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ANN BASED MECHANISTIC FORCE MODEL FOR FACE 

MILLING PROCESSES 
 

 

Amal A. Khattab, Candidate for the Master of Science Degree 

American University of Sharjah, 2011 

ABSTRACT 

 

 

Due to increased global competition and increased calls for environmentally benign 

machining processes, there has been more focus and interest in making processes 

more lean and agile to enhance efficiency, reduce emissions and increase profitability. 

One approach to achieving lean machining is to develop a virtual simulation 

environment that enables fast and reasonably accurate predictions of machining 

scenarios, process output and provide access to needed information.  
 

Investigation on the utilization of artificial intelligence is carried out. Artificial Neural 

networks (ANNs) are employed to develop a smart data base that can provide fast 

prediction of cutting forces resulting from various combinations of cutting 

parameters.  The data base can also predict the cutting coefficient usually predicted to 

calibrate the force models. The data base would be highly beneficial to the growing 

manufacturing industry in the United Arab Emirates (UAE), as it can be used to 

decide upon optimum parameters prior to carrying out cutting tests. With time, the 

force model can expand to include different materials, tools, fixtures and machines 

and would be consulted prior to starting any job.  

 

Predictions are compared to measured experimental results and are shown to be in 

good agreement. To address some of the difficulties encountered when using ANNs to 

predict cutting forces, the use of Polynomial classifiers (PCs) was also investigated to 

predict the cutting forces.  A comparison between the predictions obtained using the 

PCs were found to be in good agreement compared to experimental results.   
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CHAPTER 1  

INTRODUCTION 
1.1 Motivation & Background 
 

Manufacturing is an added value process that had always been of significant 

importance to human civilization. Machining operations comprise a substantial 

portion of the world’s manufacturing infrastructure, making the enhancement and 

control of metal removal processes one of the main concerns of the industry [1]. 

Means of achieving the said enhancement is to estimate the product and process 

quality, tool life and stability of the machining process because they facilitate 

effective planning of machining operations, optimum performance, quality and 

cost and hence can lead to the  proper selection of machining conditions, optimal 

fixture design and avoidance of tool failure.  

An accurate indicator of the mentioned factors is the cutting force resulting from 

the cutting process. Numerous attempts and methods have been proposed to 

predict the forces. In this study, ANNs, mechanistic models, polynomial 

classifiers and a hybrid/fusion of the techniques shall be investigated.  

1.2 Scope of the Research 

 

The current study is aimed at investigating the optimum technique of predicting 

the cutting forces during the face milling operation. Three techniques have been 

used, ANNs, ANNs fused with mechanistic modeling and polynomial classifiers.   

The intention of fusing the technique of mechanistic with ANNs is to allow the 

prediction of cutting coefficients hence the cutting forces at conditions other than 

the ones encountered in training. This will greatly cut down costs and calibration 

time needed to find the cutting coefficients for each different set of cutting 

parameters. The ANN-based mechanistic force model will however be more 

global than mechanistic models, where it will be able to predict forces for cutting 

parameters it has not seen. The aim is to mix the models and capture the 

advantages of both models and incorporate it into one ANN based mechanistic 

force model.  

The use of different polynomial classifiers architecture shall also be investigated 

to find the optimum model for force prediction.  
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The three techniques are investigated in this study for the purpose of obtaining 

more accurate prediction of the cutting forces. Figure 1 shows the various 

approaches addressed in this work  

 

 

Figure 1  Approaches used in this work to predict cutting forces in end milling  

 

1.3 Thesis Organization 
 

Chapter 2 covers a summary of literature survey of force prediction techniques 

employed earlier. Chapter 3 describes the experiment design, its setup and the 

experiments carried out to populate the data used to build the model. Chapter 4 

discusses force prediction results using ANNs as well as the results using a hybrid 

model. Chapter 5 presents results using Polynomial Classifiers. Whereas, Chapter 

6 compares results presented in Chapters 4 and 5, Chapter 7 concludes the study 

and proposes future work.  

Approaches 
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CHAPTER 2  

LITERATURE REVIEW 

2.1 Force Prediction   
 

Knowledge of cutting forces beforehand is valuable as it leads to an efficient and 

automated process through the proper selection of machining parameters, fixture 

design and appropriate machines and tools used. The challenge in accurately 

modeling the cutting forces lies in the fact that the milling process is very complex 

due to the many variables influencing these forces. These variables are highly 

interlinked and a change of a single parameter will result in different cutting 

forces [2]. In addition, the machining process is nonlinear and time-dependent. 

 

Different techniques have been used to predict cutting forces. These vary in their 

generality, accuracy and amount of data required as an input into the model. 

Analytical methods are hindered by their low accuracy in predicting forces and by 

their lack of generality as well as the large amount of experimental data needed 

for each work piece and tool material under various cutting conditions [1]. This 

renders their use expensive and time consuming. Whereas, mechanistic methods 

have a higher accuracy in predicting cutting forces; their main drawback is their 

lack of generality [1].Therefore; traditional identification methods fail to provide a 

general, accurate force prediction using minimal data. For the above mentioned 

reasons, ANNs can be an alternative option to use as a substitute or as a 

supporting tool for the prediction of the cutting forces. Their use will be 

investigated in this study to develop a model that gives a general, more accurate 

prediction that requires less experimental data. 

 

Ehmann [1] traced the historical evolution of research in process modeling and 

have found that in general, all the analytical models did not accurately predict the 

dynamic forces. They then investigated the experimental methods and found that 

deriving the dynamic cutting force coefficients, although not trivial, delivers 

values close to experimental results. Mechanistic and numerical methods are of 

more recent origin and rely on empirical models and computer simulation 
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techniques; the latter includes both mechanistic and finite element methods. The 

authors concluded that a combination of the above listed methods is typically 

needed to obtain a working model and stated that the mechanistic models showed 

the most predictive power compared to other methods. For this reason, most of the 

current research is steered towards the mechanistic force models. 

 

Koeringsberger et al. [3] presented a method in which the cutting forces are 

assumed to be proportional to the chip cross sectional area with the constants of 

proportionality called the specific cutting pressures. These pressures depend on 

the cutter geometry, cutting conditions, insert grade and work piece material 

properties. Calibration is performed by running tests at different combinations of 

spindle speed, feed rate and depth of cut. In face milling, these tests are conducted 

using a single cutting insert to avoid the effect of run out. In addition, these tests 

are conducted on a work piece with no surface discontinuities to simplify the 

correlation between the cutting forces and the angular position of the cutting 

insert.  

 

Coelho [4] used an end mill fitted with a single point indexable insert to perform 

an orthogonal milling operation. An average curve of force was obtained using 5 

consecutive rotations. A simple force model as a function of the undeformed chip 

thickness was fitted into the force data. Although the results agreed with 

experimental data, huge differences were observed between the specific cutting 

coefficients and friction coefficients, depending on cutting speed, feed rate and 

cutting width.  

 

Jayaram [5] has presented a method for estimating the specific cutting pressures 

for mechanistic cutting force models in face milling. His research is considered 

untraditional because it uses multiple cutting inserts. Moreover, the specific 

cutting pressures are estimated from data collected during actual production and 

hence there is no production interruption. Results obtained using both the 

empirical method and the author’s method were validated through simulation and 

experimental tests carried out on a rigid 2024 aluminum work piece using an 

uncoated carbide insert. Results have shown that both the empirical method and 

the authors’ proposed method are of similar magnitude.  
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Saffar [6] has proposed a finite element method based model to simulate the 

cutting forces as well as tool deflection in the end milling operation. An advantage 

of the proposed model is that the material properties are defined based on the 

Johnson Cook theory whereas in theoretical relationships the material properties 

are constants. Another accuracy enhancer is that the simulation allows for the use 

of nonlinear geometric boundaries. The author concluded that using a finite 

element based simulations gives more accurate results compared to theoretical 

relationships. 

 

Wan [7] proposed a new and simplified mechanistic method for the calibration of 

cutting force coefficients and cutter runout for cylindrical end milling using the 

measured instantaneous cutting forces instead of the average ones. The author 

proposed a simplified method for calibrating the cutting force coefficients, which 

will be valid over a wide range of cutting conditions. The cutting force 

coefficients were expressed as power functions of the instantaneous uncut chip 

thickness. The method is achieved by following two steps: first, mathematical 

relationships between the instantaneous cutting forces and the uncut chip 

thickness are established. Then, nonlinear algorithms are used to solve the 

established nonlinear contradiction equations. The method has been validated and 

was found to be in good agreement with the measured results in both shape and 

magnitude of the force signal. 

2.2 Definition of Cutting Forces in Milling 
 

The cutting process in milling yields three forces of different magnitude and 

direction that depend on the cutting parameters and the cutter geometry. The 

forces that can be measured by a dynamometer, are the global forces in the X, Y 

and Z directions. These forces are then transformed into the axial, radial and 

tangential force components, which are geometrically related. The axial, radial 

and tangential forces continuously change in order and magnitude. Figure 2 shows 

the global X, Y and Z axis and the transformed force system: 

FA : Axial component of the cutting force 

FT : Tangential component of the force 

FR : Radial component of the force  



 

6 

 

 

Figure 2  Directions of Cutting Forces in the Milling Process [7] 

 

The transformation of the global forces has been done in a variety of ways: 

Mechanistic equations have been used to model the cutting–thrust forces, FC–FT, 

the tangential–radial forces, FT–FR, and the normal–friction forces, FN–FF. The 

third force component can be obtained from the other two forces and from the 

geometry of the cutting insert. For this research, the tangential–radial cutting force 

model will be employed. This model is a slightly modified combination of the 

models developed by Deiab [8], Fu [9] and Kim [10]. 

 

In the tangential–radial mechanistic cutting force model, the specific cutting 

pressures, Kt and Kr, are represented by the following equations [8]: 

 

ln(Kt(t))=a0+a1ln(tc(t)),        (1) 

ln(Kr(t))=b0+b1ln(tc(t)),        (2) 

where: 

a0, a1, b0, and b1: constants for a given combination of tool and work piece 

material 

tc : the instantaneous chip thickness, see Fu [9]. 
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The constants a0, a1, b0 and b1 are called the specific cutting pressure constants. 

The cutting forces in the tangential and radial directions are obtained by 

multiplying the specific cutting pressures by the chip area, AC(t): 

 

Ft(t)=Kt(t)Ac(t),         (3)  

Fr(t)=Kr(t)Ac(t).         (4)  

 

The tangential, Ft, and radial, Fr, cutting forces described in the above equation 

depend on the rake face geometry of the cutting insert. The axial rake angle, γA, 

radial rake angle, γR and lead angle, γL are then used to transform these forces to 

the global tangential, Ft, radial, Fr, and axial, FA, directions [10].This 

transformation, (see Fig. 2), can be described by the following equation: 

 

*

     
     
     

+=T(.) [
     
     

]        (5)  

 

where: 

 

T( )=(

     γ       γ       γ  

     γ                   
    γ       γ       γ       γ       γ  

)     (6)  

 

Figure 2 shows the directions of the axial, radial and tangential cutting forces and 

global X, Y,and Z directions for the face milling process. The positive direction of 

the forces shown in the figure corresponds to the cutting forces acting on the 

cutter. The angle of the cutting insert, θ, is used to transform the cutting forces 

from the tangential, radial and axial forces to the global cutting forces in the X, Y 

and Z directions using the rotational transformation matrix, R(t). In addition, if an 

insert is located on a workpiece surface discontinuity, the cutting forces are zero. 

