Compared with the existing RNN-based methods, SMN is 

particularly good at capturing long temporal dependency among frames with few 

additional training parameters. Experimental results on SumMe and TVSum, 

demonstrate SMN’s ability to outperform state-of-the-art works under various settings. 

The authors in [10] achieve Multi-Video Summarization (MVS) by integrating deep 

neural network based soft computing techniques in a two-tier framework. The first 

online tier performs target-appearance-based shots segmentation and stores them in a 

lookup table that is then transmitted to the cloud for further processing. The second-tier 

extracts deep features from each frame of a sequence in the lookup table and passes 

them to deep bidirectional LSTM to acquire probabilities of informativeness and 

generates a summary. Experimental evaluation was done on benchmark dataset 

VSUMM and industrial surveillance data from YouTube. 

To mimic the way a human would select key-shots for a video summary, an attention 

mechanism is needed. Therefore, [11] proposed a video summarization framework 

named attentive encoder–decoder networks for video summarization (AVS), where the 

encoder uses a bidirectional LSTM to encode the contextual information among the 

input video frames. As for the decoder, two attention-based LSTM networks are 

exploited by using additive and multiplicative objective functions. The results 

demonstrate the superiority of the proposed AVS-based approach against state-of-the-

art works. 

In the research by [12], the goal was to predict a score ranging from 0 to 1 for each shot. 

The higher the score, the more likely the shot will be selected for the final summary. 

To this end, a self-attention binary neural tree (SABTNet) model is proposed, including 

the GoogleNet pre-trained network, shot encoding, branch routing, self-attention, and 

score prediction modules. The model divides videos into non-overlapping shots by shot 

segmentation algorithms. Then, Kernel Temporal Segmentation (KTS) is used for shot 

segmentation. After that, GoogleNet is used for feature extraction for individual frames, 

and re-encode frame features within the same shot into shot-level features by a 

bidirectional LSTM. Then, a full binary tree exposes each shot to various evaluation 
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paths for comprehensive scoring. For the tree, each non-leaf node is accompanied by a 

branch routing module to determine the probability of which path the shot will be sent 

through for evaluation. Through branch routing, predicted scores are obtained and their 

proportions based on different root-to-leaf paths. 

In the paper by [13], TTH-RNN was proposed for the video summarization task, which 

aimed to avoid the extremely large feature-to-hidden mapping matrices caused by the 

high-dimensional video features, and enhance traditional RNNs in long-range temporal 

dependence exploration. TTH-RNN contains a tensor-train embedding layer and a 

hierarchical LSTM, where the tensor-train embedding layer is designed to embed video 

features to a lower dimensional space before being input to the LSTM, and the 

embedding matrix was factorized to reduce training parameters. The hierarchical 

LSTM contains two layers. The first layer is a single LSTM to capture the intra-subshot 

temporal dependence. The second layer is a bidirectional LSTM to encode inter-subshot 

temporal dependence from the forward and backward directions. Experimental results 

on four popular datasets demonstrated the superiority of TTH-RNN in the video 

summarization task. 

2.2. CNN-based Video Summarization 

The paper by [14] presents a video summarization technique for generating quick 

previews for online videos. They propose using deep video features that can encode 

various levels of content semantics, including objects, actions, and scenes, improving 

the efficiency over standard video summarization techniques. They design a deep 

network that maps videos and their descriptions to a common semantic space and jointly 

trained it with associated pairs of videos and descriptions. To generate a video 

summary, they extract the deep features from each segment of the original video and 

apply a clustering-based technique on them. They evaluate the summaries on the 

SumMe dataset. The results demonstrated the advantages of incorporating deep 

semantic features in a video summarization technique. 

The authors in [15] observed two main issues in unsupervised video summarization: (I) 

Ineffective feature learning due to flat distributions of output importance scores for each 

frame, and (II) training difficulty when dealing with long-length video inputs. To 

alleviate the first problem, they propose variance loss. The proposed variance loss 
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allows a network to predict output scores for each frame with high discrepancy which 

enables effective feature learning and significantly improves model performance. For 

the second problem, they design a novel two-stream network named Chunk and Stride 

Network (CSNet) that utilizes local (chunk) and global (stride) temporal view on the 

video features. CSNet gives better summarization results for long-length videos 

compared to the existing methods. To deal with dynamic information in videos, they 

also have an attention function. On two benchmark datasets, they show how well the 

proposed work compares to the state-of-the-art. 

In this paper, [16] formulate video summarization as a sequence labeling problem. 

Unlike existing approaches that use recurrent models, they propose using fully 

convolutional sequence models. They establish a connection between semantic 

segmentation and video summarization, and then adapt popular semantic segmentation 

networks for video summarization. Extensive experiments and analysis on two 

benchmark datasets demonstrate the effectiveness of the models. 

Video summarization is formulated by [17] as a sequential decision-making process 

and develop a Deep Summarization Network (DSN). For every video frame, DSN 

predicts a probability that indicates how likely a frame is selected, and then takes 

actions based on the probability distributions to select frames that form video 

summaries. For training, an end-to-end, reinforcement learning-based framework is 

presented, with a novel reward function that jointly accounts for diversity and 

representativeness of generated summaries and does not rely on labels or user 

interactions at all, making the model fully unsupervised. During training, the reward 

function judges how diverse and representative the generated summaries are, while 

DSN strives for earning higher rewards by learning to produce more diverse and 

representative summaries. Extensive experiments on two benchmark datasets show that 

their method is even superior to most supervised approaches in the literature. 

The authors in [18] present a Deep Learning approach to summarizing long soccer 

videos by leveraging the spatiotemporal learning capability of three-dimensional CNNs 

(3D-CNN) and an LSTM. The methodology involves a step-by-step development of a 

Residual Network (ResNet) based 3D-CNN that recognizes soccer actions. Also, 

manual annotation of 744 soccer clips for training. Finally, training an LSTM network 

on soccer features extracted by the proposed ResNet based 3D-CNN. A video input is 
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modeled as a sequential concatenation of video segments whose inclusion in a summary 

video production is based on its validated relevance. To evaluate the proposed 

summarization system, 10 soccer videos were summarized and subsequently evaluated 

by 48 participants polled from 8 countries using the Mean Opinion Score (MOS) scale. 

Collectively, the summarized videos received a 4 of 5 MOS. 

The authors in [19] set to solve the imbalanced class distribution problem in video 

summarization. The framework is a two-stream deep architecture with cost-sensitive 

learning to handle the class imbalance in feature learning. In the spatial stream, RGB 

images are used to represent the appearance of video frames, and in the temporal 

stream, multi-frame motion vectors with Deep Learning framework is used to represent 

and extract temporal information of the input video. Empirical validations demonstrate 

that the model achieves performance improvement over the existing and state-of-the-

art methods. The model can also automatically preserve connections between 

consecutive frames. Although the summary is constructed based on the frame level, the 

final summary is comprised of informative and continuous segments instead of 

individual separate frames. 

In the journal paper by [20], given an input video, a deep summarization network is 

used to extract deep feature representations from the input video sequence and 

sequentially models the frame features. It adopts an encoder-decoder CNN structure. 

