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ABSTRACT 

 

 

In recent years, there have been several improvements in the performance of Integer 

Linear Programming (ILP) and Boolean Satisfiability (SAT) solvers. These improvements 

have encouraged the modeling of complex engineering problems as ILP problems. These 

engineering problems are diverse in nature and include genetics, optimization of power 

consumption, scheduling, cryptography, and more. One such problem is the ‗clustering 

problem‘ in Mobile Ad-Hoc Networks (MANETs). The clustering problem in MANETs 

consists of selecting the most suitable nodes of a given MANET topology as clusterheads and 

ensuring that regular nodes are connected to clusterheads in such a way that the network 

lifetime is maximized. 

This thesis focuses on assessing the performance of state-of-the art generic ILP and 0-

1 SAT-based ILP solvers in solving ILP formulations of the clustering problem. The thesis 

consists of four parts. The first part of this thesis consists of improving the existing ILP 

formulations of the clustering problem. The second part involves enhancing the ILP 

formulation of the clustering problem through the addition of intra-cluster communication, 

coverage constraints and multihop links. The third part focuses on the development of an 

improved tool to enable conversion of user-created on-screen topologies to an ILP 

formulation. The fourth and final part of this thesis is the detailed performance comparison of 

a selected set of Generic ILP and 0-1 SAT-based ILP solvers in solving the improved ILP 

formulations of the clustering problem generated using the tool.  
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The results obtained indicate that from our selected set of solvers, generic ILP solvers 

are able to handle relatively large scale MANET topologies, while 0-1 SAT-based ILP 

solvers are the fastest, for small scale networks. For small scale networks the proposed ILP 

formulations, such as the Star-Ring base model, together with the high performance solvers 

would be suitable for use in real-world environments. However for large scale networks, as 

the time to cluster the network grows exponentially, the solvers will be unable to cluster the 

network in accordance with the demands of a real-world environment. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

Over the past decade extensive research has led to improvements in generic Integer 

Linear Programming (ILP) solvers and 0-1 Boolean Satisfiability (SAT) based ILP solvers. 

The introduction, and development, of new techniques has improved the performance of 

generic ILP and SAT solvers and enabled them to handle a wider range of engineering 

problems. While generic ILP Solvers have been applied to solving ILP models of several 

real-life optimization problems, comparatively few attempts have been made using SAT 

solvers. One such problem is the ‗clustering problem‘ in Mobile Ad-Hoc Networks 

(MANETs). MANETs are used in wide-ranging applications such as battlefield 

communication, law enforcement operations and disaster recovery. The proposed solution to 

the scalability issue in ‗flat‘ MANET networks is the concept of ‗clustering‘ or the creation 

of a hierarchical network where the network is divided into clusters with certain nodes in 

each cluster being chosen to be ‗clusterheads‘. The process of selecting which nodes would 

be best suited to be clusterheads and which regular nodes should be assigned (connected) to 

which clusterhead is known as the ‗clustering problem‘. The clustering problem can be 

modeled as an optimization problem in ILP.  

Our research aims to examine the capabilities of current state of the art Generic ILP 

and SAT solvers when used to solve formulations of the clustering problem. This consists of 

three distinct parts. The first is the creation of enhanced ILP models of the ‗clustering 

problem‘ to be able to generate topologies of varying characteristics. The second is the design 

of a custom tool to create topologies and convert them into ILP formulations for different 

requirements (different models). Additionally, the tool should be able to integrate with a 

selected set of solvers to solve the generated problems and to be able to display the solutions 

produced, all through an intuitive Graphical User Interface (GUI). The third is the testing of 

the selected set of the state of the art commercial and non-commercial Generic ILP and 0-

1SAT-based ILP solvers in solving these different models of the clustering problem through 

the tool created.  
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1.1 BACKGROUND 

 

In this section, a better understanding of the foundations of the research and the 

context of the research will be provided. Section 1.1.1 will describe Integer Linear 

Programming (ILP) and its use in real world applications. It will also describe the use of 

Generic ILP solvers and Boolean Satisfiability (SAT) solvers, the similarities and differences 

between them and will also touch on the improvements in the performance of solvers over the 

years. Section 1.1.2 will outline Mobile Ad-Hoc Networks (MANETs) and present the 

―clustering problem‖. Section 1.1.3 will begin to present the use of ILP formulation to model 

the Clustering Problem in MANETs. Section 1.1.4 will detail the focus of our research. 

 

1.1.1 INTEGER LINEAR PROGRAMMING: GENERIC ILP AND SAT 

 

This section will describe the basics of ‗Linear Programming‘ and its applications. 

Linear Programming involves maximizing or minimizing a function with respect to certain 

restrictions or constraints where the functions and constraints are linear. Integer Linear 

Programming (ILP) is the area of linear programming where the variables in the linear 

function to be maximized or minimized and its constraints can only take integer values [1] . 

ILP can be divided into generic ILP and 0-1 ILP where the variables take only binary values. 

In Boolean Satisfiability (SAT), given a formula f, the objective is to identify an assignment 

to a set of Boolean variables that will satisfy a set of constraints. The difference between ILP 

and SAT is that in ILP the constraints consist of mathematical equations, whereas in Boolean 

Satisfiability the constraints between variables are represented using what is called 

propositional logic where the AND, OR and NOT operations are used to construct formulas 

in the Products-of-Sums form (also called the Conjunctive Normal Form (CNF)). The 

variables can only take Boolean values (0 or 1) and the CNF formulas may evaluate to either 

0 or 1. A satisfying assignment of variables is such that when the values of the variables are 

substituted into the formula, it evaluates to 1 at the same time satisfying all constraints for 

that formula. Given such a problem, the goal is to either find a satisfying variable assignment 

or prove that none exists. Using SAT to determine whether a satisfying assignment exists is 

an NP complete problem which is solvable but with runtimes growing exponentially in the 

worst case scenarios [2]. There are several applications which can be modeled 

mathematically using ILP and SAT. When modeled mathematically, some of these 

applications have potentially conflicting constraints which need to be satisfied. In order to 
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‗solve‘ such models we have to determine the values of variables in accordance with these 

constraints.  

Figure 1 shows the search space of a sample propositional logic formula. Given n 

variables there are 2
n
 different possible variable assignments. In order to ‗solve‘ or rather 

‗satisfy‘ the formula shown above the tree, Boolean Satisfiability will go through this search 

space (using intelligent search techniques) and determine whether there is a satisfying 

variable assignment (shown as green in Figure 1) or prove that no satisfying assignments 

exist. 

 

 

Figure 1: SAT Problem Showing 2
n
 Different Possible Variable Assignments [2]. 

 

Figure 2: Improvement in SAT Solver Performance Over the Last Decade [2]. 
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Over the last decade, there has been significant improvement in SAT/ILP Solver 

capabilities and performance as shown in Figure 2. Research in the area has been primarily 

along two lines.  

The first is the development of new solving techniques or improvement in existing 

solving techniques in order to create new solvers or enhance the performance of existing 

solvers.  Much research has been directed at creating and improving generic ILP and 0-1 SAT 

solvers and also at determining which technique/solver is better or faster at solving specific 

instances or problems. (Throughout the this thesis 0-1 SAT based ILP solvers, will be 

referred to as ‗SAT‘ solvers) One particular improvement or extension in SAT solver 

capability has been the ability to solve problems which have Pseudo-Boolean constraints [3]. 

Several contests are held to assess the performance of SAT Solvers [4]. The SAT solver 

contest has been running regularly since 2002 although the first one was held a decade earlier 

in 1991/1992 [6] and the contest focused on Pseudo-Boolean constraint based problems [5] 

has been running regularly since 2005 [7]. Studies have shown that SAT solvers can compete 

with generic ILP solvers in solving 0–1 ILP problems arising in specific applications [3, 8, 9]. 

The second area of research has been the formulation of ILP/SAT equivalents of 

complex problems in different areas and determining how effectively they can be solved 

using ILP/SAT Techniques. Improvements in ILP/SAT solving techniques, as well as the 

availability of increasingly affordable high computational power, have resulted in several 

challenging engineering problems being modeled using ILP and/or SAT. Some of them are 

listed below:  

 FPGA [10] 

 Network Intrusion [11, 12]  

 Access Control [13] 

 Cryptography [14] 

 Software verification and debugging [15] 

 Application Mapping [16] 

 Genetics [17] 

 Scheduling [18, 19] 

 Optimization of power consumption [9]  
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1.1.2 MANETS: THE CLUSTERING PROBLEM 

 

In this section, Mobile Ad-Hoc Networks (MANETs) will be introduced, the 

challenges involved in setting up a MANET topology will be discussed, and the clustering 

problem will be presented.  

MANETs are wireless, self-organizing networks consisting of mobile nodes with 

generally a limited supply/store of energy. These nodes can be for example, laptops, mobile 

radio terminals or other devices, generally those which are used by humans [20]. MANETs 

are used in wide-ranging applications such as battlefield communication, law enforcement 

operations, and disaster recovery [21]. There are several challenges faced in enabling 

MANETs to communicate through a stable, scalable, and flexible topology.  Over the years 

much research has been undertaken in enabling MANETS to operate in the optimum state, 

i.e. minimizing energy consumption and essentially attempting to achieve the maximum 

network lifetime. This research has focused on many different challenges in MANETs such 

as cluster formation, routing and communication. 

Initially MANET topologies were ‗flat‘ networks or non-hierarchical networks where 

all nodes had identical roles. Through various tests and simulations conducted it was proven 

that as the number of nodes in flat networks increases the throughput falls drastically [22]. In 

addition several factors such as frequent route breakage, unpredictable topology changes, 

routing overhead make it difficult for a ‗flat‘ topology to be scalable [23].  

The proposed solution to the scalability was the concept of ‗clustering‘ or a 

hierarchical network, where the network is divided into clusters with certain nodes in each 

cluster being chosen to be ‗clusterheads‘. This is similar to concept of an IP Subnet and 

results in reduced control overhead [24]. The clusterheads have the responsibility of 

managing communication and routing for their particular cluster and because of this the 

selection of clusterheads is particularly important [25].  

Selection of clusterheads is not trivial. There are several issues that need to be 

considered when selecting clusterheads, one of which is that the clusterheads are not selected 

for the lifetime of the network but rather are re-selected and the topology is re-generated at 

certain intervals. This is because of the fact that since clusterheads are responsible for routing 

and communication they use more energy than regular nodes and so if they remain 

clusterheads they will be the first nodes to be depleted. In order to maximize network 

lifetime, the responsibility of being a clusterhead is rotated between nodes. Another reason 

for re-clustering is that since the nodes are mobile, some nodes may move out of range of one 
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clusterhead and in range of another and so the topology must adjust accordingly. Another 

factor to consider when clustering a network is the nature of the ‗backbone‘ formed by 

connecting clusterheads. Factors such as redundancy must be considered and implemented 

without adding unmanageable or expensive overhead. Another area that has been researched 

is the optimal ‗cluster size‘ that a clusterhead can handle.  

 

One can think of the MANET network formation problem in three parts: 

• Clusterhead Selection 

• Cluster maintenance 

• Re-election and reformation. 

 

Numerous algorithms have been proposed for different aspects of the clustering 

problem with different unique approaches put forward with different areas of focus. Several 

algorithms take into account a combination of parameters or multiple metrics, such as 

mobility, residual energy, when electing clusterheads [23, 26]. Certain algorithms focus more 

on optimizing routing in a clustered network [27, 28, 29]. Other algorithms focus on cluster 

‗stability‘ which can be defined as the time for which a cluster structure is constant [24, 30]. 

Some algorithms implement a 1-hop topology [21] where each node is connected to its 

clusterhead directly, while others implement Multihop topologies where nodes are not 

connected directly to the clusterhead but through intermediate nodes [31, 32]. 

 

1.1.3 MODELING ‗THE CLUSTERING PROBLEM‘  

 

This section will touch briefly on the different ways of modeling the clustering 

problem. The authors in [33] point out that: “Different clustering algorithms have different 

optimizations, such as minimum clusterhead election and maintenance overhead, maximum 

cluster stability, maximum node lifespan, etc. There are probably contradictions among these 

optimizations. In addition, lots of the optimizations and their combinations are an NP-hard 

problem. Thus, heuristic clustering algorithms are used to find sub-optimal solutions in 

common.” 

The key points here are as follows.  

• Heuristic algorithms aim to obtain ‗sub-optimal‘ solutions that are as close as possible 

to optimum solution. 
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• A lot of optimizations and combinations are ‗NP-hard‘. NP-hard refer to problems 

that are non-deterministic polynomial-time hard problems. While these problems can 

be solved by an ‗exhaustive‘ search, i.e. searching through all possible combinations, 

determining if a solutions exists and if necessary going through all possible solutions 

and determining the optimum solution. The time taken to do this search increases 

exponentially as the size of the problem increases. This exponential increase in 

solving time is one of the key reasons why heuristic algorithms are preferred. 

 

The advantage is using Integer Linear Programming (ILP) or Boolean Satisfiability 

(SAT) Solvers is that for such a problem they provide the best possible solution, (i.e. the 

optimum solution). However, as mentioned, since the problem is NP-complete, the 

complexity increases exponentially with an increase in the number of variables (in case of the 

clustering problem this would be as a result of an increase in the size of the network). 

 

1.1.4 RESEARCH FOCUS 

 

Integer Linear Programming (ILP) formulations of optimization problems in Mobile 

Adhoc Networks (MANETs) are few and have attempted to target different areas such as the 

clustering problem [23, 34], energy efficient routing problems, broadcast/multicast routing 

problems, data extraction and gathering problems and QoS topology control [35]. 

To our knowledge there are no papers which attempt to formulate the clustering 

problem as a Boolean Satisfiability (SAT) problem and solve it using a SAT solver. As 

already mentioned, there has been a significant improvement in both SAT and ILP solvers 

over the last decade and the results of using solvers to solve the clustering problem would 

yield significantly improved results compared to earlier efforts. 

Our research is directed at assessing the current state of the art ILP and 0-1 SAT-

based ILP Solvers (which we will be referring to as SAT solvers) in solving an ILP 

formulation of the clustering problem. As will be explained in the literature review, the work 

put forward by the authors in [34] is one of the initial efforts at solving the clustering problem 

in MANETs by mathematical modeling and solving the generated models using ILP Solvers. 

Our research will aim to build primarily on the work put forward by the authors in [34], by 

extending/improving the ILP model of the clustering problem developed in [34], and then 

comparing the performance of different generic ILP and SAT Solvers as they solve the 

newer/improved models. Our research will also include the design of an improved tool 
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compared to the one developed in [34], in order to formulate ILP problems for different 

solvers when given a visual topology. The proposed tool would also be able to display as a 

connected network the solution provided by the selected solvers. The 

improvements/enhancements and the need for them, in both the tool and the model of the 

clustering problem will be discussed in depth in the subsequent sections of this thesis. 

 

1.2 LITERATURE REVIEW 

 

As mentioned earlier, the application of Integer Linear Programming (ILP) in 

modeling and solving optimization problems in Mobile Ad-Hoc Networks has been limited. 

In this section significant contributions made in ILP formulations in optimization problems in 

MANETS will be described in detail.  

In 2004, the authors, in  [23], compared the performance of a clustering mechanism 

called Virtual Grid Architecture (VGA) with an ILP formulation aimed at minimizing the set 

of connected clusterheads (finding the minimum connected dominating set). The goal of  

VGA was ―to create a fixed rectilinear virtual topology on which routing and network 

management functions can be performed easily and efficiently‖ [23]. The authors focused on 

network management, i.e. identifying the set of clusterheads. VGA consisted of three parts; 

‗Zoning‘ whereby the area is divided into rectangular zones/clusters, ‗clusterhead selection‘ 

where the algorithm to select clusterheads is executed in each zone and last is the ‗Routing‘ 

which can be restricted to horizontal/vertical routing or enhanced by using Diagonal –VGA 

(D-VGA) and enabling diagonal routing. The topologies generated were 1-hop and due to the 

capabilities of the solver, the network size was limited to 30 nodes when comparing VGA to 

ILP. The ILP formulation for their 30 node network took 1011.5 seconds (~17 minutes). 

 

 

Figure 3: Performance Comparison of ILP Model of the Clustering Problem and Virtual Grid 

Architecture [23]. 
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This was the first attempt, to the best of our knowledge, at using ILP to model a 

version of the clustering problem that didn‘t aim to find which nodes were best suited to 

being clusterheads, but rather it aimed to find the minimum number of clusterheads. As 

shown in Figure 3, when using ILP formulations, topologies with a fewer number of 

clusterheads were generated as compared to the VGA algorithm. 

In 2005, the authors of [35] put forward ILP formulations to tackle various challenges 

in MANETS and sensor networks. The areas of focus were energy efficient routing, data 

extraction and gathering, and (Quality of Service) QOS topology control. Although the 

clustering problem was not one of the problems addressed, the work put forward by the 

authors in [35] provided an understanding of the potential of ILP and how within a single 

field such as MANETs, ILP formulation can be applied to so many areas.  

