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ABSTRACT 

 

Mobile robots have taken a major role in indoor environments where they are used to 

accomplish high risk tasks instead of human beings, for example in war circumstances, 

dangerous chemical interactions, etc. Localization of a mobile robot is the problem of 

determining the location of the robot as it navigates within an environment. Localization of 

mobile robots outdoors is mainly done based on GPS (Global Positioning System). GPS consists 

of several satellites orbiting the earth and broadcast data to indicate location and current time. 

The distance is determined by the time for the signals to reach the receiver from at least four 

satellites. The GPS system works well for outdoor terminals but cannot be used indoors because 

it needs a line-of sight between the satellites and the receiver. Other localization techniques 

based on sensors like sonar, infrared, cameras, etc. are used for indoor localization, but these 

sensors need intensive processing to get accurate readings, in addition to other limitations such 

as sonar’s beams collision, cost, cameras resolution and image processing time delays.  

In this research, a different technique based on Wireless Sensor Networks (WSN) has 

been investigated for mobile robot localization. In particular, we investigate four scenarios for 

the target localization which are localization using static motes only, dynamic motes only, 

cooperative hybrid model and hybrid model. The proposed system utilizes a combination of 

static and mobile sensor nodes to collaborate in localizing and capturing a target using wireless 
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transmission. Static nodes guide mobile nodes into localizing the target using some of the special 

characteristics of the target like signal strength, frequency, sound, temperature, etc. Each mobile 

node will gather information about the target and execute an algorithm to set its trajectory 

towards the target. Each mobile node will share its knowledge with others to improve their 

localization decision.  

The implemented system has several features. First, it achieves good accuracy because of 

the involvement of many nodes in the estimation process and the communication between 

mobile and static motes to localize the target. Second, it is robust to node failure since if one of 

the nodes is not working the rest of motes can collaborate to compensate for the missing data and 

localize the target accurately.  

Simulation results of localization based on static, dynamic, hybrid, and co-hybrid models 

are presented in this report. Comparison of the results of the various simulated models is based 

on Mean Square Error MSE of the localization and received Signal-to-Noise ratio (SNR). It is 

shown that localization using static motes outperformed other models. Using the same criteria, 

the Hybrid & Co Hybrid localization models were next in performance.  Target localization 

based on dynamic motes gave the worst performance. The effect of wireless channel shadowing 

on the performance of the proposed schemes is also presented. 
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Chapter 1 INTRODUCTION  

  

1.1  OVERVIEW 

  

Nowadays, robots applications have increased rapidly not only in using static robots, 

where they gather and process data, but also in the use of mobile robots to navigate within an 

environment and do more complicated tasks. As mobile robots need to navigate, they need to 

know and learn about their environment which leads to the term of localization.  

Localization of mobile robots could be done indoors or outdoors where they use 

different localization methods. For outdoor localization Global Positioning System (GPS) are 

mostly used where communication with satellite is needed to provide reliable location. On the 

other hand sensors, and any data acquisition devices, are used to estimate the location indoors 

since the GPS is not a possible solution. The challenge in localizing mobile robots is there 

mobile trajectory or behavior. Localization of mobile robots has been spread to do perform 

risky tasks such as monitoring in hazardous environments and industrial applications. 

Wireless Sensor Networks (WSN) are used for indoor and outdoor localization, where a 

set of sensors are used to gather data about the environment. Sensors such as temperature, 

pressure, audio, etc. are packed in one device along with a processor, and a wireless module 

in order to communicate and process data collected from the environment. WSNs are 

employed in various applications such as military, medical and industrial applications. 

Sensor networks are the key technology to gathering the information needed to achieve 

smart environments. Smart environment is a timely development with important applications 

for both civil and military applications. Important civil applications include  habitat 

monitoring, smart buildings, intelligent utilities, precision agriculture, smart industrial 

environment, smart homes, shipboard, intelligent transportation systems [1-2], and many 

other application. Military applications were among the first of this technology [3] such as 

recent terrorist and revolutionary warfare countermeasures that require distributed networks 

of sensors that can be deployed based on military application requirement. In such 

applications, running wires or cabling is impractical and therefore a wireless sensor network 
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is typically needed. Other features that promote the use of WSN are fast and easy deployment 

and robustness to faults [4].  

The proposed research topic is motivated by the recent introduction of wireless sensor 

network applications development in the mechatronics center at the American University of 

Sharjah. There are several projects introduced in the mechatronics center that could benefit 

significantly from the use of mobile ad hoc wireless sensor networks (MASNet) such as the 

robot soccer project, the multi-agent cooperative strategies for mobile robots, and the 

autonomous unmanned systems research activities.  The use of smart technologies by the oil 

and gas sectors in the region is another important industrial application where the current 

research would be useful. 

Motivated by the enabling capabilities of MASNet, an application scenario was created 

by integrating static and dynamic motes into a hybrid system of mobile ad hoc wireless 

sensor network to simulate the capturing of a target utilizing hybrid of WSN and set of 

mobile robots carrying similar sensor platforms. The objective is for the mobile robots to 

localize themselves and achieve their goal using information sent by the available static 

nodes. 
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1.2 BACKGROUND 

 

1.2.1 LOCALIZATION 

 

Localization of a network device leads to the meaning of positioning, where each node 

in the network environment needs to know its own location to be able to perform the tasks 

assigned to it. This process needs computational methods in order to find the distance 

between different nodes which is called relative distance and further computations could be 

done to find the coordinates accordingly. 

Localization could be classified as indoor localization and outdoor localization, where 

each has it is own methods for positioning.  For example, military applications, and animal 

vocalization are mostly outdoor applications that use global positioning system (GPS) to 

locate sensor nodes in a WSN [5]. As GPS poorly operates for indoor applications, other 

localization techniques are used for indoors such as Received Signal Strength Indicator 

(RSSI), Time of Arrival (TOA), Time Difference of Arrival (TDOA) and Angle of Arrival 

(AOA) [6].  

Monocular and straight line correspondences are used for incremental model based 

localization for an indoor mobile robot, [7].Other examples of indoor localization techniques 

are based on the use of ultrasonic sensor localization system for mobile robot localization [8] 

[9]. Camera based localization for indoor application was used for mobile robot localization 

in [10]. 

