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ABSTRACT 

 

The main objectives of construction projects include completing the project on time and 

within budget. There is always a tradeoff between time and cost. Time loss is costly and time 

savings can provide benefits to all the parties involved in the project. Time-cost optimization is 

essential for construction projects. The objective of time-cost optimization is to determine the 

optimum project duration corresponding to the minimum total cost. This is accomplished through 

shortening the duration of critical activities in order to reduce the overall project duration. Time-

cost optimization techniques were developed to accelerate the project schedule by expediting the 

construction process and reducing the activities’ durations to meet owner’s convenience and 

expectations, or to recover the lost time when the project performs behind schedule or exhibits a 

negative time variance. Since the 1960’s, several methods for time-cost optimization were 

developed with the aim of minimizing the project cost and duration without paying close attention 

to the effect of float loss resulting from schedule compression. The float is an important element in 

the project schedule that can be used by contractors to change the start of noncritical activities for 

resource management purposes, and by owners to accommodate change orders. Although total float 

is defined as a time contingency against project delays, the consumption of float can lead to serious 

increase in project risk and cost. Time-cost optimization techniques result in reducing the available 

float for noncritical activities and thus reducing the schedule flexibility. The main objective of this 

research is to develop a new time-cost optimization framework that can provide an optimum cost-

time value for a project taking into consideration the effect of float loss. 

This thesis presents two new frameworks that are developed to solve the time-cost 

optimization problem taking into account the float loss impact: a stochastic framework and a Non-

Linear Integer Programming (NLIP) framework. The stochastic framework uses Monte Carlo 

Simulation (MCS) to calculate the effect of float loss on risk. This is later translated into an added 

cost to the optimization problem. The Non-Linear Integer Programming (NLIP) framework uses 
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What’s Best solver to find an efficient solution to the optimization problem while incorporating the 

float loss cost calculated according to the float commodity approach.  

An application example of the frameworks is presented. The deterministic solution, using 

classical time-cost tradeoff techniques, shows the optimum duration of 23 days at a minimum cost 

of $12,490. Using the proposed stochastic framework, the optimum duration is 25 days at a 

minimum cost of $12,709. The Non-Linear Integer Programming (NLIP) framework shows an 

optimum duration of 24 days at a minimum cost of $12,659. The results from both proposed 

frameworks confirmed the research hypothesis, which states that the new optimum solution will be 

at a higher duration and cost. This is due to the fact that the proposed frameworks incorporate the 

effect of float loss on project cost and risk. This presents a new tradeoff between time, cost and 

flexibility (represented in the amount of float). The results obtained using the two frameworks; in 

comparison with the deterministic time-cost tradeoff, are better in terms of schedule flexibility, 

activities’ criticality index, and probability of finishing the project on time. The probability of 

completing the project on time is 0.28 and 0.33, using the nonlinear-integer programming 

framework and the stochastic framework, respectively, as compared to 0.23 in the deterministic 

scenario. Five examples, selected from literature, are solved via the two proposed frameworks. 

Overall, the results of the examples used to validate the developed frameworks have justified them 

as valid, time-saving and reliable methods against float loss oriented risks. The results are 

significant and allow project managers to exercise new tradeoffs between time, cost and flexibility. 

This will ultimately improve the chances of achieving project objectives. 
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CHAPTER ONE: INTRODUCTION 

 

 

1.1 Chapter Overview 

 

Chapter one presents an introduction about the work undertaken in this Thesis. It starts first 

with the statement of the problem followed by the Thesis objectives and scope, and the research 

methodology. Since time is of the essence of any project and since delays can affect the project’s 

cost and schedule, the significance section discusses the advantage of the new framework that will 

account for the float loss risks associated with project compression in terms of time and money and 

will serve in meeting the benefits that the optimization process can provide for construction project 

stakeholders. At the end, the organization of the Thesis is further explored in detail to summarize 

the content of each chapter.   

1.2 General Introduction 

 

During the last years, the construction industry has been on the rise all over the world. This 

increase in demand for construction was the main motive to adopt construction management and 

rank it as a crucial element in the construction process that is needed to handle challenges and risks 

associated with projects. The construction field refers to the word “project” generally as “a 

temporary endeavor undertaken to create a unique product or service” [1]. For all construction 

projects, the main objectives are to handover the project within the required time and cost.  Each 

project has its planned budget and schedule. The budget is a measure of the cost that the project will 

consume in order for the final deliverable to be finished. Generally, the cost is subdivided into 

direct and indirect cost.  The direct cost is simply the cost of the resources such as direct labors, 

materials and equipment and is calculated by summing up the resources’ cost of all the activities or 

work packages. The indirect cost is the summation of general overhead and job overhead; or in 

other words, it’s a cost other than the direct cost that can be assigned to a specific activity.     

Project objectives cannot be attained unless proper management of the construction is 

implemented. Employing effective planning in terms of scheduling, budgeting, safety and quality at 

the early stages of the project is very important since it allows control over the process from its 
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initiation phase to its close out phase, minimizes delays and cost over-runs, and assists in achieving 

the project objectives efficiently. Nowadays, construction project participants are becoming more 

aware of the high impact associated with the delays in terms of cost and litigations. In fact, meeting 

compulsory deadlines of projects are necessary due to the following reasons [2]: 

 Contract agreements and owner’s needs (imposed deadline) 

 Project launching time (time to market demand) 

 The need for committing the resources for other projects that are in need of extra resources; 

the competence of projects over resources available and the need for efficient resource 

utilization  

  Incentives or bonuses rewarding the early completion of a project  

 The desire to avoid unexpected unforeseen conditions or risks 

One way to achieve the delivery of the project at the required completion date and with the 

least cost associated is by the employment of the least-cost scheduling technique or the time-cost 

tradeoff techniques. Time-cost tradeoffs are one of the most frequent and critical decisions that 

project managers usually make. Analyzing the time and the cost is essential in order to obtain an 

optimum schedule that maintains the project deadline while having the lowest cost. Optimization as 

a word refers to the determination of a highest or lowest value over some range, either to maximize 

the profit or minimize the loss. According to Charoenngam and Popescu [3], time-cost optimization 

or trade-off is defined as “a scheduling technique using the critical path method by which the 

project duration is shortened with a minimum of added cost”. In general, project time and cost are 

linked via a relationship. As the project schedule or the project time is shortened, the direct cost of 

critical activities increase, while the indirect cost (overheads) of the project decreases. Figure 1 

demonstrates the project’s time-cost tradeoff curve. When there is a need for crashing the activities 

and accelerating project completion, Gray & Larson [2] mention several options based on the 

resources constraint. Options when resources are not constrained include outsourcing the work like 

by subcontracting, having overtimes or multiple shifts at work, or adding additional resources such 

as extra labors or extra machineries. On the other hand, the available options when resources are 

constrained can include reducing the overall scope of the project, or go with the fast tracking option 

by re-changing the logical relationships between the activities in a way the critical activities are 

performed in a parallel rather than in a sequential basis.  Several suggested models for optimizing 

construction schedules were developed over the previous decade, but none of the reviewed 
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techniques took into account the effect of float loss over the project cost. The proposed framework 

over here is suggesting the implementation of such impact into the optimization process. 

 

Figure 1: Project cost-duration graph [2] 

1.3 Problem Statement 

 

         Optimizing the project’s duration while maintaining the least crashing cost is usually a needed 

issue in order to complete the project activities earlier than originally scheduled and planned or to 

meet the project deadline with the least additional cost. When the project duration is reduced, the 

total float available for noncritical activities is reduced as well. Typically, the optimization process 

involves deterministic procedure that is carried out until an optimum value is reached. Available 

time-cost optimization methods are based on the concept of shortening the duration of the critical 

activities in the network progressively while observing the decrease in total project cost until the 

optimal solution that provides the shortest project duration with the minimum total cost is reached. 

The deterministic optimization technique doesn’t consider the impact of the float lost within the 

noncritical activities when the project duration is being crashed or reduced. Such losses in total float 

can impact the project cost and schedule, and may lead to delays in activities that are in a path; 

causing a ripple effect on the downstream activities of that path; and therefore, losing the chance of 

early finish for these activities. To solve the problem and provide a more accurate and realistic 

results, two frameworks are developed in this Thesis that cope the effect of float loss in terms of 
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cost and time with the optimization technique. Talking from a manual optimization perspective, the 

proposed framework presented in this Thesis proposes the inclusion of float loss cost into the 

compression method by finding the daily trade-off value of total float or the daily change in project 

risk using the commodity approach proposed by De La Garza et al. [4] for the nonlinear-integer 

framework and by @risk simulation for the probabilistic framework. Then for each crashing cycle, 

the float cost (cost impact) value found previously for a specified crashed duration will be added to 

the direct cost generated through that crashing cycle, and then by adding that to the assumed 

indirect cost, total direct cost can be found for that project duration. The process of crashing 

continues until reaching an optimum solution (duration) with least possible total cost/ total extra 

cost. Theoretically, the resulting time-cost optimization curve based on the proposed framework 

will have the same shape as that of the time-cost optimization curve without float cost, but it will be 

shifted further above due to the increased total cost and the optimum point is assumed to be found 

at a higher cost and duration compared to the original optimum point. This assumed resulting curve 

is illustrated in Figure 2. The frameworks details are presented in Chapters Three and Four. 

 

 

 

 

 

 

 

 

 

 

Figure 2: Conventional vs. new time-cost curve 
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1.4 Thesis Objectives 

 

This Thesis seeks refining the project trade-off analysis by incorporating the float loss cost in 

the optimization technique. The main objectives of the Thesis are as follows:  

 Develop a manual-probabilistic framework for project time-cost optimization 

considering the float loss impact in non-critical activities.  

 Develop a Nonlinear-Integer Programming (NLIP) framework to solve the 

optimization problem while considering the float consumption impact. 

1.5 Thesis Scope 

 

Based upon the previous objectives, the Thesis in general aims on highlighting the importance 

of introducing the effect of float loss to the time-cost tradeoff analysis. Float consumption can 

impact the project risk by increasing the chances of having potential delays. The Thesis therefore is 

limited to a manual-probabilistic framework and a nonlinear-integer programming framework that 

can account for the float loss effect in terms of cost.  The manual framework is developed with the 

aid of @risk simulation, while the nonlinear framework is approached via What’s Best solver. 

What’s Best 11.0 solver is used due to its unlimited capacity, the great reliability and speed and the 

ease of use. The nonlinear programming framework (mathematical approach) is chosen to make it a 

user friendly framework that can produce an efficient solution for the optimization problem.  

1.6 Research Methodology 

 

The development of the Thesis in general is done over three phases. In order to meet the 

Thesis objectives, the following methodology and tasks are implemented: 

Phase One: Preliminary Work  

In this phase, the following two tasks are accomplished: 

 Task one: Determining the statement of the problem and the research objectives 
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 Task two: Performing literature review that covers similar, to-date work (like 

journals, books, online papers,...etc) over the topics of optimization techniques, 

time-cost tradeoffs, delays and float. 

Phase Two: Framework Development 

In this phase, the following two tasks are accomplished: 

 Task one: Collecting hypothetical examples that contain crashing data (cost and 

durations) from previously published papers and books 

 Task two: Formulating and developing the framework that can link between the float 

consumption impact and the time-cost tradeoff problem. The two frameworks 

developed are as follows:  

 First framework: Calculates stochastically the float loss impact using Monte 

Carlo Simulation (@risk) based on the idea that when a project is 

compressed, the probability of finishing on time decreases; as well as the 

total float available for noncritical activities. The framework calculates the 

duration difference between the probabilistic compressed duration and the 

deterministic compressed duration and quantifies the float loss cost as a 

product of the duration difference and cost per day.  

 Second framework: Solves the optimization problem using nonlinear-integer 

programming approach (while considering the float loss impact calculated 

using total float traded as a commodity method [4]). The initiation of the 

NLIP follows the stages of defining the objective function, decision variables 

and constraints, writing the mathematical function for the objective, writing 

some description, RHS, and LHS for each constraint, and finally determining 

the relations (<, =, or >) and the coefficients for decision variables in each 

constraint. Then using What’s Best solver, the developed problem is solved 

and an efficient solution is found. 

Phase Three: Validation of the Framework 

In this phase, the following tasks were performed: 



7 
 

 Task One: Comparing the results found using the frameworks against the results 

obtained using conventional deterministic approaches that doesn’t consider float 

loss impact to show the significance of the proposed framework.  

 Task Two: Verification of the framework by applying it over five examples 

selected from literature. 

1.7 Research Significance 

 

Completing any project within the required budget and schedule are the main objectives for 

any project manager. Construction projects are risky by nature, and risks associated with project 

phases can cause delays in project duration and cost overruns.  

Over the last two decades, the time-cost trade-off problem was approached in different aspects for 

the purpose of facilitating the process of optimization and improving the reliability of the results, as 

finding the least costly method to shorten the schedule practically is complicated. This research 

proposes a new framework for project’s time-cost optimization considering a new criterion, which 

is float consumption, that wasn’t adequately considered in the process of optimization before. 

Uncertainties or risks are high during the project life cycle; especially at the early phases of the 

project, and they should be considered when minimizing project cost and duration [5]. Such risks 

can arise from project compression whenever total float is lost, and such a loss can be costly 

depending on the project characteristics and case. Float losses can cause huge effects over the 

project cost and schedule, and may lead to delays in activities that are in a path, resulting on adverse 

impacts over project quality, labor performance and moral, and the resulting disputes. However, 

conventional optimization techniques examine only the decrease in total project cost until a 

minimum cost is reached and neglects the risk impacts associated with the reduction in project 

duration; or in other words, the impact of within-total float losses in noncritical activities.  Due to 

such losses that can happen during the compression cycle, total float can be consumed and non-

critical activities may become critical. Taking into consideration the float consumption or the float 

loss in non-critical activities while crashing will assist in providing a more realistic optimized 

schedule with the least cost needed and will develop a new promising technique. The new proposed 

framework provides decision makers with a better, more efficient tool to solve the time-cost 

optimization problem with the least possible risks associated with float loss in terms of time and 
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money, besides serving the management team in meeting the benefits that the optimization process 

can provide for construction projects.     

1.8 Thesis Organization 

 

The Thesis is divided into six chapters. Each chapter contains the following:  

 

•Provides a brief introduction about the nature of work by stating the objectives, the 
scope, the statement of the problem, the research methodology and the significance 
of the new proposed framework 

Chapter One 

•Explores a brief review about the time-cost optimization techniques: the manual, the 
mathematical and the meta heuristic approches 

•Presents the defenition of each technique and a review of previous works conducted 
in the same area of time-cost trade-off analysis 

•Defines total float and free float concepts,  and presents some of the papers that 
approched this topic.  

•Highlights the effects of delays in construction projects and how float consumption 
can have a potential impact over the project schedule and budget.  

•Explains the float allocation methods avilable from literature and explain why the 
float comodity approach was selected in this Thesis to quantify the float cost per day 
for each crashing cycle 

Chapter Two 

•Explains in detail the deterministic manual solution for the selected time-cost 
optimization problem 

•Explains the new -manual, probabilistic solution  for the optimization problem using 
@risk simulation 

• Compares the results between the determinstic approach and the new-developed 
framework 

Chapter Three 

•Explains how the float cost per day was found for each activity via the total float 
tradded as a comodity approach 

•Expresses manually the optimization solution considering the float loss cost for the 
selected optimization problem 

•Expresses the optimization solution using a mathematical approach; nonlinear-integer 
programming using What's Best solver, and the development of the framework 

•Compares the results between the diffrent approaches 

Chapter Four 

•Validates the two new developed frameworks by applying them over several examples 
and analyzing and discussing the results obtained 

Chapter Five 

•Provides concluding remarks, recommendations and  thoughts for future research  Chapter Six 
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CHAPTER TWO: REVIEW OF LITERATURE 

 

 

2.1    Chapter Overview  

 

This chapter presents an insight review of literature related to the schedule compression and 

float concepts in construction projects. The first part of the chapter illustrates what is meant by 

project time-cost optimization, and explains later the available time-cost optimization techniques 

available including the classical or manual approaches, the mathematical approaches, and the meta-

heuristic approaches and a review of the main studies done by several researchers over these 

techniques. The second part of the chapter explains the float concept and the delays in construction 

projects and how float is used to measure the flexibility and criticality of the project schedule in 

terms of the ability of extending the duration of a certain activity. Moreover, the chapter presents 

how float loss can have an impact over the project in terms of cost and schedule overruns, adverse 

outcome on quality of work, performance, and moral of labors, in addition to resulting claims and 

disputes. In order to demonstrate the effect of float consumption impact on noncritical activities due 

to delays over the project schedule and cost, the chapter explains Sakka & El-Sayegh [6] method to 

control the risks associated with such delays. The last part of the chapter highlights the main 

approaches used to allocate and manage the float and the float ownership issue. Some of the 

discussed approaches include the float commodity approach, the total risk approach, the use of safe 

float approach and the pre-allocation of total float approach. 

2.2     Project Time-Cost Optimization  

 

The Construction Industry Institute (CII) identifies two critical schedule mechanisms: 

schedule reduction and schedule compression. Schedule reduction indicates a reduction in project 

time without increasing the cost inhabited through the use of some techniques such as freezing the 

project’s scope; on the other hand, schedule compression signifies a time reduction with an 

escalated cost [7]. Finding optimum or near optimum solution for the time-cost tradeoff problem 

implies the use of several techniques such as manual time-cost tradeoff (TCT) techniques, 

mathematical techniques or Meta-heuristic techniques.  The following is a literature review 

performed over the previously mentioned three major techniques. 
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2.2.1    Classical or Manual Time-Cost Optimization Technique / TCT Techniques 

 

Time-cost optimization aims to find the least cost point; which is the optimum point 

between the normal activity time-cost point and the crash activity time-cost point. The traditional 

time-cost optimization technique is based on the critical path method (CPM) and has been used in 

the construction industry over the previous fifty years. This technique “requires that all operations 

in a project be represented in activities, each of whose start is dependent upon completion of other 

activities” [8]. Moreover, an “input time-cost curve is required of each activity that describes the 

relationship between activity duration and direct cost for alternative plans for performing the 

activity” [8]. 