While the work put forward by the authors in [23] could be considered the first 

attempt at using ILP formulation in relation to the clustering problem, the first truly 

significant attempt at applying ILP formulation to the clustering problem was the work put 

forward by the authors in [34] in 2006. Unlike the model presented in [23], the authors did 

not focus on obtaining the minimum number of clusterheads but rather the selection of the 

most suitable nodes to be clusterheads such that network lifetime was maximized. 

The authors modelled the clustering problem in three different ways. Looking at 

MANETS, the authors classified topologies into three categories:  

 EEC-FCB (Energy Efficient Clustering - Fully Connected Backbone) 

 EEC- CB (Energy Efficient Clustering - Connected Backbone) 

 EEC-R (Energy Efficient Clustering – Redundancy) 

 

Figure 4: Different Network Topologies: a) Fully Connected Backbone, b) Connected 

Backbone, and c) Redundant Models [34]. 

 

The three different topologies are shown in Figure 4. The first case has a fully 

connected backbone (FCB). In this case all the clusterheads are connected to each other in a 
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mesh topology. The second case is that of a connected backbone (CB). In this case all 

clusterheads are not connected to each other but are all connected to one particular 

clusterhead. In the third case, the concept of a ‗Backup‘ clusterhead is introduced in order to 

address redundancy concerns. The backup clusterhead takes over the role of the clusterhead 

in case the clusterhead fails.  A fully connected backbone is assumed with clusterheads and 

backup clusterheads being connected in a mesh topology. 

 An ILP model was devised for each of these cases. The authors believed this to be the 

first case of applying ILP to the network clustering problem. An in-depth look at the model(s) 

is provided in the later sections. Also the ILP models could not be tested for networks greater 

than 9 nodes as the solver used in [34] could only handle small scale networks; up to 9 nodes. 

The authors do however note that ILP formulation presented in [34], was purely theoretical 

and not for use in a practical environment. It is important to note here that extensive 

evaluation was not conducted.  

The results obtained were not compared to other clustering algorithms such as those 

mentioned earlier (non ILP based models). They did compare it to an earlier work of theirs: 

fuzzy based hierarchical energy efficient routing protocol (FEER). The results obtained are a 

comparison of the cost of the solution produced for all three models. This is shown in Figure 

5. What is clear is that compared to FEER, the clustering algorithms produce low ‗cost‘ 

solutions. 

 

 

 

 

 

 

 

 

 

 

F

Figure 5: Performance Comparison of ILP Models (Fully Connected Backbone and 

Connected Backbone) with non ILP models (FEER) [34]. 
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Additionally, the authors in [34] created a JAVA-based tool which allowed users to 

create topologies visually on a grid. These topologies could then be formulated as ILP 

instances. The optimum selection of clusterheads and connections between nodes could be 

determined by solving the ILP problem through the solver integrated with the tool. The 

solution of the ILP Problem could then be displayed on the grid using the tool. 

While attempts to use ILP formulation in optimization problems have been limited, 

there have been applications of ILP formulations in optimization problems in Wireless Sensor 

Networks (WSNs). WSNs can be considered to be a special case of MANETs. Although 

there are several similarities between MANETs and WSNs there are significant differences 

between them as well, and these are explored in detail in [20].  

WSNs are networks which consist of numerous ‗nodes‘ which have similar 

restrictions to MANETs, such as limited resources (energy reserves), and the need to make 

the most of them. Both are self-organizing wireless networks with wide-ranging applications. 

However, the nature of the nodes and the applications differ. Some of the key differences, 

especially when considered in the context of ILP formulation are described below. 

Base Stations are present in a WSN topology. In MANETs, there are no Base 

Stations. Nodes in a MANET communicate with each other and exchange information/data 

with each other. In a WSN, nodes have a specific objective. The objective of these nodes is to 

sense phenomena occurring within their coverage radius and to transmit the data gathered to a 

central point known as the ‗sink‘ as shown in Figure 6. They use each other to transmit the 

data they have gathered back to the sink or Base Station. This has to be taken into account 

when formulating an ILP model.  

 

 

 

 

 

 

Figure 6: Wireless Sensor Network Layout: From the Sensor to the End-User [20]. 

 

There is a difference in the size of MANETs and WSNs. WSNs are larger in scale, 

generally consisting of a lot more nodes as compared to MANETs. There is also a difference 

in the extent of mobility between WSNs and MANETs. Wireless Sensor networks are 
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relatively less mobile. The authors, in [20], state that although there are some cases where the 

nodes are attached to mobile objects such as automobiles or buoys, the majority of the 

applications use a WSN with static nodes that may have, for example, been deployed from a 

plane.  

In several environments where WSNs are deployed there is increased likelihood of 

nodes going down, failing and necessitating a network reconfiguration. Due to the need to 

save energy and also because sometimes multiple nodes may overlap in the areas they cover, 

some nodes are put to sleep while others are awake. As this sleep-wake cycle puts some 

nodes to sleep and wakes others up, network reconfiguration is required. 

Keeping these similarities and differences in mind there have been attempts to create 

ILP formulations of optimization problems in WSNs. The authors in [36], extended and 

strengthened an ILP based model for optimizing the energy consumption in wireless sensor 

networks. The model aimed to minimize total energy consumption, penalizing any areas 

lacking coverage as well as penalizing unnecessary activation of nodes. This was done 

through the concept of ‗demand points‘ which were areas that require coverage and had to be 

covered by at least one sensor at all times. The assumption was made that the area where the 

sensors are deployed was plain with no obstacles. The data being generated at the demand 

point had to be ‗sensed‘ and routed back to the sink.  

The ILP model presented in [36] was tested using a grid of 10 by 10 meters, with 100 

demand points in place as shown in Figure 7. Sixteen nodes were deployed throughout the 

area. Both the demand points and the sensors were deployed using one of two types of sensor 

placements; grid based and randomly generated positions.  

  

 

 

 

 

 

 

 

 

 

 

Figure 7: Routing in a Grid of Sensors and Demand Points [36]. 
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The CPLEX [37] solver was used to solve and test the effectiveness of the model. 

Testing indicates that in grid-position based instances, no demand points were left uncovered 

but in random-position based instances some demand points were left uncovered. 

Additionally, although the model could handle ―situations found in real WSNs‖, it was 

limited in size by the exponentially increasing nature of the problem. However, an interesting 

idea put forward by the authors was the use of a hybridized model combining ILP with 

Genetic Algorithms (GA).  

The authors, in [38], presented an ILP formulation aimed at implementing an energy 

optimal topology that maximized network lifetime while simultaneously ensuring full area 

coverage and sensor connectivity to clusterheads. In the proposed model, any node could be 

active, switched off or selected as a clusterhead and only clusterheads were allocated the task 

of routing data. 

  

 

 

 

 

 

 

Figure 8: Different Possible Sensor States: Active, Sleep and Clusterhead [38]. 

The factors that determined whether a node could become a clusterhead or a regular 

node were the node‘s residual energy, the distance of the node from non-clusterhead 

neighboring nodes and also the position of the node in the clusterhead backbone. Since in this 

mechanism there was the possibility of having non-active sensors (sensors switched off as 

shown in Figure 8), there was a clear trade-off between energy consumption and coverage.  

The ILP model that was formulated was solved using a proposed TABU search 

heuristic called TABU-RCC. TABU is a search technique that aims to find a solution close to 

the optimal for combinatorial problems where finding the optimal solution is extremely 

difficult [39]. TABU was to be run periodically to reconfigure the network after a pre-defined 

time period T. This required all the information to be present at the Base Station or PN 

Active 

(EActive) 

Sleep 

(ESleep) 

CH 

(ECH) 
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(Processing Node). Simulations were run, where the ILP model was solved using CPLEX and 

the performance of the proposed TABU-RCC search heuristic was compared against an 

existing TABU search algorithm called EESH. The performance of the model was evaluated 

for different cluster sizes and sensing ranges.  

Simulations showed that although centralized, acceptable results within low 

computational times were obtained and the authors believed it to be feasible for practical 

implementation. The difference between the costs obtained using ILP formulation and using 

the search heuristic are shown in Figure 9. As can be seen, the differences are small and 

hence the search heuristic TABU-RCC was preferred to CPLEX because of the low 

computation times associated with TABU-RCC. 

 

 

Figure 9: Cost of Solutions Generated using ILP model vs Search Heuristic (TABU-RCC) for 

Energy-Optimal Model of Wireless Sensor Networks [38]. 

This section covered the key contributions in the area of ILP formulations, mainly of 

the clustering problem, in MANETs and WSNs. CPLEX was the preferred solver used to 

solve the ILP formulations. As mentioned earlier, the most significant attempt to formulate 

the clustering problem in MANETs as an ILP formulation, was the work put forward by the 

authors in [34]. The model and the tool, presented in [34], create a solid foundation to use to 

begin the construction of an improved model and tool. Additionally, it is possible to compare 

the performance of newer solvers such as CPLEX as well as Pseudo-Boolean SAT Solvers 

using the model put forward in [34]. 
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1.3 RESEARCH METHODOLOGY 

 

This section will describe the research methodology followed and the organization 

and structure of the thesis into phases.  

The first phase of research is the ‗Investigation Phase‘. This will consist of detailed 

analysis of the existing model, tool and solvers. The outcome of this phase will include the 

identification of the constraints, assumptions and capabilities of the Integer Linear 

Programming (ILP) models and tool presented in [34] which can and should be preserved. It 

will also include identification of the potential enhancements to the model and tool presented 

in [34]  which should be included in the proposed ILP formulation and proposed tool. Also, 

the preferred set of effective and available solvers to be used in conjunction with the 

proposed tool and ILP models will be identified.  

The second phase of the research is the ‗design and implementation phase‘. This 

phase will involve the design and implementation of the proposed ILP formulation of the 

clustering problem and the proposed tool. The tool will be designed to generate the ILP 

formulation of the clustering problem of a custom topology created by the end user. The 

generated ILP formulation should be in the format required by the selected set of solvers. 

This will enable analysis of results produced by different solvers at different stages of 

modelling. These results will be examined both mathematically and visually through the tool. 

This will aid in identifying flaws in the model, programming errors in the tool as well as 

identifying and correcting discrepancies between the mathematical results produced by the 

solver and the visual representation of the results produced by the tool.  

The third phase of the research is the testing phase which will consist of establishing a 

testing procedure and carrying out detailed tests using the proposed ILP formulation, 

proposed tool and selected set of solvers. A set of ILP formulations of the clustering problem 

for a varied set of topologies will be generated using the tool and solved using the selected set 

of solvers.  

The fourth phase of the research is the ‗evaluation phase‘ which will involve detailed 

analysis of the results obtained from the testing phase. The outcome of this phase will include 

identification of the fastest solvers from the selected set of solvers for each of the different 

ILP models used in testing. In addition, trends and dependencies between the proposed ILP 

formulations and the performance of the selected set of solvers will be identified and areas of 

improvements and further testing will be discussed. Based on this detailed analysis, the 
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feasibility of using the proposed ILP formulations to solve clustering problems in MANETs 

in a practical environment will be examined.  

This thesis is structured as follows: Chapter 2 will describe the investigation phase. 

The design and implementation phase will be detailed in Chapter 3 of this thesis. Chapter 4 

will describe the testing phase. The evaluation phase will be covered by Chapter 5. Chapter 6 

will summarize and conclude the thesis. Chapter 7 will detail the areas of future work in the 

three key areas; ILP formulation of the clustering problem, design and implementation of the 

tool and solver testing and performance.  
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CHAPTER 2 

 

INVESTIGATION 

 

 

In this chapter, the model and tool presented by the authors in [34] will be examined, 

and the set of solvers to be used in the research will be selected. Section 2.1 will describe the 

model presented by the authors in [34], its strengths and limitations and the potential areas of 

improvement. Section 2.2 will detail the current state of the art solvers, both generic Integer 

Linear Programming (ILP) and Boolean Satisfiability (SAT) solvers, and will list the solvers 

selected for the research as well as the criteria used to select them. Section 2.3 will describe 

the strengths and limitations of the tool designed by the authors in [34], and identify the 

potential areas of improvement as well as the new features and design requirements.  

 

2.1 EXISTING MODEL ANALYSIS 

 

In this section, the models presented by the authors in [34] will be examined in detail. 

In [34], the authors formulate Integer Linear Programming (ILP) models for three cases. 

These models are the first significant effort at modeling the clustering problem using ILP 

techniques. 

 The first case is the Energy Efficient Clustering (with a) Fully Connected Backbone 

Model (EEC-FCB). In this case all the clusterheads are connected to each other, forming 

a mesh backbone.  

 The second case is the Energy Efficient Clustering (with a) Connected Backbone Model 

(EEC-CB). In this case all clusterheads are connected to one central Master clusterhead. 

The number of connections within the backbone is significantly less than the FCB. 

 The third case is the Energy Efficient Clustering (with) Redundancy (EEC-R) Model. In 

this case there is improved reliability through the use of a backup clusterhead, with one 

backup clusterhead assigned to each regular clusterhead.  

The EEC-FCB case produces too many redundant links, through its mesh backbone, 

and the EEC-CB case has a single point of failure, which is the Master clusterhead. If the 

Master clusterhead fails then each clusterhead will be isolated from all others. Our goal, in 
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this work, is to find a middle ground between these two, where the level of redundancy is 

higher than the EEC-CB case but not overly infused with redundant links such as the EEC-

FCB model.  

 

2.1.1 EXISTING ILP FORMULATION OF THE CLUSTERING PROBLEM 

 

In this section, the functions and constraints which are used to formulate the Energy 

Efficient Clustering (with a) Fully Connected Backbone (EEC-FCB) model and Energy 

Efficient Clustering (with a) Connected Backbone (EEC-CB) model are analyzed. The 

authors in [34] construct the ILP formulations for these models (EEC-FCB and EEC-CB) 

with the the goal of maximizing network lifetime, i.e. the selection of nodes to be 

clusterheads (CHs), the creation of links between regular nodes and clusterheads, and the 

creation of backbone links between clusterheads should be such that the network is able to 

operate for the longest possible time before a node runs out of power. 

The authors in [34], make the assumption that the radio used by the nodes in  Mobile 

Ad-hoc Network (MANET) is based on the power-attenuation model where “The signal 

power falls as 1/r
k
, where r is the distance between the transmitter/receiver nodes and k is a 

real constant dependent on the wireless environment, typically between 2 and 4. In our case, 

we set k = 2 for communication between normal nodes and CHs, and k = 3 for 

communication between CHs.” [34] 

Given below are the variables used in the EEC-FCB and EEC-CB models presented in [34]. 

 N: Total number of nodes in the network-predetermined 

 P: Number of clusterheads (CHs) – predetermined 

 dij: Euclidean distance between nodes i and j 

 Kj: Max nodes that can be connected to CH-j – predetermined 

 cij: cost of connecting a regular node i to CH j (proportional to dij
2
) 

 hjk: Cost of connecting CH j to CH k (proportional to djk 
3
) 

 bj: Weight associated with CH j. The authors in [34] describe bj as follows: “bj is the 

output of the fuzzy logic controller discussed in [27]. The higher the value of b, the better 

the node is. Since the objective function is a minimization function, each value in the b 

array is multiplied by -1.”  

        {
                                         
           

 (2.1) 



19 
 

        {
                                           
           

 
(2.2) 

       {
                                      

           
 

(2.3) 

        {
                                                      
           

 
(2.3) 

 

 

2.1.1.1 THE EEC-FCB MODEL 

 

In the EEC-FCB case presented by the authors in [34], as shown in Figure 10, the 

backbone forms a mesh, with each clusterhead connected to all other clusterheads. 

 

 

Figure 10: Fully Connected Backbone Topology [34]. 

 

The objective function to be minimized for the EEC-FCB model is: 

    (     ) (∑∑        
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  ∑ ∑(         )    

 

   

 

   

 (2.4) 

The first term of the objective function represents the connections between nodes and 

clusterheads. The second term represents the selection of nodes to be clusterheads. 

The last term represents the connections between clusterheads. The objective function aims to 

minimize the cost of connections, or links, between nodes, thereby minimizing the cost of 

sending/receiving data along these connections.  
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Constraint 2.5 is used to define the backbone. If there are P clusterheads and a node is 

selected to be a clusterhead then it must connect to (P-1) other clusterheads in order to 

implement the mesh backbone. 

∑    

 

   

 (   )    (    )         (2.5)  

Constraint 2.6 indicates that if node j is chosen to be a CH, it should be connected to at most 

(P-1) CHs and Kj regular nodes. 

∑    

 

   

 (      )    (    )         (2.6) 

Constraint 2.7 is used to specify the total number of connections which must be present in the 

generated topology. This is made up of the mesh connections for the backbone, and the 

connections of each regular node to a selected clusterhead. 

∑ ∑     

 

     

 

   

 (   )   (   )   (2.7) 

Constraint 2.8 indicates that the total number of clusterheads is P. 

∑  

 

   

   (2.8) 

Constraints 2.9 and 2.10 are used to specify that the connections that make up the backbone 

of the network are only the connections which interconnect the clusterheads. 

