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Abstract 

Cognitive Radio (CR) is an innovative technology introduced to efficiently utilize 

the spectrum. It allows secondary users to access the licensed portion of the spectrum 

when it is not occupied by the primary licensed user. Most of the CR applications are 

expected to operate in channels occupied by OFDM based systems since OFDM is the 

preferred modulation scheme of most recent wireless technologies. To be able to 

efficiently utilize the spectrum, CR must be able to properly sense the spectrum. This 

thesis models the spectrum sensing problem in a Cooperative CR system as a two 

class pattern recognition problem: signal present or signal absent. The signals from 

both classes have different characteristics which are learned by a linear classifier 

during the training phase. Once fully trained, the classifier utilizes this learning to 

classify any unseen data into one of the classes. The characteristics which 

differentiate the signals from both classes are called features and are acquired by the 

linear classifier through the process of feature extraction. In a cooperative CR 

network, each CR extracts features from its received signal and sends it to a fusion 

center. At the fusion center, a universal decision is made on spectrum occupancy 

based on features received from all the CRs. In this thesis, energy, correlation and 

entropy are used as features to distinguish between the primary OFDM signal and 

noise. The performance of the spectrum sensing schemes is evaluated in terms of the 

detection and false alarm probabilities. It is shown that energy and correlation 

detectors outperform the entropy detector in AWGN channels. However, in a fading 

channel, the correlation detector outperforms both the energy and entropy detectors 

due to the degradation of their performance caused by the deep fades in the channel. 

The performance can be improved by increasing the observation window size and by 

changing the number of users in the Cooperative CR network.  

 

Search Terms: Cognitive Radios, Learning, Pattern Recognition, Linear Classifier, 

OFDM, Energy, Correlation, Entropy.  
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Chapter 1 

Introduction 

The increasing demand to access the electromagnetic radio spectrum has resulted 

in congestion and shortage of the natural spectrum resource. Traditionally, a 

frequency band is allocated to each user by a regulatory authority and the user is 

given complete access to that frequency band at all times. However, statistical 

information indicates that not all primary users utilize their licensed frequency 

spectrum at all times of the day. In fact, the spectrum remains unused most of the time 

and therefore results in an inefficient utilization of this precious resource. Cognitive 

Radio (CR) has emerged as a promising technology to opportunistically exploit the 

unused parts of the licensed electromagnetic spectrum by frequently sensing the 

spectrum and transmitting only when the licensed primary user is not using the 

spectrum.  

In CR technology, the unlicensed secondary users are allowed to use a licensed 

part of the spectrum only when the primary licensed user is not accessing it. However, 

the primary users still have the legal rights to access the spectrum whenever they wish 

and the CR has to stop transmitting when the primary user starts to transmit. To 

accomplish this task and to have minimum interference between the primary and 

secondary users, the CR should be able to properly sense the spectrum which is one of 

the most important tasks performed by the CR transmitter. Various techniques have 

been developed to provide better spectrum sensing for different communication 

technologies. Nevertheless, spectrum sensing has several challenges to be overcome. 

The most important among these challenges is to avoid interference with the primary 

user since it has the legal right to use the spectrum at all times. The CR transmitter 

should vacate the spectrum immediately when it senses the presence of a primary 

signal.  

Several recent wireless communication technologies such as Wi-Fi, WiMax and 

LTE employ Orthogonal Frequency Division Multiplexing (OFDM). OFDM is a 

multi-carrier system that is preferred over traditional single-carrier systems for 

wireless communications because it is not very sensitive to multipath channels that 
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cause Intersymbol Interference (ISI) and, therefore, does not require complex 

equalization at the receiver. Consequently, most CRs operating in wireless channels 

are expected to deal with OFDM based primary users and therefore it is imperative to 

investigate different spectrum sensing techniques for OFDM based CRs.  

In this thesis, spectrum sensing in OFDM Cooperative CR network is considered 

as a pattern recognition problem and different techniques for spectrum sensing are 

investigated. The signal received at the CRs can belong to two classes: the licensed 

user signal present or noise only. Different features are extracted from the received 

signal by each CR and sent to a central node which uses a linear classifier to make a 

decision on spectrum vacancy. A single CR system is also considered where the CR 

makes an individual decision on the existence of the primary user signal. A linear 

classifier is used because the features used in this work effectively separate the data 

belonging to both classes linearly. 

The objectives of this thesis are to: 

• Model the CR spectrum sensing problem as a pattern recognition system and 

identify appropriate features.  

• Design a spectrum sensing algorithm using a linear classifier for a single 

OFDM CR to detect the presence or absence of the primary user signal in an 

AWGN and fading channel. 

• Design a spectrum sensing algorithm using a linear classifier for a Cooperative 

OFDM CR network to detect the presence or absence of the primary user 

signal in an AWGN and fading channel. 

1.1. Literature Review 

The rapid advances in wireless communication technologies have resulted in an 

increasing demand to access the electromagnetic radio spectrum. The spectrum 

resources, however, are limited and therefore need to be efficiently utilized and 

distributed among different candidates of spectrum usage. Each user of the radio 

spectrum has to obtain a license to use a particular frequency band. The FCC (Federal 

Communications Commission) regulates and licenses the use of radio spectrum in the 

United States by assigning part of the spectrum to a specific user, called the primary 
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user, and giving it the legal right to use that portion of the spectrum at all times of the 

day. It is the responsibility of the regulatory authorities to efficiently utilize this scarce 

natural resource and to cope with the ever increasing number of prospective spectrum 

users. In UAE, the equivalent of the FCC is the Telecommunications Regulatory 

Authority (TRA).  

However, according to current practices, each assigned frequency band can only 

be used by a single user or enterprise at all times in a given geographical area and no 

interference from other unlicensed users is allowed. Furthermore, there is no 

obligation by the licensed primary user to use its allocated spectrum at all times. In 

fact, the licensed spectrum occupancy may be as low as 5% for certain periods [1]. 

This under-utilized licensed spectrum band by the primary users creates spaces in 

time and geography which are referred to as spectrum holes [2]. 

As an attractive solution to the inefficient spectrum usage, the concept of 

Cognitive Radio (CR) has been introduced to utilize the licensed spectrum whenever 

it is not used by the primary users [3]. The FCC defines CR as a radio or system that 

senses its operational electromagnetic environment and can dynamically and 

autonomously adjust its radio operating parameters to modify system operation, such 

as maximizing throughput, mitigating interference, facilitating interoperability and 

access to secondary markets [4]. The CR is considered as a secondary user which is 

given the right to access the unused portion of the spectrum only when the primary 

user is not accessing it. It is, therefore, the responsibility of the CR to avoid causing 

any interference to the licensed primary user. Towards this goal, a CR should be able 

to continuously sense the spectrum and determine the existence of the so-called 

spectrum holes. Once a spectrum hole is found, the CR should be able to 

transmit/broadcast at that frequency band. In addition, it should also be able to 

immediately vacate the spectrum when the primary user wishes to access it. The 

secondary user, therefore, needs to have cognitive capabilities to be able to sense the 

spectrum for the presence of a primary user and then change its radio parameters (i.e. 

start or stop transmission) accordingly to exploit any unused part of the spectrum [5]. 

Figure 1 shows a graphical representation of the difference between primary and 

secondary users in a CR. To sum up, a cognitive radio (CR) should be able to: 
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• Sense the electromagnetic spectrum over a specific frequency band. 

• Detect the presence or absence of primary users. 

• Transmit information over the frequency band when a spectrum hole is 

detected.  

• Vacate the spectrum (frequency band) when the primary user starts 

broadcasting. 

 

 

Figure 1 - Primary and Secondary Users 

1.1.1. Performance Metric of a CR. 

To evaluate the performance of the CR system and quantify the amount of 

interference between the primary and secondary users, certain performance metrics 

are defined which are discussed below. 

• Detection Probability (𝑃𝑑): defined as the probability that the secondary user 

(CR) correctly decides that the target spectrum is busy (i.e. primary user signal 

is present). The complement of the detection probability is the miss-detection 

probability (𝑃𝑚) which is defined as the probability that the CR incorrectly 

decides that the target spectrum is empty while it is actually busy.  

• False Alarm Probability (𝑃𝑓): defined as the probability that the CR makes an 

incorrect decision that the spectrum is occupied (by the primary user) while, in 

fact, it is not.  
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The objective of any CR system is to maximize the detection probability (𝑃𝑑) in 

order to minimize interference between the primary and secondary users and maintain 

the false alarm probability (𝑃𝑓) below a certain threshold or constraint in order to 

maximize spectrum efficiency. 

1.1.2. Orthogonal Frequency Division Multiplexing. 

OFDM is a multicarrier modulation scheme in which a high data rate signal is sent 

over multiple carriers unlike the traditional schemes where a single carrier is used to 

carry the message. The single carrier modulation results in Intersymbol Interference 

(ISI) among the transmitted symbols due to the large data rates involved. However, 

multicarrier modulation schemes try to minimize the effect of ISI by dividing the 

available spectrum into many narrow bands (subcarriers). The frequency response of 

the channel in each narrowband can be considered to be flat which implies that ISI 

can be minimized [6]. Each subband is associated with a sinuosidal carrier signal. 

Multicarrier modulation or OFDM is now widely being used in both wireline and 

wireless communication systems and has been adopted as the standard modulation 

scheme for both the WiFi and WiMax systems.  

The data to be transmitted is initially modulated using 𝑀-ary Quadrature 

Amplitude Modulation (𝑀-QAM). The series of 𝑀-QAM symbols are then  divided 

into several parallel streams and each stream is transmitted on a separate subcarrier. 

Effectively, a high rate stream of data is split into several low data rate streams each 

sent on a separate subcarrier. This splitting increases the symbol duration by the 

number of orthogonally overlapping subcarriers and therefore results in a reduction of 

ISI [7]. The FFT (Fast Fourier Transform), which is an efficient implementation of 

DFT (Discrete Fourier Transform) is used to modulate the 𝑀-QAM symbols to the 

different subcarriers. Each row of the DFT (and IDFT) matrix is considered to be a 

different orthogonal OFDM subcarrier. IFFT (and FFT) is used to implement OFDM 

systems because it is a computationally efficient orthogonal linear transformation 

which results in robustness of the OFDM signal in the time domain [8]. 
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A typical OFDM allocates its subcarriers as guard, data (majority of subcarriers 

are used for this purpose) and pilot subcarriers. The function of each type is discussed 

below: 

• Pilot Subcarriers: Some of the subcarriers are modulated with known data 

symbols at regular intervals to allow the receiver to perform necessary channel 

estimation and other physical layer estimation tasks. 

• Guard subcarriers (Lower and Upper): These are subcarriers at the edge of the 

band that are not transmitted at all to reduce adjacent channel interference.  

• Data Subcarriers: These are the subcarriers which contain the data to be 

transmitted.  

Figure 2 shows the OFDM modulation and demodulation block diagram. First, the 

data to be transmitted is converted to parallel streams. If the system uses pilot 

subcarriers, they are added into these parallel streams. The number of parallel 

streams, including the data symbols and pilots, are equal to the number of subcarriers 

in the OFDM system. IFFT  is then used to perform the OFDM modulation. The 

output of the IFFT operator is the OFDM symbol. A cyclic prefix is added to the 

OFDM symbol by taking the last L samples of the OFDM symbol and appending 

them to the beginning of the symbol. The cyclic prefix is used as a time guard-band 

against any remaining interference from other symbols (ISI) [6]. Also, it helps 

preventing the effect of ICI (inter carrier interference) by maintaining orthogonality 

among the subcarriers [9]. ICI is caused in a multipath channel when a full OFDM 

subcarrier cycle is not received resulting in loss of orthogonality among the 

subcarriers. At the demodulator, the cyclic prefix is removed followed by the FFT 

operator to recover the data that is converted from parallel to serial and finally 

delivered to the destination.  

The multiple inputs to the IFFT operator in the modulator can be from a single 

data source or from multiple sources. If the data is from multiple sources, a serial to 

parallel converter may not be required and data could be directly passed on to the 

respective subcarrier. Also, based on the application and user requirements, at a 

particular time, not all the subcarriers are utilized. Some of the subcarriers may be left 

unused or may be used by other users or data sources.  
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Figure 2 - OFDM Modulation and Demodulation 

As mentioned earlier, OFDM is the preferred modulation scheme for several 

wireless standards today and is used in various applications such as digital television, 

audio broadcasting, wireless networking and broadband internet access [10]. In fact, 

DVB-T (Digital Video Broadcasting – Terrestrial), IEEE 802.11a/g, Wireless Local 

Area Networks (WLANs), IEEE 802.16, IEEE 802.20 are all OFDM based [10]. 

Therefore, it is reasonable to assume that most primary user signals in a wireless 

medium will be OFDM based. OFDM is also the best physical layer candidate for a 

CR system because it allows easy generation of signals that fit into discontinuous and 

arbitrary sized spectrum segments.  Besides, OFDM is the optimal method to achieve 

Shannon capacity in a spectrum divided into many narrow bands [11]. Recently, a 

new standard, IEEE 802.22, specifically designed for CR applications was published. 