An Indoor localization study has been presented in [11], where two methods were 

investigated in case of the initial position to be unknown. The first method is based on 

multiple hypothesis tracking and the second is an experimentally verified improvement of the 

Monte Carlo Localization technique. 

A technique based on using spinning beacons for precise indoor localization was 

discussed in [12], where beacons are used to create and detect predictable and highly 

distinguishable Doppler signals for sub-meter localization accuracy. Multiple wireless 

technologies were used for indoor localization in [13] such as location fingerprints, 

interpolation points and anchors. 
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Wireless Sensor Networks (WSNs) provide a new paradigm for sensing and 

disseminating information from various environments, with the potential to serve many and 

diverse applications.  A WSN consists of a number of sensors spread over an area with signal 

processing, wireless communication and networking capabilities [1]. Sensors integrated into 

structures, machinery, and the environment, coupled with the efficient delivery of sensed 

information, could provide tremendous benefits to society. Potential benefits include: fewer 

catastrophic failures, conservation of natural resources, improved manufacturing 

productivity, improved emergency response, and enhanced homeland security 

[14][15][16][17]. 

The use of WSN in localization applications has been considered by different 

researches. For example, a mobile-assisted localization method which employs a mobile user 

to assist in measuring distances between node pairs until these distance constraints form a 

“globally rigid” structure that guarantees a unique localization was introduced in [18]. A 

gradient driven method [19], called GraDrive, is used to predict the position of a stationary 

target in a WSN. The method integrates per-node prediction with global collaborative 

prediction to estimate the position of a stationary target and direct the mobile nodes toward 

the target without prior map. A system of wireless sensor network with limited infrastructural 

support used to improve the energy efficiency of a wireless sensor network in [20], where 

wires are used as shortcuts to reduce the average hop-count of the network. The sequential 

Monte Carlo Localization method was introduced in [21], where it can exploit mobility to 

improve the accuracy and precision of localization in WSN. 

MASnet (Mobile Actuator Sensor Network) is a project that adds node mobility and 

closed-loop control concept into the field of WSN [22].  A new mobile robot platform 

(MASmote) acting as a sensing or actuation node with mobility in mobile actuator sensor 

networks was presented in [23]. The system used a single MICA2 board, one interface board 

and two servo motors. 
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1.2.2 LOCALIZATION TECHNIQUES 

1.2.2.1 Received Signal STRENGTH (RSS) 

  

RSS refers to the signal strength of a radio signal received at a distance from the 

transmitter. The received signal strength decreases as the distance between the transmitter 

and receiver increases. The signal strength power is converted to distance using a 

mathematical model. Where the signal strength received is the input of the mathematical 

model and the output will be the relative distance between the two nodes based on the signal 

strength. While a particular RSS or connectivity measurement may be hard to predict, a 

statistical model for RSS and connectivity can be characterized [24]. 

A maximum likelihood - based (ML) received signal strength indication (RSSI)-based 

target tracking problem for an indoor area was presented in [25] where stationary anchor 

nodes were used to measure the RSSI of the target signal to estimate its location. An 

algorithm was developed in [26], where sensor nodes work as signposts for the robot to 

follow so the robot could successfully decide which node neighborhood it belongs to and 

avoid map generating of the environment. An adaptive Mobility-aware Sensor MAC protocol 

(MS-MAC) for mobile sensor applications was presented in [27], where a node detects its 

neighbor’s mobility based on a change in its received signal level from the neighbor, or a loss 

of connection with this neighbor after a timeout period. 

1.2.2.2 Time of Arrival (TOA) 

 

Time of arrival is based on the reception time of the signal between nodes which is 

composed of the time of transmission in addition to a propagation time delay. Speed of light 

(speed of transmission of an RF signal) with TOA is used to measure the distance; however, 

this technique is affected by multipath signals and additive noise. The time needed for a 

signal transmitted by a node to reach the receiver node gives an indication of the relative 

distance between the two nodes which lead to using it for localization. 

The use of passive and active nodes to solve the problem of positioning in cooperative 

networks was derived based on measurements in different nodes. An iterative algorithm to 

extract position information based on measurements collected by primary and secondary 

nodes where the primary nodes perform a two way – Time of Arrival estimation with the 

target and the secondary nodes used Time Difference of Arrival (TDOA) to estimate the 

location of the target [28]. 
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Anchor nodes have been used as reference nodes for location estimation in multi-hop 

range based localization [29]. Mesh and cluster tree topologies were studied in cooperative 

and range based localization algorithms for Zigbee standard with RSSI method and the 

802.15.4a standard with TOA technique. 

In [30], a hybrid RSS and TOA localization algorithm was presented based on ray 

tracing channel modeling. The algorithm demonstrated an improved performance compared 

to conventional RSS and TOA algorithm.  

Angle of Arrival (AoA) provides data about direction to the other nodes in the 

network rather than distance; it is calculated using both TOA and RSS techniques, so AoA 

could be used to help the earlier methods to improve their localization scheme [31].  

 

1.2.2.3 Lateration 

 

Using objects of well known locations to locate another object in the network is called 

lateration. Such objects are called anchor nodes which work as references and helps in 

location estimation. Each anchor node provides information about distance and coordinates 

which leads to a set of equations to help in the localization process [31]. In another 

terminology [28], such a method is called a hybrid method where anchor nodes are used to 

help other nodes in the network to approach their goal. 

Implementing a hybrid wireless sensor network with a mixture of mobile robots and 

static sensors is a promising scenario for target localization. In such scenario, mobile robots 

and static sensor networks interact to detect environment changes and help each other to 

move the mobile motes to the desired goal; i.e. static sensors provide navigation information 

to guide mobile robots toward their goal positions.  Localization in MASNet of a target and 

its tracking depends on the exact location information of the events that must be reported 

along with the event features. This depends on availability of precise knowledge of the 

location of the sensor nodes,   mobile robots ability to execute actions more effectively in the 

region of detected agent, and the proper networking of all agents to share information. 