This is handled using a function, W(t), which is equal to 1.0 when the insert is 

cutting the work piece and 0.0 when the insert is outside the work piece. The 

cutting forces in the X, Y and Z directions can be represented by the following 

equation: 
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*

     
     
     

+=R(t)W(t) *

     
     
     

+       (7)  

R(t) = (
                

               
   

)       (8)  

 

Hence, the cutting force equation can be simplified to the following form: 

 

*

     
     
     

+=R(t)W(t)T( ) [
     

     
]       (9)  

 

2.3 Calibration Techniques 
 

In order to predict the cutting forces, using Eqs (3) and (4), the specific 

cutting pressures, Kt and Kr are required. The estimation of the specific 

cutting pressures requires the determination of the constants (a0, a1, b0 and 

b1). These constants are typically estimated from experiments for a given 

combination of work piece and insert material. The single insert off-line 

method is commonly used to calibrate the mechanistic cutting force 

models and determine the specific cutting pressure. In this method, the 

specific cutting pressure constants are obtained from linear regression of 

the specific cutting pressures with respect to the chip thickness in the 

logarithmic space [11]. Figure 3 shows a block diagram of the off-line 

calibration procedure. The global cutting forces, FX, FY and FZ, are first 

transformed to the tangential, FT, radial, FR, and axial, FA, cutting forces 

using the angular location of the cutting insert, θ [Eqs. (7) and (8)]. Eqs. 

(3)–(6) are then used to compute the specific cutting pressures, Kt and Kr 

using the cutter geometry angles (radial rake angle, γR, axial rake angle, 

γA, and lead angle γL) and the chip cross-sectional area Ac. The specific 

cutting pressure constants are obtained from the least squares fit of Eqs. 

(1) and (2) as follows: 
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Figure 3  Traditional Methods of Mechanistic Force Modeling 

 

Mathematically, this can be presented as: 

 

(
    

    
)=(

 ∑       
   

∑       
   ∑       

     
)

  

 

(
∑       

   ∑       
   

∑       
         

   ∑       
         

   
)                                                                  (10) 

where: 

N:  total number of calibration tests  

  
  ,   

  and   
  : are the chip thickness and specific cutting pressures for the i

th
 

calibration test. 

Typically, calibration tests are conducted at different combinations of feed rate 

and depth of cut. However, in the face milling process, the chip thickness varies 

continuously with the rotation of the cutter. Hence a single cutting force profile 

can provide cutting force information about different values of chip thickness. If 

tests at different values of feed rate and depth of cut are used to calibrate the 

cutting force model, then a least squares fit that is valid for a wide range of 

conditions can be obtained. In addition, the single insert off-line method can also 

be modified to include the effects of cutting velocity, V and the normal rake angle, 

γ, [11]. Hence, the single insert off-line method provides the specific cutting 

Fx,Fy,Fz 

Cutting Conditions  

Cutter Geometry 

Transformation to 
FT,FR,FA,Ft,Fr 

Eq. 5- 8 

Linear Regression 
to get a0,b0,a1,b1 

Eq.1-4,10 
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pressures which are valid for a wide range of cutting conditions, cutting velocities 

and cutter geometry.  

 

2.4 Mechanistic Method - Literature Review  
 

Kang [12] has developed a mechanistic model of cutting forces in the micro end 

milling process. The analytical model proposed took into account the tool edge 

radius effect. This effect is a characteristic of the micro end milling process. 

Experiments have been carried out on aluminum with a 0.2 mm end mill cutter. 

The author demonstrated that the predicted cutting forces were consistent with the 

experimental cutting forces. The author however, recommended that studies must 

be done to develop a better model that can predict cutting forces under a wider 

variety of conditions while yielding more accurate results. 

Yun [13] proposed a different method of accurately predicting cutting forces using 

cutting condition independent coefficients. He considered that the coefficients are 

affected only by the uncut instantaneous chip thickness, which is estimated by 

following the movement of the position of the center of the cutter. The test results 

indicate that the proposed method is effective and accurate. This was confirmed 

by comparing the predicted results to the experimental results. Moreover, the 

cutter run out offset was confirmed by measuring it with a dial gauge. The author 

stated that the measured value was in the range of 5-6µm, where the estimated 

value using the developed model was 6 µm. 

 Yussefian and Imani [14] showed that cutting force is related to chip area and 

cutting edge contact length by mechanistic cutting force coefficients. B-spline 

parametric curves are used to model the process geometry. The chip load 

boundary is first modeled using analytical parametric curve intersection approach. 

The chip area is then segmented into elements for which feed and approach angle 

can be considered constant. Cutting force coefficients extracted from an 

orthogonal database are used to correlate the geometric modeling to cutting force 

components. In this research, experimental machining tests have been conducted 

for a wide range of cutting conditions. The results confirm the validity of the 

proposed method within the deviation of  10%. Due to the fact that the proposed 
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approach incorporates orthogonal cutting database, cutting force prediction can be 

implemented for different cutting edge geometries. 

Wan and Zhang [15] systematically studied the cutting force modeling methods in 

peripheral milling process in the presence of cutter runout. Emphasis was put on 

how to efficiently calibrate the cutting force coefficients and cutter runout. 

Mathematical derivations and implementation procedures were carried out based 

on the measured cutting force or its harmonics from Fourier transformation. Five 

methods were presented: in the first three methods the cutting force coefficients 

are assumed to be constants whereas in the last two they are taken as functions of 

instantaneous uncut chip thickness. The first and fifth methods were taken from 

the literature for comparison. The second method proceeds using the first and Nk
th

 

harmonic forces as the source signal while the third and the fourth are derived 

based on the measured cutting forces and their first harmonics. Methods 4 and 5, 

where a mathematical model employing varying cutting coefficients (as a function 

of the uncut chip thickness) was used to relate the cutting forces and the 

instantaneous uncut chip thickness, gave best results.  

 

2.5 Use of ANN in force modeling- ANNs Background & Literature 
 

The theory of artificial neural networks was first proposed in 1940’s to simulate 

the work of the human brain [16]. ANN can generally be defined as a structure 

composed of a number of interconnected units [17]. Each unit has an input/output 

(I/O) characteristic and implements a local computation or function. The output of 

each unit is determined by its I/O characteristic, its interconnection to other units 

and (possibly) external inputs, and its internal function. The network usually 

develops an overall functionality through one or more forms of training. The 

fundamental unit or building block of the ANN is called artificial neuron (called 

neuron from here on) [18]. The neuron has a set of inputs (Xi) weighted before 

reaching the main body of the processing element. In addition, it has a bias term, a 

threshold value that has to be reached or exceeded for the neuron to produce a 

signal, a non-linearity function (fi) that acts on the produced signal (Ri), and an 

output (Oi). The basic model of the artificial neurons is illustrated in Figure 4. 
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Figure 4 Basic model of artificial neuron [19] 

Artificial neural networks consist of an input layer, one or more hidden layers and 

an output layer as shown in Figure 5. 

 

 

Figure 5  ANN Configuration 

 

 

The greatest advantage of artificial neural networks is their ability to model 

complex non-linear, multi-dimensional functional relationships without any prior 

assumptions about the nature of the relationships and the network is built directly 

from experimental data by its self-organizing capabilities [20].  

Several neural network architectures can be used to address the problem at hand. 

In this work we will be using the following ANN structures: 

1- Feedforward Neural Networks (FNN) 

2- Cascade Feedforward Neural Networks (CFFN) 

3- Elman Networks (ELM) 

4- Layer Recurrent Network (LRN) 

5- Radial Basis Networks (RDN) 
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More details about the ANNs are shown in Appendix F. 

Tandon and Al Monayri [21] have presented an ANN-based force model for the 

end milling process. The process depends on a number of parameters that are 

strongly interlinked. The authors designed a feed forward back propagation neural 

network with one or two hidden layers and sigmoid activation functions. The 

maximum force and the mean force are the output parameters. Their predictions 

compared well with the experimental results. The error obtained was attributed to: 

inaccuracies in the computation of the immersion geometry as it varies during 

cornering and to the wear condition of the tool which results in an increase in the 

cutting force.  

 

Aykut et al. [22] developed a model for predicting the cutting forces as function of 

cutting parameters for the face milling of Stellite6 (a cobalt based alloy) using 

ANNs. Asymmetric milling was chosen over symmetric milling because the 

cutting tool diameter is larger than the milling width which extends tool life. A 

feed-forward ANN with back-propagation was initially adopted in order to reach 

the optimal network architecture, the authors experimented with various network 

architectures, different training algorithms and altering the number of neurons per 

hidden layer and transfer functions in the hidden layers/output layer. The selected 

ANN model consisted of three input parameters corresponding to: cutting speed, 

feed rate and depth of cut, 35 hidden neurons and three outputs corresponding to 

the cutting forces in the x-, y- and z-directions. The authors concluded that the 

ANNs can be accurately used to predict the effects of machinability on chip 

removal cutting parameters for face milling of stellite 6 in asymmetric milling 

processes. 

 

Cus et al. [23] proposed a neural network based approach to select optimized 

cutting parameters in turning. The need arises because optimization of machining 

parameters is a non linear optimization with constraints making it difficult to use 

the conventional optimization algorithms due to problems with convergence speed 

and/or accuracy. The authors compared predictions obtained using feed forward 

back propagation and radial basis networks. They found that the radial basis 

network (RBN) needed more neurons than the standard feed forward ANNs with 

the back propagation learning rule, but conceiving of RBNs lasts only part of the 
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time (8 sec) necessary for training of the feed forward neural networks. The feed 

forward ANNs give more accurate results, but they require more time (~25min) 

for training and testing.  

 

Zuperl et al. [24] modeled the end milling machining process of hardened die steel 

with a ball end mill cutter using neural networks to predict the effect of machining 

variables (spindle speed, feed rate, axial/radial depth of cut, number of flutes, tool 

geometry and flank wear). Back propagation and radial basis networks where 

used. It was shown that a radial basis network is best used as the cutting force 

modeler.  

 

Zain [25] has used ANNs to predict the surface roughness in the end milling 

operation. Twenty four samples of data were collected and divided to 18 for 

training and 6 for testing. The feed forward back propagation is used as the 

algorithm, with traingdx, learnndx, MSE, logsig as the training, learning, 

performance and transfer functions, respectively. Three nodes were used for the 

input layer corresponding to the cutting speed, feed rate and rake angle and a 

single node was used for the output corresponding to the surface roughness value. 

The authors carried the investigation by varying the number of hidden layers and 

the number of neurons in the hidden layers. They found that a 3-1-1 network 

structure gave the best results in predicting the surface roughness.  

 

Uros [26] used adaptive network based interference systems (ANFIS) for the 

estimation of flank wear in end milling processes. The author made use of cutting 

force signals as an input to their ANFIS system, in addition to spindle speed and 

depth of cut. It was found the ANFIS system could predict flank wear within 0.5 

seconds during milling. Moreover, the system was able to predict flank wear for 

different cutting conditions with an accuracy of 93.64%. The authors concluded 

that the ANFIS system is a system that can be efficiently used to optimize the end 

milling process. 

 

Ozel et al. [27] used both regression models and neural networks to predict the 

surface roughness and tool wear in hard turning. They found that neural networks 

modeled surface roughness and flank wear better than regression models. Two 
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different approaches and networks were used in the prediction: the first, using 

direct process parameters: tool edge geometry, hardness of work piece, cutting 

speed, feed rate, and cutting length as inputs. The second approach is designed for 

chamfered and honed tool edge geometries; this approach uses indirect inputs: the 

mean values of cutting forces. The motive behind using the second approach was 

to decrease the size of the neural network and hence enable for faster convergence 

and better predictions. The results showed good agreement with experimental 

data. 