The IEEE 802.22 (also known as Wireless Regional Area Network (WRAN)) 

includes cognitive features such as channel sensing and primary user detection and the 

modulation scheme employed by this standard is OFDM [7]. Since OFDM is a likely 

candidate for being the modulation technique used in a CR, this thesis will focus on 

spectrum sensing techniques in OFDM CR systems only. Table 1 shows the OFDM 

parameters for the IEEE 802.11a/g and DVB-T standards. The simulation results 

presented in this thesis are based on the DVB-T standard in 4k mode. 

1.1.3. Spectrum Sensing. 

From the previous discussion, it is clear that the most important and critical task 

of a CR is to sense the spectrum to obtain awareness about the spectrum usage and 

existence of primary users in a geographical area [5]. In fact, the entire operation and 
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performance of the CR depends on spectrum sensing. A CR must regularly survey the 

portion or band of the spectrum which it wishes to use [12]. If a spectrum hole is 

found, the CR can engage in communication with other users of the spectrum or 

broadcast information.  

Table 1 – OFDM Parameters for IEEE 802.11a and DVB-T 

Parameter IEEE 802.11a/g DVB-T 2k, 4k, 8k Mode 

Total Subcarriers (FFT size) 64 2048, 4096, 8192 

Pilot Subcarriers 4 62, 245 

Cyclic Prefix 1/4 of FFT size 1/4, 1/8, 1/16, 1/32 of FFT size 

Bits per Symbol 1, 2, 4, 6 1, 2, 4, 6 

Spectrum sensing in a CR generally involves obtaining spectrum usage 

characteristics across multiple dimensions such as time, spatial and/or frequency 

domain [5]. The spectrum sensing problem can be characterized as a hypotheses test 

based on the existence of the primary user. This problem is written, in general, as: 

    𝐻0:𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝑢𝑠𝑒𝑟 𝑖𝑠 𝑎𝑏𝑠𝑒𝑛𝑡 

𝐻1:𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝑢𝑠𝑒𝑟 𝑖𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡, 

 

(1) 

where 𝐻0 is the null hypothesis and 𝐻1 is the alternate hypothesis. The 

numerical/mathematical definition of the hypothesis test changes based on the type of 

spectrum sensing technique. Using the hypothesis test definition in (1), the different 

performance metric probabilities of the CR (discussed in section 1.1.1.) are written in 

terms of the proposed hypotheses and are shown in Table 2 where Pr(. ) is defined as 

the probability of the expression in the parenthesis. The detection probability is now 

defined as Pr (𝐻1|𝐻1) which is the probability of correctly deciding on the alternate 

hypothesis 𝐻1 i.e. deciding on the presence of primary signal given that the hypothesis 

𝐻1 is true. 
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Table 2 – Performance metrics using Hypothesis Test 

Performance Metric Definition 

Detection Probability Pr (𝐻1|𝐻1) 

Miss-Detection Probability Pr (𝐻0|𝐻1) 

False Alarm Probability Pr (𝐻1|𝐻0) 

1.1.4. Spectrum Sensing Techniques. 

There are various techniques for spectrum sensing which have been discussed 

exhaustively in the literature. A brief overview of the most popular techniques is 

presented in this section. 

1.1.4.1. Neyman-Pearson Theorem and Likelihood Ratio Test. 

The most famous technique for hypothesis testing is the Neyman-Pearson 

Theorem. From (1), 𝐻0 is defined as the null hypothesis (when primary user is not 

present) and 𝐻1 is defined as the alternate hypothesis (primary user is present). The 

Neyman-Pearson Theorem uses the likelihood ratio test to maximize the detection 

probability for a fixed false alarm probability. The likelihood ratio test decides on 

𝐻1 (alternate hypothesis) when the likelihood, 𝐿(𝑥), is greater than a threshold 𝜆 such 

that [13] [14]:  

 𝐿(𝑥) =
𝑝(𝑥|𝐻1)
𝑝(𝑥|𝐻0)

 >  𝜆, 
(2) 

where 𝑥 is the received signal amplitude, 𝑝(𝑥|𝐻1) is the conditional probability of 

receiving a signal given the hypothesis 𝐻1 and 𝑝(𝑥|𝐻0) is the conditional probability 

of receiving a signal given the hypothesis 𝐻0. The threshold 𝜆 is determined according 

to the desired false alarm probability. If the distributions of the signals are known, the 

necessary parameters are computed and 𝐿(𝑥) is calculated using (2). However, if the 

received signals under the two hypotheses are assumed to be Gaussian, the unknown 

mean and variance is estimated using the maximum likelihood estimate (MLE) and 
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then the likelihood ratio test is applied [14]. This method is known as the generalized 

likelihood ratio test (GLRT) and the MLE is defined as: 

   𝜃0� = arg 𝑝(𝑥|𝜃0  
𝑚𝑎𝑥 𝐻0,𝜃0) 

𝜃1� = arg 𝑝(𝑥|𝜃1 
𝑚𝑎𝑥 𝐻1,𝜃1), (3) 

where  𝜃0 and 𝜃1 are the unknown parameters (mean and variance) of the distributions 

under 𝐻0 and 𝐻1 respectively. After obtaining the estimate of the parameters, the 

likelihood, 𝐿(𝑥), is computed and the presence of primary user is decided (𝐻1) by 

comparing it with the threshold value using: 

 
𝐿(𝑥) =

𝑝(𝑥|𝜃1�,𝐻1)
𝑝(𝑥|𝜃0�,𝐻0)

>  𝜆. 
(4) 

The likelihood ratio test is the optimal algorithm for spectrum sensing but it 

requires the exact knowledge of the noise variance and other parameters which are 

generally difficult to obtain [3]. Also, if the assumption of Gaussian signals is not 

true, then the estimates of the parameters will be incorrect resulting in a degraded 

performance. On the contrary, if this assumption is correct and the parameters are 

properly estimated, the Likelihood ratio test will give the best results compared to any 

other spectrum sensing technique. 

1.1.4.2. Energy Based Detection. 

Energy detection is the most popular technique for spectrum sensing [15]. It is 

simple to implement and does not require any knowledge of the primary signal 

characteristics. The presence or absence of a signal is decided by comparing the 

output of the energy detector with a threshold that depends on the noise floor. This 

method works best for the detection of any unknown zero-mean constellation signals 

[16]. A simple approach is discussed in [5] where the signal is assumed to be 

corrupted by an Additive White Gaussian Noise (AWGN) noise for the case when 

primary user is accessing the spectrum. The discrete time received signal is defined 

as:  
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 𝑦[𝑘] = 𝑠[𝑘] + 𝑤[𝑘], (5) 

where 𝑠[𝑘] is the primary user signal, 𝑤[𝑘] is AWGN, and 𝑘 is the discrete time 

index. In general, the energy of any received signal is computed as: 

 𝜖 = 𝐸[|𝑦[𝑘]|2]. (6) 

where 𝐸[. ] is the expectation operator. However, for a zero mean Ergodic signal, the 

energy can be estimated as [17] [18]: 

 
𝜖 = �|𝑦[𝑘]|2

𝑊

𝑘=1

, (7) 

where 𝑊 is the size of the observation window. The energy is then compared against 

a threshold 𝜆 to decide about the hypotheses: 

            𝐻1: 𝑖𝑓 𝜖 ≥ 𝜆 

 𝐻0: 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

 

(8) 

Another method to implement the energy detector is to use Fast Fourier Transform 

(FFT). The received signal is sampled and passed on to a FFT to obtain a discrete 

frequency-domain signal, 𝑋(𝑚) where 𝑚 is the dicrete frequency index. Using 

Parseval’s theorem, the energy of the signal is computed by summing the energy at 

each discrete frequency |𝑋(𝑚)|2 over all frequencies and comparing it against the 

threshold 𝜆: 

 𝐻1: 𝑖𝑓 �|𝑋(𝑚)|2
𝑚

≥ 𝜆 

     𝐻0: 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

 

(9) 
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Despite being easy to implement, the energy detector still has its disadvantages. 

One main drawback is that it can only detect those primary signals which have energy 

levels above the set threshold. This is problematic for the case when the primary 

signal energy levels are below the noise floor. Also, the selection of the optimal 

threshold is challenging [16]. It requires the knowledge of noise power to achieve 

expected performance in terms of probability of detection and probability of false 

alarm. However, noise power is difficult to be accurately estimated and a rough 

estimate of noise power is used, which severely degrades the performance of energy 

detection [17]. Also, noise power varies over adding more error to the estimation 

process [18]. Typically, spectrum sensing through energy detection uses the system 

model described in (5) which assumes the signal is corrupted by AWGN only and no 

fading due to the channel is assumed [5] [17] [18]. Fading causes significant 

degradation to the performance of an energy detector.  

To avoid estimation of noise power to set the threshold for energy detection, 

different approaches are used. A Bayesian estimation is used which takes 

measurements in all the sub channels to determine the occupied channels. The 

occupied channels are estimated by maximizing the likelihood of the measured 

samples. Out of these channels, the channels with the largest power are assumed to be 

used by the primary users. Using this technique, degradation caused by lack of 

knowledge of noise power on energy detection is significantly reduced [17]. A 

histogram based approach is also used to determine the threshold. A large number of 

samples of signals belonging to 𝐻0 and 𝐻1 are collected and two histograms are 

obtained. Based on the histograms, a threshold, 𝜆, is chosen to meet a certain target 

for probabilities of detection and false alarm [18]. With this technique, the received 

signal does not need to be modeled statistically and no estimation of noise power is 

required. Also, the histogram method is independent of the distribution of the primary 

user signal.  

Energy detection is also used in Co-operative CR networks [19]. Two different 

methods have been proposed: data fusion and decision fusion. In both cases, a fusion 

center receives data from all CRs in the network and makes a decision on the presence 

or absence of the primary user signal. For data fusion, each CR amplifies the received 

signal and forwards it to the fusion center. At the fusion center, different fusion 
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techniques such as Maximal Ratio Combining (MRL) or square-law combining (SLC) 

are used. On the other hand, in decision fusion, each CR makes a decision on the 

presence of primary user and sends this decision to the fusion center. The fusion 

center uses OR, AND or Majority rule to make a decision on the presence of primary 

user. With more number of CRs in the network, the system makes a more informed 

decision on the primary user. Therefore, for energy detection with Co-operative CR 

systems, multipath fading and shadowing have less impact on the performance [19].  

1.1.4.3. Correlation and Cyclostationary Detection. 

Most signals inherently contain some correlation properties which can be 

exploited to sense their presence in the spectrum.  The autocorrelation, which is 

correlation of the signal with itself, can be used as a tool to determine the presence of 

signal when the primary user signal is correlated and is defined as: 

 𝑅𝑥(𝜏) = 𝐸[𝑥(𝑡)𝑥∗(𝑡 + 𝜏)], (10) 

where 𝜏 is the delay, (.)* represents conjugate and 𝐸[. ] is the expectation operator. If 

the received signal 𝑥(𝑡) is the primary user signal, the correlation value 𝑅𝑥(𝜏) has a 

maximum value when 𝑥(𝑡) is correlated with a delayed version of itself. However, 

when the received signal is noise only, any two samples of noise are uncorrelated. 

Using this fact, the existence of the primary signal is decided. Besides, if the 

correlation in the signal is known to the CR, the optimal detector uses the Neyman-

Pearson theorem for spectrum sensing [13] [20].  

A random signal or process is said to be cyclostationary if it is periodic or its 

statistics such as mean and autocorrelation are periodic.  In [5], cyclostationary 

detection is performed by computing the cyclic autocorrelation function, CAF, for the 

received signal at the CR as: 

 𝐶𝐴𝐹(𝜏,𝛼) = 𝐸[𝑥(𝑡 + 𝜏)𝑥∗(𝑡 + 𝜏)𝑒−𝑗2𝜋𝛼𝑡], (11) 
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where 𝛼 is the cyclic frequency. From the CAF, the Cyclic Spectral Density (CSD) 

can be computed by finding the discrete Fourier transform of the CAF.  The CSD 

gives peak values only when the cyclic frequency is equal to the fundamental 

frequency of the primary user signal When only noise is present, no peaks are 

observed. This property is used to determine the presence of the primary user signal 

by comparing the CSD output with a threshold that maximizes the detection 

probability for a fixed false alarm. Also, from (12), it can be seen that CAF is a 

generalization of the autocorrelation function, 𝑅𝑥(𝜏) and autocorrelation is, in fact, 

equivalent to the CAF computed at zero cyclic frequency. The cyclostationary based 

detection can differentiate between noise and primary user signals even under bad 

channel conditions [5]. 

1.1.4.4. Entropy based Detection. 

In information theory, entropy is defined as a measure of uncertainty and 

ambiguity in a discrete random variable, 𝑍 [6]. Since knowledge of 𝑍 removes all 

uncertainty about it, the entropy is also a measure of information that is acquired by 

knowledge of 𝑍 and is defined as: 

 𝐻(𝑍) = −�𝑃[𝑍 = 𝑧] log2 𝑃[𝑍 = 𝑧]
𝑧∈𝑍

. (12) 

The entropy of a signal is usually calculated using the histogram based method 

where the number of states (or levels) the primary user signal (random variable) 

occupies is equal to the number of bins of the histogram [21]. Using this method, the 

entropy of any received signal is calculated at the CR and compared with a threshold 

and a decision on presence or absence of primary user signal is made. It is expected 

that entropy is low when the known primary signal is received and is high when 

random noise is received. It is proven in [21] that when computed in the time domain, 

the entropy values of the primary signal and noise fluctuate around a constant value 

and are invariant against SNR for both the hypotheses which makes it difficult to 

distinguish noise from the primary signal. The received signal is therefore first 
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transformed to the frequency domain using DFT (or FFT) and then the entropy is 

computed.  