A Timing-based Mobile Sensor Localization (TMSL) algorithm was discussed in 

[32]. For this scheme, in which sensor nodes determine their distances from actors by using 

propagation time and the known speed of radio frequency (RF) signals. In order to determine 

the distances, the mobile and static nodes broadcast reference beacons in a pattern of intervals 
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adaptively defined according to the mobility of sensor nodes and the required level of 

localization accuracy. Another work proposed a hybrid autonomous sensor network for 

ambient intelligence applications using NMRC’s 25mm wireless sensor node in conjunction 

with other sensor motes [33]. A hybrid wireless localization network based on Chirp Spread 

Spectrum (CSS) and ultrasonic positioning system (UPS) was developed in [8] to compensate 

weak points of each system and to resolve technical issues inherent to indoor mobile robot 

applications. Stationary UPS stations were used to provide the mobile robot with more 

information and help it localize. 

Hybrid systems could be used in medical appliances to provide patients monitoring 

and support. It also could be used for aged and disabled people. In [34], a method of map 

building used graphical user interface (GUI), laser range finder and a camera are used to get 

information about the environment in which a mobile robot is moving to perform service 

tasks for aged and disabled persons. In [35], a hybrid sensor network of fixed and mobile 

nodes are used to monitor chronic patients and their environments where the mobile node is 

fixed to the patient for mobility and the fixed nodes are used to collect data about the 

environment and report in case of emergency. 

A hybrid localization algorithm that introduces enhancements to wireless sensor 

networks by combining Classical Multi-Dimensional Scaling (CMDS) and Particle Spring 

Optimization (PSO) was proposed in [36]. The force-directed nature of the PSO algorithm 

relaxes the strict restrictions on inter-node distances, and allows for a tolerance that helps to 

distribute general trend of the topology layout. 

 

As the hybrid localization system consists of static and mobile motes some motes can 

fail to communicate due to energy loss or technical problems a system for fault repair was 

proposed in [37]. Mobility equipped mobile sensors are utilized to recover or to improve the 

overall coverage and connectivity. RSSI is used to measure distance after selecting a mobile 

sensor as a redundant sensor to replace the dying sensor. A credit field based approach for 

mobile sensor navigation in a hybrid network of mobile and static sensors was presented in 

[38]. The credit field is stored locally in the static sensors and a distributed navigation 

algorithm is used to route the mobile sensor to the region of interest. Range free localization 

algorithm for wireless sensors in hybrid sensor networks was implemented in [39].  It 
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consists of a large number of static sensors and relatively small number of mobile robots. The 

main objective was to maximize the network life time for an event driven sensor network. 

Another tracking algorithm was proposed in [40]. A Slide Window Tracker (SWT) 

was used for tracking a maneuvering target in a noisy channel. Adjusting the window 

parameters could reduce the noise and track a fast target. The SWT algorithm could be used 

for tracking problem of unknown nonlinear time-varying measurements. Another localization 

for an acoustical source is studied in [41], where a hybrid model of Steered Response Pattern 

– phase transform (SRP - PHAT) and Spherical intersection (SX), in which SX creates a set 

of locations to be used by SRP-PHAT in order to reduce the computation cost. 

Investigation on how to coordinate a team of mobile robots in order to deliver assistance 

services in a large logistic space is studied in [42],  where the adopted robotic platform 

consists of a wheeled vehicle driven by electrical motors and with several sensors and with a 

WiFi node, mainly aimed at wireless communication with other robots and with a supervisor. 

Despite the research efforts summarized above, characterization of localization error 

dynamics under the influence of different measurement error distributions continues to be an 

area of interest. In this research, we aim at characterizing localization error behavior given 

the number of motes with different signal to noise ratio (SNR) conditions and taking into 

account error propagation. 

Previous work on localization was based mainly on positioning instruments such as 

GPS, Sonar’s, or infrared data to help robots in localization for mobile robots or WSN alone. 

Hybrid implementation of mobile and WSN is still an area of active research.  The use of 

signal strength based hybrid localization will be the subject of further investigation in this 

study. The study aims at having mobile robots that could localize and achieve their goal using 

information sent by the static nodes with precisely known locations. The static and dynamic 

motes emit an RF signal with a known and distinct frequency. Signal strength analysis under 

the effect of Additive Gaussian White Noise (AWGN) is used to estimate the distance 

between nodes. A study of mean square error (MSE) of the target estimation process using 

different schemes versus the signal to noise ratio is simulated in this research. Standard 

triangulation methods will be utilized to solve the localization problem for an overdetermined 

system.  The static motes will help mobile motes to localize themselves relative to the target. 

No external systems are used in the localization process. 
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The rest of the thesis is organized as follows. Chapter 2 will present the proposed 

system description, while chapter 3 will discuss the localization algorithm and the 

mathematical model. In chapter 4, simulation results for different localization schemes will 

be presented and discussed. Finally, chapter 5 will present the conclusions. 
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Chapter 2 PROPOSED SYSTEM DESCRIPTION 

 

2.1 SYSTEM BLOCK DIAGRAM 

 

In this chapter, the structure and operation of the indoor localization problem is described. 

The system is composed of an ad-hoc network of static and dynamic motes. The static motes 

work as guiders for the dynamic motes which are looking for the target. In this thesis, 

computer simulation is used to simulate the localization problem of the dynamic motes and 

the target including the estimation of the location of the nodes and the target based on the 

signal strength analysis. 

In figure 2-1, the main system diagram is shown which consists of a set of static and 

dynamic motes which collaborate to find the target. The static motes has fixed locations are 

used to localize the dynamic motes and provide the dynamic motes with information to 

localize the target. The dynamic motes are characterized with mobility in order to move 

toward the target, they rely on static motes in finding their locations. Dynamic motes can also 

find the target based on the information received by the static motes. 

 The target that emits a signal that provides the static and dynamic motes of information 

about its location. Localization of the target, based on the received signal strength, can be 

done using four schemes; namely using static motes only, dynamic motes only, static and 

dynamics for a co-hybrid model and a hybrid model. Figure 2-2 shows the system block 

diagram of the different schemes used in target localization. 

Localization of dynamic motes and the target is done based on the received signal 

strength from the dynamic motes and the target where signal analysis of the received signal, a 

white Gaussian error added to the received signal are used in the model in order to find the 

relative distance and location. 

The proposed system considers the channel shadowing problem based on both log-normal 

and uniform shadowing in which the signal power could follow a Gaussian distribution or a 

uniform distribution. Degradation in the signal strength of one of the static motes is proposed 

supposing that an object has been introduced as an obstacle in the environment. 
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Simulation for using the dynamic motes for localization of the target has been done as a 

second step, where all dynamic motes cooperate with each other to find an estimation of the 

target position based on the signal strength and the initial data received from the static motes. 