The encoder network is a diagnostic view plane detection network pre-trained with 

ultrasound standard plane detection annotations. The decoder network takes the 

extracted feature maps of each input frame as input and feeds them into a Bi-directional 

LSTM to analyze features of both, past and future frames. Following the feature 

extraction, the reinforcement learning (RL) network interprets the diagnostic video 

summarization task as a decision-making process, in which a decision is to include a 

current frame in the summary or not. The RL network accepts latent scores from the 

Bi-LSTM as input and takes actions at on whether a frame should be selected into the 

summary set or not by maximizing the expected rewards. The rewards are computed on 

the quality of the selected frames in terms of their representativeness, diversity, as well 

as the likelihood of being a standard diagnostic plane. The method is superior to 

alternative video summarization methods and that it preserves essential information 

required by clinical diagnostic standards. 
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Producing a video summary of considerable significance while meeting the demands 

of Internet of Things (IoT) monitoring systems with limited resources is a difficult 

challenge. In order to summarize surveillance videos recorded in IoT environments, 

this paper [21] proposes a novel, computationally efficient method by using a deep 

CNN architecture with hierarchical weighted fusion. The framework's initial phase 

creates discriminative rich features for shot segmentation that are taken from deep 

CNNs. The method then uses aesthetic and entropy factors to preserve the summary's 

interest and variety in addition to image memorability predictions from a tweaked CNN 

model. In order to provide an aggregated score for the efficient calculation of the 

extracted features, a hierarchical weighted fusion approach is third described. The 

combined score is then used to choose the best key-frames for the final video summary, 

creating an attention curve. 

The authors in [22] develop a method to detect key-frames for static video 

summarization. Their method is based on feature vectors taken from 4 pre-trained 

Multi-CNN models. The features are then inputted into a sparse autoencoder, which 

then outputs a combined representation of the input feature vectors. Finally, the key-

frames are chosen based on the combined feature vectors using a Random Forests 

classifier. The datasets used are VSUMM and OVP and ground-truth scores derived 

from user summaries. The overall method performs better than all state-of-the-art 

methods in the study. 

This paper by [23] proposes a deep framework called Deep Hierarchical LSTM 

Networks with Attention for Video Summarization (DHAVS) that has delicate feature 

extraction, modeling of temporal dependencies, and video summary generation; All in 

response to the LSTMs' inability to handle longer video sequences. To extract spatio-

temporal features, they specifically use 3D CNNs rather than 2D CNNs, and they create 

an attention-based hierarchical LSTM module to capture the temporal correlations 

between video frames. A cost-sensitive loss function is created, and they also approach 

video summarizing as an unbalanced class distribution problem. According to 

experimental findings, performance on the SumMe and TVSum datasets has improved 

significantly. 

Many of the currently available summarizing techniques solely analyze the visual 

components of the video input, omitting the impact of audio elements on the resulting 
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summary. Hence, [24, p.] provide a powerful video summarizing method to address 

these problems, one that extracts key-frames from the raw video input while processing 

both the visual and audio information. The structural similarity index is used to 

determine how similar the frames are to one another, and the mel-frequency cepstral 

coefficient (MFCC) aids in feature extraction from the associated audio signals. A deep 

CNN model is used to improve the resulting key-frames and produce a list of potential 

key-frames that ultimately make up the data summary. According to experimental 

findings, using audio features along with an effective refining method, followed by an 

optimization function, produces superior summary results than using traditional 

summarizing methods. 

2.3. GAN-based Video Summarization 

The key idea of the study by [25] is to develop a deep summarizer network in an 

unsupervised fashion to reduce the special distance between training videos and their 

summaries. Such a summarizer can then be applied on a new video for estimating its 

optimal summarization. For learning, they specify a novel generative adversarial 

framework (GAN), consisting of the summarizer and discriminator. The summarizer is 

the autoencoder long short-term memory network (LSTM) aimed at, first, selecting 

video frames, and then decoding the obtained summarization for reconstructing the 

input video. The discriminator is another LSTM aimed at distinguishing between the 

original video and its reconstruction from the summarizer. The summarizer LSTM is 

cast as an adversary of the discriminator, i.e., trained so as to maximally confuse the 

discriminator. This learning is also regularized for sparsity. Evaluation on four 

benchmark datasets, consisting of videos showing diverse events in first-and third-

person views, demonstrates competitive performance in comparison to fully supervised 

state-of-the-art approaches. 

Once again, the problem is formulated as a sequence-to-sequence task, where the input 

sequence is an original video, and the output sequence is its summarization. The 

architecture put forward by [26] is built on GAN training and takes the advantages of 

supervised and unsupervised methods for video summarization. The splitting points of 

summarization segments are generated by an attention-aware Ptr-Net generator. A 3D 

CNN classifier is used as the discriminator to determine if a fragment is from a 

produced summary or a ground-truth. The method achieves state-of-the-art results on 
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SumMe, TVSum, YouTube, and LoL datasets with 1.5% to 5.6% improvements. The 

framework can also overcome the unbalanced training-test length in the seq2seq 

problem, and the discriminator is effective in leveraging unpaired summarizations to 

achieve better performance. 

The paper by [27] presents an approach that integrates an attention mechanism to 

identify the significant parts of the video, and is trained in an unsupervised manner via 

generative adversarial learning (GAN). Starting from the SUM-GAN model, they 

develop an improved version of it (called SUM-GAN-sl) that has a significantly 

reduced number of learned parameters, performs incremental training of the model’s 

components, and applies a stepwise label-based strategy for updating the adversarial 

part. Subsequently, an attention mechanism is introduced to SUM-GAN-sl in two ways: 

i) by integrating an attention layer within the variational autoencoder (VAE) of the 

architecture (SUM-GAN-VAAE), and ii) by replacing the VAE with a deterministic 

attention autoencoder (SUM-GAN-AAE). Experimental evaluation on the datasets 

SumMe and TVSum documents the contribution of the attention autoencoder to faster 

and more stable training of the model, resulting in a significant performance gain with 

respect to the original model and demonstrating the competitiveness of the proposed 

SUM-GAN-AAE against the state of the art. 

The proposed approach by [28] employs knowledge distillation for choosing key-

frames and GANs for feature extraction. The main component of the given model is 

adversarial learning, which makes sure that the video's various and representative parts 

are included in the extracted features. A convolutional recurrent autoencoder serves as 

the generator, and it gains knowledge about the hidden video representation through 

reconstruction loss. A discriminator that distinguishes between the original and 

recreated video samples comes next. A knowledge distillation phase that uses a basic 

network as a key-frame selection follows the adversarial network. Comprehensive 

analyses performed on both open-source and private datasets support the usefulness of 

GANs and the knowledge distillation stage for video summarization. Evaluations show 

that the suggested methodology creates summaries that are varied, representative, and 

compact. 
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2.4. Other Video Summarization Models 

Some works opted to base their generated video summaries on user-defined queries or 

requests. In the paper by [29], they were among the first to incorporate user queries into 

the summarization process.  They achieve this by creating a probabilistic model for 

query-focused extractive video summarization called Sequential and Hierarchical 

Determinantal Point Process (SH-DPP). In response to a user query and a video 

sequence, the algorithm summarizes the video by picking out the most important 

frames. The option to include a shot in the summary is based on both the shot's 

significance within the context of the video and its relevance to the user query. They 

claim that search engines can benefit greatly from query-focused video summarization. 

