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Abstract: There is an abundance of digital video content due to the cloud’s phenomenal growth and 10 
security footage, it is therefore essential to summarize these videos in data centers. This paper offers 11 
innovative approaches to the problem of key-frame extraction for the purpose of video summariza- 12 
tion. Our approach includes feature variables extracted from the bit streams of coded videos, fol- 13 
lowed by optional stepwise regression for dimensionality reduction. Once the features are extracted 14 
and reduced in dimensionality, we apply innovate frame-level temporal sub-sampling techniques 15 
followed by training and testing using deep learning architectures. The frame-level temporal sub- 16 
sampling techniques are based on cosine similarity and PCA projections of feature vectors. We cre- 17 
ate three different learning architectures by utilizing LSTM networks, 1D-CNN networks, and Ran- 18 
dom Forests. The four most popular video summarization datasets, namely, TVSum, SumMe, OVP, 19 
and VSUMM are used to evaluate the accuracy of the proposed solutions. This includes the Preci- 20 
sion, Recall, F-score measures, and computational time. It is shown that the proposed solutions 21 
when trained and tested on all subjective user summaries, achieved F-scores of 0.79, 0.74, 0.88, and 22 
0.81, respectively, for the aforementioned datasets, showing clear improvements over prior studies. 23 

Keywords: Video Summarization, Video Coding, Temporal Subsampling, Convolution Neural Net- 24 
works, Long-Short Term Memory 25 
 26 

1. Introduction 27 
There is a surge in the amount of digital videos around the world due to the growth 28 

of the Internet and surveillance footage. Databases must be used to summarize these vid- 29 
eos, which is where video summarization comes in handy. Video summarization is the 30 
process of creating a meaningful summary of the original video to make it easier to re- 31 
trieve videos, identify anomalies, and facilitates activity tracking [1]. Video summariza- 32 
tion is also important for several reasons, such as allowing users to quickly navigate 33 
through large amounts of video content, reducing storage space in archives, and has many 34 
practical applications in a variety of fields. Video summarization techniques can be cate- 35 
gorized into two groups [2]. The first involves choosing sections from the original video, 36 
while the second, which is the most popular, involves choosing key frames from the orig- 37 
inal video. Therefore, this work focuses on video summarization by automatically select- 38 
ing key-frames from a video.  39 

Video summarization takes a lot of computational power, thus more effective meth- 40 
ods are always encouraged. The summarizing process can be lengthy, and computing re- 41 
sources are wasted on redundant or similar frames if every frame in a video is reviewed 42 
for selection. Space reduction should also be utilized for any group of features to speed 43 
up the process and guarantee that only important features are considered [3]. This work 44 
aims to address these two issues. 45 
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 46 
Figure 1. General overview of the system architecture. Feature extraction is done through HEVC 47 
coding. Temporal subsampling using HEVC features, PCA, or Cosine similarity. Reduction of the 48 
feature space is optional with Stepwise regression. Training is done with LSTM networks, 1D-CNNs 49 
or Random Forests. 50 
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In recent years, deep learning has become more common for generation tasks in image and 51 
video processing. To reach the desired results, a variety of tools and techniques can be 52 
employed alone or together. Most notably, Random Forests (RF) [4], Convolution Neural 53 
Networks (CNN) [5], and Long Short-Term Memory (LSTM) [6]. 54 

While video compression community belongs to the electrical engineering discipline, 55 
the deep learning community belongs to the computer and data science disciplines. The 56 
deep learning community frequently struggles with inadequate understanding of video 57 
compression due to the division in these research fields. With the growth of the High Effi- 58 
ciency Video Codec (HEVC) video standard [7], HEVC information in the video bitstream 59 
is often ignored and underutilized in the deep learning field. This work aims at leveraging 60 
the useful information encapsulated by HEVC coding in the video bitstream. HEVC bit- 61 
stream information in the form of features was proven useful in several applications such 62 
as static video summarization [8], encoding speedup and video transcoding [9], data em- 63 
bedding [10], detection of double and triple compression [11], and saliency detection [12]. 64 

This work also presents novel methods for temporal subsampling of frames based on 65 
HEVC features, Principle Component Analysis (PCA), and Cosine similarity. In addition, 66 
this paper presents the use of stepwise regression (SW) for reducing the dimensionality of 67 
the feature space. A general overview of the system architecture is shown in Figure 1. The 68 
main contributions can be summarized as follows: 69 
• The introduction of two new architectures for video summarization based on HEVC 70 

features using LSTM networks and 1D-CNNs 71 
• The introduction of two new subsampling methods based on cosine similarity and 72 

projections of HEVC feature vectors. 73 
• Complete experimental results with the four most commonly used datasets in video 74 

summarization, namely, TVSum, SumMe, OVP, and VSUMM. The use of all fours 75 
datasets in one research paper is rarely used in the literature, if any. From our obser- 76 
vations and experimental results, it is rarely the case that a reported video summari- 77 
zation solution works well on all four datasets. Therefore, most paper opt to use a 78 
subset of these four datasets. 79 

• Detailed discussion about the suitability of different methodologies used in digital 80 
video summarization including accuracy and computational time. 81 

Video summarization has been the subject of substantial research over the past two 82 
decades. The efforts made to handle the challenge of video summarization are outlined in 83 
this section, with a focus on deep learning-based approaches. 84 

Researchers in [13] take advantage of spatio-temporal learning with 3D-CNNs, 85 
LSTMs, and Recurrent Neural Networks to detect soccer video highlights. A GAN-based 86 
framework was presented by [14] with an attention-aware Ptr-Net generator and a 3D- 87 
CNN discriminator. HEVC intra-frame coding was leveraged by [15] through merging 88 
weighted luminance and chrominance values with texture-based feature against a thresh- 89 
old to group frames into a video summary. A stacked memory network (SMN) with LSTM 90 
layers was presented in [16] that models long dependencies among frames to lower redun- 91 
dancy in the final summaries. A framework presented in [17] focuses on cost-sensitive 92 
learning by having a spatial stream that represents the appearance of frames, and a tem- 93 
poral stream that uses motion vectors to represent the temporal information of a video. 94 