Time-cost tradeoff analysis usually assumes that the project duration is shortened through 

critical activities only and the amount of crashing time for each activity is limited. Moreover, it 

assumes that the cost of overheads is invariable during project duration, while the direct costs are 

linear between the normal cost and the crash cost for an activity. The planned duration in time-cost 

tradeoff analysis is assumed to be any point between the normal duration and crash duration for an 

activity [9]. 

Time-cost optimization is based on the idea of shortening the critical activities with the 

minimal increase in cost per unit of time. It is usually performed through the following steps: 

1. Developing the schedule based on the normal duration and normal cost of project’s 

activities. 

2. Estimating the crash cost and duration for each activity and finding the crashing slope. The 

crashing slope, which is a constant cost per unit of time, can be found through the 

following formula:  

Crash cost per time (Slope) = (Crash cost – Normal cost) / (Normal time – Crash time)  

Figure 3 represents the continuous linear model of utility curve of an activity including the 

crashing slope. 

3. Identifying the critical activities on the critical path, then identifying the critical activity 

that can be crashed with the least cost; that is, the activity with the least crashing slope. If 

there is more than one critical path, a critical activity from each path should be selected and 

crashed as long as the two selected activities can still be crashed and the total crash cost of 

the selected activities is the smallest.   
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                             Figure 3: Continuous linear model of utility curve of an activity 

 

4. Shortening the activity by the units required ( maximum crashing units = normal time – 

crashing time). 

5. The new cost and duration of the project should be calculated at this stage, and then steps 

through 3 to 5 should be repeated until the optimum point, where “the overhead cost 

savings are greater than the increased direct costs” [3], is achieved. 

 Hinze [10] explained a logical method for crashing that considers the schedule network as a 

rigid frame. This technique is based on the use of “Link lag values” that helps in determining the 

possible number of times the activity can be crashed. The method involves the following steps: 

1. The early start and early finish for each activity in the network and their corresponding 

duration-cost data are computed. 
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2. Link lag values are found by subtracting the early start value of each successor activity 

from the early finish time of its predecessor activity. Generally, zero and non-zero link lag 

values are distinguished. Zero link lag values have to be distinguished graphically from the 

non-zero ones while compressing the schedule (graphically, zero link lags will be 

represented through double lines connecting the activities, while non-zero links will be 

presented as a one connecting line). An important value to be computed and updated at 

each crashing cycle for each activity is the network interaction limit (NIL). The NIL 

represents “the number of days an activity can be shortened before some other link lag 

value becomes zero” [10]. If the vertical line is to pass through the last activity in the 

network, The NIL value for that last activity is limitless or infinity. 

3.  At each compression cycle, the activity with least crashing cost is selected. 

4. After deciding the activity (or activities depending on the critical path) to be crashed, a 

vertical line down through the network is drawn. The line will pass through the activity or 

activities being crashed and through any non-zero link lags that may be in the path of the 

line. Zero links can’t be passed because otherwise their value will be reduced. This line 

will show the activities that might be affected with each crashing cycle. 

5. To determine the number of days an activity can be crashed, one has to compare the 

number of days an activity can be shortened with the number of days in the crossed NIL’s. 

The one with the smallest value will give the number of compressing days of the crashed 

activity.  

6. At each crashing cycle, network and NIL values have to be updated. 

7. Crashing iterations continue until the network can’t be shortened further.  This point is 

reached when “all the activities on a critical path can no longer be shortened, and while 

there are other activities that can be shortened and the project duration would not be 

altered” [10].  

Maximum flow-Minimal cut is another manual optimization method for construction 

schedules that was discussed by Jinming & Rahbar [11]. This method is based on maximal flow-

minimal cut theory that states that “in the network from start to end the maximal flow is equal to the 

minimum cut set capacity” [11]. This method is an improvement over the previous classical 

optimization technique as it is possible to solve it through programming approach. This 
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optimization method is helpful when several compression sets are required for review (when 

multiple critical paths with interrelated activities occur).   

Isidore & Back [7] proposed an improved model of the least-cost scheduling technique or 

the crashing technique in which variability of activities in terms of cost and time is taken into 

consideration. In this model, range estimating and probabilistic scheduling is applied over the data 

then the resulting data is analyzed in a statistical way to reach an optimum project cost and duration 

at higher confidence level. Yang [12] proposed a chance-constrained programming model to 

incorporate the variability of funding then translate it into a corresponding deterministic at pre-

defined confidence level. The equivalent deterministic is then incorporated to the traditional time-

cost optimization technique.  

2.2.2    Mathematical Optimization Techniques 

 

Mathematical programming generally refers to selecting the best element from some set of 

available alternatives. It is solved in a way that the objective function is maximized or minimized 

and the real or integer optimized solution is picked. Some of the mathematical approaches that can 

serve in decision making problems include linear programming, nonlinear programming, integer 

programming, dynamic programming, simulation models, stochastic models and inventory models. 

In these approaches, the relationship between time and cost of an activity is assumed to be either: 

linear/nonlinear, concave/not fixed, discrete/ continuous, or a hybrid of the previously mentioned.   

Three main types of mathematical optimization techniques are distinguished in the construction 

management field:  

 Linear Programming: linear programming is an optimization technique used with 

linear functions subject to linear constraints (constraints can be equalities or 

inequalities). This technique is first developed by Leonid Kantorovich in 1939, and 

then used in World War Two for military optimization problems. In fact, linear 

programming is helpful in many other applications other than the military field. It 

served the applications of “transportation and distribution, scheduling, production 

and inventory management, telecommunication, agriculture and more”. [13]. 

Each linear programming (LP) problem has an objective function, constraints and 

decision variables. An LP problem can be bounded feasible, unbounded feasible, or 
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infeasible, where feasible LP problem is said to be unbounded if the objective 

function assumes randomly large positive or negative values at feasible vectors; or 

else it is called a bounded problem. The feasible vector that achieves the required 

value of the objective function is the optimum solution [14]. 

Moreover, the following characteristics apply for linear programming problems:  

 All the relations between variables are linear, and variables must be 

continuous. 

 Single objective function applies: the main objective is to find the 

maximum or minimum output. 

 Constraints need to be maintained to indicate the feasible vectors. 

 Decision variables are assumed to be continuous and of any number. 

Therefore, linear programming, when used in typical time-cost tradeoff problem, 

aims in minimizing total project cost subject to project deadline constraint. Linear 

programming problems are solved generally using one of the following approaches: 

graphical approach, simplex method, transportation method or assignment method. 

The simplex method is the most used method for solving LP problems. This method, 

which is created in 1947, examines in sequence (iterations) the vertices of the 

solution. This method selects the variables that will generate the maximum (or 

minimum) change at each iteration until a final solution is reached, and it can predict 

if no solution case is present. Generally speaking, initiating a linear programming 

problem involves the following steps [15], [16]:  

 Identifying the decision variables. 

 Listing the objective functions in terms of the function to be 

optimized and the expression that describes the performance measure 

(money profit, number of labors, duration, etc). 

 Listing the resource restrictions and the boundary of constraints. 

A standard LP problem can be of the following form (adopted from Module for      

linear programming- the simplex method [17] ):  

 The standard form of the linear programming problem is to Maximize F(x) of n 

variables x = (x1, x2, …,xn) 
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(1) Maximize z = F(x1, x2, ….,xn) = c1x1 + c2x2 + …+ cnxn 

= ∑       
     

Where cj ≥ 0 for j =1,2,…,n 

(2) Subject to the m constraints: ai,1 x1 + ai,2 x2 + …+ ai,n xn ≤ bi ,where bi ≥ 0 for i= 

1,2,…,n  

(3) With the primary constraints xj ≥ 0 for j= 1,2,…,n. The coefficients cj and ai,j 

can be any real number. It is often the case that m > n, but the cases m = n or m 

< n can occur 

 Nonlinear Programming: represents the mathematical optimization technique used to 

solve equality or inequality systems to maximize or minimize an objective function 

subject to nonlinear constraints (or sometimes the objective function can be 

nonlinear).  Nonlinear programming has been widely used in several applications 

such as resource allocation, production planning, routing data networks, computer 

aided design, solution of equilibrium models, data analysis and least squares 

formulation and modeling human or organizational behavior [18]. This programming 

technique is inspired from the study of “calculus of variations” during the eighteenth 

and nineteenth centuries. The general form of a typical nonlinear optimization 

problem can be stated as followed [19]: 

Minimize f(x) 

Subject to gi(x) = 0,  i ϵ Ԑ 

gi(x) = 0,   i ϵ I 

Where;  

Ԑ : index set for the equality constraints 

I: index set for the inequality constraints 

Nonlinear programming generally has to consider and analyze all the solutions (local 

maxima and local minima) in the feasible region not only the solutions on the 

boundary, in which the global maxima or minima is considered to be the optimal 

solution. The local optimum point is a point at which its value; in case of maximizing 

for example, exceeds the value of all surrounding points but may not exceed that of 

distant points. The second derivative of the function can describe the function’s shape 

whether its concave or convex; and therefore, can imply whether the optimum 

solution is local or global as the second derivative is defined as the rate of change in 
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the first derivative. For a multivariate function (a function with several variables) 

with a stationary point XA, it can have a) a local maximum at XA if the function is 

concaved locally, b) a global maximum at XA if the function is strictly concaved via 

the considered domain, c) a local minimum at XA if the function is of a convex shape 

locally, d) a global minimum at XA if the function is strictly of a convex shape, e) a 

saddle point if the function is neither concave nor convex [20] , [21], [22]. 

To restate the previously mentioned words mathematically, the following conditions 

can guarantee having any local optimum as a global optimum:   

- For the function f(x); 
    

   
 ≤ 0 for all x                f(x) is a concave function (a 

function that is always curving down or not curving at all). 

-  For the function f(x); 
    

   
 ≥ 0 for all x                f(x)  is a convex function (a 

function that is always curving upward or not curving at all). Figure 4 

illustrates an example of a concave and a convex function. 

 

                                  Figure 4: Example illustrating a concave function and a convex function [19] 

 Integer Programming: a class of mathematical optimization techniques that restricts 

the decision variables to be integers. Such a techniques can be helpful in many 

applications such as capital budgeting (when selecting best potential investment), 

scheduling, and modeling distribution systems. 

 Dynamic Programming: is a mathematical method that solves complex optimization 

problems by breaking them into simpler treads. It is first invented by Richard 

Bellman in the early 1950s. This technique identifies a collection of subproblems 
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and solves them one by one by using the answers of the small subproblems to find 

the larger ones. “The process starts with a small portion of the original problem and 

finds the optimal solution for this smaller problem. It then enlarges the problem 

finding the current optimal solution from the preceding one until the original 

problem is solved entirely” [23].  

Several researches adopted the mathematical techniques to solve optimization problems. 

Islam et al. [24] proposed a linear algorithm (LP) to solve the optimization problem, while Klansek 

& Psunder [25] presented the cost optimal scheduling using an NLP algorithm. Soliman & Ezeldin 

[23] proposed a composite technique that combines genetic algorithms with dynamic programming 

to solve uncertain optimization problems of nonserial repetitive projects, such as multiunit housing 

projects and retail network development projects.  Chassiakos & Sakellaropoulos, [26] suggested 

the incorporation of project characteristics into the optimization process to produce more realistic 

results. Such characteristics include generalized precedence relationships between activities, 

external time constraints, activity planning constraints, and bounces/penalties. To solve the 

generated optimization problem, linear programming or linear/integer programming can be used to 

find the exact optimum solution. Haksever & Moussourakis [27] used the mixed integer 

programming technique to solve optimization problems while accounting for any type of cost 

function (linear, piecewise, or discrete). Haksever & Moussourakis [28] proposed three mixed-

integer linear programming models to solve project compressing problems while assuming 

nonlinear activity time-cost functions.  Perera [29] made a use of linear programming technique to 

solve projects time-cost tradeoff problems with overlapping precedence networks. His model was 

valid for any large network, part of a network and to multi-fragnet networks. Liu et al. [30] 

suggested the use of linear and integer (LP/ IP) programming models to solve optimization 

problems. Massourakis & Haksever [31] proposed a zero-one mixed integer model to solve the 

optimization problem while finding the correct early and late start times of the schedule activities, 

along with a “what if” analysis to account for different perspectives of the project cases. Deckro et 

al. [32] presented a series of nonlinear time-cost tradeoff models to solve the optimization problem 

in construction projects by representing the time-cost relationships via nonlinear quadratic functions 

depending on the project case. Finally, Coskunoglu [33] used a probabilistic version of LP called 

chance constrained linear programming (CCLP) to find the optimal compression of project schedule 

considering the probabilistic nature of activities durations.  
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2.2.3    Meta-Heuristic Techniques 

 

Meta-heuristic techniques are classified into three types: Evolutionary Algorithms (EA), 

Genetic algorithm (GA), and Genetic Programming (GP) techniques. A genetic algorithm in 

optimization is a global heuristic examination technique that evolved from a particular class of 

evolutionary algorithms and used to compute near exact or approximate optimum solutions. EA 

algorithms are stochastic search methods that imitate the biological evolution and/or the social 

behavior of species kinds [34]. This method proved to have some advantages over the previous 

mathematical techniques as it can offer an intermediate solution at any iteration and it can search 

the whole space of the solution in a shorter time. From the EA algorithms, three distinguished types 

are used in the construction management area:  Particle Swarm Optimization (PSO), Ant Colony 

Optimization (ACO), and modified Shuffled Frog Leaping (SFL). Genetic algorithms (GA) are 

heuristic techniques that are used to solve single and multi-objective optimization problems. The 

formation of a GA problem requires generating a possible set of solutions or a “population” for the 

problem, then the reasonable solutions are combined to generate new solutions to the next iteration 

(generation). Later, in each generation, and to form a new population, the fitness for individual and 

multiple solutions in the population are evaluated and modified. The process continues at each 

generation and new populations are formed. Eventually, the new modified solutions replace the 

poorer solutions of the original initial population or solution and the process is repeated until a near 

optimum solution is reached [35]. The accuracy of GA technique depends highly on the number of 

generations developed and the fitness level [35]. GP algorithms are the automated extension of GA. 

The GP algorithms are helpful in many complicated applications such as automatic design, pattern 

recognition, robotic control and time scheduling. Due to uncertainty and vagueness in some 

applications such as optimization, control, decision making and approximate reasoning, fuzzy logic 

was developed. This type of logic uses sets of normal and convex numbers and solves the problem 

using special methods and shapes like triangular and trapezoidal shapes. The GA, EA, GP, and 

fuzzy logics have been increasingly used in the field of construction management to solve 

optimization and decision making problems. Many researchers have tackled such techniques to 

solve schedule compressing problems. Castro-Lacouture et al. [36] used fuzzy logic to produce 

construction schedules with restrictions on time, cost and material and incorporated the time-cost 

tradeoff into the schedule assuming linear fuzzy relations.  Fayek & Oliveros [37] integrated the 

daily site reporting of activity progress and delays with a schedule updating and forecasting system 

http://en.wikipedia.org/wiki/Evolutionary_algorithm
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for construction project controlling using fuzzy logic model. Ng & Zhang [38] validate the use of 

ant colony optimization technique to solve optimization or schedule compressing papers. Li & Love 

[39] suggested some improvements over the basic GA for the purpose of increasing the efficiency 

and reducing the computational cost involved when finding the optimum solution for the time-cost 

tradeoff. Que [40] proposed a model that uses the GA optimization technique that takes care of all 

scheduling parameters to ensure realistic results. Zahraie & Tavakolan [41] used two concepts of 

time-cost trade-off and resource leveling and allocation in a stochastic multiobjective optimization 

model which minimizes the total project time, cost, and resource moments. Leu & Yang [42] used 

GA technique to propose a multi-criteria computational optimal scheduling model that integrates 

the time-cost tradeoff, resource limited and resource leveling models.  

2.3    Free Float and Total Float 

 

 The float is a measure of the flexibility and criticality of the project schedule. It measures 

flexibility in a matter of the ability of a certain activity to have its performance time extended. On 

the other hand, criticality of an activity is established through the following statement: the more 

float an activity has, the less critical the activity is and vice versa. Alternatively, critical activities 

can be defined as activities with zero or no total float. 

According to Charoenngam and Popescu [3], free float or slack is defined as “the amount of 

time by which the finish time of an activity may exceed its earliest finish time without increasing 

the earliest start time of any other activity immediately following”. The total float indicates by how 

many time units is the activity path away from the late finish of the project. Total float should be 

distinguished from free float as total float belongs to the activities path (it is shared by all the 

activities), while the free float belongs to a particular activity. Farr & Griffis [43] labels the total 

float through Equation 1  

                                             TF(i, j) = LS(i, j) – ES(i, j) = LF(i, j) – EF(i, j)                                    (1) 

Where;  

     TF: The total time that an activity may be postponed without delaying project completion 

             LS: The latest time at which an activity may start 
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ES: The earliest time at which an activity may start 

LF: The latest time at which an activity may finish 

EF: The earliest time at which an activity may finish  

While the free float can be calculated using Equation 2 

                                        FF(i, j) = Min [ES(j, k) for all k] – EF(i, j)                                              (2) 

Where; 

FF: The maximum time that an activity may be postponed without delaying the earliest start 

or earliest finish of any following activity 

Free float can occur in certain cases when merge activities arise. “Free float can occur only 

when more than one arrow goes into a node; one or more of the multiple arrows entering the node 

can possess free float” [44]. Since free float can’t be shared within the activities, its importance 

compared to the total float is minimal. Free float can be useful when selecting activities for resource 

leveling.  

As float is a key element in project scheduling, several studies were raised over this topic 

over the years. Ziegler [45] introduced the minimal and maximal float concept and proposed 

computation approaches; MAXF and MINF, to calculate the independent (minimal) and total 

(maximal) floats. The concept of minimal float represents the float present in “worst case” while 

maximal float represents the float available in the “best case” [45]. Raz and Marshall [46] proposed 

a new definition and calculation method for total and free float that is related to the availability of 

resources in the project. The method improves the traditional ways of calculating the total and free 

float but using two new introduced concepts: the early scheduled dates and the late scheduled dates. 