A hybrid cooperative model has been simulated where the estimation of both static and 

dynamic motes have been taken in consideration, this model is preferred in case of signal lose 

where any of the static motes signal gets blocked due to an obstacle or out of charge. A 

Hybrid model has been implemented based on estimation of a dynamic node and a static node 

for the estimation of the target location. 

The proposed system of the three dynamic motes attached to a wheel-robot, a number of 

static motes and a target which is initially a static target, further simulations could be done on 

dynamic target. The study of mean square error relation with the signal to noise ratio has 

been studied and simulated through this thesis for all simulations steps. 

 

 

Figure 2-1: Schematic of the proposed ad-hoc wireless sensor network 
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Figure 2-2: The System Block Diagram – Localization  
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2.2 PROPOSED LOCALIZATION MODEL 

Figure 2-3 shows the general flow chart of the system model and the signal flow of the 

simulation as follows: 

1. Initialize static motes:  

 Static motes can emit a radio signal and communicate with other motes in the 

environment; they know their precise location and the environment 

parameters. 

2. Shadowing: when a mote has an obstacle in the way of its signal its SNR will be 

degraded, the following algorithms were simulated for the SNR shadowing 

a. Log normal Shadowing which follows a normal Gaussian Distribution for the 

shadowing with different values of   

b. Uniform Shadowing where the shadowing of the mote will follow a uniform 

distribution, with variance . 

3. RSS Estimation: the estimation of signal strength could be done based on the received 

signal, the propagation exponent and the initial estimation of the distance. 

4. Localization Models and location estimation: 

a. Statics to localize dynamic motes: localization of the dynamic motes based on 

initial knowledge of the mobile motes position. The localization has been done 

based on the triangulation principle and the intersection of equations to result 

with the coordinates of the dynamic motes location. 

b. Target localization: the following methods were simulated for target 

localization based on initial data sent by the static motes to the dynamic motes. 

i. Static Motes Localization: Localization of the target using static motes 

which collaborate to find the estimation of the distance between 

themselves and the target and then find target coordinates. 

ii. Dynamic Motes Localization: the mobile could localize the location of 

the target based on the signal strength of the target and find the target 

coordinates accordingly. 

iii. Hybrid Model Localization: when using dynamic and static motes to 

estimate the location of the target position. 

iv. Co-Hybrid Localization: the target location is estimated based on both 

estimations from the static and dynamic motes  
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5. Calculation of mean square error versus signal to noise ratio for the different 

scenarios  

 

Figure 2-3: The Flowchart of the main system structure 
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Chapter 3 MATHEMATICAL MODEL 

 

Localization based on triangulation was used with the following assumptions: 

 Static motes have fixed known location. 

 New distance estimation between static, dynamic and target are done with RSS. The 

following flowchart shows the estimation process algorithm with affect of AWGN. 

 

Figure 3-1: Flowchart for signal Strength analysis – Distance Estimation 

 

 

 Static- Dynamic Distance: Initial Distances between static and dynamic motes are 

found using equation (1).  
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2 2 2( ) ( )ji xi xj yi yjd s d s d     (1) 

Where, 

:  the distance between Dynamic mote-j and static mote-i

:  x-coordinates for the i-th static motes

:  y-coordinates for the i-th static motes

:  x-coordinates for the j-th dynamic motes

:  y-co

ji

xi

yi

xj

yj

d

s

s

d

d ordinates for the j-th dynamic motes

 

 Distance Estimation (Static, Dynamic & Target): The model for estimating the 

distance for a given frequency for all motes and signal strength is: 

 

1/(2 )( / ) n

t rD P P       (2) 

Where, 

  

  

  

  

An AWGN with a zero mean and variance  is used to model the effect of the noise. The 

SNR is defined as the ratio of the received signal power over the noise power. The model 

above is repeated for each dynamic mote with a reference of a static mote. 

For finding the target, the following was assumed: 

 The static motes will find the target position and guide the dynamic motes to the 

target. 

 The dynamic motes will start moving to the target using the given coordinates from 

the static based on finding the line equation between the nodes 
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The mathematical model is as follows: 

 Dynamic motes Coordinates Estimation: To find the coordinates of the dynamic 

motes the following set of equations are used it was assumed that 3 static motes and 3 

dynamic motes are used. The model can be generalized for other numbers. 

 

2 2 2

1 1 1

2 2 2

2 2 2

2 2 2

3 3 3

( ) ( )

( ) ( )

( ) ( )

j es x j y j

j es x j y j

j es x j y j

D s u s v

D s u s v

D s u s v

   

   

   

      

 (3) 

 Where: 

1 2 3, , :  the estimated ditance between dynamic mote-j and static motes (1,2,3)

:  is the estimated x- coordinate of dynamic-j

:  is the estimated y- coordinate of dynamic-j

j es j es j es

j

j

d d d

u

v

 

Equation (3) is used to find the initial distance between Dynamic node j and the static motes, 

simplifying equations in (3) we get 

2 2 2 2 2

1 1 1 1 1

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

3 3 3 3 3

2 2

2 2

2 2

j es x j x j y j y j

j es x j x j y j y j

j es x j x j y j y j

D s u s u s v s v

D s u s u s v s v

D s u s u s v s v

       

       

       

     

 (4) 

By subtracting 
2

2j esD  from 
2

2j esD  we get 

2 2 2 2 2 2

1 2 1 2 1 2 1 2 1 2

2 2 2 2 2 2

1 2 1 2 1 2 2 1 2 1

2 2 2 2

(2( )) (2( ))

j es j es x x y y x j x j y j y j

j es j es x x y y j x x j y y

D D s s s s s u s u s v s v

D D s s s s u s s v s s

            

        

  

 (5) 

Repeating the same procedure by subtracting 
2

3j esD  from 
2

1j esD and simplifying we end up with the 

following matrix 

2 2 2 2 2 2

1 2 2 1 1 2 2 1 2 1

2 2 2 2 2 2
3 1 3 11 3 3 1 1 3

2( ) 2( )

2( ) 2( )

j es j es x x y y jx x y y

x x y y jj es j es x x y y

D D s s s s us s s s

s s s s vD D s s s s

          
                 

  

 (6) 

 

In case one of the motes is missing: assuming static in the model (static mote 1 is missing) 
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2 2 2 2 2

2 2 2 2 2

2 2 2 2 2
3 33 3 3

2 2

2 2

j es x y xj yj jx y

x y jj es x y xj yj

D s s d d us s

s s vD s s d d

         
                

    

 (7) 

 Target Coordinates: the model for finding the coordinates of the target is 

similar for finding it for the dynamic, it could be done using: 

a. Static motes: Static motes for localizing the target coordinates based on 

triangulation. 