Researchers in [18] built an unsupervised GAN with an attention mechanism to detect 95 
meaningful parts of a video. In [19], motion information between frames is leveraged, 96 
where spatio-temporal information is extracted and inter-frame motion is generated from 97 
it, and a self-attention model selects key-frames for the summary. Multi-video summari- 98 
zation was explored by [20] by applying target-appearance-based shot segmentation along 99 
with feature extraction from frames, these features are passed to a bidirectional LSTM to 100 
generate probabilities to form a summary. An attentive encoder–decoder network was pre- 101 
sented by the authors in [21], where they have a bidirectional LSTM as the encoder to ex- 102 
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tract contextual information between frames, and then two attention-based LSTM net- 103 
works as the decoder, which uses additive and multiplicative objective functions. An en- 104 
coder-decoder CNN structure was developed by [22] by having a diagnostic view plane 105 
detection network as the encoder, followed by a decoder that feeds feature into a bidirec- 106 
tional LSTM to analyze features of preceding and future frames. The final reinforcement 107 
learning network selects key-frames for the summary. Video summarization was achieved 108 
by [23] on the Internet of Things (IoT) domain by developing a CNN for shot segmentation 109 
and image memorability, with using aesthetic- and entropy-based features to ensure sum- 110 
mary variation. The work by [24] uses motion information and clustering validity index to 111 
segment shots and select key-frames by estimating their forward and backward motion. 112 

A self-attention binary neural tree (SABT-Net) model is presented in [25], where they 113 
use GoogleNet for feature extraction along with shot encoding, branch routing, self-atten- 114 
tion, and score prediction modules to achieve video summarization. Authors in [26] used 115 
a sparse autoencoder to combine feature vectors derived from multiple pre-trained CNNs 116 
into a reduced space with a Random Forests classifier to form video summaries. A TTH- 117 
RNN was presented in [27] and comprises a tensor-train embedding layer with a hierar- 118 
chical LSTM to capture forward and backward temporal intra-shot dependencies and en- 119 
codes inter-shot dependencies to establish the importance of each frame and form the final 120 
summary. The researchers in [28] offers CLIP-It, a framework for dealing with query-fo- 121 
cused video summarization by having a multimodal transformer that correlates frames 122 
with user-written queries. 123 

The research by [29] proposes a deep hierarchical LSTM with attention for Video sum- 124 
marization (DHAVS) in response to the LSTMs' inability to handle longer video sequences. 125 
They use a 3D-CNN to extract spatio-temporal features and an attention-based hierarchical 126 
LSTM module to capture the temporal correlations between video frames. Since most sum- 127 
marizing techniques analyze the visual components of the video and ignore audio ele- 128 
ments, [30] provide a method that uses both the visual and audio information. Structural 129 
similarity index is used to determine similarity among frames and Mel-frequency cepstral 130 
coefficient for feature extraction from audio signals. 131 

The work by [31] uses GANs to extract representative parts of the videos as features 132 
through reconstruction loss followed by knowledge distillation using a basic network for 133 
key-frame selection. The authors in [32] use a bidirectional LSTM that takes advantage of 134 
the underlying hierarchical structure of video sequences and learns temporal representa- 135 
tions via intra-block and inter-block attention. They then partition shots and calculate shot- 136 
level importance scores to rank the frames that go into the final video summary. 137 

2. Methodology 138 

2.1. Data preprocessing 139 
The original videos were converted to YUV frames before encoding them using a 140 

HEVC/H.265  video coder. We modified the coder to produce low-level features which 141 
are discussed in this section. The HEVC codec is used to compress the videos, hence, rich 142 
feature sets can be extracted from based on the quadratic recursive splitting of the coding 143 
units (CUs) in HEVC. An overview of the process of acquiring the HEVC feature set is 144 
shown in Figure 2. 145 

CUs in HEVC can vary in depth from 0, which is typically equivalent to a maximum 146 
block size of 64x64 pixels, to 3, which is equivalent to a block of 16x16 pixels. CUs are then 147 
split to prediction units (PUs) of size 4x4 to 32x32, which are then further split into trans- 148 
form units (TUs) of size 4x4 to 32x32. Figure 3 illustrates the partitioning scheme followed 149 
in HEVC coding. We base our feature vectors on the partitioning and prediction infor- 150 
mation found in the output bit streams. 151 
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 152 
Figure 2: MPEG to HEVC video conversion process to extract HEVC features. 153 

 154 
Figure 3: Coding Unites partitioning in HEVC coding. 155 

For video summarization, we presented a set of 64 feature variables. The variables 156 
are chosen to quantify the spatiotemporal activity of the video frames. Table 1 has a list of 157 
the variables. Feature variables in Table 1-A are averaged per frame and the rest in Table 158 
1-B are not. The tables use the abbreviations MVD for motion vector difference, SAD for 159 
sum of absolute differences, and CU for coding unit. 160 

Table 1: HEVC features extracted per frame from a custom HEVC decoder [8]. (A) Feature variables 161 
that are averaged per frame. (B) Feature variables that are not averaged per frame. 162 

 

Feature number Feature description 
1 Number of CU parts 
2 MVD bits per CU 
3 CU bits excluding MVD bits 
4 Percentage of intra CU parts 
5 Percentage of skipped CU parts 
6 Number of CUs with depth 0 (i.e., 64x64) 
7 Number of parts with depth 1 (i.e., 32x32) 
8 Number of CUs with depth 2 (i.e., 16x16) 
9 Number of parts with depth 3 (i.e., 8x8) 
10 Row-wise SAD of the CU prediction error 
11 Column-wise SAD of the CU prediction error 
12 Ratio of gradients (i.e., feature 10 divided by feature 11) per CU 
13 Total distortion per CU as computed by the HEVC encoder 