1.1.4.5. Waveform-based Sensing. 

This method of spectrum sensing makes use of the known patterns which are 

inserted in the primary user’s transmitted signal to assist in synchronization. These 

patterns include preamble, midamble, regularly transmitted pilot patterns, spreading 

sequence, etc. Preamble is a known sequence transmitted before each burst while 

midamble is transmitted in the middle of the burst. If it is known that there are such 

patterns present in the transmitted signal, then sensing can be performed by 

correlating the received signal with a known copy of the pattern over an observation 

window of 𝑊 samples. The output of the correlation operation is compared with a 

threshold and presence or absence of the signal is decided.  

 
𝑅 = �𝑦[𝑘]𝑠∗[𝑘],

𝑊

𝑘=0

 (13) 

where 𝑠[𝑘] is the known copy of the signal pattern and 𝑦[𝑘] is the received signal 

pattern.  

Waveform based sensing can only be applied to signals with known patterns, and 

for this reason this method is also known as coherent sensing. Coherent sensing 

outperforms energy detector in reliability and convergence time but coherent sensing 

requires the knowledge of certain patterns in the transmitted signal which are not 

required by the energy detector [5]. In order to perform well, the CR must be perfectly 

synchronized with the primary user signal. 

1.1.4.6. Matched Filter. 

A Matched filter is an optimal detection method as, fundamentally, it maximizes 

the SNR of the received signal in the presence of AWGN. A matched filter is 

implemented by correlating a known transmitted signal with the received signal. This 

is, effectively, equivalent to convolving the received signal with a time reversed 
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version of the transmitted signal. Matched filter, therefore, has the constraint that it 

requires complete knowledge of the transmitted signal shape and duration [5]. 

1.1.4.7. Pattern Classification Tools for Spectrum Sensing. 

Pattern recognition systems are used to classify data into pre-determined classes. 

Since the data received at the CR can be either a primary user signal or noise only, the 

spectrum sensing problem can be considered as a two class pattern recognition 

problem and different classifiers can be used to solve the problem. However, for 

proper signal detection, discriminative features have to be extracted from the received 

signal. An energy detection based co-operative CR network is proposed in [22] where 

linear and polynomial classifiers are used for spectrum sensing. Each CR extracts 

energy as a feature from the received signal over an observation window and 

transmits it to a fusion center. The fusion center uses the data received from all the 

CRs as features, and feeds it to the classifier which decides on the existence of the 

primary user signal globally. The system is first trained using a large number of 

signals belonging to both classes and weights are computed which are used to classify 

any unknown received signal into one of the two classes. In the testing phase, known 

data is used to determine the performance of the classifier, in terms of detection 

probability, while maintaining the false alarm probability below a certain value. It is 

observed that both the linear and polynomial classifiers had comparable performance 

in a fading channel; and linear classifier provided a better solution to the spectrum 

sensing problem due to its reduced complexity compared to a polynomial classifier.  

Cyclostationary features of the received signal at the CR are used in [23] to detect 

the presence of the primary signal in a co-operative CR network employing linear and 

polynomial classifiers. Each CR uses the cyclostationary property in the received 

signal over an observation window, by computing the CSD, which is the discrete 

Fourier transform of CAF, defined in (12). The calculated feature is then transmitted 

to the fusion center. The fusion center receives features from all CRs in the network 

and uses them to decide on the presence of the primary user signal. Once again, the 

system is first trained and weights are computed. Finally, testing is performed and the 

performance of the classifier is evaluated. It is concluded that the linear and 

polynomial classifiers have comparable performance and the linear classifier is the 
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preferred solution since it is less complex to implement. However, the primary user 

signal in both cases is considered as a single carrier signal and OFDM systems have 

not been considered.  

All the aforementioned methods have their advantages and drawbacks. The 

likelihood ratio test provides the optimal solution for the case when all the signals in 

the system are Gaussian distributed. Energy detector does not require any knowledge 

of primary signal while all other techniques require certain amount of knowledge of 

the signal. However, energy detector cannot detect signals with energy levels below 

the noise floor. Cyclostationary detection, on the other hand, is robust to noise and 

interference from other users whereas the matched filter provides the optimal solution 

to the detection problem when the primary signal is known and the channel is 

AWGN. However, both these method require either partial or complete knowledge of 

the primary user signal. Finally, spectrum sensing can also be defined as a two class 

pattern recognition problem and different classifier models can be used to decide if 

the received signal at the CR is a primary signal. This method does not require any 

statistical analysis to compute the thresholds, but large data belonging to both classes 

is required to train the classifier and compute the weights.   

1.1.4.7. Spectrum Sensing in OFDM based CR: Overview. 

As discussed earlier, OFDM systems are expected to be the most common 

primary user signals for CR systems. In this section, different spectrum sensing 

techniques for OFDM based CRs are discussed.  

The spectrum sensing task for an OFDM based CR is slightly simplified by the 

fact that the CR has some knowledge about the primary user signal. However, in 

different applications, the amount of knowledge available to the CR may vary. The 

location of pilot carriers and length of the cyclic prefix may or may not be known. If 

the CR is operating under some standard system, such as Wi-Fi, then the location of 

the pilot carriers and cyclic prefix length is determined by the standard and are known 

to all users. Besides, most OFDM based CRs utilize techniques similar to the 

aforementioned methods to sense the spectrum with slight modifications to account 

for the special properties of OFDM. Almost all techniques for spectrum sensing 
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discussed in the literature employ the likelihood ratio rest, described in Section 

1.1.4.1, to decide on the presence of the primary user. To be able to correctly exploit 

the potential of the Neyman-Pearson theorem, the distribution of the data has to be 

Gaussian. Assuming that the number of subcarriers is large enough, the central limit 

theorem is invoked and the OFDM signal is considered to be Gaussian distributed 

with a known variance and zero mean. The variance of the Gaussian distributed 

primary user signal is estimated using the maximum likelihood estimate (MLE) [10]. 

Cyclic prefix is another important feature of the OFDM system. The insertion of 

cyclic prefix at the beginning of each OFDM symbols adds a cyclostationary and 

correlation property to the system which can be used for spectrum sensing.  

In [24], energy detection in presence of AWGN is used for spectrum sensing but 

the detection is done over the cyclic prefix region of the OFDM signal only. The 

energy of the received signal is computed and compared to a threshold which is 

determined using the Neyman-Pearson theorem to maximize the detection probability 

and keep the false alarm probability fixed. After comparing the received signal energy 

with the threshold, a decision on the presence or absence of primary signal is made.  

In [10], it is proven that the presence of cyclic prefix in the OFDM signal makes 

the autocorrelation coefficient nonzero at delays 𝜏 = 𝑁, where 𝑁 is the number of 

subcarriers. This implies that the last 𝐿 samples of the OFDM symbol are correlated 

with the first 𝐿 samples. Noise, on the other hand, is uncorrelated. Utilizing this 

property, a spectrum sensing technique is proposed. Assuming that both noise and the 

OFDM signal are Gaussian distributed, the MLE is first used to estimate the variance 

of the received signal. Then, the likelihood ratio test is used to find the autocorrelation 

coefficient. This coefficient is then compared with a threshold to determine the 

existence of the primary user signal. The threshold is found using the Neyman-

Pearson detector to satisfy a given false alarm probability constraint. A cooperative 

scheme is also proposed in [10] where the log likelihood ratios of the autocorrelation 

coefficient from all CRs are sent to a fusion center to determine the existence of the 

primary user signal.  

Another autocorrelation based Cooperative sequential spectrum sensing technique 

is proposed in [25]. A Cooperative CR network is proposed to reduce degradation in 
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performance which a standalone CR might experience due to shadowing and fading. 

At the CR, the correlation between the beginning and end of the received signal is 

computed. If the OFDM signal is present, this value is high; and if there is only noise 

present, the correlation is small. The correlation output is then compared with a 

threshold which is determined using the Neyman-Pearson theorem under the 

assumption that the received signal is Gaussian distributed. In this method, each CR 

computes the correlation value and compares it with a local threshold to decide on the 

presence or absence of the primary user signal. The CR then transmits a message to 

the fusion node. At the fusion node, the messages from all the CRs are compared with 

a threshold and a final decision is made. The threshold is determined using log 

likelihood ratio based on the two possible messages: signal present or absent. 

A method of spectrum sensing using Pilot Tones in OFDM systems is proposed in 

[26]. It is assumed that the CR has knowledge of the location of the pilots embedded 

in the OFDM signal. The pilots are added in frequency domain for synchronization 

and channel estimation. The spectrum sensing algorithm utilizes the fact that the 

Time-Domain Symbol Cross-Correlation (TDSC) has peak values if the two OFDM 

symbols have the same frequency-domain pilot symbols. A decision is made on the 

presence of the primary user signal by comparing the TDSC with a threshold. The 

commonly used Neyman-Pearson method is used along with the likelihood ratio test 

to determine the threshold that gives the maximum detection probability.  

1.1.5. Pattern Recognition/Classification. 

This section provides an overview of pattern recognition systems. Pattern 

recognition is the act of taking in raw data and taking an action based on the category 

of the pattern [27]. In pattern recognition, objects are defined by a set of 

measurements called attributes or features which are used to classify them into 

different classes [28]. Figure 3 shows the different stages in the design of a pattern 

classification system which are discussed below.  

Data Collection: A suitable sensor is used to collect data belonging to all classes 

typically using a transducer. Each data element provides some knowledge about its 

respective class. Generally, a classification system performs better when a large 
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number of data samples are available as it will accommodate all the possible 

variations and changes in the data. Besides, the data is labeled and marked according 

to its class so that it can be used for training and testing the system. The collected data 

is then divided into training and testing data. 

Feature Extraction: After collecting the data through sensors, any unwanted or 

redundant information is removed from the data to aid in feature extraction. By 

definition, feature extraction is the process of acquiring features from the input data. 

A feature is a discriminating characteristic of the data which can be used to identify 

the data as belonging to a particular class. Sometimes, multiple features are extracted 

from the data and used for classification. Nevertheless, features have to be carefully 

selected and only those characteristics which make the data belonging to different 

classes distinct are chosen. The features are extracted from the data and stored in a 

feature vector which is plotted on a feature space. The dimensionality of this space is 

equal to the number of features in the feature vector. If the features are selected 

correctly, the feature vectors of each class will be clustered together. These clusters 

should be separable through a linear or non-linear decision boundary which is 

determined by a classifier. 

Classifier Design: A pattern recognition machine, which classifies any input signal 

into a particular class, is called a classifier. It is very important to select the correct 

classifier model that fits the statistics of the extracted features. Important parameters 

which are considered when deciding the model of the classifier include 

dimensionality of the feature vector and separation of the feature vectors in the feature 

space (linear or non-linear decision boundaries). After selecting the appropriate 

model, training data is used to train the classifier and calculate the weights. Finding 

the weights is equivalent to determining the decision boundaries of classes in the 

feature space. It has to be ensured that the training data set is significantly large to 

accommodate all variations in the data, but at the same time is small enough to 

prevent over-fitting. Over-fitting happens when the training data size is very large and 

the classifier is extensively calibrated to correctly classify the training data 

specifically. If this happens, the chance of a classification error for new testing data 

increases as the classifier has lost generalization.  
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Figure 3 - A Pattern Recognition System 

Classifier Testing: After training the classifier and computing its weights, it has to be 

tested using a different set of data (i.e. testing data). The performance of the classifier 

is determined by observing the classification rate achieved when testing data is used. 

Each element of the testing data set is passed through the classifier and a decision on 

its class is made. Since the testing data is labeled, the decided class is compared to the 

actual class to determine if it has been correctly classified. The process is repeated for 

all for all the elements in the testing data set and the classification rate of the classifier 

is calculated. A high classification rate is achieved if the data belonging to different 

classes is separable, either through a linear or non-linear decision boundary in the 

feature space. If the data for different classes overlaps, then the classifier is confused 

and a poor classification rate is achieved.  

Pattern recognition problems are divided into two main types: unsupervised and 

supervised. Unsupervised learning implies that there is no knowledge of any groups 

or classes in the data and the system attempts to determine if the data can be classified 

into groups. This is done by determining which characteristics make the data similar 

within the same class and different across other groups. In supervised learning, on the 

other hand, each data sample belongs to one of a known pre-specified number of 

classes. The classifier needs to be trained properly and discriminating features have to 

be selected to achieve good classification rates [28].  

1.1.5.1. Linear Classifiers. 

A linear classifier is a commonly used model to implement a pattern recognition 

system with linear decision boundaries among classes. A linear classifier is employed 

when the features of the different classes are linearly separable. A linear discriminant 

function is a linear decision boundary which separates data from different classes and 

is defined using the weight vectors. The number of linear discriminant functions is 

equal to the number of classes in the data set. The weights of the discriminant 
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function are computed during the classifier training stage. Linear classifier is the 

preferred model for a classifier because it is relatively simple to implement and 

computationally cheap [29]. In this thesis, a linear classifier is used to classify the 

incoming received signal into primary user (class 1) or noise (class 2).  