 

Figure 3-2: Target Localization 

2 2 2 2 2 2

1 2 1 1 2 2 2 1 2 1

2 2 2 2 2 2
3 2 3 22 3 3 2 2 3

( , ) :  are the target estimated coordinates:

2( ) 2( )

2( ) 2( )

t t

s tes s tes x y x y x x y y t

x x y y ts tes s tes x x y y

u v

D D s s s s s s s s u

s s s s vD D s s s s

         
                

 

(8)

 

b. Dynamic motes: based on dynamic motes triangulation. 

2 2 2 2 2 2

1 1 1 2 2 2 1 2 1

2 2 2 2 2 2
3 2 3 21 2 3 2 2 3

2( ) 2( )

2( ) 2( )

jtes j tes t

tj tes j tes

D D u v u v u u v v u

u u v v vD D u u v v



 

         
                

 

(9) 

The above matrices and system were derived as follows (Dsites for i= 1, 2, 3 is the estimated 

distance between static motes and the target) 

 Using static motes: for static node i. 
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2 2 2

2 2 2

1 1 1

2 2 2

2 2 2

( ) ( )

( ) ( )

( ) ( )

sites xi t yi t

si tes xi t yi t

si tes xi t yi t

D s u s v

D s u s v

D s u s v

  

  

   

   

   

     

 

(10) 

(ut , vt): estimated location of the target. 

 By simplifying the equations in (10)  

2 2 2 2 2

2 2 2 2 2

1 1 1 1 1

2 2 2 2 2

2 2 2 2 2

2 2

2 2

2 2

sites xi t xi t yi t yi t

si tes xi t xi t yi t yi t

si tes xi t xi t yi t yi t

D s u s u s v s v

D s u s u s v s v

D s u s u s v s v

    

    

       

       

       

    (11) 

By subtracting the 2

1si tesD 
from 2

sitesD  we get 

2 2 2 2 2 2

1 1 1 1 1

2 2 2 2 2 2

1 1 1 1 1

2 2 2 2

(2( )) (2( ))

sites si tes xi xi xi t xi t yi yi yi t yi t

sites si tes xi xi yi yi t xi xi t yi yi

D D s s s u s u s s s v s v

D D s s s s u s s v s s

    

    

            

        
(12) 

By subtracting 
2

2si tesD 
from 

2

sitesD  we get  

2 2 2 2 2 2

1 2 1 2 1 2 1 2 1 1

2 2 2 2 2 2

1 2 1 2 1 2 2 1 2 1

2 2 2 2

(2( )) (2( ))

si tes si tes xi xi xi t xi t yi yi yi t yi t

si tes si tes xi xi yi yi t xi xi t yi yi

D D s s s u s u s s s v s v

D D s s s s u s s v s s

         

         

            

        
 (13) 

by simplifying equations (12) and (13) 

2 2 2 2 2 2

2 2 2 2 2

2 2 2 2 2 2
2 1 2 11 2 2 1 1 2

2( ) 2( )

2( ) 2( )

sites s tes xi yi x y x xi y yi t

xi xi yi yi tsi tes si tes xi xi yi yi

D D s s s s s s s s u

s s s s vD D s s s s         

         
                

(14) 

  

 Using Dynamic motes: for Dynamic node j. 

2 2 2

2 2 2

1 1 1

2 2 2

3 2 2 2

( ) ( )

( ) ( )

( ) ( )

djtes j t j t

dj tes j t j t

d j tes j t j t

D u u v v

D u u v v

D u u v v

  

  

   

   

   

     (15) 

By simplifying equations in (15) 



 

 

20 

 

2 2 2 2 2

2 2 2 2 2

1 1 1 1 1

2 2 2 2 2

2 2 2 2 2

2 2

2 2

2 2

djtes j t j t j t j t

dj tes j t j t j t j t

dj tes j t j t j t j t

D u u u u v v v v

D u u u u v v v v

D u u u u v v v v

    

    

       

       

       

    (16) 

By subtracting 2

1dj tesD  from 2

djtesD  

2 2 2 2 2 2

1 1 1 1 1

2 2 2 2 2 2

1 1 1 1 1

2 2 2 2

(2( )) (2( ))

djtes dj tes j j j t j t j j j t j t

djtes dj tes j j j j t j j t j j

D D u u u u u u v v v v v v

D D u u v v u u u v v v

    

    

            

        
 (17) 

By subtracting 
2

2dj tesD   from 
2

1dj tesD   

2 2 2 2 2 2

1 2 1 2 2 2 1 2 1 1

2 2 2 2 2 2

1 2 1 2 1 2 2 1 2 1

2 2 2 2

(2( )) (2( ))

dj tes dj tes j j j t j t j j j t j t

dj tes dj tes j j j j t j j t j j

D D u u u u u u v v v v v v

D D u u v v u u u v v v

         

         

            

        
 (18) 

The final equation 

2 2 2 2 2 2

1 1 1 1 1 1

2 2 2 2 2 2
2 1 2 11 2 2 1 1 2

2( ) 2( )

2( ) 2( )

djtes dj tes j j j j j j j t

j j j j tdj tes dj tes j j j j

D D u v u v u u v v u

u u v v vD D u u v v

    

        

         
                       

(19) 
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Chapter 4 SIMULATION RESULTS 

 In this chapter, simulation results of the different schemes proposed in this thesis will be 

presented. First, we will start with dynamic nodes localization. Then, the results of target 

localization using static motes only, dynamic motes only, hybrid model, and cooperative 

hybrid model will be presented. Finally, the effect of wireless channel shadowing will be 

discussed under log-normal and uniform shadowing distributions. The different schemes will 

be compared based on the MSE criterion for different signal to noise ratio values. 

4.1 SIMULATION PARAMETERS 

In the results below, the simulation has been done based on the following parameters: 

 SNR varies between 5 to 25 dB. 

 Number of simulations per experiment is 1000. 