 

Al-Ahmari [28] studied different predictive machinability models: multiple linear 

regression analysis techniques (RA), response surface methodology (RSM) and 

computational neural networks (CNN) to predict tool life, surface roughness and 

cutting forces in turning. He found out that the CNN models provide better 

prediction capabilities due to their ability to offer better predictions of complex 

nonlinearities and interactions than RA and RSM. Furthermore, the RSM models 

yielded better results than the RA models. 

 

Davim et al. [29] carried out an investigation into the effect of cutting conditions 

on surface roughness using artificial neural networks. The ANN used is an error 

back propagation training algorithm with three neurons in the input layer 

(corresponding to the feed rate, cutting speed and depth of cut), 16 neurons in the 

hidden layer and two neurons in the output layer (corresponding to the average 

roughness Ra and the maximum peak to valley height Rt). They concluded that the 

surface roughness is highly sensitive to feed rate and cutting speed. On the other 

hand, depth of cut has less effect on surface roughness. Surface roughness had a 

tendency to reduce with the increase in cutting speed and the decrease in feed rate.  

 

Briceno et al [30] have employed two supervised neural networks to estimate the 

forces developed during milling. The first one is a back propagation (BP) neural 

network with log-sigmoid transfer functions in the hidden layers and linear 

transfer function in the output layer; the second is a radial basis function network 

(RBF) with Gaussian activation functions. Three inputs were used in this study: 

feed rate, spindle speed and radial depth of cut.  The output parameters were the 

maximum, minimum, mean and standard deviation of the force. A single hidden 
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layer was always used, and the number of neurons in the hidden layer was varied 

to find the “best” network, which was found to be 5 neurons. A cost function is 

used as a basis of comparison between networks.  

Liu and Wang [31] also proposed a back propagation (BP) ANN for on-line 

modeling of the milling process. However, this study has several limitations, the 

most important of which is the use of a single machining parameter as the variable 

input.  

 

2.6 Polynomial Classifiers 
 

The polynomial classifiers are learning algorithms proposed and adopted in recent 

years for classification, regression, and recognition with remarkable properties 

and generalization ability [17, 32]. Due to their need for less training examples 

and far less computational requirements, PCs are used in this work for composite 

life predictions. In the training phase, the elements of each training feature vector, 

x = [x1, x2 ..., xN], are combined with multipliers to form a set of basis functions, 

p(x). The elements of p(x) are the monomials of the form: 

 

  ∏  
 

   
                                                                                                                (11) 

 

where kj is a positive integer and 

 

   ∑      
                                                   (12) 

 

For example if the vector x consists of two coefficients, x=[x1 x2] and a second 

degree polynomial (i.e. K=2) is chosen, then: 

 

      [                     
               

 ]                            (13) 

 

Once the training feature vectors are expanded into their polynomial basis terms, 

the polynomial network is trained to approximate an ideal output using mean-

squared error as the objective criterion. The polynomial expansion for all of the 

training set features vectors (L vectors) is defined as: 

 

  [                          ]
                                                 (14) 
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The training problem reduces to finding an optimum set of weights, w, that 

minimizes the distance between the ideal outputs and a linear combination of the 

polynomial expansion of the training data such that [32]: 

             ‖    ‖                                        (15) 
 

where O represents the ideal output comprised of the column vector whose entries 

are the cutting forces under consideration. The weights of the identification 

models, wopt , can be obtained explicitly by applying the normal equations method 

[32] such as 

 

                                                                    (16) 
  
where M+ is the Moore-Penrose pseudo-inverse of matrix M [32] 

In the prediction stage when an unknown feature vector, x, is presented to the 

network, the vector is expanded into its polynomial terms p(x) and its associated 

logarithmic prediction is determined such that 

 

     (  )                                                     (17) 
 

Deiab et al. [33] employed cutting tool wear using statistical signal analysis, 

pattern recognition, and sensor fusion to predict cutting tool wear. To investigate 

pattern recognition, polynomial classifiers and neural networks were used.  ANNs 

and polynomial classifiers have been used to predict and classify different tool 

wear states based on statistical features extracted from sensory information. For 

polynomial classifiers, a multi-input single-output (MISO) system was modeled 

via polynomial classifiers. This involves finding the system parameters that best 

map the multidimensional input sequence (training feature vectors) to the 

corresponding one-dimensional output sequence (target). As for ANNs, a 3 layer 

feed forward back propagation network was used, They have demonstrated the 

effectiveness of both models and found that the predicted experimental test results 

and the measured tool wear are in good agreement and that the prediction 

accuracies of the two approaches are comparable. However, polynomial classifiers 

have shown lower training time over neural networks, where experiments showed 

that polynomial classifiers require a maximum of 2 s for training compared to few 

minutes required by neural networks.  
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2.7 Summary  

 

Analytical methods are hindered by their low accuracy in predicting forces. Their 

lack of generality and the large amount of experimental data needed for each work 

material and tool material under various cutting conditions renders their use 

expensive and time consuming. Mechanistic methods have a high accuracy of 

predicting cutting forces; however, their main drawback is their lack of generality. 

Modeling cutting forces using artificial neural networks is another approach used 

in the literature. ANNs are being used now because milling processes are very 

complex and many variables influence the forces, these variables are highly 

interlinked and a change of one parameter would alter the resulting forces. In 

addition, the machining process is nonlinear and time-dependent, causing 

traditional identification methods to fail in providing accurate prediction, for the 

above reasons ANNs are a competitive alternative and maybe a substitute. 

Moreover, ANNs are robust and global when compared to traditional methods. 

Available models are either mechanistic based or ANN based. Each model has its 

advantages and disadvantages. Including AI in the proposed mechanistic force 

model for face milling process will allow prediction of pressure coefficients hence 

cutting forces at conditions other than the ones encountered in training the system 

will be predicted, which will greatly cut down costs and time of running 

calibration tests to find the pressure coefficients for each different set of cutting 

parameters. The aim is to mix both models and capture the advantages of both 

models and incorporate it into one ANN based mechanistic force model. The 

ANN based mechanistic force model will be more global than mechanistic 

models, where it will be able to predict forces for cutting parameters it has not 

seen.  

First, the cutting pressures for each set of cutting conditions need to be obtained 

using neural network schemes rather than the power law (as is the case in 

mechanistic models). The second step is to obtain a global set of cutting pressures 

that applies to a range of cutting parameters than to specific values. The proposed 

model will be tested for face milling process with aluminum alloy 6061 work 

piece and shall be validated against data that the network has not seen.  
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CHAPTER 3  

EXPERIMENTAL INVESTIGATION 

 
The experimental data used in this work is extracted from the work by Deiab [8] 

3.1 Gathering Experimental Data 
 

In order to create a force model, a large amount of force signal data has to be 

collected. This is to be done using a tool dynamometer; (a force measuring 

device). Cutting is done on an Aluminum 6061 work piece using an 

OKUMCadetV4020 face milling machine. Moreover, a cutter diameter of 3 inches 

(which is less than the workpiece width of 4 inches) is chosen. 

The tool holder can carry 4 inserts, but 1 insert will be used as to study the force 

signal from a single insert. The force resulting from one insert can be 

superimposed to mimic the 4 inserts placed in the tool.  

The Details of the experimental setup are shown in Table 1 and Figure 6. 

 

 

Table 1 Experiment Setup 

 

Milling Machine OKUMCadetV4020 

Tool Dynamometer  Kistler type 9225A  

Workpiece  Aluminum 6061  

Milling type  Face milling  

Work piece width  4 inches  

Cutter diameter  3 inches  

Insert specifications  Uncoated Carbide H10  

Number of inserts  4  

Sampling frequency  2005Hz  
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Figure 6 Experimental Setup 

 

3.2 Test Matrix 
 

Various Artificial Intelligence (AI) techniques will be implemented, tested and 

evaluated for the purpose of achieving accurate prediction of cutting forces. The 

different combinations of cutting conditions i.e. the test matrix that will be studied 

is shown in Figure 7. 

 

 

Figure 7 Test Matrix 

 

Spindle RPM 
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22   24 
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Combinations of these cutting parameters create a machining data base which 

shall be used in modeling and simulating this process (Appendix A). The collected 

data are to be used later in training and validating the developed model. The data 

is grouped into 36 cutting conditions, denoted by C1, for the 1st cutting condition 

etc.  

3.3 Experimental Procedure  
 

The cutting test matrix was populated by only varying four parameters: spindle 

rpm, depth of cut, chipload and feed. The ranges of each parameter were taken to 

accommodate for a wide variety of setups. The workpiece material is Aluminum 

6061 and the cutter was a four inch diameter and four insert face milling cutter, 

uncoated carbide H10. The sampling frequency of the dynamometer is 2005 Hz.  

Calibration cutting test were carried out with one insert.   Force data used for 

training the ANN is obtained from an average of five revolutions of the same 

insert at the same cutting conditions to accommodate for any experimental error 

due inhomogeneous workpiece material and tool wear. Data was preprocessed by 

taking the average of the first five cutting cycles.  

 

3.4 Data Preparation Methods and Processing 
 

As shown in Figure 10, the output of the dynamometer reading is a voltage signal. 

The voltage signals from the 36 conditions should be first multiplied by the gain 

which is a constant equal to 44.96 N/V. Moreover, drift should be subtracted. The 

cutting time is one second and that result in numerous cycles, an average of 5 

cycles is taken to arrive at the average cutting force. An example of the technique 

and code used is shown in Appendix B.  

3.5 Normalization Techniques 

 

The simplest normalization technique is the Min–max normalization. Min–max 

normalization is best suited for the case where the bounds (maximum and 

minimum values) of the scores produced are known. In this case, we can easily 

shift the minimum and maximum scores to 0 and 1, respectively. However, even if 
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the matching scores are not bounded, we can estimate the minimum and 

maximum values for a set of matching scores and then apply the min–max 

normalization. Given a set of matching scores  

 

{sk}, k=1, 2, . . . , n                      (18) 

 

The normalized scores are given by 

 

sk =(sk – smin ) / (smax−smin)                    (19) 

 

When the minimum and maximum values are estimated from the given set of 

matching scores, this method is not robust (i.e., the method is highly sensitive to 

outliers in the data used for estimation). Min–max normalization retains the 

original distribution of scores except for a scaling factor and transforms all the 

scores into a common range [0, 1].  

 

Min. and Max values for the input and output parameters used are shown in Table 

2. 

 
Table 2 Min & Max values 

Input / Output Min  Max 

RPM 1000 3000 

DOC (1/1000 inch) 40 250 

Chipload  2 8 

Feed (inch/min) 2 24 

Time (sec) 0.0005 0.06 

Fx -161.79 99.1774 

Fy -228.892 139.5648 

Fz -30.7034 51.17689 

 

An example of the normalization done for the RPM is as follows: 

 

Normalized RPM = (RPM-1000)/(3000-1000)                                                  (20) 
 

3.6 Partitioning the Training & Testing data  
The data has been divided into training and validation data, where the training 

data is 75% and the remaining 25% of the data is used for validation. The data 

consists of 36 sets as mentioned earlier. The data is randomly divided as shown in 

Appendix C. 
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CHAPTER 4  

FORCE PREDICTION USING ANNS 
 

In this chapter, ANNs will be employed to predict the full force signal, the 

average, resultant and maximum forces as highlighted in  

Figure 8. 

