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Abstract 

 

Commercial airplanes generally follow specific flight profiles consisting of 

take-off, climb, cruise, descend and landing. These flight profiles essentially change 

the freestream conditions in which the aircrafts operate. Furthermore, over the course 

of the flight, the required lift force changes as the fuel gets consumed. The 

conventional fixed wing designs account for these requirements by catering to 

multiple but fixed design points which, however, compromise the overall flight 

performance. Employing adaptive wing technology allows to fully exploring the 

aerodynamic flow potential at each point of the flight envelope. The objective of this 

research is to develop an aerodynamic optimization framework for optimizing a 

baseline airfoil shape at specific off-design operating points within a typical transonic 

flight envelope. The objective function is the lift-moment constrained drag 

minimization problem. B-spline curve fitting is used to parameterize the airfoil 

geometry and the control points along with the angle of attack are used as the design 

variables for the optimization process. An iterative response surface optimization 

methodology is employed for carrying out the shape optimization process. Design of 

Experiments (DoE) using the Latin Hypercube Sampling algorithm is used to 

construct the response surface model. This model is then optimized using the SQP 

technique. The various parameters that gauge the aerodynamic performance (lift, drag 

and moment coefficients) are obtained using CFD simulations. GridPro is used as the 

meshing tool to generate the flow mesh, and the CFD simulation is performed using 

ANSYS-FLUENT. The parameterization, design of experiments, and the response 

surface model optimization are performed using MATLAB. RAE 2822 design study 

is carried out to validate the optimization algorithm developed. The adaptive airfoil 

concept is demonstrated using a Boeing-737 classic airfoil at three steady flight 

operating points that lie within a typical aircraft flight envelope. The aerodynamic 

performance of the adaptive airfoil is then compared to that of the baseline airfoil. 

Search Terms—Aerodynamics, CFD, optimization, design of experiments, response 

surface modeling. 



5 
 

Table of Contents 

Abstract .......................................................................................................................... 4 

List of Figures ................................................................................................................ 9 

List of Tables ............................................................................................................... 11 

Nomenclature ............................................................................................................... 12 

Acknowledgements ...................................................................................................... 13 

1. INTRODUCTION ................................................................................................... 15 

1.1 Motivation .......................................................................................................... 16 

1.2 Historical perspective ......................................................................................... 17 

1.3 Problem Statement ............................................................................................. 22 

1.4 Review of Literature........................................................................................... 24 

1.5 Thesis Objectives ............................................................................................... 26 

2. OPTIMIZATION AND CFD .................................................................................. 28 

2.1 Introduction to Optimization .............................................................................. 28 

 Mathematical Formulation .......................................................................... 29 2.1.1

 Characteristics of Optimization Algorithms ............................................... 29 2.1.2

2.2 Sequential Quadratic Programming ................................................................... 30 

2.2.1 The SQP Technique .................................................................................... 30 

2.2.2 Solution Procedure ...................................................................................... 31 

 Updating the Hessian Matrix ...................................................................... 31 2.2.3

2.3 Design Variables ................................................................................................ 32 

 B-Spline Curves Introduction ..................................................................... 32 2.3.1

 B-Spline Formulation.................................................................................. 33 2.3.2

 Airfoil parameterization using B-Spline curves ......................................... 33 2.3.3

 Design Variables Vector ............................................................................. 38 2.3.4

2.4 Objective Functions............................................................................................ 38 

 Inverse design ............................................................................................. 38 2.4.1



6 
 

 Maximizing Aerodynamic Efficiency......................................................... 39 2.4.2

 Lift-Constrained Drag Minimization .......................................................... 39 2.4.3

2.5 Flow Equations ................................................................................................... 40 

 The Mass Conservation Equation ............................................................... 41 2.5.1

 Momentum Conservation Equations........................................................... 42 2.5.2

 Viscous Energy Equation ............................................................................ 42 2.5.3

 Turbulence Model ....................................................................................... 43 2.5.4

2.6 Computational Fluid Dynamics ......................................................................... 48 

 Discretization .............................................................................................. 49 2.6.1

 CFD based Shape Optimization .................................................................. 51 2.6.2

3. ITERATIVE RESPONSE SURFACE BASED OPTIMIZATION ........................ 52 

3.1 Introduction ........................................................................................................ 52 

3.2 Response Surface Optimization ......................................................................... 53 

 Design Space ............................................................................................... 55 3.2.1

 Design of Experiments ................................................................................ 56 3.2.2

 Constructing the RSM ................................................................................ 61 3.2.3

 Optimizing the RSM ................................................................................... 65 3.2.4

 System Response ........................................................................................ 65 3.2.5

3.3 Iterative Improvement of the RSM .................................................................... 66 

 Algorithm Flow Chart ................................................................................. 67 3.3.1

3.4 MATLAB Implementation of the Iterative RSO ............................................... 70 

 MATLAB Optimization Toolbox ............................................................... 74 3.4.1

 MATLAB Global Optimization Toolbox ................................................... 77 3.4.2

3.5 Meshing using GridPro ...................................................................................... 79 

 Surface Specifications ................................................................................. 79 3.5.1

 Block Topology .......................................................................................... 81 3.5.2

 Run schedule ............................................................................................... 84 3.5.3



7 
 

 Wall Clustering ........................................................................................... 84 3.5.4

3.6 CFD Solver—ANSYS FLUENT ....................................................................... 86 

 Pressure-Based Solver ................................................................................ 87 3.6.1

 General Scalar Transport Equation ............................................................. 87 3.6.2

 Spatial Discretization .................................................................................. 89 3.6.3

 Computing Forces and Moments ................................................................ 90 3.6.4

 ANSYS FLUENT Setup and Run............................................................... 91 3.6.5

3.6.6 Flow Solver Validation ............................................................................... 93 

3.7 Simulation Time ................................................................................................. 94 

4. RESULTS AND DISCUSSIONS ........................................................................... 96 

4.1 Overview ............................................................................................................ 96 

4.2 Case Study#1: Optimization of the RAE 2822 Airfoil ...................................... 96 

4.3 Adaptive Airfoil Design based on the Boeing-737C airfoil ............................. 101 

4.3.1 Operational Envelope ................................................................................ 102 

 CL requirements across the envelope ........................................................ 103 4.3.2

 Airfoil Geometry ....................................................................................... 104 4.3.3

4.3.4 CASE-A: Mach 0.74 at 9083.3 [m] (29,800[ft]) ...................................... 105 

4.3.5 CASE-B: Mach 0.65 at 9083.3 [m] (29,800[ft]) ....................................... 109 

4.3.6 CASE-C: Mach 0.65 at 6827.0 [m] (22,400[ft]) ....................................... 113 

4.4 Performance Comparison of Baseline Airfoil Relative to Optimized Airfoil .. 117 

4.5 Adaptive Airfoils .............................................................................................. 118 

5. CONCLUSION AND FUTURE WORK .............................................................. 120 

5.1 Summary and Conclusion ................................................................................ 120 

5.2 Future Work ..................................................................................................... 123 

REFERENCES .......................................................................................................... 125 

Appendix A GridPro Topology Input Language (TIL) File (FINAL3.FRA) ............ 128 

Appendix B ANSYS-FLUENT JOURNAL FILE (FLUENT_RUN.JOU) ............... 136 



8 
 

VITA .......................................................................................................................... 138 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9 
 

List of Figures 

Figure 1 AFTI-F-111 Mission Adaptive Wing (MAW) in Flight ............................... 18 

Figure 2 Optimum wing cambers at different flight conditions .................................. 19 

Figure 3 Variable leading and trailing edge wing design ............................................ 19 

Figure 4 Lewis et al variable camber wing command system ..................................... 20 

Figure 5 Artist’s rendering of NASA’s Morphing Airplane ........................................ 21 

Figure 6 Reparameterization ........................................................................................ 35 

Figure 7 B-Spline parameterization of RAE 2822 airfoil ............................................ 37 

Figure 8 Continuous Domain and Discrete Domain .................................................... 49 

Figure 9 The Computational Spatial Grid .................................................................... 49 

Figure 10 Typical finite volume cell ............................................................................ 50 

Figure 11 General RSO procedure ............................................................................... 55 

Figure 12 Three-variable, ten-point Latin hypercube sampling plan shown in three 

dimensions (top left), along with its two-dimensional projections. ........... 58 

Figure 13 Lower Limit, Upper limit and Baseline Control Points and Airfoil shapes 60 

Figure 14 Iterative RSO process flow chart ................................................................. 69 

Figure 15 MATLAB implementation of the Iterative RSO method ............................ 73 

Figure 16 GridPro surfaces .......................................................................................... 80 

Figure 17 Topology layout for the airfoil and the far-field ......................................... 82 

Figure 18 Topology layout in the wake region of the airfoil ....................................... 83 

Figure 19 Topology around the airfoil surface ............................................................ 83 

Figure 20 Mesh—full display ...................................................................................... 85 

Figure 21 Mesh—full and close up view ..................................................................... 85 

Figure 22 CFD verification results .............................................................................. 94 

Figure 23 B-spline parameterization of the RAE 2822 airfoil ..................................... 97 

Figure 24 Range of the B-spline control points (Design variables) ............................. 97 

Figure 25 RAE 2822 Baseline and Optimized airfoil shapes CP distributions .......... 100 

Figure 26 Plot comparing the actual and predicted function values .......................... 101 

Figure 27 Typical aircraft flight envelope ................................................................. 102 

Figure 28 Discretized points in the flight envelope. .................................................. 103 

Figure 29 Boeing 737 airfoil (baseline) ..................................................................... 104 

Figure 30 B-Spline parameterization of the Boeing 737 airfoil (expanded) ............. 104 

Figure 31 Range of the Boeing-737 airfoil design variables ..................................... 105 



10 
 

Figure 32 CASE-A Baseline and Optimized airfoil shapes and their corresponding 

surface CP distributions ............................................................................ 108 

Figure 33 Plot comparing the actual and the predicted objective function values 

(CASE-A) ................................................................................................ 109 

Figure 34 CASE-B Baseline and Optimized airfoil shapes and their corresponding 

surface CP distributions ............................................................................ 112 

Figure 35 Plot comparing the actual and the predicted objective function values 

(CASE-B) ................................................................................................. 113 

Figure 36 Plot comparing the actual and the predicted objective function values 

(CASE-C) ................................................................................................. 116 

Figure 37 Plot comparing the actual and the predicted objective function values 

(CASE-C) ................................................................................................. 117 

Figure 38 Baseline and Optimized Airfoil shapes for Cases A, B, and C ................. 119 

Figure 39 Baseline and Optimized Airfoil shapes for Cases A, B, and C (Expanded 

View)........................................................................................................ 119 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



11 
 

List of Tables 

Table 1 Model Constants ............................................................................................. 48 

Table 2 Baseline and Upper and Lower limit Values of the Design Variables ........... 98 

Table 3 Freestream conditions for the design operating condition .............................. 98 

Table 4 Baseline and Optimized performance at off-design operating point .............. 99 

Table 5 Baseline and Optimized values of the Design Variables .............................. 100 

Table 6 Baseline and Upper and Lower limit Values of the Design Variables ......... 105 

Table 7 Freestream conditions for the off-design operating point A ......................... 106 

Table 8 Baseline and Optimized values of the Design Variables .............................. 106 

Table 9 Baseline and Optimized performance at off-design operating point ............ 107 

Table 10 Freestream conditions for the off-design operating point B ....................... 110 

Table 11 Baseline and Optimized values of the Design Variables ............................ 110 

Table 12 Baseline and Optimized performance at off-design operating point B ...... 111 

Table 13 Freestream conditions for the off-design operating point C ....................... 114 

Table 14 Baseline and Optimized values of the Design Variables C ........................ 114 

Table 15 Baseline and Optimized performance at off-design operating point C ...... 115 

Table 16 Performance Comparison Analysis ............................................................ 118 

 

 

 

 

 

 

 

 

 

 

 

 

 



12 
 

Nomenclature 

f – Objective function 

𝑔𝑖 − Constraints  

X —Vector of design variables 

L — Langragian formulation 

𝜆 — Langrange Multipliers 

H — Hessian of the Langrange function 

𝑡𝑗 — B-Spline curve Parameter 

𝑃𝑖
𝑥,𝑦 — B-Spline Control point coordinates 

𝑈𝑖 — B-Spline Knot Vector 

𝐶𝐿 ,𝐶𝐷 ,𝐶𝑀 — Lift, moment and drag coefficients. 

𝐽 — Aerodynamic optimization objective function 

CFD — Computational Fluid Dynamics 

𝐕 — Flow velocity vector 

𝜌 — Fluid density 

𝜏𝑖𝑗 — Reynolds Stresses 

𝜈 — Kinematic Viscosity 

𝐗𝐷𝐷𝐷 — Design of Experiments plan 

𝐲� = 𝑓(𝐱,𝜷) — Response Surface Model 

𝜷 — Polynomial regression coefficients 

𝑛𝑡 — Number of regression coefficients. 

𝚽 — Vandermonde matrix of design variables 

𝑁𝑠,𝑁var — Number of samples and variables 

σ𝑣 — Adjusted Root Mean Square value 

𝑅𝑣𝑑𝑗2 — Coefficient of multiple determination 



13 
 

Acknowledgements 

I would like to begin with thanking Almighty God for being my guidance of 

the journey of life. He is the Creator and Sustainer of the all perfect nature which has 

been a major source of inspiration for many of the engineering solutions that exist 

today. 

I would like to extend my sincerest thanks and appreciation to Dr. Ali Jhemi. 

It has been an honor and a privilege to be his student. He is a great mentor whose 

expert opinions and guidance have been central to the successful completion of this 

research. Working with him has been both, an enjoyable as well as a great learning 

experience. Throughout the duration of my research work, Dr. Jhemi has been patient 

and cordial, which encouraged me to work even harder and with greater 

determination. 

I would especially like to thank Dr. Essam Wahba for helping me understand 

and clarifying a lot of doubts with respect to CFD. His expert comments and opinions 

on my simulation results have helped me save a lot of time and do things the right 

way with confidence. Also I would like to thank Dr. Mohammed Amin Al Jarrah, 

head of the Mechanical Engineering department, for being a member of my graduate 

thesis committee and gauging my research work. His experience in the area of 

aerodynamics has been valuable in defining the scope of my research. 

I am very grateful to Dr. Armando Vavalle of Rolls Royce Plc, for his expert 

opinions on my results which were crucial for my research. He has been very 

forthcoming and helpful, and his recommendations have been very valuable in 

making my research work even better. A special appreciation and thanks to Mr. 

Samuel Ebenezer of GridPro, for not only providing me with the software but even 

tons of information and guidance relating to it.  

Finally, I would like to express my deepest gratitude to everyone in my 

family, especially my loving parents who have been very kind and understanding 

throughout. I owe a lot of respect to them for their fabulous upbringing, taking great 

care of me all the while, supporting and motivating me to work harder to get to this 

point in life. And so, I dedicate this research to them. Also, I would like to thank all 

my friends for the great support and for the good times we have. 

 



14 
 

 

 

 

 

 

 

 

 

 

“Nature makes the ultimate decision as to whether a flow will be laminar or 

turbulent. There is a general principle in nature, that a system, when left to itself, will 

always move toward its state of maximum disorder. To bring order to a system, we 

generally have to exert some work on the system or expend energy in some manner.” 

—John Anderson Jr. 

(In Fundamentals of Aerodynamics)  
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1. INTRODUCTION 

Conventional non-renewable sources of energy, primarily fossil fuels, have 

essentially been the key drivers of almost all modern economies. For over a century, 

locomotion and hence the transportation industry has been one of the largest 

consumer of oil, which has over time, led to a steady increase in demand for the same.  

As new economies emerge and the existing well established ones continue to sustain 

and diversify, as trade and business becomes more and more global, the transportation 

sector will continue to play a major role in order to meet the demands of large scale 

globalization. This translates into increased demand for oil which as a consequence of 

reduced supply, leads to increase in fuel costs and thus higher operational costs. 

The aviation industry in the last few decades has witnessed a huge surge, 

attributed primarily to the growth of new and emerging economies in Asia. As cited in 

a forecast report by the Boeing Company, passenger air traffic rose by almost 8 

percent in 2010 after a slight slump in 2009.  The world air cargo traffic saw an 

estimated 24 percent growth in 2010. The global gross domestic product (GDP) is 

projected to grow at an average of 3.3 percent per year for the next 20 years. 

Reflecting this economic growth, worldwide passenger traffic will average 5.1 percent 

growth and cargo traffic will average 5.6 percent growth over the forecast period.  To 

meet this increased demand for air transportation, the number of airplanes in the 

worldwide fleet will grow at an annual rate of 3.6 percent, nearly doubling from 

around 19,400 airplanes today to more than 39,500 airplanes in 2030 [1]. This surge 

in global air traffic coupled with more airplanes going into operation is bound to 

increase the demand for oil and hence increased costs. 

The other issue associated with increased consumption of oil, an issue which 

has over time become more serious and a major cause of worldwide concern, is that of 

global warming. With the global surface temperatures on the rise, due to increased 

green-house gas emissions resulting from the combustion of fossil fuels, nature and 

the environment has greatly been affected. This issue, if ignored, can lead to grave 

consequences. 

If civil aviation is to continue growing, or even maintain its present level, the 

industry must address the challenges posed by global warming and increased oil 
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prices. One solution is provided by unconventional aircraft configurations that 

significantly improve fuel efficiency and reduce greenhouse gas emissions.  

 However, modern aircraft are already remarkably efficient. A person traveling 

from Seattle to New York on a Boeing 737-900 aircraft uses less fuel than one person 

traveling the same distance in a gas-electric hybrid car. Indeed, the modern aircraft is 

so highly optimized, that the desired performance improvements are likely not 

possible using the conventional configuration. This has motivated the investigation of 

unconventional aircraft and operations [2].  

 One of the many proposed configuration changes is the concept of active flow 

control technology. The idea of active control is to expend a small amount of energy 

to achieve a large gain in performance, such that the total amount of energy used is 

lower. 

1.1 Motivation 

Biomimicry or biomimetics is the examination of nature, its models, systems, 

processes, and elements to emulate or take inspiration from in order to solve human 

problems. And this has given rise to biologically inspired engineering, a new 

scientific discipline that applies biological principles to develop new engineering 

solutions. 

Right from the time man first tried to attain flight, all the way to the Airbus 

A380; inspiration has always been drawn from the flight of birds, as they have been 

considered to be a benchmark for aerodynamically efficient designs. The wing design 

of the A380 for instance, was inspired by the way the eagle flies. The eagle’s wings 

perfectly balance maximum lift with minimum length. It can manipulate the feathers 

at its wingtips, curling them to create a ‘winglet,’ a natural adaptation that aids highly 

efficient flight. The wingspan of the A380 had to be less than 80m in order to be able 

to operate on existing international airports. This constraint gave rise to a very 

important and a challenging question −How could it generate enough lift and still fit 

inside airports? On a conventional wing, vortices created by high pressure air leaks 

underneath mean the tips do not provide any lift. The wing had to be longer. To tackle 

this problem, engineers designed small structural devices known as winglets, located 

on the wing tips, which mimic the eagle’s feathers. By doing so, they were able to 

limit the A380’s wingspan to just 79.8 m while generating the desired lift[3]. 
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A swift (Apus apus L.) adapts the shape of its wings to the immediate task at 

hand− folding them back to chase insects, or stretching them out to sleep in 

flight.  During flight, they continually change the shape of their wings from spread 

wide to swept back. When they fly slowly and straight on, extended wings carry 

swifts 1.5 times farther and keep them airborne twice as long. Some ten Dutch and 

Swedish scientists, based in Wageningen, Groningen, Delft, Leiden, and Lund, have 

shown how wing morphing makes swifts such versatile flyers. Their study proves that 

swifts can improve flight performance by up to three-fold, numbers that make the 

wing morphing concept a potential candidate for next generation aircraft designs [4]. 

1.2 Historical perspective 

Even before the official beginning of controlled human flight in 1903, radical 

shape changing aircraft appeared and then disappeared, contributing little to aviation. 

Clement Ader, a French inventor and engineer remembered primarily for his 

pioneering work in aviation, conducted flight experiments in France as early as 1873 

and proposed a wing morphing design as early as 1890. He developed ideas for the 

future of aviation and described them in a short monograph published in 1909. In one 

of his descriptions of the general military airplane he states -  

 “Whatever category airplanes might belong to, they must satisfy the following 
general conditions: their wings must be articulated in all their parts and must be able 
to fold up completely. When advances in aircraft design and construction permit, the 
frames will fold and the membranes will be elastic in order to diminish or increase 
the bearing surfaces at the wish of the pilot…” 

In the beginning of the twentieth century many variable geometry aircraft 

concepts were developed such as Ivan Makhonine’s telescopic wing concept in the 

1930s that could change its wingspan by almost 62%. His concept later on inspired 

Georges Bruner and Charles Gourdou to design a small aircraft named the G-11 C-1. 

Apparently this airplane was never built, but its design had a wing whose area could 

range between 11.4 and 17.2 square meters with spans between 6.76 and 11.4 meters. 

The IS-1 fighter, designed by Nikitin-Shevchenko in 1932, morphed out-of-plane 

from a bi-plane to a monoplane that was to operate at high speed. The XB-70 

supersonic bomber also used a form of three-dimensional wing morphing. This design 

used outer wing panel rotation to control L/D at both low subsonic and supersonic 

speeds. 
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The Mission Adaptive Wing (MAW) project produced wing camber changing 

concepts and a flight demonstrator, the AFTI/F-111. Variable camber has been shown 

to improve performance of fighter aircraft at all flight conditions. The F-16 and F-18 

aircraft use discrete leading edge and trailing edge flap deflections to control camber, 

although imperfectly. The MAW supercritical airfoil camber was controlled to create 

optimum camber over a range of airspeeds for low subsonic to supersonic. This 

control was achieved by continuously deformable leading and trailing edge deflection 

using internal mechanisms to bending the chordwise shape as required. This allows 

the wing to be a continuous surface at all times, unbroken by discrete surfaces[5] .  

 

 

Figure 1 AFTI-F-111 Mission Adaptive Wing (MAW) in Flight 

 

Lewis et al. patented a variable camber wing command system for varying 

wing camber to optimize the wing lift-drag ratio during operation of the aircraft.  

The invention included a means for sensing various flight conditions and 

parameters during aircraft operation.  The calculating means then calculates a desired 

position for camber control surface to optimize the wing lift-drag ratio [6]. 
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Figure 2 Optimum wing cambers at different flight conditions 

 

 

Figure 3 Variable leading and trailing edge wing design 
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The NASA Aircraft Morphing program is an attempt to couple research across 

a wide range of disciplines to integrate smart technologies into high payoff aircraft 

applications. The program bridges research in seven individual disciplines and 

Figure 4 Lewis et al variable camber wing command system 
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combines the effort into activities in three primary program thrusts. System studies 

are used to assess the highest payoff program objectives, and specific research 

activities are defined to address the technologies required for development of smart 

aircraft systems. The stated goal of the program is the development of smart devices 

using active component technologies to enable self-adaptive flight for a revolutionary 

improvement in aircraft efficiency and affordability. Aircraft Morphing is an 

inherently multidisciplinary program, and has been built around a core discipline 

based structure to provide the fundamental technology base. The integrated 

disciplines are – Structures; Flow Physics; Systems and Multidisciplinary 

Optimization; Integration; Controls; Acoustics; and Materials [7] .  

 

 

 

 

 

 

 

 

 

 

 

 

 

The Boeing Company has also been researching in the field of morphing 

wings and has published a number of patents pertaining to this subject. Dockter et al. 

have invented a morphing wing design that includes a rigid internal core, an 

expandable spar surrounding it and a plurality of elastomeric bladders. An external 

fiber mesh overlay covers the elastomeric bladders to provide a smooth wing surface. 

The plurality of elastomeric bladders is expandable through the introduction of 

Figure 5 Artist’s rendering of NASA’s Morphing Airplane 
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increased air pressure such that the profile of the geometric morphing wing can be 

modified [8]. 

In another patent, Sankrithi et al. have invented systems and methods for 

providing variable geometry winglets to an aircraft. In one of the embodiments, a 

method for adapting an aircraft to a plurality of flight conditions comprises providing 

a winglet to each wing. The winglet includes a body portion which in turn includes at 

least one of a deflectable control surface, a shape memory alloy (SMA) bending plate, 

and a SMA torque tube. Once the aircraft is moving through the atmosphere, the 

method further includes providing a winglet modification signal. The winglet is then 

modified based on the modification signal to at least one of reduce induced drag and 

redistribute a wing load [9]. 

The Decadal Survey of Civil Aeronautics conducted by the National Research 

Council (NRC), has ranked the use of adaptive materials and morphing structures as 

one of high-priority research and technology (R&T) challenges. This subject has 

received equal priorities by NASA and at the National level. It has been featured 

second in the list of R&T challenges in the area of Materials and Structures. 

DARPA’s (Defense Advanced Research Projects Agency) Morphing Aircraft 

Structures Program has sponsored several wind tunnel experiments at NASA Langley 

Research Center’s Transonic Dynamics Tunnel. These produced a wide range of 

experience and identified innovative aircraft and rotorcraft concepts and critical 

materials technologies for future work[10] .     

1.3 Problem Statement 

There are essentially two factors limiting overall aircraft or aircraft-component 

performance—the development of the boundary layer and the interaction of the 

boundary layer with the outer flow field, exacerbated at high speeds by the occurrence 

of shock waves, and the fact that flight and freestream conditions may change 

considerably during an aircraft mission while the actual aircraft is only designed for 

multiple but fixed design points rendering such an aircraft a compromise with regard 

to performance. Flow control and adaptive wings, which are naturally 

complementary, adjust the flow development to the prevailing flight condition and 

have, therefore, the potential to greatly improve aircraft and aircraft-component 

performance[11].  
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Commercial airplanes generally follow specific flight profiles consisting of 

take-off, climb, cruise, descend and landing. These flight profiles essentially change 

the freestream conditions in which the aircrafts operate. Furthermore, over the course 

of the flight, the required lift force changes as the fuel gets consumed. The 

conventional fixed wing designs account for these requirements by catering to 

multiple but fixed design points which, however, compromise the overall flight 

performance. 

The two dominant flight parameters influencing aerodynamic forces of a given 

wing are—airspeed and altitude. It is desirable that the aerodynamic efficiency of the 

wing be at its maximum (subject to certain constraints) throughout the flight 

envelope. Employing adaptive wing technology where the effective wing geometry 

adjusts to the changing flow and load requirements, allows to fully exploring the 

aerodynamic flow potential at each point of the flight envelope, thus resulting in 

aerodynamic performance gains during cruise and maneuver, and, furthermore, most 

likely improving structural designs. 

A solution to this problem is the morphing wing concept in which the wing 

shape is altered depending on the existing flight condition. The primary motive for 

altering wing geometry is to improve airfoil efficiency in off-design flight regimes. A 

particular, more constrained implementation of this concept can be seen in most 

modern aircraft designs existing today and it takes the form of flaps which change the 

wing area and/or effective camber. A polymorph wing (variable planform) and 

variable pitch or incidence are also proven methods of wing adaptation and can be 

found in some multi-role combat aircrafts [12]. However these forms essentially allow 

only rigid or constrained deformations in that, the deformations are discrete or 

discontinuous such as the case of trailing edge flaps or leading edge slats deployed 

while take-off and landing in transport aircrafts. In the remaining portion of the flight 

the wing section is predominantly constant whereas the free-stream conditions 

continue to change with change in airspeed and altitude thus compromising all round 

performance. In order to improve the performance over a greater portion of the flight 

envelope, it is desirable that the wing shape undergoes considerable deformation 

thereby morph into a shape that achieves desirable low-drag pressure distributions.  

The problem definition for this thesis is therefore to develop an optimization 

framework that could be used to develop single-point optimized airfoil shapes at 
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discrete locations within the flight envelope. These shapes could then be embedded in 

a control system architecture that could signal actuators to deform the existing airfoil 

shape into the desired one that has been optimized for the corresponding freestream 

conditions of the aircraft. 

1.4 Review of Literature 

A plethora of research and studies has been performed in the area of 

aerodynamic shape optimization for the design of optimal airfoil shapes. This research 

area has undoubtedly been dominated by the pioneering works of Antony Jameson 

who has extensively used control theory for airfoil and wing design [13-16]. Here the 

shape optimization problem is treated as a control problem, in which the airfoil 

(and/or wing) is treated as a device which controls the flow to produce lift with 

minimum drag, while meeting other requirements such as low structure weight, 

sufficient fuel volume, and stability and control constraints. The theory of optimal 

control of systems is applied which is governed by partial differential equations with 

boundary control, in this case through changing the shape of the boundary. Here the 

Frechet derivative of the cost function is determined via the solution of an adjoint 

partial differential equation, and the boundary shape is then modified in a direction of 

descent. This process is repeated until an optimum solution is approached.  