The early scheduled start date represents the earliest date an activity can begin at provided all 

prerequisites and resources are available, while the late scheduled finish represents “the latest the 

activity can finish without delaying the project completion and without exceeding resource 

availability constraints” [46]. Gong D. [47] realized the effect of uncertainties in non-critical 

activities over project cost and schedule; therefore, he developed a method to find the optimum 

float use in a project network. Optimum float was defined as the “point at which the sum of the cost 

resulting from float use and the cost resulting from project delay due to float use is the lowest” [47]. 
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The optimization can be achieved by integrating the time disturbance analysis and the time 

dependent cost (TDC) that is defined as the varying part of project cost that is dependent on 

activities’ duration. Lucko and Orozco [48] originated a mathematical method to compute float in 

repetitive projects with linear schedules using singularity functions and equations that define the 

activities and their buffers “over a continuous range” [48] . In their paper, they were able to 

calculate and define the total float, safety float, free float, independent float and interfering float in 

LSM. Lim et al. [49] refined the float concept in resource-constrained projects in an attempt to 

overcome the limitations of the previous methods used in such projects. They were able to develop 

an algorithm to compute float and identify critical activities using the introduced concepts of group 

float, float, critical activity, critical set, and float graphs. Moreover, they introduced the notion 

“negative float” along with the negative critical activity, negative group float, negative float set and 

negative critical set in order to “investigate the effect on the minimum completion time resulting 

from reduced activity duration” [49].  

2.4     Delays in Construction Projects  

 

The need for time-cost optimization models arises from the possible delays that can happen 

and affect the project schedule; as well as, the project overall cost. Construction delays are any 

event occurring throughout the project planning or execution phases that may extend the project 

duration and require additional time, cost and work (revision of plans, addition of works, more time 

for decision making and material re-sourcing) than what initially is agreed on in the contract. 

According to Assaf and Al-Hejji [50], construction delays are defined as “the time overrun either 

beyond completion date specified in a contract, or beyond the date that the parties agreed upon for 

delivery of a project.”  Causes of delays vary depending on the delay kind. Abd El-Razek et al. [51] 

did a comprehensive study about the construction delays in Egypt and were able to classify the 

overall delays into six groups: financing, manpower, changes (design errors and change orders, 

contractual relationships, environment, equipments, rules and regulations, materials and scheduling 

and control. Faridi & El-Sayegh [52] analyzed the top 10 most major causes of delays in the United 

Arab Emirates. They found that around 50% of the projects in the UAE construction projects 

encounter delays in the completion time, and that preparation and approval of drawings ranks as the 

first delay cause. Some other distinguished delay causes in the UAE were the insufficient early 

planning of the project, slow decision making process by the owner, inadequate number of skilled 
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manpower, poor site management, financing problems and slow process of obtaining permits or 

approvals from municipality or other government authorities. The effects of such delays are not 

confined to the delay of the completion date and cost overruns only; their effect may extend to have 

an adverse effect on quality of work, adverse effect on performance and moral of labors, beside the 

resulted claims and disputes. Moreover, delays can adversely influence the overall economy of the 

countries.  

2.5     Float Consumption Impact 

 

Sakka & El- Sayegh [6] developed a method to control the risks associated with the float loss 

due to delays in construction projects and its effect on noncritical activities. Their study is based on 

the fact that conventional CPM method cannot measure the impact of within float delays of 

noncritical activities on the total cost and time of the project. In fact, float is considered as a by-

product of the CPM computation, and CPM theoretically assumes that duration and cost of 

activities in construction projects are deterministic; and so is the project total duration and cost. 

However, in real life, project’s total cost and duration are not fixed due to the uncertainty resulting 

from several risks associated with each project. “The overall compression characteristics of the 

network model [CPM] are too vague to provide other than an approximate forecast of the time-cost 

behavior” [33]. Sakka & El- Sayegh method predicts the safe float loss level for any activity in a 

given project schedule. The method uses the Multiple Simulation Analysis Technique (MSAT) to 

combine the results of cost estimates and stochastic scheduling using Monte Carlo simulation, and 

then converts the stochastic results using a least-squares linear/ nonlinear regression into a 

polynomial function that specifies the float impact by relating directly the float consumption value 

to the project duration and cost at a certain confidence rank. Their analysis method suggests six 

major stages [6]:  

Stage One: Preliminary Analysis: In this stage the CPM computations are preformed to find the 

critical path and the project’s total duration and cost 

Stage Two: Stochastic Analysis of Baseline Schedule: The use of Monte Carlo simulation using at-

Risk is applied over the baseline schedule to find the mean project duration and standard deviation 

in this stage. The simulations produce a set of different durations with their corresponding total 

costs, indicating that for a project’s duration there isn’t a mutually exclusive cost values. The 
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critical index (CI) for each activity is then calculated from the results obtained from the simulation 

analysis; where the critical index is a percentage measure of the probability of an activity to be on 

the critical 

Stage Three: Development of Scenarios: Based on the CI values developed in the previous stage for 

all the activities, delay scenarios for the activities with the highest CI values can be produced using 

the simulation.  

Stage Four: Stochastic Analysis of Scenarios: For each activity, delay scenarios are investigated to 

show the affected project duration at different values of float loss. All the scenarios are then 

analyzed in order to monitor the change in each activity’s CI and the critical path  

 Stage Five: Project Duration Impact Model: At this stage the float loss value and the corresponding 

mean project duration found in Stage 4 for each activity are plotted, and the best fit equation 

(regression relationship) is found.  

Stage Six: Cost Impact Model: The aim of this stage is to select a cost that is directly related to the 

delay in a given activity at a sufficient confidence level such that there is a small possibility of 

exceeding that value. To do so, the MSAT [53] is used at this stage to calculate the impact of 

within-float loss in noncritical activities. MSAT, in general, relates the results of cost range 

estimates and stochastic scheduling such that high confidence level values can be selected for a 

project cost and schedule. At this stage, for each cost data-set generated in Stage two, percentile 

level is determined, then the costs and their associated percentile level at all project durations are 

plotted and fitted into a polynomial. Then a confidence level is chosen and its corresponding cost is 

calculated for all values of float loss in all the activities. Then, the costs found at the specified 

confidence level are fitted with the float loss values in a linear/ nonlinear model to produce another 

polynomial that can quantify the total cost impact at a certain confidence level.   

2.6     Float Allocation and Float Ownership 

 

According to Wickwire et al. [54], float is recognized as an expiring resource that doesn’t 

belong to any party but at the same time it is available to be used by the project parties on a fair 

basis. Nowadays, several approaches are used in the construction industry to allocate float. A 

summary of the most known approaches is presented below: 
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 Owner ownership of float: this approach is based on the claim that the owner can own the 

float as he is responsible for the costs and risks associated with the project in cases when the 

owner accepts to bear the cost of project risk [55], [56].  

 Contractor ownership of float: this approach states that the contractor has the right to own 

the float since he has to have a control over the project labors, equipment and cash flow to 

deliver the project on time and avoid cost overruns especially in lump-sum contracts [56]. 

 Project float approach: in this approach the float is kept free for use to whoever requests it 

first from the project parties. This approach provides ability to the owner to issue change 

orders and ability to the contractor to re-arrange the resources when needed, but one of its 

main disadvantages is the disagreements between the project parties when non-compensable 

delays occur [56].    

 Bar approach: the bar approach established by Ponce de Leon [57] represents the total float 

of each activity as a bar in the bar chart to observe the critical and noncritical path delays. 

This method; unlike the project float approach, restricts the disentitled float   

 Allocating Float to individual activities along a path of activities: this is an approach used to 

distribute the float to individual activities along a path using quantitative and qualitative 

selection criteria. The shortcoming of this method is that it doesn’t solve clearly the float 

ownership problem between the project parties [56].   

 Day by day approach: inspired by the total float management method; the day by day 

approach is a systematic method to record and control the float consumption due to the 

owner and the contractor delays in the project and place a cost for the lost total float [56].     

 Using safe float approach: this approach is developed by Gong and Rowings [58] to 

illustrate the concept of safe float to project scheduling. This method specifies the range of 

safe float to be used by the project parties in general so as to logically minimize the risks 

associated with delays in noncritical activities, based on a time-disturbance analysis over the 

project schedule.   

 Contract risk approach: developed by Householder and Rutland [59], the contract risk 

approach specifies that the float is owned by the party that assumes full responsibility for 

the project risk. In some cases float can be shared between the owner and the contractor 

based on an agreed percent of share for project risk. 
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 Total float traded as commodity approach: this method assumes that the total float of each 

activity is a product or a “commodity” that is traded between the owner and the contractor 

based on the relationship presented in Equation 3 [4]: 

                                                        Float cost per day = 
(   )  (   )

(  )
                                 (3) 

Where;  

EFC: early finish cost of the activity in question  

LFC: Late finish cost of the activity in question 

TF: Activity Total Float 

The commodity method is in favor of the contractor as it provides for him a good regulation 

over float besides offering a clear view about the time money value when negotiations about 

delays and change orders are issued. As the owner’s opportunities are saved via liquidated 

damages, the commodity method can save contractor’s right for compensation for the 

potential impacts associated with increased overhead costs and acceleration costs, lost 

learning rates, lost moral, resource mobilization problems and lost opportunities. According 

to De La Garza et al. [4]: “the model perceives total float as a time contingency for both 

owners and contractors, and as an incentive for contractors to finish early”. This method is 

selected in this Thesis to quantify, in number, the risk cost per day when float is consumed 

in noncritical activities as “flexible time taken away from the schedule needs to be replaced 

with monetary contingencies” [4]. Using this method, the user will be able to identify which 

activities have more float cost than others to compare between opportunities and decide 

which one to crash when needed. Moreover, the paper presents a sample of contract 

language to be used in accordance with the proposed commodity approach to insure the 

value of total float and allow the trade-in process on demand so as to mitigate any 

corresponding uncertainty while using float.   

 Preallocation of total float: this method is developed by Garza et. al [60] to overcome the 

shortcomings of the previously discussed approaches. In this method the project total float is 

distributed between the project parties based on a pre-agreed ratio (also called allowable 

total float) to be stated in the contract clauses. The simplest ratio is the 50/50 ratio in which 

the owner and the contractor each have 50% of the total float for use and if one party didn’t 

use his share the other party can have the chance of using that share, while if one party 
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consumes more than his allowable total float and causes delays that impacts the critical path 

then this party is responsible for that delay and any damages or incurred costs.  

 Total risk approach: Al-Gahtani  [56] developed the total risk approach to introduce the total 

risk point of view to the float ownership. This method in general assigns the float to parties 

based on the amount of risk they encounter in the project. Moreover, it uses the commodity 

concept and the day by day approach to allocate the float. “The approach is based on the 

basic concept that the party who has the greatest risk in a project should be entitled to float 

ownership and deserves compensation from other project parties who increase the risk 

associated with project by consuming the float” [56] 

 

2.7     Chapter Conclusion 

 

The concept of time-cost optimization is one of the main topics that were addressed by the 

researchers over the years. In general, two schedule mechanisms are identified in the construction 

industry: schedule reduction and schedule compression. Schedule compression is the main concept 

to be identified in this Thesis, in which the project duration will be shortened with an associated 

incurred extra cost. 

In order to find the optimum or near-optimum solutions for schedule compression, 

techniques such as manual, mathematical and meta-hierastic techniques can be used.  

The manual time-cost tradeoff involves finding the optimum duration and cost based on the 

CPM method by a standard systematic computation method that uses activity crashing slopes. 

Linear programming is a mathematical optimization approach that uses linear functions subject to 

linear constraints, while on the other hand; the non-linear optimization maximize or minimize an 

objective function subject to nonlinear constraints (or sometimes the objective function can be 

nonlinear).The Meta-heuristic techniques are global heuristic techniques that can analyze and solve 

stochastically the optimum or near optimum solutions.   

Several meanings are interpreted to define the project float. Some defined float as an 

expiring resource that is used to measure the criticality and flexibility of project schedule. 

Generally, float is a by-product of CPM that represents the amount of time available for noncritical 

activities to be delayed without extending the project duration.  
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Since time is money, and since time is of the essence in any project contract, there is a need 

to address the float consumption and the float allocation in construction projects.  Several 

approaches for float allocation and management are discussed previously in the chapter. The 

approaches are the owner ownership approach, the contractor ownership approach, the bar 

approach, the day by day approach, the float commodity approach, the total risk approach, the pre-

allocation of total float approach, the contract risk approach, the use of safe float approach, the 

project float approach, and allocating float to individual activities along a path of activities 

approach. The float commodity approach is selected in this Thesis to find the daily trade-off cost 

for the lost float in noncritical activities in order to use it in the proposed optimization framework 

later.  

To conclude, the review of related literature has pointed out the originality of the idea of 

incorporating the effect of float loss as a unique idea that wasn’t approached before, and 

emphasized the need to include the effect of float loss in the time-cost tradeoff analysis to account 

for risks associated with the float loss in noncritical activities and improve the reliability and 

effectiveness of the time-cost optimization process in construction projects.  
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CHAPTER THREE: MANUAL-PROBABILISTIC OPTIMIZATION 

FRAMEWORK CONSIDERING FLOAT CONSUMPTION IMPACT 

 

3.1 Chapter Overview 

 

This chapter addresses the manual stochastic method of the proposed framework. The first 

part of the chapter states the assumptions and the proposed method, while the second part analyzes 

in detail a small project example; showing the detailed solution of this example via the 

deterministic approach and the new proposed framework. The framework is inspired by the fact that 

reducing the project duration reduces the float of non-critical activities; as well as, the probability of 

completing the project on time.  It uses Monte Carlo simulation to analyze stochastically, at each 

crashing cycle, the float loss impact over the project total cost. 

3.2 Proposed Framework 

3.2.1 Assumptions 

 

 Each activity is to be crashed by one day per cycle 

 Activity’s duration and cost are defined as a normal probability distribution with a mean 

and a standard deviation 

 Duration of the activity equals its mean duration 

 While crashing an activity per day, the activity duration will be decreased by one day; as 

well as the mean. The standard deviation is assumed to be equal in both cases 

 10000 iterations are used for each run by @risk 

3.2.2 Manual-Stochastic Framework Steps 

 

 Step One: Normal Schedule Analysis 

 Perform stochastic analysis over the Baseline Schedule or the network 

 Find the mean “Mij” and the standard deviation “Stdij” of the project duration, where the 

subscript i represents the number of crashing cycles, and the subscript j represents the 

activity being crashed. 
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 Determine the probability of completing the project on time “POF”; given the mean and 

the standard deviation found in the previous step. 

 Step Two: Schedule Compression Analysis 

 If one critical path is available, the succeeding steps can be followed:  

a) Identify the critical activities. All critical activities are to be considered for the 

analysis.   

b) Perform stochastic analysis over the new crashed network 

c) Find the new project duration mean “Mij” and standard deviation “Stdij”  

d) Find the new probability of finishing the project on time associated with the new 

mean and standard deviation of the new crashed duration 

e) Using Equation 4, Calculate the difference between the new obtained 

probabilistic duration (found using the probability of finishing at the previous 

step and the Mij and Stdij found after the new simulation run at step two) and the 

new deterministic crashed duration at this step to find the float loss impact 

“FLD” in terms of days:  

                                         FLDij= Dprob,ij – Ddet, ij                                                                         (4) 

Where; 

         Dprob,ij = Probabilistic duration for crashed activity j at cycle i  

          Ddet, ij = deterministic duration for crashed activity j at cycle i  

          FLDij = Float loss impact in terms of days for crashed activity j at cycle i  

f) Float loss Cost “FLC” = (the difference between the two durations in days) x (the 

savings per day). Equation 5 represents the float loss cost as a product of the 

duration difference and the savings per day.   

                                        FLCij = FLDij x CSPD                                                                            (5) 

Where; 

 CSPD= Savings per day (indirect cost, incentives, …etc) 

FLCij = Float loss cost for crashed activity j at cycle i 

g) Add the float cost to the extra direct cost to find the new total extra cost   

h) Steps b through g will be repeated for all critical activities identified. The activity 

with the least total extra cost will be crashed at this point   
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i) Float impact in days (at the following crashing cycle) = duration associated with 

probability of finishing the project on time of the previous cycle – new 

deterministic duration of the new crashed schedule at the cycle in point   

j) Steps a – i will be repeated progressively until reaching the optimum solution 

 If two or more critical paths are available:  

a) Check the available activities to be crashed (either a common activity or two or 

more activities that correspond to the lowest crashing slope) 

b) Perform the same steps that were performed when one critical path has occurred 

while considering all possible cases occurring, then compare the accepted cases 

to select the activity/activities with the lowest crashing impact 

Figure 5 illustrates the framework steps via a flowchart. 

 

 



31 
 

Figure 5: Framework flowchart 
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3.3     Application Example 

             

           Example one (adopted from Hinze [10]) explains first the manual-deterministic steps carried 

out to compute the optimum project duration and total cost and the minimum project duration and 

its associated total cost. Four cycles are needed to reach the optimum project duration, while three 

extra cycles are needed to reach the least project duration. The optimum project duration is 23 days 

with an associated cost of $12,490, while the minimum project duration and its associated cost are 

20 days, $12,600, respectively.   

Table 1 presents the project data in terms of durations and costs. The indirect cost is 

assumed to be $ 280 per day. The last two columns; duration mean and duration standard deviation, 

are added to Hinze [10] example in order to use them in the stochastic analysis. 

Table 1: Project normal & crashed costs and durations 

Activity 
Normal 

Duration 

Normal 

Cost 

Crashed 

Duration 

Crashing 

Cost 

Potential 

Days 

Saved 

Cost per 

Day 

Duration 

Mean 

Duration 

Standard 

Deviation 

A 1 800 1 800 0 - 1 1.2 

B 7 1,000 4 1,600 3 200 7 2 

C 6 300 4 500 2 100 6 1.5 

D 3 400 2 800 1 400 3 1.35 

E 3 100 1 200 2 50 3 1.88 

F 7 500 5 800 2 150 7 2.12 

G 8 200 4 1,400 4 300 8 3 

H 7 350 6 600 1 250 7 1.25 

I 5 700 3 850 2 75 5 2.5 

J 3 500 2 1,000 1 500 3 1.5 

K 5 450 4 800 1 350 5 1.6 

                                   Total= 5300 

3.3.1   Normal Project Compression (Deterministic Approach) 

 

This section presents the solution cycles using normal deterministic project compression 

without considering the effect of float loss: 

Cycle Zero: Normal Schedule: Based on the baseline schedule network represented in Figure 6, the 

project duration is found to be 27 days, with an associated total project cost equal to $12,860 that 

consists of a direct cost of $5,300 and indirect cost of $7,650. The critical path is A, B, F, H, K. 
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Figure 6: Cycle zero: normal schedule 

Table 2 presents the total float available for noncritical activities at cycle zero. 