(A) 

Feature number Feature description 
14 to 22 Standard deviation of feature IDs 1-9 per frame 

23 Max CU depth per frame 
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24 For CUs with depth > 0, log2(|𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑀𝑀𝑀𝑀𝑀𝑀|) 
25 For CUs with depth = 0, log2(|𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑀𝑀𝑀𝑀𝑀𝑀|) 

26 to 29 Standard deviation of feature IDs 23-25 per frame 

30 
Per frame: Summation of variance of the x and y components of 
all MVs 

31 to 47 Histogram of x-component of all MVs per frame (using 16 pins) 
48 to 64 Histogram of y-component of all MVs per frame (using 16 pins) 

(B) 

These feature are chosen as they capture the spatio-temporal activities of the video 163 
frames, they also rely on motion estimation and compensation with previous video frames 164 
hence preserving the temporal dependencies.  165 

2.2. Temporal Subsampling 166 
Temporal subsampling of frames is necessary to reduce the amount of video data 167 

that needs to be fed into our proposed models. This is commonly practiced in video sum- 168 
marization as many frames contain redundant content in the temporal sense.  In this 169 
work, temporal subsampling is done through one of the following proposed methods: 170 
2.2.1. HEVC-based Temporal Subsampling 171 

We use the sum of the HEVC features as an indication of the temporal activity of 172 
individual video frames. This can be achieved by summing up all of the HEVC feature 173 
values to create a temporal activity index. The lower the index, the lower the temporal 174 
activity, which indicates that the underlying frame is potentially redundant and can be 175 
safely deleted. We carried out comprehensive experiments and we found that the sum- 176 
mation of HEVC feature variables are lower for redundant frames. Conceptually this is a 177 
valid conclusion as the HEVC feature variables mainly reply on motion estimation and 178 
compensation, thus capture the temporal activity of the video frames. Lower summations 179 
pertain to redundant frames and vice versa. 180 

In general, the temporal activity index of each frame is compared with a threshold to 181 
determine whether or not it will be deleted. 182 

The calculation of the threshold is based on the train dataset in each of the 5 splits in 183 
each run. The average values of each and every feature listed in Table 1 are calculated per 184 
train split using video frames with ground truth zero (i.e., video frames that are not in- 185 
cluded in the video summary). This results in 64 average values that are summed to gen- 186 
erate “sum of averages”. Likewise, the standard deviation of each and every feature listed 187 
in Table 1 are calculated per train split using video frames with ground truth zero. This 188 
results in 64 standard deviation values that are summed to generate “sum of standard 189 
deviations”. Lastly, the threshold is computed as: “sum of averages” + “sum of standard 190 
deviations”. This process is illustrated in Figure 4. To vary the percentage of deleted 191 
frames, we add a multiplier to the calculated threshold which has a range of 0 to 1. In this 192 
work, using empirical testing, we set the multiplier to 0.3. Consequently, a video frame is 193 
retained if its sum of features is greater than the calculated threshold and vice versa. 194 

 195 

Figure 4: Calculation of temporal activity threshold for temporal sub-sampling with HEVC features. 196 
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2.2.2. PCA-based Temporal Subsampling 197 
Principal Component Analysis (PCA) is a well-known dimensionality reduction 198 

method [33]. In our proposed setup, we use PCA to project each of the feature vectors 199 
into a scalar value. Consequently, the consecutive differences of projected values are 200 
computed and stored in list D. After that, for each difference element d in D, we check it 201 
against a threshold and decide whether or not to retain the underlying video frame. The 202 
threshold is based on statistics gathered from the projected feature vector values as de- 203 
tailed in Algorithm 1. 204 

The theory here is that lower differences between principle components belonging 205 
to feature vectors of frames mean higher similarity between them, which indicates re- 206 
dundancy and allows us to remove one of the frames. For example, for the following 207 
frames: [𝑜𝑜𝑓𝑓1, 𝑜𝑜𝑓𝑓2, 𝑜𝑜𝑓𝑓3, 𝑜𝑜𝑓𝑓4, … , 𝑜𝑜𝑓𝑓𝑛𝑛] and their feature vectors: [𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3, 𝑣𝑣4, … , 𝑣𝑣𝑛𝑛].The first 208 
principle component would look like: [𝑝𝑝1, 𝑝𝑝2, 𝑝𝑝3, 𝑝𝑝4, … , 𝑝𝑝𝑛𝑛]  and the consecutive differ- 209 
ences would be: [𝑑𝑑1,𝑑𝑑2,𝑑𝑑3,𝑑𝑑4, … ,𝑑𝑑𝑛𝑛−1]  with 𝑑𝑑1 and 𝑑𝑑2 being the difference between 210 
𝑝𝑝1 − 𝑝𝑝2 and 𝑝𝑝2 − 𝑝𝑝3, respectively. In Algorithm 1, with the calculation of the TH, mean 211 
and std are the mean and standard deviation of all values in D, respectively. If 𝑑𝑑1 is less 212 
than the composite thresholding value, then 𝑜𝑜𝑓𝑓1 gets marked for elimination. This con- 213 
tinues until all feature vectors are covered. 214 

This proposed algorithm relies on projecting feature vectors into scalars. The tem- 215 
poral activity threshold is computed based on the means and standard deviations of the 216 
differences of these scalar values pertaining to consecutive feature vectors of a video 217 
sequence, hence the use of the first PCA component only. 218 

Algorithm 1: PCA-based temporal subsampling of frames. 