E. Stanewsky [11] provides a thorough review of the adaptive wing 

technology. Here, various concepts on complete wing adaptation both for cruise-drag 

minimization as well as for maneuver load control for combat aircrafts are discussed. 

The concepts that have been discussed are the adaptive variable camber trailing edges, 

leading edges and transonic contour bumps, and also combinations of the three. He 

also discusses optimum number of linear actuators based on the drag reduction 

achieved and the percentage flexing of the surfaces.    

Fred Austin et al. have developed optimum wing cross-sectional profiles for a 

hypothetical fixed-wing version of the F-14 aircraft at two transonic cruise conditions 

[17]. Jameson’s control-theory based optimum aerodynamic design approach is used 

for the analysis at critical operating conditions where shape modifications might 

significantly improve the aerodynamic performance. Based on the analysis it is shown 

that only small, potentially achievable, adaptive modifications to the profile are 

required. A general method is developed to adaptively deform the structures to 
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desired shapes. The method is investigated by a finite element analysis of an adaptive 

rib and by experimental investigations on a rib model. Open loop experiments of the 

unloaded structure show that commanded shapes can be achieved.  

David Zingg et al. have used a Newton-Krylov based aerodynamic 

optimization algorithm to assess an adaptive airfoil concept for drag reduction at 

transonic speeds [18]. The lift-constrained drag minimization problem is used as the 

objective function. The airfoil geometry is parameterized using B-splines and the 

compressible Navier-Stokes equations are solved with a Newton-Krylov method. In 

this study, a baseline is designed to produce low drag at a fixed lift coefficient over a 

range of Mach numbers. This airfoil is then compared with a sequence of nine airfoils, 

each designed to be optimal at a single operating point in the Mach number range. It 

is found that shape changes of less than 2% chord lead to drag reduction of 4 to 6% 

over a range of Mach numbers from 0.68 to 0.76. If the shape changes are restricted to 

the upper surface only, then changes of less than 1% chord lead to a drag reduction of 

3 to 5%.   

Namgoong in his research has developed appropriate problem formulations 

and optimization strategies to design an airfoil for morphing aircraft that include the 

energy required for shape change [19]. Here the relative strain energy needed to 

change from one airfoil shape to another is included as an additional design objective 

along with a drag design objective, while constraints are enforced on the lift. Solving 

the resulting multi-objective problem generates a range of morphing airfoil designs 

that represent the best tradeoffs between aerodynamic performance and morphing 

energy requirements. The airfoil parameterization is done here using Hicks-Henne 

shape functions. To formulate the problem as a multi-objective problem, a strain 

energy model is developed that depends upon the concept of linearly elastic springs. 

The Genetic Algorithm (GA) is used for solving the multi-objective optimization 

problem. 

Gamboa et al. in their work have designed a morphing wing concept for a 

small experimental unmanned aerial vehicle to improve the vehicle’s performance 

over its intended speed range [20]. The wing is designed with a multidisciplinary 

design optimization tool, in which an aerodynamic shape optimization code coupled 

with a structural morphing model is used to obtain a set of optimal wing shapes for 

minimum drag at different flight speeds. The optimization studies reveal that wing 
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drag reduction of up to 30% can be achieved by morphing the wing, thus representing 

the important performance improvements in off-design conditions. 

Ursache in his research has designed adaptive structures for achieving global 

multi-shape morphing aerodynamic configurations, by using slender structures. A 

heuristic approach is proposed that enables morphing through a range of stable 

cambered airfoils to achieve the aerodynamic properties for different maneuvers, with 

the benefit of low powered actuation control [21]. Ünlüsoy in his work has performed 

structural design and analysis of a wing having mission adaptive control surfaces. The 

wing is designed to withstand a maximum aerodynamic loading of 5g during 

maneuver. The structural model of the wing is developed using MSC/PATRAN and 

the analysis is carried out using MSC/NASTRAN [22].  

1.5 Thesis Objectives 

As outlined in the previous section, the goal is to achieve a set of airfoil shapes 

that have been optimized for specific points in the flight envelope, viz at specific 

airspeeds and altitudes. 

This, as is evident from the aforementioned description, essentially translates 

into an optimization problem. Thus, aerodynamic shape optimization forms the core 

and one of the most important parts of this thesis which, in the subsequent chapters, 

will be addressed in greater detail. 

The shape optimization process is to be carried out for different operating 

points within the flight envelope. Only those operating points are chosen which have a 

greater probability of being visited by a typical subsonic transport airplane. A 

comparative analysis is performed in which the aerodynamic performance of a 

Boeing-737 classic airfoil at various operating points is compared to that of a single 

point optimized airfoil at the same operating points. 

Chapter 2 provides an overview of the theories required for the shape 

optimization process. This includes the formulation of the optimization problem, 

shape parameterization to obtain the design variables, various objective functions that 

are employed for shape optimization problems and the constraints on the optimization 

process. The governing equations that form an important part of any fluid dynamics 
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problem alongwith the procedure for analysis using Computation Fluid Dynamics 

(CFD) solvers are also discussed. 

Chapter 3 introduces the Iterative Response Surface Optimization 

methodology for carrying out the shape optimization process. Here the various steps 

involved such as the Design of Experiments (DoE), response surface construction and 

the iterative improvement of this model are discussed. Also included is the model 

testing methods and the mathematical optimization of the response model. This is 

followed by the steps for constructing the CFD grid using GridPro® and the flow 

analysis using ANSYS-Fluent® along with its validation are discussed towards the 

end of the chapter. 

Chapter 4 primarily discusses the results of this study. Here the lift-moment 

constrained drag minimization scheme employed in the optimization process is 

discussed followed by the case study. Also discussed are the operational flight 

envelopes of typical transonic aircrafts. The RAE 2822 design study is carried out to 

validate the optimization algorithm developed. The adaptive airfoil concept is 

demonstrated using a Boeing-737 classic airfoil at three steady flight operating 

conditions. The aerodynamic performance of the adaptive airfoil is then compared to 

that of the baseline airfoil.  

Chapter 5 summarizes and concludes the research conducted in this thesis 

along with shedding some light on possible improvements and more advanced study 

that can be carried out on this subject in the future. 
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2. OPTIMIZATION AND CFD 

2.1 Introduction to Optimization  

Nature optimizes. Physical systems tend to a state of minimum energy. The 

molecules in an isolated chemical system react with each other until the total potential 

energy of their electrons is minimized. Rays of light follow paths that minimize their 

travel time. 

On similar lines people optimize. Manufacturers aim for maximum efficiency 

in the design and operation of their production processes. Engineers adjust parameters 

to optimize the performance of their designs [23]. 

Optimization is the act of obtaining the best result under given circumstances. 

In design, construction, and maintenance of any engineering system, engineers have 

to take many technological and managerial decisions at several stages. The ultimate 

goal of all such decisions is either to minimize the effort required or to maximize the 

desired benefit [24]. Optimization can be considered as an important tool in decision 

science and in the analysis of physical systems. To make use of this tool, an objective 

must be defined. The objective is a quantitative measure of the performance of the 

system under study. This could be profit, time, potential energy, or any quantity or 

combination of quantities that can be represented by a single number. The objective 

depends on certain characteristics of the system, called variables or unknowns. The 

goal is to find values of the variables that optimize the objective. Often the variables 

are restricted, or constrained, in some way.  

The process of identifying objective, variables, and constraints for a given 

problem is known as modeling. Construction of an appropriate model is the first and 

one of the most important step in the optimization process. Once the model has been 

formulated, an optimization algorithm can be used to find its solution, usually with 

the help of a computer. There is no universal optimization algorithm but rather a 

collection of algorithms, each of which is tailored to a particular type of optimization 

problem. The responsibility of choosing the algorithm that is appropriate for a specific 

application often falls on the user. This choice is an important one, as it may 

determine whether the problem is solved rapidly or slowly and, indeed, whether the 

solution is found at all. 
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  Mathematical Formulation 2.1.1

Mathematically, optimization is the minimization or maximization of a 

function subject to constraints on its variables. The optimization problem can be 

written as follows: 

min
𝑥∈𝑅𝑛

𝑓(𝐗)  subject to  𝑔𝑖(𝐗) = 0,   𝑖 = 1, 2, …𝑚 

                                                                         ℎ𝑘(𝐗) ≤ 0,   𝑘 = 1, 2, … 𝑝 

- X is the vector of variables, also called unknowns or parameters; 

- f is the objective function, a scalar function of X that has to be optimized. 

- gi and ℎ𝑘 are the constraint functions, which are scalar functions of X that 

define certain equalities and inequalities that X must satisfy. 

- 𝑚 and p are the number of equalities and inequalites constraints. 

  Characteristics of Optimization Algorithms 2.1.2

Optimization algorithms are iterative. They begin with an initial guess of the 

variable X and generate a sequence of improved estimates, called iterates, until they 

terminate, hopefully at a solution. The strategy used to move from one iterate to the 

next distinguishes one algorithm from another. Most strategies make use of the values 

of the objective function f, the constraint functions 𝑔𝑖 and/or ℎ𝑘, and possibly the first 

and second derivatives of these functions. Some algorithms accumulate information 

gathered at previous iterations, while others use only local information obtained at the 

current point. 

 Regardless of these specifics, good algorithms should possess the following 

properties: 

- Robustness: They should perform well on a wide variety of problems in 

their class, for all reasonable values of the starting point. 

- Efficiency: They should not require excessive computer time or storage. 

- Accuracy: They should be able to identify a solution with precision, 

without being overly sensitive to errors in the data or to the arithmetic 

rounding errors that occur when the algorithm is implemented on a 

computer. 

These goals may conflict. For example, a rapidly convergent method for a 

large unconstrained nonlinear problem may require too much computer storage. On 
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the other hand, a robust method may also be the slowest. Tradeoffs between 

convergence rate and storage requirements, and between robustness and speed, and so 

on, are central issues in numerical optimization. 

2.2  Sequential Quadratic Programming 

Sequential quadratic programming (SQP) is an iterative method for nonlinear 

optimization. SQP methods are used on problems for which the objective function and 

the constraints are twice continuously differentiable. 

The sequential quadratic programming is one of the most recently developed 

and perhaps one of the best methods of optimization. The method has a theoretical 

basis that is related to (1) the solution of a set of nonlinear equations using Newton’s 

method, and (2) the derivation of simultaneous nonlinear equations using Kuhn–

Tucker conditions to the Lagrangian of the constrained optimization problem. 

 The SQP Technique 2.2.1

Consider a nonlinear optimization problem as below: 

min
𝐗
𝑓(𝐗) 

Subject to ℎ𝑘(𝐗) ≤ 0, 𝑘 = 1, 2, … ,𝑝 

The Lagrange formulation of the above problem then becomes  

𝐿(𝐗, 𝜆) = 𝑓(𝐗) + �𝜆𝑘

𝑝

𝑘=1

ℎ𝑘(𝐗) 

Here 𝜆𝑘 are the Lagrange multipliers for each of the kth constraints. It is 

assumed that the bound constraints have been expressed as inequality constraints. 

Now in the SQP technique, the above optimization problem can be solved iteratively 

by solving a Quadratic Programming (QP) problem which is stated as— 

min
∆𝐗

𝑄 = ∇𝑓𝑇∆𝐗 +
1
2
∆𝐗𝑇[∇2𝐿]∆𝐗 

subject to 

𝑔𝑗 + ∇𝑔𝑗𝑇∆𝐗 ≤ 0,    j = 1,2, … , m 

ℎ𝑘 + ∇ℎ𝑘
𝑇∆𝐗 = 0,𝑘 = 1, 2, … ,𝑝 
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The Langrange formulation is given by 

𝐿� = 𝑓(𝐗) + �𝜆𝑗

𝑚

𝑗=1

𝑔𝑗(𝐗) + �𝜆𝑚+𝑘

𝑝

𝑘=1

ℎ𝑘(𝐗) 

Since the minimum of the augmented Lagrange function is involved, the SQP 

method is also known as the projected Lagrangian method. 

 Solution Procedure 2.2.2

As in the case of Newton’s method of unconstrained minimization, the 

solution vector ∆𝐗 is treated as the search direction, S, and the quadratic programming 

sub-problem (in terms of the design vector S) is restated as: 

min
𝐒
𝑄(𝐒) = ∇𝑓(𝐗)𝑇𝐒 +

1
2
𝐒𝑇[𝐻]𝐒 

Subject to 

𝑔𝑗(𝐗) + ∇𝑔𝑗(𝐗)𝑇𝐒 ≤ 0,        j = 1,2, … , m 

ℎ𝑘(𝐗) + ∇ℎ𝑘(𝐗)𝑇𝐒 = 0, 𝑘 = 1, 2, … ,𝑝 

where [H] is a positive definite matrix that is taken initially as the identity 

matrix and is updated in subsequent iterations so as to converge to the Hessian matrix 

of the Lagrange function 𝐿�. The above sub-problem is q quadratic programming 

problem and can be solved using any optimization technique. Once the search 

direction S, is found the design variables can be updated as 

𝑿𝑗+1 = 𝑿𝑗 + 𝛼 ∙ 𝐒 

Here 𝛼 is the optimal step length along the direction S and can be determined 

by an appropriate line search procedure so that a sufficient decrease in a merit 

function is obtained. The matrix [𝐻] is a positive definite approximation of the 

Hessian matrix of the Lagrangian function. 

 Updating the Hessian Matrix 2.2.3

At each major iteration a positive definite quasi-Newton approximation of the 

Hessian of the Lagrangian function, [H], is calculated using the BFGS (Broyden-

Fletcher-Goldfarb-Shanno) method, where 𝜆𝑖, 𝑖 = 1, … ,𝑚, is an estimate of the 

Lagrange multipliers. 
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𝐻𝑘+1 = 𝐻𝑘 +
𝑞𝑘𝑞𝑘𝑇

𝑞𝑘𝑇𝑠𝑘
−
𝐻𝑘𝑇𝑠𝑘𝑇𝑠𝑘𝐻𝑘
𝑠𝑘𝑇𝐻𝑘𝑠𝑘

, 

Where 

 𝑠𝑘 = 𝐗k+1 − 𝐗𝑘 

𝑞𝑘 = �∇𝑓(𝐗𝑘+1) + �𝜆𝑖

𝑚

𝑖=1

𝑔𝑖(𝑿𝑘+1)�− �∇𝑓(𝑿𝑘) + �𝜆𝑖

𝑚

𝑖=1

𝑔𝑖(𝑿𝑘)� 

2.3  Design Variables 

As mentioned in the previous section, design variables are quantities or 

quantifiable characteristics on which the performance of the system depends. These 

are quantities which almost completely define the system being analyzed.  

From an aerodynamic shape optimization point of view, the vector of design 

variables, X, primarily contains parameters that control the shape of the airfoil. These 

are geometrical entities that are relatively few in number and fully parameterize the 

airfoil shape. The angle of attack, which is the angle that the airfoil chordline makes 

with the direction of airflow, may be used as an additional design variable.  

Here, B-Spline control points are used to define the airfoil shape. These 

control points along with angle of attack form the vector of design variables for the 

purpose of optimization. The following sub-sections describe the process of shape 

parameterization using B-Spline curves. 

  B-Spline Curves Introduction 2.3.1

NURBS, or Non-Uniform Rational B-Splines, are the standard for describing 

and modeling curves and surfaces in computer aided design and computer graphics. 

They are used to model everything from automobile bodies and ship hulls to animated 

characters. 

B-Splines belong to the class of parametric curves. Parametric curve 

representations of the form: 𝑥 =  𝑓(𝑡);  𝑦 =  𝑔(𝑡);  𝑧 =  𝑔(𝑡) 

where t is the parameter, are extremely flexible. They are axis independent, 

easily represent multiple-valued functions and infinite derivatives, and have additional 

degrees of freedom compared to either explicit or implicit formulations. 
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  B-Spline Formulation 2.3.2

The general mathematical formulation of a B-spline curve given the order, 

control point coordinates and a parameter set, is as follows:  

𝐶𝑥�𝑡𝑗�  =  ∑ 𝑁𝑖,𝑘�𝑡𝑗� ∙ 𝑃𝑖𝑥𝑛+1
𝑖=1   

𝐶𝑦�𝑡𝑗�  =  ∑ 𝑁𝑖,𝑘�𝑡𝑗� ∙ 𝑃𝑖
𝑦𝑛+1

𝑖=1   

 The notations used in the above formulation are as described below: 

- (Cx, Cy) are the Cartesian coordinates of the B-Spline curve. 

- t is the curve parameter, 

- (𝑃𝑖𝑥 ,𝑃𝑖
𝑦) are the co-ordinates of the B-Spline control points, 

- (n+1) is the number of control points, 

- k is the order of the curve (degree is k −1), 

- j is the index for the curve parameter u,  

- 𝑁𝑖,𝑘 are the B-Spline Basis functions defined by the Cox-de Boor 

recurrence relations as below: 

𝑁𝑖,1�𝑡𝑗� =  �
1,
0,

    if 𝑈𝑖 ≤ 𝑡𝑗  <  𝑈𝑖+1   
otherwise

     

𝑁𝑖,𝑘�𝑡𝑗� =  
𝑡𝑗 −  𝑈𝑖

𝑈𝑖+𝑘−1 −  𝑈𝑖
𝑁𝑖,𝑘−1�𝑡𝑗� +  

𝑈𝑖+𝑘 − 𝑡𝑗
𝑈𝑖+𝑘 −  𝑈𝑖+1

𝑁𝑖+1,𝑘−1�𝑡𝑗�    ] 

- The vector 𝑈𝑖 represents a normalized uniform knot sequence given by: 

𝑈𝑖 =  �
0,

(𝑈𝑖−1 + 1) (𝑈(𝑛+1)+𝑘⁄ ,
𝑈𝑖−1 (𝑈(𝑛+1)+𝑘⁄ ,

for  1 < 𝑖 ≤ 𝑘
 for 𝑘 < 𝑖 < (𝑛 + 1) + 2

for (𝑛 + 1) + 2 ≤ 𝑖 ≤ (𝑛 + 1) + 𝑘
    

  Airfoil parameterization using B-Spline curves 2.3.3

The distance along the B-spline curve is represented by the parameter value tj 

for each point j on the surface of the airfoil. The initial values of tj are given by 

𝑡1 = 0               

𝑡𝑗 =
∑ �(𝑥𝑑𝑎𝑡𝑎𝑖−𝑥𝑑𝑎𝑡𝑎𝑖−1)2+(𝑦𝑑𝑎𝑡𝑎𝑖−𝑦𝑑𝑎𝑡𝑎𝑖−1)2𝑗
𝑖=2

𝐿𝑇
… . 𝑗 ∈ [2,𝑁𝑑𝑣𝑡𝑣]         
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𝐿𝑇 = � ��𝑥𝑑𝑣𝑡𝑣𝑖 − 𝑥𝑑𝑣𝑡𝑣𝑖−1�
2

+ �𝑦𝑑𝑣𝑡𝑣𝑖 − 𝑦𝑑𝑣𝑡𝑣𝑖−1�
2

𝑁𝑑𝑎𝑡𝑎

𝑖=2

… . (𝑥𝑑𝑣𝑡𝑣𝑖 ,𝑦𝑑𝑣𝑡𝑣𝑖)  

∈ [0,1]       

Here: 

- Ndata, is the number of data points of the airfoil to be parameterized, 

- (xdata,ydata) are the airfoil coordinates. 

- LT is the sum of the chord distances for all the data points. 

At the onset of the optimization procedure, it is necessary to determine the 

location of the B-spline control points that best approximate the initial airfoil shape. 

In order to locate the control point co-ordinates a curve-fitting strategy must be 

employed. The curve fitting approach employed here implements a curve parameter 

correction algorithm [25]. The algorithm consists of the following two separate parts  

- Initial parameterization 

- Fitting/reparametrization loop 

Initial parameterization yields an initial set of control-point coordinates that 

roughly approximates the airfoil shape. If a data point lies on the B-spline curve, then 

it must satisfy— 

𝐶𝑥(𝑡1)  =  𝑁1,𝑘(𝑡1) ∙ 𝑃1𝑥 + 𝑁2,𝑘(𝑡1) ∙ 𝑃2𝑥 + ⋯+ 𝑁𝑛+1,𝑘(𝑡1) ∙ 𝑃𝑛+1𝑥 𝐶𝑦(𝑡1)  

=  𝑁1,𝑘(𝑡1) ∙ 𝑃1
𝑦 + 𝑁2,𝑘(𝑡1) ∙ 𝑃2

𝑦 + ⋯+ 𝑁𝑛+1,𝑘(𝑡1) ∙ 𝑃𝑛+1
𝑦  

𝐶𝑥(𝑡2)  =  𝑁1,𝑘(𝑡2) ∙ 𝑃1𝑥 + 𝑁2,𝑘(𝑡2) ∙ 𝑃2𝑥 + ⋯+ 𝑁𝑛+1,𝑘(𝑡2) ∙ 𝑃𝑛+1𝑥 𝐶𝑦(𝑡2)     

=  𝑁1,𝑘(𝑡2) ∙ 𝑃1
𝑦 + 𝑁2,𝑘(𝑡2) ∙ 𝑃2

𝑦 + ⋯+ 𝑁𝑛+1,𝑘(𝑡2) ∙ 𝑃𝑛+1
𝑦 ⋮ 

𝐶𝑥�𝑡𝑗�  =  𝑁1,𝑘�𝑡𝑗� ∙ 𝑃1𝑥 + 𝑁2,𝑘�𝑡𝑗� ∙ 𝑃2𝑥 + ⋯+ 𝑁𝑛+1,𝑘�𝑡𝑗� ∙ 𝑃𝑛+1𝑥 𝐶𝑦�𝑡𝑗�     

=  𝑁1,𝑘�𝑡𝑗� ∙ 𝑃1
𝑦 + 𝑁2,𝑘�𝑡𝑗� ∙ 𝑃2

𝑦 + ⋯+ 𝑁𝑛+1,𝑘�𝑡𝑗� ∙ 𝑃𝑛+1
𝑦   

where 2 ≤ 𝑘 ≤ 𝑛 + 1 ≤ 𝑗. This system of equations is more compactly written in 

matrix form as 

[𝐶𝑥] = [𝑁] ∙ [𝑃𝑥] 

�𝐶𝑦� = [𝑁] ∙ [𝑃𝑦]  

Recalling that a matrix times its transpose is always square, the control 

polygon for a B-spline curve that approximates the data is given by 
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[𝑁]𝑇[𝐶𝑥] = [𝑁]𝑇[𝑁] ∙ [𝑃𝑥] 

∴  [𝑃𝑥] =  �[𝑁]𝑇[𝑁]�
−1
∙ [𝐶𝑥] 

Likewise                              [𝑁]𝑇�𝐶𝑦� = [𝑁]𝑇[𝑁] ∙ �𝑃𝑦� 

∴  �𝑃𝑦� =  �[𝑁]𝑇[𝑁]�
−1
∙ �𝐶𝑦� 

Provided that the order of the B-spline basis k, the number of control polygon 

vertices n + 1, and the parameter values along the curve are known, then the basis 

functions 𝑁𝑖,𝑘�𝑡𝑗�  and hence the matrix [N] can be obtained. Within the restrictions 

2 ≤ 𝑘 ≤ 𝑛 + 1 ≤ 𝑗 , the order and number of polygon vertices are arbitrary. 

In the reparameterization stage, the parameter values are improved by 

replacing the previous parameters by new parameter values which are obtained after 

implementing parameter correction formula. The algorithm is explained as follows. 

The basic aim here is to fit a B-Spline curve that will approximate N measured 

data points in a Least Squares Method sense. This leads to minimization problem in 

which the objective is to find an optimal set of parameter values 𝑡𝑖 producing an 

optimal approximating spline C(𝑡𝑖) with minimal distances to the data points Di. The 

objective function is— 

𝐸𝑖 =  �‖𝐷𝑖 − 𝐶(𝑡𝑖)‖2 → 𝑚𝑖𝑛
𝑁

𝑖=1

 

Where 𝐶(𝑡𝑖)is the B_spline curve point at 𝑡𝑖 and 𝐷𝑖 is the corresponding 

measured data point. In curve parameterization strategies, the distance vectors are 

generally not perpendicular to the surface. This means an arbitrary error due to the 

parameterization has been minimized. This parameterization scheme can be improved 

by changing the aim to approximate the shortest distances, which means sequence of 

new parameter values ti will be constructed with the goal that the corresponding error 

vectors Ei converge in general to the normal of the approximation curve.  

 

 

 

 C(ti) 
∆𝑡𝑖 

Ei 

Di 

Figure 6 Reparameterization 
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Therefore, the curve at each point C(ti) is replaced by the tangent as described 

in Fig.2.1, by projecting the error vector Ei on the tangent and obtain ∆𝑡𝑖 as a measure 

for changing the parameter values 𝑡𝑖 in direction of the parameter values of the 

perpendicular from Di to C(𝑡𝑖). One of the methods for minimizing the local error 

vector is as suggested by Hoschek et al [26]. The idea is to minimize 𝐸𝑖2 =

�𝐷𝑖 − 𝐶(𝑡𝑖)�
2
 . This after differentiation leads to:  𝑓 ≔ �𝐷𝑖�𝐶̇(𝑡𝑖)� = 0 

Now if the Newton iteration formula is used to compute a zero of f, the 

correction formula is obtained as 

∆𝑢𝑖 = −
𝑓
𝑓̇

=
−�𝐷𝑖�𝐶̇(𝑡𝑖)�

�𝐷𝑖�𝐶̈(𝑡𝑖)� − ⟨𝐷𝑖|𝐷𝑖⟩
= −

(𝐶(𝑡𝑖) − 𝐷𝑖) ∙ 𝐶̇(𝑡𝑖)
(𝐶(𝑡𝑖) − 𝐷𝑖) ∙ 𝐶̈(𝑡𝑖) + 𝐶̇(𝑡𝑖)2

 

Therefore the improved parameter becomes 𝑡𝑖′ = 𝑡𝑖 + ∆𝑡𝑖 

This reparameterization step is repeated till the desired accuracy is achieved. 

The least-squares problem is re-evaluated with the final parameter vector in order to 

obtain a better set of control points. This procedure typically converges within a few 

hundred iterations and do not require significant computational effort.  

In addition, the airfoil geometry to be parameterized is split into two —upper 

surface and lower surface. This way the parameterization is split into two parts—one 

for each of the split surfaces. So a set of B-Spline control points and a set of curve 

parameters control one of the two surfaces of the airfoil, and a different pair of sets 

controls the other airfoil surface. The shape control is hence independent for the upper 

and lower surfaces, thus offering greater flexibility.    

The parameterization is carried out in a way so that the approximating B-

Spline curve passes through the first and the last control points, which form the 

trailing edge and leading edge of the airfoil respectively. This ensures that B-Spline 

curve always passes through the leading and trailing edges thus maintaining a fixed 

chord length. Also the B-spline curve maintains tangency to the control points 

polygon at the first and last control points. This behavior of the B-spline curve is as a 

result of the formulation of the uniform knot vector which has been described in 

Section 2.2.2. 

Each of the two airfoil surfaces is controlled individually by seven B-spline 

control points and a set of curve parameters. The numbering of the control points is 
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done counter-clockwise beginning with the upper surface and then moving on the 

lower surface. For the upper surface the numbering begins with control point number 

1 at the trailing edge ending with the control point number 7 at the leading edge. For 

the lower surface the counting begins with control point number 8 at the leading edge 

ending with control point number 14 at the trailing edge. The first and the seventh 

control points remain fixed for the upper surface as they represent the trailing and 

leading edges respectively, as described above. Likewise, eighth and the fourteenth 

control point remain fixed for the lower surface. Control points 1 and 14 (trailing 

edge); 7 and 8 (leading edge) are coincident. For the upper surface, control point 6 

and 7 share the same x-ordinate. Likewise, for the lower surface, control point 8 and 9 

share the same x-ordinate. This is done so as to ensure a smooth and continuous 

transition from the upper surface to the lower surface at the leading edge. By doing 

so, there are no cusps or kinks formed, as both, the upper and lower surfaces have the 

same tangency at the leading edge control points. It may be noted here that, as the 

parameterization is carried out individually for the upper and lower surface of the 

airfoil, there are two different sets of curve parameters ui (one for each surface). These 

two sets remain fixed throughout the optimization process. 