By incorporating representative and interestingness objectives computed from features 

from a joint vision-language embedding space, the paper by [30] extends a submodular 

summarization approach to demonstrate that visual representations supervised by 

freeform language make a good fit for video summarization. Their research also 

demonstrates that the vision-language embedding may be learned from common vision-

language datasets and then transferred to video without the need for training on domain-

specific data. 

The key concept of the sequence-to-sequence learning model presented by [31] is to 

complement the discriminative losses with another loss that assesses whether the 

generated summary still maintains similar information as in the original video. This is 

done by rewriting the video summarization task as a sequence-to-sequence task. 

Additionally, they add a second "retrospective encoder" to conventional sequence 

learning models that incorporates the anticipated summary into a semantic space. The 

representation found in the semantic space is then contrasted with the original video's 

embedding in the same location. The idea is that for a video and its related summary, 

both embeddings should be similar to one another. Therefore, their method increases 

the distances between mismatched pairs while minimizing the distances between 

matched pairs, adding a metric learning loss to the discriminative loss. The fact that the 

measure for learning loss enables learning from videos without automatically created 

summaries is a significant advantage.  
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Incomplete selection of video feature points can result in poor video summaries, hence, 

a compressed domain video summarization generation algorithm is proposed by [32] 

based on HEVC intra-frame coding. Firstly, the weighted luminance and chrominance 

mode numbers are counted at the decoding end, respectively. Then, the feature vectors 

composed of the above two mode numbers are fused and normalized to obtain a mode 

feature histogram. Secondly, the normalized mode feature histograms are assigned 

different weight factors, and the two are merged into a new mode feature histogram 

model to reflect the texture features of the image. Finally, the histogram difference 

method is used to determine the similarity between two-frame mode feature histograms, 

and ultimately the histogram classification is used to generate the video summaries. The 

experimental results show that the accuracy of key-frame extraction on the OVP dataset 

is 0.82, the error rate is 0.64. And that, the average recall rate achieves 82.0%, and the 

average F-score is 73.3%. The key-frames extracted by the algorithm better reflect the 

image texture, and the video summary quality is further improved. 

As most existing methods can only extract the static images of videos as the content 

summarization and ignore the representation of motion information, there is a gap to 

fill here. To cope with these issues, a novel framework for an efficient video content 

summarization as well as video motion summarization is proposed by [33]. Initially, 

Capsules-Net is trained as a spatio-temporal information extractor, and an inter-frames 

motion curve is generated based on those spatio-temporal features. Subsequently, a 

transition effects detection method is proposed to automatically segment the video 

streams into shots. Finally, a self-attention model is introduced to select key-frames 

sequences inside the shots; thus, key static images are selected as video summarization, 

and optical flows can be calculated as video motion summarization. The ultimate 

experimental results demonstrate that the method is competitive on VSUMM, TVSum, 

SumMe, and RAI datasets about shot segmentation and video summarization, and can 

also represent a good motion summarization result. 

Because they only provide fixed video summary for a particular input video, regardless 

of the user's actual needs, traditional summarizing methods have a negative effect on 

the function of video exploration. In this work, [34] describe a technique that takes as 

its input a text-based query and outputs a video summary of it. They achieve this by 

posing an end-to-end deep learning-based technique for query-controllable video 
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summarizing to produce a query-dependent video summary and modeling video 

summarization as a supervised learning issue. A video summary controller, a video 

summary generator, and a video summary output module make up the suggested 

technique. 

The paper [35] proposed an unsupervised video summarization method by motion-

based frame selection and a novel clustering validity index to determine the optimal 

representatives of the original video. The proposed framework segments shots and 

selects candidate frames by evaluating their forward and backward motion and can 

automatically select representatives to highlight all the significant visual properties. 

Shots are segmented uniformly and the frame with the largest motion is extracted in 

each segmentation to form the video candidate frame subset. Then Affinity Propagation 

combined with the validity index is used to automatically select the optimal 

representatives from the candidate frame subset. 

In this paper, [36] offers CLIP-It, a single framework for dealing with both conventional 

and query-focused video summarization, which are normally addressed separately in 

the literature. They have a multimodal transformer that learns to score video frames and 

correlate them with a user-defined written query using a unified language. The model 

can then be trained without supervision based on real-world data. They significantly 

exceed baselines and earlier work on the TVSum and SumMe benchmark datasets as 

well as the query-focused video summarization dataset QFVS. 

A multiscale hierarchical attention model for supervised video summarization is 

introduced in this study by [37]. Their approach takes advantage of the underlying 

hierarchical structure of video sequences, in contrast to most existing supervised 

approaches that use bidirectional LSTM networks and learns both the short-range and 

long-range temporal representations via an intra-block and an inter-block attention. To 

learn local and global information, they first divide each video sequence into equal-

length blocks and use intra-block and inter-block attention. They then combine the 

representations at the frame, block, and video levels to estimate the importance score 

at the frame level. After that, they partition shots and calculate shot-level importance 

scores. Finally, they choose the key shots to create video summaries. Additionally, their 

approach is expanded into a two-stream architecture that makes use of appearance and 
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motion data. The effectiveness of their solution in comparison to the literature has been 

validated by experimental results on the SumMe and TVSum datasets. 

According to [38], query-based video summarization is flawed in two ways: First, the 

text query might not be sufficient to capture the user's precise needs. Second, the user 

is unable to make changes once the summaries are created, even though the user's 

demands would be delicate and require interactive adjusting. IntentVizor, an interactive 

video summarizing framework driven by general multimodality inquiries, is proposed 

a solution to these two issues. The user's needs can be expressed using an input query 

that includes both text and video samples. They also describe these multi-modality, 

finer-grained queries as editable user "intents" that can more accurately express the 

needs of the system. To provide more satisfactory summaries, users can interact, 

control, and modify these intentions. 
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Chapter 3.  Proposed Methodology 

The initial stage of this research is to replicate the work in [22] and experiment with 

alternative frame deletion and dimensionality reduction methods. After that, the 

classifier is also replaced with a different model. The purpose of this it to first establish 

a robust base-model before introducing HEVC features. In the work by [22], they use 

the SIFT Flow [39] algorithm for the deletion of similar or redundant frames and a 

sparse autoencoder for reducing the dimension of the feature space. For elimination of 

similar or redundant frames, two novel methods are proposed based on motion 

estimation and motion compensation, and HEVC features. To reduce the dimension of 

the feature space, we use stepwise regression. For classification (or key-frames 

selection) we use a Random Forests classifier. A novel method is also developed for 

the extraction of low-level HEVC features. HEVC features are to be tested in a separate 

channel and then fuse the results with the CNN results, or they are concatenated with 

CNN features for a final result. A general overview of the system architecture is in 

Figure 1. 