Input:  
FVs_train[]: Feature matrix of train data set 
FVs_test[]: Feature matrix of test data set 
k: Predetermined multiplier 
Output: 
IDX_DEL[]: Frame indices to delete 
 
// Calculate temporal TH 
[Projected_FVs, first_PC] = Project FVs_train using PCA into scalar values 
D = Consecutive differences of Projected_FVs 
mean = Mean of all values in D 
std = Standard deviation of all values in D 
TH = mean + (k × std) 
 
// Perform temporal sub-sampling 
for each FV in FVs_test do 
    p = Project FV using first_PC 
    if p ≤ TH 
        Append index of FV to IDX-DEL[]  
    end 
end 

2.2.3. Cosine-based Temporal Subsampling 219 
Cosine similarity [34] is a metric that assesses how similar two vectors are to one 220 

another. It represents the cosine of the angle formed by two vectors. Cosine similarity is 221 
formally defined as the division between the dot product of vectors and the product of 222 
the Euclidean magnitude of each vector. The range of the cosine similarity value is from 0 223 
to 1, with 1 denoting the highest similarity and 0 denoting the lowest. The following is the 224 
equation for the cosine similarity score between two feature vectors fi and fj: 225 
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similarity = 𝑐𝑐𝑜𝑜𝑠𝑠 (𝜃𝜃) =
𝑜𝑜𝑖𝑖 ⋅ 𝑜𝑜𝑗𝑗

∥ 𝑜𝑜𝑖𝑖 ∥∥ 𝑜𝑜𝑗𝑗 ∥
 (1) 

In our setup, we apply cosine similarity between each feature vector and its succes- 226 
sor, and then store the similarity score and index of the first feature vector in a tuple list 227 
S. After gathering all the similarity scores, the tuple list S is sorted ascendingly. All the 228 
feature vectors denoted by scores in the upper 90% (i.e., the scores closer to 1) in the tuple 229 
list S are marked for elimination. This subsampling process is detailed in Algorithm 2. 230 

Algorithm 2: Cosine-based temporal subsampling of frames. 

Input:  
FVs[]: Feature matrix of train and test data sets 
Output: 
IDX_DEL[]: Frame indices to delete 
 
Scores{}: Empty tuple to hold cosine scores 
for i = 0...count_of(FVs)-1 do 
    C = Cosine score between FVs(i,:) and FVs(i+1,:) 
    Append [C, i] to Scores {} 
end 
Sort Scores{} ascendingly (based on C values) 
IDX_DEL[] = Indices (i) of upper 90th percentile in Scores{} 

  231 
The concept here is that higher similarity scores between feature vectors implies 232 

higher similarity between them, which indicates redundancy and allows the algorithm, to 233 
eliminate one of the frames. For example, if we have the following frames: 234 
[𝑜𝑜𝑓𝑓1, 𝑜𝑜𝑓𝑓2, 𝑜𝑜𝑓𝑓3, 𝑜𝑜𝑓𝑓4, … , 𝑜𝑜𝑓𝑓𝑛𝑛] and their feature vectors: [𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3,𝑣𝑣4, … , 𝑣𝑣𝑛𝑛]. The cosine similar- 235 
ity scores between them are: [𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3, 𝑐𝑐4, … , 𝑐𝑐𝑛𝑛−1] with 𝑐𝑐1  and 𝑐𝑐2  being the score be- 236 
tween 𝑣𝑣1 − 𝑣𝑣2 and 𝑣𝑣2 − 𝑣𝑣3, respectively. If 𝑐𝑐1 is in the upper 90% of the similarity indices 237 
then 𝑜𝑜𝑓𝑓1, which is represented by 𝑣𝑣1, is marked for elimination, and this continues until 238 
all feature vectors are covered. 239 

2.3 Reducing the Feature Space 240 
A supervised feature-selection approach known as stepwise regression is used to au- 241 

tomatically select the most relevant predictor variables used to predict response variables 242 
[35]. The authors in [36] first suggested using stepwise regression in video-based intelli- 243 
gent systems. Since then, it has been effectively employed with many vision-based appli- 244 
cations, as documented in several works, including [12], [37], and [38]. 245 

In this study, we use stepwise regression to reduce the dimensionality of our feature 246 
vectors, where features are treated as predictors and the class labels are treated as re- 247 
sponse variables. This is to assess the suitability of the selected features and consequently 248 
reducing dimensionality of the feature vectors if needed. Stepwise regression is only used 249 
with training data because it is a supervised approach. Later, the test data's dimensionality 250 
is reduced by using the indices of the retained feature variables of the training set, as il- 251 
lustrated in Figure 5. 252 
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 253 
Figure 5: General overview of feature space reduction with stepwise regression. 254 

For completeness, a summary of the stepwise regression algorithm is as follows; for 255 
a feature set of 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑘𝑘, 𝐹𝐹𝑖𝑖𝑛𝑛 is the F-random feature for the feature to be added to the 256 
reduced feature space and 𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜  is the feature to be dropped from the reduced feature 257 
space. The following are the steps for stepwise regression: 258 
1. Create single-set models from all features: 259 

ℎ(𝑥𝑥) = 𝜃𝜃0 + 𝜃𝜃1𝑥𝑥1 (2) 

where ℎ(𝑥𝑥) is the hypothesis that the added features are important for classification. 260 
𝑥𝑥1 was one of the features that yielded the highest F-score. 𝑜𝑜1 is the statistic of 𝑥𝑥1 261 
and is given by the following formula: 262 

𝑜𝑜1 =  
𝑆𝑆𝑆𝑆𝑅𝑅(𝜃𝜃2|𝜃𝜃1𝜃𝜃0)  
𝑀𝑀𝑆𝑆𝐸𝐸(𝑥𝑥2, 𝑥𝑥1)