∑    

 

   
   

 (   )   (2.9) 

∑     

 

   
   

 (   )   (2.10) 

Constraint 2.11 is used to enforce the restriction that a node cannot be connected to itself. 

Constraint 2.12 is used to indicate that the matrix of connections between nodes is symmetric 

and diagonal, i.e. If node 1 is connected to node 2, that implies that node 2 is also connected 

to node 1. 

∑   

 

   

   (2.11) 

                             (2.12) 
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Constraints 2.13, 2.14 and 2.15 state that wij is 1 only if xij is 1 and yj is 1. 

                          (2.13) 

                        (2.14) 

                               (2.15) 

Constraints 2.16 and 2.17 are used to ensure that regular nodes are connected only to 

clusterheads and not to regular nodes. 

∑    

 

   

         (2.16) 

∑    

 

   

 (   )    (    )         (2.17) 

Constraints 2.18, 2.19 and 2.20 are used to indicate that variables xi,j, yj and zj,k have binary 

values. 

      *   +             (2.18) 

    *   +           (2.19) 

      *   +             (2.20) 

 

2.1.1.2 LIMITATIONS OF THE EEC-FCB MODEL 

 

The following are the assumptions made by the authors in [34] when formulating the Energy 

Efficient Clustering-Fully Connected Backbone (EEC-FCB) model, and the limitations of the 

EEC-FCB model. 

 Coverage is not considered. It is assumed that all nodes can communicate with each other. 

 Localization is not considered. It is assumed that nodes are able to determine each other‘s 

position, either through the use of a Global Position System (GPS), or other localization 

techniques.  

 The variable bj gets is value from an external source (algorithm, tool, etc). This is useful 

as multiple approaches/algorithms, which determine the suitability of a node in acting as a 

clusterhead, can be combined with this model without changing the equations, although 

this is out of the scope of our research. 

 All connections are single hop, i.e. All nodes are directly connected to a clusterhead. 

 The mesh backbone provides a high number of redundant links between clusterheads. 

 There is no direct communication between nodes in the same cluster. Communication 

between nodes in the same cluster also goes through the clusterhead.  
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2.1.1.3 THE EEC-CB MODEL 

 

In the Energy Efficient Clustering – Connected Backbone (EEC-CB) model presented 

by the authors in [34], the network backbone, which consists of the clusterheads, is not fully 

connected. In order to maintain network connectivity, while not having a fully connected 

backbone, the concept of a Master clusterhead (MCH) is introduced. All clusterheads are 

connected to one clusterhead which is designated to be the Master clusterhead.  This is 

illustrated by Figure 11. 

 

 

Figure 11: Connected Backbone Topology Using a Master Clusterhead [34]. 

 

The objective function to be minimized is: 
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 (2.21) 

In the case of EEC-CB the first term of the objective function represents the 

connections between nodes and clusterheads. The second term represents the selection of 

nodes to be clusterheads. The last term represents the connections between clusterheads. 

 

Constraints 2.22 and 2.23 state that the variable Mj can take only values from 0 and 1 and that 

a node may be a Master clusterhead only if it is also a regular clusterhead. 

                   (2.22) 

    *   +           (2.23) 

Constraint 2.24 states that there can be only one MCH. 

∑  

 

   

   (2.24) 

MCH 
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Constraint 2.25 specifies that the Master clusterhead is connected to all other clusterheads. 

∑     

 

   

    (   )             (2.25) 

Constraint 2.26 ensures that the backbone is not fully connected. Unlike the previous model 

(EEC-FCB) the ―=‖ sign is replaced by the ― ‖ symbol. In this way the model does not 

enforce complete connectivity, but lets the solver decide based on the cost of connectivity. 

∑ ∑     

 

     

 

   

  (   )   (   )   (2.26) 

Constraints 2.27 and 2.28 ensure that the MCH is connected to all clusterheads and that 

clusterheads are connected to at least one other clusterhead (MCH). Clusterheads may be 

connected to other clusterheads as well. 

∑     

 

   
   

 (   )                 (2.27) 

∑     

 

   
   

 (   )             (2.28) 

Constraint 2.29 ensures that the backbone is symmetric. 

                             (2.29) 

Constraints in the EEC - CB model which are the same as the Energy Efficient Clustering-

Fully Connected Backbone (EEC-FCB) model are as follows. 

Constraint 2.30 indicates that normal nodes should be connected to only one clusterhead. 

∑    

 

   

 (      )    (    )         (2.30) 

Constraint 2.31 indicates that the total number of CHs is P. 

∑  

 

   

   (2.31) 

Constraint 2.32 and 2.33 state that the matrix x is symmetric and diagonal. 

∑   

 

   

   (2.32) 

                             (2.33) 

Constraint 2.34, 2.35 and 2.36 state that wi,j is 1 only if xi,j is 1 and yj is 1. 
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                          (2.34) 

                        (2.35) 

                               (2.36) 

Constraint 2.37 and 2.38 state that regular nodes are not connected to other regular nodes and 

only connected to one CH. 

∑    

 

   

         
 

(2.37) 

∑    

 

   

 (   )    (    )         
 

(2.38) 

Constraints 2.39, 2.40 and 2.41 indicate that that variables xi,j, yj and zj,k have binary values. 

      *   +             (2.39) 

    *   +           (2.40) 

      *   +             (2.41) 

 

2.1.1.3 LIMITATIONS OF THE EEC-CB MODEL 

The following are the assumptions made by the authors in [34] when formulating the Energy 

Efficient Clustering-Connected Backbone (EEC-CB) model, and the limitations of the EEC-

CB model. 

1. Intra-Cluster Communication is not possible. Nodes in the same cluster do not connect 

directly to each other. Communication still goes through the clusterhead. In a MANET, 

two nodes in the same cluster could be exchanging data, but all this data would be routed 

through the clusterhead, 

2. The model does not generate Multihop topologies. Clusters consist of only 1 hop nodes. 

In certain cases, nodes may not be able to connect directly to a clusterhead or it may be 

more efficient to hop using another node which is closer than the clusterhead.  

3. The model is not scalable when solved (times out for networks above 9 nodes. This is 

more of a solver limitation rather than a model limitation) 

4. There is no redundancy. Although the model may, depending on the topology, generate a 

solution with some redundancy, it is not a controlled redundancy, and there is no 

guarantee that the solution will have redundancy, in which case the master clusterhead 

will be a central point of failure and if the master clusterhead fails then each clusterhead 

becomes isolated from all other clusters. 
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5. Coverage is not considered (assumed that a node can communicate with all other nodes). 

6. Localization is not considered (it is assumed that a node can determine the positions of all 

nodes through localization techniques). 

 

2.1.2 RECOMMENDED ENHANCEMENTS FOR PROPOSED MODEL 

 

Based on the detailed analysis of the Energy Efficient Clustering – Fully Connected 

Backbone (EEC-FCB), and the Energy Efficient Clustering – Connected Backbone (EEC-

CB) models, the following enhancements will be made and integrated to the proposed model.  

 The backbone of our model will be similar to the EEC-CB model, in that there will be a 

master clusterhead to which all other clusterheads will be connected (Star), but in addition 

there will also be a ring between the clusterheads (each clusterhead being connected to 2 

other clusterheads, apart from the master clusterhead). The worst case of the EEC-CB 

model is that the Master clusterhead (MCH) fails and each cluster is isolated from all 

other clusters. The worst case in our model will be based on the cost of links. This will 

results in either a complete redundant set of links to go through if the MCH fails or the 

network split into groups of clusters and not completely isolated clusters. 

 The proposed model will be such that it will consist of a base model with the redundant 

‗backbone‘ listed above, and will also have enhancements, which can be present as a 

single extension or a set of extensions. The proposed enhancements are described below. 

o Intra-Cluster communication will be enabled, allowing nodes within the same 

cluster to communicate directly without going through the clusterhead. 

o It will be possible to generate Multihop topologies, allowing nodes which are 

much further away from the clusterhead to connect to the clusterhead by hopping 

using other regular nodes. 

o Coverage restrictions will be taken into account. The proposed model will allow 

the coverage radius of all nodes to be specified, ensuring that only connections 

which are possible are established, i.e. Nodes are connected to nodes which are 

within their radius of coverage. 

 

2.2 ANALYSIS AND SELECTION OF SOLVERS 

 

In this section we will specify the criteria considered when selecting the set of solvers 

to use in the research. The final set of selected solvers will be listed and described. 
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2.2.1 SOLVER SELECTION CRITERIA 

 

From the large number of solvers that are available, a manageable subset of solvers 

had to be selected to integrate with the proposed tool and to use as the basis for our 

performance comparison. These solvers had to be from both the generic Integer Linear 

Programming (ILP) and Boolean Satisfiability (SAT) area so that the feasibility of both could 

be assessed. The following factors were considered when selecting solvers: 

 The first factor considered was the performance of solvers. This was assessed based on 

general consensus, wide-spread use and evaluations, and the results of contests such as 

the Pseudo-Boolean Solver contest [7]. 

 The second factor considered was the availability of solvers, i.e. whether or not the 

solvers are already available for use, or can be obtained, installed and run on a local 

machine. 

 The final factor considered was the execution environment required to run the solver. It is 

important for comparison purposes that solvers be installed and executed on the same 

machine, under the same OS and under the same conditions. If one solver can only run on 

Windows and the other one only on Linux it is not possible to draw definite conclusions 

from the runtimes obtained. 

 

2.2.2 SELECTED SET OF SOLVERS 

 

From the set of solvers available we selected the following five solvers: 

 CPLEX [37] is perhaps the most well-known and widely used commercial Integer Linear 

Programming (ILP) solver. It has been used by researchers attempting to solve wide 

ranging optimization problems in various fields and it is being used in various industrial 

applications [37]. In addition, CPLEX is developed, supported and maintained 

commercially and has frequent and regular upgrades. Although it is a commercial 

optimization suite, academic editions are also available for use. Additionally, as shown on 

their website, CPLEX has ―a long history of constant performance improvement‖, some 

of which are shown below [40]: 

o CPLEX 12.2 (2010): 50% overall, 2.7X on 1000 seconds and up 

o CPLEX 12.0 (2009): 30% overall, 2X on 1000 seconds and up 
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o CPLEX 11 (2007): 15% under one minute, 2X on 1-60 minutes, 10X on one 

hour and up 

o CPLEX 10 (2006): 35% overall, 70% on ‘particularly difficult models’ 

 

 SCIP [41] is one of the best performing non-commercial ILP solvers. Figure 12 is dated 

2
nd

 November 2011 and taken from the SCIP website [42]. The results are from the 

Mixed Integer Linear Programming Benchmark 2010 [43]. Over the course of this 

research, SCIP v1.2 was used initially and then v2.01 was used. 

 

 

Figure 12: Performance Comparison of SCIP with Commercial and Non-Commercial ILP 

Solvers [41]. 

 

 BSOLO [44] is a Boolean Satisfiability (SAT) Solver capable of handling the 

optimization of Pseudo-Boolean constraints, and has performed consistently well in the 

Pseudo-Boolean Contests being held. It ranked high on the list between 2005 and 2010, 

for test cases involving optimization, particularly those with linear constraints. The results 

of these evaluations are available (2005-2010) are accessible at [5] .  

 Minisat+ [45] is a SAT solver modified to handle Pseudo-Boolean constraints and has 

also performed consistently well over the Pseudo-Boolean contests held [5]. 

 Pueblo [46] is a ‗hybrid‘ Pseudo-Boolean SAT Solver. It fared well in the 2005, 2006 and 

2007 Pseudo-Boolean Contests, particularly when optimizing instances in the ‗Small 

Integers‘ category. 

Figure 13 gives an indication of the performance of BSOLO, Minisat+ and Pueblo. It 

is a graph from the 2007 Pseudo-Boolean contest [47] and is a comparison of number of 

instances solved within a given interval of time. As can be seen in Figure 13, Pueblo, 
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Minisat+ and BSOLO, all rank high in terms of the number of instances solved within the 

given time interval. 

 

 

Figure 13: Pseudo-Boolean Contest Results Comparing Solver Performance in Terms of 

Number of Instances Solved in a Given Time Period [47]. 
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2.3 ANALYSIS OF EXISTING TOOL 

 

In this section, the tool designed by the authors in [34] will be described and its 

capabilities assessed. Additionally, the recommended set of enhanced features for the 

proposed tool will be listed. 

 The tool developed in [34] is a basic tool with an easy-to-use interface which would 

allow simplified topology creation, problem modeling and solution display. Figure 14 is a 

screenshot of the interface of tool developed in [34]. The interface consists of a grid for node 

placement and basic buttons in order to place and move nodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Screenshot of Existing Tool [34]. 

 

In order to understand how the tool in [34] functions, the steps which need to be followed to 

construct a topology, convert it to an Integer Linear Programming (ILP) model, and solve the 

ILP model using the integrated solver are listed as follows: 

 The first step is to decide whether or not to use an existing topology or to create a new 

topology.  

 If a new topology is being created, nodes can be placed by first selecting ‗Node‘ from the 

left side panel and then placing the nodes where desired by clicking on the square on the 

grid. 
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 Once all nodes have been placed the topology is complete. The ―Hand‖ tool can be used 

to move nodes around if they have not been placed correctly or as desired. 

 Once the desired node placement has been achieved, the ―Run‖ button is pressed. This 

will convert the topology on screen into its corresponding ILP formulation. 

 The ILP formulation obtained for the topology will then be solved by the integrated 

solver.  

 The solution to the ILP formulation obtained will then be displayed. The nodes selected 

to be clusterheads will be colored blue and the connections between nodes will be shown 

on the grid.  

 It is important to note that all models, Energy Efficient Clustering – Fully Connected 

Backbone (EEC-FCB), Energy Efficient Clustering – Connected Backbone (EEC-CB) 

and Energy Efficient Clustering – Redundancy (EEC-R), are not integrated in the same 

tool. There are three versions of the tool; one for each model (i.e. one for EEC-FCB, one 

for EEC-CB, and one for EEC-R).  

 

2.3.1 FEATURES AND LIMITATIONS OF EXISTING TOOL 

 

The tool has the following features and capabilities: 

 The ability to create a new custom node configuration. 

 The ability to open the already saved node configuration. 

 The ability to save the existing node configuration. 

 The ability to place a node and move it to a desired position. 

 The ability to convert the on-screen topology to its corresponding ILP formulation and 

then solve the resulting formulation using the integrated solver. 

 

The tool has the following limitations: 

 The tool has only one save slot. Saving a configuration overwrites any configuration 

present in the slot. 

 The tool only uses only one solver to run the algorithm which times out for topologies 

greater than 9 nodes. 

 The source code is extremely difficult to modify. 

 The library dependencies have been implemented in such a way that the program is 

difficult to run on different machines (too many manual file placements need to be made). 
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 There are actually three versions of the tool. One each for the EEC-FCB (fully connected 

backbone), EEC-CB (connected backbone) and EEC-R (redundant backbone) algorithms, 

instead of having each algorithm as an option in one tool. 

 

2.3.2 DESIRED CAPABILITIES FOR THE NEW TOOL 

 

The proposed tool should have the following set of enhanced features (in addition to 

improved versions of features present in the tool developed in [34]: 

 The proposed tool should be able to view the original problem (topology) side-by-side 

with the solution. 

 The proposed tool should have the ability to save as many topologies as necessary and 

open them for later use. 

 The proposed tool should be able to open previously generated solutions. Not only should 

the topologies be available but also solutions should be saved for reference. 

 The proposed tool should be able to integrate with many solvers and handle the required 

file formats. 

 The proposed tool should be able to display various aspects of the solution topology 

generated. This should include the following: 

o The ability to display only the backbone of the network topology. 

o The ability to displaying only the different clusters generated. 

o The ability to display specific connections selected by the user. 

 The proposed tool should be able generate multiple problem instances of a given type 

which can be solved in one batch with a selected solver. 

 The proposed tool should allow the user to adjust the size of nodes on the screen for 

visual convenience based on size of network) 

 

This concludes the investigation phase of the research. At this point, the following 

three key pieces of information required to begin design and development of the proposed 

model have been gathered. The first is the set of requirements and improvements needed in 

order to design the proposed ILP formulation. The second key piece of information is the set 

of requirements and improvements to be implemented in the proposed tool. The final piece of 

information is the set of selected solvers to integrate with the tool and to use for testing 

purposes. 
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CHAPTER 3 

 

DESIGN AND IMPLEMENTATION  

 

 

In this section, the design and implementation of the proposed Integer Linear 

Programming (ILP) formulation and the proposed tool will be described in detail. It is 

important to keep in mind that the proposed model and proposed tool were designed and 

developed in parallel. This was so that the proposed tool could be used to test the proposed 

ILP model formulation at different stages and evaluate the correctness and capabilities of the 

model through an intuitive visual interface. Section 3.1 will detail the design and 

implementation of the proposed ILP formulation and its different enhancements including 

Intra-Cluster communication, Coverage constraints, and Multihop topologies. Section 3.2 

will consist of a comprehensive example, illustrating how a single topology can be solved 

using the different ILP formulation and enhancements to yield unique solutions. Section 3.3 

will describe the design and implementation of the proposed tool.  