1.1.6. Fading Channel. 

In an ideal non-bandlimited channel environment, a transmitted signal is corrupted 

by AWGN (Additive White Gaussian Noise). This implies that a zero-mean unit 

variance Gaussian noise is added to the received signal. The matched filter is the 

optimum receiver structure in an AWGN channel which successfully recovers the 

transmitted signal from the received signal. However, in practical wireless 

environment, the transmitted signal suffers from rapid fluctuations in its amplitude 

which is referred to as small-scale fading (or simply fading). Fading is the result of 

movements of the transmitter, receiver or objects surrounding them. The two main 

factors which contribute to the fading effect in the channel are discussed below: 

Multipath Delay Spread and Coherence Bandwidth: In most communication systems, 

there is usually no line of sight (LOS) between the transmitter and receiver which 

means that the received signal contains multiple copies of the transmitter signal from 

different directions and with different delays. The multiple copies received at the 

receiver result in interference which could be constructive or destructive depending 

on the phase of each copy of the signal [9]. The multipath components of the received 

signal are typically represented using the power delay profile (PDP) which plots the 

average power output of the channel as a function of time delay. Effectively, the PDP 

presents the multipath components of the received signal according to their delays. 

The range of values over which the power is essentially nonzero is called the 

multipath spread of the channel 𝑇𝑚. Besides, Root Mean Square (RMS) delay spread 

is another useful parameter which provides a reference of comparison among different 

multipath fading channels [9]. The RMS delay spread 𝜎𝜏 is defined as the square root 

of the second central moment of the PDP and it describes the time dispersion (or 

spread) of the channel. The coherence bandwidth 𝑓𝐶  of the channel is defined as the 

bandwidth over which the channel frequency response is considered be constant or 

fixed and is inversely proportional to the RMS delay spread. If the signal bandwidth is 
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greater than the coherence bandwidth of the channel, then different frequencies of the 

signal will be affected differently by the channel resulting in distortion and ISI. 

Moreover, the multipath delays in the channel result in time dispersion of the channel. 

Doppler Spread and Coherence Time: The time variations in the channel are closely 

related to the motion of transmitter or receiver which cause a dispersion (or shift) in 

the carrier frequency of the signal which is referred to as Doppler spread 𝑓𝐷 [9].  The 

Doppler spread depends on the velocity of the mobile transmitter or receiver and 

angle of incidence of the received signal relative to the direction of motion and also 

on the carrier frequency [30]. The time variations in the channel are also described 

using the coherence time of the channel 𝑡𝐶 defined as the time over which the channel 

impulse response is constant or fixed and is the reciprocal of the Doppler spread of 

the channel. If the signal duration is greater than the coherence time of the channel, 

the signal will suffer from rapid and fast variations in the channel which result in 

severe fading.  

Based on the parameters and relationships defined earlier, the signal can undergo 

different type of fading based on the values of RMS delay spread, Doppler spread, 

and coherence time and bandwidth of the channel. In essence, Multipath (or RMS) 

delay spread and coherence bandwidth result in time dispersion and frequency 

selective fading while Doppler spread and coherence time (of the channel) lead to 

frequency dispersion and time-selective fading. The conditions for the different types 

of fading are shown in Figure 4 where 𝑇𝑠 is the symbol duration and 𝑊 is the signal 

bandwidth.  

Due to fading, the transmitted signal is attenuated by complex-valued channel 

coefficients which represent the fading caused by the channel besides being corrupted 

by AWGN. The channel coefficients are modeled statistically and the envelope of the 

channel is assumed to be Rayleigh distributed and the phase is uniformly distributed 

over the interval (0,2𝜋]. If there is a LOS between the transmitted and the receiver, 

then the envelope of the channel is assumed to be Rician distributed. 
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1.2. Research Methodology 

In this thesis, the problem of spectrum sensing in a cooperative CR network is 

approached by first developing the signal and channel models. It is assumed that the 

primary user signal is OFDM based and the signal passes through a flat fading 

channel. Spectrum sensing is then formulated as a pattern recognition problem and a 

classifier is used to decide on the existence of the primary user signal. Finally, 

extensive simulation results have been presented for several cases.  

Figure 4 - Different Fading Types 

1.3. Thesis Contributions 

The main contributions of this thesis can be summarized as: 

• Spectrum Sensing as Pattern Recognition problem: The problem of spectrum 

sensing is modeled as a two-class pattern recognition system. Features are 

extracted from the signal and fed to a classifier which operates on the features 

and provides a decision on spectrum occupancy.  

• A Cooperative CR network is implemented where several CRs collaborate 

together to sense the spectrum. A fusion center receives features from all CRs 

in the network and makes a decision on the existence of the primary user 

signal. 

• A comprehensive performance assessment of three different spectrum sensing 

schemes is presented. Energy, correlation and entropy are used as features to 

the linear classifier and their performance is evaluated at different noise levels 

in a fading channel. Some of the findings of this work were presented in [31]. 
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1.4. Thesis Organization 

The rest of the thesis is organized as follows. In Chapter 2, the system model used 

for simulations is presented. The proposed problem is formulated in Chapter 3 and the 

features to be used by the classifier are discussed. Chapter 4 illustrates the 

performance of the proposed system by presenting the simulation results. Finally, 

Chapter 5 concludes the thesis and discusses possible scope of future work.  
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Chapter 2 

System Model 

In this chapter, the mathematical model for the proposed system is developed. 

First, the model for the OFDM primary user signal is discussed. Then, the channel 

model used in this thesis and the effect it has on the transmitted signal is presented. 

Finally, the CR receiver operations are described.    

2.1. OFDM Signal Model 

The OFDM signal is constructed by feeding 𝑁 𝑀-QAM symbols to an 𝑁-point 

IFFT operator. Therefore, to form an OFDM symbol, the binary bits of information 

(1’s and 0’s) have to be first modulated using 𝑀-QAM. In 𝑀-QAM, the digital signal 

can take one of 𝑀 different levels with varying amplitude and phase. If 𝑀 is the 

number of levels that the 𝑀-QAM signal can occupy then 𝑘 is defined as the number 

of bits needed to represent each symbol: 

 𝑘 = log2 𝑀. (14) 

The binary stream of information is divided into several blocks of 𝑘 bits. Each of 

these blocks is then converted to one of the 𝑀 signal levels in the 𝑀-QAM 

constellation space to form a symbol. In practice, two simultaneous blocks, each 

containing 𝑘 bits, from the information bit sequence are impressed upon two 

quadrature carriers cos 2𝜋𝑓0𝑡 and sin 2𝜋𝑓0𝑡, where 𝑓0 is the carrier frequency [6]. The 

𝑀-QAM signal is a complex valued signal which has an amplitude and phase.  

After dividing the information bit stream into blocks of 𝑘 bits each and 

modulating them into a 𝑀-QAM signal, the 𝑁 𝑀-QAM symbols are fed into an IFFT 

operator to create the OFDM symbol. Since IFFT is used at the modulator, the 

frequency domain representation of the OFDM signal is the set of 𝑀-QAM symbols 

which were input to the IFFT.  

If 𝑆(𝑚) is an 𝑀-QAM symbol where 𝑚 is the frequency index, then 𝑁 such 

symbols are fed into the IFFT operator. Therefore, the input to the IFFT operator is 
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𝑆(0),𝑆(1), . . . , 𝑆(𝑁 − 1). The output of the 𝑁-point IFFT is the OFDM signal in the 

time domain: 

 
𝑠[𝑘] =

1
√𝑁

� 𝑆(𝑚)𝑒
𝑗2𝜋𝑘𝑚
𝑁

𝑁−1

𝑚=0

,      𝑘 = 0, . . . ,𝑁 − 1, (15) 

where 𝑘 is the discrete time index and 𝑚 is the discrete frequency index. Thus, 𝑁 

denotes the number of samples in an OFDM data block. The last 𝐿 samples 𝑠(𝑁 −

𝐿), 𝑠(𝑁 − 𝐿 + 1), . . . , 𝑠(𝑁 − 1) are added to the front (beginning) of each block as a 

cyclic prefix to obtain the OFDM symbol of the form: 

 𝒔 = [𝑠(𝑁 − 𝐿), . . . , 𝑠(𝑁 − 1), 𝑠(0), 𝑠(1), . . . , 𝑠(𝑁 − 1)]. (16) 

The signal in (16) is a discrete time-domain digital signal which is first converted 

to a continuous analog signal 𝑠(𝑡) which is then sent over the channel after up-

conversion to the desired radio frequency carrier. This signal interacts with the 

channel depending on the type of channel. The channel model considered in this 

thesis is discussed in the next section. 

2.2. Channel Model 

As the signal propagates from the transmitter to the receiver, it interacts with the 

channel, i.e. the medium through which it is travelling through, in ways that are 

determined by different channel models. These models try to relate the physical 

characteristics of the medium to a statistical definition for the channel. A statistical 

model can be used to represent the channel since it is a randomly changing medium. 

The channel is also modeled as a linear filter through which a signal has to pass. 

Therefore, the response of the channel is described through its impulse response or 

transfer function. Like a filter, a channel too has an effective bandwidth over which a 

signal passes without severe attenuation. The signals outside the bandwidth of the 

channel are attenuated and suppressed. 
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Additive white Gaussian noise (AWGN) is the simplest channel model which 

assumes that the signal is corrupted by a white noise process. Physically, white noise 

is caused by thermal noise from electronic components and amplifiers in the receiver 

and from interference during transmission [6]. Thermal noise is statistically 

characterized as being Gaussian distributed therefore the name Gaussian noise. 

Besides, white noise is uncorrelated and has a constant power spectral density over all 

frequencies.  

When a signal passes through a wireless channel, it is not only corrupted by a 

linear addition of Gaussian noise, but it also suffers from rapid fluctuations in 

amplitude and phase due to movement of the transmitter, receiver or objects 

surrounding them. The different causes and types of fading have been discussed in 

Section 1.1.6. In this thesis, it is assumed that the signal passes through a flat fading 

slow channel with a low Doppler frequency of 3 Hz.  This implies that the channels 

coherence bandwidth is greater than the bandwidth of the signal and the Doppler 

frequency is much smaller than the signal bandwidth. The transmitted signal is 

attenuated by an amount determined by the channel coefficients which are modeled 

statistically using the Rayleigh distribution. Besides, the signal is also corrupted by 

Gaussian noise. Therefore, the received signal 𝑥(𝑡) is: 

 𝑥(𝑡) = 𝑐(𝑡)𝑠(𝑡) + 𝑛(𝑡),     0 < 𝑡 ≤ 𝑇0  (17) 

where 𝑐(𝑡) is the channel coefficient at time 𝑡, 𝑛(𝑡) is the Gaussian distributed noise 

component with the two-side power spectral density of 𝑁0
2

 and 𝑇0 is the observation 

window duration in seconds. Due to the low Doppler frequency, the channel 

coefficients are considered to be slowly varying (slow fading) over the observation 

window. However, the channel changes for the next observation window. Figure 5 

shows the block diagram of the channel model. When there is no fading in the 

channel, the channel becomes an AWGN channel and 𝑐(𝑡) = 1.  
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2.3. CR Receiver Operation 

At the CR receiver, the signal defined in (17) is received which is first down-

converted to baseband. The receiver then performs analog-to-digital conversion to 

form the discrete digital signal: 

 𝑥[𝑘] = 𝑐[𝑘]𝑠[𝑘] + 𝑛[𝑘], 𝑘 = 1, … ,𝑊 (18) 

where 𝑘 is the discrete time and 𝑊 is the observation window size. After analog-to-

digital conversion, the observation window duration 𝑇0 seconds is converted to 𝑊 

samples. At the CR, all computations and signal processing are performed on the 

signal defined in (18). Since the received signal suffers from fading, the effect of the 

channel has to be compensated to allow for proper demodulation at the receiver. It is 

assumed that the receiver has complete knowledge of the channel coefficients and the 

received signal is divided by the channel coefficients to eliminate the distortion in the 

signal caused by fading. Dividing by the channel coefficients, however, can result in 

enhancement of noise when the signal energy is comparable to the noise floor. After 

channel compensation, the signal is then sent to a feature extraction module followed 

by the linear classifier for classification. Additionally, poor estimation of the channel 

coefficients results in a severe degradation in performance as the threshold and 

weights of the classifier will be computed inaccurately. The process of feature 

extraction, testing and training the linear classifier is discussed in the next chapter. 

 

Figure 5 - Fading Channel Model 
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Chapter 3 

Problem Formulation 

In this chapter, spectrum sensing is modeled as a pattern recognition problem. It is 

first shown that spectrum sensing can be considered as a two class pattern recognition 

problem. Then, the Cooperative CR network architecture used in this thesis is 

described. Further, the different features that are used to train the linear classifier are 

defined. Finally, the process of training and testing the linear classifier is discussed.  

3.1. Spectrum Sensing as a Pattern Recognition Problem 

The most important function of a CR is to perform spectrum sensing to detect 

whether the target spectrum is occupied by the primary user or not. The CR senses the 

spectrum over an observation window and makes a decision based on the signal 

received during this time. The signal received at the CR can belong to one of two 

types: the primary OFDM signal or noise. 