 (3) 

where 𝑀𝑀𝑆𝑆𝐸𝐸 is the mean square error and 𝑆𝑆𝑆𝑆𝑅𝑅 is the regression sum square error. 263 
2. Repeat step 1 for all feature variables. For every new h(x) produced, it is examined in 264 

combination with the existing h(x) if they produce a higher hypothesis than the older 265 
ℎ(𝑥𝑥) alone. We add 𝑥𝑥2 if its 𝑜𝑜2 is greater than 𝐹𝐹𝑖𝑖𝑛𝑛 and obtain the following: 266 

𝑜𝑜2 =  
𝑆𝑆𝑆𝑆𝑅𝑅(𝜃𝜃1|𝜃𝜃2𝜃𝜃0)
𝑀𝑀𝑆𝑆𝐸𝐸(𝑥𝑥1, 𝑥𝑥2)

 (4) 

ℎ(𝑥𝑥) =  𝜃𝜃0 + 𝜃𝜃1𝑥𝑥1 + 𝜃𝜃2𝑥𝑥2 (5) 

After adding 𝑥𝑥2, 𝑥𝑥1 is checked for removal by comparing 𝑜𝑜1 to the new 𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜. If 𝑜𝑜1 267 
is lesser, then 𝑥𝑥1 is dropped. 268 

3. The algorithm continues until there are no features to add or drop, with the final 269 
hypothesis looking similar to the following: 270 

ℎ(𝑥𝑥) =  𝜃𝜃0 + 𝜃𝜃1𝑥𝑥1 + 𝜃𝜃2𝑥𝑥2 + 𝜃𝜃3𝑥𝑥3 + ⋯ (6) 

2.4 Video Summarization Architectures 271 
2.4.1. LSTM-based Architecture 272 

Recurrent neural networks (RNN) [39] are a type of neural network used with se- 273 
quential or time series data. They differ from standard neural networks, which assume 274 
that inputs and outputs are independent, in that they remember information from earlier 275 
inputs and use it to impact the current input and output. A major drawback of RNN net- 276 
works is that they are susceptible to the vanishing gradient problem [40]. The gradient of 277 
the loss function approaches zero as the network's number of layers with activation func- 278 
tions increases, making the network more challenging to train. Due to the vanishing gra- 279 
dient problem RNNs are not able to remember long-term dependencies. Long Short-Term 280 
Memory Network (LSTM) is an advanced RNN network that allows information to persist 281 
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[6]. It is capable of handling the vanishing gradient problem with a chain structure that 282 
contains memory blocks called cells. 283 

These cells can forget information that is no longer useful before passing it to the next 284 
cell. The output of the cell is taken as input to the other. This chain structure is what allows 285 
the LSTM to only retain the useful information without suffering from the vanishing gra- 286 
dient problem. The LSTM network can remember the information between different 287 
frames of the video while only retaining the important information. 288 

The LSTM architecture used in this work is a 4-layer LSTM network with 50 nodes in 289 
each layer. The proposed LSTM architecture is shown in Figure 6 (left). 290 
2.4.2. 1D-CNN-based Architecture 291 

Convolutional neural networks (CNN), as opposed to conventional artificial neural 292 
networks, can combine feature extraction and classification into a single learning body, 293 
averting the need for fixed and manually constructed features. In a typical 2-dimensional 294 
CNN, the kernel can slide along two dimensions of the data [5]. A kernel is a matrix of 295 
weights that extracts key information by multiplying them by the input. Contrary, in 1- 296 
dimensional CNN (1D-CNN), the kernel slides along one dimension of the data where the 297 
convolution operation is applied, significantly reducing the computational complexity.  298 

1D-CNNs are usually used with sequential data due to their simplicity and effective- 299 
ness, which is why the architecture used in this work is a single-layer 1D-CNN with 256 300 
filters of size 5. Figure 6 (right) shows the proposed 1D-CNN architecture. 301 

 302 
Figure 6: Proposed LSTM network architecture (Left), and 1D-CNN network architecture (Right). 303 

2.4.3. Random Forests-based Architecture 304 
Random Forests is a supervised learning approach. An ensemble of decision trees or 305 

a “forest” are usually trained using the "bagging" method. The fundamental concept of 306 
the bagging method is that the final output is improved by combining several learning 307 
models [4]. Random Forests increases the model's randomness while creating the decision 308 
trees. When splitting a node, it looks for the strongest feature among a random group of 309 
features rather than the best feature from the entire set. There is significant variety as a 310 
result, which usually results in a better overall model. By using random thresholds for 311 
each feature, Random Forests make trees even more random, as opposed to searching for 312 
the best thresholds (like in conventional decision trees). We employ a threshold of 0.9 in 313 
our implementation in order to keep features with values over the threshold. When none 314 
of the features are higher than the threshold, then all of them are used. For training across 315 
the chosen features, we specify that the forest produces 128 trees. Then, in order to quan- 316 
tify the findings, we compute a few performance measures using the predicted labels that 317 
we had previously saved. 318 

 319 
 320 
 321 
 322 
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3. Experimental Results 323 
This section may be divided by subheadings. It should provide a concise and precise 324 

description of the experimental results, their interpretation, as well as the experimental 325 
conclusions that can be drawn. 326 

3.1 Datasets 327 
In this work, the proposed solutions are evaluated using four popular datasets for 328 

video summarization; namely, TVSum [41], SumMe [42], OVP [43], and VSUMM [43]. The 329 
TVSum dataset contains 50 videos of various genres such as news, documentaries, and 330 
vlogs at 30 fps. The SumMe dataset contains 25 videos at 30 fps. The OVP (Open Video 331 
Project) dataset has 50 videos from Open Video Project at 30  fps among several genres 332 
and have a duration of 1-4 minutes. The VSUMM dataset contains 50 videos from 333 
YouTube at 30 fps, across several genres as well and have a duration of 1-10 minutes.  334 

In these datasets, a video summary is generated manually by a number of users and 335 
stored in a matrix referred to as “user summaries” which is used as the ground truth. 336 
Some existing research papers clearly state that they compare their automatically gener- 337 
ated summaries against each of the user summaries and report the average F-score. While 338 
other research papers loosely mention that their automatically generated summaries are 339 
compared against the ground truth without further details.  340 