 

3.1 PROPOSED MODEL AND ENHANCEMENTS 

 

In this section, the design and implementation of the proposed ILP formulation and 

enhancements will be described in detail. The following are the improvements that the 

proposed model should implement: 

 The proposed ILP model should have a redundant backbone. The backbone of the 

proposed ILP model will be similar to the one in the Energy Efficient Clustering – 

Connected Backbone (EEC-CB) model, in that there will be a Master clusterhead to 

which all other clusterheads will be connected (Star). However, in addition to the star 

connections there will also be an open ring between the clusterheads (each clusterhead 

being connected to 2 other clusterheads, apart from the Master clusterhead). This will 

provide a layer of redundancy, without as many redundant connections as the Energy 

Efficient Clustering – Fully Connected Backbone (EEC-FCB), should the Master 

clusterhead fail. By having an open ring, the most expensive path (which closes the ring) 

is left open. 
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 Intra-Cluster communication should be enabled as an enhancement. Allowing nodes 

within the same cluster to communicate directly without going through the clusterhead 

will reduce the burden on the clusterhead, and allow it to conserve energy for when 

communication between clusters must occur. 

 Multihop connections should be enabled as an enhancement. Allowing nodes which are 

much further away from the clusterhead to connect to the clusterhead by hopping using 

other closer nodes will result in more cost effective connections. The advantage of 

Multihop connections is that nodes do not have to waste energy communicating over 

longer distances.  

 Nodes should be restricted to connect only to other nodes within their coverage radius. 

This is to reflect a real life environment where nodes can only communicate when they 

are both in each other‘s radius of coverage. 

 

The three enhancements to the base model (Intra-Cluster Communication, Multihop 

Connections and Coverage Constraints), which will be discussed in detail in subsequent 

sections, will be implemented in such a way that they can be used individually or as a 

combination. 

 

3.1.2 ILP FORMULATION OF THE PROPOSED BASE MODEL 

 

This section will outline the development of the proposed Integer Linear 

Programming (ILP) formulation of a ‗base model‘, i.e. a basic topology with an improved 

backbone, but with no enhancements such as Intra-Cluster communication and Multihop 

connections. As stated previously, our formulation of the clustering problem aims to modify 

the base formulation put forward in [34], through re-modeling with new equations and 

modifying the backbone.  

The proposed model will use a star-ring backbone. The concept of a Master 

clusterhead (MCH), from the Energy Efficient Clustering – Connected Backbone (EEC-CB) 

model presented in [34], will be maintained, and all clusterheads will be connected to the 

Master clusterhead. Additional redundancy will be implemented in the proposed model by 

interconnecting the clusterheads in an ‗open-ring‘ formulation, i.e. The most expensive link 

of the ring will be left open, as shown in Figure 15. The ‗Star‘ is formed by connecting Node 

9 (MCH) to the other clusterheads (Nodes 1, 10 and 5). The ‗Ring‘ is formed between the 

clusterheads by connecting Node 1 to Node 10 and Node 10 to Node 5. However, Node 5 is 
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not connected to Node 1 leaving the ring ‗open‘.  This selection is not made randomly. As we 

proceed to detail the equations of the model, it will be made clear how these links were 

selected because based on low-cost criterion. 

 

 

Figure 15: Solved Topology With a Star-Ring Backbone. 

 

The benefits of the increased level of redundancy can be seen in that if the Master 

clusterhead (which is Node 9) fails, clusterhead 1 will still be able to communicate directly 

with clusterhead 10. Clusterhead 1 will also be able to communicate with clusterhead 5 

through clusterhead 10. In this way the MCH is no longer the central point of failure. The 

number of backbone links is also less than the EEC-FCB model which produces a mesh of 

backbone network links. 

The following assumptions which were made in the ILP formulations in [34] are also 

applicable to the proposed ILP formulation: 

1. Localization is not considered. It is assumed that nodes are able to determine each other‘s 

position, either through the use of GPS, or other localization techniques.  

2. The variable aj (named bj in the EEC-FCB model) gets is value from an external source 

(algorithm, tool, etc). This is useful as multiple approaches/algorithms, which determine 

the suitability of a node in acting as a clusterhead, can be combined with this model 

without changing the equations, although this is out of the scope of our research. 

3. All connections are single hop. All regular nodes are directly connected to a clusterhead. 

4. There is no direct communication between nodes in the same cluster. Communication 

between nodes in the same cluster also goes through the clusterhead.  
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5. The cost of forming the topology (objective function) is kept the same.  

 

The following are the equations which constitute the ILP formulation of the proposed Base 

Model. 

The objective function to be minimized: 

    (     ) (∑∑        

 

   

 

   

  ∑    

 

   

  ∑    

 

   

  ∑ ∑         

 

   

 

   

 (3.1) 

The first term in the objective function represents the connections between nodes and 

clusterheads. The second term represents the selection of nodes to be clusterheads. In the 

proposed formulation, the Master clusterhead is no longer also a regular clusterhead. This 

results in the need for a new term, as the selection cost of the Master clusterhead still has to 

be taken into account. This new term is the third term in Equation 3.1. The last term 

represents the connections between clusterheads. The objective function aims to minimize the 

cost of connections or links between nodes, thereby minimizing the cost of sending/receiving 

data along these connections.  

Constraint 3.2 is to enforce the restriction that there is only one Master clusterhead. 

∑  

 

   

   (3.2) 

Constraint 3.3 is to enforce the restriction that the total number of CHs is P - 1. Note: This is 

different from the EEC-CB model in that we do not count the Master clusterhead as also a 

regular clusterhead. That is to say that if there are a total of P clusterheads, there will be 1 

Master clusterhead and P-1 regular clusterheads. 

∑  

 

   

     (3.3) 

Constraint 3.4 is the upper limit on the total number of connections a node has. If a node is a 

regular node it can at most be connected to one other node (this node will be clusterhead as 

enforced by later constraints). If a node is a clusterhead, it will be connected at most to K 

other regular nodes (this enforces the restriction of maximum cluster size). 

∑    

 

   

   (   )           (3.4) 

Constraint 3.5 is the lower limit on the total number of connections a node has. If a node is a 

regular node it must be connected to at least one other node (which will be a clusterhead as 
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enforced by later constraints). If a node is a clusterhead it must support at least one node. If a 

node is a Master clusterhead it is not restricted to ‗1 connection to a regular node‘. Rather, it 

can have (and in this case it should have) no connections to regular nodes. 

∑     

 

   

                 (3.5) 

Constraint 3.6 is the upper limit on the maximum number of backbone connections. If a node 

is a clusterhead it cannot have more than 3 backbone connections. (1 will be to a Master 

clusterhead for the star connection, and 2 will be to other regular clusterheads in order to 

establish the ring links). If a node is a Master clusterhead, it will be connected to all the 

regular clusterheads (P-1). 

∑     

 

   
   

 (   )                 (3.6) 

Constraint 3.7 is used to enforce the lower limit on the number of backbone connections. If a 

node is a regular clusterhead then it has to be connected to at least two other nodes. One other 

regular clusterhead and one master clusterhead. If a node is a Master clusterhead, it has to be 

connected to all the regular clusterheads (P-1). 

∑     

 

   
   

 (   )                 (3.7) 

Constraint 3.8 is used to enforce the restriction that backbone connections are only between 

the master clusterhead and regular nodes, or between regular clusterheads. The connections 

between regular nodes and clusterheads are not counted as backbone connections. 

∑     

 

   
   

 
               

 
         (3.8) 

Constraint 3.9 is used to enforce the restriction that if a node is selected to be a regular 

clusterhead, it cannot be the master clusterhead and vice versa. The node can only be one of 

the two. 

∑(        )

 

   

   (3.9) 



37 
 

Constraint 3.10 is used to ensure that nodes are not connected to themselves and Constraint 

3.11 is used to diagonalize the matrix x which represents the connections between regular 

nodes and regular clusterheads. That is to say that if clusterhead 1 is connected to node 2, it is 

the same as saying node 2 is connected to clusterhead 1. Constraint 3.12 does the same for 

the z matrix which represents the interconnections between clusterheads. 

∑   

 

   

   (3.10) 

                             (3.11) 

                             (3.12) 

Constraint 3.13 restricts the total number of connections between regular nodes and 

clusterheads to the same number as the number of regular nodes; each regular node must be 

connected to at least one other clusterhead. 

∑ ∑     

 

     

 

   

 (   ) (3.13) 

Constraint 3.14 is used to restrict the total number of backbone connections to 2(P-1) – 1. 1 is 

deducted because the ring will be left ‗open‘ as described earlier. 

∑ ∑     

 

     

 

   

  (   )    (3.14) 

Constraint 3.15 is used to ensure that clusterheads do not connect to themselves. 

∑   

 

   

   (3.15) 

Constraint 3.16 is used to ensure that regular nodes are not connected to each other. When x 

(non-backbone) connections are made, at least one of the nodes must be a clusterhead. 

∑     

 

   
   

 
         

 
         (3.16) 

Constraints 3.17 – 3.20 are used to restrict the variables to binary values.  

      *   +             (3.17) 

      *   +             (3.18) 
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    *   +           (3.19) 

    *   +           (3.20) 

 

The limitations of the proposed Base Model are as follows: 

 All topologies must have at least one master clusterhead and two regular clusterheads. 

 All regular clusterheads must support at least one regular node.  

 Master clusterheads do not connect to any regular nodes. 

 

The following differences can be observed between the proposed ILP formulation and the 

EEC-CB ILP formulation presented in [34]: 

 The presence of additional redundancy in the backbone through the use of the ‗Ring‘ to 

supplement the ‗Star‘. 

 The equations are reworked. The variable ‗w‘ which was present in EEC-FCB and EEC-

CB formulations in [34] has been removed.  

 The Master clusterhead is not counted as one of the regular clusterheads. The number and 

nature of connections has been adjusted accordingly. 

 The additional term in the objective function has been added to account for the cost of 

selection of the Master clusterhead selection, which is now no longer also counted as a 

regular clusterhead. 

 

3.1.3 ENABLING MULTIHOP CONNECTIONS 

 

In this section, the Multihop enhancement to the Base Model will be described. In the 

original Energy Efficient Clustering – Fully Connected Backbone (EEC-FCB) and Energy 

Efficient Clustering – Connected Backbone (EEC-CB) models presented in [34], all networks 

were generated with 1-hop connections which meant that all regular nodes were directly 

connected to clusterheads. The proposed Base Model is enhanced by enabling Multihop 

connections, allowing for 2-hop connections as shown in Figure 16. This allows for nodes to 

hop using a node that is closer to the clusterhead. The Multihop enhancement to the model 

has two parts. The first is to enable Multihop connectivity and the second part is to take into 

account the cost of enabling these connections.  Enabling Multihop connections will require 
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modifying several constraints in the proposed Base Model, to allow for regular nodes to 

connect to other regular nodes as the hopping mechanism to connect to clusterheads. 

  

 

 

 

 

 

 

 

Figure 16: Multihop Network Topology. 

 

Enabling Multihop connections requires the introduction of the following new variables: 

          {
                                                                
           

 (3.21) 

          {
                                                  
           

 
(3.22) 

 

Variable bi,j,k  and qi,j are two new variables used when enabling multihop. These 

variables are required because the cost of the ‗hop‘ connection will be different from regular 

connections represented by variable xi,j. It is also important to remember that certain 

restrictions must be kept in place, for example, regular nodes can only hop using the regular 

nodes to connect to clusterheads, since it is illogical if they hop using one clusterhead to 

connect to another clusterhead. 

 

3.1.3.1 CONSTRAINTS ENABLING MULTIHOP CONNECTIONS 

 

The constraints unless shown here are kept the same as the proposed Base Model.  

Constraint 3.23 is the updated version of Constraint 3.6. The maximum connections node ‗i‘ 

can have is K which occurs when node ‗i‘ is a clusterhead. In Multihop, the maximum cluster 

size must also include nodes that are connected to the clusterhead through hops. This is taken 

into account by Constraint 3.23. 
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∑ ∑             

 

   
   

 

   
   
   

              
(3.23) 

Constraint 3.24 is the updated version of Constraint 3.5. The minimum number of 

connections that node ‗i‘ should have is 1 if it is a regular node and 0 if it is the master 

clusterhead. 

∑           

 

   

                 (3.24) 

Constraint 3.25 is the updated version of Constraint 3.13 and ensures that the total number of 

non-backbone connections is equal to N-P. This includes both hop based and direct 

connections. 

∑ ∑     

 

     

        

 

   

 (   ) (3.25) 

Constraint 3.26 is used to ensure that only those nodes that are connected to the clusterhead 

(xik=1) can be used as hopping nodes. 

 

∑∑(∑        

 

   
   
   
   

 

   

      )  

 

   

   (3.26) 

 

m* is an index starting from 0, incremented when three conditions are satisfied (i≠j, j≠k, i≠k) 

and used to indicate a potential hop path. m* is used to indicate the number of potential hope 

path, not the identity of the possible hop path which would be ti,j,k.. The former is used 

because the emphasis is on whether or not a ‗hop‘ path was taken and to simplify the coding 

of the model.  

Constraint 3.27 and 3.28 are used to ensure that it is not possible to hop off of a clusterhead. 

That if yj is 1 or yi is 1 then all potential hops through yj and yi are deemed not possible 

because yj or yi is a clusterhead. 

∑∑(∑        
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   (3.27) 
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∑∑(∑        
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(3.28) 

Constraint 3.29 is added to ensure that only either a direct connection to the clusterhead or a 

hop connection to a clusterhead exists from a particular node. The node cannot be connected 

to the clusterhead both directly and by hopping through another node.  

∑           

 

   

              (3.29) 

Constraint 3.30 and 3.31 are used to identify that node i is connected to node j if it has 

hopped taken one of the potential hop paths. (N = total number of nodes) 

∑∑    
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   (3.30) 
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(3.31) 

Constraint 3.32 is used to enforce the restriction that a node cannot connect to itself through a 

hop. 

∑   

 

   

   (3.32) 

Constraint 3.33 is used to state that node i cannot hop to j if j has hopped to i. (q connection 

matrix is not diagonal). Saying that node i has hopped to clusterhead j is not the same as 

saying the node j has hopped to clusterhead i. Which node is the clusterhead matters unlike 

with the x connection where just the presence of the connection matters. 

∑           

 

   

              (3.33) 

Constraint 3.34 and constraint 3.35 are used together to implement an ‗AND‘ logic. Node k 

can hop using node j to clusterhead i, if i is a clusterhead and j is connected to i and 

connecting k to j is possible.  
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∑∑ ∑  

 

   
   
   
   

                   

 

   

            

 

   

 
(3.34) 

∑∑ ∑                    

 

   
   
   
   

 

   
   

 

   

             
(3.35) 

Altogether these constraints have now enabled Multihop (2-hop) connections while 

keeping earlier restrictions, such as the connection count and the maximum cluster size 

constraint, in place. 

 

3.1.3.2 INCORPORATING THE COST OF MULTIHOP CONNECTIONS 

 

The second part of the Multihop Connection enhancement involves taking into 

account the cost of Multihop connections. Changes need to be made to the objective function. 

This is because now a new cost is in place; the cost of ‗hopping‘. If node ‗i‘ is connecting to 

clusterhead ‗j‘ by hopping through node ‗k‘ then node k is now also a second tier clusterhead 

supporting one regular node. The cost incurred by node k for routing node i‘s data to 

clusterhead j must be taken into account.  

This is done by adding another term to the objective function as this cost must also be 

taken into account as part of the total cost which much be minimized. 
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 (3.36) 

 

B represents the cost of connecting node j and node k. This cost is similar to the costs in the 

original objective function in the proposed Base Model and in the Energy Efficient Clustering 

– Fully Connected Backbone (EEC-FCB) and Energy Efficient Clustering-Connected 

Backbone (EEC-CB) models presented by the authors in [34] . It is similar in that it is again 

proportional to the distance between the hopping node and the intermediate node used to hop 

to the clusterhead as shown in Equation 3.37.  

 

          
   (3.37) 



43 
 

The value of n depends on several factors which are as follows: 

 The value of n depends on the degree to which Multihop connections should be 

encouraged over direct connections. 

 It depends on how mobile the nodes are, for example, if the node being used to hop is 

moving, then the hopping node may lose connectivity if it moves out of range. 

 It depends on the distances between the nodes and the size of the grid (location) over 

which the nodes are deployed. 

 It also depends on the coverage radius of nodes. 

However, the value of n is not proportional to the square of the distance as with the regular 

node-clusterhead connections (n=2), and it is not proportional to the cube of the distance as 

with the clusterhead-clusterhead connections (n=3). Rather, it is somewhere in between. A 

suitable starting value of n can be taken to be 2.5. This value can then be adjusted or tuned 

through simulation based on how preferred Multihop connections are over direct connections.  