 Noise added to the received signal from the motes and the target follows the additive 

white Gaussian noise model. 

 The received signal is simulated to be as a continuous radio frequency signal with a 

specific frequency and amplitude. 

 The power of the received signal is directly proportional to the transmitted signal 

power and inversely to the distance (D) according to the following model, where n is 

the path loss exponent assumed to be 2. 

 
t

r n

p
p

D
   (20) 

 Three static and three dynamic motes are used. 

In all figures presented later, the following legend is used 
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Figure 4-1: Legend for figures 
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4.1.1 USING ALL STATIC MOTES IN THE DYNAMIC MOTES ESTIMATION PROCESS 

 

 As the static motes location are known (fixed) and the dynamic motes locations are 

generated randomly, first, the estimated locations for the dynamic motes were found for 

different SNR values (from 5 – 25 dB). 

 In figure 4-2, the estimation is done using the three static motes with an SNR value of 5. 

It is noticed that there is a significant error in the estimated location because of the high noise 

levels. 
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Figure 4-2: Estimated location of dynamic motes using 3- static motes and SNR=5 dB 
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Figure 4-3 shows a more accurate estimation as the signal strength increases to 10 dB. 
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Figure 4-3: Estimated Location of Dynamic motes using 3-static motes, SNR=10 

 As the value of SNR increases further, the estimation of the dynamic mote locations will 

be more accurate as shown in figures 4-4 to figure 4-6. 
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Figure 4-4: Estimated Location of Dynamic motes using 3-static motes, SNR=15 
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Figure 4-5: Estimated Location of Dynamic motes using 3-static motes, SNR=20 
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Figure 4-6: Estimated Location of Dynamic motes using 3-static motes, SNR=25 

 In figure 4-6, the histograms of the error in the x and y coordinates are shown for the 

dynamic motes with SNR of 25 dB. It is observed that the errors tend to follow a normal 

distribution.  
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Figure 4-7: The error in estimating the locations of dynamic motes with SNR=25 

  A similar observation is made from figure 4-7 for an SNR of 5 dB but it is noticed that 

the variance of the distribution tends to be larger.  

-10 -5 0 5 10
0

50

100
error in the x-coordinate of Dynamic 1

-10 -5 0 5 10
0

50

100
error in the y-coordinate of Dynamic 1

-10 -5 0 5 10
0

50

100
error in the x-coordinate of dynamic 2

-10 -5 0 5 10
0

50

100
error in the y-coordinate of dynamic 2

-10 -5 0 5 10
0

50

100
error in the x-coordinate of dynamic 3

-10 -5 0 5 10
0

50

100
error in the y-coordinate of dynamic 3

 

Figure 4-8: The error in estimating the locations of dynamic motes with SNR=5 

 The results above show an accurate estimation of the dynamic motes locations which 

improve as the value of SNR increases. It is also observed that the error follows a normal 

distribution where the error variance has been significantly reduced by increasing the SNR 

value from 5 to 25 dB. 
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4.2 TARGET LOCALIZATION  

 

 Based on a signal from the target, localization could be done using static, dynamic or a 

hybrid approach in which collaboration between both static and dynamic motes takes place. 

4.2.1 LOCALIZATION OF TARGET USING STATIC MOTES: 

 

 Static motes could be used to localize the target and estimate its location for different 

SNR conditions as shown in figures 4-9 to 4-18. It is clear that using static motes results in 

good estimation of the target position, even for low values of SNR. This is attributed to the 

fact that the static motes have fixed known locations and there is no error propagation in the 

estimation process. 

  Figure 4-19 shows the MSE versus the signal to noise ratio where the results have shown 

very good performance even under low SNR values.  
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Figure 4-9: Target localization using static motes, SNR=5 dB 
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Figure 4-10:  error in localizing the target coordinates using static motes with SNR=5 dB 
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Figure 4-11: target localization using static motes, SNR=10 dB 
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Figure 4-12: error in localizing the target coordinates using static motes with SNR=10 dB 
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Figure 4-13: target localization using static motes, SNR=15 dB 
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Figure 4-14: error in localizing the target coordinates using static motes with SNR=15 dB 
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Figure 4-15: target localization using static motes, SNR=20 dB 
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Figure 4-16: error in localizing the target coordinates using static motes with SNR=20 dB 
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Figure 4-17: target localization using static motes, SNR=25 dB 
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Figure 4-18: error in localizing the target coordinates using static motes with SNR=25 dB 
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Figure 4-19: MSE vs. SNR (localization of target using static motes) 
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4.2.2 LOCALIZATION OF TARGET USING DYNAMIC MOTES: 

 Localization of target based on dynamic motes with different signal strengths from the 

target is considered in the set of simulations shown in figures 4-20 to 4-36. 

 The results show that accurate estimation of the target is achievable but with high SNR 

(e.g. an SNR of 25 dB). It is observed that to achieve the same MSE as the static motes case, 

the dynamic motes performance suffers a significant degradation (20 dB for a MSE of 0.1).  
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Figure 4-20: target localization using dynamic motes, SNR=25 dB 
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Figure 4-21: target localization using dynamic motes, SNR=20 dB 
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Figure 4-22: target localization using dynamic motes, SNR=15 dB 
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Figure 4-23: target localization using dynamic motes, SNR=10 dB 
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Figure 4-24: target localization using dynamic motes, SNR=5 dB 
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Figure 4-25: error in localizing the target with dynamic motes, SNR=25 
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Figure 4-26: error in localizing the target with dynamic motes, SNR=5 
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Figure 4-27: MSE vs. SNR (localization of target using dynamic motes) 

 

  Based on the previous results, it can be concluded that dynamic motes bases scheme does 

not provide accurate performance and a large value of SNR is needed (more transmitted 

power is needed). 
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4.2.3 ESTIMATION OF TARGET, ONE STATIC MOTE IS OUT OF RANGE: 

 

 In case of failure of one static mote, as it could happen in real life networks where one 

node could stop responding or could be out of range of an ad-hoc – network, a simulation has 

been done to show the impact on estimating the locations for the dynamic motes. This 

scenario also describes the case when a node is out of power due to battery drainage. The 

simulation is done over different values of SNR, varying from 5-25 dB, as shown in the 

figures below. We have only two static motes which will communicate with each dynamic in 

order to estimate the relative distance and relative coordinates. It is found that the error in 

estimating the dynamic motes coordinates has increased with low signal strength when one 

mote is missing, although increasing the signal strength will reduce the error as shown in 

figure 4-21 for an SNR value of 25. 