Table 2: Activities total float at cycle zero 

Activity Activity Total Float (Days) 

C 1 

D 7 

E 4 

G 7 

I 2 

J 4 

 

Cycle One: Crashed Schedule 1: The least expensive activity to expedite at this cycle is F; 

therefore, the decision is to expedite F by 2 days. The new Project Duration is 25 days and the new 

C.P. is A, B, F, H, K. The new updated compression calculations are as follows: 

The new Direct Cost = Direct Cost + Crashing Cost = 5,300 + (2*150) = $ 5,600   

The new Indirect Cost = Duration * indirect cost per day= 25 * 280 = $ 7,000 

The new Total Project Cost = Direct Cost + Indirect Cost = 5,600 + 7,000 = $ 12,600 

The updated schedule at step two is represented in Figure 7. 

Legend ES Dur EF

Act TF

LS act DC LF

Cycle 0

Direct Cost 5300

Indirect Cost 7560

Total Cost 12860

Duration 27 days

C.P. A,B,F,H,K

1 7 8 8 3 11 15 7 22

B 0 E 4 H 0

1 1000 8 12 100 15 15 350 22

0 1 1 1 6 7 8 7 15 15 5 20 22 5 27

A 0 C 1 F 0 I 2 K 0

0 800 1 2 300 8 8 500 15 17 700 22 22 450 27

1 3 4 4 8 12 15 3 18

D 7 G 7 J 4

8 400 11 11 200 19 19 500 22
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Figure 7: Cycle one: crashed schedule 1 

Table 3 presents the remaining total float days for the noncritical activities after the first crashing 

cycle. 

Table 3: Activities total float at cycle one 

Activity Activity Total Float (Days) 

C 1 

D 5 

E 2 

G 5 

I 2 

J 4 

 

Cycle Two: Crashed Schedule 2: Least Expensive Activity to Expedite at this cycle is B, so the 

decision is to expedite activity B by 1 day. The new project duration is 24 days and the new C.P. 

now is A, B, F, H, K and   A, C, F, H, K. The new updated calculations are as follows: 

The new Direct Cost = 5,600 + (1*200) = $ 5,800   

The new Indirect Cost = 24 * 280 = $ 6,720 

The new Total Project Cost = 5,800 + 6,720 = $ 12,520 

Cycle 1 Crash F by 2 days

Direct Cost 5600

Indirect Cost 7000

Total Cost 12600

Duration 25 days

C.P. A,B,F,H,K

1 7 8 8 3 11 13 7 20

B 0 E 2 H 0

1 1000 8 10 100 13 13 350 20

0 1 1 1 6 7 8 5 13 13 5 18 20 5 25

A 0 C 1 F 0 I 2 K 0

0 800 1 2 300 8 8 500 13 15 700 20 20 450 25

1 3 4 4 8 12 13 3 16

D 5 G 5 J 4

6 400 9 9 200 17 17 500 20
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The updated schedule at step three is represented in Figure 8. 

 

Figure 8: Cycle two: crashed schedule 2 

Table 4 presents the remaining total float days for the noncritical activities after the second crashing 

cycle. 

Table 4: Activities total float at cycle two 

Activity Activity Total Float (Days) 

C 0 

D 4 

E 2 

G 4 

I 2 

J 4 

 

Cycle Three: Crashed Schedule 3: The activities available for crashing at cycle three: either B&C or 

H. Activity H exhibits the least expensive crashing slope. Therefore, the decision is to crash activity 

H by 1 day. The new project duration now is 23 days and the new C.P. = A,B,F,H,K  and   

A,C,F,H,K. The new updated calculations are as follows: 

The new Direct Cost = 5,800 + (1*250) = $ 6,050   

The new Indirect Cost = 23 * 280 = $ 6,440 

Cycle 2 Crash B by 1 day

Direct Cost 5800

Indirect Cost 6720

Total Cost 12520

Duration 24 days

C.P. A,B,F,H,K A,C,F,H,K

1 6 7 7 3 10 12 7 19

B 0 E 2 H 0

1 1000 7 9 100 12 12 350 19

0 1 1 1 6 7 7 5 12 12 5 17 19 5 24

A 0 C 0 F 0 I 2 K 0

0 800 1 1 300 7 7 500 12 14 700 19 19 450 24

1 3 4 4 8 12 12 3 15

D 4 G 4 J 4

5 400 8 8 200 16 16 500 19
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Therefore, the new Total Project Cost = 6,050 + 6,440 = $ 12,490 

The updated schedule at step three is represented in Figure 9. 

 

Figure 9: Cycle three: crashed schedule 3 

Table 5 presents the remaining total float days for the noncritical activities after the third crashing 

cycle. 

Table 5: Activities total float at cycle three 

Activity Activity Total Float (Days) 

C 0 

D 3 

E 2 

G 3 

I 1 

J 3 

 

Cycle Four: Crashed Schedule 4: Available activities to be crashed at this cycle are either B&C or 

K. Crashing activities B&C will give the lowest crashing cost. Activities B&C can be crashed 

effectively 2 days. The new project duration after crashing is 21 days, and the new C.P.’s are A, B, 

F, H, K and   A, C, F, H, K. The new updated calculations are as follows: 

Direct Cost = 6,050 + (2*(200+100)) = $ 6,650   

Cycle 3 Crash H by 1 day

Direct Cost 6050

Indirect Cost 6440

Total Cost 12490

Duration 23 days

C.P. A,B,F,H,K A,C,F,H,K

1 6 7 7 3 10 12 6 18

B 0 E 2 H 0

1 1000 7 9 100 12 12 350 18

0 1 1 1 6 7 7 5 12 12 5 17 18 5 23

A 0 C 0 F 0 I 1 K 0

0 800 1 1 300 7 7 500 12 13 700 18 18 450 23

1 3 4 4 8 12 12 3 15

D 3 G 3 J 3

4 400 7 7 200 15 15 500 18
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Indirect Cost = 21 * 280 = $ 5,880 

Total Project Cost = 5,880 + 6,650 = $ 12,530. Since the total cost started to increase, the optimum 

project duration is 23 days. The updated schedule at step three is represented in Figure 10. 

 

Figure 10: Cycle four: crashed schedule 4 

Table 6 presents the remaining total float days for the noncritical activities after the fourth crashing 

cycle. 

Table 6: Activities total float at cycle four 

Activity Activity Total Float (Days) 

C 0 

D 1 

E 2 

G 1 

I 1 

J 1 

 

Cycle Five: Crashed Schedule 5: The last activity available for crashing is activity K; therefore, 

activity K is expedited by 1 day. The new Project Duration now is 20 days and the New C.P. is A, 

B, F, H, K and   A, C, F, H, K. 

The new Direct Cost at this step= 6,650 + (1*350) = $ 7,000   

Cycle 4 Crash B&C by 2 days

Direct Cost 6650

Indirect Cost 5880

Total Cost 12530

Duration 21 days

C.P. A,B,F,H,K A,C,F,H,K

1 4 5 5 3 8 10 6 16

B 0 E 2 H 0

1 1000 5 7 100 10 10 350 16

0 1 1 1 4 5 5 5 10 10 5 15 16 5 21

A 0 C 0 F 0 I 1 K 0

0 800 1 1 300 5 5 500 10 11 700 16 16 450 21

1 3 4 4 8 12 12 3 15

D 1 G 1 J 1

2 400 5 5 200 13 13 500 16
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The new Indirect Cost at this step= 20 * 280 = $ 5,600 

Total Project Cost at this step= 7,000 + 5,600 = $ 12,600. Since no further activities are available 

for crashing, the minimum project duration is reached and it is 20 days. 

 

Figure 11: Cycle five: crashed schedule 5 

Table 7 presents the remaining total float days for the noncritical activities after the fifth crashing 

cycle. 

Table 7: Activities total float at cycle five 

Activity Activity Total Float (Days) 

C 0 

D 1 

E 2 

G 1 

I 1 

J 1 

 

Table 8 illustrates the crashing results performed over the cycles zero to five:  

 

 

Cycle 5 Crash K by 1 day

Direct Cost 7000

Indirect Cost 5600

Total Cost 12600

Duration 20 days

C.P. A,B,F,H,K A,C,F,H,K

1 4 5 5 3 8 10 6 16

B 0 E 2 H 0

1 1000 5 7 100 10 10 350 16

0 1 1 1 4 5 5 5 10 10 5 15 16 4 20

A 0 C 0 F 0 I 1 K 0

0 800 1 1 300 5 5 500 10 11 700 16 16 450 20

1 3 4 4 8 12 12 3 15

D 1 G 1 J 1

2 400 5 5 200 13 13 500 16
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Table 8: Project crashing results 

Cycle Project Duration Direct Cost Indirect Cost Total Cost 

0 27 5,300 7,560 12,860 

1 25 5,600 7,000 12,600 

2 24 5,800 6,720 12,520 

3 23 6,050 6,440 12,490 

4 21 6,650 5,880 12,530 

5 20 7,000 5,600 12,600 

 

Figure 12 shows the time-cost tradeoff. During crashing process the direct cost starts to increase 

while the indirect cost decreases as it is a function of time. 

 

Figure 12: Project time-cost tradeoff 

Figure 13 illustrates the total project cost vs. duration curve. It can be noticed that the 

optimum project duration and total cost are 23 days, $12,490 respectively, and afterward the total 

cost starts to increase until reaching the cost associated with minimum project duration of 20 days.    

 

Figure 13: Project total cost vs. duration curve 
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3.3.2   Project Compression Considering Float Consumption Impact 

 

This section presents the solution cycles using the new proposed probabilistic compression 

framework considering that considers the impact of float loss within noncritical activities during the 

crashing process: 

Cycle Zero: Normal Schedule Analysis: The normal schedule analysis is performed as in section 

3.3.1 and the schedule is shown in Figure 6. The project duration of the baseline schedule is 27 

days, with a direct cost of $5,300, indirect cost of $7,560, and total cost $12,860. The critical path is 

A, B, F, H, and K. 

Table 9 illustrates the simulation run for the baseline schedule and the resulting mean and standard 

deviation. 

Table 9: Simulation results for the baseline schedule at cycle zero 

Mean “M0” 28.1082 days 

Standard Deviation “Std0” 3.4705 days 

Probability of Finishing the Project 

within 27 days Given the Mean and Std. 

Found 

37.4742 % 

 

Cycle One: Crashed Schedule 1: Activities available to be expedited are: B, F, H, K (activity A 

can’t be expedited). Therefore, four crashing scenarios need to be checked to find the best activity 

to crash. 

The first scenario is for crashing activity B by 1 day. After crashing activity B by 1 day, Monte 

Carlo Simulation run is performed on the crashed schedule. Table 10 illustrates the simulation run 

results after crashing activity B by 1 day.  

Table 10: Simulation results after crashing activity B at cycle one  

Mean “M1B” 27.5028 days 

Standard Deviation “Std1B” 3.401 days 

POF within 26 Deterministic Days 

Given the Mean and Std. Found 
32.9291627 % 
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New deterministic duration Ddet, 1B = 26 days 

Duration at 37.74742% given the mean and standard deviation in Table 10 (Dprob,1B) = 

26.41679274 days 

According to Equation 4, the difference between the deterministic and the new duration: 

FLD1B= Dprob,1B – Ddet, 1B  =26.41679274 – 26 = 0.41679274 days 

Float cost FLC1B is calculated according to Equation 5:  

FLC1B = FLD1B x CSPD = 0.41679274 (days) x 280 $ / day = $116.70 

Extra direct cost (slope) = $ 200 

Total extra cost = 200 + 116.70 = $316.70 

Direct Cost Now = total extra + direct cost = $5,616.70 

Indirect Cost = $7,280, and the Total Cost = $12,896.70 

The second scenario is for crashing activity F by 1 day. After crashing activity F by 1 day, Monte 

Carlo Simulation run is performed on the crashed schedule. Table 11 illustrates simulation run 

results after crashing activity F by 1 day. 

Table 11: Simulation results after crashing activity F at cycle one 

Mean “M1F” 27.16 days 

Standard Deviation “Std1F” 3.3939 days 

POF within 26 Deterministic Days 

Given the Mean and Std. Found 
36.6254588 % 

 

New Ddet, 1F = 26 days 

Dprob,1F  at 37.74742% given M1F and Std1F in Table 11 = 26.07625991 days 

FLD1F= Dprob,1F – Ddet, 1F  = 26.07625991 – 26 = 0.07625991 days 

FLC1F = 0.07625991 (days) x 280 $ / day = $21.35 

Extra direct cost (slope) = $ 150 

Total extra cost = 150 + 21.35 = $171.35 

Direct Cost Now = total extra + direct cost = $5,471.35 

Indirect Cost = $7,280, and the Total Cost = $12,751.35 

The third scenario is for crashing activity H by 1 day. After crashing activity H by 1 day, Monte 

Carlo Simulation run is performed on the crashed schedule. Table 12 illustrates simulation run 

results after crashing activity H by 1 day. 
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Table 12: Simulation results after crashing activity H at cycle one 

Mean “M1H” 27.4942 days 

Standard Deviation “Std1H” 3.6883 days 

POF within 26 Deterministic Days 

Given the Mean and Std. Found 
34.2695061 % 

 

New Ddet, 1H= 26 days 

Dprob,1H  at 37.74742% given M1H and Std1H in Table 12 = 26.31645211 days 

FLD1H= Dprob,1H – Ddet, 1H  = 26.31645211 – 26 = 0.31645211 days 

FLC1H = 0.31645211 (days) x 280 $ / day = $88.61 

Extra direct cost (slope) = $ 250 

Total extra cost = 250 + 88.61 = $338.61 

Direct Cost Now = total extra + direct cost = $5,638.61 

Indirect Cost = $7,280, and the Total Cost = $12,918.61 

The fourth scenario is for crashing activity K by 1 day. After crashing activity K by 1 day, Monte 

Carlo Simulation run is performed on the crashed schedule. Table 13 illustrates simulation run 

results after crashing activity K by 1 day.  

Table 13: Simulation results after crashing activity K at cycle one 

Mean “M1k” 27.1397 days 

Standard Deviation “Std1K” 3.4861 days 

POF within 26 Deterministic Days 

Given the Mean and Std. Found 
37.1861573 % 

 

New Ddet, 1K = 26 days 

Dprob,1K  at 37.74742% given M1K and Std1K in Table 13 = 26.02651861 days 

FLD1K= Dprob,1K – Ddet, 1K = 26.02651861 – 26 = 0.02651861 days 

FLC1K = 0.02651861 (days) x 280 $ / day = $7.43 

Extra direct cost (slope) = $ 350 

Total extra cost = 350 + 7.43 = $357.43 

Direct Cost Now = total extra + direct cost = $5,657.43 

Indirect Cost = $7,280, and the Total Cost = $12,937.43 
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According to the total extra cost and total cost, activity F exhibited the least total extra cost and 

total cost; therefore, the decision is to expedite activity F by 1 day. 

Cycle Two: Crashed Schedule 2: Activities available to be expedited: B, F, H, and K. Based on that, 

again four available scenarios need to be checked to find the best activity to crash 

The first scenario is for crashing activity B by 1 day. After crashing activity B by 1 day, Monte 

Carlo Simulation run is performed on the crashed schedule. Table 14 illustrates simulation run 

results after crashing activity B by 1 day in cycle two.  

Table 14: Simulation results after crashing activity B at cycle two 

Mean “M2B” 26.591 days 

Standard Deviation “Std2B” 3.3549 days 

POF within 25 Deterministic Days 

Given the Mean and Std. Found 
31.7667338 % 

 

New Ddet, 2B = 25 days 

Dprob,2B  at 36.6254588% given M2B and Std2B in Table 14 = 25.4443298days 

FLD2B= Dprob,2B – Ddet, 2B = 25.4443298– 25 = 0.4443298 days 

FLC2B = 0.4443298 (days) x 280 $ / day = $124.41 

Extra direct cost (slope) = $ 200 

Total extra cost = 200 + $124.41 = $324.41 

Direct Cost Now = total extra + direct cost of last crashing cycle = $5,795.77 

Indirect Cost = $7,000, and the Total Cost = $12,795.77 

The second scenario is for crashing activity F by 1 day. After crashing activity F by 1 day, Monte 

Carlo Simulation run is performed on the crashed schedule. Table 15 illustrates simulation run 

results after crashing activity F by 1 day in cycle two.  

Table 15: Simulation results after crashing activity F at cycle two 

Mean “M2F” 26.445 days 

Standard Deviation “Std2F” 3.3059 days 

POF within 25 Deterministic Days 

Given the Mean and Std. Found 
33.1020389 % 
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New Ddet, 2F = 25 days 

Dprob,2F  at 36.6254588% given M2F and Std2F in Table 15 = 25.31507749 days 

FLD2F = Dprob,2F – Ddet, 2F  = 25.31507749 – 25 = 0.31507749 days 

FLC2F = 0.31507749 (days) x 280 $ / day = $88.22 

Extra direct cost (slope) = $ 150 

Total extra cost = 150 + 88.22 = $238.22 

Direct Cost Now = total extra + direct cost of last crashing cycle = $5,709.57 

Indirect Cost = $7,000, and the Total Cost = $12,709.57 

The third scenario is for crashing activity H by 1 day. After crashing activity H by 1 day, Monte 

Carlo Simulation run is performed on the crashed schedule. Table 16 illustrates simulation run 

results after crashing activity H by 1 day in cycle two.  