 

Figure 1: General overview of the system architecture. Feature extraction is done either through CNNs 

or a custom HEVC decoder. Dimensionality reduction using Stepwise regression. Frame elimination 

using S.A.D of motion estimation and compensation or HEVC features 

3.1. Revision on HEVC video coding 

In this section we are going to propose our HEVC feature extraction methods, and 

therefore we present a revision on HEVC video coding. HEVC is a relatively new video 

coding standard and the successor to the MPEG-4 (H.264) video coding standard. The 

ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Experts 

Group (MPEG) joined efforts on developing the HEVC standard [6]. The compression 

time for HEVC videos is twice as fast when compared to MPEG-4. Improvements in 

HEVC can be summarized into the following: 
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• More partitioning options, ranging from large to small partition sizes. 

• Prediction modes and transform block sizes have more flexibility.  

• Interpolation and de-blocking filters that are more advanced. 

• Modes and motion vectors prediction and signaling that are more complex.  

• Features that make parallel processing more efficient. 

The most noticeable change in HEVC coding is unit partitioning. The macroblock 

structure found in MPEG-4 is replaced with a coding tree block (CTB) that includes 

coding units (LCUs). LCUs are then partitioned recursively into sub-coding units (sub-

CUs) that can be of size 16x16 to 64x64 pixels. Sub-CUs are then divided to prediction 

units (PUs) of size 4x4 to 32x32 that contain the prediction information sent to the 

decoder. PUs are then split into transform units (TUs) of size 4x4 to 32x32 that are 

transformed using discrete cosine (DCT) or sine (DST) transformation. PUs can be 

skipped, intra-predicted or inter-predicted. Figure 2 shows the how all the units are 

partitioned and organized. We use all the partitioning and prediction information 

possible found in the output bitstream to produce low-level HEVC features.  

 

Figure 2: Coding Units partitioning in HEVC 

3.2. Data Preprocessing 

3.2.1. Proposed HEVC coding and feature extraction 

This research presents the use of HEVC information found in the coded video bitstream 

into Deep Learning-based video summarization. HEVC features have been used in 

many applications, including encoding speedup and video transcoding [40], data 

embedding [41], double and triple compression detection [42] and saliency detection 

[43]. The videos are in MPEG format, which means that they need to be converted to 
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HEVC. This can be done using existing MPEG to HEVC encoders; However, the trade-

off is that they tend to lower the video quality. Thus, a custom re-encoder is used to 

avoid degrading the video quality. The process is shown in Figure 3. 

 

Figure 3: MPEG to HEVC video conversion process 

The converted HEVC videos are then fed to a splitting script where the video is split 

into images (frames) to prepare them for feature extraction of HEVC features on frame-

by-frame basis. The generated HEVC features are listed in  Table I. MVD is for motion 

vector difference, SAD is for the sum of absolute differences, and CU is for coding unit. 

Table I: Proposed HEVC feature set per frame from a custom HEVC decoder. 

 Feature ID Feature variable 

A
v
er

ag
ed

 p
er
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m
e
 

1 Number of CU parts 

2 MVD bits per CU 

3 CU bits excluding MVD bits 

4 Percentage of intra CU parts 

5 Percentage of skipped CU parts 

6 Number of CUs with depth 0 (i.e 64x64) 

7 Number of parts with depth 1 (i.e 32x32) 

8 Number of CUs with depth 2 (i.e 16x16) 

9 Number of parts with depth 3 (i.e 8x8) 

 10-18 Standard deviation of feature IDs 1-9 per frame 

 19 Max CU depth per frame 

 20 For CUs with depth > 0, log2(|𝑠𝑢𝑚 𝑜𝑓 𝑀𝑉𝐷|)? 

 21 For CUs with depth = 0, log2(|𝑠𝑢𝑚 𝑜𝑓 𝑀𝑉𝐷|)? 

A
v
er
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ed

 

p
er

 f
ra
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e 22 Row-wise SAD of the CU prediction error 

23 Column-wise SAD of the CU prediction error 

24 Ratio of gradients (i.e feature 22 divided by feature 23) per CU 

25 Total distortion per CU as computed by the HEVC encoder 

 26-29 Standard deviation of feature IDs 22-25 per frame 

 30 Per frame: Summation of variance of the x and y components of all MVs 

 31-47 Histogram of x-component of all MVs per frame (using 16 pins) 

 48-64 Histogram of y-component of all MVs per frame (using 16 pins) 
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3.2.2. Splitting videos into frames 

This process is done because at a later stage, for feature extractions, the CNNs used 

take 2D vectors as input. Doing so allows us to eliminate certain frames that are deemed 

to be not useful at the frame elimination stage later in this paper. Splitting videos into 

frames is carried out with a Python script using the cv2 library. A function takes in the 

input directory containing all videos and the desired output directory. 

3.2.3. Datasets 

Experimentation is done over the OVP and VSUMM [44] datasets. The VSUMM 

dataset contains 50 videos from YouTube, across several genres (news, sports, 

commercials, tv-shows, etc.) and have a duration of 1-10 mins at 30 fps. The OVP 

(Open Video Project) dataset has 50 videos from Open Video Project in MPEG-1 

format at 30   fps.  The  videos  were distributed  among several genres (documentary, 

educational, ephemeral, historical, and lecture) and have a duration of 1-4 minutes. 

As for the ground truths, for every video in both datasets there is a ground truth of the 

selected frames derived from 5 different users, for a total of 250 user summaries for 

each of the datasets. For a certain video, the ground truth is a 1-Dimensional vector of 

ones and zeros. A one means that this frame at that index was selected for the summary 

by a user. The ground truth for a video has the following form: [0,0,1,0,1,1,0,...] which, 

for example, indicate that frames 3,5,6 were selected by a user for the final summary. 

3.2.4. CNN feature extraction 

For feature extraction, we used built-in MATLAB CNN plug-ins for AlexNet [45], 

IRv2 [46] and VGG16 [47]. These models are trained on millions of images under 

thousands of categories. GoogleNet features were publicly available for both datasets 

at [44]. The splitting and feature extraction processes are illustrated in Figure 4. 

 

Figure 4: Feature extraction process from pre-trained CNNs 
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For all of the 4 CNNs, a high-level loop goes through the videos’ directories and another 

lower-level loop goes through the frames. Then, the feature extraction starts, producing 

a feature vector for every frame. The feature vector values are normalized from 0 to 1. 

Next, all frame feature vectors belonging to a video are combined to produce a 2D 

feature vector for the entire video, with each row representing the feature vector of a 

frame. All the 2D feature vectors are then stored in an HD5F file to be used later. HEVC 

features extracted in Section 3.2.1 (with feature vector length of 64) are also added to 

the HD5F file. Every CNN has its own set of features and the produced lengths for each 

are in Table II and the final HDF5 has the structure illustrated in Figure 5: 

Table II: Input and feature vector sizes for networks used for feature extraction 

Network GoogleNet AlexNet IRv2 VGG16 HEVC 

Input size 224x224 227x227 299x299 224x224 Original 

Features 1024 4096 1536 4096 64 

 

Figure 5: The structure of the HDF5 file with CNN and HEVC features 

3.3. Elimination of Similar Frames 

Frame elimination is needed to reduce the input size and the amount of data crunched 

into our models. If all frames within a video are to be examined for selection then the 

summarization process can be extremely slow and precious time and computational 

power is wasted on redundant or similar frames. The videos of both the OVP and 

VSUMM datasets are all at 30 fps, therefore, we decided to take the first and 15th frame 

of every second. So, if the video is 60 seconds long, we should have 120 frames for it. 