When the OFDM primary signal is being transmitted, the CR receives the primary 

signal which is attenuated by a value determined by the channel coefficient and 

corrupted by a linearly added Gaussian noise signal (AWGN). On the other hand, 

when there is no primary user signal present in the spectrum, the signal received at the 

CR is random Gaussian noise only. It is clear from this discussion that the received 

signal belongs to one of two classes only and therefore spectrum sensing can be 

considered as a pattern recognition problem. A pattern recognition system classifies 

any data into one of the pre-specified number of classes. In this case, there are two 

classes and the pattern recognition system decides the class of any received signal by 

passing it through a classifier. The two classes are defined as:  

 𝑥[𝑘] = � 𝑐[𝑘]𝑠[𝑘] + 𝑛1[𝑘] ;  Class 1
 𝑛2[𝑘]                      ;  Class 2,  (19) 

where 𝑛1[𝑘] and 𝑛2[𝑘] are different random Gaussian distributed noise components 

received at the CR. The CR compensates for the channel by dividing the received 
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signal with the channel coefficients. The characteristics which differentiate the signals 

from both classes are called features and are acquired by the CR through the process 

of feature extraction. The classifier is able to learn these characteristics during the 

training phase. Once fully trained, the classifier then utilizes this learning to classify 

any unseen data into one of the two classes.  

At each CR, features are extracted from the received signal using well known 

techniques such as Energy, Correlation, etc. which are discussed in Section 1.1.4. 

After the feature extraction stage, the classifier makes a decision on the class of the 

received signal/feature. In the next section, the CR network architecture is discussed. 

3.2. Cooperative Cognitive Radio Architecture 

In a Cooperative CR network, several CRs cooperate with each other in the 

spectrum sensing process. A fusion center, or central node, is used to make the final 

decision on the presence of the primary user signal. In pattern recognition terms, each 

CR is equipped with a feature extraction module which extracts the necessary features 

from the received signal 𝑥[𝑘]. The extracted features are then sent to the fusion 

center. At the fusion center, the features received from all the CRs are used as inputs 

to a classifier which makes a universal decision on the existence of the primary 

OFDM signal. Figure 6 shows the block diagram of the proposed Cooperative CR 

system which consists of 𝑑 CRs. 

Each CR senses the spectrum and receives a different signal, 𝑥𝑖[𝑘] where 𝑖 ∈

{1, 2, … ,𝑑}. If a single CR is used, then 𝑑=1. The CR extracts the feature 𝑓𝑖 from its 

received signal. All the extracted features, 𝑓1, … ,𝑓𝑑, are sent to the fusion center. The 

fusion center applies the received features to the classifier which computes an output 

vector 𝒒 which is used to decide whether the primary OFDM signal is present or not. 

If the fusion center decides that the target spectrum is vacant, it allows one CR to 

access the spectrum for a period of time. The decision on the CR is made based on 

priority and previous transmission time. If the target spectrum remains vacant, the 

fusion center assigns another CR to access the spectrum for a period of time and the 

cycle continues. Consequently, each CR has to wait for its turn to be able to use the 

vacant spectrum since it is part of a collaborating (cooperative) CR network where a 
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decision on the presence of the OFDM signal is made based on inputs from several 

CRs. A special case of the Cooperative CR network is the single CR (𝑑 = 1) which 

operates independently without collaboration with neighboring CRs.  

 

Figure 6 - Cooperative CR System based Spectrum Sensing 

3.3. Feature Extraction 

After sensing the spectrum, the CR extracts features from the received signal. 

Various properties of the signal are used as features at the CR which allow for easier 

classification of the received signal into the primary OFDM signal (Class 1) or noise 
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(Class 2). In this section, the different features which have been used in this thesis are 

discussed.   

3.3.1. Energy. 

One of the most commonly used techniques for spectrum sensing is Energy 

Detection. The CR senses the spectrum for a period of time and using the received 

signal energy decides on the presence or absence of the primary signal. However, this 

type of detection is unreliable in fading environments because the energy of the 

primary signal severely fluctuates and the signal energy becomes comparable to the 

noise level. This may happen due to deep fades in the channel or due to the primary 

signal energy being very small resulting in a very low signal-to-noise ratio (SNR).  

When the spectrum sensing technique used is energy detection, the feature extraction 

process in the CR will compute the energy of the received signal 𝑥[𝑘] and pass it on 

to the linear classifier. At the CR, the time domain signal is received over an 

observation window of size 𝑊. Under the assumption that the signal is Ergodic, the 

energy of the signal is computed as defined in (7): 

 
𝑓𝐸 = � |𝑥[𝑘]|2

𝑊−1

𝑘=0

, (20) 

where 𝑘 is the discrete time index. The energy can also be computed in the frequency 

domain using the Parseval’s theorem and 𝑊-point FFT as: 

 
𝑓𝐸 = � |𝑋[𝑚]|2

𝑊−1

𝑚=0

, (21) 

where 𝑋[𝑚] is the received signal in the frequency domain, 𝑚 is the discrete 

frequency index and |𝑋[𝑚]|2 is the energy at the discrete frequency 𝑚. The extracted 

energy feature, 𝑓𝐸 , is then used by the linear classifier to make a decision on the class 

of the received signal 𝑥[𝑘].  
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3.3.2. Correlation. 

Energy detection does not require any prior knowledge of the type of primary user 

signal. This could be considered as an advantage for systems where the primary signal 

is unknown. However, energy based features result in an inferior performance 

compared to other schemes that take advantage of certain structures and properties in 

the OFDM signal. OFDM symbols have an inherent special property; namely the 

cyclic prefix, which can be utilized to detect the existence of the primary signal. The 

addition of a cyclic prefix at the beginning of the OFDM symbol means that the first 𝐿 

samples of the OFDM symbol are identical to the last 𝐿 samples. This implies that the 

first 𝐿 samples of the OFDM symbol are correlated with the last 𝐿 samples even in the 

presence of noise. This property can be used to sense the spectrum for presence of the 

OFDM signal. The CR performs correlation between the first and last 𝑊 samples of 

the cyclic prefix at the start and end of the OFDM symbol respectively and takes the 

maximum correlation value. The size of 𝑊 should always be less than the cyclic 

prefix size 𝐿. If a primary OFDM signal is present, then there will be high correlation. 

On the other hand, if only noise is present, then any two samples of Gaussian noise 

are uncorrelated. The correlation feature is extracted using: 

 𝑓𝑐 = 𝑚𝑎𝑥|𝐸[𝒈𝒉∗]| (22) 

where 𝒈 = [𝑥1, 𝑥2, … . , 𝑥𝑊] is a vector of first W samples of the cyclic prefix at the 

beginning of the received signal and 𝑔𝑖 is the 𝑖𝑡ℎ element of 𝒈 where 𝑖 ∈ {1, … ,𝑊} 

while 𝒉 = [𝑥𝑁−𝐿 , 𝑥𝑁−𝐿+1, … . , 𝑥𝑁−𝐿+𝑊] is a vector of  the last W samples of the cyclic 

prefix at the end of the OFDM received signal and ℎ𝑗  is the 𝑗𝑡ℎ element of 𝒉  where 

both  𝑖, 𝑗 ∈ {1, … ,𝑊}. Also, 𝐸[. ] is the expectation operator and 𝑚𝑎𝑥|. | takes the 

maximum value of the elements inside the argument. The correlation 𝐸[𝒈𝒉∗] is 

computed as: 

 
𝐸[𝒈𝒉∗] =  𝑅𝒈𝒉(𝑝) = � 𝑔𝑝+𝑞ℎ𝑞∗

𝑊−𝑝−1

𝑞=0

,     𝑝 = 1, … , 2𝑊 − 1 (23) 
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where the correlation output 𝐸[𝒈𝒉∗] is 2𝑊 − 1 samples long. 

Finally, using correlation 𝑓𝑐 as a feature, the linear classifier can then make a 

decision on whether the received signal 𝑥[𝑘] belongs to class 1 or class 2.  

3.3.3. Entropy. 

Another feature which is used for spectrum sensing is entropy. As discussed in 

section 1.1.4.4, entropy is defined as the information contained in the received signal. 

It is expected that the entropy of the received signal when the known primary OFDM 

signal is present will be considerably lower than the entropy when the received signal 

is random noise. This is because entropy is higher for random signals and as the 

randomness decreases, the entropy also decreases. At low SNR values, the entropy of 

the received primary OFDM signal will also be high as it is severely corrupted by 

random noise. The entropy of both the classes will, therefore, overlap and the 

performance will degrade.  

To compute the entropy, the CR receives the signal over an observation window 

of size 𝑊 samples. The signal is first converted to the frequency domain using 𝑊-

point FFT and entropy is then calculated as: 

 
𝑓𝑒𝑛𝑡 =  −�𝑝𝑖 log2 𝑝𝑖

𝐾

𝑖=1

, (24) 

where 𝐾 is the number of levels occupied by the received signal in the frequency 

domain and 𝑝𝑖 is the histogram count of the 𝑖𝑡ℎ level.  

In the next section, the process of training the linear classifier to obtain the 

weights for future classification of new received signal. 

3.4. Classification 

The extracted features are sent to a classifier which classifies them into their 

respective classes. In general, the classifier works in two modes: Training and 

Testing. In the training phase, known data from all classes is input into the classifier 
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to obtain the weights. Once the weights are computed, the performance of the 

classifier is evaluated in the testing mode. Generally, classifiers can be either liner or 

non-linear based on the separation of classes. In this thesis, a linear classifier is used 

to classify any received signal into one of the classes by assuming that the data 

belonging to the two classes is linearly separable.   

3.4.1. Classifier Training. 

To classify any received signal into one of the two classes, the linear classifier is 

initially trained to compute the weights. Figure 7 shows a block diagram of the 

classifier in training mode. A large set of data belonging to both classes is used to 

determine the weights. First, a linear discriminant function is defined for each class 

which is used to separate data of a particular class from data of another class: 

 𝑔𝑖 = 𝒘𝑖
′𝒇 + 𝑤𝑖0 ;    𝑖 = 1, … ,𝑁𝐶, (25) 

where, 

 𝒇 = [𝑓1, … ,𝑓𝑑], (26) 

where, for the 𝑖𝑡ℎ class, 𝑔𝑖 is the linear discriminant function, 𝒘𝑖 is the weigth vector, 

𝑤𝑖0 is the bias or threshold. The vector 𝒇 is the input feature vector, 𝑁𝐶 is the number 

of classes (for our case, 𝑁𝐶=2), 𝑑 is the dimension of the feature vector 𝒇 and also the 

number of CRs in the Cooperative network and (.)′ is the transpose operation. Any 

incoming feature vector is multiplied by the weights 𝒘𝑖 and shifted by the bias 𝑤𝑖0 to 

get the linear discriminant function for each class. For a given feature vector 𝒇 the 

class which gives the maximum value for 𝑔 is the class of 𝒇. To compute the weights 

for each class, the linear classifier has to be trained using training data. As a first step, 

the bias 𝑤𝑖0 is incorporated into the weight vector 𝒘𝑖 such that a new weight vector 

𝒂𝑖 and a new feature vector 𝒚 are defined: 

 𝒂𝑖 = [𝑤0 𝒘𝑖
′], (27) 
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and, 

 𝒚 = [1 𝒇] = [𝑦0 𝑦1 …  𝑦𝑑]. (28) 

The linear discriminant function for class i can now be written as 

 𝑔𝑖 = 𝒂𝑖′𝒚 ;  𝑖 = 1, … ,𝑁𝐶. (29) 

The weights of the linear classifier have to be computed using a set of training 

data which consists of feature vectors belonging to both classes. The training data 𝒀 is 

defined as: 

 𝒀 = [𝒚11 𝒚12 … 𝒚1𝛽 𝒚21 … 𝒚2𝛽]′, (30) 

where 𝒚11 … 𝒚1𝛽 are feature vectors of data belonging to class 1 (OFDM signal) and 

𝒚21 … 𝒚2𝛽 are features vectors of data belonging to class 2 (noise). The first 𝛽 rows 

of 𝒀 correspond to data belonging to class 1 while the last 𝛽 rows correspond to data 

from class 2. The number of elements in 𝒀 is 2𝛽 ×  𝑑 + 1. Furthermore, two target 

vectors 𝒕1 and 𝒕2 are defined for each class (𝒕1  for class 1 and 𝒕2 for class 2). Each 

element of 𝒕1 and 𝒕2 is basically a linear discriminant function defined in (29).  

However, since the data is already known, the values of 𝒕1  are set to zero everywhere 

except for rows belonging to class 1. Similarly 𝒕2 is zero everywhere except the rows 

belonging to class 2. 𝒕1 and 𝒕2 are 2𝛽 ×  1 dimensional vectors. The first 𝛽 elements 

of 𝒕𝟏  are 1 while the last 𝛽 elements of 𝒕𝟐 are 1. The target vectors are combined into 

a matrix 𝑻 defined as: 

 𝑻 = [𝒕1 𝒕2]. (31) 

Finally, a new weight matrix 𝑨 is formed whose columns are the weight matrices 

for each class: 
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 𝑨 = [𝒂1 𝒂2]. (32) 

Therefore, the linear classifier problem now becomes a linear equation with 𝑨 being 

the unknown quantity.  

 𝑻 = 𝒀𝑨. (33) 

The weight matrix 𝑨 is computed using the pseudo-inverse of 𝒀: 

 𝑨 = (𝒀′𝒀)−𝟏𝒀𝑻. (34) 

The training data has to be large enough to provide a good estimate of the weight 

matrix 𝑨. If the data from both classes is linearly separable, a linear classifier will 

perform well. However, if the data is not linearly separable, the linear classifier may 

fail to distinguish data belonging to different classes. This may happen when at low 

SNR values, the signal and noise have comparable levels and their feature values 

overlap. 