Table 16: Simulation results after crashing activity H at cycle two 

Mean “M2H” 26.5491 days 

Standard Deviation “Std2H” 3.3519 days 

POF within 25 Deterministic Days 

Given the Mean and Std. Found 
32.1984801 % 

 

New Ddet, 2H = 25 days 

Dprob,2H  at 36.6254588% given M2H and Std2H in Table 16 = 25.40345517 days 

FLD2H= Dprob,2H – Ddet, 2H  = 25.40345517 – 25 = 0.40345517days 

FLC2H = 0.40345517 (days) x 280 $ / day = $112.97 

Extra direct cost (slope) = $ 250 

Total extra cost = 250 + 112.97 = $362.97 

Direct Cost Now = total extra + direct cost of last crashing cycle = $5,834.32 

Indirect Cost = $7,000, and the Total Cost = $12,834.32 

The fourth scenario is for crashing activity K by 1 day. After crashing activity K by 1 day, Monte 

Carlo Simulation run is performed on the crashed schedule. Table 17 illustrates simulation run 

results after crashing activity K by 1 day in cycle two: 
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Table 17: Simulation results after crashing activity K at cycle two 

Mean “M2K” 26.2251 days 

Standard Deviation “Std2K” 3.4652 days 

POF within 25 Deterministic Days 

Given the Mean and Std. Found 
36.1840397 % 

 

New Ddet, 2K = 25 days 

Dprob,2K at 36.6254588% given M2K and Std2K in Table 17 = 25.0407304 days 

FLD2K= Dprob,2K – Ddet, 2K  = 25.0407304 – 25 = 0.0407304 days 

FLC2K = 0.0407304 (days) x 280 $ / day = $11.40 

Extra direct cost (slope) = $ 350 

Total extra cost = 350 + 11.40 = $361.40 

Direct Cost Now = total extra + direct cost of last crashing cycle = $5,832.76 

Indirect Cost = $7,000, and the Total Cost = $12,832.76 

According to the total extra cost and total project cost, activity F exhibited the least total extra cost 

and total project cost. Based on that, the decision in this cycle is to expedite F by 1 day. 

Cycle Three: Crashed Schedule 3: three available scenarios have to be checked to find the best 

activity to crash at cycle three. The three scenarios include either crashing activity B or H or K.                      

The first scenario is for crashing activity B by 1 day. After crashing activity B by 1 day, Monte 

Carlo Simulation run is performed on the crashed schedule. Table 18 illustrates simulation run 

results after crashing activity B by 1 day in cycle three.  

Table 18: Simulation results after crashing activity B at cycle three 

Mean “M3B” 25.9106 days 

Standard Deviation “Std3B” 3.2834 days 

POF within 24 Deterministic Days 

Given the Mean and Std. Found 
28.0318093 % 

 

New Ddet, 3B = 24 days 

Dprob,3B  at 33.1020389% given M3B and Std3B in Table 18 = 24.47543469 days 

FLD3B= Dprob,3B – Ddet, 3B  = 24.47543469 – 24 = 0.47543469 days 
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FLC3B = 0.47543469 (days) x 280 $ / day = $133.12 

Extra direct cost (slope) = $ 200 

Total extra cost = 200 + 133.12 = $333.12 

Direct Cost Now = total extra + direct cost of last crashing cycle = $6,042.70 

Indirect Cost = $6,720, and the Total Cost = $12,762.70 

The second scenario is for crashing activity H by 1 day. After crashing activity H by 1 day, Monte 

Carlo Simulation run is performed on the crashed schedule. Table 19 illustrates simulation run 

results after crashing activity H by 1 day in cycle three.  

Table 19: Simulation results after crashing activity H at cycle three 

Mean “M3H” 25.8742 days 

Standard Deviation “Std3H” 3.3498 days 

POF within 24 Deterministic Days 

Given the Mean and Std. found 
28.79116 % 

 

New Ddet, 3H = 24 days 

Dprob,3H  at 33.1020389% given M3H and Std3H in Table 19 = 24.41001143 days 

FLD3H= Dprob,3H – Ddet, 3H  = 24.41001143 – 24  = 0.41001143 days 

FLC3H = 0.41001143 (days) x 280 $ / day = $114.80 

Extra direct cost (slope) = $ 250 

Total extra cost = 250 + 114.80= $ $364.80 

Direct Cost Now = total extra + direct cost of last crashing cycle = $6,074.38 

Indirect Cost = $6,720, and the Total Cost = $12,794.38 

The third scenario is for crashing activity K by 1 day. After crashing activity K by 1 day, Monte 

Carlo Simulation run is performed on the crashed schedule. Table 20 illustrates simulation run 

results after crashing activity K by 1 day in cycle three.  

Table 20: Simulation results after crashing activity K at cycle three 

Mean “M3K” 25.6759 days 

Standard Deviation “Std3K” 3.5006 days 

POF within 24 Deterministic Days 

Given the Mean and Std. Found 
31.605949 % 
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New Ddet, 3K = 24 days 

Dprob,3K  at 33.1020389% given M3K and Std3K in Table 20 = 24.14579715 days 

FLD3K= Dprob,3K – Ddet, 3K  = 24.14579715 – 24 = 0.14579715 days 

FLC3K = 0.14579715 (days) x 280 $ / day = $40.82 

Extra direct cost (slope) = $ 350 

Total extra cost = 350 + 40.82 = $390.82 

Direct Cost Now = total extra + direct cost of last crashing cycle = $6,100.40 

Indirect Cost = $6,720, and the Total Cost = $12,820.40 

Total Cost started to increase at this cycle; therefore, the optimum project duration and total cost are 

25 days and $12,709; respectively.  
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3.4     Analysis and Discussion of the Results 

 

As per the example presented and solved earlier in this chapter, the optimum duration 

considering float consumption impact stochastically is 25 days, while the associated optimum total 

cost considering float consumption impact stochastically is found to be $12,709. 

Table 21 compares the remaining total float for the noncritical activities between the 

deterministic compression method and the new proposed compression framework. 

Table 21: Comparison of remaining TF between deterministic compression method & new compression framework 

Noncritical Activity 

 

Activity Total Float in Days 

@ 23 Days Duration 

(Deterministic) 

 

Activity Total Float in Days 

@ 25 Days Duration (New 

Proposed Framework) 

C 0 1 

D 3 5 

E 2 2 

G 3 5 

I 1 2 

J 3 4 

 

It can be noticed that the new proposed compression framework is better in terms of 

remaining float as it finds an optimum solution that can save some total float for future use with a 

less risky cost. In terms of the probability of finishing the project on time, the probability of 

finishing the project within 27 days is found to be 0.374741941. The probability of finishing the 

project within 25 days when float loss impact is considered stochastically is 0.331020389, while the 

probability of finishing the project within 23 days when float loss impact is not considered is 

0.236667746. From the previous probabilities found, it can be seen that when float loss impact is 

considered, the probability of finishing the project is considerably higher than that when float loss 

impact is not considered. The optimum solution found using deterministic approach (without float 

loss effect), in comparison with the optimum solution found considering the float loss effect, is also 

better in terms of activities’ criticality indices that are found using Monte Carlo Simulation and 

presented in Table 22. 
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Table 22: Activities critical index at 25 and 23 days durations 

Activity 

 

Activity critical index 

@23 days duration 

 

 

Activity critical index 

@ 25 days duration 

 

A 1 1 

B 0.62 0.68 

C 0.55 0.39 

D 0.21 0.12 

E 0.18 0.3 

F 0.82 0.84 

G 0.21 0.12 

H 0.79 0.82 

I 0.45 0.31 

J 0.24 0.13 

K 1 1 

                      

From the results in Table 22, one can understand that the new optimum duration with float 

can provide better results in terms of activities’ criticality indices; given that the criticality index 

represents the percentage of the number of times the activity was found to be on the critical path. 

Therefore, the new optimum duration provides better project flexibility by preserving more float for 

future use when unforeseen events occur. 

The criticality ratio is calculated as a ratio between the number of critical activities to the 

total number of activities. The criticality ratio of the schedule of the optimum solution found using 

deterministic approach (without float loss effect) is calculated to be 0.545. On the other hand, the 

criticality ratio of the schedule of the optimum solution found considering the float loss effect in 

terms of critical ratio is also calculated to be 0.545. In both cases, the critical ratio happened to be 

the same since the critical path didn’t change at 23 and 25 days duration. 

 

Figure 14 compares the results between the optimum solution found using deterministic 

approach (without float loss effect) and the optimum solution found considering the float loss effect 

in terms of total cost curves. 
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Figure 14: Total cost curves comparison 

From Figure 14, it can be shown that the optimum project total cost considering float 

consumption impact is higher than the optimum normal cost. Optimum project duration as well is 

higher than that when float loss cost isn’t considered. This result is predicted earlier hypothetically, 

and the increase in the project total cost of the curve considering float consumption impact is 

related to the increase in the direct cost that accounts for the float loss cost in noncritical activities. 

Although the framework presents a curve with a higher cost (the difference between the optimum 

total cost when float is considered and the deterministic normal optimum total cost is equal to $ 219 

in this example). This higher cost if paid accounts and quantifies the float cost impact and can save 

dollars associated with risks appearing from project flexibility loss. Decision makers or project 

managers; depending on the nature of their projects, are free to choose between the two curves; 

whether to stick to the normal compression method and bear the risk associated with losing total 

float, or use the new curve and be at the safe side while maintaining a compressed schedule.  
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3.5     Chapter Conclusion 

 

This chapter presented a new approach for optimizing project time and cost by introducing 

the concept of float loss impact into the tradeoff analysis. The float loss impact is quantified using 

@risk simulation by determining the probability of finishing the project at each crashing cycle for 

each activity and comparing the total extra direct cost (activity slope + float loss cost) to select the 

activity that best exhibits the least total cost. The idea is inspired by the fact that whenever the 

project schedule is crashed, total float of activities is consumed, and the probability of finishing the 

project on time is reduced as well. The framework by that measures the difference between the 

probabilistic duration and the deterministic duration and translates this loss of time into a cost to be 

added to the project direct cost. In light of the results obtained in this chapter, one can say that 

incorporating the float loss impact into the optimization process can produce a more realistic 

optimum cost and account for risks arising from future potential delays. 
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CHAPTER FOUR: PROJECT COMPRESSION CONSIDERING FLOAT 

CONSUMPTION IMPACT VIA NONLINEAR-INTEGER PROGRAMMING 

 

4.1     Chapter Overview 

 

This chapter presents the proposed optimization framework for project compression 

considering the float consumption impact of noncritical activities. The first section highlights the 

main assumptions and justifications that are assumed to calculate the float cost using the trade-in 

value of total float method developed by Garza et al. [4]. This method is selected from a variety of 

methods used for total float preallocation discussed earlier in Chapter Two as it is one of few 

methods that considers the effect of float loss on cost and it can provide an estimate of the risk 

associated with total float loss per day, which makes it suitable for time-cost tradeoff analysis. 

Moreover, it assumes a linear distribution of the daily TF trade-in for each activity; which provides 

more simplicity for the framework user. The second section demonstrates the proposed framework 

of the nonlinear-integer programming process including the stating of the objective functions, 

decision variables and constraints. The third section solves example one explained in Chapter Three 

via the nonlinear-integer optimization model and the deterministic approach considering the float 

consumption impact. The last section presents the analysis and the comparison of the results.  

4.2     Proposed Optimization Model 

 

The float cost per day is calculated according to Equation 3 established by Garza et al. [4]:  

                                                                     
        

    
                                                  (3) 

Where; 

EFC: Early finish cost 

                                                               LFC: Late finish cost 

                                                               TF: Total float 

The early finish cost (EFC) represents the best cost estimate assuming normal conditions for the 

noncritical activity. In this case flexibility and resources are assumed to be available as needed. The 

late finish cost (LFC) represents the cost at abnormal conditions as the early finish date moves into 

the late finish dates due to unforeseen events. In this case flexibility is assumed to be consumed and 
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efficiency is accomplished at a late finish times with an increase in the cost. And the total float (TF) 

represents the total float available for the noncritical activity   

4.2.1 Assumptions 

 

The following assumptions are made in the proposed NLIP framework: 

- A linear relationship or a uniform float cost distribution per day throughout the entire 

activities duration is assumed for simplicity. 

- The total cost for the activity increases proportionally with the amount of total float 

consumed  

- EFC is assumed to be equal to the normal cost (mean) as the normal cost represents the best 

estimate assuming normal conditions for the activity including starting and finishing at their 

earliest dates. LFC is assumed in the example as the value representing abnormal conditions 

where the activity finishes at its latest finish dates. 

- Activities’ durations are assumed to be in integer numbers to make it as real as possible.  

4.2.2    Model Formulation   

A nonlinear-integer programming formulation is used to find the minimum total project cost 

associated with the optimum duration. The nonlinearity arises from the constraints over activities’ 

relations and precedence. Two binary (one-zero) parameters; Bik and Dik, are defined for each 

activity to denote whether this activity will be crashed or not and whether the activity in question is 

noncritical and has a float loss cost or not at each crashing cycle.   

Framework Parameters: 

 Table 23 illustrates the model parameters of the framework along with their descriptions. 
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Table 23: NLIP framework parameters 

Parameter Symbol Description Parameter Symbol Description 

I 

Project activities are 

denoted by the symbol i 

ϵ I where I is a set that 

comprises all project 

activities, and i = 

1,2,3,…,n 

Fai 
Noncritical activity i 

original float 

K(i) 
A set of all possible 

time-cost combinations 

of activities in I 

Fbi 
Noncritical activity i 

current float 

Bik 

A parameter equal to 1 if 

activity i is selected for 

the time-cost 

combination k or equal 

to 0 otherwise 

FUCif 
Float unit cost of 

noncritical activity i 

F(i) A set of all noncritical 

activities in I 
LFCif 

Late finish cost of 

noncritical activity i 

Di 

A parameter = 1 if 

activity i is noncritical 

and has a float cost at the 

crashing cycle under 

consideration, or equal to 

0 otherwise 

EFCif 
Early finish cost of 

noncritical activity i 

TC Project total cost TFif 
Total float of noncritical 

activity i 

IDC Project indirect cost CUCi 
Activity i crashing unit 

cost / crashing slope 

COH Project overhead cost per 

day 
Dai 

Original duration of 

activity i 

DCi Direct cost of activity i Dbi 
Current duration of 

activity i 

CCi Expenditure cost of 

activity i 
DCi 

Activity i crashed 

duration 

FCif Float consumption cost 

of noncritical activity i 
NCi Activity i normal cost 

XT Project targeted 

completion date 
xi min 

Activity i minimum 

possible duration 

LTi,j 
Lag time between 

activity i and the 

succeeding activity j 

xi max 
Activity i maximum 

possible duration 
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Framework Decision Variables: 

Table 24 illustrates the decision variables of the framework along with their descriptions. 

Table 24: NLIP framework decision variables 

Decision Variable Symbol Description 

DT Project duration 

ai Start time of activity i 

aj Start time of succeeding activity j 

xi Activity i duration 

xj Succeeding activity j duration 

 

Objective Function:  

 
The objective function is to minimize the total project cost according to Equation 6:                   

                Minimize TC =     ∑ ∑ ((              ( ) )     ) 
    + ∑ (       ( )       D  )        (6) 

Rewriting the objective function in an expanded manner: 

Minimize TC = ( O     T)  ∑ ∑ (DC   (((D    –  D   )         )     ( ) )  B  ) 
    

∑ (f ϵ F(i) (Fa  – Fb )   F C  )   D ) 

Where; 

                                                                   FCif  ≥ 0 

                                                                   FUCif = 
      -     

    
                                          (3) 

                                                                   CUCi = 
   -   

   -   
                                               (7) 

Equation 3 illustrates the float unit cost (float cost) for noncritical activity i, while Equation 7 

illustrates how the crashing unit cost (or crashing slope) is calculated for activity i. 
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Subject to the following constraints: 

 Activities Duration: 

xi min  ≤ xi  ≤ xi max 

where xi ≥ 0 for all i 

          xi min ≥ 0, xi min ≤ xi max 

          xi max ≥ 0  

 

 Activities Relations: 

Equations 8 to 11 explain the relations between the activities; FS, SS, SF, and FF, 

respectively: 

Finish – to- start relationship (FS): 

                                                                                 ai + xi + LTi,j  ≤ aj                                                                 (8) 

Start - to - start relationship(SS): 

                                                               ai + LTi,j ≤ aj                                                                              (9) 

Start – to- finish relationship(SF): 

                                                        ai + LTi,j ≤ aj + xj                                                                           (10) 

Finish – to - finish relationship (FF): 

                                                     ai + xi + LTi,j ≤ aj + xj                                                                      (11) 

 

Equations 12 and 13 explain the forward pass rules while scheduling:  

                                        ESj = Max [ESi + FSi,j ; ESi + SSi,j]                                       (12) 

                               EFj = Max [ESj +  xj ; EFi + FFi,j ; ESi + SFi,j]                               (13)   

Equations 14 and 15 explain the backward pass rules while scheduling: 

                                         LFj = Min [LSi – FSj,i ; LFi – FFj,i]                                       (14) 

                               LSj= Min [LFj – xj ; LSi – SSj,i ; LFi – SFj,i]                                   (15) 

 

 Project Completion Date: 

DT ≤ XT
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Figure 15 illustrates the general framework steps via a flowchart.  

 

Figure 15: NLIP framework flowchart 



58 
 

4.3       Application Example 

4.3.1     Project Compression Considering Float Consumption Impact (Manual Approach) 

 

 Table 25 lists the activities durations and costs in normal and crashed cases, along with the 

early and late finish costs and float unit costs for example one explained in Chapter Three. The 

early finish cost and the late finish cost are assumed and added to the example. The float unit cost is 

calculated using Equation 3 presented earlier. 

As an example, the float unit cost for activity D is calculated as follows: 

          FUCD = (505 – 400) / 7 = $15 / day 

 Table 25: Activities costs and durations 

Activity 

Normal 

Duration 

 

Normal 

Cost 

Crashed 

Duration 

Crashing 

Cost 

Potential 

Days 

Saved 

Cost 

per 

Day 

Duration 

Mean 

Duration 

Standard 

Deviation 

Total 

Float 

Early 

Finish 

Cost 

Late 

Finish 

cost 

Float 

Unit 

Cost 

A 1 800 1 800 0 - 1 1.2 0 - - - 

B 7 1,000 4 1,600 3 200 7 2 0 - - - 

C 6 300 4 500 2 100 6 1.5 1 300 310 10 

D 3 400 2 800 1 400 3 1.35 7 400 505 15 

E 3 100 1 200 2 50 3 1.88 4 100 148 12 

F 7 500 5 800 2 150 7 2.12 0 - - - 

G 8 200 4 1,400 4 300 8 3 7 200 340 20 

H 7 350 6 600 1 250 7 1.25 0 - - - 

I 5 700 3 850 2 75 5 2.5 2 700 720 10 

J 3 500 2 1,000 1 500 3 1.5 4 500 532 8 

K 5 450 4 800 1 350 5 1.6 0 - - - 

        Total = 5300 

For the example above, and without considering the float effect, four crashing cycles are 

needed to reach the optimum project duration, while extra three cycles are needed to reach the 

minimum project duration. The deterministic optimum project duration is 23 days with an 

associated optimum total cost of $ 12,490, while the minimum project duration is 20 days with an 

associated project total cost of $ 12,600. 