 

 

 

 

 

 

 

As an example, the parameterization of RAE 2822 airfoil is shown in the 

above figure. The original airfoil data is split into upper and lower surfaces. The 

parameterization is then carried out using 14 control points (7 for each surface) and 

curve order of 5. CPs 1, 14, 7 and 8 are fixed. CPs 6 and 9 share the same x-ordinates 

Figure 7 B-Spline parameterization of RAE 2822 airfoil 
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as those of CPs 7 and 8. The algorithm fits well to the airfoil data as is evident from 

the above figure.  

   Design Variables Vector 2.3.4

The design variables vector is formed by concatenating the y-ordinates of all 

the free controls points— CPs 2 through 6 (for the upper surface) and CPs 9 through 

13 (for the lower surface). In addition to the ten control points, the angle of attack is 

included as the eleventh design variable. As is evident, the CPs are allowed to move 

only along the y-direction and so the x-ordinates remain fixed throughout the 

optimization process. However, if required, the x-ordinates can readily be added to 

the design variables vector. 

2.4  Objective Functions 

Objective function as is described earlier is a scalar valued function that 

determines the performance of the system. From an aerodynamic shape optimization 

point of view, the objective is primarily to minimize the drag or maximize the 

aerodynamic efficiency. 

There are various objective functions that cater to the problem of aerodynamic 

shape optimization as discussed below: 

  Inverse design 2.4.1

In the inverse design formulation, the objective is to reach a shape such that 

the pressure distribution over its surface matches a target pressure distribution. 

Mathematically, the objective is represented as 

𝐽 =  
1
2
� �𝐶𝑃�𝑠𝑢,𝑙� − 𝐶𝑃∗�𝑠𝑢,𝑙��

2𝐿.𝐷

𝑇.𝐷
𝑑𝑠𝑢,𝑙 

where 𝐶𝑃∗ represents the target pressure coefficient as function of  𝑠𝑢,𝑙 is the 

distance along the upper and lower surfaces measured from the Teading edge (L.E) to 

the Leading Edge. By minimizing 𝐽, the optimizer finds the shape of the airfoil that, in 

the least-squares sense, best matches the target pressure distribution. A drawback 

associated with this type of formulation is that the target pressure distribution needs to 

be provided by the user. This requires considerable amount of experience and 

knowledge of the flow physics on the part of the user. 



39 
 

  Maximizing Aerodynamic Efficiency 2.4.2

This is a relatively easier function, where the objective is to simply maximize 

the aerodynamic efficiency which is the ratio of the lift to the drag. The problem is 

generally formulated as the minimization of the inverse of the aerodynamic 

efficiency. 

𝐽 =  
𝐶𝐷
𝐶𝐿

 

This objective is suitable for problems which do not require a constraint on the 

lift force or moments. 

 Lift-Constrained Drag Minimization 2.4.3

In the lift-constrained drag-minimization formulation, the objective is to 

reduce drag while maintaining the desired lift force. This type of formulation is 

suitable for problems involving shape optimizations for airplanes where it is 

advantageous to reduce the drag while ensuring that the lift generated is greater than 

and approximately equal to the weight of the airplane in steady flight. 

Mathematically, the problem is formulated as  

𝐽 =  

⎩
⎪
⎨

⎪
⎧𝜔𝐿 �1 −

𝐶𝐿
𝐶𝐿∗
�
2

+ 𝜔𝐷 �1 −
𝐶𝐷
𝐶𝐷∗
�
2

if 𝐶𝐷 > 𝐶𝐷∗  

𝜔𝐿 �1 −
𝐶𝐿
𝐶𝐿∗
�
2

otherwise
 

where 𝐶𝐿∗ and 𝐶𝐷∗  represent the target lift and drag coefficients, respectively. 

The coefficients 𝜔𝐿 and 𝜔𝐷 are the weights on the lift and drag coefficients 

respectively. 𝐶𝐷∗  is often selected low enough to be considered unattainable. This 

objective function consists of two competing objectives, namely attaining the target 

lift and minimizing drag. Achieving both simultaneously is difficult, since a decrease 

in drag typically corresponds to a decrease in lift. As the lift is a constraint on the 

design, it is important to ensure that the desired coefficient of lift is reached. To do 

this, either the weight on the lift coefficient objective must be very high (which will 

reduce the amount by which drag is decreased), or the target lift entered into the 

optimization program must be a carefully selected amount greater than the actual 

target lift [27].  
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To determine how much greater the target lift coefficient given to the program 

should be than the actual desired lift coefficient requires some experience. Some level 

of experience is also required to successfully select a value for 𝐶𝐷∗ , and selecting 

appropriate parameters can take several trials.  

One of the advantages of using this kind of formulation is that additional terms 

can be readily added to the problem. For example the moment coefficient along with a 

suitable weight, can be added in the same manner as the lift coefficient. Also this 

formulation falls into the category of unconstrained minimization in which the 

constraint is included within objective function as a penalty term. Here the constraint 

on the lift coefficient is added as penalty term in the objective function. Doing so 

avoids an extra formulation of a constraints equation thereby reducing the burden on 

the optimization process. 

In this thesis, the lift- moment constrained drag-minimization objective 

function will be employed. 

2.5  Flow Equations 

In order to obtain values of lift, drag and moment coefficients as well as the 

surface pressure distribution, which are needed to evaluate the objective functions, it 

is necessary to compute the flow or in other words determine the solution of the 

airflow over the surfaces.  

 From fluid mechanics, there are fundamental equations that govern the 

behavior of any fluid that flows over a submerged surface. These are the governing 

equations that derived using the three fundamental physical principles that central to 

the macroscopic observations of nature, which are: 

- Conservation of mass, i.e., mass can neither be created nor be destroyed. 

- Newton’s Second Law, i.e., force is directly proportional to the rate of 

change of momentum, and 

- Conservation of energy, i.e., energy can only change from one form to 

another. 

These principles have led to the formulation of complex differential equations 

that essentially describe the governing of fluid motion. These equations are: 
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- Continuity and Momentum Equations which are known as the Mass 

Conservation Equation and the Momentum Conservation Equation 

respectively. 

- Energy Conservation Equation to model the compressibility effects. 

These equations must be solved in order to obtain the solution of the flow 

which is basically the lift, drag, moment, pressure distribution etc. In addition to these 

fundamental equations, certain transport equations must be solved to model the 

turbulence which is an important characteristic associated with high Reynolds number 

flows. The details and derivations of the fundamental and the additional transport 

equations can be found in various literatures [28]. Here only the equations are listed 

along with a brief explanation.  

 The Mass Conservation Equation 2.5.1

The equation for conservation of mass, or continuity equation, can be written 

as follows: 

𝜕𝜌
𝜕𝑡

+ ∇ ∙ (𝜌𝐕) = 0 

where 𝜌 is the fluid density and 𝐕 is the velocity vector at a point in the flow 

field. The above equation is the continuity equation in the form of a partial differential 

equation. This equation relates the flow field variables at a point in the flow. It is a 

mathematical representation of the law of conservation of mass, i.e., mass can neither 

be created nor be destroyed.  

The equation physically means that the time rate of change of volume of a 

moving fluid element of fixed mass, per unit volume of that element, is equal to the 

divergence ∇ of the fluid velocity vector 𝐕. It should be noted here, that the fluid is 

assumed to be a continuum rather than a discrete medium. 

In two-dimensions, the divergence of the velocity ∇ ∙ 𝐕, is represented 

mathematically as follows, 

If  𝐕 = 𝑉𝑥𝐢 + 𝑉𝑦𝐣 ≡ 𝑢𝐢 + 𝑣𝐣 

Then,   

∇ ∙ 𝐕 = �
𝜕
𝜕𝑥

𝐢 +
𝜕
𝜕𝑦

𝐣� ∙ (𝑢𝐢 + 𝑣𝐣)  =  
𝜕𝑢
𝜕𝑥

+
𝜕𝑣
𝜕𝑦
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 Momentum Conservation Equations 2.5.2

For a two-dimensional unsteady viscous flow with density 𝜌, velocities (𝑢, 𝑣) 

in Cartesian coordinates (x,y), the Momentum Conservation Equations are given by 

the Navier-Stokes equations: 

𝜌
𝜕𝑢
𝜕𝑡

 +  𝜌𝑢
𝜕𝑢
𝜕𝑥

 +  𝜌𝑣
𝜕𝑢
𝜕𝑦

 =  −
𝜕𝑝
𝜕𝑥

+
𝜕
𝜕𝑥

�λ∇ ∙ 𝐕 + 2𝜇
𝜕𝑢
𝜕𝑥
� +

𝜕
𝜕𝑦

�𝜇 �
𝜕𝑣
𝜕𝑥

+
𝜕𝑢
𝜕𝑦
�� 

𝜌
𝜕𝑣
𝜕𝑡

 +  𝜌𝑢
𝜕𝑣
𝜕𝑥

 +  𝜌𝑣
𝜕𝑣
𝜕𝑦

 =  −
𝜕𝑝
𝜕𝑦

+
𝜕
𝜕𝑥

�𝜇 �
𝜕𝑣
𝜕𝑥

+
𝜕𝑢
𝜕𝑦
�� +

𝜕
𝜕𝑦

�λ∇ ∙ 𝐕 + 2𝜇
𝜕𝑣
𝜕𝑦
� 

The approximate expression for λ is given as 

λ =  −
2
3
𝜇 

The above equations represent the complete Navier-Stokes equations for an 

unsteady, two-dimensional viscous flow. However to analyze the compressibility 

effects and the turbulence associated with high Reynolds number flows, some 

additional equations must be solved. These are the energy and transport equations for 

modeling the turbulence. 

 Viscous Energy Equation 2.5.3

The viscous energy equation is necessary in order to model the compressibility 

effects associated with high Reynolds number flows. Compressibility effects are 

encountered in gas flows at high velocity and/or in which there are large pressure 

variations. When the flow velocity approaches or exceeds the speed of sound of the 

gas or when the pressure change in the system is large, the variation of the gas density 

with pressure has a significant impact on the flow velocity, pressure, and temperature. 

As the Mach number approaches 1.0 (which is referred to as the transonic flow 

regime), compressibility effects become important. The energy equation is derived 

using the first law of thermodynamics applied to an infinitesimal moving fluid 

element, and is mathematically formulated for a two-dimensional viscous flow as   

𝜕
𝜕𝑡

(𝜌𝐸) =  𝜌𝑞̇ +
𝜕
𝜕𝑥

�𝑘
𝜕𝑇
𝜕𝑥
� +

𝜕
𝜕𝑦

�𝑘
𝜕𝑇
𝜕𝑦
� − ∇ ∙ 𝑝𝐕 

                    + 
𝜕(𝑢𝜏𝑥𝑥)
𝜕𝑥

+  
𝜕�𝑢𝜏𝑦𝑥�
𝜕𝑦

+
𝜕�𝑣𝜏𝑥𝑦�
𝜕𝑥

+
𝜕�𝑣𝜏𝑦𝑦�
𝜕𝑦
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Here 

-  𝐸 is the total energy on a unit mass basis given by  

𝐸 = ℎ −
𝑝
𝜌

+
𝐕2

2
 

- h is the specific sensible enthalpy given as ℎ =  𝑐𝑝(𝑇 − 𝑇𝑣𝑒𝑓), 

𝑇𝑣𝑒𝑓=298.15[K] and 𝑐𝑝 is the specific heat at constant pressure. 

- 𝜏𝑥𝑥 and 𝜏𝑦𝑦 are the normal stresses in the x and y directions given by 

𝜏𝑥𝑥 =  𝜆(∇ ∙ 𝑉) + 2𝜇
𝜕𝑢
𝜕𝑥

 

𝜏𝑦𝑦 =  𝜆(∇ ∙ 𝑉) + 2𝜇
𝜕𝑣
𝜕𝑦

 

- 𝜏𝑥𝑦 is the in-plane shear stress given as 

𝜏𝑥𝑦 = 𝜏𝑦𝑥 = 𝜇 �
𝜕𝑣
𝜕𝑥

+
𝜕𝑢
𝜕𝑦
� 

 Turbulence Model 2.5.4

Most flows encountered in engineering practice are turbulent and therefore 

require different treatment. Turbulent flows are characterized by the following 

properties:  

- Turbulent flows are highly unsteady, 

- They are three-dimensional. 

- They contain a great deal of vorticity. 

- Turbulence increases the rate at which the conserved quantities are stirred. 

- This brings fluids of different momentum content into contact. 

- Turbulent flows contain coherent structures—repeatable and essentially 

deterministic events that are responsible for a large part of the mixing. 

- Turbulent flows fluctuate on a broad range of length and time scales [29]. 

In order to include the effects of turbulence in any analysis, it is first necessary 

to have a model for the turbulence itself. The chief difficulty in modeling turbulent 

flows comes from the wide range of length and time scales associated with turbulent 

flow. As a result, turbulence models can be classified based on the range of these 

length and time scales that are modeled and the range of length and time scales that 
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are resolved. The more turbulent scales that are resolved, the finer the resolution of 

the simulation, and therefore the higher the computational cost. If a majority or all of 

the turbulent scales are modeled, the computational cost is very low, but the tradeoff 

comes in the form of decreased accuracy.  

 2.5.4.1 Reynolds-averaged Navier–Stokes Equations 

One of the widely used approaches in modeling flow turbulence is the 

Reynolds-averaged Navier-Stokes (or RANS) equations. In Reynolds-averaged 

approaches to turbulence, all of the unsteadiness is averaged out i.e. all unsteadiness is 

regarded as part of the turbulence.  

In a statistically steady flow, every variable can be written as the sum of a 

time-averaged value and a fluctuation about that value: 

𝜙(𝑥𝑖 , 𝑡) = 𝜙�(𝑥𝑖) + 𝜙′(𝑥𝑖 , 𝑡) 

This is known as the Reynolds Decomposition of the variable and forms 𝜙 the 

basis of RANS equations. The mean of the variable 𝜙� can be expressed 

mathematically as 

𝜙�(𝑥𝑖) = lim
𝑇→∞

1
𝑇
� 𝜙(𝑥𝑖, 𝑡)
𝑇

0
 

This expression is called the time average of the variable 𝜙(𝑥𝑖, 𝑡). Here t is the 

time and T is the averaging interval. This interval must be large compared to the 

typical scale fluctuations. If T is large enough, 𝜙� does not depend on the time at 

which the averaging is started. It must be noted here that 𝜙� is no longer a function of 

time and may vary only in space. Therefore all derivatives of 𝜙� should 

mathematically be zeros. However, this is often (usually) ignored in modern 

treatments of RANS modeling. 

Reynolds decomposition possesses the following two properties 

𝜙�� = 𝜙�, and 𝜙′� = 0 

The first relation is reflects one of the properties of Reynolds operator R2=R. 

The second relation is the property of Reynolds decomposition, according to which 

the variable perturbations or fluctuations 𝜙′ are defined such that their time average 

equals zero. 



45 
 

Based on these properties the equations for mass and momentum 

conservations can be written as 

𝜕𝜌
𝜕𝑡

+ ∇ ∙ (𝜌𝐕�) = 0 

𝜌 �𝑢�
𝜕𝑢�
𝜕𝑥

 +  𝑣̅
𝜕𝑢�
𝜕𝑦
�  =  −

𝜕𝑝̅
𝜕𝑥

+
𝜕
𝜕𝑥

�λ∇ ∙ 𝐕� + 2𝜇
𝜕𝑢�
𝜕𝑥
� +

𝜕
𝜕𝑦

�𝜇 �
𝜕𝑣̅
𝜕𝑥

+
𝜕𝑢�
𝜕𝑦
�� 

                                       −𝜌 �
𝜕𝑢′2����

𝜕𝑥
+
𝜕𝑢′𝑣′������
𝜕𝑦

� 

𝜌 �𝑢�
𝜕𝑣̅
𝜕𝑥

 + 𝑣̅
𝜕𝑣̅
𝜕𝑦
�  =  −

𝜕𝑝̅
𝜕𝑥

+
𝜕
𝜕𝑦

�λ∇ ∙ 𝐕� + 2𝜇
𝜕𝑣̅
𝜕𝑦
� +

𝜕
𝜕𝑥

�𝜇 �
𝜕𝑣̅
𝜕𝑥

+
𝜕𝑢�
𝜕𝑦
�� 

                                       −𝜌 �
𝜕𝑢′2����

𝜕𝑦
+
𝜕𝑢′𝑣′�����

𝜕𝑥
� 

 

The above equations can be written in the tensor notation as 

𝜌
𝜕𝑢𝚤𝑢𝚥�����
𝜕𝑥𝑗

= −
𝜕𝑝̅
𝜕𝑥𝑖

+
𝜕
𝜕𝑥𝑖

�λ∇ ∙ 𝐕� + 2𝜇
𝜕𝑢𝚤�
𝜕𝑥𝑖

� +  𝜇
𝜕2𝑢𝚤�
𝜕𝑥𝑖𝜕𝑥𝑗

− 𝜌
𝜕𝑅𝑖𝑗
𝜕𝑥𝑖

 ,      𝑖

= 1, 2 (for 2 − D) 

Here the notations can be interpreted as 

(𝑢1���,𝑢2���) ≡ (𝑢� , 𝑣̅), (For the velocities) 

 (𝑥1���, 𝑥2���) ≡ (𝑥̅,𝑦�), (For the directions) 

𝑢𝚤𝑢𝚥����� = � 𝑢1���
2 𝑢1𝑢2������

𝑢2𝑢1������ 𝑢2���2
� ≡ �𝑢�

2 𝑢𝑣����
𝑣𝑢���� 𝑣̅2

� 

𝑅𝑖𝑗 is known as the Reynolds stress tensor given by 

𝜌𝑅𝑖𝑗 ≡ 𝜌𝑢′𝚤𝑢′𝚥������� = 𝜌 � 𝑢′1����
2

𝑢′1𝑢′2��������

𝑢′2𝑢′1�������� 𝑢′2����
2 � ≡ 𝜌 � 𝑢′

�2 𝑢′𝑣′�����
𝑣′𝑢′����� 𝑣′�2

� 

As mentioned earlier, in modern RANS modeling of turbulent flows, it is a 

common practice to include time derivatives of the mean of the variables, the mass 

and momentum equations are formulated as 

𝜕𝜌
𝜕𝑡

+ ∇ ∙ (𝜌𝐕�) = 0 
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𝜕𝜌𝑢𝚤�
𝜕𝑡

+ 𝜌
𝜕𝑢𝚤𝑢𝚥�����
𝜕𝑥𝑗

= −
𝜕𝑝̅
𝜕𝑥𝑖

+
𝜕
𝜕𝑥𝑖

�λ∇ ∙ 𝐕� + 2𝜇
𝜕𝑢𝚤�
𝜕𝑥𝑖

� +  𝜇
𝜕2𝑢𝚤�
𝜕𝑥𝑖𝜕𝑥𝑗

− 𝜌
𝜕𝑅𝑖𝑗
𝜕𝑥𝑖

 𝐹𝑜𝑟 𝑖 = 1, 2  

The above equations are the RANS equations for unsteady flow in two 

dimensions. The details of the derivation, terminologies and Reynolds theories can be 

found in [30]. 

 2.5.4.2 Boussinesq hypothesis 

The Reynolds-averaged approach to turbulence modeling requires that the 

Reynolds stresses 𝑅𝑖𝑗 are appropriately modeled. A common method is to employ the 

Boussinesq hypothesis. 

It was experimentally observed that turbulence decays unless there is shear in 

isothermal incompressible flows. Turbulence was found to increase as the mean rate 

of deformation increases. Boussinesq proposed in 1877 that the Reynolds stresses 

could be linked to the mean rate of deformation. In general, the in plane viscous shear 

stresses in two-dimensions are given by 

𝜏𝑖𝑗 = 𝜇𝑒𝑖𝑗 = 𝜇 �
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

�  , for 𝑖 = 1,2 

On the same lines, linking Reynolds stresses to the mean rate of deformation 

(Boussinesq hypothesis), gives 

𝜏𝑖𝑗 = −𝜌𝑢′𝚤𝑢′𝚥������� = −𝜌𝑅𝑖𝑗 = 𝜇𝑡 �
𝜕𝑢𝚤�
𝜕𝑥𝑗

+
𝜕𝑢𝚥�
𝜕𝑥𝑖

� 

Here 𝜇𝑡 is called the turbulent eddy viscosity. It is not homogeneous, i.e. it 

varies in space. However it is assumed to be isotropic, i.e. it is the same in all 

directions. This assumption is valid for many flows except for flows with strong 

separation or swirl. The turbulent viscosity is used to close the momentum equations 

and is determined using a turbulence model. 

 

 2.5.4.3 Spalart-Allmaras turbulence model 

The momentum equations can be closed by solving a turbulence model 

equation. There are a number of turbulence models that are in use in modern 

turbulence analysis such as the Spalart-Allmaras model, 𝑘 − 𝜀 models and the 𝑘 − 𝜔 
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models. Here the Spalart-Allmaras model will be used. This turbulence model, which 

is a one-equation model as opposed to the others, can be used to calculate the dynamic 

eddy viscosity, 𝜇𝑡, by solving the one-equation transport model for 𝜈� which is 

identical to the turbulent kinematic viscosity. The transport equation is given by 

𝜕
𝜕𝑡

(𝜌𝜈�) +
𝜕
𝜕𝑥𝑖

(𝜌𝜈�𝑢𝑖) = 𝐺𝜈 +
1
𝜎𝜈�
�
𝜕
𝜕𝑥𝑗

�(𝜇 + 𝜌𝜈�)
𝜕𝜈�
𝜕𝑥𝑗

� + 𝐶𝑏2𝜌 �
𝜕𝜈�
𝜕𝑥𝑗

�
2

� − 𝑌𝜈 

Here 𝐺𝜈 is the production of turbulent viscosity, and 𝑌𝜈 is the destruction of 

turbulent viscosity that occurs in the near-wall region due to the wall blocking and 

viscous damping. 𝜎𝜈� and 𝐶𝑏2 are the constants and 𝜈 is the molecular kinematic 

viscosity[31].  

The turbulent viscosity, 𝜇𝑡, is computed from 

 𝜇𝑡 = 𝜌𝜈�𝑓𝜈1 

where the viscous damping function, 𝑓𝜈1, is given by 

𝑓𝜈1 =
𝑋3

𝑋3 + 𝐶𝜈13
  and  𝑋 ≡

𝜈�
𝜈

 , Here 𝐶𝜈1 is a constant. 

The turbulent viscosity production term 𝐺𝜈 is modeled as 

𝐺𝜈 = 𝐶𝑏1𝜌𝑆̃𝜈� 

where  

𝑆̃ ≡ 𝑆 +
𝜈�

𝜅2𝑑2
𝑓𝜈2 and 𝑓𝜈2 = 1 −

𝑋
1 + 𝑋𝑓𝜈1

 

𝐶𝑏1 and 𝜅 are constants, 𝑑 is the distance from the wall, and 𝑆 is a scalar 

measure of the deformation tensor. 𝑆 is based on the magnitude of the vorticity:  

𝑆 ≡ �2Ω𝑖𝑗Ω𝑖𝑗 where Ω𝑖𝑗 is the mean rate-of-rotation tensor and is defined by 

Ω𝑖𝑗 =
1
2
�
𝜕𝑢𝑖
𝜕𝑥𝑗

−
𝜕𝑢𝑗
𝜕𝑥𝑖

� 

The turbulent viscosity destruction term is modeled as 

𝑌𝜈 = 𝐶𝑤1𝜌𝑓𝑤 �
𝜈�
𝑑
�
2

 𝑤ℎ𝑒𝑟𝑒 𝑓𝑤 = 𝑔 �
1 + 𝐶𝑤36

𝑔6 + 𝐶𝑤36
�

1
6
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𝑔 = 𝑟 + 𝐶𝑤2(𝑟6 − 𝑟) , 𝑤ℎ𝑒𝑟𝑒 𝑟 =
𝜈�

𝑆̃𝜅2𝑑2
  

Table 1 Model Constants 

 

  

 

 

 

 

 

 

 

 

2.6 Computational Fluid Dynamics 

Computational fluid dynamics (CFD) is the science of predicting fluid flow, 

heat transfer, mass transfer, chemical reactions, and related phenomena by solving the 

mathematical equations which govern these processes using a numerical process. 

The governing equations, such as the mass, momentum and energy 

conservation equations, and the turbulence models, described in the previous section 

cannot be solved analytically except in special cases. Thus, the solution to these 

equations is obtained numerically. In order to approximate the solution, a 

discretization method is used which approximates the differential equations by a set of 

algebraic equations, which can then be solved simultaneously or iteratively. 

Broadly, the strategy of CFD is to replace the continuous problem domain 

with a discrete domain using a grid. In the continuous domain, each flow variable is 

defined at every point in the domain. For instance, the pressure p in the continuous 1D 

domain shown in the figure below would be given as 

𝑝 = 𝑝(𝑥), 0 < 𝑥 < 1 

𝐶𝑏1 0.1355 

𝐶𝑏2 0.622 

𝜎𝜈� 2/3 

𝐶𝜈1 7.1 

𝐶𝑤1 
𝐶𝑏1
𝜅2

+
(1 + 𝐶𝑏2)

𝜎𝜈�
 

𝐶𝑤2 0.3 

𝐶𝑤3 2.0 

𝜅 0.4187 



49 
 

x=0 x=1 x1 xN xi 

Continuous Domain Discrete Domain 

0 < x < 1 x = x1, x2, …, xN 

Coupled PDEs+Boundary 

conditions in continuous variables 
Coupled algebraic equations 

in discrete variables 

Figure 9 The Computational Spatial Grid 

In the discrete domain, each flow variable is defined only at the grid points. 

So, in the discrete domain shown below, the pressure would be defined only at the N 

grid points.  𝑝𝑖 = 𝑝(𝑥𝑖), 𝑖 = 1,2, … ,𝑁 

 

 

 

 

 Discretization 2.6.1

In a CFD solution, relevant flow variables are solved only at the grid points. 

The values at other locations are determined by interpolating the values at the grid 

points. The governing partial differential equations and boundary conditions are 

defined in terms of the continuous variables 𝑝,𝐕etc in theoretical fluid dynamics, 

which are essentially functions of space and time.  These can be approximate in the 

discrete domain in terms of the discrete variables 𝑝𝑖,𝐕𝑖etc. The discrete system is a 

large set of coupled, algebraic equations in terms of discrete variables. 

One of the many approaches to numerically solving the governing equations 

of flow is the Finite Volume method. This method forms the basis of almost 80 

percent of present day flow solvers. In the finite-volume approach, the solution 

domain is subdivided into a finite number of small control volumes (cells) by a grid. 

Figure 8 Continuous Domain and Discrete Domain 
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This sub-division is carried out using meshing algorithms. The grid defines the 

boundaries of the control volumes while the computational node lies at the center of 

the control volume. The integral form of the conservation equations are applied to the 

control volume defined by a cell to get the discrete equations for the cell. For 

example, the integral form of the continuity equation for steady, incompressible flow 

is  

�𝜌𝐕 ∙ 𝐝𝐬 = 0
𝑆

 

The integration is over the surface S of the control volume and 𝐝𝐬 is the 

elemental area vector. Physically, this equation means that the net volume flow into 

the control volume is zero. For any rectangular cell from the grid as shown below 

 

 

 

 

 

 

 

  

The velocity at face i is taken to be 𝐕𝑖 = 𝑢𝑖𝐢 + 𝑣𝑖𝐣. Applying the mass 

conservation equation to the control volume defined by the cell gives 

−𝑢1∆𝑦 − 𝑣2∆𝑥 + 𝑢3∆𝑦 + 𝑣4∆𝑥 = 0 

This is the discrete form of the continuity equation for the cell. It is equivalent 

to summing up the net mass flow into the control volume and setting it to zero. So it 

ensures that the net mass flow into the cell is zero i.e. that mass is conserved for the 

cell. Usually, though not always, the values at the cell centers are solved for directly 

by inverting the discrete system. The face values 𝑢1, 𝑣2, etc. are obtained by suitably 

interpolating the cell-center values at adjacent cells. 

Figure 10 Typical finite volume cell 
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In a general situation, the discrete equations are applied to the cells in the 

interior of the domain. For cells at or near the boundary, a combination of the discrete 

equations and boundary conditions would be applied. In the end, one would obtain a 

system of simultaneous algebraic equations with the number of equations being equal 

to the number of independent discrete variables. This set can then be solved to obtain 

the values of the variables at their respective grid points. 

