Flexible Scheduling for Construction Projects

PRESENTED BY MOHAMMAD F. SALEH

COMMITTEE MEMBERS DR. SAMEH EL-SAYEGH DR. SALEH ABODABOUS DR. HAZIM EL-BAZ DR. SALWA BEHEIRY

DEC 2011

OUTLINE

- Introduction and Background
- Statement of Problem
- Objective
- Methodology
- Modeling
- Results and Discussion
- Summary and Conclusions
- Recommendations

INTRODUCTION Project Management

Project Management

- Process of delivering a product
- Different phases
- Planning and execution are interconnected
 - Performance measures Day-to-day activities

http://trustsystems.co.uk

INTRODUCTION Construction Projects

Construction Projects

- o Multi-disciplinary
- Complex
- Constraints
 - × Time
 - × Cost
 - × Quality
- Planning is essential for project success
 - Estimation
 - Scheduling

http://projectmanagement-software.info

BACKGROUND Critical Path Method (CPM)

- Inputs: durations & relationships
- Forward pass: early start time
- Backward pass: late start time.
- CPM deals mainly with **Physical & Time** constraints.

http://www.leniel.net

BACKGROUND Resource Allocation

- CPM does <u>not</u> deal with resource constraints
- Resource allocation
- Resource histogram
- Ceiling on resource profile
- Schedule delays

BACKGROUND Resource Leveling

- Activity float is the only flexibility allowed by CPM
- Objective is to minimize variations in histogram & maintain schedule
- Cost reduction

BACKGROUND Time-Cost Tradeoff

- Crashing durations of critical activities:
 - Over time
 - Increase crew size
 - Double shifts
 - Increase starting points
- Shortest Vs. Optimum
- Costly especially at later stages

http://free-books-online.org

BACKGROUND Schedule Optimization

Includes cost associated with CPM adjustments

- Resource leveling
- Resource allocation
- Time-cost trade-off

• El-Rayes & Jun (2009):

- New objectives & assumptions
- Overall project cost optimization

• CHIU & TSAI (2002):

 Project crashing & maximizing net present value

El-Rayes & Jun (2009)

BACKGROUND Productivity

 Alvanchi, Lee & AbouRizk (2011)

• Effects of overtime on long-run

- Hinze (2008) developed equations to estimate productivity losses:
 - Crowding Efficiency = 115% 15(Expanded Workforce/Normal Workforce)
 - Overtime Efficiency = 100% 5[(days-5) + (hours-8)]

Alvanchi, Lee & AbouRizk (2011).

• Example:

Activity	Normal Duration	Total Man-hour	Precedence	Relationship
Start	0	0	-	-
А	5	200	Start	FS
В	3	168	А	SS+3
С	6	240	В	FS
D	2	112	А	FS
Finish	0	0	-	-

 $No. of workers = \frac{Total Manhour}{(Duration)x(Working hours)}$

• Activity B starts when 60% (3 days) of activity A is done

• Option 1- Crowding of Activity A:

- If number of resources increased to 10 workers, duration will be:
- Crowding Effeciency=115%-15*(10/5)=85%
- Duration= 200/(10*0.85*8)=3 Days.

• Option 2- Overtime: (10 hours per day)

- *Overtime Efficiency*= 100%−5[(10−8)]=90%
- Duration = 200/(5*10*0.9)=4.44 Days.

• Option 3- Combination: (8 workers, 10 hours per day)

- Crowding Effeciency=115%-15*(8/5)=91%
- Overtime Efficiency= 100%-5[(10-8)]=90%
- Duration = 200/(8*10*0.91*0.9)=3 Days

Original Histogram

- Hiring = 9 workers
- Firing = 9 workers
- Maximum demand = 14 worker
- Duration = 12 days