 

 
 

Figure 8  Road map for Chapter 4 – predicting full force signal 

4.1  Full force signal over time Prediction  
 

In this section, the three force components are predicted as function of time. To 

that effect, the ANNs used consist of an input layer with five neurons 

(corresponding to the five input parameters: revolution per minute, depth of cut, 

chipload, feed and time), an output layer with three neurons (corresponding to the 

output parameters: Fx, Fy & Fz as a function of time) and one or two hidden layers. 

Figure 9 shows a schematic of the network used to predict the variation of the 

cutting forces with time. Matlab’s Neural Network tool box has been used.  
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Figure 9  Network inputs and outputs to predict the cutting forces 

 

4.1.1 Networks Tested  

 

A wide range of network architectures such as the feed forward back propagation, 

cascade feed forward back propagation, radial basis, Elman back propagation and 

layer recurrent were investigated [25]. Runs with different number of hidden 

layers and/or number of neurons per hidden layer were performed to study the 

impact of these parameters on the predictions obtained. The networks were also 

trained using different training algorithms, such as Levenberg-Marquardt, resilient 

back propagation and scaled conjugate back propagation algorithms. Different 

transfer functions such as tansig, logsig and purelin were also considered [34].  In 

all cases, the predicted results presented are average values of five ANN runs to 

overcome the effect of any inconsistencies that may result due to the randomness 

of the ANN’s initial guess.  

 

4.1.2  Results 

 

A Parametric study varying ANN architecture and variables was conducted for the 

purpose of finding an optimum ANN for this application. The details of the 

networks used are shown in appendix D. The details of the results obtained are 

presented next. 

4.2 ANN Characteristics 

4.2.1  ANN architecture  

The network architectures that were tested are: feed forward back propagation 

(FFBP), radial basis (exact Fit), cascade feed forward back propagation, Elman 

back propagation and layer recurrent. The results obtained show that both Elman 
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back propagation and layer recurrent architectures require a longer time to 

converge compared to the other architectures. The results also show that the error 

obtained using the radial basis function is very high as shown in  

Table 3. Therefore, the investigation was continued with FFBP. For the FFBP, the 

effect of varying the training function, the transfer function, the number of hidden 

layers, and the number of hidden neurons was investigated. The architectures of 

the various neural networks used in this study are shown in Appendix D. Figure 

10 shows a comparison of the network architectures.  The best prediction is that  

of network 1 (a 3 layer FFBP network, with trainlm as the training function and 

10 neurons in the first layer and a transfer function of logsig and 5 neurons in the 

second layer and a purelin transfer function) for cutting condition C10. Networks 

9, 10 and 11 predictions are also shown in Figure 10. Table 3 compares the NMSE 

output prediction using the 5 networks stated, the values presented are the average 

NMSE of predicting the 12 validation conditions (C2, C4, C8, C10, C14, C18, 

C19, C23, C26, C28, C33 and C35) as shown in Appendix C table 16. The lowest 

normalized mean square error (NMSE) obtained was for C10 case at a NMSE 

4.8% predicted by network 1.  

 

Figure 10 Predicted and measured resultant force for one insert cutting, C10 (RPM 1000, Depth of 

cut of 40, Chipload 8 and feed of 20) for networks 1, 9, 10 and 11 

  

Table 3 Effect of Architecture 

Net number Type 
Number of hidden 

layers 

NMSE 

(%) 

net 1 FFBP 3 4.83% 

net 8 Radial basis - 364.8% 
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net 9 Cascade forward back propagation - 19.6% 

net 10 Elman back propagation - 11.5% 

net 11 Layer Recurrent - 21.3% 

 

4.2.2 Training Algorithm 

 

The effect of the type of training algorithm used was investigated next. 

Levenberg-Marquardt (trainlm), resilient back propagation (trainrp) and scaled 

conjugate back propagation algorithms (traincg) were used. To compare training 

functions, FFBP networks with one and two hidden layers were used. Table 4 

shows that the Levenberg-Marquardt algorithm with one and two hidden layers 

gave the lowest NMSE. The NMSE presented in table 4 is an average of the 12 

validation conditions (C2, C4, C8, C10, C14, C18, C19, C23, C26, C28, C33 and 

C35) as shown in Appendix C table 16. 

 

Table 4 Effect of type of training function on prediction for cutting condition C4 

Net number Type 
Number of hidden 

layers 

Training 

Function 

NMSE 

(%) 

net 1 FFBP 2 Trainlm 4.44 

net 4 FFBP 1 Trainlm 4.55 

net 12 FFBP 1 Trainrp 6.85 

net 13 FFBP 1 Trainscg 6.03 

net 14 FFBP 2 Trainrp 4.35 

net 15 FFBP 2 Trainscg 6.03 

 

4.2.3 Number of hidden layers  

 

To study the effect of the number of hidden layers on the accuracy of the ANN 

prediction, FFBP networks with one and two hidden layers were investigated.  

Since the predictions obtained from varying the training function (Table 4) 

showed that trainlm gave the best predictions, it was used here for all the cases 

considered. The tansig transfer function was selected as the use of this function 

allows a nonlinear relationship between the input and the output, moreover, this 

function is self limiting and hence the output cannot grow infinitely large or small.  
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Table 5 compares the results obtained using one and two hidden layers. The 

NMSE presented in table 5 is an average of the 12 validation conditions (C2, C4, 

C8, C10, C14, C18, C19, C23, C26, C28, C33 and C35) as shown in Appendix C 

table 16.For the case shown in  

Table 5, the predictions show that a FFBP with two hidden layers result in the 

lowest error. 

Table 5 Effect of the number of layers on the FFBP predictions 

Net. 

number 

Number 

of 

hidden 

layers 

Hidden Layer 1 Hidden Layer 2 

Training 

function 

NMSE 

(%) 
Transfer 

function 

Number 

of neurons 

Transfer 

function 

Number 

of neurons 

net 2 1 Tansig 20 
  

trainlm 6.08 

net 4 1 Tansig 10 
  

trainlm 5.00 

net 18 2 Tansig 10 tansig 10 trainlm 4.12 

net  19 2 Tansig 10 tansig 20 trainlm 9.85 

net 20 2 Tansig 10 tansig 5 trainlm 4.08 

net 22 2 Tansig 20 tansig 10 trainlm 8.87 

4.2.4 Transfer functions  

 

To investigate the effect of varying the transfer function, 3 single hidden layer 

networks with the same number of neurons in the hidden layers and same transfer 

function are compared and 2 2 hidden layer networks are compared as in Table 6. 

The NMSE presented in table 6 is an average of the 12 validation conditions (C2, 

C4, C8, C10, C14, C18, C19, C23, C26, C28, C33 and C35) as shown in 

Appendix C table 16. 

Figure 11 compares network 1 and network 20 for condition C4. Both networks 

have the same 3 layer architecture, number of layers, number of neurons, training 

function; the only difference is in the transfer function. Network 1 had logsig as 

the first transfer function and purelin as the second. Network 20 has both transfer 

functions as tansig. The NMSE obtained for C4 using network 20 is slightly lower 

than that of network 1 (3.56% vs. 4.44%), whereas the logsig transfer function in a 

single hidden layer network gave the lowest errors. 

Table 6 Effect of varying the transfer function 

Net 

number 

Number 

of 

Hidden Layer 1 Hidden Layer 2 Training 

function 

NMSE 

(%) Transfer Number Transfer Number 
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hidden 

layers 

function of neurons function of neurons 

net 4 1 Tansig 10 
  

trainlm 14.85 

net 6 1 Purelin 10 
  

trainlm 21.52 

net 25 1 Logsig 10 
  

trainlm 10.49 

net  1 2 Logsig 10 Purelin 5 trainlm 4.44 

net 20 2 Tansig 10 Tansig 5 trainlm 3.65 

 

 

Figure 11 Predicted and measured resultant force for one insert cutting, C4 (RPM 1000, Depth of 

cut of 40, Chipload 4 and feed of 8) 

4.2.5 Number of neurons in the hidden layers 

 

To study the effect of the number of hidden neurons, several networks with one 

hidden layer using the same training function (trainlm) and the same transfer 

function (tansig) were compared. For cutting conditions C10, the network with 5 

hidden neurons has the lowest NMSE at 9.70%. Table 7 shows the average NMSE 

prediction if the 4 networks of the 12 validation conditions (C2, C4, C8, C10, 

C14, C18, C19, C23, C26, C28, C33 and C35 as shown in Appendix C table 16). 
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net 2 1 Tansig 20 trainlm 16.45 

net 3 1 Tansig 5 trainlm 9.7 

net 4 1 Tansig 10 trainlm 12.43 

net 5 1 Tansig 40 trainlm 39.3 

 

Table 8 shows the effect of the number of hidden neurons for networks of the 

same architecture with the same training function and transfer function using two 

hidden layers. In this case, the network with 10-5 hidden neurons resulted in the 

lowest NMSE. The NMSE presented in table 8 is an average of the 12 validation 

conditions (C2, C4, C8, C10, C14, C18, C19, C23, C26, C28, C33 and C35) as 

shown in Appendix C table 16. 

 

Table 8  Effect of the number of hidden neurons in a FFBP type ANN with two hidden layers. 

Net number 
Number of hidden 

layers 
Hidden Layer 1 Hidden Layer 2 

NMSE  

(%) 

net 18 2 10 10 14.74 

net 19 2 10 20 24.59 

net 20 2 10 5 9.20 

net 21 2 10 40 57.64 

net 22 2 20 10 33.11 

 

In conclusion, it was found that 2 layer networks with the trainlm training 

function gives the lowest errors. 

4.3 Average Force Prediction  
 

Knowledge of the average forces produced in milling operations can provide a fast 

estimate of the forces needed for different machining scenarios and can be used in 

different analyses of the machining process. Tests have been carried out using 12 

data sets (C2, C4, C8, C10, C14, C18, C19, C23, C26, C28, C33 and C35 as 

shown in Appendix C table 16) and 4 network architectures. Figure 12 shows the 

predictions obtained compared to the experimental results. Network 29 gave the 

lowest NMSE at 1.6% on average. Table 9 shows a comparison between the 

NMSE obtained using each of the networks considered.  
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Results 
 

 

Figure 12 Sample predictions of average Fx (over time) 

Table 9  Prediction of average forces (Fx, Fy and Fz) using tansig transfer function and trainlm 

training function on average over the 12 validation conditions 

4.4 Resultant Force Prediction 
 

Thirty-six tests have been carried out using 12 data sets for validation (C2, C4, 

C8, C10, C14, C18, C19, C23, C26, C28, C33 and C35 as shown in Appendix C 

table 16)  and three Networks- detailed in Table 10 : 30, 31 and 32 are compared 

with experimental data as shown in Figure 13. NMSEs stated in table 10 are the 

average NMSE of the 12 validation data sets. 
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2.9 
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 Results 

 

Figure 13 Predicted resultant forces as function of condition 

 

Table 10 Resultant forces prediction- Tansig/logsig function, Trainlm Training function 

Net No. Type No. of layers No. of 

Neurons 

No. of 

Neurons 

Transfer 

function 

NMSE 

(%) 

Network 30 FFBP 2 8  tansig 16.1 

Network 31 FFBP 3 8 4 tansig 37.7 

Network 32 FFBP 2 8  logsig 20.5 

 Network 30- a 2 layer FFBP networks with 8 neurons in the hidden layer and 

trainlm as the training function and tansig as the transfer function has the lowest 

NMSE of ~16%. 