 CFD based Shape Optimization 2.6.2

The focus of CFD applications has shifted from mere analysis to aerodynamic 

shape design. This shift has been mainly motivated by the availability of high 

performance computing platforms and by the development of new and efficient 

analysis and design algorithms. In particular automatic design procedures, which use 

CFD combined with gradient-based optimization techniques, have had a significant 

impact on the design process by removing difficulties in the decision making process 

faced by the aerodynamicist.  

With recent research and code development efforts in the area of 

computational fluid dynamics, CFD has proven to be useful in supporting product 

design and development in many industrial applications. For many product designs 

where fluid flow simulations are needed, CFD analyses have proven to be quite useful 

in predicting the flow pattern for a given set of design parameters [32]. 

Aerodynamic shape optimization strategies integrated with CFD usually come 

into play at the preliminary design phase of an airplane. It is here that the conceptual 

design is refined from a shape optimization point of view. Modern shape optimization 

strategies usually involve the integration of a CFD code with an optimization 

algorithm.  The CFD code performs the flow analysis on a specific shape and 

provides the optimization algorithm with values of the required components that make 

up the objective function. The optimization algorithm, based on the evaluation of the 

objective function value, perturbs the geometry in a direction of decreasing objective 

function gradients. The new geometry is then re-analyzed and the process is repeated 

till an optimum shape is reached. 
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3. ITERATIVE RESPONSE SURFACE BASED OPTIMIZATION 

3.1 Introduction 

The evaluation of aerospace designs is synonymous with the use of long 

running and computationally intensive simulations. Unlike the engineering 

methodologies adopted in the middle of the 20th century to design aerospace systems, 

in which predominantly hand calculations and wind tunnel tests were used in a cut-

and-try fashion, engineers in the late 20th century have resorted to Computer Aided 

Engineering (CAE) of which CFD is an important part.  

CFD, as outlined in the previous chapter, has evolved from a mere flow 

analysis tool to an important design tool. However, even with the ever expanding 

computational resources, it has widely been regarded as a computationally expensive 

platform, especially when it comes to very high-fidelity flow simulations. The use of 

long running expensive computer simulation in design, therefore leads to a 

fundamental problem when trying to compare and contrast various competing 

options— there are never sufficient resources to analyze all of the combinations of 

variables that one would wish [33]. 

This problem is particularly acute when using optimization schemes. All 

optimization methods depend on some form of internal model of the problem space 

they are exploring— for example a quasi-Newton scheme attempts to construct the 

Hessian at the current design point by sampling the design space. To build such a 

model when there are many variables can require large numbers of analyses to be 

carried out, particularly if using finite difference methods to evaluate gradients. 

Objective function and constraints in aerodynamic shape optimization 

involving transonic flow numerical simulation, such as CFD, may be non-smooth and 

noisy. Non-smoothness is created by the presence of flow discontinuities such as 

shock waves. Noise can be caused either by the changes in computational mesh 

geometry due to free boundaries or by poor convergence of numerical schemes. 

Although these features can make a small change in some design parameters, it could 

lead to a huge ramification in the objective function or constraints.  

These non-smoothness and noise issues of the objective function become more 

serious in gradient-based optimization methods (GBOMs), where the objective 
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function value as well as its gradient information is used. In multidisciplinary design 

optimization (MDO) problems, which usually have objective functions coupled with 

numerous constraints, it is significantly difficult to formulate the design problem with 

GBOMs. Because the optimization depends greatly on the formulation of the design 

problem, the process of searching for the optimum is likely to render just a local 

value. Another shortcoming of GBOMs is that because many analysis programs were 

not written with an automated design in mind, adaptation of these programs to an 

optimization code may need significant reprogramming in the analysis routine [34].  

3.2 Response Surface Optimization 

In statistics, response surface methodology explores the relationships between 

several explanatory variables and one or more response variables. The method was 

introduced by G. E. P. Box and K. B. Wilson in 1951. The main idea of response 

surface methodology is to use a sequence of designed experiments to obtain an 

optimal response. Incorporating this methodology in design optimization falls into the 

category of Surrogate or Response Surface Optimization (RSO). It has been shown to 

be an effective approach for the design of computationally expensive models such as 

those found in aerospace systems, involving aerodynamics, structures, and propulsion, 

among other disciplines. Successful applications include the multidisciplinary optimal 

design of aerospike rocket nozzles, injectors and turbines for liquid rocket propulsion, 

and supersonic business aircrafts [35]. 

For a new or a computationally expensive design, optimization based on an 

inexpensive surrogate, such as Response Surface Model (also known as surrogate or 

approximation models), is a good choice. RSO allows for the determination of an 

optimum design, while at the same time providing insight into the workings of the 

design. A response model not only provides the benefit of low-cost for function 

evaluations, but it can also help revise the problem definition of a design task, which 

is not unusual for new efforts. Furthermore, it can conveniently handle the existence 

of multiple desirable design points and offer quantitative assessments of trade-offs as 

well as facilitate global sensitivity evaluations of the design variables[36]. 

Thus, the use of Response Surface Models (RSM) in optimization is becoming 

increasingly popular. The RSM is not in itself an optimizer, but rather a tool for 

increasing the speed of optimization. Instead of making direct calls to an expensive 
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numerical analysis code, such as CFD, an optimization routine takes values from a 

cheap surrogate model, that is formulated using a specific set of responses obtained 

from the numerical code. The popularity of such methods has probably increased due 

to the development of approximation methods which are better able to capture the 

nature of a multi-modal design space. 

The main objective behind creating an RSM is to be able to predict the 

response of a system for an operating point without actually performing a simulated 

analysis at that point. The response of the system can then be predicted just by 

inputting the operating point values into the RSM and obtaining the value of the 

response. The RSM basically takes the shape of a mathematical equation 𝑓(𝐱), 

essentially a quadratic polynomial, which takes the values of the design variables X as 

an input, and returns an approximated value of the system response. Various 

optimization methodologies can then be employed to optimize this computationally 

cheap response model in order to obtain the best operating point. Some of the other 

benefits of using RSM include— 

- It smoothens out the high-frequency noise of the objective function and is, 

thus, expected to find a solution near the global optimum. 

- Various objectives and constraints can be attempted in the design process 

without additional numerical computations. 

- It does not require a modification in analysis codes [1]. 

RSO is composed of four phases: 

- Sampling (Design of Experiments)—this basically involves testing or 

obtaining actual values of the system response, by performing simulations 

for a select set of points within the design space. 

- Response Surface Construction—based on the responses obtained for the 

sampling points, a RSM is constructed. The RSM is an approximation of 

the system response. 

- RSO—Optimization algorithms are used to optimize the RSM and obtain 

the best operating point values of the system. 

- RSM improvement—The RSM approximation is improved by training it 

further by including additional simulated responses.  
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 Design Space 3.2.1

From an aerodynamic shape optimization point of view, the system is basically 

the airfoil geometry that has to be optimized for a specific operating condition 

(airspeed and altitude). The design points are the design variables that completely 

define the airfoil geometry. As discussed in chapter 2, the design variables constitute 

the y-ordinates of the 10 B-spline control points that control the shape of the upper 

and lower surfaces of the airfoil, and the angle of attack. 

The design space is the region bounded by the upper and lower limits of the 

design variables. This implies that the design variables are allowed to vary only 

Figure 11 General RSO procedure 
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within the limits defined by the design space. It is defined such that, overly unusual or 

unrealistic shapes are not attained. It is also dependent on the structural and material 

constraints. For example, for any variant of the airfoil shape, the skin should not 

deform beyond the limits of elasticity, or the thickness should not be less than the 

required minimum thickness in-order to have enough room for the fuel tank etc.    

 Design of Experiments 3.2.2

In the Design of Experiments (DoE) phase the design space is systematically 

explored using a technique, which generates the test matrix of design points to be 

probed in each computational experiment. The objective of this task is to fragment the 

design space in a specific format such that a matrix of design variable values is 

obtained. This is done by discretizing the variation range of each design variable into 

𝑁𝑠 levels. Combining the values of all the design variables at a specific level yields 

one experiment. Combining all the experiments therefore forms a set of 𝑁𝑠 

experiments, which is thereby referred to as a DoE. 

 If X is the design vector consisting of Nvar design variables (DV), and if each 

design variable is split into 𝑁𝑠 levels, the DoE matrix is given by,  

𝐗𝐷𝐷𝐷 = �

𝐱11 𝐱12 ⋯
𝐱21 𝐱22 ⋯

𝐱1𝑁var
𝐱2𝑁var

⋮ ⋮ ⋱
   𝐱𝑁𝑠1 𝐱𝑁𝑠2 ⋯

⋮
𝐱𝑁𝑠𝑁var

�

�������������������
𝐷𝑒𝑠𝑖𝑔𝑛 𝑉𝑣𝑣𝑖𝑣𝑏𝑙𝑒𝑠 𝐷𝑉 1 𝑡𝐷 𝐷𝑉 𝑁var 

←  𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 − 1
←  𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 − 2

⋮
←  𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 − 𝑁𝑠

 

 3.2.2.1 Latin Hypercube Sampling 

Latin Hypercube Sampling (LHS) is a statistical method for generating a 

distribution of plausible collections of design variable values from a multidimensional 

distribution. This method is often used as a DoE technique. 

In geometry, a hypercube is an n-dimensional analogue of a square (n = 2) and 

a cube (n = 3). It is a closed, compact, convex figure whose 1-skeleton consists of 

groups of opposite parallel segments aligned in each of the 

space's dimensions, perpendicular to each other and of the same length. 

A hyperplane is also a concept which is a generalization of the plane into a different 

number of dimensions. A hyperplane of an n-dimensional space is a flat subset with 

dimension n − 1. 
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In the context of statistical sampling, a square grid containing sample positions 

is a Latin square if (and only if) there is only one sample in each row and each 

column. A Latin Hypercube is the generalization of this concept to an arbitrary 

number of dimensions, whereby each sample is the only one in each axis-aligned 

hyperplane containing it. 

When sampling a function of 𝑁𝑣𝑣𝑣 variables, the range of each variable is 

divided into equally probable intervals. The 𝑁𝑠 sample points are then placed to 

satisfy the Latin Hypercube requirements; doing so forces the number of divisions,𝑁𝑠, 

to be equal for each variable. It should be noted that this sampling scheme does not 

require more samples for more dimensions (variables); this independence is one of the 

main advantages of this sampling scheme. Another advantage is that random samples 

can be taken one at a time, remembering which samples were taken so far. For 

example, for 𝑁𝑣𝑣𝑣 = 4 (4 design variables), and 𝑁𝑠 = 4 (4 levels), a Latin Hypercube 

Sampling may take the form:  

 

 

 

  

Building a Latin hypercube, that is the multidimensional, can be done in a 

similar way. The design space of each dimension is split into equal number of levels 

and the points are placed in the levels such that any arbitrary vector emerging from 

the points in a direction parallel to any of the dimensional axes does not encounter 

with any other point in its way. 

This is achieved using the following technique. If X denotes the 𝑁𝑠 × 𝑁𝑣𝑣𝑣 the 

DoE matrix 𝑁𝑠 points in 𝑁𝑣𝑣𝑣 dimensions (each row represents a point), then each 

column of X is filled with random permutations (1, 2, . . . , 𝑁𝑠 ) and stratified such 

that no specific point in any row is repeated in more than one column. This set is then 

normalized such that values lie within [0,1]𝑁𝑣𝑎𝑟 . 

2 1 3 4 ← Level − 1 

3 2 4 1 ← Level − 2 

1 4 2 3 ← Level − 3 

4 3 1 2 ← Level − 4 

↑ DV 1 ↑ DV 2 ↑ DV 3 ↑ DV 4  
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 3.2.2.2 Space Filling LHS  

One of the most widely-used measures to evaluate the uniformity (space-

fillingness) of a sampling plan is the maximin metric introduced by Johnson et al. 

(1990). The criterion based on this may be defined as follows— 

Let 𝑑1,𝑑2, … , 𝑑𝑚 be the list of the unique values of distances between all 

possible pairs of points in a DoE X, sorted in the ascending order. Here the distance 

𝑑𝑗 is basically defined by the p-norm of the space given by: 

Figure 12 Three-variable, ten-point Latin hypercube sampling plan shown in 
three dimensions (top left), along with its two-dimensional projections. 
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𝑑𝑝�𝐱(𝑖1), 𝐱(𝑖2)� = ���𝐱(𝑖1) − 𝐱(𝑖2)�
𝑝

𝑘

𝑗=1

�

1 𝑝�

 

For 𝑝 = 1 this is the rectangular distance and 𝑝 = 2 yields the Euclidean 

norm. There is little evidence in the literature of one being more suitable than the 

other for sampling plan evaluation if no assumptions are made regarding the structure 

of the model to be fitted, though it must be noted that the rectangular distance is 

considerably cheaper to compute.  

Further, let 𝐽1, 𝐽2, … , 𝐽𝑚 be defined such that 𝐽𝑗 is the number of pairs of points 

in X separated by the distance 𝑑𝑗—Then X is called a maximin plan among all 

available plans if it maximizes 𝑑𝑗 and, among plans for which this is true, minimizes 

𝐽𝑗 [37]. 

 3.2.2.3 Design Matrix 

The design matrix is formed by concatenating the values of the design 

variables at all levels. In order to do so, the design space needs to be discretized into 

levels which are equal to the desired number of computer simulations to be 

performed. The design space as described above is the region bounded by the upper 

and lower limits of the design variables. These are the y-ordinates of the 10 control 

points (five control points for each surface) and the angle of attack. CPs 2 through 6 

control the upper surface while CPs 9 through 13 control the lower surface of the 

airfoil. 

For this, the lower and upper limits for each of the 10 control points and the 

angle of attack are defined. The lower limit of the control points is taken to be 75% of 

the baseline values and the upper limit is taken to be 25% above the baseline values. 

The lower and upper limits of the angle of attack are case dependent varying between 

0 and 4o. 

The range of each of the design variables DVRange (the design space) is the 

difference between the upper, DVUpper, and lower limits, DVLower, of the design 

variable. This range is discretized into equal number of levels 𝑁𝑠 which is equivalent 

to the number of experiments (computer simulations) to be performed. To obtain the 

values of the design variables at each level, first a LHS plan is generated for the 11 
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design variables and 𝑁𝑠 levels. This generates a matrix L of size (𝑁𝑠x 11), with the 𝑁𝑠 

values in each of the 11 columns varying from 0 to 1 in a LHS pattern. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The values of the design variables at each level are then obtained based on the 

following equation: 

𝐗𝐷𝐷𝐷(𝑖, 𝑗) = 𝐷𝑉Lower(𝑗) + �𝐷𝑉Range(𝑗) × 𝐿(𝑖, 𝑗)� , For 𝑖 = 1, 2, … ,𝑁𝑠 

                                                                                                     For 𝑗 = 1, 2, … , 11 

Figure 13 Lower Limit, Upper limit and Baseline Control Points and Airfoil 
shapes 
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The matrix thus formed, describes the set of airfoil geometries for which the 

CFD simulations are to be performed in order to construct the RSM. 

 Constructing the RSM 3.2.3

RSM builds a response model by calculating data points with experimental 

design theory to prescribe a response of a system with independent variables. The 

relationship can be written in a general form as follows: 

𝑦 = 𝐹(𝐗) + ε 

where ε represents the total error, which is often assumed to have a normal 

distribution with a zero mean. Consider a sampling plan 𝐗 and a set of 𝑁𝑠 observed 

values comprising the responses obtained from the computer simulations:  

𝐗 = 𝐗𝐷𝐷𝐷 = �

𝑥11 𝑥12 ⋯
𝑥21 𝑥22 ⋯

𝑥1𝑁var
𝑥2𝑁var

⋮ ⋮ ⋱
     𝑥𝑁𝑠1 𝑥𝑁𝑠2 ⋯

⋮
𝑥𝑁𝑠𝑁var

�    

⟶
⟶
⋮
⟶

   � 

𝐲𝟏
𝐲𝟐
⋮
𝐲𝑁𝑠

 � 

The polynomial approximation of order m (degree 𝑚 − 1) of an underlying 

function f is, essentially, a Taylor series expansion of f truncated after 𝑚 − 1 terms. 

This suggests that a higher order expansion will usually yield a more accurate 

approximation. However, the greater the number of terms, the more flexible the 

model becomes and there is a danger of over-fitting the noise that may be corrupting 

the underlying response. For this reason, the order of the polynomial has been 

restricted to 3.  

A full quadratic polynomial (degree 2, order 3) approximation of F can be 

written as: 

𝐲� = 𝑓(𝐱,𝜷) = 𝛽1 + �𝛽𝑖𝑥𝑖

𝑁var

𝑖=1

+ �𝛽𝑗𝑗

𝑁var

𝑗=1

𝑥𝑗2 + � � 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑁var

𝑗=i+1

𝑁var−1

𝑖=1

 

Here 𝛽0,𝛽𝑖,𝛽𝑖𝑗 etc. are the regression coefficients of the polynomial. The total 

number of these coefficients is 𝑛𝑡 = (𝑁var + 1)(𝑁var + 2)/2. These values can be 

determined using the standard least-square fitting regression of an over determined 

problem: 

𝐲 = 𝚽𝛃 
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Here y is the initial response matrix �𝑦1,𝑦2, … ,𝑦𝑁𝑠�
𝑇
and 𝚽 is the 

Vandermonde matrix of size (𝑁𝑠 × 𝑁var) given by: 

𝚽 = 

⎣
⎢
⎢
⎢
⎡1
1
⋮
1

   

𝑥11
𝑥21
⋮

𝑥𝑁𝑠1

  

𝑥12
𝑥22
⋮

𝑥𝑁𝑠2

 

…
…
…
…

  

𝑥1𝑁var   
𝑥2𝑁var   

⋮
𝑥𝑁𝑠𝑁var   

𝑥112

𝑥212
⋮

𝑥𝑁𝑠1
2

  

𝑥122

𝑥222
⋮

𝑥𝑁𝑠2
2

  

…
…
…
…

  

𝑥1𝑁var
2

𝑥2𝑁var
2

⋮
𝑥𝑁𝑠𝑁var

2

  

𝑥11𝑥12
𝑥21𝑥22
⋮

𝑥𝑁𝑠1𝑥𝑁𝑠2

  

𝑥11𝑥13
𝑥21𝑥23
⋮

𝑥𝑁𝑠1𝑥𝑁𝑠3

 

…
…
…
…

 

𝑥1𝑁var−1𝑥1𝑁var
𝑥2𝑁var−1𝑥2𝑁var

⋮
 𝑥𝑁𝑠𝑁var−1𝑥𝑁𝑠𝑁var⎦

⎥
⎥
⎥
⎤
 

And 𝛃 = �

𝛽1
𝛽2
⋮
𝛽𝑛𝑡

� 

 3.2.3.1 Linear Least-Squares Solution 

The method of least squares is a standard approach to the approximate solution 

of over determined systems, i.e., sets of equations in which there are more equations 

than unknowns. Least-squares means that the overall solution minimizes the sum of 

the squares of the errors made in the results of every single equation. 

Such a system, as described above, usually has no solution, so the goal is 

instead to find the coefficients 𝛃 which fit the equations best, in the sense of solving 

the quadratic minimization problem:  

𝛃� = min
𝛃
𝑆(𝛃) 

Here the objective function 𝑆 is given by 

𝑆(𝛃) = ��𝑦𝑖 −�Φ𝑖𝑗β𝑗

𝑛𝑡

𝑗=1

�

2

=
𝑁𝑠

𝑖=1

‖𝐲 − 𝚽𝛃‖2 

Considering the ith residual to be  

𝑟𝑖 = 𝑦𝑖 −�Φ𝑖𝑗β𝑗

𝑛𝑡

𝑗=1

 

Then 𝑆 can be written as  

𝑆 = �𝑟𝑖2
𝑁𝑠

𝑖=1

. 
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𝑆 is minimized when the gradient vector is zero. The elements of the gradient 

vector are the partial derivatives of 𝑆 with respect to the parameters. 

𝜕𝑆
𝜕β𝑗

= 2�𝑟𝑖

𝑁𝑠

𝑖=1

𝜕𝑟𝑖
𝜕β𝑗

, 𝑓𝑜𝑟(𝑗 = 1, 2, … ,𝑛𝑡) 

And  
𝜕𝑟𝑖
𝜕β𝑗

= −Φ𝑖𝑗 

Substitution of the expressions for the residuals and the derivatives into the 

gradient equations gives 

𝜕𝑆
𝜕β𝑗

= 2��𝑦𝑖 −� X𝑖𝑘β𝑘

𝑛𝑡

𝑘=1

� �−X𝑖𝑗�, 𝑓𝑜𝑟 (𝑗 = 1, 2, … ,𝑛𝑡)
𝑁𝑠

𝑖=1

 

Thus, if β� minimizes 𝑆, then 

2��𝑦𝑖 −�Φ𝑖𝑘β�𝑘

𝑛𝑡

𝑘=1

� �−Φ𝑖𝑗� = 0, 𝑓𝑜𝑟 (𝑗 = 1, 2, … ,𝑛𝑡)
𝑁𝑠

𝑖=1

 

Upon rearrangement,  

��Φ𝑖𝑗Φ𝑖𝑘β�𝑘

𝑛𝑡

𝑘=1

𝑁𝑠

𝑖=1

= �Φ𝑖𝑗𝑦𝑖

𝑛𝑡

𝑘=1

, 𝑓𝑜𝑟 (𝑗 = 1, 2, … ,𝑛𝑡) 

The normal equations are written in the matrix notation as 

(𝚽𝑶𝚽)𝛃� = 𝚽𝑶𝐲, 

or  𝛃� = (𝚽𝑶𝚽)−𝟏𝚽𝑶𝐲 

The solution of the normal equations yields the vector 𝛃� of the optimal 

parameter values. It must be noted that in order to construct a sufficiently trained 

RSM, the number of samples (or levels) 𝑁𝑠 must be 1.5~3 times the number of 

regression coefficients, 𝑛𝑡 .  

 3.2.3.2 Model Testing 

Once the RSM is available, it is imperative to establish the predictive 

capabilities of the surrogate model away from the available data. In the context of an 

RSA, several measures of predictive capability are available 
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Adjusted root mean square error 

The error ε𝑖  at any point is i is given by 

ε𝑖 = 𝑦𝑖 − 𝑦�𝑖 

where 𝑦𝑖  is the actual value and 𝑦�𝑖  is the predicted value. Hence the adjusted 

root mean square (RMSadj) error σ𝑣 is given by 

σ𝑣 = � ∑ ε𝑖2
𝑁𝑠
𝑖=1

(𝑁𝑠 − 𝑛𝑡)
 

For a good fit, σ𝑣 should be small compared to the data. 

Coefficient of multiple determination 

The adjusted coefficient of multiple determination 𝑅𝑣𝑑𝑗2  defines the prediction 

capability of the RSM as 

𝑅𝑣𝑑𝑗2 = 1 − �
σ𝑣2(𝑁𝑠 − 1)
∑ (𝑦𝑖 − 𝑦�)2𝑁𝑠
𝑖=1

� , where  𝑦� =
∑ 𝑦𝑖
𝑁𝑠
𝑖=1
𝑁𝑠

  

For a good fit, 𝑅𝑣𝑑𝑗2  should be close to 1. 

 3.2.3.3 The RSM 

From the aerodynamic shape optimization perspective with 11 design variables 

(𝑁var = 11), the number of coefficients are 𝑛𝑡 = 78. A typical RSM would take the 

form— 

𝑦� ≡ 𝑓(𝐱,𝜷) = 

𝛽1 + 𝛽2𝑥1 + 𝛽3𝑥2 + 𝛽4𝑥3 + 𝛽5𝑥4 + 𝛽6𝑥5 + 𝛽7𝑥6 + 𝛽8𝑥7 + 𝛽9𝑥8 + 𝛽10𝑥9 + 𝛽11𝑥10 + 

𝛽12𝑥11 + 𝛽13𝑥12 + 𝛽14𝑥22 + 𝛽15𝑥32 + 𝛽16𝑥42 + 𝛽17𝑥52 + 𝛽18𝑥62 + 𝛽19𝑥72 + 

𝛽20𝑥82 + 𝛽21𝑥92 + 𝛽22𝑥102 + 𝛽23𝑥112 + 

𝛽24𝑥1𝑥2 + 𝛽25𝑥1𝑥3 + 𝛽26𝑥1𝑥4 + 𝛽27𝑥1𝑥5 + 𝛽28𝑥1𝑥6 + 𝛽29𝑥1𝑥7 + 𝛽30𝑥1𝑥8 + 

𝛽31𝑥1𝑥9 + 𝛽32𝑥1𝑥10 + 𝛽33𝑥1𝑥11 + 

𝛽34𝑥2𝑥3 + 𝛽35𝑥2𝑥4 + 𝛽36𝑥2𝑥5 + 𝛽37𝑥2𝑥6 + 𝛽38𝑥2𝑥7 + 𝛽39𝑥2𝑥8 + 𝛽40𝑥2𝑥9 

+𝛽41𝑥2𝑥10 + 𝛽42𝑥2𝑥11 + 

𝛽43𝑥3𝑥4 + 𝛽44𝑥3𝑥5 + 𝛽45𝑥3𝑥6 + 𝛽46𝑥3𝑥7 + 𝛽47𝑥3𝑥8 + 𝛽48𝑥3𝑥9 + 𝛽49𝑥3𝑥10 

+𝛽50𝑥3𝑥11 

+𝛽51𝑥4𝑥5 + 𝛽52𝑥4𝑥6 + 𝛽53𝑥4𝑥7 + 𝛽54𝑥4𝑥8 + 𝛽55𝑥4𝑥9 + 𝛽56𝑥4𝑥10 + 𝛽57𝑥4𝑥11 + ⋯ 
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𝛽58𝑥5𝑥6 + 𝛽59𝑥5𝑥7 + 𝛽60𝑥5𝑥8 + 𝛽61𝑥5𝑥9 + 𝛽62𝑥5𝑥10 + 𝛽63𝑥5𝑥11 + 

𝛽64𝑥6𝑥7 + 𝛽65𝑥6𝑥8 + 𝛽66𝑥6𝑥9 + 𝛽67𝑥6𝑥10 + 𝛽68𝑥6𝑥11 + 

𝛽69𝑥7𝑥8 + 𝛽70𝑥7𝑥9 + 𝛽71𝑥7𝑥10 + 𝛽72𝑥7𝑥11 + 

𝛽73𝑥8𝑥9 + 𝛽74𝑥8𝑥10 + 𝛽75𝑥8𝑥11 + 

𝛽76𝑥9𝑥10 + 𝛽77𝑥9𝑥11 + 

𝛽78𝑥10𝑥11 

 Optimizing the RSM 3.2.4

Optimizing the RSM is the third step in the response surface optimization 

process. The RSM obtained, 𝐲� ≡ 𝑓(𝐗,𝛃), as described earlier is a quadratic 

polynomial consisting of 𝑛𝑡 terms in 𝑁var dimensions (design variables). It is 

basically an algebraic equation which takes the values of the design variables (𝐗) and 

parameters (𝛃) as the input and returns a scalar value which is an approximation of 

the system’s response.  

Also, as the RSM is a quadratic polynomial, it is expected to be a smooth 

continuous function in terms of the design variables 𝐗. Therefore there are no issues 

relating to noise and non-smoothness that are associated with direct optimization 

method. Optimizing the RSM is therefore simpler, computationally less expensive and 

efficient when compared to direct optimization of the system (i.e. optimizing using 

the gradient values of the system response). 

The optimization is carried on the RSM using a Sequential Quadratic 

Programming (SQP) algorithm. This algorithm has been described at length in chapter 

2. The values of the design variables obtained at the end of the SQP implementation, 

(𝐗∗), are the values that minimize the RSM. These are the optimum values of the 

design variables that minimize the objective function. 

 System Response 3.2.5

The system response, a term which has been excessively used in the 

descriptions above, is the scalar value of the objective functions that are defined for 

the purpose of aerodynamic shape optimization.  

The objective function used here is the Lift-Moment Constrained Drag 

minimization problem given by 
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𝐽 =  

⎩
⎪
⎨

⎪
⎧𝜔𝐿 �1 −

𝐶𝐿
𝐶𝐿∗
�
2

+ 𝜔𝑀 �1 −
𝐶𝑀
𝐶𝑀∗
�
2

+ 𝜔𝐷 �1 −
𝐶𝐷
𝐶𝐷∗
�
2

if 𝐶𝐷 > 𝐶𝐷∗  

𝜔𝐿 �1 −
𝐶𝐿
𝐶𝐿∗
�
2

+ 𝜔𝑀 �1 −
𝐶𝑀
𝐶𝑀∗
�
2

otherwise
 

Here 𝜔𝐿 ,𝜔𝑀,𝜔𝐷are user defined weights, and 𝐶𝐿∗,𝐶𝑀∗ ,𝐶𝐷∗  are the target 

(required) lift, moment and drag coefficients respectively. This function has been 

described at length in Chapter 2 (section 2.4). The above function is evaluated using 

the results obtained from the CFD solver. The solver performs the flow simulation for 

an airfoil shape that is obtained from the set of design variables (Control point 

coordinates and angle of attack) for a particular operating condition (Mach number, 

operating pressure, temperature).  