Cycle Zero: Normal Schedule: Based on the baseline schedule network represented in Figure 16, 

the project duration is found to be 27 days, with an associated total project cost equal to $12,860 
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that consists of a direct cost of $5,300 and indirect cost of $7,650. The critical path was A, B, F, H, 

K. 

 

Figure 16: Cycle zero: Project normal schedule 

        Table 26 presents the remaining total float days for the noncritical activities at cycle zero. 

Table 26: Noncritical activities total float at cycle zero 

Activity Activity Total Float 

C 1 

D 7 

E 4 

G 7 

I 2 

J 4 

 

Cycle One: Crashed Schedule 1: The available activities to expedite are B, F, H, and K. The least 

expensive activity to expedite is F. Activity F can be crashed effectively by 2 days.  The new 

project duration now is 25 days, and the new C.P. is A, B, F, H, K.  

Total Float Cost= 30+24+40 = $94 (Table 28 illustrates the float cost per day for the non-critical 

activities that lost float) 

Legend ES Dur EF

Act TF

LS act DC LF

Cycle 0

Direct Cost 5300

Indirect Cost 7560

Total Cost 12860

Duration 27 days

C.P. A,B,F,H,K

1 7 8 8 3 11 15 7 22

B 0 E 4 H 0

1 1000 8 12 100 15 15 350 22

0 1 1 1 6 7 8 7 15 15 5 20 22 5 27

A 0 C 1 F 0 I 2 K 0

0 800 1 2 300 8 8 500 15 17 700 22 22 450 27

1 3 4 4 8 12 15 3 18

D 7 G 7 J 4

8 400 11 11 200 19 19 500 22
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The New Direct Cost = 5300 + (2*150) + 94= $5,694   

The New Indirect Cost = 25 * 280 = $7,000 

And the New Total Project Cost = 5,600 + 7,000 = $12,694 

Figure 17 shows the updated schedule at cycle one. 

 

Figure 17: Cycle one: crashed schedule 1 

Table 27 illustrates the remaining total float days for the noncritical activities after the first crashing 

cycle: 

Table 27: Noncritical activities total float at cycle one 

Activity Activity Total Float 

C 1 

D 5 

E 2 

G 5 

I 2 

J 4 

 

 

Cycle 1 Crash F by 2 days

Direct Cost 5694 N.C.A. F. lost FUC

Indirect Cost 7000 C 0 0

Total Cost 12694 D 2 30

Duration 25 days E 2 24

C.P. A,B,F,H,K G 2 40

I 0 0

J 0 0

1 7 8 8 3 11 13 7 20 94

B 0 E 2 H 0

1 1000 8 10 100 13 13 350 20

0 1 1 1 6 7 8 5 13 13 5 18 20 5 25

A 0 C 1 F 0 I 2 K 0

0 800 1 2 300 8 8 500 13 15 700 20 20 450 25

1 3 4 4 8 12 13 3 16

D 5 G 5 J 4

6 400 9 9 200 17 17 500 20
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Table 28: Float loss cost at cycle one 

Non-Critical Activity Float lost (Days) Float Cost (Per Day) Total Float Cost 

C 0 10 0 

D 2 15 30 

E 2 12 24 

G 

I 

J 

2 

0 

0 

20 

10 

8 

40 

0 

0 

                                                                                                                                        Total = 94 

To make sure that activity F is the best activity to be crashed at this step, one can try the 

other crashing scenarios available; crashing B, H, and K, regardless of the slope cost, and then 

compare the results. The first scenario is to crash activity B by 1 day. Although activity B can be 

crashed by 3 days, it can compress the schedule effectively only by 1 day. So the total float cost 

associated with crashing this activity = 10 + 15 + 20 = $45  

Direct cost= 5,300 + (1*200) + 45 = $5,545 

Indirect cost= 26* 280 = $7,280, and the Total cost= 7,280 + 5,545 = $12,825 > $ 12,694 

The second scenario is to crash activity H by 1 day. The total float cost associated with crashing 

this activity = 15 + 20 +10 +8 = $53 

Direct cost= 5,300 + (1*250) + 53 =$5,603 

Indirect cost= 26 * 280 = $7,280, and the Total cost= 7,280 + 5,603 = $12,883 > $ 12,694 

The third scenario is to crash activity K by 1 day. The total float cost = 0 (No float loss associated 

with crashing activity K) 

Direct cost= 5,300 + (1*350) = $5,650 

Indirect cost= 26 * 280 = $7,280, and the Total cost= $12,930 > $ 12,694 

Since Activity F exhibited the least total cost at this step, the decision is to proceed with expediting 

activity F by 2 days. 

Cycle Two: Crashed Schedule 2: Least Expensive Activity to Expedite is B and it can compress the 

schedule effectively by 1 day, so the decision at this step is to expedite activity B by 1 day. The new 

resulting project duration is 24 days and the new C.P. is A, B, F, H, K and A, C, F, H, K. 
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Total Float Cost= 10+15+20 = $45 (Table 30 illustrates the float cost per day for the non-critical 

activities that lost float). So the new direct cost now = 5,694 + (1*200) + 45= $5,939   

Indirect Cost = 24 * 280 = $6,720; and therefore, the total project cost = 5,600 + 7,000 = $12,659 

Figure 18 shows the updated schedule at cycle two. 

 

Figure 18: Cycle two: crashed schedule 2 

Table 29 illustrates the remaining total float days for the noncritical activities after the second 

crashing cycle: 

Table 29: Noncritical activities total float at cycle 2 

Activity Activity Total Float 

C 0 

D 4 

E 2 

G 4 

I 2 

J 4 

 

 

 

 

Cycle 2 Crash B by 1 day

Direct Cost 5939 N.C.A. F. lost FUC

Indirect Cost 6720 C 1 10

Total Cost 12659 D 1 15

Duration 24 days E 0 0

C.P. A,B,F,H,K A,C,F,H,K G 1 20

I 0 0

J 0 0

1 6 7 7 3 10 12 7 19 45

B 0 E 2 H 0

1 1000 7 9 100 12 12 350 19

0 1 1 1 6 7 7 5 12 12 5 17 19 5 24

A 0 C 0 F 0 I 2 K 0

0 800 1 1 300 7 7 500 12 14 700 19 19 450 24

1 3 4 4 8 12 12 3 15

D 4 G 4 J 4

5 400 8 8 200 16 16 500 19
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Table 30: Float loss cost at cycle 2 

Non-Critical Activity Float lost (Days) Float Cost (Per Day) Total Float Cost 

C 1 10 10 

D 1 15 15 

E 0 12 0 

G 

I 

J 

1 

0 

0 

20 

10 

8 

20 

0 

0 

                                                                                                                                                 Total = 45 

In order to make sure that activity B is the best activity to be crashed at this step, other two 

available crashing scenarios are tested. The other crashing scenarios available are crashing H, and K 

each by 1 day. If activity H is crashed by 1 day in the first scenario: 

Total float cost associated with crashing this activity = 15 + 20 +10 +8 = $53 

Direct cost= $5,694 + (1*250) + 53 =$5,997 

Indirect cost= 24 * 280 = $6,720, and the Total cost= 6,720 + 5,997 = $12,717 > $12,659 

The second crashing scenario to try is crashing activity K by 1 day. The total float cost= 0 (No float 

loss associated with crashing activity K) 

Direct cost= $5,694 + (1*350) = $6,044 

Indirect cost= 24 * 280 = $6,720, and the Total cost= $12,764 > $12,659 

Since Activity B exhibited the least total cost at this step, the decision is to proceed with expediting 

activity B by 1 day. 

Cycle Three: Crashed Schedule 3: the least expensive activity to expedite at this step is H. the 

decision is to crash activity H by 1 day. The new resulting project duration equals 23 days, while 

the new C.P. is A, B, F, H, K and A, C, F, H, K. The detailed compression calculations are 

explained below: 

Total Float Cost= 15+20+10+8 = $53 (Table 32 illustrates the float cost per day for the non-critical 

activities that lost float). So the new direct cost now = 5939 + (1*250) + 53= $6,242   

Indirect Cost = 23 * 280 = $ 6,440 

Total Project Cost = 6,242 + 6,440 = $12,682 
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Since the total cost started to increase, the optimum project duration considering float loss effect is 

24 days. 

Figure 19 shows the updated schedule at cycle three. 

 

Figure 19: Cycle three: crashed schedule 3 

 

Table 31 demonstrates the remaining total float days for the noncritical activities after the third 

crashing cycle: 

 

Table 31: Noncritical activities total float at cycle 3 

Activity Activity Total Float 

C 0 

D 3 

E 2 

G 3 

I 1 

J 3 

 

 

 

Cycle 3 Crash H by 1 day

Direct Cost 6242 N.C.A. F. lost FUC

Indirect Cost 6440 C 0 0

Total Cost 12682 D 1 15

Duration 23 days E 0 0

C.P. A,B,F,H,K A,C,F,H,K G 1 20

I 1 10

J 1 8

1 6 7 7 3 10 12 6 18 53

B 0 E 2 H 0

1 1000 7 9 100 12 12 350 18

0 1 1 1 6 7 7 5 12 12 5 17 18 5 23

A 0 C 0 F 0 I 1 K 0

0 800 1 1 300 7 7 500 12 13 700 18 18 450 23

1 3 4 4 8 12 12 3 15

D 3 G 3 J 3

4 400 7 7 200 15 15 500 18
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Table 32: Float loss cost at cycle 3 

Non-Critical Activity Float lost (Days) Float Cost (Per Day) Total Float Cost 

C 0 10 0 

D 1 15 15 

E 0 12 0 

G 

I 

J 

1 

1 

1 

20 

10 

8 

20 

10 

8 

          Total = 53 

To make sure that activity H is the best activity to be crashed at this cycle, one can try the 

other crashing scenarios available; crashing activity K by 1 day, and then compare the results. If 

activity K is crashed by 1 day, the calculations are as follows: 

Total float cost= 0 (No float loss associated with crashing activity K) 

Direct cost= 5,939+ (1*350) = $6,289 

Indirect cost= 23 * 280 = $6,440, and the Total cost= $12,729 > $ 12,694 

Since Activity H exhibited the least total cost at this step, the decision is to proceed with expediting 

activity H by 1 day, but since the total project cost started to increase at this cycle, the optimum 

solution is $12,659 with 24 days duration. 

Table 33 tabulates the crashing results from cycle zero to cycle three 

Table 33: Project crashing results (crashing considering the float consumption impact) 

Cycle Duration Direct Cost Indirect Cost Total Cost 

0 27 5,300 7,560 12,860 

1 25 5,694 7,000 12,694 

2 24 5,939 6,720 12,659 

3 23 6,242 6,440 12,682 

 

Figure 20 shows the time-cost tradeoff. During crashing process the direct cost starts to increase 

while the indirect cost decreases since it’s a function of time. 
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Figure 20: Project time-cost tradeoff considering float consumption impact 

 

Figure 21 illustrates the total project cost vs. duration curve. It can be noticed that the 

optimum project duration and total cost are 24 days, $12,659 respectively, and afterward the total 

cost starts to increase until reaching the cost associated with minimum project duration.   

 

Figure 21: Project total cost vs. duration curve considering float consumption impact 
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4.3.2  Project Compression via Nonlinear-Integer Programming Considering Float Consumption 

Impact  

 

The developed framework is a nonlinear-integer programing framework that can find 

efficient solutions for the two cases with and without float loss effect. 

To develop the framework, What’s Best Solver 11.0 is used. What’s Best basically is an add-in to 

Excel that can support building a variety of optimization models such as linear, nonlinear, quadratic 

and integer models within an excel spreadsheet.   

Example one is solved using What’s Best framework via the following steps: 

 Step One: Develop the network on Excel and define the activities’ relations and logic. 

Define the duration, early start, early finish, late start, late finish, and total float for each 

activity.   

 Step Two: Define the adjustable terms. The activities durations are the adjustable terms in 

the model 

 Step Three: Establish the model table that includes; for each activity, the following: 

- Activity Normal Duration 

- Activity Original Float 

- Activity Crashed Duration 

- Activity Current Float 

- Activity Crashing Unit Cost “C C”: Crashing Slope 

- Activity Float  nit Cost “F C” 

- Activity Crashing Cost = (Normal Duration – Adjustable Duration) * CUC  

- Activity Float Loss Cost = (Original Float – Current Float ) * FUC 

 Step Four: Define the constraints. The constraints for the application example presented 

earlier are the minimum and maximum durations of the activities, and the activities logic 

and relations (if the project has to be finished before a targeted duration, then this constraint 

has to be added as well). For activity H for example, the duration is 7 days and it has a FS 

relationship with activities E and F. Applying the precedence constraint for the FS relation 

represented via Equation 8: 

                                                                                 ai + xi + LTi,j   ≤ aj 



68 
 

From activity B: 8+3+ 0 (no time lag)= 11 < 15 

From activity C: 8+7+0 (no time lag)= 15 ≤ 15 

Activity H early start = 15 

Applying the forward pass constraint using Equations 12 and 13 to find the early start and 

the early finish; respectively, of activity H: 

                                        ESj = Max [ESi + FSi,j ; ESi + SSi,j] = 15 

                               EFj = Max [ESj +  xj ; EFi + FFi,j ; ESi + SFi,j] = 22 

Applying the backward pass constraint using Equations 14 and 15 to find the late finish and 

the late start; respectively, of activity H: 

                                         LFj = Min [LSi – FSj,i ; LFi – FFj,i] = 22 

                               LSj= Min [LFj – xj ; LSi – SSj,i ; LFi – SFj,i] = 15 

 Applying the min and max duration constraint: xi min  ≤ xi  ≤ xi max 

6 ≤ 7 ≤ 7 

where 7 ≥ 0 , 6 ≥ 0 and 6 ≤ 7 

           Step Five: Define the objective function in each scenario: 

- Scenario One: to find the optimum solution without considering float loss cost:  

minimize the total project cost= direct cost + extra direct cost due to crashing + 

indirect cost.  

- Scenario Two: to find the minimum duration: minimize the project duration. To find 

the total cost associated with minimum duration: constrain the project duration to be 

equal to the minimum duration found, and then minimize the total project cost.  

- Scenario Three: to find the optimum solution considering the float loss cost: 

minimize the total project duration = direct cost + extra direct cost due to crashing + 

extra cost due to float loss in noncritical activities + indirect cost. In this scenario the 

float loss cost should be constrained to be ≥ 0 for each activity.  

 Step Six: Run the model and check the What’s Best report for the results. 

Figure 22 shows an example of the model spreadsheet with the adjustable terms, objective 

function, and constraints. 
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Figure 22: Example of model building using Excel and What's Best 

1 7 8 8 3 11 15 7 22

B 0 E 4 H 0

1 8 12 15 15 22

0 1 1 1 6 7 8 7 15 15 5 20 22 5 27 =<= 27

A 0 C 1 F 0 I 2 K 0

0 1 2 8 8 15 17 22 22 27

1 3 4 4 8 12 15 3 18

D 7 G 7 J 4

8 11 11 19 19 22

ACTIVITY
NORMAL 

DURATION

Original 

Float

CRASHED 

DURATION

Current 

Float
CUC FUC

Crashing 

Cost

Float 

Cost

A 1 0 1 0 0 0 0 0 =>= 0 1 =>= 1 =>= 1

B 7 0 4 0 200 0 0 0 =>= 0 7 =>= 7 >= 4

C 6 1 4 1 100 10 0 0 =>= 0 6 =>= 6 >= 4

D 3 7 2 7 400 15 0 0 =>= 0 3 =>= 3 >= 2

E 3 4 1 4 50 12 0 0 =>= 0 3 =>= 3 >= 1

F 7 0 5 0 150 0 0 0 =>= 0 7 =>= 7 >= 5

G 8 7 4 7 300 20 0 0 =>= 0 8 =>= 8 >= 4

H 7 0 6 0 250 0 0 0 =>= 0 7 =>= 7 >= 6

I 5 2 3 2 75 10 0 0 =>= 0 5 =>= 5 >= 3

J 3 4 2 4 500 8 0 0 =>= 0 3 =>= 3 >= 2

K 5 0 4 0 350 0 0 0 =>= 0 5 =>= 5 >= 4

0 0

5300

7560

0

0

12860

Crashing Cost

Total Cost

Direct Cost

Indirect Cost

Float Cost

Define Precedence 

Constraints 

Define Project Duration 

Constraint 

Define Max and Min 

Duration Constraint for 

Each Activity 

Select the Activities Durations 

as Adjustable Terms 
Define the Objective Function (in 

this example minimize the total 

cost) 

General Notes: 

- Original float will stay the same as that originally 

calculated when developing the network 

- Current float will vary according to the network 

calculations at each crashing scenario 

- Normal duration is kept the same during the 

calculation of the crashing cost 

- Float loss cost should be ≥ 0 when finding the 

optimum solution with float loss effect 

XT 
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4.4     Results and Discussion 

After developing example one on Excel, and developing the model accordingly, the 

framework is run and the optimum duration is found to be 23 days with an associated total cost of $ 

12,490. The minimum project duration is 20 days and the total cost associated with the minimum 

duration is $12600. The optimum duration considering float consumption impact found using the 

model is 24 days with a total cost considering float consumption impact equal to $12,659. The 

results obtained are consistent with the deterministic approaches (with and without float loss effect), 

which proves the validity of the model in reaching an optimum/efficient solution. 

Table 34 compares the remaining total float for the noncritical activities between the 

deterministic compression method and the new proposed NLIP compression framework. 