 

3.1.4 ENABLING INTRA-CLUSTER CONNECTIONS 

 

In the Energy Efficient Clustering – Fully Connected Backbone (EEC-FCB) and 

Energy Efficient Clustering-Connected Backbone (EEC-CB) models presented by the authors 

in [34], all nodes in a cluster were connected only to the clusterhead for that cluster. The 

cluster was responsible for both Intra-Cluster and Inter-Cluster routing. By routing Intra-

Cluster communications, the clusterhead is losing energy that could be used for Inter-Cluster 

routing. The model is enhanced by enabling Intra-Cluster node-node connections. A sample 

topology is shown in Figure 17. 

 

 

 

 

 

 

 

 

 

Figure 17: Intra-Cluster Communication in a Network Topology. 
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The proposed enhancement requires the introduction of the following new variables. Variable 

vi,j  and fi,j,m* are two new variables used when enabling Intra-Cluster connections.  

           {
                                                              
           

 (3.38) 

          {
                                                  
           

 
(3.39) 

 

m* is an index starting from 0, incremented when three conditions (i≠j, j≠k, i≠k) are 

satisfied and used to indicate a possibility of 2 nodes being connected to the same 

clusterhead. m* is used to indicate the number of possibility, not the identity of nodes 

involved.. There will always be N—2 possibilities. For example: 7 node network. When 

considering whether node i and node j, one must check if they are both connected to the same 

clusterhead which could be anyone of the 5 remaining nodes (should they be selected to be 

clusterheads). 

 

3.1.4.1 CONSTRAINTS ENABLING INTRA-CLUSTER COMMUNICATION 

 

Constraints 3.40 and 3.41 are used to identify that node i is connected to node j if one of the 

possibilities of the both of them being connected to the same clusterhead has occurred. (N = 

total number of nodes) 
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   (3.40) 
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(3.41) 

Constraint 3.42 is used to enforce the restriction that a node cannot connect to itself through a 

hop. 

∑   

 

   

   (3.42) 

Constraint 3.43 is used to state that node i being connected to node j in the same cluster also 

implies that node j is connected to node i (Matrix is diagonal). 



45 
 

∑           

 

   

            (3.43) 

  

Constraints 3.44 and Constraint 3.45 are used together to implement an ‗AND‘ logic. Node i 

and node j are connected through an Intra-Cluster connection if they are both connected to 

clusterhead k, satisfying the m*th possible clusterhead connection. 
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(3.45) 

 

3.1.4.2 INCORPORATING THE COST OF INTRA-CLUSTER CONNECTIONS 

 

The Intra-Cluster communication enhancement to the proposed Base Model also has 

two parts (similar to Multihop connections). The first is to enable it. The second part is to 

take into account the cost of enabling Intra-Cluster connections. Equation 3.46 is the updated 

objective function. 
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 (3.46) 

  

A is the weight associated with connecting node j and node k. Since the nodes being 

connected are regular nodes and there is no additional routing involved, the cost (A) will be 

the same as node-clusterhead connections. (i.e. proportional to the square of the distance 

between the 2 nodes). This is shown in Equation 3.47 below. 

       
   (3.47) 
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3.1.4 ADDING COVERAGE RESTRICTIONS 

 

The proposed Base Model can be extended to take into account the coverage radius of 

the nodes in the network, and ensure that connections are established only between nodes that 

are within each other‘s coverage radius. This will no longer assume that all nodes can 

communicate with each other irrespective of where they may be located. 

Similar to the manner in which distances between nodes determine the cost of the 

connections, they can also be compared to the coverage radius of each node and used to 

obtain a matrix of nodes to which each node can connect to (1) and to which it can‘t (0).  

In equation 3.48, the variable        is the binary value which represents whether or 

not node j and i are in each other‘s coverage radius. If they are not, then they cannot be 

connected. If they are, then they can be connected but may not necessarily be connected. The 

actual connection will depend on the cost (which is proportional to the distance).  

 

          {
                                                          
           

 
(3.48) 

 

These values can then be used to enforce the possibility of connectivity between 

nodes using constraints 3.49 and 3.50 as given below. 

∑    

 

   

              (3.49) 

∑    

 

   

              (3.50) 

 

Additionally, if the coverage constraints are also to be implemented together with 

Multihop and/or Intra-Cluster Communication enhancements, then the coverage constraints 

should also be applied to the connection variables for those enhancements (q for Multihop 

connections and v for Intra-Cluster connections) as shown in constraints 3.51 and 3.52. 

∑    

 

   

              (3.51) 

∑    

 

   

              (3.52) 
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3.1.5 USING MULTIPLE ENHANCEMENTS  

 

It is possible to have the proposed Base Model combined with all the proposed 

enhancements. The list of possible combinations of enhancements is as follows (where 

IC=Intra-Cluster Communication, MH = Multihop Connections, CV=Coverage Constraints): 

 S-R Only 

 S-R with IC 

 S-R with MH 

 S-R with CV 

 S-R with IC and MH 

 S-R with IC and CV 

 S-R with MH and CV 

 S-R with all 3: MH, IC and CV 

An example topology is shown in Figure 18, with a possible solution of the combined 

enhancement of SR with MH, IC and CV shown in Figure 19. 

 

 

Figure 18: A 12 Node Network Topology Displaying Coverage. 
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Figure 19: Solving a 12 Node Topology With a Combined Model Including Coverage 

Constraints, Intra-Cluster Communication and Multihop Connections. 

 

3.1.6 EXAMPLE WALKTHROUGH WITH ALL PROPOSED ENHANCEMENTS 

 

In order to illustrate the application of the proposed formulation and enhancements, 

using small scale networks, the topology shown in Figure 20, is used as an example. The ILP 

formulations of the SR, SR+CV, SR+CV+MH, SR+CV+IC (where IC=Intra-Cluster 

Communication, MH = Multihop Connections, CV=Coverage Constraints) models 

corresponding the topology are generated. The complete formulations and the corresponding 

solutions for each formulation are provided in Appendix B. 

 

 

Figure 20: Example Topology to Be Solved With All Enhancements. 
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3.2 DESIGN OF NEW AND IMPROVED TOOL 

 

In this section, the design and implementation of the proposed tool will be described. 

This will include the features implemented, the limitations of the proposed tool, and the areas 

for further enhancement. 

 

3.2.1 MAJOR DESIGN DECISIONS 

 

In this section, the major decisions taken in designing the proposed tool and the 

reasoning behind each decision will be discussed. The following are the main design 

decisions: 

 The first decision was the choice of programming language to design and develop the 

proposed tool. The original tool in [34] was designed using JAVA. While using it, we 

realized that the primary purpose of our tool is to provide an intuitive Graphical User 

Interface (GUI), for users to be able to generate topologies, open and save previously 

generated topologies and solutions. Keeping this in mind we chose to use Visual Basic as 

the language of choice in order to generate a simple but effective Graphical User 

Interface (GUI). 

 The second decision was to determine how the proposed tool would connect to the set of 

selected solvers. The original tool in [34] had a solver integrated into the tool. 

Commercial solvers provide the JAVA libraries but at a price and not all solvers, 

particularly the non-commercial SAT solvers have this option. In addition, in order to be 

able to compare the performance of different solvers, it would make sense if all solvers 

were running on the same machine. We chose to have all selected solvers installed on a 

Linux server and allow our tool to solve problems in 2 ways: 

o Generate the problems and allow the end user to manually take/transfer the file to 

the solver, generate the solution using the solver of choice and retrieve the 

solution to feed it back into the tool. This way is manual and slow. 

o The second and more practical option in the tool is the ability of the tool to 

connect to pre-configured servers with pre-configured but customizable 

credentials, send the generated problem through FTP, execute the solver and 

retrieve the solution. This process all happens in the background and the user 

seeing only the retrieved solution displayed as a topology beside the problem. 
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 The third decision was to have a database in order to store the server parameters, solver 

locations, and user log in credentials, so that the user does not need to enter them 

repeatedly and can adjust them easily if they change. The advantage of this is that when 

new versions of solvers added, or if paths change, they can be reconfigured easily. 

 

3.2.2 TOOL IMPLEMENTATION DETAILS 

 

Below are the screenshots and descriptions of various functions that make up the 

finished tool. The screen shown in Figure 21 is that of the main screen with a sample 

topology created and solved. When using the tool there are two initial options available at the 

screen for the user, to either start by creating a new topology or opening/editing an existing 

topology. It is possible to do both, by clicking on the appropriate button on the toolbar or 

selecting the required option from the menu. Initially, when a new topology is created or 

opened, it will be in a ‗flat‘ state prior to clustering. Once generated, the user can save the 

topology.  

 

 

Figure 21: Proposed Tool Screen 1: Sample Topology Shown with Corresponding 

Solution 
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The problem can be generated by filling in the required parameters of the solution 

topology and selecting the different solvers for which the problem is required. These 

parameters include Node Size (for visual purposes only), Number of Nodes, Number of 

clusterheads and the maximum cluster size the solution should have.  All that is then required 

is to click on the ‗Generate‘ button. This process will generate the ILP formulations for the 

on-screen topology. These files can now be manually taken to the server and executed on the 

solver of choice by the end-user.  

The solution returned by the solver can similarly be manually copied back to the 

software and placed in the folder of choice. The solution folders have also been auto-created 

and it is preferred to place the solution in one of these folders. The solution can then be 

opened by clicking on the ‗Import solution‘ button for the solver of choice. The solution will 

then be parsed and the output of the variable assignments displayed as a solution topology as 

shown by the test topology solution displayed in Figure 21.  

Figure 22 shows a particular solution viewed in two different ways. The left side is 

the complete/entire solution and the right side is the same solution with only the network 

backbone connections displayed. This illustrates some of the features available in the tool to 

customize how the solution is displayed on the screen. Selected connections can be displayed, 

clusters only can be displayed, or just the network backbone can be displayed.  

 

 

Figure 22: Proposed Tool Screen 2: Viewing Different Aspects of a Generated 

Solution 
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3.2.3 IMPLEMENTING THE ‗GETNOW!‘ FEATURE IN THE PROPOSED TOOL 

 

Using a library called ‗sharpSsh‘, available at [48], a feature called ‗GetNOW!‘ has 

been implemented in the proposed tool. The sharpSsh library allows for Secure Shell (SSH) 

and Secure File Transfer Protocol (SFTP) connections to be made to servers. This library 

provides a great deal of functionality, allowing it to integrate seamlessly with the proposed 

tool to be able to open connections to the Linux server on which the solvers have been 

installed. In addition to being able to transfer files to and from the server it is possible to 

execute commands on the server. With the help of the sharpSsh library it is possible for the 

tool to open an SFTP connection and an SSH connection to the server configured earlier. On 

clicking ‗*NOW‘ button where * is the name of the solver, ex: CPLEXNOW, the solver will 

open two connections to the Linux server, one SFTP session and one SSH session. The tool 

will then generate the ILP formulation for the solver of choice (on the local machine), and 

send it to the server by SFTP. Then using the SSH session, it will execute the desired solver 

and retrieve the solution. Each stage of the process is visible in a dialog box on the screen 

shown in Figure 23  

 

 

 

 

 

 

 

 

 

 

 

Figure 23: Proposed Tool Screen 3: Connection Dialog Box Displaying Status 

Messages Allowing Users to Monitor Progress 
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CHAPTER 4 

 

TESTING 

 

 

In this section we will detail the tests carried out over the course of the research. This 

will include initial testing using an early prototype of the proposed tool with the Energy 

Efficient Clustering – Fully Connected Backbone (EEC-FCB) model proposed in [34]. It will 

also cover the testing procedures for the final set of comprehensive tests conducted with the 

proposed ILP formulations, using the proposed tool and the selected set of solvers.  

 

4.1 INITIAL TESTING USING THE EEC-FCB MODEL 

 

In this section, we will describe the initial set of tests conducted with an early 

prototype of the proposed tool with the EEC-FCB model presented in [34].  

Once the proposed tool was able to generate ILP formulations of the EEC-FCB 

model, sample topologies were created, and their corresponding EEC-FCB formulations were 

generated. The generated formulations were then fed to the CPLEX [37] solver to obtain the 

solutions. What we found was that CPLEX was unable to solve any instance and declared all 

instances ‗infeasible‘. After a detailed study of various different instances and manual 

attempts to solve for the optimum solution, the point of conflict was identified and will be 

illustrated through the following example. Assume a sample network with the following 

configuration; four nodes to be configured such that there are two regular clusterheads with 

each clusterhead supporting one regular node. The sample topology and the sample solution 

to this topology are shown in Figure 24. 

 

 

 

 

 

 

 

Figure 24: Example of Conflict in FCB - Original Topology and Solved Topology 

Sample Topology: 

Solved Sample Topology: 

2 1 3 4 

2 1 3 4 
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For the EEC-FCB model, this is arguably the most straightforward topology to solve, 

and if the topology is exactly as shown above, visually one can identify one probable solution 

(possibly the ideal solution) as the one shown in Figure 32.  In the solution, nodes 2 and 3 are 

the clusterheads which produce the combination of least cost backbone connections and 

regular-node to clusterhead connections. 

However CPLEX is unable to obtain this solution (or any solution for that matter) and 

immediately says that the problem is ―infeasible‖. This implies that an equation or set of 

equations is causing an unresolvable conflict.  

 

4.1.1 IDENTIFYING THE CONFLICT IN THE EEC-FCB MODEL 

 

When solving the problem manually, it is possible to work backwards by taking the 

solution in Figure 32, which should satisfy the problem, determining its variable assignment, 

and plugging this assignment back into the original equations to determine the conflict. The 

description of the variables is as follows: 

 

         {
                                         
           

 
(4.1) 

       {
                             
           

 
(4.2) 

         {
                                

           
 

(4.3) 

 

Based on the definition of the variables and the potential solution shown in Figure 32, one 

can determine the values of the variables x, y and w and these are shown in Table 1. All 

values not shown are equal to zero. 

 

Table 1 

Variable Assignment for EEC-FCB Conflict Example 

xij values y values wij values 

x12=1 y2=1 w12=1 

x23=1 y3=1 w23=1 

x32=1 y2=1 w32=1 

x43=1 y3=1 w43=1 
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When plugging these variable values back into the original constraints of the EEC - FCB 

model, the source of the conflict can be identified as being constraints 2.13 and 2.14, shown 

again here, for convenience, as constraint 4.4 and constraint 4.5. 

 

∑    

 

   

         (4.4) 

∑    

 

   

 (   )    (    )         (4.5) 

 

Substituting the values from Table 1 into constraint 2.13/4.4 we get the following: 

W11 + W21 + W31 + W41 ≥ 1  

 0 + 0 + 0 + 0 ≥ 1  

0 ≥ 1 

W12 + W22 + W32 + W42 ≥ 1 

 1 + 0 + 1 + 0  ≥ 1 

2 ≥ 1  

W13 + W23 + W33 + W43 ≥ 1  

 0 + 1 + 0 + 1 ≥ 1 

2 ≥ 1  

 W14 + W24 + W34 + W44 ≥ 1 

0 + 0 + 0 + 0 ≥ 1 

0 ≥ 1 

As we can see here that 0 can never be greater than 1. When attempting to solve the problem, 

CPLEX [37] detects the conflict in this equation and declares all problem instances 

infeasible. 

Similarly for constraint 2.14/4.5 when substituting the values from Table 1, we get the 

following: 

W11 + W21 + W31 + W41 ≤ (P-1)yj + (1-yj) 

0 + 0 + 0 + 0 ≤ (2-1)(0) + (1-0)  

0 ≤ 0 

W12 + W22 + W32 + W42 ≤ (P-1)yj + (1-yj) 

 1 + 0 + 1 + 0 ≤ (2-1)(1) + (1-1) 

2 ≤ 1  
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W13 + W23 + W33 + W43 ≤ (P-1)yj + (1-yj) 

 0 + 1 + 0 + 1 ≤ (2-1)(1) + (1-1) 

2 ≤ 1  

 W14 + W24 + W34 + W44 ≤ (P-1)yj + (1-yj) 

0 + 0 + 0 + 0 ≤ (2-1)(0) + (1-0) 

0 ≤ 0 

 

Here as well, when solving CPLEX detects the conflict and declares all problem instances 

infeasible. 

 

4.1.2 CORRECTING THE CAUSE OF CONFLICT IN THE EEC-FCB MODEL 

 

The definition of Constraints 2.13/4.4 and 2.14/4.5 as described in [34] is as follows.  

“Constraints 12 and 13 ensure that if a node is chosen to be a regular node, it should be 

connected to only one CH and not to another regular node.” [34] 

 

Constraint 4.4 is setting the lower bound for the number of connections from a node. 

Constraint 4.5 is setting the upper bound for the number of connections from a node. 

 

Based on this we modify constraints 4.4 and 4.5 as follows: 

 

For Constraint 4.4, which represents the lower-bound of connections to/from a node, one can 

assume the following: 

 If a node is a regular node it must have at least 1 connection from it and this must be to a 

clusterhead. 

 If a node is a clusterhead it will have a minimum of (P-1) connections from it in order to 

ensure the fully connected backbone. 

 

This is translated into the following equation. 

∑ (   )   ( )

 

   

 (4.6) 

Applying Equation 4.6 to the example shown in Figure 32 and substituting the values in 

Table 1 the following equations are obtained.  