At the end of the simulation, the CFD solver yields the values of 

𝐶𝐿 ,𝐶𝑀 and 𝐶𝐷 for the shape being investigated. These values are then used to evaluate 

the objective function as above. This value of 𝐽 is considered as a particular response 

of the system at a specific operating point (in this case, the operating point is the 

above airfoil shape governed by specific values of the design variables). A set 

consisting of multiple values of such operating points, in conjunction with the 

corresponding values of their responses, is used to construct the RSM as described in 

the previous sections. 

3.3 Iterative Improvement of the RSM 

In the standard RSO scheme the design space is normally explored using a 

space filling DoE technique. The range of variation of the design variables is chosen 

about a reference design, considering a large portion of the design space. On these 

selected points, the objective functions are evaluated using the CFD solver and the 

information is used to build a RSM based on a least-square-fitting quadratic 

polynomial. An optimization problem based on the RSM is then solved using a 

gradient method, such as SQP as described above, to find the minimum.  

Because these approximations carry a bias error, the minimum thus found 

needs to be validated. Therefore an additional CFD run is performed at the end of the 

process to verify the performance of the optimum design obtained by solving the 

equivalent optimization problem. 
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To improve the prediction capability of the RSM, an iterative RSO process 

can be employed. This process can be summarized as follows— 

1)  An initial optimum is found solving the constrained minimization problem 

based on the least-square fitting quadratic polynomials of the objective and 

constraint functions, built upon a large design space. 

2) The actual value of the objective function is computed for the optimum 

design found. This computation is done based on the values obtained from 

a CFD solver run for the optimum airfoil shape found in step 1. 

3) The relevant geometry values are added to the initial set of samples (the 

initial set used to construct the RSM). The actual value of the objective 

function (found from step 2) is added to the set of responses. 

4) Least-square fitting and minimization are performed again on the basis of 

the new set of data. 

5) Steps 2 to 4 are repeated until the minimum computed from the response 

surface optimization and the function evaluation does not vary within a 

specified tolerance [38]. 

When no further cost function reduction is obtained, an additional step can be 

performed. The bounds of the design space of the SQP optimization based on the 

polynomial approximation can be changed, by updating the center point with the 

position of the last optimum found, while maintaining its size. To approximate the 

actual function in this new region of the design space, the polynomial computed as the 

least-square fit of all the previous design points are used and iteratively corrected 

about the current minimum in the same way as it is done previously. 

 Algorithm Flow Chart 3.3.1

The algorithm begins with an initial airfoil geometry that has to be optimized 

for a specific operating condition (airspeed and altitude). This geometry is 

parameterized using B-splines curve fitting (as described in chapter 2) to obtain 

values of the design variables (𝑁𝑣𝑣𝑣 = 1110 control points and the angle of attack). 

The range of variation for each of the design variables is defined by assigning an 

upper and a lower limit. These limits, which are based on certain structural constraints 

(as described earlier), become the design space for the optimization problem.  
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The design space (design variables) is then discretized into a number of levels 

(𝑁𝑠) which is equal to the number of CFD simulations to be performed. The 𝑁𝑠 

values of each of the design variables are then arranged in a set, 𝐗𝐷𝐷𝐷 as per the LHS 

requirements.  

CFD simulation is performed for each of the samples in the DoE for a specific 

operating condition (airspeed and altitude). The results (𝐶𝐿 ,𝐶𝐷 ,𝐶𝑀,𝐶𝑃𝑥𝑠) are recorded 

and using these values, the objective function is evaluated. This process is carried out 

for all the samples and a results array, [𝐲], is formed wherein the objective function 

values are arranged corresponding to their respective samples as in the DoE. 

An over-determined problem is formulated based on the DoE and the 

responses (objective function values)— [𝚽][𝛃] = [𝐲] ([𝚽] is the Vandermonde 

matrix in terms of the design variables 𝐱 ). This equation is then solved for [𝛃], which 

is a matrix consisting of the polynomial regression coefficients, in a linear least-

squares sense. These values of [𝛃] are then used to construct the RSM, 𝐲� ≡ 𝑓(𝐱,𝜷), 

which is a quadratic polynomial with 𝑛𝑡 = 78 terms. 

The RSM is then optimized using the SQP technique and a set of optimum 

values for the design variables, [𝐱𝑶𝑶𝑶], and the corresponding function value, Jappr, is 

obtained. 

The optimum value needs to be verified, and so the airfoil geometry 

corresponding to [𝐱𝑶𝑶𝑶] is analyzed by performing an additional CFD simulation. The 

objective function value, using the results of this simulation, is computed Jactual. If the 

difference between Jappr and Jactual lies within a certain tolerance value, then [𝐱𝑶𝑶𝑶] 

is the minimum. 

Else, [𝐱𝑶𝑶𝑶] is added to the initial sampling set 𝐗𝐷𝐷𝐷 and the corresponding 

actual function value, Jactual, is added to the results array, [𝐲]. The over-determined 

problem [𝚽][𝛃] = [𝐲] is reformulated and solved for [𝛃]. 𝐲� is then re-constructed 

with the updated values of [𝛃], and optimized to get a new set of optimum values 

[𝐱𝑶𝑶𝑶]. This process of reconstructing the RSM with updated values of [𝛃] is repeated 

till the difference between the actual and approximated objective function value does 

not within a specified tolerance. 
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Geometry Parameterization       
• Obtain 𝑁𝑣𝑣𝑣 Design Variables (DV) 
• B-Spline CPs and Angle of attack. 

Design Space Definition       
• Upper and Lower limits of DV define 

the range of variation. 
• Limits defined using baseline DVs.  

Design Space Sampling       
• Discretizing range of DVs into 𝑁𝑠 

levels. 
• LHS for arranging the 𝑁𝑠 into (𝐗𝐷𝐷𝐷). 

Performing Flow Simulation       
• Meshing and analyzing the flow for 

each of the 𝑁𝑠 samples. 
• Recording the results of the 

simulation: 𝐶𝐿 ,𝐶𝐷 ,𝐶𝑀,𝐶𝑃𝑥𝑠   

Evaluating Objective Function 
values 

• Evaluating objective function values 
from obtained results. 

• Values arranged in a set based on the 
DoE, corresponding to each 
experiment [𝚽][𝛃] = [𝐲]. 

Developing Initial RSM      
• Full quadratic polynomial fit           
𝐲� ≡ 𝑓(𝐱,𝜷). 

• Regression using solution to the 
Linear Least squares equation. 

Optimizing the RSM       
• Optimize the RSM using 

optimization algorithm 
(SQP). 

• Obtain optimum values of 
DVs [𝐱𝐎𝐎𝐎] and objective 
value Jappr 

Verifying the RSM       
• Obtain airfoil geometry 

from [𝐱𝑶𝑶𝑶] 
• Perform CFD Simulation—

Get results. 
• Evaluate Objective Value 

Jactual 

 Check  
Jappr ≈ Jactual 

? 

MINIMUM 
OBTAINED       

Add [𝐱𝐎𝐎𝐎] with corresponding 
Jactual to original DoE       

YES      

NO      

Airflow conditions—Airspeed, 
altitude (atmospheric pressure)      

Initial Airfoil 
Geometry 

 

 
Figure 14 Iterative RSO process flow chart 
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3.4 MATLAB Implementation of the Iterative RSO 

The Iterative RSO method for the airfoil aerodynamic shape optimization 

problem  is implemented using MATLAB®, by integrating it with GridPro (meshing 

software) and ANSYS® FLUENT (flow solver). This implementation using 

MATLAB consists of two main blocks—CFD Block and the OPTIMIZATION 

Block.  

The CFD Block, as the name implies, consists of all the processes that are 

required to perform a single CFD simulation. These include the meshing, flow solving 

and results generation processes. For a single CFD simulation, the following steps are 

performed via the CFD block— 

1. Airfoil coordinate files generation—In this step two files are created that 

consist the x, y and z coordinates of the upper and lower surface of the 

airfoil (GPro_af1.DAT and GPro_af2.DAT). These files are required for 

the mesh generation process. 

2. GridPro Topology Input Language (TIL) file—A TIL file is generated that 

consists of the commands that need to be executed by GridPro in-order to 

generate the mesh (FINAL3.FRA). This file is airfoil geometry specific in 

that the topology is constructed around the airfoil geometry (i.e. the 

topology varies with different airfoil shapes). 

3.  Trigger GridPro—MATLAB triggers the GridPro engine (GGrid) that 

takes in the coordinate files and the TIL file as the input, performs the 

meshing process and returns the mesh file in the required format 

(FLO_MESH.msh). 

4. ANSYS-FLUENT variable file—Here a variables file is generated that 

includes various values pertaining to the operating condition of the flow. 

These include the operating pressure (P), ambient temperature (T), Mach 

number (M). In addition, the angle of attack in terms of the unit vector 

magnitudes in the horizontal and vertical direction of the flow is included 

(OP.var). 

5.  Trigger ANSYS-FLUENT—MATLAB triggers ANSYS-FLUENT which 

reads the generated mesh file, loads the variable file, and performs the 
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flow simulation by executing the commands included in the journal file 

(FLUENT_RUN3.JOU). This is discussed in the subsequent sections. 

6. Result Files—At the end of the simulation, the various results are saved in 

individual files. The results include—lift and drag forces, moments, 

surface pressure coefficient distribution and surface shear distributions. 

(LIFT.CSV, DRAG.CSV, MOMENT.CSV, CP_TOP.CSV, 

CP_LOW.CSV, Stress_TOP.CSV and Stress_LOW.CSV). 

7. These files are read into MATLAB and the values obtained from these 

files are fed into the OPTIMIZATION Block. 

The OPTIMIZATION Block, consists of all the processes that are required for 

carrying out the various steps in the iterative RSO methodology.  These include 

geometry parameterization, RSM construction and optimization and the iterative RSO 

methodology. The two blocks are interconnected, i.e. data flows to and fro as 

required. The following steps are performed via the OPTIMIZATION Block— 

1. Airfoil parameterization—In this step, the parameterization of the airfoil is 

performed using B-spline curve fitting. Here the control point coordinates 

and a curve-parameter set is returned. The y-ordinates of the control points 

(along with the angle of attack) are used as design variables (DV) to 

perform the optimization process. (optimum_fit.m) 

2. DV discretization—A range for the DVs obtained in the above step is 

defined in terms of lower and upper limits. The range of each of the DVs is 

then discretized into equal number of levels and arranged in a LHS plan 

and DoE matrix based on this plan is obtained. (LH_Doe.m, Sampling.m) 

3. Objective function evaluation—For each of the planned experiments in the 

DoE, the objective function is evaluated. This is done by performing a 

CFD simulation for each experiment in the DoE. Here the CFD Block is 

used to obtain the values of 𝐶𝐿 ,𝐶𝐷 ,𝐶𝑀 which are used to evaluate the lift-

constrained drag minimization problem. An array of function values is 

obtained which correspond to the responses obtained for each of the 

experiments. 

4. RSM Construction—Based on the DoE and response values (steps 3 and 

4), an over-determined problem is formulated [𝚽][𝛃] = [𝐲]. This problem 

is then solved for [𝛃], and the RSM, 𝐲� ≡ 𝑓(𝐱,𝜷), is constructed. 
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5. RSM Optimization—Using the MATLAB Optimization and Global 

Optimization toolbox function, the RSM is optimized, and the optimum 

values of the design variables 𝐱𝑶𝑶𝑶 along with the corresponding objective 

function value Jappr(which is the function value approximated by the 

RSM) is obtained. Here the SQP algorithm is employed using MATLAB’s 

fmincon and MultiStart functions. (Mult_start_opt.m) 

6. Model verification—For the verification of the model, an additional CFD 

simulation is performed based on the values of 𝐱𝑶𝑶𝑶. Here the airfoil 

geometry corresponding to the values of 𝐱𝑶𝑶𝑶 is obtained, and is sent to 

the CFD Block where the simulation is performed. The results obtained 

from this run are used to evaluate the actual objective function Jactual. This 

value is then compared with the approximated value Jappr.  

7. If the difference between Jappr and Jactual is within a tolerance limit, then 

 𝐱𝑶𝑶𝑶 is the final optimum and the corresponding airfoil shape is the 

optimized design. Else, the iterative RSO methodology is implemented. 

Here  𝐱𝑶𝑶𝑶 and the corresponding Jactual is added to the initial DoE and 

the RSM is reconstructed and optimized. This process is repeated till the 

difference between Jappr and Jactual does not lie within the tolerance limit. 

Here the tolerance is set at 5 percent of Jactual. 

The entire process is managed by a main directory called the MATLAB 

MASTER, which includes all the M-Files that are required to carry out the airfoil 

optimization process. Some of the important M-Files include— 

- bsp_basic.m —Code for the generating a B-spline curve given the 

coordinates of the control points, parameter values and the order of the 

curve. This code returns the x and y coordinates of the B-spline curve. 

- optimum_fit.m—Code for the parameterization of the baseline airfoil. 

Given the original coordinates of the airfoil geometry and a curve order, 

this code returns the coordinates of the control points and parameter values 

of the B-spline curve that best fits the baseline airfoil geometry. The y-

ordinates of the control points and the angle of attack, the constitute the 

vector of design variables 𝐱. 
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Figure 15 MATLAB implementation of the Iterative RSO method 
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- CL_req.m—Code for calculating the required coefficient of lift (CL) 

given the weight, airspeed (Mach number) and altitude (in meters). 

- LH_doe.m—Code for generating a LHS DoE plan required for 

constructing the RSM. Given the number of levels required, 𝑁s, and the 

upper and lower limits of each of the design variables, the code returns a 

DoE set, 𝑿DoE consisting values of the design variables at all levels as per 

a LHS design. 

- Gramian.m—Code for creating the Vandermonde matrix [𝚽] and 

solving for 𝛃, given the values of the design variables at all levels 𝑿DoE  

and the corresponding responses [y]. 

- J_approx.m—Code for evaluating the RSM, 𝐲�, given the values of 𝛃 

and design variables 𝐱. This returns an approximate value of the objective 

function Jappr. 

- IterativeRSO.m—Code for implementing the RSO based on the 

iterative methodology described above. Given 𝑿DoE , 𝛃 and [y], the code 

performs the iterative RSO and returns the optimum values of the design 

variables 𝐱𝑶𝑶𝑶. 

-  NonlinCon.m—Code for evaluating the non-linear constraints that are 

imposed on the RSM during optimization. 

- Multi_start_opt.m—Code for performing global optimization using 

the Multi Start optimization algorithm. Here the optimization is performed 

from multiple starting points of the RSM leading to the optimum values. 

 MATLAB Optimization Toolbox 3.4.1

MATLAB Optimization Toolbox provides widely used algorithms for 

standard and large-scale optimization. These algorithms solve constrained and 

unconstrained continuous and discrete problems. The toolbox includes functions for 

linear programming, quadratic programming, binary integer programming, nonlinear 

optimization, nonlinear least squares, systems of nonlinear equations, and 

multiobjective optimization [39]. 

The function used here is fmincon. The purpose of this function is to find the 

minimum of a constrained nonlinear multivariable functions. It solves for a minimum 

of a problem specified by 
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min
𝑥
𝑓(𝑥) such that 

⎩
⎪
⎨

⎪
⎧

𝑐(𝑥) ≤ 0
𝑐𝑒𝑞(𝑥) = 0
𝐴 ∙ 𝑥 ≤ 𝑏

𝐴𝑒𝑞 ∙ 𝑥 = 𝑏𝑒𝑞
𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏

 

Here x, b, beq, lb, and ub are vectors, A and Aeq are matrices, c(x) and ceq(x) 

are functions that return vectors, and f(x) is a function that returns a scalar. f(x), c(x), 

and ceq(x) can be nonlinear functions. 

fmincon attempts to find a constrained minimum of a scalar function of several 

variables starting at an initial estimate. This is generally referred to as constrained 

nonlinear optimization or nonlinear programming. 

The fmincon function syntax is as follows: 

[x, fval] = fmincon(FUNC, x0, A, b, Aeq, beq, lb… ,ub, 

NONLCON, OPTIONS) 

This function call starts the optimization process from an initial guess value x0 

and attempts to find a minimizer x of the function described in func subject to the 

linear inequalities A*x≤b, equalities Aeq*x≤beq. It also defines a set of lower and 

upper bounds on the design variables in x, so that the solution is always in the range 

𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏. It subjects the minimization to the nonlinear inequalities c(x) or 

equalities ceq(x) defined in a function NONLCON. 

Certain options required for the optimization such as the algorithm to be 

employed etc. is set using OPTIONS, which selects from a structure OPTIMSET. At 

the end of the optimization process, the function returns the value of the minimized x 

and the value of the corresponding objective value fval.  

FUNC, is the objective function to be minimized. FUNC is a function that 

accepts a vector x and returns a scalar f, the objective function evaluated at x. FUNC 

can be specified as a function handle for a file: 

[x] = fmincon(@myfunc,x0,A,b) 

where myfunc is a MATLAB function such as 

function f = myfunc(x) 

f = ... % Compute function value at x 
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NONLCON is a function call that computes the nonlinear inequality 

constraints 𝑐(𝑥) ≤ 0 and the nonlinear equality constraints 𝑐𝑒𝑞(𝑥) = 0. NONLCON 

accepts a vector x and returns the two vectors c and ceq. c is a vector that contains 

the nonlinear inequalities evaluated at x, and ceq is a vector that contains the 

nonlinear equalities evaluated at x. NONLCON should be specified as a function handle 

to a file or to an anonymous function, such as mycon:  

x = fmincon(@myfunc,x0,A,b,Aeq,beq,lb,ub,@mycon) 

Here mycon is a MATLAB function such as 

function [c, ceq] = mycon(x) 

c = ... % Compute nonlinear inequalities at x. 

ceq = ... % Compute nonlinear equalities at x. 

OPTIONS, selects certain optimization parameters from a structure called 

OPTIMSET. Some of these options include— 

- Algorithm—For selecting the optimization algorithm such as SQP etc. 

- DerivativeCheck—For comparing the values of user-supplied 

derivatives to finite-differencing derivatives. 

- GradObj—For using the gradient for the objective supplied by the user. 

- MaxFunEvals—For specifying the maximum number of objective 

function evaluations. 

- MaxIter—For specifying the maximum number of iterations allowed. 

- TolFun—For specifying the termination tolerance on the function value. 

The function call employed here is as follows: 

 f=@(x)rsm_opt(B, x ); 

 nonlcon=@(x)NonlinCon(B,x,J); 

[x_opt, fval]=fmincon(f, x0,[],[],[],[], lb, ub, nonlcon… 

,options); 

Here f is a parameter that calls the function rsm_opt(B, x ) which takes 

in values of the design variables x and the regression coefficients 𝛃, and evaluates the 

RSM equation. nonlcon is a parameter that calls the function 
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NonlinCon(B,x,J) that takes in values of x, 𝛃, and the actual value of the 

objective function at the previous step J, and evaluates the non-linear constraints 

functions. 

The fmincon function call starts the optimization process at x0(initial values 

of the design variables to initiate the optimization process), and performs the 

optimization iterations such that the iterate at each step lies within the bounds lb and 

ub, and satisfies the nonlinear constraints nonlcon. Following are the options 

that are used in the function call— 

options=optimset('GradObj','on','GradConstr','on',’algori

thm','sqp',MaxFunEvals',10000000,'MaxIter',4000,'TolCon',

… 0.00001,'TolX',0.00001); 

The above options imply that the gradient of the objective function and the 

constraints are user-supplied, the algorithm to be used is SQP, maximum number of 

function evaluations are set at 10000000, maximum number of iterations are set at 

4000, the constraints tolerance is set at 0.00001 and the tolerance for the change in the 

values of the design variables is set at 0.00001. 

 

 MATLAB Global Optimization Toolbox 3.4.2

Global Optimization Toolbox provides methods that search for global 

solutions to problems that contain multiple maxima or minima. It includes Global 

Search, Multistart, Pattern Search, Genetic Algorithm, and Simulated Annealing 

solvers [40]. 

These solvers can be used to solve optimization problems where the objective 

or constraint function is continuous, discontinuous, and stochastic, does not possess 

derivatives, or includes simulations or black-box functions with undefined values for 

some parameter settings. 

Generally, Optimization Toolbox solvers find a local optimum. (This local 

optimum can be a global optimum). They find the optimum in the basinof attraction 

of the starting point. In contrast, Global Optimization Toolbox solvers are designed to 

search through more than one basin of attraction.  
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The GlobalSearch and MultiStart solvers apply to problems with smooth 

objective and constraint functions. The solvers search for a global minimum, or for a 

set of local minima. GlobalSearch and MultiStart work by starting a local solver, such 

as fmincon, from a variety of start points. In this case the MultiStart global 

optimization function is employed. Following are the functions used to perform 

optimization using the MultiStart function— 

- CustomStartPointSet.m—This is a set of starting points (starting 

values of the design variables x) that is supplied the MultiStart solver. By 

doing so, the MultiStart Solver starts a local optimization process from 

each of the supplied starting points. These points could be random points 

or user-supplied.  

- createOptimProblem.m—This function call is used to setup the 

MultiStart problem.  This is required in order to specify the local 

optimization solver to employed, objective functions, constraints, bounds, 

options etc. 

- run.m—This function call runs the MultiStart solver based on the 

problem structure and the starting points defined above. 

The functions used in this implementation are as follows: 

tpoints = CustomStartPointSet([X_pnts]); 

problem = createOptimProblem('fmincon','x0',x0_2,... 

       'objective',@(x)rsm_opt(B, x ),'lb',lb,'ub',ub,... 

'nonlcon',@(x)NonlinCon(B,x,J),'options',options); 

ms=MultiStart; 

[xmin, J_min]=run(ms,problem,tpoints); 

Here tpoints is the set consisting of the starting points defined by the 

CustomStartPointSet function, using the supplied points X_pnts.  

problem is the optimization structure defined by the 

createOptimProblem function. It implies that the local optimization solver to be 

employed is the fmincon solver, the objective function is defined by the function 

rsm_opt(), the lower and upper bounds are defined by lb and ub, the nonlinear 
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constraints are defined by nonlcon, and the local minimization options are defined 

by options. Here fmincon, rsm_opt(), nonlcon are just as defined in 

the previous sub-section. 

ms sets the global optimization solver to MultiStart. run performs the 

optimization process using ms, problem and tpoints that are defined above. At the end 

of the process, the lowest value of the objective function, J_min (which is the least 

amongst all the minima), and the corresponding values of the design variables xmin 

are returned.  

3.5 Meshing using GridPro 

For performing an external flow simulation using the CFD technique, the 

region around the airfoil to be meshed (spatial discretization) into quadratic cells. 

Here an automatic grid generator—GridPro is used to generate the airfoil meshes 

which are then used to carry out the flow simulation using ANSYS-Fluent.   

For a multi-block structured grid generator, automation can be classified into 

four areas: 1). optimum distribution of high quality grid, 2). book keeping of 

topological information, 3). topology generation, and 4). surface restructuring and 

repair.  

To this end, GridPro is a general purpose, 3-dimensional, multi-block 

structured grid (mesh) generator using an advanced smoothing scheme that 

incorporates many automatic features. 

To generate a mesh, the input required from a user has three components— 

surface specifications, a block topology and a run schedule. These are described as 

follows: 

 Surface Specifications 3.5.1

The surface specifications constitute an external component in that they are 

provided mostly from the outside of the GridPro environment and conform to certain 

standards. The surface is basically the geometry around which the meshing is to be 

done and they are independent of the surface grid generated within GridPro. These 

surfaces are basically data files (file extension .dat) that contain the x, y and z 

coordinates surface points. The first line of the file displays the number of points used 

to describe the surface followed by the x, y and z coordinates of the points in three 



80 
 

columns. These files are then imported into the GridPro topology engine via the 

Topology Input Language (TIL) file. 

For meshing the airfoil a C-type grid is to be generated. The C-type refers to 

the C-shape of the far-field boundary. The radius of this boundary is taken as 20 times 

the chord-length of the airfoil. The following surfaces were used to build grid— 

- A C-shaped surface (dark blue) to define the boundary of the grid 

(filename: C_L.dat). This surface is assigned the pressure far-field 

property boundary condition so as to be recognized accordingly by the 

Flow-solver (ANSYS FLUENT). 

- A rear-end surface (purple) so as to limit the boundary at the rear of the 

airfoil. This surface is also assigned the pressure far-field boundary 

condition property (filename: Back_end.dat). 

  

 

 

 
 
 

 

 

 

 
 

 

 

 

 

 

Figure 16 GridPro surfaces 
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- The airfoil surface (light green) is split into two—an upper surface and a 

lower surface, with a coordinates data file for each of them (GPro_af1.dat 

and GPro_af2.dat). These surfaces are assigned the wall property so that 

the flow solver applies the appropriate wall boundary conditions to them. 

- In addition to the above surfaces, certain internal surfaces are specified. 

An internal surface is a surface for which both sides of the surface are to 

be gridded. These surfaces are used to provide the required grid point 

distribution. If a region within the grid the is over stretched or if the 

geometry contains great disparity in length scales and curvatures, internal 

surfaces are used to separate the regions of disparity and get better grid 

distribution. Here, it is also used to capture the features of the airfoil 

wakeline (aft of the airfoil). This is done by creating a surface which starts 

from the airfoil trailing edge, and extends through to the rear end surface. 

Also, this surface must be created such that it bisects the airfoil trailing 

edge angle. Using this internal surface also ensures a sharp trailing edge 

for the airfoil (filenames: af_lead.dat, trail_top.dat, trail_down.dat, 

Wake_line.dat). 

 Block Topology 3.5.2

After the surfaces have been defined, the next task is to design a block 

topology for the region to be gridded. This can be done with the GridPro/az-Graphic 

Manager, which is the graphical user interface for the GridPro engine.  

The goal is to cover the region with quadrilaterals (blocks). This covering does 

not need to be done at a geometric precise level. It needs to be done only at a rather 

topological level. That is, a surface can be represented as a set of piece-wise linear 

segments placed not too far from the real surface. 

It can be noticed that the entire region between the outer far-field and the 

airfoil at the center has been filled with blocks (quadrilaterals). Here the points in 

orange are referred to as corners and the yellow line segments as block edges. Each 

corner in the interior of the domain is shared by four neighboring blocks and each 

block edge is shared by two blocks. The corners and edges are arranged such that 

quadrilateral that are eventually formed capture the topological features (geometry) of 

the surfaces. 
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The topology building is started from the outer far-field by placing the corners 

(numbered 0, 128, 115 and so on) around in close proximity to the outer surfaces. 

These corners are then linked to form edges. Corners (numbered 127, 114, 101 and so 

on) are added in the interior of the domain in the manner shown in the above figure. 

These corners are then connected to each other and to the corners surrounding the 

outer surfaces such that blocks (quadrilaterals) are formed. More corners and edges 

are placed in the interior of the domain closing in on to the center such that blocks 

now begin to wrap around the airfoil surface and the wake-line. 

 The region surrounding the airfoil and the wake-line is where the flow is 

highly dynamic and turbulent. So it is important to capture the geometrical features in 

these regions with greater accuracy and thus more blocks are used to wrap the airfoil. 

Also higher grid densities (number of cells emerging from the edge) are assigned to 

edges that make up these blocks. This leads to a relatively denser grid near the airfoil 

surface and the wake line. 

Figure 17 Topology layout for the airfoil and the far-field 
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Figure 18 Topology layout in the wake region of the airfoil 

 

 

 

 

 

 

 

 

 

It is desirable to have the blocks as orthogonal as possible in the regions 

surrounding the airfoil so that the resulting grid around it is also orthogonal. This 

leads to more accurate CFD results. In order to do so, a MATLAB code is written 

which adjusts the position of the corners surrounding the airfoil and the wake-line. 

The corners immediately surrounding the airfoil are positioned such that the edges 

emerging from them (radially) are perpendicular to the airfoil surface. Also, the 

arrangement of these corners ensures that the edges connecting them are 

approximately tangential to the surface. This way, the blocks are almost tangential to 

the airfoil surface and thus the cells that are formed are almost orthogonal to the 

surface. 