This criterion is followed in [22]’s paper and we are continuing on it. 
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3.3.1. Frame elimination using SIFT Flow algorithm 

The use of SIFT Flow [39] algorithm was proposed by [22] for eliminating similar 

frames. The frames are converted to SIFT images where every pixel is replaced with a 

128-D SIFT descriptor. Rather than dealing with raw pixels, the flow vectors are 

calculated by matching SIFT descriptors across subsequent images. On the SIFT image, 

a Gaussian filter is used, and a four-level pyramid is built. Each level reduces the 

image's size to half of what it was at the previous level. As a result, the top level of the 

picture comprises coarse features. Descriptors are matched in order of coarseness to 

fineness. The loopy belief propagation network, which operates by reducing the energy 

function, is used to find the ideal flow vector. The magnitude of flow vectors at each 

pixel point in a frame is added to determine the displacement vector for the entire frame. 

Local thresholding of the magnitude of displacement vectors between successive 

frames is used to pick candidate frames from the resulting collection of frames. 

3.3.2. Revision on motion estimation and compensation 

Consecutive frames might contain the same objects, either still or moving. Motion 

estimation inspects the movement of objects between a sequence of images to attain 

vectors that represent the estimated motion in x and y directions. Motion compensation 

uses the motion vectors obtained to perform data compression. In video coding, motion 

estimation and compensation are effective methods for removing temporal redundancy 

brought on by significant relation between successive frames. A simple example of 

motion estimation and compensation is shown in Figure 6. 

 

Figure 6: Simple illustration of motion estimation and compensation 



 30 

3.3.3. Proposed frame elimination using motion estimation and compensation 

The minimum sum of absolute differences of the motion estimation and compensation 

is used for eliminating similar frames. For every 2 consecutive frames, we calculated 

the motion vectors using optical flow with a noise threshold of 0.009. Then, the X and 

Y components of the motion vector are divided by 2 and motion compensation is 

applied. Then, we find the sum of absolute differences between the second frame and 

the motion compensated frame and add it to a list of sums. Then we compare the sums 

against a pre-defined threshold that was determined through experimentation, say 0.35, 

and a sum smaller than the threshold means a similar frame is detected and gets marked 

for deletion. Figure 7 illustrates the process of the proposed method. 

 

Figure 7: Illustration  diagram of the proposed frame elimination method with ME+MC 

3.3.4. Proposed frame elimination based on HEVC features 

In the proposed list of HEVC feature variables, there exists a sub-set of variables that 

indicates the low temporal activity of video frames. Such low temporal activity 

indicates that the current frame is similar to its previous frames, and therefore, can be 

eliminated. In this solution, we use the sum of the following HEVC feature variables: 

[1 to 7, 22 to 25, 30], to produce a temporal activity index; The lower the index, the 

lower the temporal activity. The sub-set feature variables are listed in Table III, along 

with brief descriptions of each. The removal or elimination of frames that are deemed 

unnecessary is important to make sure that they do not contribute to the training process. 

Hence, only distinct frames are fed into the training model.  
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Table III: List of HEVC feature subset variables used to produce a temporal activity index 

Feature ID Feature variable (averaged over a frame) 

1 Number of CU parts 

2 MVD bits per CU 

3 CU bits excluding MVD bits 

5 Percentage of skipped CU parts 

6 Number of CUs with depth 0 (i.e 64x64) 

7 Number of parts with depth 1 (i.e 32x32) 

22 Row-wise SAD of the CU prediction error 

23 Column-wise SAD of the CU prediction error 

24 Ratio of gradients (i.e feature 22 divided by feature 23) per CU 

25 Total distortion per CU as computed by the HEVC encoder 

30 Summation of variance of the x and y components of all MVs 

In the implementation process, the video dataset was split into training and test data, as 

explained in the experimental results section. For each split of the dataset, we used 

video frames with ground truth zero in the training data to determine the average value 

of the features listed in Table II. Video frames with ground truth zero are those that are 

not part of the video summary. The averages were then summed to compute the 

temporal activity index. To vary the value of the mentioned index, the sum of the 

standard deviations of the feature variables can be added, as illustrated in Equation 1. 

𝑇𝐴𝐼 =  ∑
_
𝑓𝑖

𝐼
𝑖=1 + 𝑐 ∑ 𝜎𝑓𝑖

𝐼
𝑖=1     (1) 

where TAI is the temporal activity index, fi is feature i from Table III, and i ranges from 

1 to 11, which is the total number of features used. Constant c ranges from 0 to 1 and 

can be used to vary the value of the temporal activity index. In this work, it is set to 

0.35 using empirical testing. Consequently, a video frame from the test data was 

eliminated according to the Boolean condition presented in Equation 2. 

𝐸𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑒 𝑓𝑟𝑎𝑚𝑒𝑗 = {
𝐹𝑎𝑙𝑠𝑒,   𝑖𝑓 ∑

_
𝑓𝑖,𝑗>𝑇𝐴𝐼𝐼

𝑖=1  

𝑇𝑟𝑢𝑒,   𝑖𝑓 ∑
_

𝑓𝑖,𝑗≤𝑇𝐴𝐼𝐼
𝑖=1

   (2) 

where the frame at index j belongs to the test video set and fi,j is feature i from Table 

III of the test frame at index j. 

3.4. Feature Space Dimensionality Reduction 

We employ CNN features from popular pre-trained CNN models, namely, GoogleNet, 

Inception-ResNet-V2 (IRv2), AlexNet and VGG16 as done previously by [22]. When 
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taking all four CNN features the total length of the feature vector for every frame is 

10,752 features, or 10,816 with HEVC features. 

3.4.1. Sparse Autoencoder 

A Sparse Autoencoder (SAE) was used by [22] to reduce the dimension of the feature 

space to 500 features. The SAE architecture is the following: An input layer takes in 

the entirety of the 10,752-feature vector for a given frame with a node representing each 

feature, a latent layer with the reduced feature space and an output layer with a feature 

vector of length 500. An SAE adds a sparsity penalty. Every feature is compared against 

a weight decay penalty, which is one thousand the value of the sparsity penalty. This 

means that if the autoencoder deems the feature is not as useful as other, it does not 

make it into the reduced space. Figure 8 shows a simple representation of an SAE. 

 

Figure 8: Simple representation of sparse autoencoders 

3.4.2. Stepwise Regression 

Dimensionality reduction methods are usually forward, starting with one feature and 

adding up features to reach the optimal model; Or backward, starting with all features 

and dropping one feature at a time to reach the optimal model. Stepwise regression 

(SW) is a variable selection method that can be used for dimensionality reduction. SW 

combines forward and backwards methods, because at each iteration a feature could be 

dropped or added. Figure 9 describes the setup used with SW. 
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Figure 9: Process of dimensionality reduction using Stepwise regression 

For a set of features 𝑥1, 𝑥2, … , 𝑥𝑘. 𝐹𝑖𝑛 is the F-random feature for the feature to be added 

to the model, while 𝐹𝑜𝑢𝑡 is for the feature to be dropped from the model. 