 

Figure 7 – Classifier Training 
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3.4.2. Classifier Testing. 

After training the linear classifier to compute the weight matrix 𝑨, the linear 

classifier has to be tested using test data 𝒀𝒕𝒆𝒔𝒕 to evaluate its performance. Figure 8 

shows the block diagram of the testing process. Similar to the training data described 

in (30), the test data consists of feature vectors belonging to class 1 and class 2. The 

number of elements in 𝒀𝒕𝒆𝒔𝒕 is 2𝛾 ×  𝑑 + 1. The first 𝛾 elements of 𝒀𝒕𝒆𝒔𝒕 belong to 

class 1 while the last 𝛾 elements belong to class 2. The linear classifier multiplies the 

test data 𝒀𝒕𝒆𝒔𝒕 with the weight matrix, 𝑨, to get a two column matrix 𝑻𝒕𝒆𝒔𝒕: 

 𝑻𝒕𝒆𝒔𝒕 = 𝒀𝒕𝒆𝒔𝒕𝑨. (35) 

When the number of classes, 𝑁𝑐 = 2, the dimension of the 𝑻𝒕𝒆𝒔𝒕 matrix is 2𝛾 ×  2. 

Each row of 𝑻𝒕𝒆𝒔𝒕 corresponds to a test data vector. Ideally, the first column of 𝑻𝒕𝒆𝒔𝒕 

should be one for the first 𝛾 elements (corresponding to class 1) and zero for the rest 

while the second column of 𝑻𝒕𝒆𝒔𝒕 should be zero for the first 𝛾 elements and one for 

the last 𝛾 elements (corresponding to class 2). However, the obtained values vary 

around these ideal values when novel data is fed to the classifier [22]. 

 

Figure 8 - Classifier Testing 

The obtained 𝑻𝒕𝒆𝒔𝒕 matrix is used to classify the data by comparing the values of 

each row. Usually, the column which contains the higher value is decided to be the 
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class of that particular feature vector. To maintain the false alarm probability below a 

certain target value, a threshold is used to distinguish between the two classes. The 

detection probability of the classifier is then determined by comparing the classified 

data with the actual classes of the data. The training and threshold setting are usually 

done offline to reduce the complexity of the CR system [22].  

The threshold is initially set to 0.5 and each row of 𝑻𝒕𝒆𝒔𝒕 is compared with it. The 

column whose numerical value is greater than the threshold value is chosen to be the 

class of the received signal. Consequently, a confusion matrix is constructed as 

follows: 

 𝑪 = �
𝑐11 𝑐12
𝑐21 𝑐22�, (36) 

where 𝑐11 is the number of data samples classified correctly as belonging to class1, 

𝑐12 is defined as the number of data samples incorrectly classified as class 2 while 

belonging to class 1, 𝑐21 is the number of data samples incorrectly classified as class 1 

and 𝑐22 is the number of data samples correctly classified as class 2. The sum of all 

the elements of 𝑪 is equal to the number of data samples used as testing data. 

Table 3 shows the different performance metrics of the CR using the confusion 

matrix. Using the definition in Table 3, the false alarm probability is computed. If the 

achieved false alarm probability is greater than the desired false alarm probability, the 

threshold is increased by a small value, for example by 0.05, and the entire 

classification process is repeated. The procedure is repeated iteratively until the false 

alarm probability is equal to or slightly below the desired value. Finally, the detection 

probability is computed using the formula defined in Table 3 to evaluate the 

performance of the spectrum sensing scheme. In a communication system, 

performance is typically measured based on the amount of noise in the system and 

Signal-to-Noise ratio (SNR) is used as a tool to determine the signal power relative to 

the noise power. In this thesis, performance of the linear classifier is investigated over 

a wide range of SNR values and the corresponding detection probability is 

determined. This serves as an indicator of the performance of the spectrum sensing 
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scheme. For each SNR value, the linear classifier has to be first trained to compute the 

weights and then tested using the testing data.  

Once the linear classifier is trained and tested, any received signal 𝑥[𝑘] is 

classified by extracting the feature vector 𝒇 and the weight vector 𝒂. The output 

vector is found using: 

 𝒒 = 𝒇𝒂, (37) 

where 𝒒 is a two column vector where column 1 corresponds to class 1 while column 

2 corresponds to class 2. The value of each column of 𝒒 is compared and the column 

number which has the highest number is chosen as the class of the received signal. 

Table 3 - Performance Metrics Using Confusion Matrix 

Performance Metric Definition 

Detection Probability 
𝑐11

𝑐11 + 𝑐12 + 𝑐21 + 𝑐22
 

False Alarm Probability 
𝑐21

𝑐11 + 𝑐12 + 𝑐21 + 𝑐22
 

 

In the next chapter, an extensive performance evaluation of the proposed schemes 

for spectrum sensing is presented. 
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Chapter 4 

Performance Evaluation and Simulation Results 

In this chapter, the performance of different CR systems employing various 

features for spectrum sensing is investigated in terms of detection and false alarm 

probabilities. This chapter is divided into three main sections: Energy, Correlation and 

Entropy detection. For each type of detection, the performance in AWGN and fading 

channel is investigated first for a single CR and then for a Cooperative CR network. 

Finally, a summary of all the results obtained in this thesis is presented. 

4.1. Simulation Parameters 

As a first step in evaluating the performance of the proposed spectrum sensing 

system, the linear classifier is initially trained using a random model for the OFDM 

primary user with 50% spectrum utilization by defining 2000 training data vectors, 

1000 belonging to class 1 (primary OFDM signal) and 1000 to class 2 (noise only). 

This implies that the primary OFDM user occupies the spectrum only 50% of the 

time. Using this training data set, the weight vector 𝑨, defined in (34) is computed. 

After computing the weights, a set of 1000 testing data vectors, equally divided 

between the two classes, are used to compute the detection probability while 

maintaining the false alarm probability below a fixed value of 0.1 as per the IEEE 

802.22 WRAN standard. The entire process of computing the weights and 

determining the detection probability is repeated for different SNR values. The SNR 

values are varied to account for the different types of channel states and noise levels 

which a CR may face in physical environments. The simulations are repeated 100 

times to account for most of the channel variations and the average detection 

probability is computed. 

For illustration purposes, the Digital Video Broadcasting – Terrestrial (DVB-T) 

standard is used in 4k mode for the simulations. Under this condition, an OFDM 

signal structure with 4096 subcarriers and the cyclic prefix length 1/8 of the number 

of subcarriers, i.e. 512 samples, is used. The modulation level of the 𝑀-QAM is set to 

𝑀=2 (binary). The performance of the linear classifier is evaluated at different energy 
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per bit-to-noise spectral density (𝐸𝑏/𝑁0) values when the signal passes through an 

ideal channel with AWGN only and also when the signal experiences a single path 

flat fading channel with a low Doppler frequency of 3 Hz. Since it is assumed that CR 

has complete knowledge of the channel, similar results were obtained for different 

Doppler frequencies. 

4.2. Energy Detection 

In this section, the performance of energy detection as a feature to the linear 

classifier is investigated.  

4.2.1. Single CR System. 

Energy detector in a single CR system is first tested in an AWGN channel using 

the parameters defined in the previous section. Figure 9 shows the performance of the 

energy detector in an AWGN with the observation window size of 𝑊=50 samples.  

 

Figure 9 - Energy Detector Performance in AWGN 
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It can be clearly observed from the figure that the energy detector performs well in 

an AWGN channel. For instance, 90% detection is achieved at around 𝐸𝑏 𝑁0⁄  = -3 dB 

and 100% detection requires 𝐸𝑏 𝑁0⁄  = 4 dB or above. The false alarm probability for 

the classifier based energy detector is plotted in Figure 10. From the figure, it is clear 

that the false alarm probability is always kept below 0.1. At high 𝐸𝑏 𝑁0⁄  values, when 

the detection probability reaches 100%, the false alarm probability is 0. 

 

Figure 10 - False Alarm Probability of Energy Detector in AWGN 

Furthermore, the performance of the energy detector is expected to improve if the 

window size is increased as the CR is able to accumulate more energy from the 
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expected, the performance of the energy detector is directly proportional to the 
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changed to 100, 200 and 512, respectively. Clearly, increasing the window size results 

in an improvement in the CR performance. 

 

Figure 11 - Energy Detector Performance in AWGN for different Window Sizes 

From the simulation results, it is concluded that the energy detector performs 

excellent in an AWGN channel. However, the performance is expected to degrade in 

a fading channel where the signal suffers variations in its amplitude and phase and 

also encounters deep fades. Since energy detector is a non-coherent detection scheme, 

it does not assume or account for any prior knowledge of the primary user signal or 

the channel. This means that no channel compensation is performed on the received 

signal at the CR. Figure 12 shows the performance of an energy detector of window 

size 𝑊 = 50 in a fading channel and an AWGN channel. A significant degradation in 

the performance of the energy detector is observed when a fading channel model is 

used instead of the AWGN channel model. The detection probability remains constant 

around 60% and no improvement is seen as 𝐸𝑏 𝑁0⁄  is increased. The variations in the 
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Next, the energy detector performance with varying window size is investigated. 

In AWGN, increasing the window size resulted in a significant improvement in the 

performance of the CR. In a fading channel, it is expected that the performance may 

improve but not as significantly as the improvement in the AWGN case. This is 

because as the window size is increased, there is a greater chance of the received 

signal being attenuated severely by more deep fades. The performance of the energy 

detector for different window sizes in fading channel is shown in Figure 13. 

 

Figure 12 - Energy Detector in AWGN and Fading Channel 

The performance improves by around 1 dB when the window size is increased 
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there is at least a 7 dB improvement in performance when the window size is 512 

samples compared to the performance when the window size is 200 samples. This is 

because when the window size is increased above 200 samples, to 512 samples in this 

case, the CR accumulates sufficient energy to properly estimate the class of the 

received signal even at low SNR. Nevertheless, the best detection achieved is around 

70% which is significantly lower than the 100% detection achieved in an AWGN 

channel. In conclusion, despite an improvement in the overall performance when the 

window size is increased, the CR still suffers from severe degradation at high SNR 

values due to the deep fades in the channel and the non-coherent nature of the 

detection scheme. 

 

Figure 13 - Energy Detector in Fading Channel for Different Window Sizes 

4.2.2. Cooperative CR Network. 

In this section, energy detector is used in a Cooperative CR Network of linear 

classifiers as a feature to classify any received signal into the primary OFDM signal 
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Similar to the previous section, the system is first simulated in an AWGN channel. 

A 5 CR network is used initially with an observation window of 50 samples and 

compared with the performance obtained using a single CR with a window size of 50. 

Figure 14 shows this comparison. From the figure, it can be deduced that a 

cooperative CR network of 5 users performs better than a single CR system. The 

improvement is clearly visible at low SNR values. For instance, in a single CR 

system, 90% detection is achieved at 𝐸𝑏 𝑁0⁄  = -2 dB while the same detection 

requires only 𝐸𝑏 𝑁0⁄  = -7 dB in a 5 user CR network which is an improvement in 

performance by 5 dB. Besides, both systems provide 100% detection for all SNR 

values above 5 dB.  

 

Figure 14 – Single-CR and 5-CR Energy Detector in AWGN 
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at 𝐸𝑏 𝑁0⁄  values below 0 dB. For instance, 100% detection is achieved at 𝐸𝑏 𝑁0⁄  = -2 

dB, -4 dB, -6 dB and -8 dB for observation window size samples of 50, 100, 200 and 

512, respectively. A similar improvement in performance is observed for 7 user 

Cooperative CRs and 3 user Cooperative CRs.  

 

Figure 15 - 5-CR Energy Detector in AWGN for different window sizes  
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performance is improved significantly for 5 user Cooperative CRs compared to a 

single CR system. Unlike the single CR case, the detection probability reaches 

approximately 90% at 𝐸𝑏 𝑁0⁄  = 6 dB and above. Figure 18 shows the effect of varying 

the window size on the performance for a 5 user CR network. From the figure, it is 

deduced that increasing the window size from 50 to 200 results in a similar overall 

performance. However, when the window size is increased to 512 samples, the 

performance improves by around 5 dB. For instance, with windows of 50, 100 and 

200 samples, 90% detection is achieved at about 4-6 dB but when the window size is 

increased to 512 samples, the same detection rate is achieved at 𝐸𝑏 𝑁0⁄  = 0 dB.  

 
Figure 16 – Cooperative Energy Detector in AWGN 

Figure 19 illustrates the performance obtained when the number of users is the CR 
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rate of the 5-CR network is 90% which is achieved at around 𝐸𝑏 𝑁0⁄  = 6 dB. Finally, 

the 7-CR network has a maximum detection rate of 95% which requires 𝐸𝑏 𝑁0⁄  = 4 

dB.  