   Once the topology design and layout is complete, the corners in the 

immediate vicinity of the surface are assigned to it. For instance, the corners that are 

closest to the airfoil surface are assigned to it. This way the GridPro grid engine 

recognizes the points which are associated to surfaces and wraps the grid around them 

accordingly. 

Figure 19 Topology around the airfoil surface 
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  After the completion of the topology creation and the assignment of the 

respective surface properties, the topology is saved as a Topology Input Language 

(TIL) file (extension .FRA). This file keeps a record of the coordinates of all the 

corners, edges, surface filenames, properties, grid densities etc. and is used to run the 

gridding process. (Filename: FINAL3.FRA). 

 Run schedule 3.5.3

Since GridPro uses an advanced smoothing scheme in which the grid is 

generated in multiple sweeps just as in the case of the ordinary elliptic grid 

generation, a schedule is provided for a better and faster convergence. Here 1000 

sweeps are used to generate the grid. 

A schedule file consists of step lines, each of which lists a sequence of actions 

that direct the run process of GridPro. The name of a schedule file has the prefix part 

same as the corresponding main topology file and end with the file name extension 

'.sch' (Filename: FINAL3.sch). 

The GGrid engine is run which executes the TIL file and performs the 

specified number of sweeps. At the end of the sweeping process a temporary block 

file is generated (extension .tmp). This file includes the coordinates of the grid points 

that are generated at the last sweep. 

 Wall Clustering 3.5.4

After the grid is generated (after executing the TIL file with the sweeps), wall 

clustering is used to adjust the spacing of the cells near the airfoil surface such that 

there is a much denser grid near the surface. This is particularly important in order to 

capture the flow physics associated with turbulent and separated flows. 

 Wall clustering reduces the normal spacing of the cells attached to the wall 

surfaces to a much lower value. It then starts increasing the spacing of the cells in the 

layers adjacent to the wall layer by a stretch factor called the growth raito. This way 

there is a gradual increment in the cell spacing starting from the wall surface going 

towards the outer far field. This is done using the –clu command. Here the spacing of 

the wall cells (cells attached to the wall surface) is set at 0.00025 and the growth ratio 

is set at 1.05. 
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After the clustering is performed, the temporary grid is now saved in the 

required format which can be read by the flow solver. The ANSYS FLUENT has a 

specific format for the grid which is given by the (.MSH) extension. A FLUENT 

output script (outU_fluent.script.bat) is run inside GridPro which converts the 

temprorary (.tmp) grid file into the required (.MSH) format. This mesh can then be 

imported into ANSYS FLUENT to perform the required simulation. 

Figure 20 Mesh—full display 

Figure 21 Mesh—full and close up view 
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3.6 CFD Solver—ANSYS FLUENT 

ANSYS FLUENT is a flow solver that provides comprehensive modeling 

capabilities for a wide range of incompressible and compressible, laminar and 

turbulent fluid flow problems. Steady-state or transient analyses can be performed. In 

ANSYS FLUENT, a broad range of mathematical models for transport phenomena 

(like heat transfer and chemical reactions) is combined with ability to model complex 

geometries [31]. 

Robust and accurate turbulence models are a vital component of the ANSYS 

FLUENT suite of models. The turbulence models provided have a broad range of 

applicability, and they include the effects of other physical phenomena, such as 

buoyancy and compressibility.  

For all flows, ANSYS FLUENT solves conservation equations for mass and 

momentum which are the basic governing equations for any flow. For flows involving 

heat transfer or compressibility, an additional equation for energy conservation is 

solved. In addition to these, turbulence model equations are solved to account for the 

turbulence associated with aerodynamic flows. The turbulence model used here is the 

Spalart-Allmaras model. It is a one-equation turbulence model and it is solved for the 

turbulent kinematic viscosity 𝜈�, which can then be used to calculate the turbulent 

dynamic viscosity, 𝜇𝑡, that will eventually close the RANS equations. All these 

equations have been discussed in depth in Chapter 2. 

In ANSYS FLUENT, the flow can be solved using one of the two numerical 

methods— Pressure-based solver and the Density-based solver. In either of the cases 

a control-volume based technique is used that consists of— 

- Division of the domain into discrete control volumes using a 

computational grid. 

- Integration of the governing equations on the individual control volumes to 

construct algebraic equations for the discrete dependent variables 

(unknowns) such as velocities, pressure, temperature, and conserved 

scalars. 

- Linearization of the discretized equations and solutions of the resultant 

linear equation system to yield updated values of the dependent variables. 
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 Pressure-Based Solver 3.6.1

In the pressure-based approach, the pressure field is extracted by solving a 

pressure or pressure correction equation which is obtained by manipulating the 

continuity and momentum equations. Each iteration of the solver consists of the 

following steps 

- Update fluid properties (eg. density, viscosity, turbulent viscosity etc.) 

- Solve simultaneously the coupled system of equations—momentum and 

pressure based continuity equations. 

- Correct face mass fluxes, pressure and the velocity field. 

- Solve the equations for additional scalars, such as turbulent quantities etc, 

- Check for convergence of the equations. 

These steps are continued until the convergence criteria are met. 

 General Scalar Transport Equation 3.6.2

All the governing differential equations for fluid motion, which are based on 

the conservation principles (conservation of mass, momentum and energy) can be 

written in a generic form. Upon inspection of the all the conservation equations, it can 

be inferred that all the dependent variables seem to obey a generalized conservation 

principle. If the dependent variable (scalar) is denoted by 𝜙, the generic differential 

equation is given as 

𝜕𝜌𝜙
𝜕𝑡�

𝑇𝑣𝑣𝑛𝑠𝑖𝑒𝑛𝑡 𝑡𝑒𝑣𝑚

+ 𝛁 ∙ (𝜌𝐕𝜙)�������
𝐶𝐷𝑛𝑣𝑒𝑐𝑡𝑖𝐷𝑛 𝑇𝑒𝑣𝑚

= 𝛁 ∙ (Γ𝛁𝜙)�������
𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝐷𝑛 𝑡𝑒𝑣𝑚

+ 𝑆𝜙�
𝑆𝐷𝑢𝑣𝑐𝑒 𝑡𝑒𝑣𝑚

 

Here Γ is the diffusion coefficient or diffusivity. 

- The transient term, 𝜕𝜌𝜙
𝜕𝑡

, accounts for the accumulation of 𝜙 in the 

concerned control volume. 

- The convection term,  𝛁 ∙ (𝜌𝐕𝜙), accounts for the transport of 𝜙 due to the 

existence of the velocity field.  

- The diffusion term, 𝛁 ∙ (Γ𝛁𝜙), accounts for the transport of 𝜙 due to its 

gradients. 

- The source term, 𝑆𝜙, accounts for any sources or sinks that either create or 

destroy 𝜙. Any extra term that cannot be cast into the convection or 
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diffusion terms are considered as source terms. For chemically inert flows, 

such as aerodynamic flows, where ideal gases are assumed in the 

calculations, the 𝑆𝜙 term is equated to zero.  

The objective of all discretization techniques (here the finite volume method) 

is to devise a mathematical formulation to transform each of these terms into an 

algebraic equation. Once applied to all control volumes in a given mesh, a full linear 

system of equations is obtained that needs to be solved for the variable 𝜙. 

ANSYS FLUENT uses a control-volume based technique to convert a general 

scalar transport equation to an algebraic equation can be solved numerically. This 

control volume technique consists of integrating the transport equation about each 

control volume, yielding a discrete equation that expresses the conservation law on a 

control-volume basis. 

This is demonstrated by the following equation (which is the general transport 

equation) written in integral form for an arbitrary control volume V as follows: 

�
𝜕𝜌𝜙
𝜕𝑡

𝑑𝑉
𝑉

+ �𝜌𝜙𝐕 ∙ 𝐝𝐀 = �Γ𝜙𝛁𝜙 ∙ 𝐝𝐀 + �S𝜙𝑑𝑉
𝑉

 

Where 𝜌 = density 

𝐕 = velocity vector (𝐕 = 𝑢𝐢 = 𝑣𝐣) 

𝐝𝐀 = differential surface area vector 

Γ𝜙 = diffusion coefficient for 𝜙 

∇𝜙 = gradient of 𝜙 = (𝜕𝜙 𝜕𝑥⁄ )𝐢 + (𝜕𝜙 𝜕𝑦⁄ )𝐣 

S𝜙 =source for 𝜙 per unit volume 

The above equation is applied to each control volume, or cell, in the 

computational domain. Discretization of the above equation on a given cell yields 

𝜕𝜌𝜙
𝜕𝑡

𝑉 + � 𝜌𝑓𝐕𝑓𝜙𝑓 ∙ 𝐀𝑓

𝑁𝑓𝑎𝑐𝑒𝑠

𝑓

= � Γ𝜙𝛁𝜙𝑓 ∙ 𝐀𝑓

𝑁𝑓𝑎𝑐𝑒𝑠

𝑓

+ S𝜙𝑉 

Here  

- 𝑁𝑓𝑣𝑐𝑒𝑠 = number of faces enclosing cell (for a quad cell 𝑁𝑓𝑣𝑐𝑒𝑠 = 4). 
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- 𝜙𝑓 = value of 𝜙 convected through face f. 

- ∑ 𝜌𝑓𝐕𝑓𝜙𝑓 ∙ 𝐀𝑓
𝑁𝑓𝑎𝑐𝑒𝑠
𝑓 = mass flux through the face. 

- 𝐀𝑓 = area vector of the face (𝐀𝑓 = 𝐴𝑥𝐢 + 𝐴𝑦𝐣) 

- 𝛁𝜙𝑓 = gradient of 𝜙 at face f. 

- 𝑉 = cell volume. 

The discretized scalar transport equation contains the unknowns scalar 

variable 𝜙 at the cell center as well as the unknown values in surrounding neighbor 

cells. This equation will, in general, be non-linear with respect to these variables. A 

linearized form can be written as 

𝑎𝑃𝜙 = �𝑎𝑛𝑏𝜙𝑛𝑏
𝑛𝑏

+ 𝑏 

Here the subscript nb refers to neighbor cells, and 𝑎𝑃 and 𝑎𝑛𝑏 are the 

linearized coefficients for 𝜙 and 𝜙𝑛𝑏. The number of neighbors for each cell depends 

on the mesh topology, but will typically equal the number of faces enclosing the cell 

(with the exception of the boundary cells). 

Similar equations can be written for each cell in the mesh. This results in a set 

of algebraic equations with a sparse co-efficient matrix. For scalar equations, ANSYS 

FLUENT solves the linear system using a point implicit (Gauss-Siedel) linear 

equation solver in conjunction with an algebraic multigrid (AMG) method. 

 

 Spatial Discretization 3.6.3

By default, ANSYS FLUENT stores discrete values of the scalar 𝜙 at the cell 

centers. However, face values 𝜙𝑓 are required for the convection terms and must be 

interpolated from the cell center values. This is accomplished using an upwind 

scheme.  

Upwinding means that the face value 𝜙𝑓 is derived from quantities in the cell 

upstream, relative to the direction of the normal velocity 𝐕𝑓. There are several upwind 

schemes that are available—first-order upwind, second-order upwind, power law and 

QUICK. Here the second-order upwind scheme is used. 
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In this scheme, the quantities at the cell faces are computed using a 

multidimensional reconstruction approach. In this approach, higher-order accuracy is 

achieved at cell faces through a Taylor series expansion of the cell-centered solution 

about the centroid. Thus the face value 𝜙𝑓 is computed using the following 

expression— 

𝜙𝑓 = 𝜙 + 𝛁𝜙 ∙ 𝐫 

Here 𝜙 and 𝛁𝜙 are the cell-centered value and its gradient in the upstream 

cell, and 𝐫 is the displacement vector from the upstream cell centroid to the face 

centroid. This formulation required the determination of the gradient 𝛁𝜙 in each cell. 

 Computing Forces and Moments 3.6.4

For the wall surfaces, the forces along a specified vector and the moments 

about a specified center and axis are computed.  

The total force component along a specified force vector a on a wall surface 

(airfoil surface) is computed by summing the dot product of the pressure and viscous 

forces on each surface with the specified force vector.  The terms in this summation 

represent the pressure and viscous force component in the direction a: 

𝐹𝑣⏟
𝑇𝐷𝑡𝑣𝑙 𝑓𝐷𝑣𝑐𝑒 𝑐𝐷𝑚𝑝𝐷𝑛𝑒𝑛𝑡

= 𝒂 ∙ 𝐅𝑝���
𝑝𝑣𝑒𝑠𝑠𝑢𝑣𝑒 𝑓𝐷𝑣𝑐𝑒 𝑐𝐷𝑚𝑝𝐷𝑛𝑒𝑛𝑡

+ 𝒂 ∙ 𝐅𝑣���
𝑣𝑖𝑠𝑐𝐷𝑢𝑠 𝑓𝐷𝑣𝑐𝑒 𝑐𝐷𝑚𝑝𝐷𝑛𝑒𝑛𝑡

 

Here 𝒂 = specified force vector 

𝐅𝑝 = pressure force vector 

𝐅𝑣 =viscous force vector 

The total moment vector about a specified center A is computed by summing 

the cross products of the pressure and viscous force vectors for each surface with the 

moment vector 𝐫𝐴𝐵, which is the vector from the specified moment center A to the 

force origin B. The terms in this summation represent the pressure and viscous 

moment vectors. 

𝐌𝐴�
𝑇𝐷𝑡𝑣𝑙 𝑚𝐷𝑚𝑒𝑛𝑡

=  𝐫𝐴𝐵 × 𝐅𝑝�������
𝑝𝑣𝑒𝑠𝑠𝑢𝑣𝑒 𝑚𝐷𝑚𝑒𝑛𝑡

+  𝐫𝐴𝐵 × 𝐅𝑣�������
𝑣𝑖𝑠𝑐𝐷𝑢𝑠 𝑚𝐷𝑚𝑒𝑛𝑡

 

Here  

𝐴 = specified moment center 
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𝐵 = force origin 

 𝐫𝐴𝐵 = moment vector 

In addition to the forces and the moments, the associated force and moment 

coefficients are also computed for each of the wall surfaces, using the reference 

values.  

The force coefficient is defined as the force 𝐹𝑣 divided by 1
2
𝜌𝑣2𝐴, and the 

moment coefficient is defined as magnitude of the moment 𝑀𝐴 divided by 1
2
𝜌𝑣2𝐴𝐿. 

Here 𝜌, 𝑣,𝐴, and 𝐿 are the density, velocity, area the length of the surface. 

For calculating the lift and drag on the airfoil, the vector 𝒂 is the unit vector 

perpendicular and along the direction of the airflow respectively. For calculating the 

moment,  𝐫𝐴𝐵 is the distance vector between the line of action of force and the 

reference point, taken to be 0.25L.  

 ANSYS FLUENT Setup and Run 3.6.5

To perform each CFD run, certain steps need to be taken. These are as 

follows— 

1. Import the mesh file into the solver—Here the mesh file that is generated 

using GridPro is imported into the flow solver using the Read Mesh 

command. 

2. Define viscous model—Here the turbulence model (Spalart-Allmaras) 

with the default values is selected. 

3. Define fluid material—Here the type of fluid properties are selected (ideal 

gas, air). For defining the viscosity, the Sutherland (3-Co-efficient) method 

is used. The ideal gas property automatically activates the Energy 

Equation option. 

4. Merge-zones—Certain zones in the mesh are merged into one, so that the 

total number of zones are reduced. In particular, the pressure far-field and 

the interior zones are merged. 

5. Load variable file—The variable file is loaded into the solver. This 

contains variable values for the operating pressure (P), Temperature (T), 

Mach number (M), unit vector magnitudes for the x and y components of 

the airflow (M_x and M_y), unit vector magnitudes for the x and y 
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components of the Lift force (L_x and L_y), and unit vector magnitudes 

for the x and y components for the Drag force (D_x and D_y). 

6. Define boundary conditions—Here the boundary conditions are defined 

using the variables that are loaded into the solver (step 5). Here Mach 

number and its x and y components, and temperature are defined by 

assigning the corresponding variables to the respective fields. Also the 

turbulence specification method is set to Turbulent-Viscosity ratio and the 

value is set at 10. The operating pressure is defined by assigning the 

corresponding variable. 

7. Set Solution methods—here the pressure-velocity coupling is set to 

coupled. For the Spatial Discretization, the gradient is computed using 

Least-Squares Cell Based scheme, Pressure is solved using the standard 

scheme, and density, momentum, modified turbulent viscosity and energy 

are solved using the second-order upwind scheme. 

8. Set solution controls—The Courant Number is set at 200, the explicit 

relaxation factors for momentum and pressure are set at 0.5, and under-

relaxation factor for density is set at 0.5, for body-forces, turbulent-

viscosity and energy it is set at 1, and for modified turbulent viscosity it is 

set at 0.9. 

9. Set monitors—Here the monitors for the continuity, x-velocity, y-velocity, 

energy and kinematic viscosity are set. The absolutely convergence criteria 

for these variables are respectively set at 1e-07. 1e-05, 1e-05, 1e-06 and 

1e-05. In addition to these monitors, the lift, drag and moment residuals 

are also monitored. 

10. Initialize—The flow field must be initialized in order to carry out the 

iterations. This is done by using the hybrid initialization option. 

11. Solve—Set the number of iterations and run the solver. Here the number 

of iterations is set at 300. 

12. Report forces—Once the solution has converged, the wall forces are 

reported and saved. The wall forces are the lift, drag and moments. For the 

calculation of the correct lift and drag values, the horizontal and vertical 

component unit vector magnitudes are specified by the variables L_x and 

L_y, D_x and D_y respectively. These variables take their values from the 

variable file which is loaded into the solver at the beginning of the 
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program. The moments are calculated about an axis perpendicular X-Y 

plane and at 25% of the chord length (LIFT.csv, DRAG.csv, and 

MOMENT.csv). 

13. The pressure coefficient (CP), Mach number and shear distributions over 

the top and bottom surfaces of the airfoil are plotted as a function of 

distance along the airfoil chord. These distributions are also saved in 

individual files (CP_TOP.csv, CP_LOW.csv, Mach_TOP.csv, 

Mach_LOW.csv, Stress_TOP.csv, Stress_LOW.csv). 

14. After saving the results, the solver is exited. 

The steps mentioned above are recorded in a script file, which is referred to as 

a Journal file (extension .JOU). This file is read by ANSYS-FLUENT solver and the 

steps are executed automatically without requiring any input from the user. In this 

way complete automation is achieved which is the backbone of the parametric 

optimization process. 

  Flow Solver Validation 3.6.6

Flow results verification studies are performed in order to verify the results 

obtained from the flow solver. Here the results obtained from ANSYS-FLUENT are 

compared with those obtained by verified sources that are usually used by the CFD 

community. These resources have been published by NASA’s National Program for 

Applications-Oriented Research in CFD (NPARC). NPARC provides an archive of 

examples, verification and validation cases for general purpose CFD usages. 

The case used for verification here is a RAE 2822 airfoil at transonic 

conditions. This case is Study#4 from the NPARC Validation Archive. The 

freestream conditions for this case are: 

- Mach Number = 0.729 [-] 

- Static Pressure = 15.8073 [psi] = 108987.768 [N/m2] 

- Temperature = 460.0 [R] = 255.55 [K] 

- Angle of attack = 2.31o 

A CFD mesh is obtained for the RAE 2822 airfoil using GridPro. The process 

is as described in the previous section. The mesh obtained is the analyzed for the flow 

based on the steps described above and using the freestream conditions for this case- 
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study. The results obtained are compared with three results published by NPARC. 

These are—the NPARC solver code, WIND-US 3.0 code and published wind-tunnel  

 

data. Here, the pressure coefficient (CP) distribution over the upper and lower surface 

obtained by FLUENT are compared with the published results as below: 

It can be seen from the above plot that the results obtained by ANSYS-

FLUENT are in close agreement with the published results. 

3.7  Simulation Time 

The processor used to perform the CFD simulations using ANSYS-FLUENT 

and GridPro, and the optimization processes using MATLAB has the following 

configuration— 

- Intel® Core™ i5 CPU, M430 

- Processor speed— 2.27 GHz 

- Installed memory (RAM)— 8.00GB of which 7.86 GB is usable. 

- System type— 64-bit operating system, 

- Manufacturer— DELL 

The time required for a generating a single mesh is 81.0847 seconds computer 

time, while the time required for performing a single CFD flow simulation on the 

mesh is 258.037225 seconds computer time. Therefore one complete CFD simulation 

(meshing and flow solving) takes 339.1219 seconds of computer time. 

Figure 22 CFD verification results 
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The overall meshing and simulation time for 225 samples is 76302.44973 

seconds or 21.1951 hours computer time. 
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4. RESULTS AND DISCUSSIONS 

4.1 Overview 

The iterative RSO methodology is implemented here on various case studies. 

First a design validation study is carried out by implementing the scheme for the 

optimization of the RAE 2822 airfoil for a particular operating condition. Following 

this study, an adaptive airfoil is designed by optimizing a Boeing 737 airfoil for four 

different operating conditions. These operating conditions correspond to three pairs of 

cruising speeds and altitudes. 

The objective function used here is the lift-moment constrained drag 

minimization problem. 11 design variables are used—the 10 B-spline control points, 

controlling the airfoil shape, and the angle of attack. The initial RSM is constructed 

using full quadratic polynomial regression comprising 78 terms and using 200 

sampling points based on a LHS design. SQP optimization algorithm is used to 

optimize the RSM and the iterative RSO methodology is employed to improve the 

predictability of the RSM. 

4.2 Case Study#1: Optimization of the RAE 2822 Airfoil 

This study is used as a design validation study to compare the results obtained 

by the implementation of the iterative RSO methodology with results that have been 

published in the literature.  

RAE 2822 is a transonic airfoil and it has extensively been used in the 

literature as a design validation platform for validating various optimization 

methodologies. The design condition of this airfoil is as follows— 

- 𝑀∞ = 0.73[−] 

- 𝛼 = 2.7° 

- 𝑅𝑒 = 7.196 × 106[−] 

- Static pressure = 43765 [N/m2] 

- Temperature = 300 [K] 

For this condition the ANSYS-FLUENT solver has predicted a 𝐶𝐿 value of 

0.78902, a 𝐶𝐷 value of 0.0166, and a 𝐶𝑀 value of 0.0918. The viscous, Garabedian 

and Korn (VGK) flow-solver code employed by Armando et al. for the same 

conditions as above predicted a 𝐶𝐿 value of 0.7894 and a 𝐶𝐷 value of 0.0150 [38]. The 
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Navier-Stokes solver with Baldwin-Lomax turbulence model employed by Ahn et al. 

predicted the same value of the lift coefficient (𝐶𝐿=0.7894) and a 𝐶𝐷 value of 0.0193 

at 𝛼 = 2.7° [34]. Despite the difference in the drag prediction, all three flow solvers 

are in good agreement as far as the pressure coefficient distribution is concerned. 

The parameterization of the airfoil, as discussed earlier was carried out using 

B-spline control points. The y-ordinates of the control points 2 through 6 and 9 

through 13 form the vector of design variables. In addition the angle of attack is taken 

as the eleventh design variable. 

 

 

 

 

 

 

 

The range for each DV was obtained by defining an upper and a lower limit. 

These were taken as 50% above and below the baseline values respectively. 

 

 

Figure 23 B-spline parameterization of the RAE 2822 airfoil 

Figure 24 Range of the B-spline control points (Design variables) 



98 
 

The baseline, and the upper and lower limit values of the design variables are 

as follows: 

Table 2 Baseline and Upper and Lower limit Values of the Design Variables 

DV  CP  Baseline Values Upper Limit Lower Limit 
1 2 0.0161118307 0.02416774612 0.0080559153 
2 3 0.0471756500 0.07076347511 0.0235878250 
3 4 0.0710297412 0.10654461194 0.0355148706 
4 5 0.0633427087 0.09501406311 0.0316713543 
5 6 0.0290058511 0.04350877666 0.0145029255 
6 9 -0.0304069342 -0.04561040142 -0.0152034671 
7 10 -0.0665061285 -0.09975919278 -0.0332530642 
8 11 -0.0667191889 -0.10007878335 -0.0333595944 
9 12 -0.0101262400 -0.01518936007 -0.0050631200 
10 13 0.0038518768 0.00192593840 0.0057778152 

11 
Angle of 
Attack 

2.70 2 3.4 

 

Following are the freestream conditions for the RAE 2822 design conditions— 

Table 3 Freestream conditions for the design operating condition 

 

 

 

 

 

 

 

The following values compare the performance parameters (Lift, moment and 

drag) of the baseline and optimized airfoil. Here (C-W) refers to Clockwise moment 

and (C-CW) refers to counter-clockwise moments— 

 

 

True Airspeed  
Mach 0.73  [-] 

253.374  [m/s] 
Atmospheric Pressure 43765    [N/m2] 
Air Density 0.508237  [kg/m3] 
Ambient Temperature    300   [K] (17 [oC]) 

Dynamic Viscosity 1.7894e-05  [kg/m-s] 
Reynolds Number 7.2x106      [-] 

Angle of Attack 2.7 o 
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Table 4 Baseline and Optimized performance at off-design operating point 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PERFORMANCE 
PARAMETERS BASELINE OPTIMIZED REMARKS 

LIFT FORCE  
Pressure Lift [N] 12872.11 13254.782  
Viscous Lift   [N] -0.07309 -0.157937  
Total Lift     [N] 12872.036  

[REQUIRED] 
13254.624 DIFFERENCE OF 

2.97%(HIGHER) 

Pressure CL     [-] 0.78902 0.812478  
Viscous CL        [-] -4.4803e-06 -9.681e-06  
Total CL        [-] 0.789017 

[REQUIRED] 
0.812469 DIFFERENCE OF 

2.97%(HIGHER) 

MOMENTS  
Pressure Moment 
[N-m] 

1499.3075 1675.9315  

Viscous Moment  
[N-m] 

-1.1438 -2.05919  

Total Moment   
 [N-m] 

1498.163 [C-CW] 
[REQUIRED] 

1673.8723 DIFFERENCE OF 
11.72%(LESS C-

CW) 
Pressure CM     [-] -0.091903 0.102729  
Viscous CM        [-] -7.011e-05 -0.00012622  
Total CM             [ -] 0.091832 [C-CW] 

[REQUIRED] 
0.1026034 DIFFERENCE OF 

11.72%(LESS C-
CW) 

DRAG FORCE  
Pressure Drag [N] 180.6682 113.355  
Viscous Drag  [N] 90.24008 93.63396  
Total Drag     [N] 270.9082 206.989 REDUCTION OF 

23.59% 

Pressure CD      [-] 0.0110744 0.00694832  
Viscous CD       [-] 0.0055314 0.0057394  
Total CD          [-] 0.01660587 0.01268 REDUCTION OF 

23.59% 

∆ CD = 0.003925 ≈ 4 [DRAG COUNTS] LESS  
ANGLE OF 
ATTACK 2.7o 2.24o  
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Table 5 Baseline and Optimized values of the Design Variables 

DV  CP  
Baseline 
Values Optimum Values 

1 2 0.0161118307 0.0241677461253 

2 3 0.0471756500 0.0425305732457 
3 4 0.0710297412 0.0805926624195 

4 5 0.0633427087 0.0525445332621 
5 6 0.0290058511 0.0354074663741 
6 9 -0.0304069342 -0.0177439150251 

7 10 -0.0665061285 -0.0595950656119 
8 11 -0.0667191889 -0.0446611130085 

9 12 -0.0101262400 -0.0110180170713 
10 13 0.0038518768 0.0054364685667 

11 Angle of Attack 2.70 2.24 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 25 RAE 2822 Baseline and Optimized airfoil shapes CP 

distributions 
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From the surface CP distributions it can be seen that the adverse pressure 

gradient has been significantly reduced, resulting in an almost-shock free airfoil. This 

has also resulted in reduced overall drag. 

 

 

 

 

 

 

 

 

 

Fitness Parameters 

- Adjusted root mean square error σ𝑣 

σ𝑣 = 0.467095 

This is a small value compared to the data. Thus the model is good enough. 

- Coefficient of multiple determination 𝑅𝑣𝑑𝑗2  

𝑅𝑣𝑑𝑗2 = 0.94259 

This value of 𝑅𝑣𝑑𝑗2  is close to 1. Thus it indicates a good model fit. 

4.3 Adaptive Airfoil Design based on the Boeing-737C airfoil 

The iterative RSO methodology is employed for the optimization of a Boeing-

737-300 Classic airfoil, taking it as a representative case in an attempt to demonstrate 

the advantages of using an adaptive airfoil over a conventional fixed airfoil. 