4.5 Maximum Force Prediction  
 

Predicting the maximum forces is very useful in machine tool selection and 

simulation of the worst case scenario: conservative analysis. The network has 4 

inputs and 3 outputs. The outputs are the maximum forces in the X, Y and Z 

directions respectively. Thirty-six tests have been carried out using 12 data sets 

and three Networks: 33, 34 and 35 are compared as shown in Figure 14. Network 

33 gave the lowest NMSE at 4.10%. 
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Figure 14 Fx Predicted maximum forces as function of condition 

  

4.6  Force prediction using hybrid model: Mechanistic & ANNs 

prediction  
 

As mentioned earlier, mechanistic methods have a high accuracy of predicting 

cutting forces; however, their main drawback is their lack of generality. To 

address this problem, ANNs were used to predict the cutting coefficients. An 

investigation was performed to investigate the effect of varying ANN parameters 

and architectures on the prediction accuracy and to determine the optimum ANN 

parameters and architecture. Experimental and ANN predicted cutting coefficients 

are compared.  

 

The cutting pressure coefficients have been calculated using the code in Appendix 

B and the resulting Kr and Kt tabulated in Appendix E 

 

4.6.1 Prediction of cutting coefficients and forces from calculated 

cutting coefficients 

 

Figure 15 and Figure 16 show a comparison between the calculated and the 

predicted values of the tangential cutting coefficient (Kt) and the radial cutting 

coefficient (Kr) respectively, using a number of different networks. All networks 
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used in this case were FFBP with Levenberg-Marquardt training function. Table 

11 shows the average NMSE of the predictions of the 12 validation conditions 

(C2, C4, C8, C10, C14, C18, C19, C23, C26, C28, C33 and C35 as shown in 

Appendix C table 18), which shows that network 37 gives the lowest errors. 

 
Table 11 NMSE of Networks 36, 37 and 38 

 Network 36 Network 37 Network 38 

Kt 47.54% 16.64% 57.83% 

Kr 21.98% 8.96% 35.23% 

 
Figure 15 Comparison between the calculated values of the tangential pressure coefficient and the 

predictions obtained using various ANN architectures for a variety of cutting conditions. 

 

 
Figure 16 Comparison between the calculated values of the radial pressure coefficient and the 

predictions obtained using various ANN architectures for a variety of cutting conditions. 
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Network 37 is a 2 layer feed forward back propagation network with a trainlm 

transfer function, a logsig transfer function and 8 neurons in the hidden layer. 

Figure 17 shows the resultant force calculated from eq. 3-6, 8 and 9 from the 

predicted Kt and Kr values.  

 

Figure 17  Resultant force calculated from Kt and Kr for network 37 

 

4.6.2 Prediction of cutting coefficients from the cutting forces  

 

Another possible approach is to use the three force components to predict the 

cutting coefficients Kr and Kt. This approach is helpful in simulating the cutting 

process when the force variation is needed, e.g. finite element analysis. 

Alternatively, if the cutting force components are collected experimentally, they 

could be used as inputs to the network to predict the cutting coefficients, rather 

than using the cutting parameters. Figure 18 and Figure 19 compare the 

predictions obtained using a variety of ANNs with the values calculated using 

average forces for several cutting conditions.  
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Figure 18 Comparison between the values calculated for the tangential pressure coefficient using 

the average forces and the predictions obtained using various ANN architectures for a variety of 

cutting conditions. 

 

 
Figure 19 Comparison between the values calculated for the radial pressure coefficient using the 

average forces and the predictions obtained using various ANN architectures for a variety of 

cutting conditions.  

 

For Kt and Kr predictions, networks 39, 40 and 41 gave comparable NMSE. Table 

12 shows the NMSEs of networks 39, 40 and 41. The 3 networks are feed forward 

back propagation networks with trainlm training function, networks 39 and 40 are 

2 layer networks, the first with 10 neurons in the hidden layer and a tansig transfer 

function, the latter has 8 neurons in the hidden layer and a logsig transfer function. 

Network 41 is a 3 layer network, with 8 neurons in the first hidden layer and a 

logsig transfer function and 4 neurons in the second hidden layer and a purelin 

transfer function. The forces can be extracted by using the predicted Kt and Kr 

values and applying eq. 3-6, 8 and 9. 
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Table 12 NMSE of Networks 39, 40 and 41 

 Network 39 Network 40 Network 41 

Kt 18.31% 19.03% 23.00% 

Kr 17.48% 16.80% 21.95% 

 

4.7 Summary of Results for force prediction using ANNs 
 

Artificial neural networks were used to estimate the cutting forces from the cutting 

parameters at first. Then ANNs where used with mechanistic methods to predict 

the cutting pressure coefficients which were then used to calculate the cutting 

forces. It can be claimed that the comparison of the predictions obtained from the 

neural models with the experimental results confirms the potential of the model to 

predict the cutting forces. The approach ensures estimation of the cutting forces in 

real time which is needed for simulation of different aspects of the machining 

process such as fixture configuration selection and optimization of cutting 

parameters which would enable leaner and more efficient machining process. 

 

For the cutting conditions considered, the best cutting forces predictions using the 

cutting parameters as inputs were obtained using FFBP networks with the 

Levenberg-Marquardt training function algorithm and the tansig transfer function. 

This ANN produced an average NMSE of ~4% over the 12 validation conditions. 

When predicting the resultant and the maximum forces, the radial basis network 

produced the lowest error compared to the experimental values. When using the 

fused ANNs with mechanistic methods, FFBP networks where investigated and 

where found to give NMSE as low as 8%.  
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CHAPTER 5  

FORCE PREDICTION USING POLYNOMIAL CLASSIFIERS 

 

5.1 Predicting Cutting forces using Polynomial Classifiers  
 

Despite the many advantages of neural networks and their ability to obtain 

adequate results, the repeatability of their predictions is always a concern for both 

designers and users. Cutting force predictions can be obtained with neural 

networks depending on the type of network, the number of hidden layers and the 

training algorithm used. Furthermore, one should remember that the initial 

weights chosen by any neural network are random in nature and therefore one 

should expect slightly different predictions if the same neural network is applied 

numerous times (although this can be remedied by taking the average results 

obtained from several runs). Finally it should be noted that the methods used by 

the neural networks are iterative ones rather that direct solutions. To address the 

above-mentioned shortcomings of neural networks, the polynomial classifiers 

(PC) method is considered next.  

The same parameters used with ANN will be used in the investigation involving 

polynomial classifiers. As before, data from the same 36 cutting conditions were 

used for training and testing purposes. 75% of the data was used for training and 

the remaining 25% used for validation and testing. MATLAB Software was once 

again used to construct, train and test the classifiers [34].  

To predict the cutting forces, the use of first, second and higher order classifiers 

will be investigated. For each case, the predictions obtained will be compared to 

experimental data and the NMSE will be used to gauge the effectiveness of the 

polynomials used.  

 

5.1.1 Predicting Resultant Forces using first, second and third Order PC 

 

PCs were also used to predict the resultant forces. Figure 20 compares ANNs’ 

prediction with first, second and third order PCs. Table 13 shows the NMSE of 

ANNs and PCs. 



 

38 

 

 
Figure 20 Resultant Forces Prediction with ANNs and PCs 

 
Table 13 NMSE of ANNs and PCS 

 ANNs 1st Order 2nd Order 3rd Order 

Resultant Forces 16.12% 12.23% 11.98% 26.64% 

 

5.1.2 Predicting Average Forces using first, second and third Order PC 

 

PCs were also used to predict the average forces. Figure 21 compares ANNs’ 

prediction with first, second and third order PCs. Table 14 shows the NMSE of 

ANNs and PCs. 

 

 

Figure 21  Average Forces Prediction with ANNs and PCs 
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Table 14 NMSE of ANNs and PCS 

 ANNs 1st Order 2nd Order 3rd Order 

Average Forces 1.6 % 13.13% 15.86% 28.60% 

 

5.1.3 Predicting Max Forces using first, second and third Order PC 

 

PCs were also used to predict them forces – in X direction. Figure 21 compares 

ANNs’ prediction with first, second and third order PCs. Table 15 shows the 

NMSE of ANNs and PCs. 

 

 

Figure 22 Max. Forces Prediction with ANNs and PCs 

 

Table 15 NMSE of ANNs and PCS 

 ANNs 1st Order 2nd Order 3rd Order 

Average Forces 4.1 % 6.88% 4.93% 7.43% 

 

5.2 Predicting Coefficients Kt & Kr using Polynomial Classifiers 

5.2.1 Predicting Cutting Coefficients using First Order PC 

 

As there are 4 parameters to consider as input to the classifier, which are: RPM, 

Depth of Cut DOC, Chipload Ac and feed F, resulting in a full first order PC. 

 

      [              ]                                                                     (21) 
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The output of the logarithm is the Kr (the radial pressure coefficient) and the Kt 

(the tangential pressure coefficient) values. The predictions obtained using the 

first order PC were compared to the experimental data and were found to score an 

NMSE of the order of 18%. Figures 23 and 24 show the output of the first order 

PC for predicting Kr and Kt respectively. 5 plots are shown; a first order 

polynomial classifier was used with only one parameter, in order to determine the 

most influential parameter. As can be seen from Figure 23 and Figure 24 and table 

16, DOC has the most influence; this has been verified by simulating the PC with 

one term only, as in Figure 23, DOC resulted in the lowest error and will therefore 

be emphasized in higher order PC in an attempt to get a more accurate prediction. 

Table 16 lists the NMSE of the first order parameters. 

 

Table 16 NMSE of First and Second Order PC 

 RPM DOC Ac Feed Full First 
Order 

Second Order 

Kr 33.37% 17.74% 33.48% 33.53% 19.07% 11.75% 

Kt 23.48% 19.07% 21.46% 21.45% 17.19% 17.58% 

 

 

Figure 23 Predicting Kr using a separate and full first order PC 
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Figure 24 Predicting Kt using separate and full first order PC 

  

In an attempt to reduce the errors, higher orders will be investigated. 

 

5.2.2 Predicting Cutting Coefficients using Second Order PC 

 

In order to reduce the error obtained using the first order PC, second order PC was 

attempted. In this case, the input parameters include the first order terms shown in 

addition to the square of each of these terms and the cross multiplication of each 

two of these terms to give the second order as shown below: 

 

      [                                            
                                  ]                                   (22) 
 

A best NMSE of 11.7% was reached with the employment of the second order. An 

improvement compared to the first order. Results are sown in Figure 25 and 

Figure 26 and Table 16. 
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Figure 25 Second order PC Kr 

 

 
Figure 26 Second order PC Kt 

 

Emphasized second order where only the DOC terms are kept as below: 

 

      [                                 ]                                       (23) 

  

yields an NMSE of 8.85% 
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5.2.3 Predicting Cutting Coefficients using Third Order PC 

 

In attempt to lower the NMSE, higher order terms of the third order will be added 

to the polynomial classifier to yield more accurate predictions. The equation 

below shows the added higher order terms: 

      [                                            
                                              
                                               
                                                    
                                                                                     (23) 
 

The corresponding NMSE obtained is 6.45%. Plots of predictions are shown in 

Figure 27 and Figure 28. 

Figure 27 Third order PC Kr 
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Figure 28 Third order PC Kt 

 

5.3 Comparative study of force prediction methods  
 

Chapters 4 and 5 have covered 3 different force prediction approaches: first is 

using ANNs to predict forces, using Hybrid techniques to predict the cutting 

pressure coefficients and using PCs to predict the cutting pressure coefficients. 