18												
17												
16												
15	1											
14						D						
13						D						
12				В	В	D	D					
11				В	В	D	D					
10				В	В	D	D					
9				В	В	D	D					
8				В	В	D	D					
7				В	В	В	D					
6				В	В	В	D					
5	Α	Α	Α	Α	Α	В	С	С	С	С	С	С
4	Α	А	Α	Α	Α	В	С	С	С	С	С	С
3	Α	А	Α	Α	Α	В	С	С	С	С	С	С
2	Α	А	Α	А	Α	В	С	С	С	С	С	С
1	Α	Α	Α	Α	Α	В	С	С	С	С	С	С
	1	2	3	4	5	6	7	8	9	10	11	12

10

- Option 3 on Activity A -Relaxing Activity D -Changing Relation between A&B to FS
- Hiring= 2 workers
- Firing= 5 workers
- Duration= 12 days
- Maximum demand= 9 workers

10	1											
10												
17												
16												
15									Α			
14									В			
13									С			
12									D			
11								•				
10												
9					D	D						
8	Α	Α	Α		D	D		_				
7	Α	Α	Α	В	В	В	D	D	D	D	D	
6	А	Α	Α	В	В	В	D	D	D	D	D	
5	Α	Α	Α	В	В	В	С	С	С	С	С	С
4	Α	Α	Α	В	В	В	С	C	С	С	С	С
3	А	А	А	В	В	В	С	С	С	С	С	С
2	Α	Α	Α	В	В	В	С	С	С	С	С	С
1	Α	Α	Α	В	В	В	С	С	С	С	С	С
	1	2	3	4	5	6	7	8	9	10	11	12

- CPM ignores resource constraints.
- Limited flexibility provided by CPM.
- Resource Allocation is time draining.
- Resource Leveling depends on the float.
- Potentially better solutions can be found if considering relaxing and crashing non-critical activities.

OBJECTIVE

• The objective of this research is to develop a technique that explores better potential schedules than CPM's by taking into consideration resource assignment, working hours, and applicable relationships as variables. In addition, variations in resource assignment are subjected to productivity losses due to crowding/overtime. The developed approach examines all the possible combination of scenarios and finds the best one that serves different objectives. This technique is referred to as "Flexible **Scheduling**"

METHODOLOGY

• Defining assumptions and input functions for the model:

- It is assumed that relaxing activities has no effect on the productivity and that all activities are continuous and cannot split
- Hinze Equations.

What'sBest – Excel add-in

- User-friendly interface
- Simplicity
- High capabilities

WB! +	<u>k≭ k≍ ∠ ∠ <= >= = ⊚</u>
Menu Commands	Custom Toolbars

METHODOLOGY

Defining problem's parameters:

- o Nonlinear problem:
 - × Presence of logical non-smooth function (IF, AND, OR...etc.)
 - × Variables are bounded by functions (non-constants)
- Variables:
 - × Actual Start, resources, lags, and working hours.
- Objectives:
 - × Resource leveling, allocation, and cost optimization.

• Constraints:

 Depending on the objective (duration, max resource demand, minimum lag...etc)

METHODOLOGY

• Finding the economically best Solution

- *What'sBest* shortcoming (One Objective Cell)
- Several combinations of scenarios
- Fix found solution and minimize the cost

• Creation of hypothetical example

- Includes all types of relationships
- Objectives:
 - × Resource leveling
 - × Resource allocation
 - **×** Cost optimization
- Validation of the model

Model assumptions:

- Activity resources are uniformly distributed throughout the activity duration
- Losses associated with reducing number of workers will be neglected
- Activities are continuous and cannot be split
- Fixed cost is expected to remain constant
- Costs will be assumed as follows unless noted otherwise:
 - Hiring/firing cost = 150 \$/unit
 - × Overtime pay rate = 1.5 x regular pay rate
 - Overtime can extend up to 4 hours (total of 12 working hours daily)

• Process was divided to two sub-processes:

• Pre-modeling:

- × Extract all possible scenarios for every activity
- × Manual selection of feasible solution
- × Implementation of selected scenarios in the model

• Modeling:

- **×** CPM network is interconnected with resource histogram
- Implementation of scenarios and other flexibilities (moving within available float
- × Solving for different objectives