Since this work is concerned with static video summarization or key-frame extrac- 341 
tion, we train and test the datasets on the disjunction (inclusive OR) of all user summaries. 342 
In our published datasets we refer to these vectors as “user_summary_inclusive_OR” 343 
which we added to the files of the datasets and made publically available.  344 

The use of all four datasets in one research paper is, to the best to our knowledge, 345 
rarely done in the reporting of experimental results in the literature. From our observation 346 
and experimental results, it is rarely the case that a reported video summarization solution 347 
works well on all four datasets. Therefore, most papers opt to use a subset of these four 348 
datasets. 349 

3.2 Evaluation criteria 350 
We use quantitative metrics similar to the criteria used in other works for fair com- 351 

parison. We define the following metrics using the temporal overlap between the pre- 352 
dicted summary A and the ground truth summary B: 353 

𝑃𝑃𝑓𝑓𝑃𝑃𝑐𝑐𝑃𝑃𝑠𝑠𝑃𝑃𝑜𝑜𝑃𝑃 (𝑃𝑃)  =
 overlap(𝑨𝑨,𝑩𝑩)

 length(A)
 (7) 

𝑅𝑅𝑃𝑃𝑐𝑐𝑅𝑅𝑅𝑅𝑅𝑅 (𝑅𝑅) =
 overlap(𝑨𝑨,𝑩𝑩)

 length(B)
 (8) 

𝐹𝐹 − 𝑠𝑠𝑃𝑃𝑅𝑅𝑠𝑠𝑠𝑠𝑓𝑓𝑃𝑃 (𝐹𝐹) =
2𝑃𝑃 × 𝑅𝑅
𝑃𝑃 + 𝑅𝑅

× 100 (9) 

To put these metrics into words: Precision (P) is the percentage of true positive pre- 354 
dictions over all positive predictions, Recall (R) is the percentage of true positive predic- 355 
tions over the ground truth, and the F-score (F) is the harmonic mean between them. 356 

3.3 Experimental Setup 357 
Before presenting the results, we describe the general setup that is common to all 358 

three proposed architectures. After the video coding feature vectors are generated and the 359 
temporal sub-sampling algorithm is applied, the feature vectors are split into a 20%-80% 360 
fashion for testing and training, respectively. We apply cross-validation with 5 folds (K=5), 361 
where, in every fold, the new testing set shifts by 20% and the older testing set is added 362 
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back to the training set. The results are then averaged over 5 folds. The training setup is 363 
illustrated in Figure 7. 364 

 365 
Figure 7: General overview of learning architecture with averaged results over 5 folds of cross-val- 366 
idation 367 

We use HEVC features derived from the custom re-encoder mentioned in Section III. 368 
We test our setups with and without dimensionality reduction of the feature space. In 369 
addition, the proposed temporal subsampling of video frames methods using HEVC fea- 370 
tures, PCA projections, and cosine similarity are all tested with the following three learn- 371 
ing architectures: 1D- CNNs, LSTM networks and Random Forests. For each of the 4 da- 372 
tasets, the top performing model from each learning architecture is shortlisted and com- 373 
pared against benchmark methods in the literature. First, the results are reported for every 374 
dataset, then the best models are compared with the literature, followed by a thorough 375 
discussion of the results. 376 

The metrics used for comparison are Precision (P), Recall (R) and F-score. The exper- 377 
iments were conducted on a PC with a 9th gen Intel i9, 32 GB of RAM and NVIDIA RTX 378 
2070 GPU. 379 

3.4 Results 380 
3.4.1. TVSum dataset 381 

The best results across all learning architectures in Table 2-A do not use stepwise 382 
regression (denoted as SW in the tables), while the second-best results do use it for dimen- 383 
sionality reduction of the feature space. HEVC-based temporal subsampling achieves the 384 
highest results on the TVSum dataset, regardless of using stepwise regression or not. The 385 
highest overall scores appear with using the LSTM network. 386 

Table 2: Proposed solutions: F-scores of the 2 best performing models using the 3 proposed learning 387 
architectures, with and without reduction of the feature space, and across the 3 proposed temporal 388 
subsampling methods on the TVSum (A), SumMe (B), OVP (C), and VSUMM (D) datasets. 389 

Architecture Reduction 
Temporal 

subsampling 
F-score 

Time 

(K=5) 

Time 

(K=1) 

1D-CNN Stepwise HEVC-based 0.728 20.36 4.07 

1D-CNN None HEVC-based 0.737 48.86 9.77 

RF Stepwise HEVC-based 0.737 22.13 4.43 

RF None HEVC-based 0.740 49.74 9.95 

LSTM Stepwise HEVC-based 0.775 81.43 16.29 

LSTM None HEVC-based 0.785 195.42 39.08 
 

Architecture Reduction 
Temporal 

subsampling 
F-score 

Time 

(K=5) 

Time 

(K=1) 

1D-CNN None PCA-based 0.610 12.38 2.48 

1D-CNN None HEVC-based 0.644 16.29 3.26 

LSTM None PCA-based 0.646 49.51 9.90 

LSTM None HEVC-based 0.676 65.14 13.03 

RF None PCA-based 0.720 13.22 2.64 

RF None HEVC-based 0.737 17.04 3.41 
 

(A) (B) 
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Architecture Reduction 
Temporal 

subsampling 
F-score 

Time 

(K=5) 

Time 

(K=1) 

1D-CNN Stepwise Cosine-based 0.827 6.17 1.23 

1D-CNN None HEVC-based 0.840 22.94 4.59 

RF Stepwise Cosine-based 0.852 6.86 1.37 

RF None HEVC-based 0.864 24.70 4.94 

LSTM Stepwise Cosine-based 0.866 25.52 5.10 

LSTM None HEVC-based 0.879 91.75 18.35 
 

Architecture Reduction 
Temporal 

subsampling 
F-score 

Time 

(K=5) 