 W11  +  W21 +  W31  +  W41 ≥ yj  
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o  0 + 0 + 0 + 0 ≥ 0  

o 0 ≥ 0 

 W12  +  W22 +  W32  +  W42 ≥ yj 

o  1 + 0 + 1 + 0  ≥ 1 

o 2 ≥ 1  

 W13  +  W23 +  W33  +  W43 ≥ yj  

o  0 + 1 + 0 + 1 ≥ 1 

o 2 ≥ 1  

  W14  +  W24 +  W34  +  W44 ≥ yj 

o 0 + 0 + 0 + 0 ≥ 0 

o 0 ≥ 0 

All equations are satisfied and constraint 4.6, which is the improved version of constraint 4.4, 

does not cause a conflict. 

 

Similarly for constraint 4.5 which represents the upper bound of connections to/from a node, 

one can assume the following: 

 If a node is a regular node it must have no more than 1 connection and this must be to a 

clusterhead.  

 If a node is a clusterhead it must have no more than (P-1) + (K) where the (P-1) 

connections are to other clusterheads and the K connections are to regular nodes such that 

the maximum cluster size K is not exceeded. 

 

This is translated into the following equation. 

∑ (   )  (     ) ( )

 

   

 (4.7) 

Applying this to the problem in Figure 32 and substituting the values from Table 1 results in 

the following equations. 

 W11  +  W21 +  W31  +  W41 ≤ (K+P-1)yj  

o 0 + 0 + 0 + 0 ≤ (1+2-1)(0)  

o 0 ≤ 0 

 W12  +  W22 +  W32  +  W42 ≤ (K+P-1)yj 

o  1 + 0 + 1 + 0  ≤ (1+2-1)(1) 

o 2 ≤ 2  
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 W13  +  W23 +  W33  +  W43 ≤ (K+P-1)yj  

o  0 + 1 + 0 + 1 ≤ (1+2-1)(1) 

o 2 ≤ 2  

  W14  +  W24 +  W34  +  W44 ≤ (K+P-1)yj 

o 0 + 0 + 0 + 0 ≤ (1+2-1)(0) 

o 0 ≤ 0 

After implementing the above changes, CPLEX was then able to solve instances of problems.  

 

4.2 TEST 1: COMPARING THE PERFORMANCE OF THE SELECTED SET OF 

SOLVERS ACROSS ALL PROPOSED ILP FORMULATION MODELS OF THE 

CLUSTERING PROBLEM 

 

In the first test, the topologies were generated according to the configurations in Table 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Test Set 1: Network Configurations to Evaluate the Performance 

of all Solvers Across all Proposed ILP Formulations 

#Nodes #Clusterheads MaxClusterSize 

5 3 1 

7 3 2 

9 3 3 

11 3 4 

13 3 5 

15 3 6 

7 4 1 

9 4 2 

11 4 3 

13 4 3 

15 4 4 

9 5 1 

11 5 2 

13 5 2 

15 5 3 
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The first test involved comparing the performance of all solvers in solving all 

proposed ILP formulations and enhancements for small scale network topologies. The 

topologies were generated according to the configurations in Table 2. For each configuration 

(row) in Table 2, 100 random topologies were generated for each solver (Total 5 Solvers) and 

the average time the solver took to solve each configuration for each model (FCB, SR, 

SR+IC, SR+MH) was noted. The timeout for each solver was set to be 15 minutes. A total of 

5 Solvers * 4 models * 15 configurations * 100 instances = 30000 test cases were run. The 

results of the tests will be discussed in detail in Section 5.1. 

 

4.3 TEST 2: TESTING THE ABILITY OF SOLVERS TO SOLVE ILP 

FORMULATIONS OF THE CLUSTERING PROBLEM FOR LARGE SCALE 

NETWORKS 

 

The set of tests specified in Section 4.2 will allow for the comparison of the 

performance of the entire selected set of solvers, and will also allow each proposed Integer 

Linear Programming (ILP) formulation and enhancement to be analysed from a feasibility 

perspective. However, a test is required to determine how the solvers fare in larger scale 

networks. The next set of tests to be carried out is to determine the scalability of the problems 

handled by the best solvers from the results of the previous test. The configurations for this 

set of tests are shown in Table 3.  

In this set of tests, in order to test the ability of the selected solvers to handle networks 

of a larger scale, topologies ranging from 10 nodes to a maximum of 50 nodes will be 

generated in increments of 5 nodes. For each configuration, 100 random topologies will be 

generated. The average time taken to solve the 100 instances of each configuration will be 

found. The timeout will again be set to a period of 15 minutes (or 900 seconds). 

For this test, only the standard Star Ring Base Model model with no enhancements 

was used. As with the previous test set, different clustering configuration for the same total 

node count were generated (15 node topologies with 3, 4 and 5 clusterheads) to determine if 

the clustering configuration had an impact on the time taken by the solver to cluster the 

topology.  
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Table 3 

Test Set 2: Network Configurations to Test the Ability of Solvers to Handle Large Networks 

#Nodes #Clusterheads MaxClusterSize 

7 3 2 

10 3 4 

15 3 6 

20 3 9 

25 3 11 

30 3 14 

35 3 16 

40 3 19 

45 3 21 

50 3 24 

7 4 1 

10 4 2 

15 4 4 

20 4 6 

25 4 7 

30 4 9 

35 4 11 

40 4 12 

45 4 14 

50 4 16 

9 5 1 

10 5 2 

15 5 2 

20 5 4 

25 5 5 

30 5 7 

35 5 8 

40 5 9 

45 5 10 

50 5 12 
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CHAPTER 5 

 

EVALUATION OF RESULTS 

 

 

In this section, the results of the tests specified in Section 4.2 and 4.3 will be shown in 

a tabular format and as comparison graphs. The results will subsequently be discussed in 

detail and the relationship between the performance of solvers and aspects of the Integer 

Linear Programming (ILP) formulation will be analyzed. All experiments were conducted on 

an Intel Xeon 3.2 Ghz workstation running Linux with 4 GB of RAM. 

 

5.1 TEST 1: RESULTS 

 

In this section, the results of the tests described in Section 4.2 will be detailed. As 

specified in Section 4.2, all solvers were used to solve a set of instances of each ILP 

formulation and enhancement.  The results obtained will be broken down by ILP formulation 

in order to better understand and interpret the results. It is important to keep in mind that for 

each network configuration shown (for all tests in Table 4 Table 5, Table 6 and Table 7), 100 

random topologies were generated, and their ILP formulations were solved by each solver. 

The times in the subsequent tables are the averages of the times taken to solve the 100 

instances. A ―Timeout‖ occurs when the solver attempted to solve the problem and was 

unable to solve it within the 15 minutes (900seconds) allotted. A ―Cannot Solve‖ occurs 

when the solver is unable to attempt to solve the problem. Detailed evaluation of this will be 

discussed in the subsequent sections. The following abbreviations will be used throughout 

this section: N – Nodes, CH-Clusterheads, MCS-Maximum Cluster Size. 

 

5.1.1 TEST 1: EEC-FCB MODEL RESULTS 

 

The following are the results obtained by executing all the test instances for the 

Energy Efficient Clustering - Fully Connected Backbone (EEC- FCB) model. The network 

configurations of the test instances and corresponding times for each solver are shown in 

Table 4. The results in Table 4 are also converted into charts and shown in Figure 25, Figure 

26 and Figure 27.  
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Table 4 

Test 1 Results: Time Taken by all Solvers to Solve Network Configurations 

using the EEC-FCB Model 

#N #CH #MCS CPLEX SCIP BSOLO Pueblo Minisat+ 

5 3 1 0.019 0.022 0.006 0.001 0.040 

7 3 2 0.030 0.047 0.129 0.012 0.345 

9 3 3 0.070 0.187 1.338 0.053 4.428 

11 3 4 0.160 0.609 26.432 0.377 60.101 

13 3 5 0.420 2.884 Timeout CannotSolve 571.607 

15 3 6 0.617 6.977 Timeout CannotSolve Timeout 

7 4 1 0.377 0.090 0.110 0.031 0.585 

9 4 2 0.369 0.286 1.637 0.071 9.865 

11 4 3 0.453 0.708 24.093 0.682 190.022 

13 4 3 0.605 1.962 Timeout CannotSolve Timeout 

15 4 4 0.820 3.613 Timeout CannotSolve Timeout 

9 5 1 0.175 0.817 1.144 0.074 14.352 

11 5 2 0.202 1.281 24.981 0.531 236.457 

13 5 2 0.280 2.048 Timeout CannotSolve Timeout 

15 5 3 0.423 4.395 Timeout CannotSolve Timeout 

 

 

Figure 25: Test 1 Results: EEC-FCB Model in Configurations with 3 Clusterheads. 
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Figure 26: Test 1 Results: EEC-FCB Model in Configurations with 4 Clusterheads. 

 

 

 

Figure 27: Test 1 Results: EEC-FCB Model in Configurations with 5 Clusterheads. 
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5.1.2 TEST 1: SR MODEL RESULTS 

 

The following are the results obtained by executing all the test instances for the Star-

Ring (SR) model. The network configurations of the test instances and corresponding times 

for each solver are shown in Table 5.  

 

Table 5 

Test 1 Results: Time Taken by all Solvers to Solve Network Configurations 

using the SR Model 

#N #CH #MCS CPLEX SCIP BSOLO Pueblo Minisat+ 

5 3 1 0.257 0.014 0.002 0.001 0.038 

7 3 2 0.285 0.023 0.007 0.008 0.180 

9 3 3 0.376 0.060 0.026 0.040 1.180 

11 3 4 0.468 0.148 0.063 0.349 5.793 

13 3 5 0.637 0.428 0.281 CannotSolve 31.852 

15 3 6 0.725 1.017 0.950 CannotSolve 242.520 

7 4 1 0.356 0.051 0.013 0.011 0.378 

9 4 2 0.546 0.150 0.055 0.072 6.736 

11 4 3 0.571 0.297 0.152 0.531 76.198 

13 4 3 0.795 0.967 1.030 CannotSolve 349.541 

15 4 4 0.903 1.709 4.753 CannotSolve Timeout 

9 5 1 0.532 0.353 0.098 0.107 8.595 

11 5 2 0.745 0.900 0.366 1.833 200.956 

13 5 2 0.834 2.058 1.633 CannotSolve Timeout 

15 5 3 1.035 3.212 7.433 CannotSolve Timeout 

 

 

The results in Table 5 are also converted into charts. The charts are all formatted as 

follows. The time on the y axis is on a logarithmic scale. The network configuration is shown 

on the x axis (Nodes, Clusterheads and Clustersize). The charts are shown in Figure 28, 

Figure 29 and Figure 30. 
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Figure 28: Test 1 Results: SR Model in Configurations with 3 Clusterheads. 

 

 

Figure 29: Test 1 Results: SR Model in Configurations with 4 Clusterheads. 
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Figure 30: Test 1 Results: SR Model in Configurations with 5 Clusterheads. 

 

5.1.3 SR+ IC MODEL TESTS AND RESULTS 

The results obtained by executing all the test instances for the Star-Ring with Intra-

Cluster Communication (SR+IC) model are shown in Table 6. The results in Table 6 are also 

converted into charts. The charts are shown in Figure 31, Figure 32 and Figure 33 

. 

 

Figure 31: Test 1 Results: SR+IC Model in Configurations with 3 Clusterheads. 
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Table 6 

Test 1 Results: Time Taken by all Solvers to Solve Network Configurations 

using the SR+IC Model 

#N #CH MCS CPLEX SCIP BSOLO Pueblo Minisat+ 

5 3 1 0.459 0.019 0.004 0.002 0.061 

7 3 2 1.810 1.657 0.055 0.022 0.366 

9 3 3 1.810 10.168 0.172 0.106 4.244 

11 3 4 13.701 44.178 0.500 0.566 48.341 

13 3 5 58.213 167.485 3.642 CannotSolve 453.634 

15 3 6 310.034 Timeout 30.127 CannotSolve Timeout 

7 4 1 0.354 0.070 0.022 0.025 0.764 

9 4 2 1.463 5.791 0.207 0.139 25.139 

11 4 3 5.543 28.558 0.645 1.066 367.870 

13 4 3 31.538 116.231 9.057 CannotSolve Timeout 

15 4 4 119.611 589.973 74.844 CannotSolve Timeout 

9 5 1 0.898 0.387 0.132 0.174 22.154 

11 5 2 4.197 16.867 1.047 2.462 456.812 

13 5 2 28.365 71.119 7.314 CannotSolve Timeout 

15 5 3 75.028 204.694 74.363 CannotSolve Timeout 

 

 

Figure 32: Test 1 Results: SR+IC Model in Configurations with 4 Clusterheads. 
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Figure 33: Test 1 Results: SR+IC Model in Configurations with 5 Clusterheads. 

 

5.1.4 SR+ MH MODEL TESTS AND RESULTS 

 

Table 7  

Test 1 Results: Time Taken by all Solvers to Solve Network Configurations using 

the SR+MH Model 

#N #CH #MCS CPLEX SCIP BSOLO Pueblo Minisat+ 

5 3 1 0.277 0.038 0.007 CannotSolve 0.372 

7 3 2 0.600 2.005 0.187 CannotSolve 237.852 

9 3 3 1.621 9.485 2.451 CannotSolve Timeout 

11 3 4 11.116 28.294 75.725 CannotSolve Timeout 

13 3 5 50.044 125.698 765.245 CannotSolve Timeout 

15 3 6 168.975 329.926 Timeout CannotSolve Timeout 

7 4 1 0.371 0.137 0.036 CannotSolve 7.098 

9 4 2 1.897 14.021 1.251 CannotSolve Timeout 

11 4 3 11.911 30.518 30.351 CannotSolve Timeout 

13 4 3 50.225 150.820 688.563 CannotSolve Timeout 

15 4 4 190.577 401.778 Timeout CannotSolve Timeout 

9 5 1 0.705 0.599 0.231 CannotSolve 135.943 

11 5 2 12.102 68.562 8.449 CannotSolve Timeout 

13 5 2 69.610 255.456 310.908 CannotSolve Timeout 

15 5 3 138.273 312.762 Timeout CannotSolve Timeout 
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The results obtained by executing all the test instances for the Star-Ring with 

Multihop connections (SR+MH) model are shown in Table 7. The results in Table 7 are also 

converted into charts. The charts are shown in Figure 34, Figure 35 and Figure 36. 

 

 

Figure 34: Test 1 Results: SR+MH Model in Configurations with 5 Clusterheads. 

 

 

Figure 35: Test 1 Results: SR+MH Model in Configurations with 4 Clusterheads. 
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Figure 36: Test 1 Results: SR+MH Model in Configurations with 5 Clusterheads. 

 

5.2 EVALUATION OF THE RESULTS OF TEST 1 

 

In this section, based on the results obtained and shown in Section 5.1, the 

performance of the solvers will be discussed, and the trends and dependencies observed will 

be highlighted  

 

5.2.1 GENERAL OBSERVATIONS 

 

The following general observations can be made from the results of Test 1: 

 Pueblo [46] is unable to handle certain instances and ends up in the ―Cannot Solve‖ state. 

This is due to Pueblo‘s inability to handle large coefficients. The large coefficients 

present are the costs associated with interconnecting nodes. (The cost of the link 

connecting a regular node to a clusterhead is proportional to the square of the distance 

between the nodes, and the cost of interconnecting clusterheads is proportional to the 

cube of the distance between the clusterheads [34].) 

 Star-Ring (SR) model solutions are obtained faster than SR ‗enhanced‘ with Intra-Cluster 

communication (SR+IC) or Multihop connections (SR+MH). In the case of SR+IC, 

solving the formulation takes much longer than SR, because not only does the optimal set 

of clusterheads needs to be identified, but it needs to be identified in conjunction with the 
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optimal connections between regular nodes and clusterheads since nodes need to connect 

to each other within the same cluster. The search space for the solutions is the same, but 

the process of identifying nodes connected to the same clusterhead, and accounting for 

their cost is computationally intensive. In the case of SR+MH, the Multihop formulation 

is the most computationally intensive and takes the most time to solve. This is for several 

reasons. The first is that the search space is increased. Additional solutions are possible as 

compared to the SR models because nodes can hop and connect to a clusterhead. The 

second reason is that calculating the cost of Multihop paths is very computationally 

intensive as it is done through a lengthy set of equations.  

 CPLEX [37] and SCIP [42] perform well overall, with MINISAT+ [45] being the slowest 

solver. Among the set of selected solvers, CPLEX and SCIP handle the larger networks 

well as they almost never timeout. 

5.2.2 MODEL SPECIFIC OBSERVATIONS 

 

The following model-specific observations can be made from the results of Test 1: 

 In the case of the Energy Efficient Clustering – Fully Connected Backbone (EEC-FCB) 

and the Star-Ring (SR) model, the Boolean Satisfiability (SAT) Solvers BSOLO [44], and 

in particular Pueblo [46] are very fast for the smaller networks, however as the size of the 

network increases, their time-to-solve increases faster than the generic ILP solvers; 

CPLEX [37] and SCIP [42]. MINISAT+ times out and CPLEX and SCIP are the fastest 

solvers for EEC-FCB and SR models.  