• Pre-Modeling:

Acquire input data for each activity Perform productivity calculations and extract scenarios

Manually select feasible scenarios

Apply selected scenarios to the model

- Flexible Scheduling scenarios are based on:
 - Increasing/decreasing number of workers (Crowding).
 - **Increasing number of working hours (Overtime)**
 - Combination of crowding and overtime.
- Crowding Efficiency = $115\% 15(\frac{\text{Expanded Workforce}}{\text{Normal Workforce}})$
- Overtime Efficiency = 100% 5[(days 5) + (hours 8)]
- Overall Efficiency = Crowding Efficiency x Overtime Efficiency
 - **Total** Man–Hour Requirement

New Duration = $\frac{1}{(\text{Ratio of workers})x(\text{Old Crew size})(\text{Overall Efficiency})x(\text{T})}$

- Overtime Efficiency = 100% − 5[(days − 5) +(hours − 8)]
- Overall Efficiency = Crowding Efficiency x Overtime Efficiency

- Calculate all possible scenarios based on step increments/decrements.
- Manual selection of feasible scenarios (-0.2 days tolerance)

Ratio	Crowding Effciency	т	Overtime Effeciency	Over all Effeciency	Actual	Effective	New Duration	512	Total
1.13	0.98125	8	1	98.125	9	8.83125	7.2	8	Labor
1.13	0.98125	9	0.95	93.21875	9	8.3896875	6.8	8	Duration
1.13	0.98125	10	0.9	88.3125	9	7.948125	6.4		
1.13	0.98125	11	0.85	83.40625	9	7.5065625	6.2	7	'oro
1.13	0.98125	12	0.8	78.5	9	7.065	6.0 💆		eio
1.25	0.9625	8	1	96.25	10	9.625	6.6	t	olerance
1.25	0.9625	9	0.95	91.4375	10	9.14375	6.2		
1.25	0.9625	10	0.9	86.625	10	8.6625	5.9		
1.25	0.9625	11	0.85	81.8125	10	8.18125	5.7		
1.25	0.9625	12	0.8	77	10	7.7	5.5		
1.375	0.94375	8	1	94.375	11	10.38125	6.2		
1.375	0.94375	9	0.95	89.65625	11	9.8621875	5.8		
1.375	0.94375	10	0.9	84.9375	11	9.343125	5.5	Т	'he 📘
1.375	0.94375	11	0.85	80.21875	11	8.8240625	5.3	C	losest
1.375	0.94375	12	0.8	75.5	11	8.305	5.1		- (
1.5	0.925	8	1	92.5	12	11.1	5.8 🗸	τ	06
1.5	0.925	9	0.95	87.875	12	10.545	5.4	(*	-0.2 tol)
1.5	0.925	10	0.9	83.25	12	9.99	5.1		
1.5	0.925	11	0.85	78.625	12	9.435	4.9		

- Calculating associated cost for each scenario and plugging into the model.
- C_{Li}=[Resource x Duration x 8 x (Cost / hour)+(Overtime x 1.5 x (Cost / hour)]

			-															T
			Scer	nario 1			Scenario 2			Scenario 3			Scenario 4					
	Total	Res	Dur	OT	Cost	Res	Dur	OT	Cost	Res	Dur	OT	Cost	Res	Dur	OT	Cost	
Α	200	5	5	0	20000	6	4	1	22800	8	3	3	30000	9	3	1	25650	
В	240	5	6	0	24000	6	5	1	28500	7	5	0	28000	7	4	3	35000	
С	512	8	8	0	51200	9	7	2	69300	9	6	4	75600	10	6	2	66000	
D	160	5	4	0	16000	6	3	3	22500	7	3	0	16800	10	2	3	25000	
E	280	5	7	0	28000	6	6	0	28800	6	5	4	42000	7	5	1	33250	
F	256	8	4	0	25600	9	3	4	37800	10	3	2	33000	11	3	1	31350	
G	384	8	6	0	38400	9	5	2	49500	10	5	0	40000	11	4	3	55000	
Н	448	7	8	0	44800	8	6	4	67200	9	6	2	59400	10	6	0	48000	
R	256	8	4	0	25600	9	3	4	37800	10	3	2	33000	11	3	1	31350	
Р	168	7	3	0	16800	9	2	4	25200	10	2	2	22000	11	2	1	20900	

o Construct a Network Diagram:

• Forward Pass:

• Find early start and finishing times (ES_i & EF_i).

$$ES_{i}=MAX \begin{cases} FS \rightarrow MAX([EF_{1ji}+L_{1ji}], [EF_{2ji}+L_{2ji}], ..., [EF_{nji}+L_{nji}]) \\ SS \rightarrow MAX([ES_{1ji}+L_{1ji}], [ES_{2ji}+L_{2ji}], ..., [ES_{nji}+L_{nji}]) \\ FF \rightarrow MAX([EF_{1ji}+L_{1ji}], [EF_{2ji}+L_{2ji}], ..., [EF_{nji}+L_{nji}]) - D_{m} \end{cases}$$

- $EF_i = ES_i + D_{mi}$
- Backward Pass:

$$LF_{i} = Min \begin{cases} FS \rightarrow MIN([LS_{1ki} - L_{1ki}], [LS_{2ki} - L_{2ki}], ..., [LS_{nki} - L_{nki}]) \\ SS \rightarrow MIN([LS_{1ki} - L_{1ki}], [LS_{2ki} - L_{2ki}], ..., [LS_{nki} - L_{nki}]) + D_{mi} \\ FF \rightarrow MIN([LF_{1ki} - L_{1ki}], [LF_{2ki} - L_{2ki}], ..., [LF_{nki} - L_{nki}]) \end{cases} \\ \circ \ LS_{i} = LF_{i} - D_{mi} \\ L_{jin} \geq (\% comp \ constraint) \ x \ D_{jni} \ (Lag \ constraint) \end{cases}$$

Implementation of Scenarios:

$$D_{mi} = Z_{1i} * D_{1i} + Z_{2i} * D_{2i} + Z_{3i} * D_{3i} + \dots + Z_{mi} * D_{mi}$$

$$O_{mi} = Z_{1i} * O_{1i} + Z_{2i} * O_{2i} + Z_{3i} * O_{3i} + \dots + Z_{mi} * O_{mi}$$

$$C_{mi} = Z_{1i} * C_{1i} + Z_{2i} * C_{2i} + Z_{3i} * C_{3i} + \dots + Z_{mi} * C_{mi}$$

• Z_{mi} is a binary coefficient (1,0)

$$\sum_{1}^{m} Z_{mi} = 2$$

• Only one scenario is selected at a time.

> Replace early start by a variable (Actual start):

- This step is to implement movement of activities within their available float.
- > Duration, resources, and applicable lags are variables.
- Constrain (AS_i) to fall within early and late start timing (ES_i and LS_i) depending on the objective.

 $ES_i\!\!\leq\!\!AS_i\!\!\leq\!\!LS_i$

Construct the histogram:

$$R_t = \sum_{i=1}^n (O_{mi} \times X_{ti})$$

> Define problem parameters:

- > Resource Leveling:
 - > **Objective:** MIN $(\sum_{t=1}^{T} HF_t)$; Where $HF_t = |R_t R_{(t-1)}|$
 - Variables: AS_i (Integer); Z_{mi} (Binary); L_{jin} (Integer)

> Constraints:

- $\succ ES_{i} \leq AS_{i} \leq LS_{i};$
- > $L_{iin} \ge (\% comp \ constraint) \ x \ D_{ini}$
- $\succ \sum_{1}^{m} Z_{mi} = 1$
- > T= Fixed (cannot change from CPM)

> Minimize the cost on the second run.