 

Figure 17 – Single-CR and 5-CR Energy Detector in Fading Channel 
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size. The performance also improves when a cooperating CR system is implemented 

instead of a single CR system. When the number of CRs in the network is increased, 

the performance of the system also improves. The severe degradation in the 

performance of the energy detector in a fading channel is observed due to the non-

coherent detection scheme which does not compensate for the channel at the CR.  
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Figure 18 - 5-CR Energy Detector in Fading Channel for Different Window Sizes 

 

Figure 19 - Cooperative Energy Detector in Fading Channel 
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4.3. Correlation Detection 

This section investigates the performance of the CR when correlation is used as a 

feature into the linear classifier. Correlation detector utilizes the fact that the last 𝐿 

samples of the OFDM signal are similar to the first 𝐿 samples due to the insertion of 

the cyclic prefix. The correlation value is expected to be high when the OFDM signal 

is present in the spectrum and low when only the uncorrelated noise is received at the 

CR.  

4.3.1. Single CR System. 

As a first step, the performance of the correlation detector in a single CR system is 

investigated. The plot of the detection probability against 𝐸𝑏 𝑁0⁄  for an observation 

window of 50 samples in an AWGN channel is shown in Figure 20. 

The correlation detector performs well in an AWGN channel and 90% detection is 

achieved at 𝐸𝑏 𝑁0⁄  = -2 dB and 100% detection requires 𝐸𝑏 𝑁0⁄  = 2 dB or above. 

From the results, it can be concluded that in an AWGN channel, the correlation 

property of the OFDM signal is preserved and it can be used as a good feature for the 

linear classifier. When the window size is increased, an improvement in the 

performance is observed which is shown in Figure 21. As the window size increases 

from 50 to 100 samples, the performance improves by 2 dB. A similar improvement is 

seen when the window size is increased further from 100 to 200 samples and then 

from 200 to 512 samples. While a window size of 50 samples requires 𝐸𝑏 𝑁0⁄  = -2 dB 

to achieve 90% detection probability, the same performance is achieved at 𝐸𝑏 𝑁0⁄  = -3 

dB, -5 dB and -7 dB for windows of size 100, 200 and 512 samples, respectively. It is 

important to note that the window size should not exceed the size of the cyclic prefix. 

When the signal passes through a fading channel which causes variations in 

amplitude, some degradation is expected in the performance of the CR. Correlation is 

a coherent detection scheme which assumes complete synchronization with the 

primary user and complete knowledge of the channel. Therefore, the received signal 

at the CR is divided by the channel coefficients to compensate for the effects of the 

channel. After compensating for the channel, the correlation parameter is computed 

and sent to the linear classifier for classification. Figure 22 shows the performance of 



65 

 

the system in a fading channel when an observation window size of 50 samples is 

used at the CR. As expected, there is some degradation in the performance of the 

system in a fading channel. An additional 5 dB is required to achieve 100% detection 

in a fading channel compared with the AWGN case. The performance degrades 

severely at low 𝐸𝑏 𝑁0⁄  values with detection reaching close to 0% at very small SNR 

values. Also, 90% detection is achieved at about 𝐸𝑏 𝑁0⁄  = 3 dB which is around 5 dB 

higher than required in an AWGN channel. 

Figure 23 shows the performance of the correlation detector for different window 

sizes in the fading channel. As the window size is increased, the detector performance 

improves slightly. For instance, using an observation window of size 50 requires 

𝐸𝑏 𝑁0⁄  = 3 dB to achieve 90% detection while the same detection probability is 

achieved at 𝐸𝑏 𝑁0⁄  = 2 dB when the window size is increased to 100. However, no 

improvement in the performance is seen when the window size is increased beyond 

200. 

 
Figure 20 - Correlation Detector in AWGN 
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Figure 21 - Correlation Detector in AWGN for different window sizes 

4.3.2. Cooperative CR Network. 

In this section, the performance of the correlation detector in a Cooperative CR 

network is evaluated.  The system is first simulated using 5 CRs in the network in an 

AWGN channel with an observation window size of 50 samples. Figure 24 illustrates 

the performance compared with the corresponding single CR case. From the figure, it 

can be deduced that increasing the number of users from one to 5 in a CR system 

results in an improvement in the performance by 5 dB. For example, 90% detection in 

a single CR system is achieved at 𝐸𝑏 𝑁0⁄  = -2 dB while the same detection is achieved 

in a 5-CR network at 𝐸𝑏 𝑁0⁄  = -7 dB. 

A further improvement in performance is seen when the observation window size 

is increased for the same 5 user cooperative CR network as shown in Figure 25. The 5 

user Cooperative CR network performance improves significantly as the window size 

is increased from 50 to 512. For example, 90% detection is achieved at 𝐸𝑏 𝑁0⁄  = -7 

dB when the window size is 50 samples while 𝐸𝑏 𝑁0⁄  = -8 dB, -9 dB and -10 dB is 

required to achieved the same detection rate for windows of size 100, 200 and 512 
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samples, respectively. The cooperative CR network is further investigated by fixing 

the window size to 50 samples and changing the number of CRs in the network. The 

obtained performance is shown in Figure 26. As the number of CRs is increased, there 

is a small improvement in the performance of the CR. However, improvement in 

performance decreases as the number of CRs increases. 

In the next simulation, the performance of a 5 user CR network is investigated in a 

fading channel with an observation window of size 50. The performance is shown in 

Figure 27. The performance of the 5-CR is better compared to the single CR system. 

The 5-CR network achieves 90% detection at around 𝐸𝑏 𝑁0⁄  = 2 dB while a single CR 

requires 𝐸𝑏 𝑁0⁄  = 4 dB to achieve the same detection rate.  

 
Figure 22 - Correlation Detector in AWGN and Fading Channel 
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did not result in any significant improvement in the performance. This result is similar 

to the single-CR fading channel simulations where the performance also did not 

change when the window size was increased above 200 samples.    

Finally, the number of CRs in the network is changed while the observation 

window size is fixed at 50 samples and the performance of the correlation detector CR 

system is evaluated under fading. Figure 29 illustrates the performance achieved. 

From the figure, it is deduced that there is an improvement of around 2 dB when the 

number of CRs in the network is increased from 1 to 3. A further 1 dB improvement 

is seen when the CRs are increased from 3 to 5. No significant improvement is seen 

when the number of CRs in the network is increased above 5. This implies that 

considerable improvement in performance is seen only when the number of CR users 

in the network is increased above one. Once a multi-user network is in place, the 

performance remains quite similar with only small improvements when the number of 

CRs is increased. 

 

Figure 23 - Correlation Detector in Fading Channel for different window sizes 
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Figure 24 – Single-CR and 5-CR Correlation Detector in AWGN  

 
Figure 25 - 5-CR Correlation Detector in AWGN for different window sizes 
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Figure 26 –Cooperative Correlation Detector in AWGN 

 
Figure 27 - Single-CR and 5-CR Correlation Detector in Fading Channel 
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Figure 28 – 5-CR Cooperative Correlation Detector for different Window Sizes 

 

Figure 29 - Cooperative Correlation Detector in Fading Channel 
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In conclusion, increasing the window size and the number of CRs in the network 

has a greater impact in the improvement of the overall performance of the system in 

the AWGN channel as compared to the fading channel. In both cases, the correlation 

detector still performs relatively better compared to the energy detector. Finally, 

having more CRs in the network increases the complexity and processing time of the 

system and should only be used if the gain in the performance is significant. 

4.4. Entropy Detection 

In this section, entropy detection is used at the CR to detect the presence of the 

primary OFDM signal and the performance is evaluated. At the CR, the received 

signal samples are first converted to the frequency domain and the entropy of the 

received signal is calculated using the histogram method.  

At high 𝐸𝑏 𝑁0⁄  the entropy of the OFDM signal is expected to be significantly 

lower than the entropy of random noise. Figure 30 shows an example of the 

histograms of the entropy of the testing data (1000 belonging to class 1 and 1000 

belonging to class 2) at 𝐸𝑏 𝑁0⁄  = 10 dB. Clearly, when entropy is used as a feature, 

the data from both classes is linearly separable and a linear classifier is expected to 

perform well. However, at low 𝐸𝑏 𝑁0⁄  values, the entropy of the OFDM is expected to 

increases since it is severely corrupted by random noise. In such a case, the entropies 

of the primary OFDM signal and noise overlap and the performance of the classifier is 

expected to fail. Figure 31 shows the histograms of the entropy of the testing data at 

𝐸𝑏 𝑁0⁄  = -5 dB. 

4.4.1. Single CR System. 

The entropy detector is first evaluated in an AWGN channel with observation 

window of size 50. Figure 32 shows the system performance. The performance is 

poor at low 𝐸𝑏 𝑁0⁄  values but improves gradually as 𝐸𝑏 𝑁0⁄  is increased until 100% 

detection is achieved at around 6 dB. For example, 90% detection is achieved at 

𝐸𝑏 𝑁0⁄  = 2 dB. Compared with the energy and correlation detector, the performance 

of entropy detector is clearly inferior. Figure 33 shows the change in performance 

when the window size is increased. As the window size is increased from 50 to 100, 

the performance of the system improves by around 3 dB. For instance, when the 
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window size is 50 samples, 90% detection is achieved at 𝐸𝑏 𝑁0⁄  = -3 dB while 𝐸𝑏 𝑁0⁄  

= 0 dB is required to achieve the same detection probability when the window size is 

increased to 100 samples. However, as the window size is increased further, the 

entropy detector behaves in a strange way at low 𝐸𝑏 𝑁0⁄  values when the signal 

energy is comparable to the noise floor. This is probably because at low SNR, noise 

severely corrupts the signal and the entropy values of noise and the primary signal are 

similar thereby confusing the classifier. A similar observation about the entropy 

detector was made in [21]. When 𝐸𝑏 𝑁0⁄  value is increased, the performance once 

again becomes normal as the signal energy becomes much higher than the noise 

power.  

 
Figure 30 - Entropy Histograms at Eb/N0 = 10 dB 
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detection is achieved at 𝐸𝑏 𝑁0⁄  = 2 dB while the same detection is achieved at 𝐸𝑏 𝑁0⁄  

= 8 dB in the fading channel. The performance, at low SNR, is extremely poor and the 

detection probability is 0% for 𝐸𝑏 𝑁0⁄  = -4 dB and less. This is expected as the 

entropy detector does not work well when the signal and noise energy are comparable 

and is it results in an overlap in the entropy values of noise and primary signal. In 

addition to the corruption by noise, the signal also suffers from deep fades which 

result in further degradation of the performance at low 𝐸𝑏 𝑁0⁄  values. Increasing the 

window size also does not solve the problem as can be seen in Figure 35. The best 

performance is still obtained when the window size is 50 samples. As the window size 

is increased, the performance at lower 𝐸𝑏 𝑁0⁄  values worsens. This is an unexpected 

result for the fading channel with no clear justification as the performance had 

improved when the window size was increased previously for an AWGN channel.  

 

Figure 31 - Entropy Histograms at Eb/N0 = -5 dB 
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Figure 32 - Entropy Detector in AWGN 

 

Figure 33 - Entropy Detector in AWGN for different window sizes 
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Figure 34 - Entropy Detector in AWGN and Fading Channel 

 

Figure 35 - Entropy Detector in Fading Channel for different window sizes 
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4.4.2. Cooperative CR Network. 

In this section, the entropy detector performance is evaluated in a Cooperative CR 

network. A 5-CR network is simulated and its performance is compared with the 

single CR system in the AWGN channel for an observation window of 50 samples 

and the results are plotted in Figure 36. The figure shows an improvement of around 4 

dB when the number of CRs in the network is increased from 1 to 5. For a single CR 

system, 90% detection is achieved at 𝐸𝑏 𝑁0⁄  = 2 dB while the 5-CR network requires 

𝐸𝑏 𝑁0⁄  = -2 dB to achieve the same detection. 

Next, Figure 37 shows the detection rate when the observation window size is 

varied for the 5-CR network. When the window size is increased from 50 to 100, an 

improvement of around 2 dB is seen. However, increasing the window size beyond 

100 samples results in an unexpected performance at low SNR values. At low SNR 

values, when the signal energy and noise power are comparable, the entropies of both 

the signals, OFDM and noise, overlaps and the linear classifier is unable to 

differentiate between them. This unexpected performance is usually observed when 

𝐸𝑏 𝑁0⁄  is less than 5 dB. However, when 𝐸𝑏 𝑁0⁄  is increased beyond 5 dB, the 

performance becomes normal and increases proportionally with the SNR value. When 

the window size is 512 samples, the detector performs extremely well and 100% 

detection is reached at 𝐸𝑏 𝑁0⁄  = -8 dB. In general, increasing the window size results 

in an improvement in the overall performance of the system. For example, 90% 

detection is achieved at 𝐸𝑏 𝑁0⁄  = -2 dB, -4 dB, -5 dB and less than -10 dB for 

observation windows of size 50, 100, 200 and 512 respectively. The best performance 

is clearly seen when the window size is 512 samples.  

The performance also improves when the number of CRs in the network is 

increased. The change in the performance is shown in Figure 38. When the number of 

CRs in the network is increased from 1 to 3 users, an improvement of about 3 dB is 

observed. However, when the number of CRs is increased to 5 or 7, an improvement 

of only 1 dB is seen. Clearly, moving from a single CR system to a CR network 

significantly improves the performance but increasing the number of CRs in the 

network does not result in a considerable improvement as compared to the added 

complexity to the system when the number of CRs is increased. For a single CR 
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system with an observation window of 50 samples in an AWGN channel, 90% 

detection is achieved at 𝐸𝑏 𝑁0⁄  = 2 dB while the same detection requires 𝐸𝑏 𝑁0⁄  = -1 

dB, -2 dB and -3 dB when the number of CRs in the network are 3, 5 and 7, 

respectively. 