Figure 29 below shows the comparison between experimental results and the 

predicted obtained using ANNs and PCs. 

 
Figure 29 Third order PCs and ANNs compared with experimental 
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The use of ANNs scored a NMSE of 6.7%, whereas the third order PC scored 7%. 

Another run was carried out for the Tangential cutting pressure coefficient, shown 

in Figure 30 below. 

 

Figure 30 Third order PCs and ANNs compared 

 

The ANNs scored a NMSE of 8.85%, whereas the third order PC scored 8%. 

Hence, both prediction techniques gave very similar accuracies.   

0

0.2

0.4

0.6

0.8

1

1.2

C2 C4 C8 C10 C14 C18 C19 C23 C26 C28 C33 C35

Ta
n

ge
n

ti
al

 P
re

ss
u

re
 C

o
e

ff
ic

ie
n

t,
 K

t 

Cutting Conditions 

Actual Third Order PCs ANNs



 

46 

 

CHAPTER 6  

CONCLUSION & FUTURE WORK 

Conclusion 
 

This work presented the successful implementation and development of artificial 

neural networks and polynomial classifiers to predict the forces and the cutting 

pressure coefficients in end milling. Different neural network architectures using a 

variety of training functions were used. Training was performed on certain cutting 

conditions while the prediction was done for different parameters. The following 

summarizes the results: 

1- Artificial neural networks can be used as efficient tool in predicting the full 

force signal, average forces, maximum forces and the resultant forces for 

cutting cases other than those used in the training of the network.  

2- The predictions obtained are affected by the input parameters, network 

architecture, number of hidden neurons and training function used. 

3- The PC method can lead to repeatable predictions for the cutting pressure 

coefficients. First and Second order classifiers seem to give the best predictions 

compared to experimental data. 

4- The predictions obtained using PCs are compared to those of ANNs. 

Future Work 
 

1- Using ANN to predict the force signal by expanding the input parameters 

to different materials and other inserts 

2- Using GMDH to better select the higher order terms be added to second 

degree PC leading to the best force prediction.  

 

The same methodology can be applied to different applications in a manufacturing 

facility, such as prediction of metallurgical properties in a hardening facility, 

where certain parameters such as, pressure, volume of gases, temperature, current 

and voltage can be inputs to the ANN or PCs and the output can be the case depth 

and hardness. Hence, time, effort and money are saved, as no numerous 

experiments are required.   



 

47 

 

REFERENCES  
 

[1] K. D. Ehmann, “Machining Process modeling: A Review”, Journal of Manufacturing 

Science & Technology, vol. 119, pp. 655-663, November 1997. 

 

[2] C. A. Luttervelt, T. H. C. Childs, I. S. Jawahir, F. Klocke, and P. K. Venuvinod, 

“Present Situation and future trends in modeling of machining operations”, in Annals of 

the CIRP, vol. 47, 1998, pp. 2. 

 

[3] F. Koenigsberger and J. P. Sabberwal, “An Investigation into the cutting force 

pulsation during milling operations”, International Journal of Machine Tool Design and 

Research, vol. 1, pp. 15-33, 1961. 

 

[4] B. V. Coelho, “Experimental Evaluation of Cutting force parapeters applying 

mechanistic model in orthogonal milling”, Journal of the Brazilian Society of Mechanical 

Science and Engineering , vol. XXV, pp. 247-253, 2003. 

 

[5]
 
K. D. Jayaram, “Estimation of the Specific Cutting pressures for Mechanistic cutting 

force models”, International Journal of Machine Tool & Manufacture, vol. 41, pp. 265-

281, 2001. 

 

[6] R. J. Saffar, , “Simulation of three dimension cutting force and tool deflection in the 

end milling operation based on finite element method”, Simulation model and practise 

theory, vol. 16, pp. 1677-1688, 2008. 

 

[7] M. Wan,  “A novel cutting force modelling method for cylindrical end mill”, Applied 

Mathematical Modeling, vol. 34, pp.  823-836, 2010. 

 

[8] I. M. Deiab, Effect of fixture dynamics on the face milling process, Ontario, 

MacMaster University, 2003. 

 

[9] D. A. Fu, “A Mechanistic Model for Prediction of the Force System in Face Milling 

Operations”, Journal of Engineering for Industry , pp. 81-88, 1984. 

 

[10] E. Kim and K. F. Ehmann, “A cutting force model for face milling operations”, 

International Journal of Machine Tools and Manufactures, vol. 33,  pp. 651-673, 1993. 

 

[11] F. Gu, Prediction of cutting forces and surface errors in face milling with 

generalized cutter and workpiece geometry, University of Illinois, 1993. 

 

[12] I. S. G. Kang, J. S. Kim, J. H. Kim, M. C. Kang and Y. W. Seo, “A mechanistic 

model of cutting force in the micro end milling process”. Journal of Materials Processing 

Technology, pp. 250-255, 2007. 

 

[13] D. W. Yun, “Accurate 3-D prediction using cutting condition independent 

coefficients in end milling”, International Journal of Machine Tool & manufacture , vol. 

14, pp. 463-478, 2001. 



 

48 

 

 

[14] N. Z. Yussefian, B. Moetakef-Imani and H. El-Mounayri,  “The prediction of cutting 

force for boring process”, International Journal of Machine Tools & Manufacture , vol. 

48 , pp. 1387–1394, 2008. 

 

[15] Min Wan and Wei-HongZhang, “Systematic study on cutting force modeling 

methods for peripheral milling”, International Journal of Machine Tools & Manufacture, 

vol. 49, pp. 424–432, 2009. 

 

[16] S. Haykin, Neural Networks for statistical modeling, Van Nostrand Reinhold Editor, 

1993. 

 

[17] D. Skapura, Building neural networks, Addison-Wesley ACM Press, 1996. 

 

[18] S. V. Kartalopoulos, “Understanding neural networks and fuzzy logic: basic concepts 

and applications”, in IEEE Press, 1996. 

 

[19] H. El Kadi, “Modeling the Mechanical Behavior of Fiber-Reinforced Polymeric 

Composite Materials Using Artificial Neural Networks – A Review”, Composite 

Structures, vol. 73, pp. 1-23, 2006. 

 

[20] Z. Zhang and K. Friedrich, “Artificial neural networks applied to polymer 

composites”, Composite Science and Technology, vol. 63, pp. 29-44, 2003. 

 

[21] V.Tandon and H. El-Mounayri, “A Novel Artificial Neural Networks Force Model 

for End Milling”, International Journal of Advanced Manufacturing Technology, vol. 18, 

pp. 693-700, 2001. 

 

[22] S. Aykut , M. Gölcüa, S. Semiz and H. S. Ergur, “Modeling of cutting forces as 

function of cutting parameters for face milling of Satellite 6 using an artificial neural 

network”, Journal of Materials Processing Technology, vol. 190, pp. 199–203, 2007. 

 

[23] F.
1
Cus, U. Zuperl and M.Milfelner, “Dynamic neural network approach for tool 

cutting force modeling of end milling operations”, International Journal of General 

Systems, vol. 35, pp. 603-618, 2006. 

 

[24] U. Zuperl, F. Cus, B. Mursec and T. Ploj, “A hybrid analytical-neural network 

approach to the determination of optimal cutting conditions”, Journal of Materials 

Processing Technology, vol. 175, pp. 82–90, 2004. 

 

[25] A. M. Zain, “Prediction of surface roughness in the end milling machining using 

Artificial Neural Network”, Expert Systems with Applications, vol. 37, pp. 1755-1768, 

2010. 

 

[26] Z. Uros, “Adaptive network based inference system for estimation of flank wear in 

end milling”, Journal of Materials Processing Technology, vol. 209, pp. 1504-1511, 

2009. 

 



 

49 

 

[27] T. Ozel and Y. Karpat, “Predictive modelling of surface roughness and tool wear in 

hard turning using regression and neural networks”, International Journal of  Machine 

Tool and Manufacture, vol. 45, pp. 467–479, 2005. 

 

[28] A. M. A. Al-Ahmari, “Predictive Machinability models for a selected hard material 

in turning operations”, Journal of Materials Processing Technology, vol. 190, pp. 305-

311, 2007. 

 

[29] J. P. Davim, V. N. Gaitonde and S. R. Karnik,  “Investigations into the effect of 

cutting conditions on surface roughness in turning of free machining steel by ANN 

models”, Journal of Materials Processing Technology,  vol. 205, pp. 16-23, 2008. 

 

[30] J. F.  Briceno,  H. Mounayri and Mukhopadhyay, “Selecting an artificial neural 

network for efficient modeling and accurate simulation of the milling process”, 

International Journal of Machine Tools & Manufacture, vol. 42, pp. 663-674, 2002. 

 

[31] Y. Liu and C. Wang, “Neural network based adaptive control and optimisation in the 

milling process”,  International Journal of Advanced Manufacturing Technology , vol. 

15, pp. 791–795, 1999. 

 

[32] W. Campbell, K. Assaleh and C. Broun, “Speaker recognition with polynomial 

classifiers”, in IEEE Transactions on Speech and Audio Processing, 2002, pp. 205-212. 

 

[33] I. M.
1
Deiab, K. Assaleh and F. Hammad, “On modeling of tool wear using sensor 

fusion and polynomial classifiers”, Mechanical Systems and Signal Processing, vol. 23, 

pp. 1719–1729, 2009. 

 

[34] MATLAB version 6.5.1. Natick, Massachusetts: The MathWorks Inc., 2003. 

 

 

  



 

50 

 

APPENDICES 

APPENDIX A 

 
Table 17 Cutting Parameters 

 

Set RPM DOC Chipload Feed 

C1 1000 40 2 2 

C2 2000 40 2 4 

C3 3000 40 2 6 

C4 1000 40 4 8 

C5 2000 40 4 10 

C6 3000 40 4 12 

C7 1000 40 6 14 

C8 2000 40 6 16 

C9 3000 40 6 18 

C10 1000 40 8 20 

C11 2000 40 8 22 

C12 3000 40 8 24 

C13 1000 150 2 2 

C14 2000 150 2 4 

C15 3000 150 2 6 

C16 1000 150 4 8 

C17 2000 150 4 10 

C18 3000 150 4 12 

C19 1000 150 6 14 

C20 2000 150 6 16 

C21 3000 150 6 18 

C22 1000 150 8 20 

C23 2000 150 8 22 

C24 3000 150 8 24 

C25 1000 250 2 2 

C26 2000 250 2 4 

C27 3000 250 2 6 

C28 1000 250 4 8 

C29 2000 250 4 10 

C30 3000 250 4 12 

C31 1000 250 6 14 

C32 2000 250 6 16 

C33 3000 250 6 18 

C34 1000 250 8 20 

C35 2000 250 8 22 

C36 3000 250 8 24 
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APPENDIX B  
Shown below in details is for the first condition C1. 