 

 

Figure 4-28: the estimation of dynamic motes with one static missing, SNR=5 dB 
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Figure 4-29: the estimation of dynamic motes with one static missing, SNR=25 dB 
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Figure 4-30: the error in the dynamic motes in case of one mote missing, SNR=5 dB 
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Figure 4-31: the error in the dynamic motes in case of one mote missing, SNR=25 dB 

 

 The results show that to overcome the loss of one node from the network we need to use 

much higher transmitted power from the other nodes in order to maintain good accuracy of 

the localization.
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4.2.4 LOCALIZATION OF TARGET USING COOPERATIVE HYBRID MODEL 

 

  Localization of the target could be done using both static and dynamic motes, where the 

location of the target is estimated based on the average of the static and dynamic 

measurements. 

 The hybrid model is expected to be better than the dynamic model as it combines the 

estimation of both static and dynamic nodes. However, the hybrid model performance did not 

reach the performance under the static estimation. It is expected that the hybrid model will 

work better under the circumstances when one mote is out of range (out of battery). 

0 10 20 30 40 50 60 70 80 90 100
0

50

100

meters

m
e
te

rs

target localization using hybrid modelm SNR=25

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

 

Figure 4-32: target estimation using hybrid model SNR =25 dB 

 The simulation results of the cooperative Hybrid model have shown better results in 

target estimation than the using the dynamic motes only for estimation. The results have 

shown that the hybrid model performance lies between that of the static model and dynamic 

model.  

 The figures below show different simulation results for the hybrid model which indicates 

an improvement in estimation as the signal to noise ratio increases. 
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Figure 4-33: error in hybrid localization of the target with SNR=25 dB 
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Figure 4-34: target estimation using hybrid model SNR =5 dB 



 

 

42 

 

-20 -15 -10 -5 0 5 10 15 20
0

200

400

600

800
error in estimating the x-coordinate of the target

-20 -15 -10 -5 0 5 10 15 20
0

200

400

600

800
error in estimating the y-coordinate of the target

 

Figure 4-35: error in hybrid localization of the target with SNR=5 dB 

0 10 20 30 40 50 60 70 80 90 100
20

40

60

80

100

meters

m
e
te

rs

0 10 20 30 40 50 60 70 80 90 100
20

40

60

80

100

 

Figure 4-36: target estimation using hybrid model SNR =15 dB 
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Figure 4-37: error in hybrid localization of the target with SNR=15 dB 
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Figure 4-38: MSE Vs. SNR for Hybrid Localization  
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4.3 LOCALIZATION OF TARGET WITH SHADOWING: 

 

Shadowing represents the case of having an obstacle that affects the signal strength 

received by the other motes in the ad-hoc network. The SNR value for the signal will be 

degraded. A number of simulations have been done in case of one static mote is having an 

obstacle; the shadowing effect was done using the following distribution: 

 Log –Normal Shadowing 

The shadowing will affect the SNR value for the specific mote and will follow a 

Gaussian distribution. The log-normal shadowing was simulated for one static mote 

with different values for the variance (4, 6 and 10). 

 Uniform Shadowing 

The uniform shadowing was simulated so that SNR follows a uniform distribution 

around the average SNR. The uniform distribution was set to have the same variance 

as the log-normal model to have a fair comparison. 

4.3.1 LOCALIZATION OF TARGET WITH SHADOWING – ONE STATIC MOTE: 

4.3.1.1 Log –Normal Shadowing 

  The following results show the case of estimating the target location based on static motes 

with one static mote in shadow (having an obstacle) using log normal distribution.  The 

variance of the shadowing has been used as a parameter to indicate the severity of the signal 

loss using a variance of 10, 6, or 4. 

4.3.1.1.1 Using Static Motes Only 
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Figure 4-39: MSE vs. SNR – Log Normal shadowing, 
2 =10, static motes 
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Figure 4-40: error in estimating the target, log-normal shadowing, SNR=25 
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Figure 4-41: MSE vs. SNR – Log Normal shadowing, 
2 =6, static motes 
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Figure 4-42: error in estimating the target, log-normal shadowing, SNR=25 
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Figure 4-43: MSE vs. SNR – Log Normal shadowing, 
2 =4, static motes 
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Figure 4-44: error in estimating the target, log-normal shadowing, SNR=25 

The results show that the variance of the shadowing did not show a significant impact, 

especially at high SNR values. 
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Figure 4-45: MSE vs. SNR for log normal shadowing - static 

Figure 4-45 shows that the target estimation performance using static motes with one of 

them under the effect of log-normal shadowing with different values of  did not degrade 

due to the overestimation in the model. 

The following table shows the SNR value needed to approach MSE of 0.1: 

Table 4-1: effect of   in target localization 

 
SNR 

10 8 

6 7 

4 7 
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4.3.1.1.2 Using Dynamic Motes Only 

This section discusses the effect of log-normal shadowing when using the dynamic motes 

for the estimation of the target position. When a static mote is shadowed, it will affect the 

location estimation of the dynamic motes and consequently the target location estimation. 
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Figure 4-46: Target Estimation using dynamic motes with shadowing, SNR=25 dB 
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Figure 4-47: MSE vs. SNR for log normal shadowing – Dynamic 
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  Figure 4-47 shows the effect of shadowing in target localization using dynamic motes. 

The effect of  is obvious in the target estimation using dynamic compared to the model 

when using statics. The following table shows the SNR value needed to approach MSE of 

0.1: 

Table 4-2: effect of   in target localization 

 
SNR 

10 22 

6 22 

4 23 

 

 So the effect of the shadowing resulted in approximately 1 dB difference to get a MSE 

value of 0.1. However, at higher values of MSE, the smaller variance resulted in slightly 

better results. 