> Define problem parameters:

- Resource Allocation:
 - > Objective: MIN (T)
 - > Variables: AS_i (Integer); Z_{mi} (Binary); L_{jin} (Integer)

> Constraints:

- \succ Max(R_t) \leq RC
- $\succ AS_i \ge ES_i$
- ▶ L_{jin} ≥ (%comp constraint) x D_{jni}
 > $\sum_{1}^{m} Z_{mi} = 1$
- Minimize the cost on the second run.

• Define problem parameters:

- Cost Optimization:
 - Objective: MIN (C_T) ($C_T = C_{HF} + C_{OH} + C_{LD} + (\sum_{Li} C_{Li}) I_n$)
 - Variables: AS_i (Integer); Z_{mi} (Binary); L_{jin} (Integer)
 - Constraints:
 - $\circ ES_{i} \leq AS_{i}$
 - $L_{jin} \ge (\% \text{comp constraint}) \ge D_{jni}$ • $\sum_{j=1}^{m} Z_{mi} = 1$
 - Actual start is only constrained by early start.

• Example:

Activity	Total man-	Resource	Normal	Logic act: logic + lag
Activity	hour	assignment	duration	Logic act. logic + lag
A	200	5	5	-
В	240	5	6	-
С	512	8	8	-
D	160	5	4	-
Е	280	5	7	A: SS+2
E	256	8	4	B: FS+0
I .		0	4	E: FF+2
G	384	8	6	F,C:FS+0
	504	0	0	H: FF+2
Н	448	7	8	A,E: FS+0
P	256	8	4	G: SS+1
K	230	0	4	D: FS+0
Р	168	7	3	G,R: FS+0

Project Information:

- The client wants the project to finish in 20 days
- Liquidated damages are \$1000/day
- Incentives for early finish \$1000/day
- Regular man-hour pay rate = \$35
- Hiring/Firing unit cost = \$150
- Lags are performance-based lags and represent the minimum allowable lag

Network Diagram

• CPM duration is 22 days

- Hiring-Firing of 78 practices
- Total cost = \$159340

• Classical Leveling:

- Peak 23 workers
- Hiring-Firing = 40

• Flexible Scheduling – Resource Leveling:

- Peak demand = 15 workers
- Hiring-firing= 3 workers

• Classical Allocation:

• Duration = 42 days

• Flexible Scheduling – Resource Allocation:

• Duration: 28 days

• Second run (Flexible Scheduling- Minimize cost):

Leveled histogram

• Flexible Scheduling - Cost Optimization:

• Flexible Scheduling (Cost optimization with resource constraint):

RESULTS AND DISCUSSION

Attributes	Duration	Peak demand	Hiring-firing	Cost
CPM	22	28	78	159340
Classical Allocation	42	12	18	211390
Flexible Scheduling Allocation	28	12	0	189700

Attributes	Duration	Peak demand	Hiring-firing	Cost
CPM	22	28	78	159340
Classical Leveling	22	23	40	153640
Flexible Scheduling Leveling	22	15	3	183685

Attributes	Duration	Peak demand	Hiring-firing	Cost
CPM	22	28	78	159340
Cost Optimization	17	30	42	143700
Cost Optimization + Allocation	20	20	17	150315

RESULTS AND DISCUSSION

Flexible Scheduling is successfully implemented

- Variable resource assignment
- Variable working hours
- Variable lags when applicable
- Variable duration
- Productivity losses
- New cost of resource leveling
- More adequate results that current techniques
 - Resource Leveling
 - Resource Allocation
 - Cost Optimization

SUMMARY AND CONCLUSIONS

- Potential solutions were found when implementing Flexible Scheduling
- Introduction new trade-off between efficiency, time and cost
- Introduction of cost of leveling
- Flexible Scheduling results outperformed current scheduling techniques
- Flexible Schedules are detailed and specific

RECOMMENDATIONS

Productivity losses are calculated through empirical equations

- Differ depending on the work environment.
- Pre-modeling is an independent process.

Run-time is consuming

- Use other software/ heuristics.
- Incorporate more approaches to manipulate duration:
 - Starting points.
 - Working Days.

• Flexible Scheduling assumes one dominant resource and hence it's suggested to consider multi-resources for future research.