% 
load c1.txt 
GainKisX=200/4.448222;  
GainKisY=200/4.448222; 
GainKisZ=200/4.448222; 
FX=GainKisX*c1(:,1); 
FY=GainKisY*c1(:,2); 
FZ=GainKisZ*c1(:,3); 
SizeFX=size(FX); 

SizeFX=SizeFX(1) 
% 
Range=[1:SizeFX]; 
hold off; 
plot(FX(Range));hold on; 
plot(FY(Range),'r'); 
plot(FZ(Range),'c'); 
legend('FX','FY','FZ');grid 
zoom on,pause 

 

Figure 31 Transformation of signal into forces 

The resulting signal shown in Figure 31 is now measured in forces; this signal 

however, needs to be filtered. This is done by subtracting the drift. It is known that 

there is a known range where there is no contact between the insert and the work 

piece, during that time, the signal should measure zero. For the case of C1, there 

are 17 engagements of the insert with the work piece and the tool has 4 inserts, 
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therefore the signal presented is that of 4 revolutions and the signal is periodic. As 

can be seen from the figure above, the range where the insert and the work piece 

are not in contact are in the ranges of 70-100, 180-210 and so on. The range 

chosen should be the first and the last insert engagement with the work piece, for 

C1 condition is 70-100, and 1950-1980. The average of the signal for the 2 ranges 

is calculated and the difference between the 2 ranges is obtained and multiplied by 

the signal and divided by the sample size. 

% 

RangeOne=[70:100]; 
RangeTwo=[1950:1980]; 
% 
SizeFX=size(FX); 

SizeFX=SizeFX(1) 
MeanFXOne=mean(FX(RangeOne));  

MeanFXTwo=mean(FX(RangeTwo)); 
FXOffset=(MeanFXTwo-MeanFXOne)*[1:SizeFX]/SizeFX+MeanFXOne; 
hold off 
plot(FX);hold on;plot(FXOffset,'r') 
FXNew=FX-FXOffset'; 
hold off 
plot(FX);hold on;plot(FXNew,'r') 
zoom on,pause 
% 
SizeFY=size(FY);SizeFY=SizeFY(1) 
MeanFYOne=mean(FY(RangeOne)); MeanFYTwo=mean(FY(RangeTwo)); 
FYOffset=(MeanFYTwo-MeanFYOne)*[1:SizeFY]/SizeFY+MeanFYOne; 
hold off 
plot(FY);hold on;plot(FYOffset,'r'); 
FYNew=FY-FYOffset'; 
hold off 
plot(FY);hold on;plot(FYNew,'r') 
% 
SizeFZ=size(FZ);SizeFZ=SizeFZ(1) 
MeanFZOne=mean(FZ(RangeOne)); MeanFZTwo=mean(FZ(RangeTwo)); 
FZOffset=(MeanFZTwo-MeanFZOne)*[1:SizeFZ]/SizeFZ+MeanFZOne; 
hold off 
plot(FZ);hold on;plot(FZOffset,'r') 
FZNew=FZ-FZOffset'; 
hold off 
plot(FZ);hold on;plot(FZNew,'r') 
% 
FX=FXNew;FY=FYNew;FZ=FZNew; 
clear FXNew FYNew FZNew 
% 
bb=[FX FY FZ] 
save mod_c1.txt bb -ascii 
% 

 

The signal after filtering is as shown in Figure 32 
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Figure 32 Force Signal after filtering 
 

 

The RPM at condition 1 is 1000 rev/min and the sample frequency is set at 2005 

for all conditions. The tool holder houses 4 inserts. Therefore, the number of data 

points in one revolution is calculated as follows:  

 
 
NSpin=1000 
ForceSampleFrequency=2005; 
hold off;plot(FX) 
NPointPeriod=4*60*ForceSampleFrequency/NSpin 
% 
 

For C1, the number of data points per insert is 120, where the first 60 points are 

during engagement of the insert with the work piece and the other 60 points is 

during no cutting, 480 data points per revolution, the start data point of the insert 

engagement with the work piece should be defined, for C1 the first engagement of 

the tool with the work piece is shown in Figure 33, where it is zoomed into and it 

shows that it is at data point 112. 
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Figure 33 Zoom in on first engagement of tool with workpiece 

 

5 ranges are chosen so that an average force is obtained, that is done by taking 5 

ranges starting from 112 and adding 120 for every range.  

  

 

% Mean force 

 
StartingPoint=112; 
Range1=[StartingPoint:StartingPoint+NPointPeriod-1]; 
Range2=Range1+NPointPeriod; 
Range3=Range1+2*NPointPeriod; 
Range4=Range1+3*NPointPeriod; 
Range5=Range1+4*NPointPeriod; 
Range6=Range1+5*NPointPeriod;  
hold off 
plot(FX(Range1));hold 

on;plot(FX(Range2),'r');plot(FX(Range3),'c');plot(FX(Range4),'m');

plot(FX(Range5),'g'); 
grid on 
legend('1','2','3','4','5') 

  
% FX Mean 
MeanFXOnRev=(FX(Range1)+FX(Range2)+FX(Range3)+FX(Range4)+FX(Range5

))/5; 
hold off 
subplot(3,1,1),plot(FX(Range1));hold 

on;plot(FX(Range2),'r');plot(FX(Range3),'c');plot(FX(Range4),'m');

plot(FX(Range5),'g'); 
plot(MeanFXOnRev,'LineWidth',2.);hold off;title('FX') 
legend('1','2','3','4','5','Average') 
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grid on 
% FY Mean 
MeanFYOnRev=(FY(Range1)+FY(Range2)+FY(Range3)+FY(Range4)+FY(Range5

))/5; 
hold off 
subplot(3,1,2),plot(FY(Range1));hold 

on;plot(FY(Range2),'r');plot(FY(Range3),'c');plot(FY(Range4),'m');

plot(FY(Range5),'g'); 
plot(MeanFYOnRev,'LineWidth',2.);;title('FY'); 
legend('1','2','3','4','5','Average') 
grid on 
hold off 
% FZ Mean 
MeanFZOnRev=(FZ(Range1)+FZ(Range2)+FZ(Range3)+FZ(Range4)+FZ(Range5

))/5; 
hold off 
subplot(3,1,3),plot(FZ(Range1));hold 

on;plot(FZ(Range2),'r');plot(FZ(Range3),'c');plot(FZ(Range4),'m');

plot(FZ(Range5),'g'); 
plot(MeanFZOnRev,'LineWidth',2.);title('FZ'); 
legend('1','2','3','4','5','Average') 
grid on 
hold off 
 

 

The output of this file is shown in Figure  34 below: 

 

 
Figure 34   Average of 5 signals of Fx, Fy and Fz 

cc1=[MeanFXOnRev MeanFYOnRev MeanFZOnRev] 
 

As mentioned earlier, the first 60 data points are those of the tool engagement, 

therefore the mean on the first 60 points will be taken into consideration  

 

Range=[1:60]; 
MeanFXOnRevTronc=MeanFXOnRev(Range); 
MeanFYOnRevTronc=MeanFYOnRev(Range); 
MeanFZOnRevTronc=MeanFZOnRev(Range); 
a=[MeanFXOnRevTronc MeanFYOnRevTronc MeanFZOnRevTronc] 
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b=mean(a) 
 

The mean force on the tool is now obtained in matrix b, as the following, in 

newtons: 

 

b = 

 

   -1.2802   -3.1901    4.0912 

 
AC=4 
T=[1 tan(30)*cos(40)/cos(50);tan(30) 

cos(40)/cos(50);tan(50)/cos(30) sin(40)/cos(50)*cos(30)] 
R=[cos(30) -1*sin(30) 0;sin(30) cos(30) 0;0 0 1] 
T1=pinv(T) 
b1=b' 
cuttingforce=T1*inv(R)*b1  
ft=cuttingforce(1,:) 
fr=cuttingforce(2,:) 
Kt=ft/AC 
Kr=fr/AC 
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APPENDIX C  

 
Table 18  Data Matrix 

 

 

 
Set 

 
RPM 

 
DOC 

 
Chipload 

 
Feed 

 
Training 

 
Validation 

 
C1 

 
1000 

 
40 

 
2 

 
2 

 
X 

 

C2 2000 40 2 4  X 

C3 3000 40 2 6 X  

C4 1000 40 4 8  X 

C5 2000 40 4 10 X  

C6 3000 40 4 12 X  

C7 1000 40 6 14 X  

C8 2000 40 6 16  X 

C9 3000 40 6 18 X  

C10 1000 40 8 20  X 

C11 2000 40 8 22 X  

C12 3000 40 8 24 X  

C13 1000 150 2 2 X  

C14 2000 150 2 4  X 

C15 3000 150 2 6 X  

C16 1000 150 4 8 X  

C17 2000 150 4 10 X  

C18 3000 150 4 12  X 

C19 1000 150 6 14  X 

C20 2000 150 6 16 X  

C21 3000 150 6 18 X  

C22 1000 150 8 20 X  

C23 2000 150 8 22  X 

C24 3000 150 8 24 X  

C25 1000 250 2 2 X  

C26 2000 250 2 4  X 

C27 3000 250 2 6 X  

C28 1000 250 4 8  X 

C29 2000 250 4 10 X  

C30 3000 250 4 12 X  

C31 1000 250 6 14 X  

C32 2000 250 6 16 X  

C33 3000 250 6 18  X 

C34 1000 250 8 20 X  

C35 2000 250 8 22  X 

C36 3000 250 8 24 X  
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APPENDIX D  
Table 19  Networks Tested 

 
Network 

number 

Type No. of 

layers 

Layer 1 Layer 2 Training 

function Transfer 

Function 

No. of 

neurons 

Transfer 

Function 

No. of 

neurons 

network 1 

 

Feed Forward back 

propagation 

 

3 

 

logsig 

 

10 

 

purelin 

 

5 

 

Trainlm 

network 2 
Feed Forward back 

propagation 

2 tansig 20   Trainlm 

network3 
Feed Forward back 

propagation 

2 tansig 5   Trainlm 

network 4 
Feed Forward back 

propagation 

2 tansig 10   Trainlm 

network 5 
Feed Forward back 

propagation 

2 tansig 40   Trainlm 

network 6 
Feed Forward back 

propagation 

2 purelin 10   Trainlm 

network 7 
Feed Forward back 

propagation  

2 tansig 20   Trainlm 

network 8 Radial basis       

network 9 
Cascade forward back 

propagation  

2  20   Trainlm 

network 10 Elman back propagation        

network 11 Layer Recurrent        

network 12 
Feed Forward back 

propagation 

2 tansig 10   Trainrp 

network 13 
Feed Forward back 

propagation 

2 tansig 10   Trainscg 

network14 
Feed Forward back 

propagation 

3 logsig 10 purelin 5 Trainrp 

network15 
Feed Forward back 

propagation 

3 logsig 10 purelin 5 Trainscg 

network 16 
Feed Forward back 

propagation 

2 tansig 50   Trainlm 

network 17 
Feed Forward back 

propagation 

2 logsig 50   Trainlm 

network 18 
Feed Forward back 

propagation 

3 tansig 10 tansig 10 Trainlm 

network 19 
Feed Forward back 

propagation 

3 tansig 10 tansig 20 Trainlm 

network 20 
Feed Forward back 

propagation 

3 tansig 10 tansig 5 Trainlm 

network 21 
Feed Forward back 

propagation 

3 tansig 10 tansig 40 Trainlm 

network 22 
Feed Forward back 

propagation 

3 tansig 20 tansig 10 Trainlm 

network 23 
Feed Forward back 

propagation 

3 tansig 20 tansig 40 Trainlm 

network 24 
Feed Forward back 

propagation 

2 tansig 30   Trainlm 

network 25 
Feed Forward back 

propagation 

2 logsig 10   Trainlm 

network 26 
Feed Forward back 

propagation 

2 Tansig 4   Trainlm 

network 27 
Feed Forward back 

propagation 

3 Tansig 8  16 Trainlm 

network 28 Radial Basis   25   Trainlm 

network 29 
Feed Forward back 

propagation 
2 Tansig 8   Trainlm 
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network 30 
Feed Forward back 

propagation 
2 Tansig 8   Trainlm 

network 31 
Feed Forward back 

propagation 
3 Tansig 8  4 Trainlm 

network 32 
Feed Forward back 

propagation 
2 Logsig 8   Trainlm 

network 33 
Feed Forward back 

propagation 
3 Tansig 8  16 Trainlm 

network 34 
Feed Forward back 

propagation 
2 Tansig 8   Trainlm 

network 35 Radial Basis   24   Trainlm 

network 36 
Feed Forward back 

propagation 
2 Tansig 10   Trainlm 

network 37 
Feed Forward back 

propagation 
2 Logsig 8   Trainlm 

network 38 
Feed Forward back 

propagation 
3 Logsig 8 Purlin 4 Trainlm 

network 39 
Feed Forward back 

propagation 
2 Tansig 10   Trainlm 

network 40 
Feed Forward back 

propagation 
2 Logsig 8   Trainlm 

network 41 
Feed Forward back 

propagation 
3 Logsig 8 Purlin 4 Trainlm 
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APPENDIX E 
 

Run of code in appendix gave the following results. 