    Table 34: Comparison of TF between deterministic compression method & new proposed NLIP framework 

Noncritical Activity 

Activity Total Float in Days 

at 23 Days Duration 

(Deterministic) 

Activity Total Float in Days 

at 24 Days Duration (New 

Proposed Framework) 

C 0 0 

D 3 4 

E 2 2 

G 3 4 

I 1 2 

J 3 4 

 

It can be noticed that the new proposed compression model is better in terms of remaining 

float as it finds an efficient solution that can save some total float for future use with a less risky 

cost.  

The Probability of finishing the project within 27 days using Monte Carlo Simulation is 

found to be 0.374741941. Comparing the results between the optimum solution found using 

deterministic approach (without float loss effect) and the optimum solution found considering the 

float loss effect in terms of probability of finishing the project on time, the probability of finishing 

on time when float loss impact is considered is considerably higher than that when float loss impact 

is not considered; as the probability of finishing the project within 24 days when float loss impact is 

considered is 0.281465113, and the probability of finishing the project within 23 days when float 

loss impact is not considered is 0.236667746.  
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Table 35 tabulates the activities’ criticality indices found after running the Monte Carlo 

Simulation over the two networks at 23 and 24 days duration. 

Table 35: Activities’ critical indices at 23 and 24 days duration 

Activity 
Activity critical index 

@23 days duration 

Activity critical index 

@ 24 days duration 

A 1 1 

B 0.62 0.6 

C 0.55 0.47 

D 0.21 0.18 

E 0.18 0.15 

F 0.82 0.81 

G 0.21 0.18 

H 0.79 0.69 

I 0.45 0.3 

J 0.24 0.23 

K 1 1 

 

Comparing the results between the optimum solution found using deterministic approach 

(without float loss effect) and the optimum solution found considering the float loss effect in terms 

of activities’ criticality indices presented in Table 33, it can be noticed that the new optimum 

duration with float can provide better results in terms of activities criticality index, given that the 

criticality index represents the percentage of the number of times the activity was found to be on the 

critical path. Therefore, the new optimum duration provides better project flexibility by preserving 

more float for future use when unforeseen events occur. 

The criticality ratio is calculated as a ratio between the number of critical activities to the 

total number of activities. The criticality ratio of the schedule of the optimum solution found using 

deterministic approach (without float loss effect) is calculated to be 0.545. On the other hand, the 

criticality ratio of the schedule of the optimum solution found considering the float loss effect in 

terms of critical ratio is also calculated to be 0.545. In both cases, the critical ratio happened to be 

the same since the critical path didn’t change at 23 and 24 days duration. 
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Figure 23 compares the total cost curves resulting from the optimum solution found using 

deterministic approach (without float loss effect) and the optimum solution found considering the 

float loss effect. 

 

Figure 23: Comparison of total cost curves 

From Figure 23, it can be shown that the optimum project total cost considering float 

consumption impact is higher than the optimum normal cost. Optimum project duration, as well, is 

higher than that when float loss cost wasn’t considered. This result is predicted earlier 

hypothetically, and the increase in the project total cost of the curve considering float consumption 

impact is related to the increase in the direct cost that accounts for the float loss cost in non-critical 

activities. Although the framework presents a curve with a higher cost (the difference between the 

optimum total cost when float is considered and the deterministic normal optimum total cost is 

equal to $ 169 in this example), this higher cost accounts and quantifies the float cost impact and 

accounts for the risks associated with project flexibility loss in terms of money. Project managers 

can choose, depending on their projects and circumstances, between the two curves; either to go for 

the normal compression method and accept the risk associated with loosing total float, or to use the 

new curve and compress the schedule in a less risky manner. 
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4.5      Chapter Conclusion 

 

This chapter presented the formulation and the assembly of the new proposed framework to 

find an efficient solution to the optimization problem considering a new criterion; float loss impact 

within noncritical activities.    

 As addressed before, float consumption within noncritical consumption can impact the 

project schedule and cost. The developed framework using What’s Best solver proved this impact 

by pointing out the effect of float loss over the schedule flexibility, criticality index, and probability 

of finishing the project on time. The solution obtained considering the float loss cost compared to 

the normal deterministic solution provided a higher probability of completion (0.28 compared to 

0.23), a better criticality index for some activities, and a small total cost difference (this small extra 

money can help in avoiding the risks associated with project flexibility loss). The total cost curves 

in both cases matched the hypothetical curves predicted earlier; validating the earlier concept 

predicted about the new framework.    
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CHAPTER FIVE: FRAMEWORKS VALIDATION  

 

5.1      Chapter Overview 

 

This chapter evaluates the results of five different examples solved using the two proposed 

frameworks and compares between the deterministic solution and the frameworks solution in terms 

of probability of finishing on time, criticality index, remaining float, criticality ratio, and total cost 

graphs to present the effect of considering float consumption in noncritical activities over project 

flexibility, cost, and duration.     

5.2  Frameworks Validation: Results and Analysis 

5.2.1  Example One 

 

Example one is adopted from Isidore & Back [7], and reproduced in Table 36. Columns 6 to 

8 are added in order to use them in finding the float unit cost, while columns 9 and 10 are added to 

perform the stochastic analysis. 

Table 36: Isidore & Back project data 

Activity 
Normal 

Duration 

Crashed 

Duration 
CUC TF EFC LFC FUC 

Duration 

Mean 

Duration 

Standard 

Deviation 

A 3 2 30 6 400 460 10 3 1.2 

B 4 2 40 0 - - - 4 3.14 

C 2 2 - 2 350 386 18 2 1.8 

D 7 5 25 0 - - - 7 1.25 

E 5 3 35 0 - - - 5 1 

F 6 3 30 6 610 742 22 6 2.3 

G 4 2 30 0 - - - 4 2.5 

H 5 2 45 2 525 555 15 5 1.5 

I 3 2 20 2 390 440 25 3 0.5 

J 6 3 50 2 615 655 20 6 1.5 

 

Figure 24 illustrates the project schedule and precedence relationships. According to Isidore 

& Back [7], the normal project duration is 20 days, and the normal total cost is $8,215. The 

optimum project duration is 12 days, while the total project cost associated with this duration is 

$7,940.  
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Figure 24: Schedule network and activities relations in Example One 

After developing the framework and running it using What’s Best, the deterministic 

duration without the float loss cost is found to be 12 days, and the associated total cost is $7,940. 

The results are consistent with one found by Isidore & Back [7]. The optimum duration considering 

float loss cost is 18 days with an associated cost of $8,155. The stochastic analysis resulted in 17 

days project duration with an associated total cost of $8,146.5.  

In light of the results obtained, a comparison is done between the deterministic results, the 

nonlinear-integer model results, and the stochastic results. In terms of criticality ratio, the 

deterministic scenario is 1 while the probabilistic model and the nonlinear integer model resulted in 

a criticality ratio of 0.5. in terms of probability of finishing on time, the probability of finishing the 

project within 20 days is 0.355124, and within 12 days (deterministic scenario) is 0.109315488, and 

within 17 days (probabilistic framework) is 0.252702066, while the probability of finishing the 

project within 18 days (NLIP framework) is 0.279670521. In terms of schedule flexibility, the 

nonlinear-integer framework and the stochastic framework performed better than the deterministic 

approach. Table 37 illustrates the remaining schedule total float in the three cases. Moreover, the 

Legend ES Duration EF

Activity TF

LS LF

0 6 6 6 3 9

F 6 A 6

6 12 12 15

15 5 20

E 0

0 0 0 0 4 4 4 4 8 8 7 15 15 20 20 0 20

START 0 B 0 G 0 D 0 END 0

0 0 0 4 4 8 8 15 20 20

15 3 18

I 2

0 5 5 5 2 7 7 6 13 17 20

H 2 C 2 J 2

2 7 7 9 9 15
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activities criticality indices when using the nonlinear-integer framework and the stochastic 

framework are better than that when applying the deterministic approach to find the optimization 

solution. Table 38 shows a comparison between the three cases in terms of criticality index of each 

activity. 

Table 37: Comparison between all cases in terms of remaining total float in Example One  

Activity 
Total Float in 

Normal Case 

Total Float in 

Deterministic 

Case 

Total Float in 

Nonlinear-

Integer 

Framework 

Case 

Total Float in 

Stochastic 

Framework 

Case 

A 6 0 6 5 

B 0 0 0 0 

C 2 0 2 1 

D 0 0 0 0 

E 0 0 0 0 

F 6 0 6 5 

G 0 0 0 0 

H 2 0 2 1 

I 2 0 0 0 

J 2 0 2 1 

 

Table 38: Activities critical indices in Example One  

Activity 

 
Activity Critical 

Index 
 

Deterministic 

Approach 

Probabilistic 

Framework 

Nonlinear-Integer 

Framework 

A 1 0.07 0.05 

B 1 0.7 0.69 

C 1 0.48 0.43 

D 1 0.68 0.69 

E 1 0.77 0.84 

F 1 0.07 0.05 

G 1 0.68 0.69 

H 1 0.48 0.43 

I 1 0.8 0.82 

J 1 0.55 0.45 

 

Figure 25 shows the project total cost vs. the project duration for the results when using the 

deterministic approach, the nonlinear-integer framework, and the stochastic framework. From 

Figure 25, one can notice the optimum duration-cost for each case, and it can be realized that the 
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higher cost in the nonlinear-integer model results and the stochastic model results quantifies the 

impact of project flexibility loss in money means. 

 

Figure 25: Total project cost vs project duration in all cases in Example One 

5.2.2   Example Two 

 

Example two is adopted from Oxley & Poskitt [61] and reproduced in Table 39. Columns 6 

to 8 in the table are added in order to use them in finding the float unit cost, while columns 9 and 10 

are added to perform the stochastic analysis. Figure 26 illustrates the project schedule and 

precedence relationships. According to Oxley & Poskitt [61], the normal project duration is 24 

dyas, while the normal total cost is $30,520. The deterministic project optimum duration is 17 days, 

while the total project cost associated with this duration is $28,870.  

After developing the framework and running it using What’s Best, the deterministic duration 

without the float loss cost is found to be 17 days, and the associated total cost is $28,870. The 

results are consistent with one found by Oxley & Poskitt [61]. The duration considering float loss 

cost is 21 days with an associated cost of $30,252. The stochastic analysis resulted in 18 days 

project duration with an associated total cost of $29,742.5. 

 

 



78 
 

Table 39: Oxley & Poskitt project data 

Activity 
Normal 

Duration 

Crashed 

Duration 
CUC TF EFC LFC FUC 

Duration 

Mean 

Duration 

Standard 

Deviation 

C 4 3 300 11 3,000 3,330 30 4 2.5 

B 10 5 150 0 - - - 10 1 

A 1 1 0 4 100 200 25 1 1.6 

D 1 1 0 11 120 560 40 1 2.25 

E 1 1 0 0 - - - 1 0.25 

F 2 2 0 4 1,500 1,532 8 2 1.5 

G 3 2 100 9 500 815 35 3 0.85 

H 1 1 0 4 500 612 28 1 3.2 

I 3 3 0 9 350 548 22 3 1.25 

J 3 2 75 4 450 530 20 3 0.3 

L 4 3 50 9 550 775 25 4 2.1 

K 5 3 500 0 - - - 5 0.5 

M 4 3 200 0 - - - 4 1.5 

O 3 2 125 0 - - - 3 0.3 

N 3 2 300 9 800 980 20 3 2.5 

P 1 1 0 0 - - - 1 0.1 

 

 

Figure 26: Schedule network and activities relations in Example Two 

Legend ES Duration EF

Activity TF

LS LF 0 4 4 4 1 5

C 11 D 11

11 15 15 16

0 0 0 0 10 10 10 1 11

START 0 B 0 E 0

0 0 0 10 10 11

0 1 1 1 2 3 3 1 4 4 3 7 11 5 16 16 4 20 20 3 23 23 1 24

A 4 F 4 H 4 J 4 K 0 M 0 O 0 P 0

4 5 5 7 7 8 8 11 11 16 16 20 20 23 23 24

1 3 4 4 3 7 7 4 11 11 3 14

G 9 I 9 L 9 N 9

10 13 13 16 16 20 20 23
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According to the results obtained, the deterministic scenario had a criticality index of 0.625 

while the nonlinear integer framework and the probabilistic framework resulted in a criticality ratio 

of 0.375 and 0.625, respectively (the criticality ratio is equal in the deterministic and probabilistic 

model as the number of critical activities was the same and critical path didn’t change in both 

cases). Moreover, the probabilistic framework and the NLIP framework performed better in terms 

of the probability of finishing on time. The probability of finishing the project normally within 24 

days is 0.425895392, and within 17 days (deterministic case) is 0.208809028, and within 18 days 

(probabilistic framework) is 0.250002956, while the probability of finishing within 21 days (NLIP 

framework) is 0.385687061. In terms of schedule flexibility, the nonlinear-integer framework and 

the stochastic framework performed better than the deterministic approach. 

Table 40 indicates the schedule flexibility in terms of the remaining schedule total float in 

the three cases. Furthermore, the activities criticality indices when using the nonlinear-integer 

framework and the stochastic framework are noticeably better than that when applying the 

deterministic approach to solve the optimization problem. 

Table 40: Comparison between all cases in terms of remaining total float in Example Two 

Activity 
Total Float in 

Normal Case 

Total Float in 

Deterministic 

Case 

Total Float in 

Nonlinear-

Integer 

Framework 

Case 

Total Float in 

Stochastic 

Framework 

Case 

C 11 6 10 6 

B 0 0 0 0 

A 4 0 4 0 

D 11 6 10 6 

E 0 0 0 0 

F 4 0 4 0 

G 9 2 8 3 

H 4 0 4 0 

I 9 2 8 3 

J 4 0 4 0 

L 9 2 8 3 

K 0 0 0 0 

M 0 0 0 0 

O 0 0 0 0 

N 9 2 8 3 

P 0 0 0 0 
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Table 41 shows a comparison between the three cases in terms of schedule-activities’ 

criticality indices. Figure 27 shows the project total cost vs. the project duration for the results when 

using the deterministic approach, the nonlinear-integer framework, and the stochastic framework. 

Table 41: Activities critical indices in Example Two 

Activity 

 
Activity Critical 

Index 
 

Deterministic 

Approach 

Probabilistic 

Framework 

Nonlinear-Integer 

Framework 

C 0.03 0.02 0 

B 0.42 0.52 0.66 

A 0.78 0.65 0.44 

D 0.03 0.02 0 

E 0.42 0.52 0.66 

F 0.52 0.45 0.31 

G 0.36 0.24 0.13 

H 0.52 0.45 0.31 

I 0.36 0.24 0.13 

J 0.52 0.45 0.31 

L 0.36 0.24 0.13 

K 0.95 0.8 0.87 

M 0.95 0.8 0.87 

O 0.95 0.8 0.87 

N 0.36 0.24 0.13 

P 1 1 1 

 

From Figure 27, one can notice the optimum duration-cost for each case, and it can be 

realized that the higher cost in the nonlinear-integer framework results and the stochastic 

framework results quantifies the impact of project flexibility loss in money means. 
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Figure 27: Total project cost vs project duration in all cases in Example Two 

5.2.3 Example Three 

 

Example three is adopted from Zeinalzadeh [62], and reproduced in Table 42. Columns 6 to 

8 are added to use them in finding the float unit cost, while columns 9 and 10 are added to perform 

the stochastic analysis. Figure 28 illustrates the project schedule and precedence relationships. 

According to Zeinalzadeh [62], the normal project duration is 20 days, and the normal total project 

cost is $2,044,000. The project optimum duration is 16 days, while the total project cost associated 

with this duration is $1,990,000.  

After developing the framework and running it using What’s Best, the deterministic 

duration without the float loss cost is found to be 16 days, and the associated total cost is 

$1,990,000. The results are consistent with the ones found by Zeinalzadeh [62]. The duration 

considering float loss cost is 17 days with an associated cost of $2,005,795. The stochastic analysis 

resulted in 18 days project duration with an associated total cost of $2,020,269.525.  

As per the results obtained in this example, the deterministic scenario scored 0.261 in terms 

of criticality ratio, while the probabilistic framework and the nonlinear integer framework resulted 

in a criticality ratio of 0.087 and 0.174, respectively. 
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Table 42: Zeinalzadeh project data 

Activity 
Normal 

Duration 

Crashed 

Duration 
CUC TF EFC LFC FUC 

Duration 

Mean 

Duration 

Standard 

Deviation 

A 15 13 20,000 3 225,000 225,300 100 15 2.5 

B 2 1 2,000 3 26,000 26,750 250 2 4 

C 14 10 20,000 4 210,000 210,360 90 14 1.6 

D 2 1 2,000 4 26,000 26,600 150 2 2.25 

E 2 1 20,000 12 30,000 32,160 180 2 0.25 

F 2 1 1,000 12 16,000 20,200 350 2 1.5 

G 4 3 2,000 12 52,000 53,200 100 4 0.85 

H 3 1 20,000 10 45,000 48,500 350 3 3.2 

I 2 1 1,000 10 16,000 17,500 150 2 1.25 

J 5 3 2,000 10 65,000 66,200 120 5 3 

K 3 2 20,000 10 45,000 48,600 360 3 2.1 

L 4 2 1,000 10 32,000 34,100 210 4 0.5 

M 3 1 2,000 10 39,000 40,300 130 3 1.5 

N 5 2 20,000 9 75,000 76,260 140 5 0.5 

O 6 4 2,000 9 78,000 78,810 90 6 2.5 

P 5 3 15,000 8 75,000 76,760 220 5 1.8 

Q 7 5 2,000 8 91,000 92,280 160 7 1.2 

R 2 1 15,000 18 20,000 29,000 500 2 0.5 

S 5 3 15,000 15 50,000 56,300 420 5 0.35 

T 3 1 1,000 15 24,000 25,650 110 3 1.5 

U 2 1 15,000 15 20,000 21,275 85 2 1.8 

V 12 9 20,000 0 - - - 12 2.2 

W 8 6 2,000 0 - - - 8 2.8 

 

Moreover, the probabilistic framework and the NLIP framework performed better in terms 

of the probability of finishing on time. The probability of finishing the project normally within 20 

days is 0.341538455, and within 16 days (deterministic case) is 0.121625058, and within 18 days 

(probabilistic framework) is 0.203947032, while the probability of finishing within 17 days (NLIP 

framework) is 0.160543228. In terms of schedule flexibility, the nonlinear-integer framework and 

the stochastic framework performed better than the deterministic approach. Table 43 shows the 

remaining schedule total float in the three cases. Also, the activities criticality indices using the 

nonlinear-integer framework and the stochastic framework are better than the deterministic case. 
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Figure 28: Schedule network and activities relations in Example Three 

Table 44 shows a comparison between the three cases in terms of schedule-activities’ 

criticality indices. Figure 29 shows the project total cost vs. the project duration for the results when 

using the deterministic approach, the nonlinear-integer framework, and the stochastic framework. 