Time 

(K=1) 

1D-CNN Stepwise HEVC-based 0.728 13.86 2.8 

1D-CNN None HEVC-based 0.744 33.26 6.7 

LSTM Stepwise HEVC-based 0.753 55.43 11.1 

LSTM None HEVC-based 0.770 133.03 26.6 

RF Stepwise HEVC-based 0.799 14.67 2.9 

RF None HEVC-based 0.808 35.21 7.0 
 

(C) (D) 

 390 
3.4.2. SumMe dataset 391 

Regardless of the temporal subsampling method used, all results in on the SumMe 392 
dataset in Table 2-B are without stepwise regression. Across all learning architectures, the 393 
best model uses HEVC-based temporal subsampling and the second-best model uses 394 
PCA-based temporal subsampling. The highest overall scores appear with using the Ran- 395 
dom Forests architecture. 396 
3.4.3. OVP dataset 397 

Across all three learning architectures in Table 2-C, the best results on the OVP da- 398 
taset come from using HEVC-based temporal subsampling and without applying step- 399 
wise regression. The second-best model across all learning architectures, however, uses 400 
stepwise regression for dimensionality reduction and cosine similarity for temporal sub- 401 
sampling. The highest overall score appears with using the LSTM network. 402 
3.4.4. VSUMM dataset 403 

In Table 2-D for the VSUMM dataset, all the results across all three learning architec- 404 
tures use HEVC-based temporal subsampling. The first across all learning architectures is 405 
without stepwise regression, while the second is with stepwise regression. The highest 406 
overall scores are with using Random Forests. 407 
3.4.5. All datasets versus benchmarks 408 

Again, as mentioned above, we carried out the training and testing using all user 409 
summaries combined into one label vector. In existing work, different papers use different 410 
approaches for training and testing with some of them loosely using the term ground truth 411 
without further details. Nonetheless, for completeness, in this section we provide com- 412 
parisons against existing work which carries out training and testing using different ap- 413 
proaches but with the same datasets.  414 

Table 3: F-scores of our best performing models from the 3 proposed learning architectures against 415 
benchmark models in the literature on the TVSum (A), SumMe (B), OVP (C) and VSUMM (D) da- 416 
tasets. Sorted ascendingly from top to bottom. 417 

 418 

 419 

 420 

 421 

 422 
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Method F-score 

RR-STG [44] 0.637 

PGL-SUM [45] 0.654 

SMN [46] 0.675 

Ours (1D-CNN) 0.737 

Ours (RF) 0.740 

Ours (LSTM) 0.785 
 

Method F-score 

MC-VSA [47] 0.534 

re-seq2seq [48] 0.556 

MAVS [16] 0.583 

Ours (1D-CNN) 0.644 

Ours (LSTM) 0.676 

Ours (RF) 0.737 
 

Method F-score 

VRHDPS [49] 0.630 

VSUMM [50] 0.680 

VISCOM [51] 0.720 

Ours (1D-CNN) 0.840 

Ours (RF) 0.869 

Ours (LSTM) 0.879 
 

Method F-score 

VSUMM [50] 0.670 

VISCOM [51] 0.670 

VRHDPS [49] 0.680 

Ours (1D-CNN) 0.744 

Ours (LSTM) 0.770 

Ours (RF) 0.808 
 

(A) (B) (C) (D) 

Tables 3 (A-D) contain the F-scores of our best performing models from each learning 423 
architecture compared against state-of-the-art works in the literature on the SumMe, 424 
TVSum, OVP, VSUMM datasets. With the SumMe dataset in Table 3-A, our Random For- 425 
ests model with no dimensionality reduction and with HEVC-based temporal subsam- 426 
pling surpasses the highest scores in the literature. 427 

With the TVSum dataset in Table 3-B, our LSTM network model with no dimension- 428 
ality reduction and with HEVC-based temporal subsampling also exceeds the highest 429 
scores in the literature. Our second and third best models with Random Forests and 1D- 430 
CNNs, without dimensionality reduction and with HEVC-based temporal subsampling 431 
of frames also exceeded benchmark scores. 432 

With the OVP dataset in Table 3-C, our model with the LSTM network, without di- 433 
mensionality reduction and with HEVC-based temporal subsampling of frames, sur- 434 
passes the highest scores in the literature. Our second and third ranking models with the 435 
Random Forests and 1D-CNNs, without dimensionality reduction and with HEVC-based 436 
temporal subsampling also outperformed benchmark scores.  437 

With the VSUMM dataset in Table 3-D, our model with Random Forests without us- 438 
ing stepwise regression and with HEVC-based temporal subsampling tops the best scores 439 
in the literature. Our second and third best models with LSTM networks and 1D-CNNs, 440 
without stepwise regression and with HEVC-based temporal subsampling of frames also 441 
exceeded benchmark scores. 442 

4. Discussion of Results 443 

4.1 Reduction of feature space 444 
One observation from the results in Tables 2 is that the highest score is constantly 445 

achieved without resorting to reducing the dimensionality of the HEVC feature set. Di- 446 
mensionality reduction methods aim to retain the most representative features and dis- 447 
card the features that are deemed unnecessary, redundant, or non-representative of the 448 
original image information. The fact that retaining all and not some of the 64 HEVC fea- 449 
tures yields higher scores, means that all 64 HEVC features are excellent representatives, 450 
and none of them can be discarded. 451 

This is also true for the second highest scores across all learning architectures in the 452 
SumMe dataset, but with PCA-based temporal subsampling of frames per training set. 453 
This means that for the SumMe dataset, the quality of the features used is more important 454 
or influential than the method used for temporal subsampling of frames due to the diffi- 455 
cult nature of the videos it contains which were intended to be used with importance- and 456 
interestingness-based applications of video summarization [52]. According to the pre- 457 
sented results, HEVC features successfully capture importance and interestingness infor- 458 
mation of video frames. 459 