The Cooperative Entropy detector system is investigated in a fading channel in the 

next simulation. Figure 39 compares the performance of a single CR and a 5-CR 

network with an observation window of 50 samples. An overall improvement of 6 dB 

is seen for SNR values above 0 dB. At low SNR values, on the other hand, the 

performance is poor at reaches 0% detection below 𝐸𝑏 𝑁0⁄  = -5 dB due to the large 

amount of noise and deep fades in the received signal. While the single CR system 

requires 𝐸𝑏 𝑁0⁄  = 8 dB to achieve 90% detection, the 5-CR network requires 𝐸𝑏 𝑁0⁄  = 

2 dB to achieve the same performance which is a 6 dB improvement in the 

performance.  

 
Figure 36 - Single CR and 5-CR Entropy Detector in AWGN 
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performs poorly at low SNR values for all window sizes. A similar performance is 

observed for observation windows of size 50 and 100 both of which require 𝐸𝑏 𝑁0⁄  = 

2 dB to achieve 90% detection. However, when the window size is increased to 200 

and 512 samples, the performance degrades by around 2 dB (for window size of 200) 

and a further 4 dB (for a window size of 512). This is again an unexpected result as 

the performance is expected to improve when the window size is increased, as 

observed for the AWGN channel. No justification for obtaining such a result was 

found. For observation windows of size 200 and 512 samples, 90% detection is 

achieved at 𝐸𝑏 𝑁0⁄  = 4 dB and 8 dB respectively. 

 
Figure 37 - 5-CR Entropy Detector in AWGN for different window sizes 
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Figure 38 - Cooperative Entropy Detector in AWGN 

 
Figure 39 - Single-CR and 5-CR Entropy Detector in Fading Channel 
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Figure 40 - 5-CR Entropy Detector in Fading Channel for different window sizes 

Furthermore, increasing the number of CRs results in an overall improvement in 

the entropy detector performance in the fading channel too as the linear classifier is 

able to make a more informed decision about the received signal when the number of 

CRs in the network is high. Figure 41 shows the performance for different number of 

CRs in the network operating in a fading channel for a window size of 50 samples. 

Similar to AWGN case, when the number of CRs is increased from 1 to 3, the 

improvement in performance is larger compared to the improvement observed when 

the number is increased from 3 CRs to 5 or 7 CRs. When the number of CRs is 

increased from 1 CR to 3 CRs, an improvement of around 4 dB is seen. An 

improvement of 2 dB is seen when the number of CRs is increased from 3 to 5 users. 

The entropy detector fails once again at low SNR values with 0% detection for 𝐸𝑏 𝑁0⁄  

= -5 dB and below. 90% detection is achieved at 𝐸𝑏 𝑁0⁄  = 8 dB, 4 dB, 2 dB and 1 dB 

for a single-CR, 3-CR, 5-CR and 7-CR network, respectively. 
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Figure 41 - Cooperative Entropy Detector in Fading Channel 

In summary, the entropy detector performs excellent at high SNR values but fails 

at small SNR. The performance of the system improves when the number of CRs in 

increased in both the AWGN and the fading channel. However, increasing the 

window size in an AWGN improves the performance but gives unexpected results in 

a fading channel. 

4.5. Summary of Results 
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discussed and evaluated.  

Figure 42 shows the performance of the detectors in a single CR system over an 

AWGN channel for an observation window of 50 samples. From the figure, it is 
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entropy of the signal is lost due to corruption by noise. 90% detection is achieved at 

𝐸𝑏 𝑁0⁄  = -3 dB and -2 dB for energy and correlation detectors respectively while the 

entropy detector requires 𝐸𝑏 𝑁0⁄  = 2 dB to achieve the same detection rate. Therefore, 

due to its simplicity, energy detector is the best solution for spectrum sensing in single 

CR system operating in an AWGN channel.  

Figure 43 shows the performance of the energy, correlation and entropy detector 

in a fading channel for an observation window of 50 samples. Clearly, in a fading 

channel, the correlation detector outperforms both the energy and entropy detectors. 

The maximum detection rate of the energy detector is 60% which requires at least 

𝐸𝑏 𝑁0⁄  = -3 dB. The correlation detector requires 𝐸𝑏 𝑁0⁄  = 3 dB to achieve 90% 

detection as compared to 𝐸𝑏 𝑁0⁄  = 8 dB to attain the same detection for entropy 

detector. However, energy detector performs better than the correlation and entropy 

detectors at low 𝐸𝑏 𝑁0⁄  values. At 𝐸𝑏 𝑁0⁄  = -10 dB, the detection rate of both the 

correlation and entropy detectors is almost 0% but the energy detector achieves 34% 

detection. Both the correlation and entropy detectors are coherent detection schemes 

in which the received signal is divided by the channel coefficients to compensate for 

the channel effect. This compensation results in noise enhancement at low 𝐸𝑏 𝑁0⁄  

values and degrades the performance of the system. Energy detector is a non-coherent 

scheme and therefore does not suffer at low 𝐸𝑏 𝑁0⁄ . Clearly, correlation detector is the 

best candidate for spectrum sensing in a fading channel at high 𝐸𝑏 𝑁0⁄  for a single CR 

system when the observation window size is 50 samples while energy detector is the 

recommended at low 𝐸𝑏 𝑁0⁄ .  

Figure 44 depicts the performance of the three detectors in a 5-CR Cooperative 

network in an AWGN channel for a window size of 50 samples. Similar to the single 

CR system in an AWGN, energy and correlation detector once again perform alike 

while entropy detector shows an improvement in performance as compared to the 

single CR system. For example, 90% detection is achieved at 𝐸𝑏 𝑁0⁄  = -7 dB for both 

the energy and correlation detectors while the same detection rate requires 𝐸𝑏 𝑁0⁄  = -2 

dB for the entropy detector. Once again, the energy detector is the preferred spectrum 

sensing technique in a Cooperative CR network operating in an AWGN channel due 

to its ease of implementation.  



84 

 

 

Figure 42 - Energy, Correlation and Entropy Detectors in AWGN 

 
Figure 43 - Energy, Correlation and Entropy Detectors in Fading Channel 

-10 -5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Eb/No (dB)

D
et

ec
tio

n 
P

ro
ba

bi
lit

y

 

 

Energy
Correlation
Entropy

-10 -5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Eb/No (dB)

D
et

ec
tio

n 
P

ro
ba

bi
lit

y

 

 

Energy
Correlation
Entropy



85 

 

 
Figure 44 - 5-CR Coop Energy, Correlation and Entropy Detectors in AWGN 

Finally, Figure 45 plots the performance of the three detectors in a 5-CR network 

operating in a fading channel. The energy detector still performs poorly in a fading 

channel although an improvement is seen as compared to the single CR case. The 

entropy detector shows the most improvement when the number of users in the CR is 

increased from one to 5 and its performance is comparable to the correlation detectors 

performance. For instance, both the correlation and entropy detector require around  

𝐸𝑏 𝑁0⁄  = 2 dB to achieve 90% detection while the energy detector requires 𝐸𝑏 𝑁0⁄  = 6 

dB to achieve the same detection. However, the energy detector outperforms the 

correlation and entropy detectors at low 𝐸𝑏 𝑁0⁄  as noise enhancement due to channel 

compensation degrades their performance. At 𝐸𝑏 𝑁0⁄  = -10 dB, the detection rate of 

both the correlation and entropy detector is almost 0% but the energy detector 

achieves 51% detection. In conclusion, both the correlation and entropy detectors are 

suitable candidates for spectrum sensing in a 5-CR cooperative network operating in a 

fading channel at high 𝐸𝑏 𝑁0⁄  while energy detector is recommended at low 𝐸𝑏 𝑁0⁄ . 

Table 4 summarizes these observations. 
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Figure 45 - 5-CR Coop Energy, Correlation, Entropy Detectors in Fading Channel 

Table 4 – Recommended Spectrum Sensing Techniques 

 

AWGN Fading Channel 

Low 𝐸𝑏 𝑁0⁄  High 𝐸𝑏 𝑁0⁄  Low 𝐸𝑏 𝑁0⁄  High 
𝐸𝑏 𝑁0⁄  

Single CR Energy Energy Energy Correlation 

5-CR Cooperative 
Network Energy Energy Energy Correlation 

or Entropy 

4.6. Comparison with Traditional Detection Schemes 

In this section, a comparison of the traditional detection schemes with the 

proposed classifier based schemes is presented. The traditional schemes set a 

threshold and adjust it iteratively until the target false alarm probability is achieved 

for each 𝐸𝑏 𝑁0⁄  value. Using the adjusted threshold, the achieved detection probability 

is computed. 
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Figure 46 shows the performance of the traditional energy detector. Comparing 

the two energy detectors, classifier and non-classifier based, it is concluded that both 

perform similarly. The main difference is in the number of iterations that are required 

to adjust the threshold to provide the desired false alarm probability of 0.1. The 

traditional energy detector requires an average of 130 iterations at 𝐸𝑏 𝑁0⁄  = -10 dB to 

achieve the desired false alarm while the classifier based energy detector requires 

around 3 iterations only to achieve the desired false alarm for the same 𝐸𝑏 𝑁0⁄  value.  

 
Figure 46 - Comparison of Traditional and Classifier based Energy Detectors 

Figure 47 shows the performance of the traditional correlation detector. 

Comparing the two correlation detectors, classifier and non-classifier based, it is 

concluded that both perform quite similarly. The traditional correlation detector 

requires an average of 5 iterations to adjust the threshold and achieve the target false 

alarm  at 𝐸𝑏 𝑁0⁄  = -10 dB to achieve the desired false alarm while the classifier based 

correlation detector requires around 2 iterations to achieve the desired false alarm for 

the same 𝐸𝑏 𝑁0⁄  value. 
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Figure 47 - Comparison of Traditional and Classifier based Correlation Detectors 

Finally, Figure 48 shows the performance of the traditional entropy detector. 

Comparing the two entropy detectors, classifier and non-classifier based, it is 

concluded that both perform quite similarly. The traditional entropy detector requires 

an average of 5400 iterations to adjust the threshold and achieve the target false alarm  

at 𝐸𝑏 𝑁0⁄  = -10 dB to achieve the desired false alarm which is significantly greater 

than the 2 iterations required on average by the classifier based entropy detector to 

achieve the target false alarm at the same 𝐸𝑏 𝑁0⁄  value.  
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Figure 48 - Comparison of Traditional and Classifier based Entropy Detectors  

-10 -5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Eb/No (dB)

D
et

ec
tio

n 
P

ro
ba

bi
lit

y

 

 

Entropy: Classifier
Entropy: Traditional



90 

 

Chapter 5 

Conclusion and Future Work 

Cognitive Radios opportunistically exploit the unused portions of the radio 

spectrum by sensing the spectrum for the presence of the primary licensed user. Most 

CRs are expected to work in environments where the primary users are OFDM based. 

In this thesis, spectrum sensing was formulated as a two class pattern recognition 

problem and a linear classifier was used to classify the received signal into either the 

primary OFDM signal or noise. The signals from both classes have different 

characteristics which were exploited for classification.  These characteristics, known 

as features, were learnt by the classifier during the training phase and then used to 

classify signals into their respective classes. 

Three different features were used in this work: energy, correlation and entropy. 

Energy detector computes the energy of the received signal and does not require any 

prior knowledge of the primary signal. The correlation detector exploits the inherent 

correlation in the OFDM signal due to the insertion of the cyclic prefix. The CR 

assumes complete synchronization and knowledge of the channel when using 

correlation as a detection scheme. Entropy detection computes the amount of 

information contained in the received signal. The performance of all these detection 

schemes was evaluated in an AWGN and fading channels. Additionally, the number 

of users in the cooperative CR network was changed which resulted in an overall 

improvement in the performance. The performance of the CR was evaluated in terms 

of the detection probability obtained when the false alarm probability is kept below a 

certain level.  

In an AWGN channel, it was observed that energy and correlation detectors had 

similar performances and both were better than the entropy detector. When the 

observation window size was increased, the performance of all the three detection 

schemes improved. Introduction of multiple CRs into the system also resulted in an 

overall improvement in performance. However, adding multiple CRs into the network 

increases the complexity of the system. In the fading channel, on the other hand, the 

performance of the three detectors degraded. But, energy detector suffered the most 
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degradation due to its non-coherent nature. Correlation detector performed best in the 

fading channel followed by the entropy detector. Increasing the window size 

improved the performance of the correlation and energy detectors but resulted in 

degrading the entropy detector performance. When the number of CRs was increased, 

there was an improvement in the performance of all the detectors.  

Future work could focus on employing polynomial classifiers to solve the 

spectrum sensing problem. In a polynomial classifier, a lower order feature vector is 

converted into a higher order through the process of polynomial expansion. Unlike the 

linear classifier, which requires the data to be linearly separable, the polynomial 

classifier can operate on data which is not linearly separable but has a nonlinear 

decision boundary. Besides, spectrum sensing in OFDMA systems could also be 

investigated which is another form of OFDM in which different subcarriers are 

assigned to different users unlike the traditional OFDM system where all subcarriers 

are used by a single user. 
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