The following are the step for stepwise regression: 

1- Form 1-itemsets from all features to produce a 1-feature model(s): 

ℎ(𝑥) = 𝜃0 + 𝜃1𝑥1                                                         (3) 

where ℎ(𝑥) is the hypothesis that the added features are needed for the classification 

task. 𝑥1 is one of the features that gives the highest F-score. 𝑓1 is the statistic of 𝑥1 and 

given by the following formula: 

   𝑓1 =  
𝑆𝑆𝑅(𝜃2|𝜃1𝜃0)  

𝑀𝑆𝐸(𝑥2, 𝑥1)
                                                     (4) 

where 𝑆𝑆𝑅  is the regression sum square error and 𝑀𝑆𝐸 is the mean square error. 

2- From the equation obtained above for the 1-itemset feature, we examine the rest of 

the 𝑘 − 1 features that can, when combined with ℎ(𝑥), produce higher hypothesis 

than ℎ(𝑥) by itself. We add 𝑥2 if its 𝑓2 is greater than 𝐹𝑖𝑛 and get the following:  

 𝑓2 =  
𝑆𝑆𝑅(𝜃1|𝜃2𝜃0)

𝑀𝑆𝐸(𝑥1, 𝑥2)
                                                         (5) 

                           ℎ(𝑥) =  𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2                                                (6) 

After adding 𝑥2, we check if 𝑥1 needs to be removed by comparing 𝑓1 to the new 𝐹𝑜𝑢𝑡. 

If 𝑓1 is lesser, 𝑥1 gets dropped  

3- The remaining 𝑘 − 2 features are examined to obtain 𝑥3 and get the following 

hypothesis: 
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                       ℎ(𝑥) =  𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 + 𝜃3𝑥3                                           (7) 

The algorithm continues until there are no features to add or drop. Figure 9 briefly 

explains the feature vectors reduction using stepwise regression process. 

3.5. Classification 

3.5.1. Random Forests 

An approach to supervised learning is Random Forests. An ensemble of decision trees, 

which are usually trained using the "bagging" method, are combined to form a "forest." 

The fundamental tenet of the bagging approach is that the output is improved by 

combining several learning models. Classification and regression problems, which 

make up the majority of modern Machine Learning systems, may be solved using 

Random Forests. Random Forests increases the model's variability when creating the 

decision trees. Instead of looking for the best feature when splitting a node, it seeks for 

the best feature from a random selection of features. There is a lot of diversity as a 

consequence, which results in a better model. By employing random thresholds for 

every feature, Random Forests add more randomness to the creation of trees. Figure 10 

shows a representation of a Random Forests with 2 trees. 

 

Figure 10: Simple view of Random Forests classifier 

3.5.2. Classification setup 

In our implementation, we use a threshold of 0.9 to retain the features with a value 

above the threshold. If none of the features are above the threshold, then use all of them, 

else, use the retained ones only. We specify that the forest generates 128 trees for 

training over the selected features. We then save the predicted labels and calculate a 

few performance measures to help in quantifying the obtained results.   
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Chapter 4.  Experimental Results 

4.1. Evaluation Criteria 

The used quantitative performance metrics are the following: 

4.1.1. Positive predictive values (PPV) 

The percentage of true positive predictions over all positive predictions. Where 𝑃𝑇 is 

the true positive predictions, and 𝑃 is all positive predictions. 

𝑃𝑃𝑉 =  
𝑃𝑇

𝑃⁄      (8) 

4.1.2. Sensitivity (S) 

The percentage of true positive predictions over the users ground truth (at the same 

frame indices). Where 𝑃𝑇 is the true positive predictions, and 𝑃𝑢 is the user selected 

frames and their indices. 

𝑆 =  
𝑃𝑇

𝑃𝑢
⁄      (9) 

4.1.3. F-measure 

The F-measure (or F-score) is the harmonic mean of the precision and recall scores. It 

provides a combined view when either of these scores are not enough to describe the 

imbalanced classification problem like the frame selection problem we have where 

most frames are not selected and only a few are selected. 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =  2 × 𝑃𝑃𝑉 × 𝑆
𝑃𝑃𝑉 + 𝑆⁄           (10) 

4.2. Experimental Results 

After describing our data preprocessing, relevant components, and setup, we proceeded 

with  experimenting our proposed methods. The proposed dimensionality reduction 

method using SW was compared with the SAE as in [22]. In addition, the proposed 

elimination of similar frame methods using ME+MC and low-level HEVC features, 

were compared against the SIFT flow algorithm used in [22]. Finally, the proposed 

HEVC feature set was tested against the features from well-known CNN models.  

The trial runs reported have the following setup: Each run consists of 5 non-overlapping 

folds. In other words, the data (videos) are split in an 80%-20% fashion for training and 
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testing, respectively. For single CNN runs, the feature vector lengths are mentioned in 

Section-III. For Multi-CNN runs, the feature vector length is 10,752, which is a 

combination of the 4 CNNs (GoogleNet: 1024 features, AlexNet: 4096, IRv2: 1536 

features, VGG16: 4096 features). For Multi-CNN & HEVC runs, the feature vector 

length is 10,816, which is a combination of the 4 CNNs and the HEVC feature set 

(GoogleNet: 1024 features, AlexNet: 4096, IRv2: 1536 features, VGG16: 4096 

features, HEVC: 64). The results reported for each trial run are the average results for 

of the 5 testing folds. The metrics reported are PPV, Sensitivity and F-score. Confusion 

matrices are shown and discussed in subsection 4.2.7. Further in-depth discussion on 

the elapsed run times and performance for the models can be found later in subsection 

4.3. The experiments were conducted on a PC provided by the American University of 

Sharjah with Intel i7 (7th gen) CPU, 16 GB of RAM and NVIDIA GTX 1070 GPU. 

4.2.1. OVP dataset – Single-CNN results 

Table IV has the experimental results for the OVP dataset using the Random Forests 

classifier with features derived from GoogleNet, AlexNet, IRv2, and VGG16, along 

with the results from using the proposed HEVC feature set. 

In Table IV, the accuracy of the summarization with different methods is presented. 

The best summary results are obtained when using the proposed HEVC feature set with 

SW and HEVC-based frame elimination. For features generated from the pertained 

CNNs, we experimented with dimensionality reduction using the existing work of [22], 

which is based on SAEs, and using the proposed SW. Higher detection accuracies have 

been reported for the latter. The results also indicate that eliminating replicated frames 

based on HEVC features results in a higher detection accuracy compared to the use of 

the SIFT-based algorithm. The results for features with IRv2 and VGG16 features 

peaked with the use of the proposed ME+MC frame elimination solution. 