For TVSum, OVP and VSUMM, the second highest score across all three learning 460 
architectures is when HEVC features are reduced with stepwise regression, regardless of 461 
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the temporal subsampling method used. The interesting finding with the TVSum and 462 
VSUMM datasets is that the F-score of the video summarization is negatively affected by 463 
less than 2% when HEVC-based temporal subsampling of frames is used, compared to 464 
the best scores. Even in the case of the second highest scores with the OVP dataset, where 465 
dimensionality reduction is applied and cosine similarity is used for temporal subsam- 466 
pling, the F-score decrease is less than 2% as well. This indicates that even when some of 467 
the HEVC features are removed, regardless of the method being used for temporal sub- 468 
sampling, the retained features are still highly representative of the frame content and 469 
contain close and comparable information compared to the full set of HEVC features. 470 

In general, the use of Stepwise Regression did not generate the best results in any of 471 
our experiments. This can be justified by the fact that Stepwise Regression uses linear 472 
multivariate regression for variable selection. However, the problem at hand, which is 473 
mapping feature variables to key frames is clearly non-linear and hence the performance 474 
of such a variable selection approach. 475 

The following are examples of using stepwise regression with the TVSum and 476 
SumMe datasets. For the TVsum dataset, we found that the most significant features per- 477 
tain to the following IDs from Table 1: 4,5,8,9 and standard deviation of (2-4,6-8), 10-13, 478 
23-25, 30 and 10 bins of MVx histogram and 12 bins of the MVy histogram. Whereas for 479 
the SumMe dataset we  found that the most significant features pertain to the following 480 
IDs from Table 1: 3,5-7, standard deviation of 1 and 4, 23, standard deviation of 23, 30 and 481 
7 bins of MVx histogram and 5 bins of the MVy histogram. 482 

 483 

4.2 Learning architecture 484 
Recall that the HEVC features are extracted from the HEVC video coding process. 485 

Such a process is based on motion estimation and compensation which is known to make 486 
use of previous video frames in the coding of the present video frame. As such, the result- 487 
ant feature vector of a video frame inherently contains information from previous frames. 488 
This justifies the outstanding results obtained using the RF and 1D-CNN architectures, 489 
that unlike LSTM networks, which lack the ability to maintain information beyond the 490 
current frame.  491 

On the other hand, in SumMe and VSUMM, RFs achieved higher scores compared to 492 
the other two learning architectures, implying less content or scene changes in the content 493 
of the videos within these datasets. When a video contains many scene changes, LSTMs 494 
excel; However, when there are not many changes, then RFs can keep up with and exceed 495 
LSTMs in terms of classification accuracy.  496 

The datasets where LSTM networks performed better, (i.e., TVSum and OVP), indi- 497 
cated that the videos contained in them have more temporal variance or scene changes in 498 
their content compared to the other two datasets. This can be explained by the way LSTM 499 
networks work, where they can retain information about older frames or content through 500 
their long memory along with the recently preceding frames with the short memory. 501 

4.3 Elapsed runtimes 502 
LSTM networks are computationally expensive and require at least 4 times required 503 

by 1D-CNNs or Random Forests according to our experiments. When runtime is not a 504 
priority, LSTM networks are recommended. On the other hand, when runtime is a prior- 505 
ity, Random Forests are the learning architecture of choice. 1D-CNNs still have place 506 
when runtime is of absolute significance and the accuracy of the summary is not highly 507 
prioritized or not intended to be relied on in a sensitive application. Recall that in this 508 
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work we have used cross-validation with K=5 to generate the results, the results reported 509 
in the experimental  are for both K=5 and K=1.  510 

In conclusion, as the proposed feature set contains only 64 variables , the model gen- 511 
eration and testing time is very fast in comparison to typical work where hundreds or 512 
thousands of CNN features are used. 513 

5. Limitations and Future work 514 
This work was designed for key-frame extraction, or static video summarization, but 515 

in the meantime, we do not know how it can be expanded or modified to work for dy- 516 
namic video summarization, which is usually a computationally heavier task. For the 517 
learning architectures used, LSTM architectures can be a limiting factor due to expensive 518 
computation. That, however, can be remedied by using alternative architectures such as 519 
light-weight 1D-CNNs and Random Forests.   520 

In HEVC-based temporal subsampling, we mentioned having a multiplier to vary 521 
the mount of deleted or eliminated frames that was arrived at through empirical testing. 522 
This multiplier can be potentially calculated dynamically or in an automated manner. 523 

6. Conclusion 524 
In this work we presented multiple proposals for generating summaries of the video 525 

content in the form of key-frames. The proposals are based on a precise and concise fea- 526 
ture set generated from an HEVC video coder. We presented novel methods for temporal 527 
subsampling of frames using PCA projections and cosine similarity, along with the use of 528 
stepwise regression for the reduction of the feature space.  529 

We also developed three learning architectures using LSTM networks, 1D-CNNs and 530 
Random Forests. The experimental results section presented extensive results using all 531 
four well-known datasets in the video summarization domain, namely, TVSum, SumMe, 532 
OVP, and VSUMM. The reported results surpass reviewed work in the literature in terms 533 
of F-score. The advantage against existing work is mainly attributed to our use of HEVC 534 
features that are based on video coding. Such coding is based on motion estimation and 535 
compensation, leading the final HEVC feature vectors to successfully capture temporal 536 
dependencies across frames. The reported results are not exclusive to high F-scores, but 537 
also reasonable runtimes. The feature vectors have a length of 64 features only, making 538 
them compact compared to traditional features from well-known pre-trained CNN net- 539 
works that have lengths usually in the hundreds or thousands of features. 540 
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