From Figure 29, one can notice the optimum duration-cost for each case, and it can be realized that 

the higher cost in the nonlinear-integer model results and the stochastic model results quantifies the 

impact of project flexibility loss in money means.  

 

0 15 15 15 2 17

Legend ES Duration EF A 3 B 3

Activity TF 3 18 18 20
LS LF

0 14 14 14 2 16

C 4 D 4

4 18 18 20

0 0 0

START 0 0 2 2 2 2 4 4 4 8

0 0 E 12 F 12 G 12

12 14 14 16 16 20

20 0 20

0 3 3 3 2 5 5 5 10 END 0

H 10 I 10 J 10 20 20

10 13 13 15 15 20

0 3 3 3 4 7 7 3 10

K 10 L 10 M 10

10 13 13 17 17 20

0 5 5 5 6 11

N 9 O 9

9 14 14 20

0 5 5 5 7 12

P 8 Q 8

8 13 13 20

0 2 2

R 18

18 20

0 5 5

S 15

15 20

0 3 3 3 2 5

T 15 U 15

15 18 18 20

0 12 12 12 8 20

V 0 W 0

0 12 12 20



84 
 

Table 43: Comparison between all cases in terms of remaining total float in Example Three 

Activity 
Total Float in 

Normal Case 

Total Float in 

Deterministic 

Case 

Total Float in 

Nonlinear-

Integer 

Framework 

Case 

Total Float in 

Stochastic 

Framework 

Case 

A 3 0 0 1 

B 3 0 0 1 

C 4 0 1 2 

D 4 0 1 2 

E 12 8 9 10 

F 12 8 9 10 

G 12 8 9 10 

H 10 6 7 8 

I 10 6 7 8 

J 10 6 7 8 

K 10 6 7 8 

L 10 6 7 8 

M 10 6 7 8 

N 9 5 6 7 

O 9 5 6 7 

P 8 4 5 6 

Q 8 4 5 6 

R 18 14 15 16 

S 15 11 12 13 

T 15 11 12 13 

U 15 11 12 13 

V 0 0 0 0 

W 0 0 0 0 
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Table 44: Activities critical indices in Example Three 

Activity 

 
Activity Critical 

Index 
 

Deterministic 

Approach 

Probabilistic 

Framework 

Nonlinear-Integer 

Framework 

A 0.5 0.42 0.42 

B 0.5 0.42 0.42 

C 0.31 0.23 0.31 

D 0.31 0.23 0.31 

E 0 0 0 

F 0 0 0 

G 0 0 0 

H 0.08 0.03 0.05 

I 0.08 0.03 0.05 

J 0.08 0.03 0.05 

K 0.01 0.01 0.01 

L 0.01 0.01 0.01 

M 0.01 0.01 0.01 

N 0.01 0 0 

O 0.01 0 0 

P 0.05 0 0 

Q 0.05 0 0 

R 0 0 0 

S 0 0 0 

T 0 0 0 

U 0 0 0 

V 0.56 0.42 0.37 

W 0.56 0.42 0.37 

 

 

Figure 29: Total project cost vs project duration in all cases in Example Three 
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5.2.4 Example Four 

 

Example four is adopted from Elbeltagi [63], and reproduced in Table 45. Columns 6 to 8 

are added to use them in finding the float unit cost, while columns 9 and 10 are added to perform 

the stochastic analysis. Figure 30 illustrates the project schedule and precedence relationships. 

According to Elbeltagi [63], the normal project duration is 59 days, and the normal total cost is 

$43,875. The project optimum duration is 51 days, while the total project cost associated with this 

duration is $43,545.  

Table 45:Elbeltagi project data 

Activity 
Normal 

Duration 

Crashed 

Duration 
CUC TF EFC LFC FUC 

Duration 

Mean 

Duration 

Standard 

Deviation 

A 12 10 100 0 7000 _ _ 12 1.5 

B 8 6 150 2 5000 5036 18 8 2.25 

C 15 12 200 0 4000 _ _ 15 0.5 

D 23 23 0 4 5000 5088 22 23 2.5 

E 5 4 50 2 1000 1030 15 5 0.25 

F 5 4 300 2 3000 3024 12 5 1.5 

G 20 15 60 0 6000 _ _ 20 0.65 

H 13 11 40 2 2500 2548 24 13 1 

I 12 10 75 0 3000 _ _ 12 1.2 

 

 

Figure 30: Schedule network & activities relations in Example Four 
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After developing the framework and running it using What’s Best, the deterministic 

duration without the float loss cost is found to be 51 days, and the associated total cost is $43,545. 

The results are consistent with the ones found by Elbeltagi [63]. The duration considering float loss 

cost is 53 days with an associated cost of $43,711. The stochastic analysis resulted in 54 days 

project duration with an associated total cost of $ 43,792.73.  

In terms of criticality ratio, the deterministic scenario resulted in a critical ratio of 0.667 

while the probabilistic framework and the nonlinear integer framework resulted in a criticality ratio 

of 0.556 and 0.667, respectively (the criticality ratio is equal in the deterministic and the nonlinear 

framework as the number of critical activities is the same and critical path didn’t change in both 

cases). Moreover, the probabilistic framework and the NLIP framework performed better in terms 

of the probability of finishing on time. The probability of finishing the project normally within 59 

days is 0.393415562, and within 51 days (deterministic case) is 0.225519109, and within 54 days 

(probabilistic framework) is 0.356437597, while the probability of finishing within 53 days (NLIP 

framework) is 0.313370215. In terms of schedule flexibility, the nonlinear-integer framework and 

the stochastic framework performed better than the deterministic approach.  

Table 46 illustrates the remaining schedule total float in the three cases. Moreover, the 

activities criticality indices when using the nonlinear-integer framework and the stochastic 

framework are better than that when applying the deterministic approach to find the optimization 

solution. 

Table 46: Comparison between all cases in terms of remaining total float in Example Four 

Activity 
Total Float in 

Normal Case 

Total Float in 

Deterministic 

Case 

Total Float in 

Nonlinear-

Integer 

Framework 

Case 

Total Float in 

Stochastic 

Framework 

Case 

A 0 0 0 0 

B 2 0 2 2 

C 0 0 0 0 

D 4 0 2 2 

E 2 2 2 3 

F 2 0 0 0 

G 0 0 0 1 

H 2 0 0 0 

I 0 0 0 0 



88 
 

Table 47 shows a comparison between the three cases in terms of schedule-activities’ 

criticality indices. 

 Table 47: Activities critical indices in Example Four 

Activity 

 
Activity Critical 

Index 
 

Deterministic 

Approach 

Probabilistic 

Framework 

Nonlinear-Integer 

Framework 

A 1 1 1 

B 0.54 0.39 0.4 

C 0.86 0.79 0.76 

D 0.51 0.36 0.26 

E 0.07 0.08 0.2 

F 0.72 0.49 0.6 

G 0.42 0.43 0.6 

H 0.72 0.49 0.6 

I 1 1 1 

 

Figure 31 shows the project total cost vs. the project duration for the results, and the 

optimum duration-cost when using the deterministic approach, the nonlinear-integer framework, 

and the stochastic framework. Figure 31 also indicates the difference between the three curves as an 

illustration of the impact of project flexibility loss over the total cost. 

 

Figure 31: Total project cost vs project duration in all cases in Example Four 

 



89 
 

5.2.5 Example Five 

 

Example five is adopted from Gould [64] and reproduced in Table 48. Columns 6 to 8 are 

added to use them in finding the float unit cost, while columns 9 and 10 are added to perform the 

stochastic analysis. 

Figure 32 shows the project schedule and precedence relationships. According to Gould 

[64], the normal project duration is 37 days, and the normal project total cost is $119,745. The 

optimum project duration is 30 days, while the total project cost associated with this duration is 

$116,465.  

 

Figure 32: Schedule network & activities relations in Example Five 
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After developing the framework and running it using What’s Best, the deterministic 

duration without the float loss cost is found to be 30 days, and the associated total cost is $116,465. 

The results are consistent with one found by Gould [64]. The duration considering float loss cost is 

32 days with an associated cost of $118,035. The stochastic analysis resulted in 35 days project 

duration with an associated total cost of $116,604.992.  

Table 48: F. Gould project data 

Activity 
Normal 

Duration 

Crashed 

Duration 
CUC TF EFC LFC FUC 

Duration 

Mean 

Duration 

Standard 

Deviation 

A 5 3 500 0 3,000 - - 5 0.35 

B 12 - 0 13 6,200 7,500 100 12 0.5 

C 20 - 0 4 8,400 8,620 55 20 1 

D 15 - 0 14 8,550 9,390 60 15 3.25 

E 20 - 0 9 5,900 6,530 70 20 3.85 

F 5 3 1,175 0 9,450 - - 5 0.2 

G 4 3 1,100 0 7,500 - - 4 1.5 

H 5 3 800 13 6,000 6,325 25 5 1.325 

I 5 3 850 0 10,200 - - 5 0.25 

J 5 3 700 0 6,300 - - 5 1.2 

K 4 3 750 2 8,250 8,340 45 4 2 

L 5 3 660 0 2,550 - - 5 0.75 

M 4 3 750 1 3,360 3,420 60 4 2.62 

N 2 1 1,050 2 6,450 6,520 35 2 1.22 

O 3 2 900 1 3,375 3,400 25 3 1.34 

P 3 2 480 0 1,560 - - 3 0.3 

Q 5 3 420 0 4,200 - - 5 0.65 

 

Based on the results obtained in this example, a comparison is done between the 

deterministic results, the nonlinear-integer framework results, and the stochastic framework results. 

In terms of criticality ratio, the deterministic scenario is 0.647 while the probabilistic framework 

and the nonlinear integer framework resulted in a criticality ratio of 0.471 and 0.588, respectively. 

Moreover, the probabilistic framework and the NLIP framework performed better in terms of the 

probability of finishing on time. The probability of finishing the project normally within 37 days is 

0.341980523, and within 30 days (deterministic case) is 0.165335684, and within 35 days 

(probabilistic framework) is 0.338124405, while the probability of finishing within 32 days (NLIP 

framework) is 0.2545436. In terms of schedule flexibility, the nonlinear-integer framework and the 

stochastic framework performed better than the deterministic approach. Table 49 illustrates the 

remaining schedule total float in the three cases. Moreover, the activities’ criticality indices when 
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using the nonlinear-integer framework and the stochastic framework are better than that when 

applying the deterministic approach to find the optimization solution. Table 50 shows a comparison 

between the three cases in terms of criticality index for each activity.  

Figure 33 shows the project total cost vs. the project duration for the results when using the 

deterministic approach, the nonlinear-integer model, and the stochastic model. Figure 33, shows the 

optimum duration-cost for each case, and the difference in cost between the nonlinear-integer 

model results and the stochastic model results from the deterministic results. This difference 

measures the impact of project flexibility loss in terms of money. 

 

Table 49: Comparison between all cases in terms of remaining total float in Example Five 

Activity 
Total Float in 

Normal Case 

Total Float in 

Deterministic 

Case 

Total Float in 

Nonlinear-

Integer 

Framework 

Case 

Total Float in 

Stochastic 

Framework 

Case 

A 0 0 0 0 

B 13 8 10 13 

C 4 0 2 4 

D 14 9 11 14 

E 9 5 7 9 

F 0 0 0 0 

G 0 0 0 0 

H 13 8 10 13 

I 0 0 0 0 

J 0 0 0 0 

K 2 1 1 2 

L 0 0 0 0 

M 1 0 0 1 

N 2 1 1 2 

O 1 0 0 1 

P 0 0 0 0 

Q 0 0 0 0 
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Figure 33: Total project cost vs project duration in all cases in Example Five 

 

 

Table 50: Activities critical indices in Example Five 

Activity 

 
Activity Critical 

Index 
 

Deterministic 

Approach 

Probabilistic 

Framework 

Nonlinear-Integer 

Framework 

A 0.79 0.69 0.69 

B 0 0 0 

C 0.39 0.08 0.18 

D 0.01 0 0 

E 0.1 0 0.04 

F 0.79 0.69 0.69 

G 0.79 0.69 0.69 

H 0 0 0 

I 0.79 0.69 0.69 

J 0.79 0.69 0.69 

K 0.25 0.24 0.35 

L 0.61 0.68 0.52 

M 0.59 0.44 0.48 

N 0.25 0.24 0.35 

O 0.59 0.44 0.48 

P 0.67 0.60 0.53 

Q 1 1 1 



93 
 

 

Table 51 summarizes the results of the five examples found via the classical deterministic approach, manual-probabilistic 

framework, and the NLIP framework along with their probability of finishing the project on time.  

Table 51: Summary of the five examples results 

Example 

Normal Case Deterministic Solution 
Manual- Probabilistic Framework 

Solution 
NLIP Framework Solution 

Project 

Duration 

Total 

Project 

Cost 

POF 
Project 

Duration 

Total 

Project 

Cost 

POF 
Project 

Duration 

Total Project 

Cost 
POF 

Project 

Duration 

Total 

Project 

Cost 

POF 

Example 

One 

(Isidore & 

Back [7]) 

20 days $8,215 0.355 12 days $7,940 0.109 17 days $8,146.5 0.253 18 days $8,155 0.279 

Example 

Two 

(Oxley & 

Poskitt [61]) 

24 days $30,520 0.426 17 days $28,870 0.209 18 days $29,742.5 0.250 21 days $30,252 0.386 

Example 

Three 

Zeinalzadeh 

[62]) 

20 days $2,044,000 0.342 16 days $1,990,000 0.122 18 days $2,020,269.525 0.204 17 days $2,005,795 0.161 

Example 

Four 

(Elbeltagi 

[63]) 

59 days $43,875 0.393 51 days $43,545 0.226 54 days $ 43,792.73 0.356 53 days $43,711 0.313 

Example 

Five 

(Gould [64]) 

37 days $119,745 0.342 30 days $116,465 0.165 35 days $ 116,604.992 0.338 32 days $118,035 0.255 
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In light of the results presented in Table 51, one can notice the improved probability of 

finishing the project on time if the manual-probabilistic framework or the NLIP framework is used 

to find an optimum/efficient solution to the optimization problem. The two developed frameworks 

indeed allows the decision makers to experience a new tradeoff between time, cost, and project 

flexibility while improving the chances of meeting the targeted project duration within the planned 

budgeted cost.       

5.3     Chapter Conclusion 

 

This chapter presented the results of five examples that are solved using the two frameworks 

developed; the stochastic framework and the nonlinear-integer framework. The five examples are 

adopted from various books and journal papers and reproduced with some required added data. The 

five examples are analyzed using the two frameworks in order to validate the two developed 

frameworks and compare between the deterministic solution and the frameworks solution in terms 

of probability of finishing on time, criticality index, remaining float, criticality ratio, and total cost 

graphs. The comparison is done to present the effect of considering float consumption in noncritical 

activities over project flexibility, cost, and duration. In all the cases, the frameworks’ results are 

better than the deterministic results; which highlights the frameworks advantage over the 

deterministic approach.    
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CHAPTER SIX: SUMMARY, CONCLUSION & RECOMMENDATIONS 

 

6.1      Summary and Conclusion 

 

The Thesis was able to deliver a new time-cost optimization framework that considers a new 

criterion; float loss impact within noncritical activities. Based on the literature review performed, it 

was found that this criterion was never approached before and there is a need to incorporate the 

float loss impact to the compression problem. Adding the float loss impact to the time-cost tradeoff 

analysis will provide a modified logical approach for decision making and will improve the 

reliability and effectiveness of the crashing decision.      

Two frameworks are developed in this Thesis; a stochastic framework and a nonlinear-

integer framework. The stochastic framework makes use of @risk simulation to generate 

probabilities and find means and standard deviations for each activity being crashed at each 

crashing cycle, then analyzes the crashing results and compares between the activities; the activity 

with the lowest total extra cost/total project cost will be selected and crashed at that cycle. The 

initiation of the stochastic framework is based on the fact that the project’s probability of finishing 

reduces when the project’s duration is reduced; and consequently, the total float available for 

noncritical activities will be reduced as well, reducing the flexibility of the schedule. This reduction 

in the flexibility is associated with an impact. This impact is quantified first as a time then as a cost 

to be added to the crashing mechanism. The other nonlinear-integer framework uses What’s Best 

solver to solve the optimization problem considering the float loss impact. The float loss cost is 

calculated in this framework using the commodity equation presented by Garza et al. [4] that finds 

the float cost for each noncritical activity as relation between the early finish cost, the late finish 

cost and the amount of total float available for the noncritical activity. The objective function, the 

decision variables and problem parameters, and the constraints are all formulated and presented in 

Chapter Four. The Thesis also presented a manual approach for schedule compression considering 

float loss impact in noncritical activities by incorporating the float loss cost found using Garza et al.  

[4] equation into the crashing problem and analyzing all the available activities for crashing then 

selecting the best activity with the least total extra cost/ total project cost at each cycle.  The results 

of the two frameworks over six examples were consistent and met the hypothetical expectations 
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while providing better results over the deterministic compression approach in terms of schedule 

flexibility, criticality index, and probability of finishing the project on time. 

To conclude, the two frameworks developed in this Thesis could be beneficial, if 

implemented, as they can help management in providing an optimal/efficient solution to the time-

cost tradeoff problem while maintaining a flexible schedule that meets the project needs with less 

inhabited risk.    

6.2      Recommendation for Future Research 

 

To best improve the speed or the computational efficiency of the framework developed, it is 

recommended to use the meta-heuristic techniques such as neural networks or particle swarm 

optimization techniques to reduce the calculation time as possible.  
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