 In the case of the Star-Ring with Intra-Cluster communication (SR+IC) Model, BSOLO 

emerges as the fastest solver, in some cases by a large margin. CPLEX is the next fastest, 

with the others far behind. 

 In the case of the Multihop model, only CPLEX and SCIP do not timeout. BSOLO solves 

the smaller topologies well but is unable to handle the larger topologies. Pueblo is unable 

to handle of any of the test cases because of the large coefficients generated in the 

Multihop enhanced ILP formulations. 

 In the case of the SR model, it is observed that for a given number of nodes, all solvers 

take a longer time to solve topologies which have a larger number of clusterheads. This is 

shown in Figure 37 for the case of the CPLEX solver. The other solvers behave similarly. 

It can be seen clearly, that for a fixed number of nodes, if topologies with a larger number 

of clusterheads is to be generated, the solvers will take more time to generate the solution. 



72 
 

 

Figure 37: The Effect of Increasing the Number of Clusterheads in a Fixed Size Topology 

on the Time Taken by Solvers to Solve the Corresponding SR ILP Formulation. 

 

 In the case of the SR+IC model, it is not the number of clusterheads but rather the 

clustersize which increases the time taken by all solvers to solve topologies of a given 

number of nodes. For the same network toplogy of 15 nodes, the average time taken to 

solve it with 3 clusterheads and a cluster size of 6 takes longer than solving it for a 

configuration of 4 clusterheads and a Cluster Size of 4, which again takes longer than 

solving it for a configuration of 5 clusterheads and a cluster size of 3. This is shown in the 

Figure 38 which summarizes the times taken by CPLEX to solve the different test 

configurations. The configurations are broken down by the total number of nodes in each 

topology. As can be seen, increasing the clustersize, while keeping the number of nodes 

constant results in higher time required to solve the SR+IC formulation.  

 

 

Figure 38: The Effect of Increasing the Clustersize in a Fixed Size Topology on the Time 

Taken by Solvers to Solve the Corresponding SR+IC ILP Formulation. 
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5.3 TEST 2: RESULTS 

 

The results of the tests described in Section 4.3 are shown in Table 8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8 

Results of Test Set 2: Testing the Ability of Solvers to Handle 

Large Networks 

Nodes Clusterheads Cluster size CPLEX SCIP 

10 3 4 0.033 0.0837 

15 3 6 0.1234 0.8615 

20 3 9 0.3372 4.3063 

25 3 11 0.7118 12.0543 

30 3 14 1.5052 25.9856 

35 3 16 2.74 51.9671 

40 3 19 5.7374 121.1817 

45 3 21 8.274 162.5868 

50 3 24 16.2945 303.2534 

10 4 2 0.6089 0.273 

15 4 4 0.8484 1.8967 

20 4 6 1.2237 7.7969 

25 4 7 2.2824 22.9498 

30 4 9 4.6528 58.1925 

35 4 11 10.4126 143.369 

40 4 12 45.3313 304.8588421 

45 4 14 94.3953 385.2515116 

50 4 16 271.929 665.64 

10 5 2 0.856 1.324 

15 5 3 1.0919 3.5254 

20 5 4 0.6938 12.9578 

25 5 5 2.7112 33.5338 

30 5 7 7.8036 77.4732 

35 5 8 20.7042 172.2333 

40 5 9 112.9257 489.40 

45 5 10 195.1731 Timeout 

50 5 12 427.5185 Timeout 
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As specified in Section 4.3, the two solvers which performed well in Test 1 were 

tested with large scale topologies. These two solvers were CPLEX [37] and SCIP [42] as both 

were able to handle the 15 node topologies without timing out. The results shown in Table 8 

are also shown in the charts in Figure 39, Figure 40 and Figure 41. 

 

 

Figure 39: Test 2 Results: SR Model in Configurations with 3 Clusterheads. 

 

 

Figure 40: Test 2 Results: SR Model in Configurations with 4 Clusterheads. 
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Figure 41: Test 2 Results: SR Model in Configurations with 5 Clusterheads. 

 

5.4 EVALUATION OF THE RESULTS OF TEST 2 

 

In this section, we will describe, analyse and interpret the results obtained in Test 2. 

Through the results obtained the following observations can be made: 

 When using the SR Model to generate an ILP formulation of the clustering problem, both 

solvers are able to handle topologies up to 50 Nodes.  

 As noted in the evaluations of the results of Test 1 in Section 5.2, when using the SR 

model, increasing the number of clusterheads increases the time required by the solver to 

solve the formulation. From the results of Test 2, this is confirmed with CPLEX [37] and 

SCIP [42] being able to solve 50 node topologies with 3 clusterheads and 4 clusterheads 

but timing out with 5 clusterheads at only 40 nodes. 

 For configurations of 3 and 4 clusterheads, CPLEX is far from timing out at 50 nodes and 

should be able to handle even larger network topologies. 

 

5.5 RECOMMENDATIONS FOR FUTURE TESTS 

 

In this section, we will briefly describe additional tests which could be conducted in 

order to further study and possibly improve the performance of solvers in handling the 

proposed ILP formulations.  
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Dependencies on distribution of nodes in a topology require further study. Some 

topologies are dense, closely packed, while others are scattered. How this affects the time 

taken by the solver to generate the solution is something to test. Even when the coverage 

constraint is not applied the cost coefficients for scattered topologies are larger since the 

distance between the nodes is greater. Also, this affects Pueblo [46]‘s ability to solve the 

problem. 

Improving the performance of Pueblo, possibly trying to enable it to handle 

topologies with large coefficients is another aspect to further examine. One possibility to be 

investigated is the option of ‗equivalent topologies‘. If a scattered topology can be scaled 

down to an equivalent relatively denser topology then the coefficients (which are proportional 

to the distance) will be smaller and Pueblo may be able to handle them.  

 

5.6 FEASIBILITY OF USING GENERIC ILP OR PSEUDO-BOOLEAN SAT 

SOLVERS IN REAL WORLD CLUSTERING PROBLEM SOLVING 

 

In this section, we will discuss the feasibility of using generic Integer Linear 

Programming (ILP) and Boolean Satisfiability (SAT) solvers to solve the clustering problem 

in MANETs, in a practical environment. 

From the test results it can be seen that, as compared to the solver used in [34], 

solvers today are much faster and able to handle more complex ILP formulations of the 

clustering problem. The solver used to solve the ILP formulation presented in [34], timed out 

when solving for more than 9 node topologies. In the tests conducted with the proposed ILP 

formulations and enhancements, solvers such as CPLEX [37], SCIP [42] were able to handle 

ILP formulations of networks up to 50 nodes. Additionally, solvers including CPLEX, 

BSOLO [44] and SCIP were able to handle complex formulations such as the Multihop 

connections and Intra-Cluster communication enhancements proposed. 

The timeout used in testing was 15 minutes (900 seconds) and does not accurately 

reflect a real-life setting, where clustering would need to be done much faster. It is also 

important to note, as mentioned before, that MANETs are generally small scale (as compared 

to Wireless Sensor Networks for example). For small scale networks the proposed ILP 

formulations and high performance solvers such as CPLEX would be suitable for use in real-

world environments. However for large scale networks, as the time to cluster the network 

grows exponentially, the solvers will be unable to cluster the network in accordance with the 

demand of real-world environment.  
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CHAPTER 6 

 

CONCLUSION 

 

 

In this section we will summarize the results of our research. Over the course of this 

research, contributions were made in three key areas. 

The first was the creation of the proposed Integer Linear Programming (ILP) 

formulation of the Clustering Problem for Mobile Ad-Hoc Networks (MANETs).  This 

research presented the formulation of a Base Model, which was the Star-Ring Model, and 

proposed enhancements including coverage, Multihop and Intra-Cluster communication. 

Building on the work of [34], which was the first contribution in MANET modelling as an 

ILP problem, the Star-Ring model adds redundancy, bringing a compromise between the 

over-connected Energy Efficient Clustering – Fully Connected Backbone and the Energy 

Efficient Clustering - Connected Backbone (EEC-FCB/EEC-CB) models. 

The second contribution consisted of the enhancements made to the proposed model. 

The proposed Coverage enhancement added constraints which allowed coverage restrictions 

to be taken into account, and solutions to be generated which did not violate the physical 

limitations of the node. The Intra-Cluster communication enhancement enabled nodes within 

the same cluster to communicate with each other directly without having to go through the 

clusterhead, allowing the clusterhead to conserve energy for Inter-Cluster communication. 

The Multihop connection enhancement enabled 2-hop connections which allow nodes to 

connect to clusterheads by ‗hopping‘ using other closer nodes. The cost of establishing these 

connections was also accounted for. Additionally, formulations combining the various 

enhancements were generated, making it possible to have a model that enables Multihop 

connections, together with Intra-Cluster communication and at the same time, not violate the 

coverage constraints of the nodes. Also, through testing, conflicts arising from weaknesses in 

the implementation of the EEC-FCB model in [34], were identified and adjusted. 

The third contribution was the development of the tool. The tool developed over the 

course of the research was able carry out a comprehensive set of functions. These functions 

included the ability to create custom MANET topologies in a user friendly manner, and the 

ability to connect and use different solvers. Additionally, the tool was able to use multiple 
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ILP formulations, create multiple instances for testing purposes, and print topologies with 

their corresponding solutions. 

The third contribution involved using the proposed ILP formulations and 

enhancements together with the proposed tool, to test the performance and analyse the 

feasibility of generic ILP (CPLEX [37], SCIP [42]) and 0-1 SAT-based ILP solvers (BSOLO 

[44], Pueblo [46] and Minisat+ [45]) in solving the clustering problem for MANETs. 

CPLEX, and SCIP were able to handle the larger scale topologies and in most cases CPLEX 

was the fastest solver from the selected set of solvers. The exceptional case was the Star-Ring 

with Intra-Cluster Communication Model (SR+IC) model where BSOLO was the faster 

solver. For small scale networks, the Star-Ring (SR) ILP formulation and the CPLEX solver, 

can be used in a practical setting. However, the more complex formulations, including Intra-

Cluster communication and Multihop connections, are too computationally intensive in their 

current state to be used in practical environments for larger networks as the time taken by the 

selected set of solvers to solve the enhanced formulations is too large to be feasible for 

practical environments.  
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CHAPTER 7 

 

FUTURE WORK 

 

 

In this section the key areas of future work and possible improvements in the three 

areas of research will be highlighted. 

From a modelling perspective, while we have been able to create the SR model and 

devise enhancements which allow coverage, Multihop connections and Intra-Cluster 

communication, there are additional improvements which can be made. They key 

improvement would be the integration of the parameter which acts as the weight for selection 

of the clusterhead and Master clusterhead selection. Based on the model presented in [34], 

this parameter, b,  is the weight obtained through the combination of factors such as mobility, 

residual energy and other factors which determine the suitability of the node to act as a 

clusterhead.  At this point the value of b is being fed from an external source. Having a 

unified ILP formulation which also determines the value of this parameter, while 

computationally intensive, would be able to produce the optimum solution with all possible 

factors taken into account.  Additionally, at present this parameter represents the combination 

of factors such as initial energy, residual energy, mobility and more to provide a single value 

indicating the capability of a node to handle the role of a clusterhead. Rather than using a 

single value, factors such as residual energy and mobility could be considered independently 

when generating the ILP formulation to more accurately represent the capabilities of the 

node. Using this unified model, it would be possible for the optimum solution, for any set of 

conditions and at any point in time of network operation, to be determined.  

Additionally, another significant improvement would be to incorporate in the 

formulation, the ability to automatically determine the optimum number of clusterheads and 

also the optimum cluster size, both in terms of the cost of the solution generated and the time 

taken to find the solution. This would allow users the flexibility of being able to select a 

particular number of clusterheads and cluster size, or let the tool determine the best option for 

them. 

From the perspective of the tool developed over the course of the research, there are 

several areas of improvement. At present, it is in its first version, with extensive changes and 

improvements still being made. These improvements are focused around increasing 
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functionality and providing a better user experience. Some of these improvements would 

include the ability to view solutions side by side and also to be able to connect and work with 

other solvers. One beneficial improvement would be the ability to adjust the topology to meet 

certain requirements such as coverage. If for example, a designed topology cannot be solved 

for user-specified requirements, the tool should be able to identify the nature of the conflict 

and adjust the topology or point out the adjustments required in order for a solution to be 

possible for the desired requirements (parameters). 

Based on the results obtained from the tests conducted, there were several areas 

identified for improvement and further testing. Further tests could be conducted to assess the 

impact of the distribution of the nodes in a topology and their coverage radius on the solvers 

ability to solve the problem and the time taken to solve it. This is because the coefficients that 

determine the cost of connecting any two nodes (regular node to regular node, regular node to 

cluster head, clusterhead to clusterhead) are all dependent on the distance between the nodes.  

This summarizes some of the potential improvements and points of future research 

with regard to ILP formulation of the clustering problem in MANETs, the development of the 

tool, and the feasibility of solvers in solving the ILP formulation of the clustering problem. 
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Using the example in the example walkthrough earlier, the use of the variable m* will 

be illustrated. The Intra-Cluster communication (IC) case is shown here. m* is used in a 

similar way in the Multihop case. 
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From the example walkthrough for constraint 3.35 the following equations were obtained: 

As  

Constraint 3.35 

v1,2 - f1,2,0 - f1,2,1 - f1,2,2 - f1,2,3 - f1,2,4 <= 0 

v1,3 - f1,3,0 - f1,3,1 - f1,3,2 - f1,3,3 - f1,3,4 <= 0 

v1,4 - f1,4,0 - f1,4,1 - f1,4,2 - f1,4,3 - f1,4,4 <= 0 

v1,5 - f1,5,0 - f1,5,1 - f1,5,2 - f1,5,3 - f1,5,4 <= 0 

v1,6 - f1,6,0 - f1,6,1 - f1,6,2 - f1,6,3 - f1,6,4 <= 0 

v1,7 - f1,7,0 - f1,7,1 - f1,7,2 - f1,7,3 - f1,7,4 <= 0 

v2,1 - f2,1,0 - f2,1,1 - f2,1,2 - f2,1,3 - f2,1,4 <= 0 

………. 

As can be seen, the use of m* is just for simplicity in coding as it is always from 0-4, keeping 

track of the option number and not the chosen option. If option 0 was chosen, option 0 for 

interconnecting node 1 and 2 is different from option 0 for interconnection node 1 and 3 and 

so on. m* acts as an index of possible options. 
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Example Solved With Proposed Model and Enhancements 
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B.1 SOLVING THE EXAMPLE WITH THE SR MODEL 

 

In this section, the example topology shown in Figure 20 will be solved using the 

Star-Ring model (base model – with no enhancements). Only a snapshot of each equation is 

shown as the complete set of equations are extensive and lengthy. 

 

The following objective function is obtained when solving the example topology using the 

SR model: 

Minimize: 0x1,1 + 13225x1,2 + … + 93025x7,6 + 0x7,7 - 1y1 - … - 1y7 – 1M1 – … 1M7+ 

0z1,1 + 1520875z1,2 + … + 28372625z7,6 + 0z7,7 

 

The following constraints are obtained when solving the example topology using the SR 

model: 

Constraint 3.2: Number of Master ClusterHeads 

M1 + M2 + M3 + M4 + M5 + M6 + M7=1 

 

Constraint 3.3: Number of Regular Clusterheads 

y1 + y2 + y3 + y4 + y5 + y6 + y7=2 

 

Constraint 3.4: Upper limit of Connections (Maximum cluster size) 

x1,1 + x2,1 + x3,1 + x4,1 + x5,1 + x6,1 + x7,1 - 1y1 ≤ 1 

… 

x1,7 + x2,7 + x3,7 + x4,7 + x5,7 + x6,7 + x7,7 - 1y7 ≤ 1 

 

Constraint 3.5: Lower Limit of Connections (ensuring no node is unconnected) 

x1,1 + x2,1 + x3,1 + x4,1 + x5,1 + x6,1 + x7,1 + 1M1 ≥ 1 

… 

x1,7 + x2,7 + x3,7 + x4,7 + x5,7 + x6,7 + x7,7 + 1M7 ≥ 1 

 

Constraint 3.6: Upper limit of backbone connections 

z1,1 + z2,1 + z3,1 + z4,1 + z5,1 + z6,1 + z7,1 - 3y1 - 2M1 ≤ 0 

… 

z1,7 + z2,7 + z3,7 + z4,7 + z5,7 + z6,7 + z7,7 - 3y7 - 2M7 ≤ 0 
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Constraint 3.7: Lower Limit of Backbone Connections 

z1,1 + z2,1 + z3,1 + z4,1 + z5,1 + z6,1 + z7,1 - 2y1 - 2M1 ≥ 0 

… 

z1,7 + z2,7 + z3,7 + z4,7 + z5,7 + z6,7 + z7,7 - 2y7 - 2M7 ≥ 0 

 

Constraint 3.8: Ensuring that backbone connections are only CH-CH or CH-MCH 

2z1,2 - y1 - M1 - y2 - M2 ≤ 0 

2z1,3 - y1 - M1 - y3 - M3 ≤ 0 

… 

2z5,7 - y5 - M5 - y7 - M7 ≤ 0 

2z6,7 - y6 - M6 - y7 - M7 ≤ 0 

 

Constraint 3.9: A node can be only CH or MCH 

y1 + M1 ≤ 1 

… 

y7 + M7 ≤ 1 

 

Constraint 3.10: Node is not connected to itself 

x1,1 + x2,2 + x3,3 + x4,4 + x5,5 + x6,6 + x7,7= 0 

 

Constraint 3.11: the connection matrix is diagonal 

x1,1 - x1,1 = 0 

x1,2 - x2,1 = 0 

… 

x7,6 - x6,7 = 0 

x7,7 - x7,7 = 0 

 

Constraint 3.12: The backbone connection matrix is diagonal 

z1,1 - z1,1 = 0 

z1,2 - z2,1 = 0 

… 

z7,6 - z6,7 = 0 

z7,7 - z7,7 = 0 
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Constraint 3.13: Restricting the total number of connections (Node-CH)  in the topology 

x1,2 + x1,3 … + x5,7 + x6,7=4 

 

Constraint 3.14: Restricting the Backbone connection count (CH-CH, CH-MCH) 

z1,2 + z1,3 + …+ z5,7 + z6,7=3 

 

Constraint 3.15:Backbone Node is not connected to itself 

z1,1 + z2,2 + z3,3 + z4,4 + z5,5 + z6,6 + z7,7= 0 

 

Constraint 3.16: Regular nodes cannot connect to each other (One of the nodes has to be a 

clusterhead) 

2x1,2 - y1 - y2 ≤ 1 

2x1,3 - y1 - y3 ≤ 1 

… 

2x5,7 - y5 - y7 ≤ 1 

2x6,7 - y6 - y7 ≤ 1 

 

Figure 42 is a screenshot of the solution generated wen solving the example topology using 

the SR model. 