The airfoil is of a near-symmetric shape and is one of 737’s inboard mid-span 

airfoil, located between the engine and the aircraft fuselage.  

The Maximum Take-Off weight of the aircraft is 62,820[kg] and the total 

wing planform area is 105.4 [m2]. It has a cruising speed of Mach 0.74 at 35,000[ft] 

(Service ceiling of 37,000 [ft]).  

Figure 26 Plot comparing the actual and predicted function values  
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 Operational Envelope 4.3.1

The flight envelope or performance envelope of an aircraft refers to the 

capabilities of a design in terms of airspeed and load factor or altitude. A doghouse 

plot generally shows the relation between speed at level flight and altitude although 

other variables are also possible. The plot typically looks something like an upside-

down U and is commonly referred to as a doghouse plot due to its resemblance to a 

doghouse. A typical flight envelope for a subsonic (or transonic) aircraft is shown 

below:  

The outer edges of the diagram, the envelope, show the possible conditions 

that the aircraft can reach in straight and level flight. The low (stall) speed boundary 

indicates that the aircraft wing can only produce enough lift for a given speed at 

various altitudes. The stalling speed (in terms of true airspeed) increases with altitude 

(as the density reduces).The service ceiling is the maximum altitude that the aircraft 

attains while climbing at a very small climb rate (typically 100 [ft/min]. according to 

FAR Part 25 regulations). 

In the maximum operating Mach number region, the aircraft reaches a region 

of flight where the drag produced increases sharply (i.e., drag divergence Mach 

number boundary) and thus the aircraft engines are incapable of producing enough 

thrust to accelerate the aircraft to faster speeds. The design of all aircraft structures 

carries an assumption about the maximum loads that can be tolerated in flight. This is 

limited by the dynamic pressure limit boundary. The bird-strike limit boundary is 

Figure 27 Typical aircraft flight envelope 
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Figure 28 Discretized points in the flight envelope. 

defined by taking into account the bird-hits on the wind-shields below 10,000[ft]. 

Traditionally this boundary has been set at 250 knots. 

  CL requirements across the envelope 4.3.2

The flight envelope is discretized into discrete points, in that various altitude-

Mach number points are obtained within the flight envelope. Given a specific load 

requirement [per unit area of the wing], the required values of the lift coefficients are 

obtained at these points. This is as shown below— 

 

 

 

 

 

Here the region bounded by the flight envelope is discretized uniformly and 

the various operating points are obtained. However, only those operating points are 

chosen for the purpose of optimization, which have a greater probability of being 

visited by a typical subsonic transport airplane. The standard cruising point is Mach 

0.74 and altitude H= 10670[m]. So it is assumed that the baseline airfoil has been 

optimized for this operating point. For the adaptive airfoils problem, three off-design 

points are chosen— 

A) Mach 0.74 and altitude H = 9083.3 [m] 

B) Mach 0.65 and altitude H = 9083.3 [m] 

C) Mach 0.65 and altitude H = 6825.0 [m] 

  The corresponding values for the CL at these points are—A) 0.5305, B) 

0.6925, and C) 0.4996. These values are obtained using the lift force obtained from 

the airfoil at the standard cruising condition, which is ≈ 6150 [N]. 
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  Airfoil Geometry 4.3.3

The airfoil geometry for the Boeing airfoil is obtained from the airfoil 

database which has been published on the University of Illinois-Urbana Campaign 

(UIUC) website. It is a near-symmetric airfoil, with very little rear-loading and strong 

shockwaves exist on the upper-surface of the airfoil near the leading edge.  

Figure 29 Boeing 737 airfoil (baseline) 

The parameterization for this airfoil is performed using B-spline curve fitting 

consisting of 10 control points (5 for each surface). This is as shown below 

 

 

 

 

 

 

 

 

 

The range for each DV, as before was obtained by defining an upper and a 

lower limit. However, in this case the upper and lower limits were defined by values 

25% above and below the baseline values. This was done so that shapes differing 

much from the baseline shape are not attained and investigated during the 

optimization process. Thus the required deformations from the baseline shape to the 

optimized shape would be less. 

Figure 30 B-Spline parameterization of the Boeing 737 airfoil (expanded) 



105 
 

 

The baseline, and the upper and lower limit values of the design variables are 

as follows— 

Table 6 Baseline and Upper and Lower limit Values of the Design Variables 

DV  CP  Baseline Values Upper Limit Lower Limit 
1 2 0.01189154138 0.014864426725 0.0089186560354 

2 3 0.03237346633 0.040466832919 0.0242800997514 

3 4 0.06064856760 0.075810709508 0.0454864257052 

4 5 0.08333191253 0.104164890663 0.0624989343979 
5 6 0.05126309035 0.064078862946 0.0384473177681 

6 9 -0.03508193513 -0.043852418920 -0.0263114513520 

7 10 -0.06910529131 -0.086381614144 -0.0518289684866 

8 11 -0.04869035929 -0.060862949114 -0.0365177694684 

9 12 -0.02601627424 -0.032520342809 -0.0195122056855 

10 13 -0.00657293832 -0.008216172907 -0.0049297037445 

11 
Angle of 
Attack 

2.5 to 3.5 1.5 4.0 

 

 4.3.4 CASE-A: Mach 0.74 at 9083.3 [m] (29,800[ft]) 

This corresponds to the off-design operating condition where the aircraft is 

cruising in steady flight at Mach 0.74 (True airspeed) and 9083.33[m] (29800[ft] 

above ground level). Following are the freestream conditions for this case— 

 

Figure 31 Range of the Boeing-737 airfoil design variables 



106 
 

Table 7 Freestream conditions for the off-design operating point A 

 

 

 

 

 

 

 

 

Following are the values of the optimum design variables for the operating 

point-A— 

Table 8 Baseline and Optimized values of the Design Variables 

DV  CP  Baseline Values Optimum Values 

1 2 0.01189154138 0.0094258191179 

2 3 0.03237346633 0.0265314506846 

3 4 0.06064856760 0.0716335747285 

4 5 0.08333191253 0.066898113326 

5 6 0.05126309035 0.0467090526596 

6 9 -0.03508193513 -0.0283241637483 

7 10 -0.06910529131 -0.0710298081602 

8 11 -0.04869035929 -0.0395037365250 

9 12 -0.02601627424 -0.023849412116 

10 13 -0.00657293832 -0.0071745014079 

11 
Angle of 
Attack 

2.627o 2.209o 

 

The following values compare the performance parameters (Lift, moment and 

drag) of the baseline and optimized airfoil. Here (C-W) refers to Clockwise moment 

and (C-CW) refers to counter-clockwise moments— 

 

True Airspeed  
Mach 0.74   [-] 

224.4616     [m/s] (@9083.04[m]) 

Altitude             9083.3       [m] (29,800 [ft]) 

Atmospheric Pressure 30363.99     [N/m2] 
Air Density 0.461696     [kg/m3] 
Ambient Temperature    229.12024   [K] (-43.879 [oC]) 

Dynamic Viscosity 1.7894e-05  [kg/m-s] 
Reynolds Number 5.791x106      [-] 

Angle of Attack 2.62712 o 
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Table 9 Baseline and Optimized performance at off-design operating point 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PERFORMANCE 
PARAMETERS BASELINE OPTIMIZED REMARKS 

LIFT FORCE  
Pressure Lift [N] 6141.1205 6153.514  
Viscous Lift   [N] 0.709057 0.09236  
Total Lift     [N] 6141.8296  

[REQUIRED] 
6153.6064 

 
DIFFERENCE OF 
0.19% (HIGHER) 

Pressure CL     [-] 0.5280 0.529069  
Viscous CL        [-] 6.0965e-05 7.94118e-06  
Total CL        [-] 0.52806 

[REQUIRED] 
0.529077 

 
DIFFERENCE OF 
0.19% (HIGHER) 

MOMENTS  
Pressure Moment 
[N-m] 

175.5258 150.5031  

Viscous Moment  
[N-m] 

0.15634 -0.41194  

Total Moment   
 [N-m] 

175.6822 [C-CW] 
[REQUIRED] 

150.09122 [C-
CW] 

 

DIFFERENCE OF 
14.5% (LESS C-

CW) 
Pressure CM     [-] -0.01509 0.01294  
Viscous CM        [-] 1.34421e-05 -3.5418e-05  
Total CM             [ -] 0.015104 [C-CW] 

[REQUIRED] 
0.012904  [C-

CW] 
 

DIFFERENCE OF 
14.5% (LESS C-

CW) 
DRAG FORCE  
Pressure Drag [N] 375.8002 169.5884  
Viscous Drag  [N] 55.4470 62.1306  
Total Drag     [N] 431.2472 231.71912 

 
REDUCTION OF 

46.26% 

Pressure CD      [-] 0.03231 0.01458  
Viscous CD       [-] 0.004767 0.0053419  
Total CD          [-] 0.0370779 0.0199228 

 
REDUCTION OF 

46.26% 

∆ CD = -0.017155 ≈ 17 [DRAG COUNTS] LESS  
ANGLE OF 
ATTACK 2.6271o 2.209o  



108 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the CP distribution it can be seen that the shock intensity has been 

reduced and that supposedly the transition has been delayed, thus reducing shock 

induced drag. 

Model Evaluation 

The RSM is constructed using 200 samples as in the DoE. Following this, 26 

iterative improvements are performed on the RSM. Following are the RSM testing 

values and a comparison between the actual values of the objective function and the 

predicted values by the RSM— 

Figure 32 CASE-A Baseline and Optimized airfoil shapes and their 
corresponding surface CP distributions 
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Fitness Parameters 

- Root Mean Square Error (RMSE) 

RMSE = 6.3575%  

As the value of the RMSE is <10%, this indicates a reasonably good model 

- Adjusted root mean square error σ𝑣 

σ𝑣 = 0.6145 

This is a small value compared to the data. Thus the model is good enough. 

- Coefficient of multiple determination 𝑅𝑣𝑑𝑗2  

𝑅𝑣𝑑𝑗2 = 0.9831 

This value of 𝑅𝑣𝑑𝑗2  is close to 1. Thus it indicates a good model fit. 

 4.3.5 CASE-B: Mach 0.65 at 9083.3 [m] (29,800[ft]) 

This corresponds to the off-design operating condition where the aircraft is 

cruising in steady flight at Mach 0.65(True airspeed) and 9083.33[m] (29800[ft] 

above ground level). Following are the freestream conditions for this case— 

 

 

Figure 33 Plot comparing the actual and the predicted objective function 
values (CASE-A) 
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Table 10 Freestream conditions for the off-design operating point B 

 

 

 

 

 

 

 

 

Following are the values of the optimum design variables for the operating 

point-A— 

Table 11 Baseline and Optimized values of the Design Variables 

DV  CP  Baseline Values Optimum Values 

1 2 0.01189154138 0.010564514738021 

2 3 0.03237346633 0.025643292357113 

3 4 0.06064856760 0.072880447979943 

4 5 0.08333191253 0.082824625968899 

5 6 0.05126309035 0.042007873882886 

6 9 -0.03508193513 -0.035352800149791 

7 10 -0.06910529131 -0.058162753224287 

8 11 -0.04869035929 -0.053120614103188 

9 12 -0.02601627424 -0.030421540795948 

10 13 -0.00657293832 -0.006672806068045 

11 
Angle of 
Attack 

4.0271o 3.8795o 

 

The following values compare the performance parameters (Lift, moment and 

drag) of the baseline and optimized airfoil. Here (C-W) refers to Clockwise moment 

and (C-CW) refers to counter-clockwise moments— 

 

True Airspeed  
Mach 0.65   [-] 

197.1622    [m/s] (@9083.04[m]) 

Altitude             9083.3       [m] (29,800 [ft]) 

Atmospheric Pressure 30363.99     [N/m2] 
Air Density 0.461696     [kg/m3] 
Ambient Temperature    229.12024   [K] (-43.879 [oC]) 

Dynamic Viscosity 1.7894e-05  [kg/m-s] 
Reynolds Number 5.087x106      [-] 

Angle of Attack 4.0271 o 
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Table 12 Baseline and Optimized performance at off-design operating point B 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PERFORMANCE 
PARAMETERS BASELINE OPTIMIZED REMARKS 

LIFT FORCE  
Pressure Lift [N] 6141.1205 6189.2509  
Viscous Lift   [N] 0.709057 -0.06223  
Total Lift     [N] 6141.8296  

[REQUIRED] 
6189.1887 DIFFERENCE 

OF 0.77% 
(HIGHER) 

Pressure CL     [-] 0.68434 0.689706  
Viscous CL        [-] 7.9015e-05 -6.935388e-06  
Total CL       [-] 0.68442  

[REQUIRED] 
0.6897 DIFFERENCE 

OF 0.77% 
(HIGHER) 

MOMENTS  
Pressure Moment [N-m] -39.8508 -35.6979  
Viscous Moment   [N-
m] 

-0.6048 -0.9138  

Total Moment    [N-m] -40.4556 [C-W] 
[REQUIRED] 

-36.6117 [C-W] DIFFERENCE 
OF 9.5% 

(LESS C-W) 
Pressure CM           [-] -0.0044 -0.003978  
Viscous CM                    [-] -6.73958e-05 -0.0001018  
Total CM                     [-] -0.004508 [C-W] 

[REQUIRED] 
-0.004079 [C-W] DIFFERENCE 

OF 9.5% 
(LESS C-W) 

DRAG FORCE  
Pressure Drag     [N] 157.172 70.82073  
Viscous Drag       [N] 46.0286 50.04897  
Total Drag        [N] 203.2007 120.8697 REDUCTION 

OF 40.5% 

Pressure CD         [-] 0.017515 0.0078919  
Viscous CD           [-] 0.005129 0.0055772  
Total CD            [-] 0.022643 0.0134692 REDUCTION 

OF 40.5% 

∆ CD = -0.009174 ≈ 9 [DRAG COUNTS] LESS  
ANGLE OF ATTACK 4.0271o 3.8795o  
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From the CP distribution it can be seen that the shock intensity has been 

reduced the turbulence has not been delayed much, the reduction shock induced drag 

seems to have contributed to the overall drag reduction significantly. 

Model Evaluation 

The RSM is constructed using 200 samples as in the DoE. Following this, 26 

iterative improvements are performed on the RSM. Following are the RSM testing 

values and a comparison between the actual values of the objective function and the 

predicted values by the RSM— 

Figure 34 CASE-B Baseline and Optimized airfoil shapes and their 
corresponding surface CP distributions 
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Fitness Parameters 

- Root Mean Square Error (RMSE) 

RMSE = 9.995%  

As the value of the RMSE is <10%, this indicates a reasonably good model 

- Adjusted root mean square error σ𝑣 

σ𝑣 = 0.1235 

This is a small value compared to the data. Thus the model is good enough. 

- Coefficient of multiple determination 𝑅𝑣𝑑𝑗2  

𝑅𝑣𝑑𝑗2 = 0.9885 

This value of 𝑅𝑣𝑑𝑗2  is close to 1. Thus it indicates a good model fit. 

 4.3.6 CASE-C: Mach 0.65 at 6827.0 [m] (22,400[ft]) 

This corresponds to the off-design operating condition where the aircraft is 

cruising in steady flight at Mach 0.65(True airspeed) and 6827[m] (22400[ft] above 

ground level). Following are the freestream conditions for this case— 

 

 

Figure 35 Plot comparing the actual and the predicted objective function 
values (CASE-B) 
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Table 13 Freestream conditions for the off-design operating point C 

 

 

 

 

 

 

 

 

Following are the values of the optimum design variables for the operating 

point-A— 

Table 14 Baseline and Optimized values of the Design Variables C 

DV  CP  Baseline Values Optimum Values 

1 2 0.01189154138 0.0128883193059 

2 3 0.03237346633 0.0275768561427 

3 4 0.06064856760 0.0714721803511 

4 5 0.08333191253 0.0689957016386 

5 6 0.05126309035 0.0385565064030 

6 9 -0.03508193513 -0.0283429759241 

7 10 -0.06910529131 -0.0667506140691 

8 11 -0.04869035929 -0.0503457197813 

9 12 -0.02601627424 -0.0297665255502 

10 13 -0.00657293832 -0.00786047883110 

11 
Angle of 
Attack 

2.55o 2.7346884 

 

The following values compare the performance parameters (Lift, moment and 

drag) of the baseline and optimized airfoil. Here (C-W) refers to Clockwise moment 

and (C-CW) refers to counter-clockwise moments— 

 

True Airspeed  
Mach 0.65  [-] 

 203.45 [m/s] (@6827.0[m]) 

Altitude             6827.0  [m] (22,400 [ft]) 

Atmospheric Pressure  42067.06 [N/m2] 
Air Density  0.6012[kg/m3] 
Ambient Temperature     243.7811[K] (-29.368[oC]) 

Dynamic Viscosity 1.7894e-05  [kg/m-s] 
Reynolds Number  6.835x106      [-] 

Angle of Attack 2.55o 
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Table 15 Baseline and Optimized performance at off-design operating point C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PERFORMANCE 
PARAMETERS BASELINE OPTIMIZED REMARKS 

LIFT FORCE  
Pressure Lift [N] 6141.1205 6066.573  
Viscous Lift   [N] 0.709057 -0.56088  
Total Lift     [N] 6141.8296  

[REQUIRED] 
6066.01273 DIFFERENCE 

OF 1.23% 
(LOWER) 

Pressure CL     [-] 0.4936 0.4879  
Viscous CL        [-] 5.698e-05 -4.511e-05  
Total CL       [-] 0.4936  

[REQUIRED] 
0.487917 DIFFERENCE 

OF 1.23% 
(LOWER) 

MOMENTS  
Pressure Moment [N-m] 57.92965 97.35203  
Viscous Moment   [N-
m] 

-1.1563 -0.99956  

Total Moment    [N-m] 56.7733 [C-CW] 
[REQUIRED] 

96.3524 DIFFERENCE 
OF 69.71% 

(MORE C-CW) 
Pressure CM           [-] 0.004655 0.0078604  
Viscous CM                    [-] -9.2931e-05 -8.039e-05  
Total CM                     [-] 0.00456 [C-CW] 

[REQUIRED] 
0.00775 DIFFERENCE 

OF 69.71% 
(MORE C-W) 

DRAG FORCE  
Pressure Drag     [N] 63.479 44.9669  
Viscous Drag       [N] 70.80876 72..6274  
Total Drag        [N] 134.28784 117.59436 REDUCTION 

OF 12.43% 

Pressure CD         [-] 0.0051059 0.003616  
Viscous CD           [-] 0.0056954 0.005841  
Total CD            [-] 0.0108013 0.009458 REDUCTION 

OF 12.43% 

∆ CD =-1.345 ≈ 1.5 [DRAG COUNTS] LESS  
ANGLE OF ATTACK 2.55o 2.735o  
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From the CP distribution it can be seen that the shock intensity has drastically 

been reduced when compared to the baseline airfoil. Thus the shock induced drag has 

been reduced. However the lift generated is slightly less when compared to the 

required lift. 

Model Evaluation 

The RSM is constructed using 200 samples as in the DoE. Following this, 26 

iterative improvements are performed on the RSM. Following are the RSM testing 

values and a comparison between the actual values of the objective function and the 

predicted values by the RSM— 

Figure 36 Plot comparing the actual and the predicted objective function 
values (CASE-C) 
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Fitness Parameters 

- Adjusted root mean square error σ𝑣 

σ𝑣 = 0.53410 

This is a small value compared to the data. Thus the model is good enough. 

- Coefficient of multiple determination 𝑅𝑣𝑑𝑗2  

𝑅𝑣𝑑𝑗2 = 0.8873760 

This value of 𝑅𝑣𝑑𝑗2  is close to 1. Thus it indicates a decent model fit. 

4.4 Performance Comparison of Baseline Airfoil Relative to Optimized Airfoil 

Additional flow simulations are performed to assess the performance 

improvement (drag reduction) of the optimized airfoil relative to the baseline airfoil. 

This is done on the basis of three criteria as follows— 

- Fully optimized airfoil (Both optimized shape and angle of attack). 

- Baseline airfoil shape at optimized angle of attack. 

- Optimized airfoil shape at baseline angle of attack.  

This analysis is done for the all the case studies discussed above— RAE 2822 

Design study, Boeing 737C (Cases A, B and C). The change in drag is computed 

relative to the baseline airfoil drag  

Figure 37 Plot comparing the actual and the predicted objective function 
values (CASE-C) 
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Table 16 Performance Comparison Analysis 

CASES Particulars Baseline 
Airfoil  

Performance Comparison Criteria 

Fully 
Optimized 

Airfoil 

Baseline 
Airfoil Shape 
@ Optimized 

AoA 

Optimized 
Airfoil Shape 
@ Baseline 

AoA 

RAE-2822 
Design Study 

DRAG [N] 270.9082 206.989 211.9949 281.4196 
AoA 2.7 2.24 2.24 2.7 
Drag 

Change - -23.59% -21.74 +3.88% 

Boeing 737C 
CASE-A          
M 0.74,            

H 29800ft 

DRAG [N] 431.2472 213.7191 360.9521 309.6035 
AoA 2.627 2.209 2.209 2.627 
Drag 

Change - -46.26% -16.29% -28.2% 

Boeing 737C 
CASE-B          
M 0.65,                 

H 29800 ft 

DRAG [N] 203.2007 120.8697 187.8078 129.9117 
AoA 4.027 3.879 3.879 4.027 
Drag 

Change - -40.5% -7.5% -36.06% 

Boeing 737C 
CASE-C         
M 0.65,            

H 22400 ft 

DRAG [N] 134.2878 117.5943 144.0607 115.2182 
AoA 2.55 2.735 2.735 2.55 
Drag 

Change - -12.43% +7.27% -14.2% 

            AoA Angle of Attack 

4.5 Adaptive Airfoils 

The adaptive airfoil is designed by optimizing the shape for the 3 cases (A, B 

and C) as discussed above. It can be seen from the above results that the individual 

single point optimized airfoils have less drag than the baseline drag. A maximum of 

46% reduction is achieved using the adaptive airfoil for a particular operating point. 

This is a significant drag reduction considering the amount of variation in the shape 

required 

Maximum movement of the upper surface is roughly 1.1% chord while the 

maximum lower surface movement is roughly 0.3% chord. The maximum variation in 

the lift force generated is 1.23%. 
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Note that the adaptive concept can be utilized in two different ways. When 

operating at a given Mach number, the shape can be altered to match the airfoil 

optimized at the Mach number closest to the given Mach number. Alternatively, one 

can determine a continuous variation of shape throughout the Mach number range. 

 

 

Figure 38 Baseline and Optimized Airfoil shapes for Cases A, B, and C 

Figure 39 Baseline and Optimized Airfoil shapes for Cases A, B, and C 
(Expanded View) 
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5. CONCLUSION AND FUTURE WORK 

5.1 Summary and Conclusion 

In this research, an iterative response surface optimization methodology is 

employed for carrying out aerodynamic shape optimization on various case studies. 

These include a design validation study on the RAE 2822 airfoil and the shape 

optimization of a Boeing-737 classic airfoil at various off-design operating 

conditions.  

The parameterization is carried out using B-spline control points, the y-

ordinates of which, and the angle of attack are taken as the design variables for the 

optimization process. Using the results obtained from CFD simulations, a full 

quadratic polynomial response surface model (RSM) is constructed, which is then 

optimized using the SQP technique to obtain the optimum values of the design 

variables. For constructing the RSM, the Latin Hypercube Sampling (LHS) design is 

used to obtain the Design of Experiments (DoE) plan. Polynomial regression is used 

to obtain the values of the regression coefficients. The RSM is improved in an 

iterative manner, in that a CFD simulation is performed for the optimum values of the 

design variables obtained at the end of each optimization step and the resulting value 

of the objective function (actual value) along with the design variable values are 

added to the initial DoE plan. Polynomial regression is performed again and new 

values of the regression coefficients are obtained which are then used to re-construct 

the RSM. This process is repeated till the difference between the actual and 

approximated objective function value (value obtain from the RSM) does not lie 

within a tolerance limit. 

The main advantage of using this approach for shape optimization problems is 

that values obtained from commercially available flow solvers can directly be used in 

the optimization process, without making any changes to the solver’s code. Also the 

noise and non-smoothness issues associated with CFD results are smoothened out by 

using the RSM which is quadratic polynomial in terms of the design variables. Thus 

the optimization process can be performed effectively and smoothly without any 

sudden divergence issues associated with the CFD results. 

The mesh required for the simulation is generated using GridPro which is an 

automatic, topology based multi-block structured grid generator with an advanced 
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grid smoothening algorithm. ANSYS-FLUENT is used as the flow solver to perform 

the CFD simulation. Here the governing flow equations, the continuity, Navier-Stokes 

and the energy conservation equations are solved using a pressure-based solver. In 

addition, the Spalart-Allmaras turbulence model, which is a one equation fully 

turbulent model, is used to close the momentum equations. The results obtained from 

the CFD simulations are the lift, drag and moment coefficients of the airfoil given the 

free-stream conditions. These values are then used to evaluate the objective function 

value. 

The objective function used here is the lift-moment constrained drag 

minimization problem. It is a penalty augmented type problem in which the 

constraints (lift and moment coefficients) are added to the objective function as a 

quadratic penalty term. Doing so converts the constrained problem into an 

unconstrained problem and thus there is no requirement for the evaluation of the 

constraints and their gradients separately.  

MATLAB Optimization and Global Optimization Toolbox functions are used 

to perform the optimization process. The main tasks performed using MATLAB are— 

the parameterization of the airfoil shape, the DoE plan, RSM construction and the 

iterative RSO processes. fmincon and MultiStart solvers are employed using the SQP 

algorithm to optimize the RSM and obtain values of the optimum design variables.  

As mentioned earlier, the iterative RSO methodology has been used here for 

the aerodynamic shape optimization of various airfoils. These include—the RAE 

2822 airfoil as a design validation study, and the Boeing-737 airfoil at 4 different off-

design operating conditions.  

The Boeing 737 classic airfoil is optimized at four off-design operating 

conditions. This has been used as a representative case-study to demonstrate the 

advantages of using an adaptive airfoil over a fixed geometry airfoil. The results 

obtained are encouraging in lieu of the fact that significant drag reduction is achieved 

by morphing the airfoil shape from one operating condition to the other. The baseline 

drag at off-design conditions is found to be significantly higher than that of the 

optimized adaptive airfoil shape at the same condition. The drag-reduction is 

attributed primarily to the reduction in the intensity of the shock wave on the upper 

surface of the airfoil. Also the location of the adverse pressure gradient is pushed back 
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downstream (towards the trailing edge), thus delaying the transition from laminar and 

turbulent. This is achieved by morphing the baseline geometry to a better suited one 

which is obtained from the aerodynamic shape optimization process. The optimized 

shape offers lesser drag while maintaining the desired lift force and the baseline 

pitching moment. The idea behind retaining the baseline pitching moment is that, for 

an optimized geometry, if there is a change in the pitching moment of the airfoil, the 

aircraft elevators would have to be deployed to account for this change. This 

indirectly would offset the benefit obtained from morphing the airfoil. 

About 40% drag reduction is achieved by implementing the aerodynamic 

shape optimization methodology that has been used in this research. The maximum 

change in the geometry (from baseline to optimized) is about 0.2% of the airfoil 

chord-length which is relatively very small compared to the overall dimensions of the 

airfoil. This implies that very little deformations are required to obtain 

aerodynamically efficient airfoils, which offer significantly lesser drag over a wider 

portion of the flight envelope compared to fixed geometry airfoils which have been 

optimized for only few operating points in the envelope. 

Thus the adaptive airfoil concept is a viable concept which can pursued with 

confidence. Given the fact that little deformations are required to obtain much 

efficient airfoil shapes, the adaptive airfoil concept can be considered feasible from 

the structural point of view as well.  

However there are a lot of issues that remain to be addressed before this 

technology can be implemented. Even though the required deformations are small, 

there are structural challenges that hamper the full-scale development of this 

technology. The ideal material that can be used as the skin for adaptive airfoils should 

have high strength, can withstand huge strains without permanent deformation with 

the ability to regain the original shape precisely, low stiffness, excellent fatigue 

properties and low weight. Such a material is central to the development of this 

concept. But as of now this area is still under-research. In addition to materials, robust 

mechanisms have to be developed that can deform the skin to the desired (optimized) 

shapes. Such mechanisms should be feasible, not involve a very complex architecture 

and require very little actuation energy. A control system is then required that can 

sense the change in the aircraft operating condition, and provides the necessary 

signals that can actuate the mechanisms to obtain the desired shape. 
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5.2 Future Work 

There remains a lot of scope for improvement in the optimization 

methodology that has been employed in this research work. In particular the flow 

solver and the turbulence model that has been used here can be replaced with higher-

fidelity flow solvers that can predict the flow transition from laminar to turbulent 

more accurately. Laminar-turbulent flow transition prediction plays a vital role in the 

accuracy of the results, particularly in drag prediction. However the most commonly 

used turbulence model do not predict the transition well, and thus they can be 

replaced by other models such as the k-kl-w Transition or the Transition SST models. 