Table IV: Experimental results on the OVP dataset - Single-CNN 

Feature 

Sets 

Feature 

Reduction 

Frame 

Elimination 

Metrics Elapsed times 

(seconds) PPV S Fs 

HEVC 

(Proposed) 
None 

SIFT 0.59 0.71 0.83 44.6 

ME+MC 0.71 0.85 0.92 41.3 

HEVC 0.87 0.86 0.93 41.8 
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GoogleNet  

SAE [22] SIFT [22] 0.50 0.93 0.61 803.2 

SW 

SIFT 0.55 0.91 0.86 112.4 

ME+MC 0.63 0.95 0.87 46.8 

HEVC 0.59 0.96 0.88 94.0 

AlexNet 

SAE [22] SIFT [22] 0.70 0.89 0.78 2653.3 

SW 

SIFT 0.54 0.93 0.86 314.1 

ME+MC 0.62 0.95 0.87 93.9 

HEVC 0.59 0.97 0.88 262.6 

IRv2  

SAE [22] SIFT [22] 0.75 0.84 0.79 1096.5 

SW 

SIFT 0.54 0.93 0.86 129.3 

ME+MC 0.63 0.96 0.88 55.4 

HEVC 0.59 0.94 0.87 108.1 

VGG16  

SAE [22] SIFT [22] 0.68 0.61 0.64 2615.8 

SW 

SIFT 0.54 0.71 0.85 219.2 

ME+MC 0.62 0.74 0.87 79.5 

HEVC 0.59 0.76 0.87 183.3 

4.2.2. OVP dataset – Multi-CNN results 

In Table V, we present the detection results for the OVP dataset after combining all 

feature sets. In one set of experiments, all CNN features were combined (Multi-CNN) 

and compared when using SAE against SW along with SIFT versus ME+MC and 

HEVC based elimination, and in the other set, we combined the proposed HEVC 

features with all CNN features (Multi-CNN and HEVC).  

Table V: Experimental results on the OVP dataset - Multi-CNN 

Feature 

Sets 

Feature 

Reduction 

Frame 

Elimination 

Metrics Elapsed times 

(seconds) PPV S Fs 

Multi-

CNN  

SAE [22] SIFT [22] 0.78 0.86 0.82 6343.3 

SW 

SIFT 0.55 0.94 0.87 1690.3 

ME+MC 0.62 0.96 0.90 1055.6 

HEVC 0.59 0.97 0.93 1229.3 

Multi-

CNN & 

HEVC 

(proposed) 

SW 

SIFT 0.54 0.93 0.96 1543.6 

ME+MC 0.65 0.95 0.97 812.7 

HEVC 0.83 0.96 0.98 836.8 
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The Multi-CNN model performed better than all previous models with single CNN 

features by up to a 6% increase in performance across all performance metrics. This 

shows how the SW can retain the best features from multiple CNNs and attain 

satisfactory results. The detection accuracy resulting from Multi-CNN surpasses the 

use of individual CNNs. More noticeably, the use of Multi-CNN and HEVC resulted in 

accuracy of 0.98 F-score. 

4.2.3. OVP dataset versus existing work 

Figure 11 shows how our best model on the OVP dataset, with Multi-CNN and HEVC 

features with HEVC-based frame elimination exceeds state-of-the-art [22], VISCOM 

[48], VRHDPS [49] and VSUMM [50] across all performance metrics. 

 

Figure 11: Performance metrics of our top performing model (Multi-CNN & HEVC and HEVC-based 

frame elimination) on the OVP dataset compared with existing works in the literature 

4.2.4. VSUMM dataset – Single-CNN results 

Similar to Table IV, Table VI reports the results for the VSUMM dataset. Similar to 

the conclusions drawn from the results in Table V, when using the proposed HEVC 

feature set, our solution surpasses the CNN models when combined with SW and the 

HEVC feature-based frame elimination method. Additionally, the proposed SW 

method for dimensionality reduction achieved up to a 17% increase in performance 

compared to SAE across all performance metrics. Further improvement can be 

observed when using our proposed elimination of similar frame methods using 

ME+MC and HEVC features with up to 5% and 12% performance improvement, 

respectively, when compared to SIFT Flow across all performance metrics. 
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Table VI: Experimental results on the VSUMM dataset - Single-CNN 

Feature 

Sets 

Feature 

Reduction 

Frame 

Elimination 

Metrics Elapsed times 

(seconds) PPV S Fs 

HEVC 

(proposed) 
None 

SIFT 0.54 0.52 0.51 58.1 

ME+MC 0.71 0.82 0.75 53.7 

HEVC 0.88 0.86 0.86 54.4 

GoogleNet  

SAE [22] SIFT [22] 0.61 0.81 0.69 1044.2 

SW 

SIFT 0.56 0.82 0.76 147.7 

ME+MC 0.70 0.82 0.76 60.8 

HEVC 0.68 0.84 0.78 122.2 

AlexNet 

SAE [22] SIFT [22] 0.66 0.86 0.74 3449.3 

SW 

SIFT 0.71 0.80 0.76 370.8 

ME+MC 0.71 0.81 0.76 122.1 

HEVC 0.69 0.83 0.78 341.3 

IRv2  

SAE [22] SIFT [22] 0.71 0.78 0.75 1425.5 

SW 

SIFT 0.69 0.82 0.75 176.5 

ME+MC 0.68 0.82 0.75 72.1 

HEVC 0.71 0.83 0.77 140.5 

VGG16  

SAE [22] SIFT [22] 0.67 0.73 0.70 3400.5 

SW 

SIFT 0.69 0.83 0.75 249.3 

ME+MC 0.69 0.83 0.76 103.4 

HEVC 0.68 0.85 0.77 238.3 

4.2.5. VSUMM dataset – Multi-CNN results 

Table VII shows the performance of our proposed models when using Multi-CNN 

features only and when using Multi-CNN features with HEVC features on the VSUMM 

dataset under the same run conditions as the previous runs. Again, the detection 

accuracy resulting from Multi-CNN surpasses the use of individual CNNs, as reported 

in Table VII. More noticeably, the use of Multi-CNN and HEVC resulted in an 

outstanding detection accuracy score, as indicated by the 0.98 F-score. These results 

are similar to the findings in Table V and provide further proof of the effectiveness of 

the proposed methods against works in the literature. It is important to look at the run 

times for each of models as our models show significant gains in faster run times while 

still preceding larger and heavier models. 



 40 

Table VII: Experimental results on the VSUMM dataset - Multi-CNN 

Feature 

Sets 

Feature 

Reduction 

Frame 

Elimination 

Metrics Elapsed times 

(seconds) 
PPV S Fs 

Multi-

CNN  

SAE [22] SIFT [22] 0.80 0.84 0.83 8246.3 

SW 

SIFT [22] 0.78 0.88 0.91 2197.0 

ME+MC 0.80 0.89 0.93 1372.3 

HEVC 0.82 0.92 0.96 1598.1 

Multi-

CNN & 

HEVC 

(proposed) 

SW 

SIFT [22] 0.80 0.91 0.94 2006.7 

ME+MC 0.81 0.92 0.96 1056.5 

HEVC 0.85 0.94 0.98 1087.9 

The Multi-CNN model performed better than all previous models with single CNN 

features by up to a 7% increase in performance across all metrics. When combining the 

HEVC features with the Multi-CNN features, the models showed up to a 5% score 

increase in performance across all metrics. Our best performing model (Multi-CNN & 

HEVC with HEVC-based elimination) is compared with existing works in the 

following section. 