4.3.1.1.3 Using Co-Hybrid Model in Estimation 

 This section discusses the effect of log-normal shadowing when using the cooperative 

hybrid model for target localization. 
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Figure 4-48: Target Localization of Co- Hybrid model with log normal shadowing 
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Figure 4-49: MSE vs. SNR for log normal shadowing – Co-Hybrid 

 

 Figure 4-49 shows the effect of log-normal shadowing on Co-Hybrid model for target 

localization.  The SNR values required to meet a mean square value of 0.1 is shown in table 

4.2: 

Table 4-3: effect of   in target localization 

 
SNR 

10 20 

6 21 

4 18 

 

 The effect of different values of  has resulted in 3 dB difference in the Co-Hybrid 

model. We note that the Co-Hybrid provided better performance compared to the model 

using the dynamic motes only. 
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4.3.1.2 Uniform Shadowing 

 In case of estimating the target location based on static motes where one static mote is in 

shadow (having an obstacle) using a uniform distribution with a variance of 10, 6 or 4 (same 

as for log-normal). 

4.3.1.2.1 Using Static Motes Only 
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Figure 4-50: MSE vs. SNR for uniform shadowing – static 

 As shown in Figure 4-50, using the static motes with uniform shadowing, the MSE results 

did not vary significantly with the different values of . The following table shows the 

required SNR need for achieving an MSE value of 0.1: 

Table 4-4: SNR value required for MSE=0.02 

 
SNR 

10 8 

6 7 

4 7 

 

 The Simulation results for target localization using static motes have shown the best 

results so far. The figure below shows the difference between log Normal shadowing and 

Uniform shadowing effect on target estimation with static motes. 



 

 

53 

 

5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

SNR

M
S

E

MSE Vs. SNR using static with uniform vs log-normal Shadowing

segma2=10-u

segma2=10-ln

segma2=6-u

segma2=6-ln

segma2=4-u

segma2=4-ln

 

Figure 4-51: MSE vs. SNR for log normal vs. uniform shadowing – static 

 Figure 4-51 shows the mean square error versus the signal to noise ratio for both uniform 

and log normal shadowing. The simulation results have shown very close values for both 

distributions with a slight improvement in using the log normal distribution when using static 

motes for localization. 
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Figure 4-52: Error in XY of the target (Uniform vs. Log Normal)-static 



 

 

54 

 

 The figure above shows same error distributions for both methods however using the 

uniform distribution has resulted in higher probability of small error values. 

 

4.3.1.2.2 Using Dynamic Motes Only 

 

 In this section, the effect of uniform shadowing on target localization is studied using 

different values of . 
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Figure 4-53: MSE vs. SNR for uniform shadowing – Dynamic 

 The results indicate that a larger shadowing variance results in worse MSE performance 

but with less impact as the SNR increases. 

 The SNR value required for an MSE of 0.1 is shown in table 4.4. 

Table 4-5: SNR value required for 20% MSE 

 
SNR 

10 24 

6 23 

4 23 
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Figure 4-54: MSE vs. SNR for log normal vs. uniform shadowing – Dynamic 

 Figure 4-54 shows better performance is obtained under the effect of log normal 

shadowing compared to the uniform shadowing. However, the MSE converges almost to the 

same value with SNR 25 dB. 

4.3.1.2.3 Using Co- Hybrid Model  

 The effect of uniform shadowing on the Co-Hybrid localization is illustrated in this 

section where MSE vs. SNR is simulated over different values of  . 
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Figure 4-55: MSE vs. SNR with Co-Hybrid under uniform shadowing 

  The SNR value required for an MSE of 0.1 is shown in table 4.5. Note that the curve 

shows that, in general, a lower variance would result in better MSE performance.  

Table 4-6: SNR value required for 20% MSE 

 
SNR 

10 24 

6 23 

4 22 

 

 The figure below shows the MSE performance comparison for the Co- Hybrid model 

under uniform shadowing vs. the log-normal shadowing. It is shown that better results for the 

log-normal distribution over the uniform which could be due to the high probability to 

estimate high SNR values while compared to the uniform distribution. 
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Figure 4-56: MSE vs. SNR for log normal vs. uniform shadowing – Co-Hybrid 
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Chapter 5  CONCLUSION 

 

There is a great interest in using mobile robots (motes) in a wide range of indoor and 

outdoor applications such as military, environmental, medical, rescue operations, etc. This 

requires the need for locating these motes with high accuracy. Outdoor localization schemes 

are mainly based on GPS system. However, this is not applicable for indoor localization since 

there is no line-of-sight from the satellites to the motes.  It is, therefore, very important to 

develop techniques for indoor mobile robot localization.  

An indoor localization scheme is proposed in this thesis. The system is composed of static 

and dynamic motes, where static motes work as anchor nodes to provide dynamic motes with 

information about the environment such as their location and coordinates. Dynamic motes are 

used to approach the target based on their own signal analysis or information received from 

the static motes. Target localization with different schemes was discussed, where the target 

could be localized based on Static motes only, Dynamic motes only, Hybrid model of static 

and dynamic motes and co-hybrid model which combines the estimation of all the nodes in 

the environment. The localization is done based on received signal strength from the target to 

the static and dynamic motes. 

Mathematical models were developed for the different proposed schemes for finding the 

coordinates of the dynamic motes and the target based on the static motes information. The 

proposed schemes were simulated and analyzed based on mean square error versus signal to 

noise ratio. 

The results show that the static based localization provided the best performance over the 

other schemes since the static nodes are aware of the environment with precise knowledge 

about their locations. The dynamic motes based approach achieved the worst performance 

because of the propagation error in estimating their locations. However, the dynamic motes 

performance could be improved by increasing the power of the transmitted signal. The hybrid 

and co-hybrid models provided a compromise between the static and dynamic cases. The 

hybrid and co-hybrid models have the advantage that they could be used in case of static 

nodes failure to communicate due to any technical problem or power outage. It is also 



 

 

59 

 

observed that increasing the SNR would improve the MSE performance significantly (almost 

one order of magnitude in MSE for 20 dB change in SNR) 

The work has also presented simulation results for the cases when one of the nodes 

suffers from signal loss due to shadowing (presence of obstacles). Both log-normal and 

uniform distributions were investigated to address the most common scenarios. The log- 

normal shadowing results has shown better estimation of the target over the uniform case 

since the SNR values tend to be more concentrated for that log-normal distribution and hence 

the SNR will be close to the average value most of the time. 

Future work could include experimental implementation of the proposed schemes, 

optimizing the number of motes involved in the localization process, localization of mobile 

targets, and optimization for the hybrid model by changing the method of estimating the 

location based on static and dynamic motes and study of the impact of multipath propagation 

on target localization.  
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