 
Table 20  Kt and Kr Calculated Values 

 

Set RPM DOC Chipload Feed Training Validation Kt Kr 

 

C1 1000 40 2 2 X  1.2778 1.4923 
C2 2000 40 2 4  X 1.7217 1.8324 
C3 3000 40 2 6 X  2.2986 2.3972 
C4 1000 40 4 8  X 2.2829 2.5073 
C5 2000 40 4 10 X  1.5446 1.7089 
C6 3000 40 4 12 X  1.4554 1.6798 
C7 1000 40 6 14 X  1.5091 1.8648 
C8 2000 40 6 16  X 1.2546 1.4741 
C9 3000 40 6 18 X  1.2778 1.4923 
C10 1000 40 8 20  X 1.0932 1.5153 
C11 2000 40 8 22 X  1.0807 1.3594 
C12 3000 40 8 24 X  0.8835 1.3051 
C13 1000 150 2 2 X  1.3823 1.6817 
C14 2000 150 2 4  X 2.2898 1.4166 
C15 3000 150 2 6 X  1.7082 2.5506 

C16 1000 150 4 8 X  1.1727 1.7917 
C17 2000 150 4 10 X  1.6816 1.9980 
C18 3000 150 4 12  X 1.2436 2.014 
C19 1000 150 6 14  X 1.3288 2.0374 
C20 2000 150 6 16 X  0.6411 2.2897 
C21 3000 150 6 18 X  0.3136 2.3393 
C22 1000 150 8 20 X  0.9305 2.0738 
C23 2000 150 8 22  X 1.8299 3.5690 
C24 3000 150 8 24 X  1.9173 3.8680 

C25 1000 250 2 2 X  2.3321 6.2315 
C26 2000 250 2 4  X 3.3520 7.0991 
C27 3000 250 2 6 X  3.4895 7.3303 
C28 1000 250 4 8  X 2.6693 6.1053 
C29 2000 250 4 10 X  2.6629 6.6887 
C30 3000 250 4 12 X  1.6269 5.6812 
C31 1000 250 6 14 X  2.3671 5.6055 
C32 2000 250 6 16 X  2.4323 5.7096 
C33 3000 250 6 18  X 2.7234 5.8658 
C34 1000 250 8 20 X  2.2052 5.3148 
C35 2000 250 8 22  X 1.9680 5.2140 
C36 3000 250 8 24 X  1.7372 4.8678 
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APPENDIX F – DETAILS ON ANNS 

FEED FORWARD BACK PROPAGATION NEURAL NETWORK 
 

Feedforward ANN in general consist of a layer of input neurons, a layer of output 

neurons and one or more layers of hidden neurons [17]. Neurons in each layer are 

interconnected fully to previous and next layer neurons with each interconnection 

have an associated connection strength or weight. The activation function used in 

the hidden and output layers’ neurons is non-linear, where as for the input layer no 

activation function is used since no computation is involved in that layer. 

Information flows from one layer to the other layer in a feedforward manner. 

Various functions are used to model the neuron activity such as sigmoid, tanh or 

radial (Gaussian) functions. Figure  35 illustrates a feed forward neural network. 

 

 

Figure 35 Proposed ANN Structure 

 

The input to a node i in the k
th
 layer is given by 

[
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1
]: 
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where, 



 

62 

 

kjiw ,, represents the weight connection strengths for node j in the (k-1)
th

 layer to 

node i in the k
th

 layer, out i,k  is the output of node i in the k
th

 layer and ki ,  is the 

threshold associated with node i in the k
th

 layer. 

Collectively the hidden layers perform the application desired objective whether it 

is classification, modeling, pattern recognition …etc.  

 

CASCADE FORWARD BACK PROPAGATION NEURAL NETWORK 
 

In Matlab, the function newcf creates cascade-forward networks (CFFN). These 

are similar to feed-forward networks, but include a weight connection from the 

input to each layer, and from each layer to the successive layers. For example, a 

three-layer network has connections from layer 1 to layers 2, layer 2 to layer 3, 

and layer 1 to layer 3. The three-layer network also has connections from the input 

to all three layers. The additional connections might improve the speed at which 

the network learns the desired relationship. 

ELMAN NEURAL NETWORK 
 

The Elman network (ELM) is commonly a two-layer network with feedback from 

the first-layer output to the first-layer input. This recurrent connection allows the 

Elman network to both detect and generate time-varying patterns. A two-layer 

Elman network is shown in Figure 36. 

 
Figure 36 Elman Recurrent Network [34] 

 

The Elman network has tansig neurons in its hidden (recurrent) layer, and purelin 

neurons in its output layer. This combination is special in that two-layer networks 

with these transfer functions can approximate any function (with a finite number 

of discontinuities) with arbitrary accuracy. The only requirement is that the hidden 

layer must have enough neurons. More hidden neurons are needed as the function 

being fitted increases in complexity. Note that the Elman network differs from 
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conventional two-layer networks in that the first layer has a recurrent connection. 

The delay in this connection stores values from the previous time step, which can 

be used in the current time step. Thus, even if two Elman networks, with the same 

weights and biases, are given identical inputs at a given time step, their outputs 

can be different because of different feedback states. Because the network can 

store information for future reference, it is able to learn temporal patterns as well 

as spatial patterns. The Elman network can be trained to respond to, and to 

generate, both kinds of patterns [34]. 

LAYER RECURRENT NEURAL NETWORK 
 

The next dynamic network to be introduced is the Layer-Recurrent Network 

(LRN). An earlier simplified version of this network was introduced by Elman. In 

the LRN, there is a feedback loop, with a single delay, around each layer of the 

network except for the last layer. The original Elman network had only two layers, 

and used a tansig transfer function for the hidden layer and a purelin transfer 

function for the output layer. The original Elman network was trained using an 

approximation to the backpropagation algorithm. The newlrn command 

generalizes the Elman network to have an arbitrary number of layers and to have 

arbitrary transfer functions in each layer. The toolbox trains the LRN using exact 

versions of the gradient-based algorithms discussed in Backpropagation. Figure 37 

illustrates a two-layer LRN [34]. 

 
Figure 37 Layer Recurrent Neural Network [34] 

 

 

The back-propagation training algorithm is commonly used to iteratively 

minimize the following cost function with respect to the interconnection weights 

and neurons thresholds:  
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where P is the number of experimental data pairs used in training the network and 

N is the number of output parameters expected from the ANN. di and Oi could be 

the experimental number of cycles to failure and the current life prediction of the 

ANN for each loading condition i respectively. Iteratively, the interconnection 

weights between the j
th

 node and the i
th

 node are updated as: 
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where  is a momentum constant,  the learning rate, xi the input pattern at the 

iterative sample t, 
0

Nnet  the input to node N at the output layer and 
k

jnet  is the 

input to a node j in the k
th

 layer and the function f’ is the derivative of the neuron 

activation function. The learning rate determines what amount of the calculated 

error sensitivity to weight change will be used for the weight correction. It affects 

the convergence speed and the stability of weights during learning. The “best” 

value of the learning rate depends on the characteristics of the error surface. For 

rapidly changing surfaces, a smaller rate is desirable while for smooth surfaces, a 

larger value of the learning rate will speed up convergence. The momentum 

constant (usually between 0.1 and 1) smoothes weight updating and prevents 

oscillations in the system and helps the system escape local minima in the training 

process by making the system less sensitive to local changes. Much as the learning 

rate, the momentum constant “best” value is also peculiar to specific error surface 

contours. The training process is terminated either when the Mean-Square-Error 

(MSE), Root-Mean-Square-Error (RMSE), or Normalized-Mean-Square-Error 

(NMSE), between the actual experimental results and the ANN predictions 

obtained for all elements in the training set has reached a pre-specified threshold 

or after the completion of a pre-specified number of learning epochs.  

 

In addition to the typical back-propagation algorithm, the following training 

functions are also considered in this study: 

Resilient Back-propagation (RP) –  
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Multilayer networks typically use sigmoid transfer functions in the hidden layers. 

These functions are often called "squashing" functions, because they compress an 

infinite input range into a finite output range. Sigmoid functions are characterized 

by the fact that their slopes must approach zero as the input gets large. This causes 

a problem when steepest descent is used to train a multilayer network with 

sigmoid functions because the gradient can have a very small magnitude and, 

therefore, cause small changes in the weights and biases, even though the weights 

and biases are far from their optimal values. The purpose of the resilient back-

propagation training algorithm is to eliminate these harmful effects of the 

magnitudes of the partial derivatives [34]. 

Gradient Descent (GD) –  

In the steepest descent training function, the weights and biases are updated in the 

direction of the negative gradient of the performance function. The learning rate is 

multiplied by the negative of the gradient to determine the changes to the weights 

and biases. The larger the learning rate, the bigger the step. If the learning rate is 

made too large, the algorithm becomes unstable. If the learning rate is set too 

small, the algorithm takes a long time to converge. The training stops if the 

number of iterations exceeds the predetermined number of epochs, the 

performance function drops below a specific goal, the magnitude of the gradient is 

less than a stipulated value, or the training time surpasses a preset time [34]. 

 

Gradient Descent with Momentum (GDM) –  

Gradient descent with momentum allows a network to respond not only to the 

local gradient, but also to recent trends in the error surface. Acting like a low pass 

filter, momentum allows the network to ignore small features in the error surface. 

Without momentum a network can get stuck in a shallow local minimum. With 

momentum a network can slide through such a minimum [34]. 

 

Variable Learning Rate (GDA) –  

With standard steepest descent, the learning rate is held constant throughout 

training. The performance of the algorithm is very sensitive to the proper setting 

of the learning rate. If the learning rate is set too high, the algorithm can oscillate 
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and become unstable. If the learning rate is too small, the algorithm takes too long 

to converge. It is not practical to determine the optimal setting for the learning rate 

before training, and, in fact, the optimal learning rate changes during the training 

process, as the algorithm moves across the performance surface. The performance 

of the steepest descent algorithm can be improved by allowing the learning rate to 

change during the training process. An adaptive learning rate attempts to keep the 

learning step size as large as possible while keeping learning stable. The learning 

rate is made responsive to the complexity of the local error surface [34]. 

 

Variable Learning Rate with Momentum (GDX) –  

This function combines adaptive learning rate with momentum training. It is 

invoked in the same way as GDA except that it has the momentum coefficient as 

an additional training parameter [34]. 
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