4.2.6. VSUMM dataset versus existing work 

Figure 12 shows our best solution on the VSUMM dataset, which uses Multi-CNN and 

HEVC features and HEVC-based frame elimination against the state-of-the-art [22], 

VISCOM [48], VRHDPS [49] and VSUMM [50]. Similar to the results reported for the 

OVP dataset, our proposed solution for the VSUMM dataset surpasses existing work. 

 

Figure 12: Performance metrics of our top performing model (Multi-CNN & HEVC and HEVC-based 

frame elimination) on the VSUMM dataset compared with existing works in the literature 
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4.2.7. Confusion matrices 

Figure 13 has the confusion matrices for our best performing models on both the OVP 

and VSUMM datasets. The best performing model on both datasets is Multi-CNN & 

HEVC with SW for feature space reduction and HEVC-based frame elimination (i.e 

Our best models with the highest scores in Tables V and VII). The OVP confusion 

matrix (on the left) translates to a sensitivity score of 0.96 and the VSUMM confusion 

matrix (on the right) translates to a sensitivity score of 0.94. Both models have an F-

score of 0.98, exceeding existing works in the literature. 

 

Figure 13: Confusion matrices of models "Multi-CNN & HEVC" with SW feature space reduction and 

HEVC-based frame elimination. OVP (left), VSUMM (right). 

4.3. Discussion of Results 

4.3.1. Proposed work versus existing work 

Our results show an overall improvement over previous works in the literature. The 

advantages and limitations of the proposed solution in comparison with existing work 

are summarized as follows. The proposed 64 HEVC feature variables are precise and 

concise compared to CNN-generated features with significantly higher dimensionality. 

In comparison to the reviewed work, VISCOM described video frames using novel 

color co-occurrence matrices [48]. VSUMM extracted video frames attributes based on 

color histograms and line profiles [50]. VRHDPS used the SIFT descriptors [49] and 

[22] used a novel combination of CNN features. In this work it was shown that the 

HEVC feature set contains rich video descriptors based on recursive splitting of coding 
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units. These descriptors provide rich information about the spatio-temporal video 

content and therefore provide an excellent choice for the task at hand. 

Moreover, in terms of dimensionality resolution, our solution used SW, which is 

significantly faster than the use of SAE, and yet retains enough features that are the best 

representative features for training and classification. The use of SAE was used 

successfully for directionality reduction as reported in [22]. 

The proposed HEVC-based frame elimination avoids the high complexity of optical 

flow based in SIFT-descriptors which was used for frame elimination as reported in 

[22]. Black frames and shot boundaries were eliminated in VRHDPS [49] as they were 

deemed useless. In VISCOM [48], monotonic frames are eliminated based on 

normalized summations of squared distances between frames.  

In this work, combining the proposed solutions together resulted in an average F-score 

of 0.93 and 0.86. Further combination of the proposed solution with multi-CNN 

resulted in an outstanding F-score of  0.98 for both the OVP and VSUMM datasets. 

However, a drawback of combining the proposed solution with Multi-CNNs is that it 

can be computationally intensive on some computer systems. This limitation can be 

overcome by simply relying on the HEVC feature set alone, as it proved to identify 

key-frames more accurately in comparison to existing work. On the other hand, it was 

reported in VRHDPS [49] that their solution does not require any iteration in the 

clustering process, rendering it an efficient algorithm. 

4.3.2. Elapsed run times 

Performance metrics are one side of the coin, while the time it takes each model to 

finish running is the other side. All our proposed models are consistently at least 5x and 

up to 15x faster than the existing work in [22]. The slower times found in [22]’s models 

are mainly due to the use of SAE for reducing the dimensionality of the feature space. 

SAE is very high in complexity, and the bigger the feature set is, the slower it gets to 

reduce all the features being fed. The use of optical flow SIFT-descriptors for frame 

elimination also slows their setups even further, similarly, due to the high complexity 

of having to construct a 128-imentional descriptor for every pixel in the image or frame. 

For instance, in Table IV, when the feature space is moderately small, like with 

GoogleNet features on OVP dataset, [22]’s model with SAE feature reduction and 
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SIFT-based frame elimination scores 0.61 with a run time of 803.2 seconds. Our 

comparable model on GoogleNet features with SW and ME+MC or HEVC score 0.87 

and 0.88 with run times of 46.8 and 94.0 seconds, respectively. This trend continues 

across all comparable models in Tables IV, V, VI, and VII. 

While in our model it seems like using ME+MC for frame elimination is considerably 

faster than using HEVC-based frame elimination, the later always scores higher and the 

bigger the feature space is the smaller the gap gets in run times between these two 

models. For instance, in Table VI, using IRv2 features on the VSUMM dataset with 

SW for feature reduction we get scores of 0.75 and 0.77 and run times of 72.1 and 140.5 

seconds, respectively, with ME+MC frame elimination and HEVC-based elimination. 

The gap between the two narrows down as the feature space gets bigger. For instance, 

in Table V, using Multi-CNN & HEVC features on the OVP dataset with SW for feature 

reduction we get scores of 0.97 and 0.98 with run times of 812.7 and 836.8 seconds, 

respectively, with ME+MC frame elimination and HEVC-based elimination. 
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Chapter 5.  Conclusion 

5.1. Summary 

With the surge of the Internet and surveillance footage, the need for video 

summarization is crucial. Video summarization can facilitate video retrieval, anomaly 

detection and activity monitoring. This research focused on the key-frame detection 

technique for its wide use in the literature. The proposed methodology used CNNs and 

Random Forests. We proposed a feature set extracted from HEVC-coded videos. 

Eliminating duplicate or similar video frames was performed based on a subset of the 

proposed HEVC features, it was also performed based on the sum of absolute 

differences resulting from motion estimation and motion compensation. The 

dimensionality reduction of the feature vectors was based on stepwise regression. Using 

Random Forests classification, it is shown that by combining the proposed solution with 

Multi-CNN features, an average PPV, Sensitivity and F-score of 0.83, 0.96 and 0.98 

are reported for the OVP dataset and an average of 0.85, 0.94 and 0.98 are reported for 

the VSUMM dataset, respectively. 

5.2. Future work 

In the future, this research can be expanded to include more datasets and experiment 

with different methods for frame elimination. A number of classifiers can also be 

explored, namely 1-Dimensional CNNs and LSTMs. 1D-CNNs and LSTMs have been 

long used in the literature with time-series based applications, in this case, videos which 

are timed sequences of frames. LSTM networks are known for their ability to take 

temporal dependencies into account when dealing with video frames. 1D-CNNs have 

also recently emerged as a distilled version of traditional CNNs, which are 2-

Dimensional. 1D-CNNs can usually be used with time-series applications as well, just 

like LSTM. Further studies and experimentation can be done with these two networks 

in hopes to further optimize and achieve better results. 
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