Also Large-Eddy Simulation (LES), in which the large scale eddies 

(turbulence) are filtered and resolved, can be employed instead of the RANS 

equations in which the eddies are time averaged. Thus more accurate results can be 

obtained. 

For the optimization of the response surface model, Genetic Algorithms or 

Particle Swarm Optimization techniques can be investigated to obtain the optimum 

values of the design variables, instead of the gradient based optimization method 

(SQP) that has been used here. Using Genetic Algorithms and other similar 

techniques can improve the chances of locating a global minimum instead of the local 

minimum that is obtained using gradient based methods. 

In this work, the methodology has been applied for the optimization of an 

airfoil which is basically a 2-dimensional shape. Even though having the right airfoil 

shape is essential, the 3-dimensional shape of the wing is equally crucial. A lot of 

other factors need to be addressed while designing the 3-dimesnsional shape of the 

wing such as tip vortices, engine and the fuselage interference effects etc. Thus for a 

full-fledged implementation of the adaptive airfoil concept, it is necessary to extend 

the optimization methodology to 3-dimensional wings. Here, with an addition of a 

third dimension, more number of design variables will be required to completely 

parameterize the wing.  

The optimization objectives can also be extended to include other performance 

parameters such as actuator energy requirements which are based on the energy 

required to overcome inertia, material stiffness and the aerodynamic loads in order to 
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morph the shape.  This would require fluid structure interaction analysis, a subject 

that has drawn a lot of attention in the past few years. 

The optimization methodology can be performed on more number of points 

inside the flight envelope. This would ensure that a much wider area of the flight 

envelope is covered, thus offering more operational flexibility while keeping the 

overall drag to a minimum throughout the flight operation. 

The results from this research show that significant drag reduction is possible 

using the adaptive airfoil concept. This however must be weighed against the energy 

consumed in adapting the wing, the increased cost and complexity, and the 

implications for safety. As the actuator technology needed to deform the wing 

improves, the price of fuel increases, and the need to reduce harmful emissions 

becomes more critical, the adaptive wing concept will become increasingly viable. 
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Appendix A GridPro Topology Input Language (TIL) File 

(FINAL3.FRA) 

SET DIMENSION 2 

SET GRIDDEN 16 

SET DISPLAY.SURF ON 

COMPONENT main() 

BEGIN 

INPUT 1 surf(sOUT (0..7)); 

INPUT 2 corn(sIN (1:1..8),cIN (-129)); 

END 

  

COMPONENT surf() 

BEGIN 

s 0 -linear "GPro_af1.dat" ; #TIL:1:0 

s 1 -linear "GPro_af2.dat" ; #TIL:1:1 

s 2 -linear "C_L.dat" ; #TIL:1:2 

s 3 -linear "Back_end.dat" ; #TIL:1:3 

s 4 -linear "Wake_line.dat" -O ; #TIL:1:4 

s 5 -linear "trail_top.dat" -O ; #TIL:1:5 

s 6 -linear "trail_down.dat" -O ; #TIL:1:6 

s 7 -linear "af_lead.dat" -O ; #TIL:1:7 

LABEL UnknownLabel_0= s(2); 

LABEL UnknownLabel_1= s(3); 

LABEL UnknownLabel_2= s(2); 

LABEL UnknownLabel_3= s(3); 

LABEL UnknownLabel_4= s(2); 

LABEL UnknownLabel_5= s(3); 

LABEL UnknownLabel_6= s(2); 

LABEL UnknownLabel_7= s(3); 

LABEL UnknownLabel_8= s(2); 

LABEL UnknownLabel_9= s(3); 

LABEL UnknownLabel_10= s(2); 

LABEL UnknownLabel_11= s(3); 

LABEL UnknownLabel_12= s(2); 

LABEL UnknownLabel_13= s(3); 

LABEL UnknownLabel_14= s(2); 
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LABEL UnknownLabel_15= s(3); 

LABEL UnknownLabel_16= s(2); 

LABEL UnknownLabel_17= s(3); 

LABEL _009_user9= s(2); 

LABEL _009_user9= s(3); 

END 

  

COMPONENT corn(sIN s[0..7],cIN c[0..128]) 

BEGIN 

c 0 15 -20 0  -s s:3  s:2  -L c:0  -p 15.92 -15.27 0 ; #TIL:2:0 

c 1 15  20 0  -s s:3  s:2  -L c:1  -p 15.55  16.25 0 ; #TIL:2:1 

c 2 -15.379608 12.026067 0  -s s:2  -L c:2  -p -4.856 16.29 0  -g 1; 
#TIL:2:2 

c 3 -14.208652   -13.075139            0  -s s:2  -L c:3  -p -
16.01 -4.648 0  -g 1; #TIL:2:3 

c 4     0.27747889    0.06994594    0  -s s:0  -L c:4  -p -4.754 
5.103 0  -g 2033; #TIL:2:4 

c 5     0.75113867    0.03877387    0  -s s:0  -L c:5  -p 5.094 5.147 
0  -g 2033; #TIL:2:5 

c 6     0.29804802   -0.05459776     0  -s s:1  -L c:6  -p -
4.666 -4.536 0 ; #TIL:2:6 

c 7     0.70580358   -0.03767442   0  -s s:1  -L c:7  -p 5.193 -
4.439 0 ; #TIL:2:7 

c 8  -0.53387156    1.1149678      0     -L c:8 -p -4.754 5.103 0  -g 
1; #TIL:2:8 

c 9  -0.49950319   -1.0935291       0   -L c:9  -p -4.666 -4.536 0  
-g 1; #TIL:2:9 

c 10 -18.427811   -5.2222994       0  -s s:2  -L c:10  -p -16.05 
0.3627 0  -g 1; #TIL:2:10 

c 11 -0.97522092  -0.46675736       0     -L c:11  -p -4.711 
0.4427 0  -g 1; #TIL:2:11 

c 12    0.01205125   -0.02173760     0  -s s:1  -L c:12  -p -
4.711 0.4427 0  -g 33; #TIL:2:12 

c 13    0.10163954   -0.04295817      0  -s s:1  -L c:13 12  6 -p -
4.688 -2.158 0  -g 1;#TIL:2:13 

g  13  12  40 ;  

g  13   6  54 ;  

c 14  -0.78115013 -0.78870751      0     -L c:14 11  9  -p -
4.688 -2.158 0  -g 1;#TIL:2:14 

c 15  -16.756227   -9.3594344    0  -s s:2  -L c:15 10  3  -p -16.03 
-2.255 0  -g 1;#TIL:2:15 
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c 16     0.09806832    0.05570585   0  -s s:0  -L c:16  4 -p -4.733 
2.837 0  -g 2033;#TIL:2:16 

g  16   4  54 ; 

c 17  -0.81260331    0.7956845 0   -L c:17  8  -p -4.733 2.837 0  -
g 1;#TIL:2:17 

c 18  -17.386961    8.2344006    0  -s s:2  -L c:18  2  -p -
16.06 2.772 0  -g 1;#TIL:2:18 

c 19    0.00715576    0.03070321  0  -s s:0  -L c:19 16 -p -4.719 
1.323 0  -g 2033;#TIL:2:19 

g  19  16  40 ; 

c 20  -0.98964462   0.46095311 0 -L c:20 17  -p -4.719 1.323 0  -
g 1;#TIL:2:20 

c 21   -18.647731    4.6642091  0  -s s:2  -L c:21 18  -p -16.05 
1.249 0  -g 1; #TIL:2:21 

c 22   1.0000000000  0.0000000000 0  -s s:6  s:5  s:4  s:1  s:0  -L 
c:22  5  7  -p 5.133 1.325 0  -g 2041;#TIL:2:22 

g 22   5  60 ; 

g 22   7  60 ; 

c 23   15   -0.0983066870    0  -s s:4  s:3  -L c:23  -p 15.72 1.395 
0  -g 17; #TIL:2:23 

c 24   0.4849936670  -0.0512852062   0  -s s:1  -L c:24  7  6  -p 
1.077 -4.479 0  -g 1;#TIL:2:24 

g 24   7  54 ; 

g 24   6  54 ; 

c 25  -0.15831072   -1.3593258   0     -L c:25  9  -p 1.077 -
4.479 0  -g 1;#TIL:2:25 

c 26 -10.54709   -16.671646     0  -s s:2  -L c:26  3  -p 1.185 -
15.51 0  -g 1; #TIL:2:26 

c 27   0.4931796914  0.0639134891  0  -s s:0  -L c:27  5  4 -p 0.1027 
5.125 0  -g 2033;#TIL:2:27 

g 27   5  54 ; 

g 27   4  54 ; 

c 28  -0.17851629    1.3853468     0     -L c:28  8  -p 0.1027 
5.125 0  -g 1;#TIL:2:28 

c 29   -11.830347    15.728489  0  -s s:2  -L c:29  2 -p -0.006178 
16.28 0  -g 1; #TIL:2:29 

c 30 0.0042123225  0.0347450144  0     -L c:30 19  -p -4.719 
1.323 0  -g 1; #TIL:2:30 

g 30  19  24 ; 

c 31   0.0971142250  0.0606139721 0     -L c:31 16 30 -p -4.733 2.837 
0  -g 1; #TIL:2:31 
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c 32   0.2773615447  0.0749445585  0     -L c:32  4 31  -p -
4.754 5.103 0  -g 1; #TIL:2:32 

c 33   0.4935498630  0.0688997675   0     -L c:33 27 32  -p 
0.1027 5.125 0  -g 1; #TIL:2:33 

c 34   0.7517889821  0.0437313968   0     -L c:34  5 33  -p 5.094 
5.147 0 -g 1; #TIL:2:34 

c 35   0.7062760733  -0.0426520439 0     -L c:35  7  -p 5.193 -
4.439 0  -g 1; #TIL:2:35 

c 36   0.4852184837  -0.0562801494  0     -L c:36 24 35  -p 1.077 
-4.479 0  -g 1; #TIL:2:36 

c 37   0.2979851125  -0.0595973593  0     -L c:37  6 36  -p -
4.666 -4.536 0  -g 1; #TIL:2:37 

c 38   0.1009855635  -0.0479152191  0     -L c:38 13 37  -p -
4.688 -2.158 0  -g 1; #TIL:2:38 

c 39   0.0095806800  -0.0260845820 0     -L c:39 12 38  -p -
4.711 0.4427 0  -g 1;#TIL:2:39 

c 40     1      20     0     -s s:5 s:2  -L c:40  -p 5.331 16.27 
0  -g 1;#TIL:2:40 

c 41     1     -20     0     -s s:6  s:2  -L c:41  -p 6.534 -
15.42 0  -g 1; #TIL:2:41 

c 42  -0.003  0 0     -s s:7  s:1  s:0  -L c:42 19 12  -p -4.715 
0.8951 0  -g 33; #TIL:2:42 

g 42  19  36 ; 

g 42  12  36 ; 

c 43  -0.008  0   0  -s s:7  -L c:43 30 39 42  -p -4.715 0.8951 0  
-g 1;#TIL:2:43 

c 44        -1.07   0  0  -s s:7  -L c:44 20 11  -p -4.715 0.8951 0  
-g 1;#TIL:2:44 

c 45        -19.1   0  0  -s s:7  s:2  -L c:45 21 10  -p -16.05 
0.8182 0  -g 1;#TIL:2:45 

c 46   0.8220226547  0.5791445375   0  -L c:46 34  -p 5.094 5.147 
0  -g 1;#TIL:2:46 

g 46  34  18 ; 

c 47  0.7573058268  -0.5802354926  0 -L c:47 35  -p 5.193 -4.439 0  -
g 1;#TIL:2:47 

c 48  0.5032038178  -0.4558756045  0     -L c:48 36 25 47 -p 1.077 
-4.479 0  -g 1;#TIL:2:48 

g 48  25   8 ; 

c 49  0.2942105293  -0.3595736126   0   -L c:49 37  9 48  -p -
4.666 -4.536 0  -g 1;#TIL:2:49 

c 50  0.0695948522  -0.2858534952   0 -L c:50 38 14 49  -p -
4.688 -2.158 0  -g 1;#TIL:2:50 
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c 51  -0.0892421031  -0.1999640159   0     -L c:51 39 11 50 -p -4.711 
0.4427 0  -g 1;#TIL:2:51 

c 52  -0.208  0    0   -s s:7  -L c:52 43 44 51  -p -4.715 
0.8951 0  -g 1;#TIL:2:52 

c 53  -0.1135251564  0.1964171705    0     -L c:53 30 20 52  -p -
4.719 1.323 0  -g 1;#TIL:2:53 

c 54  0.0513175085  0.2962039990    0     -L c:54 31 17 53 -p -4.733 
2.837 0  -g 1;#TIL:2:54 

c 55  0.2703208312  0.3748619277   0   -L c:55 32  8 54  -p -
4.754 5.103 0  -g 1;#TIL:2:55 

c 56  0.5231635916  0.4678020451   0     -L c:56 33 28 55 46  -p 
0.1027 5.125 0  -g 1;#TIL:2:56 

c 57   15    4.75    0  -s s:3  -L c:57  -p 15.7 2.774 0  -g 
1;#TIL:2:57 

c 58  15  -4.75    0  -s s:3  -L c:58  -p 15.74 -0.1492 0  -g 
1;#TIL:2:58 

c 59   1  1.9  0  -s s:5  -L c:59  -p 5.142 2.025 0  -g 
12582913;#TIL:2:59 

c 60    1  -1.9  0  -s s:6  -L c:60  -p 5.191 0.6298 0  -g 1; 
#TIL:2:60 

c 61   1  0.05   0  -s s:5  -L c:61 22 34 -p 5.133 1.342 0  -g 
1;#TIL:2:61 

c 62   15  0.9016933130   0  -s s:3  -L c:62 23  -p 15.72 1.429 0  -g 
1;#TIL:2:62 

c 63   1  -0.05  0  -s s:6  -L c:63 22 35  -p 5.135 1.303 0  -g 
1;#TIL:2:63 

c 64   15  -1.0983066870     0  -s s:3  -L c:64 23  -p 15.72 1.346 
0  -g 1;#TIL:2:64 

c 65      0.30973    1.6663  0     -L c:65 59 28 46  -p 2.868 3.424 
0  -g 1;#TIL:2:65 

c 66   -6.6558587 18.803912            0  -s s:2  -L c:66 40 29  -p 
2.923 16.27 0  -g 1;#TIL:2:66 

c 67            1  0.6500000000            0  -s s:5  -L c:67 61 59 
46 -p 5.136 1.582 0  -g 1;#TIL:2:67 

c 68           15   2.0116933130            0  -s s:3  -L c:68 62 57
  -p 15.71 1.901 0  -g 1;#TIL:2:68 

c 69   1   -0.6500000000   0  -s s:6  -L c:69 63 60 47  -p 5.156 
1.047 0  -g 1;#TIL:2:69 

c 70   15   -2.2083066870   0  -s s:3  -L c:70 64 58  -p 15.73 
0.7777 0  -g 1;#TIL:2:70 

c 71   0.32361616   -1.6274478            0  -L c:71 60 25 47  -p 
3.62 -1.321 0  -g 1;#TIL:2:71 

c 72   -5.1198025   -19.27377            0  -s s:2  -L c:72 41 26  -p 
4.492 -15.45 0  -g 1;#TIL:2:72 
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c 73            1    4.3299106            0  -s s:5  -L c:73 59 -p 
5.175 4.507 0  -g 98305;#TIL:2:73 

g  73  59   8 ; 

c 74           15            7  0  -s s:3  -L c:74 57  -p 15.67 5.122 
0  -g 12289;#TIL:2:74 

c 75 -0.58536495    3.8241013            0     -L c:75 65 73  -p 
2.878 5.662 0 -g 98305;#TIL:2:75 

c 76   -1.4907674    3.3199326            0     -L c:76 28 75  -p 
0.08373 7.069 0  -g 1;#TIL:2:76 

c 77   -2.3056719    2.6722406            0   -L c:77  8 76  -p -
4.772 7.052 0  -g 1;#TIL:2:77 

c 78   -2.9337173    1.9277671   0     -L c:78 17 77  -p -
6.706 2.826 0  -g 393217;#TIL:2:78 

c 79   -3.3924358   0.97611577            0     -L c:79 20 78  -p 
-6.693 1.31 0  -g 393217;#TIL:2:79 

c 80     -3.57757            0            0  -s s:7  -L c:80 44 79
  -p -6.69 0.8817 0  -g 393217;#TIL:2:80 

c 81   -3.3839423   -1.1899742  0     -L c:81 11 80  -p -6.687 
0.4288 0  -g 393217;#TIL:2:81 

c 82   -2.9437786   -1.9421683            0     -L c:82 14 81  -p 
-6.664 -2.175 0  -g 393217;#TIL:2:82 

c 83   -2.3087376   -2.6727836            0     -L c:83  9 82  -p 
-6.642 -4.556 0  -g 1;#TIL:2:83 

c 84   -1.5067772   -3.2887937            0     -L c:84 25 83  -p 
1.096 -6.401 0  -g 1;#TIL:2:84 

c 85  -0.36163206    -3.884064     0     -L c:85 71 84
  -p 3.772 -3.783 0  -g 1;#TIL:2:85 

c 86  1   -4.2415517            0  -s s:6  -L c:86 60 85  -p 5.425 
-2.167 0  -g 1572865;#TIL:2:86 

c 87           15           -7            0  -s s:3  -L c:87 58 -p 
15.77 -2.784 0  -g 1572865;#TIL:2:87 

c 88            1          9.3   0  -s s:5  -L c:88 40 73  -p 5.276 
12.11 0  -g 32769;#TIL:2:88 

g  88  40  8 ; 

g  88  73   8 ; 

c 89           15         11.5            0  -s s:3  -L c:89  1 74
  -p 15.59 12.31 0  -g 4097;#TIL:2:89 

c 90   -2.1768669    8.5100887   0     -L c:90 66 88 75  -p 2.907 
12.52 0  -g 32769;#TIL:2:90 

c 91   -4.3865592    7.5781182            0     -L c:91 29 90 76  -p 
0.02562 13.02  0  -g 1;#TIL:2:91 

c 92   -6.2301001    6.0427238            0     -L c:92  2 91 77  -p 
-4.826 13.02 0  -g 1;#TIL:2:92 
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c 93   -7.5858052    4.2258478            0     -L c:93 18 92 78  -p 
-12.75 2.791 0  -g 131073;#TIL:2:93 

c 94    -8.421654   2.1496            0     -L c:94 21 93 79  -p 
-12.74 1.271 0  -g 131073;#TIL:2:94 

c 95    -8.65483            0            0  -s s:7  -L c:95 45 94 80
  -p -12.74 0.8407 0  -g 131073;#TIL:2:95 

c 96    -8.344819   -2.3600329      0     -L c:96 10 95 81  -p -
12.74 0.3861 0  -g 131073;#TIL:2:96 

c 97   -7.6475522   -4.1163208            0     -L c:97 15 96 82  -p 
-12.72 -2.227 0  -g 131073;#TIL:2:97 

c 98   -6.3737558   -5.9080515            0     -L c:98  3 97 83  -p 
-12.7 -4.615 0  -g 1;#TIL:2:98 

c 99    -4.301992   -7.6013844       0     -L c:99 26 98 84  -p 1.153 
-12.29 0  -g 1;#TIL:2:99 

c 100   -1.7742141   -8.7165805            0     -L c:100 72 99 85
  -p 4.237 -11.32 0  -g 1;#TIL:2:100 

c 101            1         -9.3            0  -s s:6  -L c:101 41 100 
86  -p 6.142 -10.73 0  -g 2621441;#TIL:2:101 

c 102           15     -11.5            0  -s s:3  -L c:102  0 87  -p 
15.87 -10.85 0  -g 2621441;#TIL:2:102 

c 103          6.3           20            0  -s s:2  -L c:103 40  -p 
8.677 16.26 0  -g 1;#TIL:2:103 

g 103  40  90 ; 

c 104          6.3    10.2            0     -L c:104 88 103  -p 8.654 
12.18 0  -g 4097;#TIL:2:104 

c 105      6.20049    5.6128913            0     -L c:105 73 104  -p 
8.612 4.708 0 -g 12289;#TIL:2:105 

c 106    6.0137047    3.5208954            0     -L c:106 59 105  -p 
8.598 2.27 0  -g 50331649;#TIL:2:106 

c 107  5.74   1.2384014220     0     -L c:107 106 67  -p 8.598 
1.686 0  -g 1;#TIL:2:107 

c 108  5.6  0.5184014220            0     -L c:108 107 61  -p 8.599 
1.37 0  -g  1;#TIL:2:108 

c 109  5.5  -0.0315985780            0  -s s:4  -L c:109 108 22 -p 
8.599 1.348 0  -g 17;#TIL:2:109 

c 110  5.6  -0.5815985780            0  -L c:110 109 63  -p 8.6 
1.317 0  -g 1;#TIL:2:110 

c 111  5.74   -1.3015985780            0     -L c:111 110 69  -p 
8.618 0.9588 0  -g 1;#TIL:2:111 

c 112    5.9140989   -3.2509713            0     -L c:112 60 111  -p 
8.645 0.3748 0  -g 1;#TIL:2:112 

c 113    6.1106403   -5.5190698            0    -L c:113 86 112  -p 
8.812 -2.369 0  -g 1572865;#TIL:2:113 
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c 114   6.3        -10.2            0     -L c:114 101 113  -p 9.326 
-10.77 0  -g   2621441;#TIL:2:114 

c 115          6.3          -20            0  -s s:2  -L c:115 41 114
  -p 9.607 -15.37 0  -g 1;#TIL:2:115 

c 116         11.2           20    0  -s s:2  -L c:116 103  1  -p 
12.14 16.26 0  -g 1;#TIL:2:116 

g 116 103  30 ; 

g 116   1  30 ; 

c 117         11.2       10.946            0     -L c:117 104 89 116
  -p 12.15 12.25 0  -g 4097;#TIL:2:117 

c 118    11.083306    6.5259738  0     -L c:118 105 74 117  -p 12.17 
4.917 0  -g 12289;#TIL:2:118 

c 119 10.976038    4.4195581            0     -L c:119 106 57 118  -p 
12.18 2.524 0 -g 1;#TIL:2:119 

c 120    10.865314    1.4825897003           0     -L c:120 107 68 
 119  -p 12.19 1.795 0  -g 1;#TIL:2:120 

c 121  10.7  0.6825897003   0     -L c:121 108 62 120  -p 12.19 1.4 0  
-g 1;#TIL:2:121 

c 122  10.6  -0.0674102997           0  -s s:4  -L c:122 109 23 121
  -p 12.19 1.372 0  -g 17;#TIL:2:122 

c 123  10.7  -0.8174102997           0     -L c:123 110 64 122  -p 
12.19 1.332 0  -g 1;#TIL:2:123 

c 124    10.819722   -1.6174102997            0     -L c:124 111 70 
123  -p 12.21 0.8675 0  -g 1;#TIL:2:124 

c 125    10.935462   -4.0232149            0     -L c:125 112 58 124
 -p 12.22 0.1105 0  -g 1;#TIL:2:125 

c 126    10.989641   -6.2251315            0    -L c:126 113 87 125
  -p 12.32 -2.578 0  -g 1572865;#TIL:2:126 

c 127  11.2     -10.8775            0     -L c:127 114 102 126  -p 
12.63 -10.81 0  -g  2621441;#TIL:2:127 

c 128         11.2          -20            0  -s s:2  -L c:128  115  
0 127  -p 12.79 -15.32 0  -g 1;#TIL:2:128 

END 

Schedule File (TIL)  

File (FINAL3.SCH) 
step 1: -S 1000 -w 

write -f FINAL3.tmp 

MATLAB Run Commands 
>> !Ggrid FINAL3.fra 

>> !clu FINAL3.tmp -s 1 0.00025 1.05 
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>> movefile('FINAL3.tmp.conn','FINAL3.tmp.tmp.conn'); 

>>!"C:\GridPro/az_mngr/outU_fluent.script.bat" 

"C:/~/~/FINAL3.tmp.tmp" "C:/~/~/FLO_MESH.msh" 

 

Appendix B ANSYS-FLUENT JOURNAL FILE 

(FLUENT_RUN.JOU) 

(cx-gui-do cx-activate-item "MenuBar*ReadSubMenu*Mesh...") 

(cx-gui-do cx-set-text-entry "Select File*FilterText" "D:\MASTERS 
THESIS\CFD work\F I N A L - O P E R A T I O N\CFD SLAVE\*") 

(cx-gui-do cx-activate-item "Select File*Apply") 

(cx-gui-do cx-set-text-entry "Select File*Text" "FLO_MESH.msh") 

(cx-gui-do cx-activate-item "Select File*OK") 

/define/models/viscous/spalart-allmaras? yes  

/define/materials/change-create air air yes ideal-gas no no yes 
sutherland three-coefficient-method 1.716e-05 273.11 110.56 no no no  

/mesh/modify-zones/merge-zones 10 11 ()  

/mesh/modify-zones/merge-zones 2 3 4 5 6 7 ()  

(load "OP.var") 

/define/boundary-conditions/pressure-far-field pressure-far-field-10 
no 0 no M no T no M_x no M_y no n yes no 10  

/define/operating-conditions/operating-pressure P  

/report/reference-values/compute pressure-far-field pressure-far-
field-10 

/solve/set/p-v-coupling 24  

(cx-gui-do cx-activate-item 
"NavigationPane*Frame1*PushButton12(Solution Methods)") 

/solve/set/discretization-scheme/density 1  

/solve/set/discretization-scheme/pressure 12  

/solve/set/discretization-scheme/mom 1  

/solve/set/discretization-scheme/nut 1  

/solve/set/discretization-scheme/temperature 1  

/solve/set/under-relaxation/nut 0.9 

(cx-gui-do cx-activate-item 
"NavigationPane*Frame1*PushButton13(Solution Controls)")  

(cx-gui-do cx-set-real-entry-list "Solution 
Controls*Frame1*Table1*Frame4(Explicit Relaxation 
Factors)*Table4(Explicit Relaxation Factors)*RealEntry1(Momentum)" '( 
0.5)) 
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(cx-gui-do cx-activate-item "Solution 
Controls*Frame1*Table1*Frame4(Explicit Relaxation 
Factors)*Table4(Explicit Relaxation Factors)*RealEntry1(Momentum)") 

(cx-gui-do cx-set-real-entry-list "Solution 
Controls*Frame1*Table1*Frame4(Explicit Relaxation 
Factors)*Table4(Explicit Relaxation Factors)*RealEntry3(Pressure)" '( 
0.5)) 

(cx-gui-do cx-activate-item "Solution 
Controls*Frame1*Table1*Frame4(Explicit Relaxation 
Factors)*Table4(Explicit Relaxation Factors)*RealEntry3(Pressure)") 

/solve/monitors/residual/convergence-criteria 0.0000001 0.0001 0.0001 
1e-06 0.001  

/solve/monitors/force/drag-coefficient yes 8 9 () yes no yes 2 no D_x 
D_y  

/solve/monitors/force/lift-coefficient yes 8 9 () yes no yes 3 no L_x 
L_y  

/solve/monitors/force/moment-coefficient yes 8 9 () yes no yes 4 no 
0.25 0 0 0 1  

/solve/initialize/hyb-initialization  

/solve/iterate 300 

/report/forces/wall-forces yes D_x D_y yes "DRAG.csv"  

/report/forces/wall-forces yes L_x L_y yes "LIFT.csv"  

/report/forces/wall-moments yes 0.25 0 0 0 1 yes "MOMENT.csv"  

/plot/plot yes "CP_TOP.csv" no no no pressure-coefficient y 1 0 wall-
8 ()  

/plot/plot yes "CP_LOW.csv" no no no pressure-coefficient y 1 0 wall-
9 () 

/plot/plot yes "Mach_TOP.csv" no no no mach-number y 1 0 wall-8 ()  

/plot/plot yes "Mach_LOW.csv" no no no mach-number y 1 0 wall-9 () 

/plot/plot yes "Stress_TOP.csv" no no no wall-shear y 1 0 wall-8 () 

/plot/plot yes "Stress_LOW.csv" no no no wall-shear y 1 0 wall-9 () 

exit 

ok 
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