 

Figure 42: Example Solution Using SR Model. 
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B.2 SOLVING THE EXAMPLE WITH THE SR+CV MODEL 

 

In this section, coverage constraints will be enforced when solving the example 

topology. This will restrict nodes to connect to other nodes which are within their coverage 

radius. There is no modification of the objective function or the other constraints. Only 

constraints 3.48 and 3.49 are added. These constraints automatically allow for the possibility 

or completely eliminate the possibility of certain connections depends on whether or not the 

corresponding nodes are in each other‘s coverage radius. 

 

The following are the additional constraints when using the SR+CV model to solve the 

example topology: 

 

Coverage Constraints (3.49 and 3.50) 

x1,1 ≤ 0 

z1,1 ≤ 0 

x1,2 ≤ 1 

z1,2 ≤ 1 

x1,3 ≤ 1 

z1,3 ≤ 1 

… 

x7,6 ≤ 0 

z7,6 ≤ 0 

x7,7 ≤ 0 

z7,7 ≤ 0 

 

Based on the restrictions imposed on certain connections that were allowed before, 

the solution will change. It should be kept in mind, that in certain cases where coverage is 

enforced and the nodes are far apart, there will be no possible solutions. 
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Figure 43: Example Solution with SR Backbone and Coverage Constraints. 

 

As can be seen from the Figure 43, the solution is clearly different from the one in 

Figure 42 where coverage constraints were not present. While the solution obtained without 

coverage constraints is the lowest cost solution, it had connections which were not physically 

possible since the nodes were outside each other‘s coverage radius. This includes the 

connection between node 3 and node 7 which were previously connected and also the 

connection between node 1 and node 5. 

 

 

B.3 SOLVING THE EXAMPLE WITH THE SR+IC MODEL 

 

In this section, the example topology will be solved using the Star Ring Base model 

with the Intra Cluster communication enhancement (SR+IC). In this case, coverage will not 

be taken into account. 

 

The following objective function is obtained when trying to solve the example topology with 

the SR+IC model: 

 

Minimize: 0x1,1 + 13225x1,2 +  93025x7,6 + 0x7,7 + 0v1,1 + 39675v1,2 + … + 279075v7,6 

+0v7,7 - 1y1 - 1y2 - … - 1y6 - 1y7 – 1M1 – 1M2 – … – 1M6 – 1M7 + 0z1,1 + 1520875z1,2 

+ … + 28372625z7,6 + 0z7,7 
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The following constraints are obtained when trying to solve the example topology with the 

SR+IC model: 

 

Constraint 3.44: Identifying all possible intra cluster combinations  

(2 nodes being in the same cluster, connected to the same clusterhead) 

2f1,2,0 - x1,3 - x2,3 ≤ 0 

2f1,2,1 - x1,4 - x2,4 ≤ 0 

… 

2f7,6,3 - x7,4 - x6,4 ≤ 0 

2f7,6,4 - x7,5 - x6,5 ≤ 0 

 

Constraint 3.45: Works together with the previous constraint to create the ‗And‘ clause, 

ensuring that there is an Intra-Cluster connectin only if the two nodes are connected to the 

same clusterhead. 

x1,3 + x2,3 - f1,2,0 ≤ 1 

x1,4 + x2,4 - f1,2,1 ≤ 1 

x1,5 + x2,5 - f1,2,2 ≤ 1 

… 

x7,3 + x6,3 - f7,6,2 ≤ 1 

x7,4 + x6,4 - f7,6,3 ≤ 1 

x7,5 + x6,5 - f7,6,4 ≤ 1 

 

Constraint 3.40: Works with next constraint to create the ‗OR‘ clause. The variable v is the 

‗OR-ing‘ of all the possibilities that could allow for the interconnection of selected 2 nodes. If 

any one of those possibilities is true (Example: Node 1 and Node 3 are connected to 

clusterhead 2, then v1,3 will be equal to 1) 

v1,2 - f1,2,0 - f1,2,1 - f1,2,2 - f1,2,3 - f1,2,4 ≤ 0 

v1,3 - f1,3,0 - f1,3,1 - f1,3,2 - f1,3,3 - f1,3,4 ≤ 0 

… 

v7,5 - f7,5,0 - f7,5,1 - f7,5,2 - f7,5,3 - f7,5,4 ≤ 0 

v7,6 - f7,6,0 - f7,6,1 - f7,6,2 - f7,6,3 - f7,6,4 ≤ 0 
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Constraint 3.41: See explanation for 3.40 (previous constraint) 

7v1,2 - f1,2,0 - f1,2,1 - f1,2,2 - f1,2,3 - f1,2,4 ≥ 0 

7v1,3 - f1,3,0 - f1,3,1 - f1,3,2 - f1,3,3 - f1,3,4 ≥ 0 

… 

7v7,5 - f7,5,0 - f7,5,1 - f7,5,2 - f7,5,3 - f7,5,4 ≥ 0 

7v7,6 - f7,6,0 - f7,6,1 - f7,6,2 - f7,6,3 - f7,6,4 ≥ 0 

 

Constraint 3.42: Ensuring that 2 nodes cannot be linked to themself 

v1,1 + v2,2 + v3,3 + v4,4 + v5,5 + v6,6 + v7,7= 0 

 

Constraint 3.43:  If node 1 is connected to node 2 in the same cluster that implies that node 2 

is connected to node 1 (diagonal matrix).  

v1,1 - v1,1 = 0 

v1,2 - v2,1 = 0 

v1,3 - v3,1 = 0 

… 

v7,5 - v5,7 = 0 

v7,6 - v6,7 = 0 

v7,7 - v7,7 = 0 

 

 

Figure 44: Example Solution with SR Backbone and Intra-Cluster Communication. 
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As can be seen from Figure 44, the solution is similar to the standard S-R solution shown in 

Figure 42, with the only difference being the new links created between the nodes in the same 

cluster. They are now interconnected with the purple links in Figure 23 (node 2 is connected 

to node 1, node 4 is connected to node 7). 

 

B.4 SOLVING AN EXAMPLE TOPOLOGY WITH THE SR+MH MODEL 

 

In this section, the example topology will be solved with the Star Ring Base Model 

with the Multihop connection enhancement enabled. 

 

The following objective function is obtained when solving the example topology with the 

SR+MH model: 

 

Minimize: 0x1,1 + 13225x1,2 + 19044x1,3 + … + 93025x7,6 + 0x7,7 +0q1,1 +39675q1,2 + 

… + 279075q7,6 + 0q7,7 + 0b1,1,1 + 0b1,1,2 + … + 0b7,7,6 + 0b7,7,7 - 1y1 - 1y2 - … - 1y6 

- 1y7 – 1M1 – 1M2 – … – 1M6 – 1M7 + 0z1,1 + 1520875z1,2 + … + 28372625z7,6 + 0z7,7 

 

The following constraints are obtained when solving the example topology with the SR+MH 

model. Both, the constraints which are changed from the SR model and the additional 

constraints for the Multihop connection enhancement are shown: 

 

Constraint 3.23: (enforcing the Upper limit for the maximum cluster size) 

b1,1,1 + b1,1,2 + b1,1,3 + b1,1,4 + b1,1,5 + b1,1,6 + b1,1,7 + x1,1 + b1,2,1 + b1,2,2 + b1,2,3 

+ b1,2,4 + b1,2,5 + b1,2,6 + b1,2,7 + x1,2 + b1,3,1 + b1,3,2 + b1,3,3 + b1,3,4 + b1,3,5 + 

b1,3,6 + b1,3,7 + x1,3 + b1,4,1 + b1,4,2 + b1,4,3 + b1,4,4 + b1,4,5 + b1,4,6 + b1,4,7 + x1,4 + 

b1,5,1 + b1,5,2 + b1,5,3 + b1,5,4 + b1,5,5 + b1,5,6 + b1,5,7 + x1,5 + b1,6,1 + b1,6,2 + b1,6,3 

+ b1,6,4 + b1,6,5 + b1,6,6 + b1,6,7 + x1,6 + b1,7,1 + b1,7,2 + b1,7,3 + b1,7,4 + b1,7,5 + 

b1,7,6 + b1,7,7 + x1,7 ≤ 2 

… 

b7,1,1 + b7,1,2 + b7,1,3 + b7,1,4 + b7,1,5 + b7,1,6 + b7,1,7 + x7,1 + b7,2,1 + b7,2,2 + b7,2,3 

+ b7,2,4 + b7,2,5 + b7,2,6 + b7,2,7 + x7,2 + b7,3,1 + b7,3,2 + b7,3,3 + b7,3,4 + b7,3,5 + 

b7,3,6 + b7,3,7 + x7,3 + b7,4,1 + b7,4,2 + b7,4,3 + b7,4,4 + b7,4,5 + b7,4,6 + b7,4,7 + x7,4 + 

b7,5,1 + b7,5,2 + b7,5,3 + b7,5,4 + b7,5,5 + b7,5,6 + b7,5,7 + x7,5 + b7,6,1 + b7,6,2 + b7,6,3 
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+ b7,6,4 + b7,6,5 + b7,6,6 + b7,6,7 + x7,6 + b7,7,1 + b7,7,2 + b7,7,3 + b7,7,4 + b7,7,5 + 

b7,7,6 + b7,7,7 + x7,7 ≤ 2 

 

Constraint 3.24: The new constraint for the Lower Limit (ensuring each node is connected to 

at least one node) 

x1,1 + q1,1 + x2,1 + q2,1 + x3,1 + q3,1 + x4,1 + q4,1 + x5,1 + q5,1 + x6,1 + q6,1 + x7,1 + 

q7,1 + 1M1 ≥ 1 

… 

x1,7 + q1,7 + x2,7 + q2,7 + x3,7 + q3,7 + x4,7 + q4,7 + x5,7 + q5,7 + x6,7 + q6,7 + x7,7 + 

q7,7 + 1M7 ≥ 1 

 

Constraint 3.25: The new constraint for restricting the total number of regular connections 

(which now includes hop connections as well). 

x1,2 + x1,3 + x1,4 + x1,5 + x1,6 + x1,7 + x2,3 + x2,4 + x2,5 + x2,6 + x2,7 + x3,4 + x3,5 + 

x3,6 + x3,7 + x4,5 + x4,6 + x4,7 + x5,6 + x5,7 + x6,7 + q1,1 + q1,2 + … + q7,7=4 

 

Constraint 3.26: Taking into account all hopping possibilities  

t1,2,0 - x1,3 ≤ 0 

t1,2,1 - x1,4 ≤ 0 

t1,2,2 - x1,5 ≤ 0 

t1,2,3 - x1,6 ≤ 0 

t1,2,4 - x1,7 ≤ 0 

… 

t7,6,0 - x7,1 ≤ 0 

t7,6,1 - x7,2 ≤ 0 

t7,6,2 - x7,3 ≤ 0 

t7,6,3 - x7,4 ≤ 0 

t7,6,4 - x7,5 ≤ 0 

 

Constraint 3.27 and 3.28: Ensuring as part of the possibility the node is hopping to a 

clusterhead and not to a regular node. 

t1,2,0 + y2 ≤ 1 

t1,2,1 + y2 ≤ 1 

t1,2,2 + y2 ≤ 1 

t1,2,3 + y2 ≤ 1 

t1,2,4 + y2 ≤ 1 

… 

t7,6,0 + y7 ≤ 1 
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t7,6,1 + y7 ≤ 1 

t7,6,2 + y7 ≤ 1 

t7,6,3 + y7 ≤ 1 

t7,6,4 + y7 ≤ 1 

 

Constraint 3.29: Ensuring that if a node is hopping to a clusterhead, it isn‘t also directly 

connecting to the clusterhead. 

q1,2 + x1,2 ≤ 1 

q1,3 + x1,3 ≤ 1 

… 

q7,5 + x7,5 ≤ 1 

q7,6 + x7,6 ≤ 1 

 

Constraint 3.30: Implementing the OR constraint (together with the next constraint). If 

anyone of the possible hops is taken, the hop connection is registered for that node.  

q1,2 - t1,2,0 - t1,2,1 - t1,2,2 - t1,2,3 - t1,2,4 ≤ 0 

q1,3 - t1,3,0 - t1,3,1 - t1,3,2 - t1,3,3 - t1,3,4 ≤ 0 

… 

q7,5 - t7,5,0 - t7,5,1 - t7,5,2 - t7,5,3 - t7,5,4 ≤ 0 

q7,6 - t7,6,0 - t7,6,1 - t7,6,2 - t7,6,3 - t7,6,4 ≤ 0 

 

Constraint 3.31: Completing the ‗OR‘ 

7q1,2 - t1,2,0 - t1,2,1 - t1,2,2 - t1,2,3 - t1,2,4 ≥ 0 

7q1,3 - t1,3,0 - t1,3,1 - t1,3,2 - t1,3,3 - t1,3,4 ≥ 0 

… 

7q7,5 - t7,5,0 - t7,5,1 - t7,5,2 - t7,5,3 - t7,5,4 ≥ 0 

7q7,6 - t7,6,0 - t7,6,1 - t7,6,2 - t7,6,3 - t7,6,4 ≥ 0 

 

Constraint 3.32: Preventing Nodes from hopping to themselves. 

q1,1 + q2,2 + q3,3 + q4,4 + q5,5 + q6,6 + q7,7= 0 

 

Constraint 3.33: Hop is one way only, NOT diagonal. 

q1,2 + q2,1 ≤ 1 

q1,3 + q3,1 ≤ 1 

… 

q7,5 + q5,7 ≤ 1 
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q7,6 + q6,7 ≤ 1 

 

Constraint 3.34: Together with Equation 18b: Implementing the ‗AND‘ clause. Ensuring that 

a hop is possible only if a regular node hops through a node connected to a clusterhead. 

2 b1,2,3 - x1,2 - q2,3 ≤ 0 

2 b1,2,4 - x1,2 - q2,4 ≤ 0 

2 b1,2,5 - x1,2 - q2,5 ≤ 0 

… 

2 b7,6,3 - x7,6 - q6,3 ≤ 0 

2 b7,6,4 - x7,6 - q6,4 ≤ 0 

2 b7,6,5 - x7,6 - q6,5 ≤ 0 

 

Constraint 3.35: Together with the previous constraint ensuring hop integrity. 

x1,2 + q2,3 - b1,2,3 ≤ 1 

x1,2 + q2,4 - b1,2,4 ≤ 1 

x1,2 + q2,5 - b1,2,5 ≤ 1 

… 

x7,6 + q6,3 - b7,6,3 ≤ 1 

x7,6 + q6,4 - b7,6,4 ≤ 1 

x7,6 + q6,5 - b7,6,5 ≤ 1 

 

The solution obtained is shown in Figure 45. We can see that unlike the standard SR 

solution in Figure 42, node 7, which is furthest from the clusterheads, is now able to hop 

through a closer node, rather than make a more expensive direct connection. 

 

 

Figure 45: Example Solution with SR Backbone and Multihop Connections. 

 

This section illustrated how a single topology can be solved using the different 

models resulting in different solutions depending on the requirements. It can be seen that as 

more and more ‗enhancements‘ are made, the models become more complex. 
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