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Abstract 
 

The main objective of this research is to study the use of Recurrent Wavelet Networks 

(RWN) for the modelling and identification of nonlinear dynamic systems. Since the 

vast majority of physical processes and systems exhibit nonlinearities in their 

behavior, mathematical models may be difficult to obtain as processes may be 

affected by external operating conditions and a number of parameters may not be 

identified. Electromechanical systems are an example of nonlinear systems where 

parameters such as viscous and coulomb friction, and distributed inertias are often 

unknown. In such cases, a model is required that will capture the nonlinearities and 

the dynamics of the system. In this thesis, an online identification method is 

developed using structured Recurrent Wavelet Networks (RWN) in order to 

simultaneously identify linear and nonlinear mechanical parameters of an 

electromechanical system. Network learning is implemented using the gradient 

descent algorithm. Stability analysis is carried out based on the minimization of a 

Lyapunov function in order to obtain Adaptive Learning Rates (ALR) for training the 

network. Simulations are carried out to validate the performance of the proposed 

adaptive learning rate based modeling and identification technique.  

 

Search Terms: Wavelet Networks, Recurrent Wavelet Networks, DC Motor 

Parameter Identification, Friction Identification, Adaptive Learning Rates 
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Chapter 1: Introduction 
 

1.1 Background 
 

Traditionally, complex nonlinear systems were modelled using linearization 

techniques in order to facilitate the design and implementation of PID controllers. In 

many cases, mathematical models may be difficult to obtain as processes are affected 

by external operating conditions and a number of process parameters may not be 

identified. Electromechanical systems are a prime example of nonlinear systems 

where parameters such as viscous friction, coulomb friction and distributed inertias 

are often unknown. In such cases, development of an optimized controller requires a 

more detailed model to capture the nonlinearities and the dynamics of the system.  

Over the last few decades, there has been an upsurge in the trend of using 

Artificial Intelligence (AI) based modelling techniques for modelling nonlinear time 

varying systems. Such techniques make use of available system input and output data 

to produce complex mappings and reproduce system models. A number of AI based 

techniques are available as shown in Figure 1.  

 

 

 

Figure 1: Artificial Intelligence Based Modelling and Control Techniques 

 

Artificial Neural Networks (ANNs) are parallel processing networks that 

consist of neurons interconnected to form a layered structure in the form of an input 

layer, hidden layer(s) and an output layer. Typical activation functions used in ANNs 
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include the sigmoid, the log-sigmoid and the tan-sigmoid functions. ANNs have been 

widely used in system modelling and identification [1-4] and are able to effectively 

model system nonlinearities. The distributive nature of the neural network 

architecture also makes it highly fault tolerant.  

ANNs, however, suffer from a number of drawbacks including slow 

convergence and local minima. Wavelet networks were developed based on ANNs 

and the wavelet transform theory, as an alternative to feedforward neural networks for 

the approximation of nonlinear functions, for system modelling, identification and 

control [5-10]. Using wavelets as activation functions, wavelet networks maintain all 

the advantages of ANNs while offering a number of additional advantages such as 

faster convergence as well as providing a much smaller computational overhead due 

to reduced network sizes. In addition, wavelet networks are capable of handling inputs 

of higher dimensions.  

A number of different modelling techniques exist in literature and the choice 

of a given technique depends on the requirement from the model as well as the data 

available. If the structure of the system to be modelled is unknown, simple input 

output based function mapping may be carried out which is also known as black box 

modelling.  However, in this case, the intricacies of the system are not explicitly 

identified. More and more emphasis is now being laid on moving from black box 

modelling towards grey box modelling in which the partially known system structure 

and approximations are used in developing the network structure and finally to white 

box modelling in which all system information is available a priori and is 

incorporated to create an optimum network training structure which will allow for 

explicit identification of the system parameters [11].  

 In this research, wavelet networks, both conventional and recurrent, are used 

for the modelling and identification of a nonlinear electromechanical system. Black 

box modelling is first carried out and then, based on the a priori knowledge of the 

system under consideration, a white box approach is adopted in order to identify the 

linear and nonlinear mechanical parameters that constitute the system.  
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1.2 Literature Review 
 

Neural networks have been widely used in the area of system modelling and 

identification for the approximation of continuous nonlinear functions. Wavelet 

networks were developed based on Artificial Neural Networks (ANN) and the 

wavelet transform theory, as an alternative to feedforward neural networks for the 

approximation of nonlinear functions for system modelling and identification. Initial 

work by Pati and Krishnaprasad in [7], demonstrates how the standard feed forward 

architecture can be used as a wavelet network given that the activation function 

satisfies the Morlet-Grossmann admissibility conditions, details of which are provided 

in Chapter 2. The authors propose the use of an activation function formed through 

the linear combination of sigmoid functions and highlight the importance of 

extracting information contained in the training set in order to optimize the network 

architecture by ensuring the selected activation functions span the spectral range of 

the given data.  

In one of the seminal papers on wavelet networks [5], Zhang and Benenviste 

were able to successfully develop a wavelet network for black box modelling which 

not only maintains the universal approximation property inherent in neural networks 

but also provides an explicit link between the network coefficients and the wavelet 

transform to allow for better network initialization schemes. In addition, through their 

work, it is observed that wavelet networks are able to achieve the same approximation 

quality as traditional feed forward neural networks, with a smaller network size.  

In [5-7] and [9], formal initialization procedures were developed in order to 

improve the efficiency of the wavelet network. In [5], the translation and dilation 

coefficients are initialized using a regular dyadic grid structure. Grid formation is 

carried out through division of the input domain into two subintervals by the centre of 

gravity of the density function of the available data. The translation and dilation 

coefficients are then selected in each interval and the procedure is repeated within 

each subinterval until all the translation and dilation coefficients are initialized. In the 

event that the number of wavelets is not a power of 2, the remaining wavelets are 

initialized randomly from the finest remaining scale. An alternative initialization 

method proposed by Zhang in [8], also involves the division of the input domain into 

a dyadic grid. After grid formation, wavelet selection is carried out based on the least 
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square error between the observed output and the network output using all wavelets in 

the grid. The wavelet contributing the least per iteration is eliminated until the number 

of remaining wavelets equals the number of neurons in the network.  In [6], a new 

correlation based initialization procedure was developed for enhanced network 

performance. Based on this procedure, a dyadic grid denser in the translation axis is 

obtained where the number of dilation levels is selected based on the number of 

neurons in the network. As the wavelet coefficient is a linear correlation coefficient 

representative of the degree of similarity between the wavelet and the signal to be 

approximated, once the initialization grid is created, the wavelets with the highest 

coefficients, and therefore better correlation, are selected. Oussar and Dreyfus provide 

two other approaches to initializing the translation and dilation parameters in [9]. 

Using the Heuristic Method, the translation and dilation parameters are selected such 

that the wavelets extend over the entire input region. The method of Initialization by 

Selection proposed by Oussar and Dreyfus involves the use of wavelet frames for 

initialization. A library of wavelets is generated whose dilations are discrete and 

whose translations lie in the domain of the input vectors given by [ak,bk].  Taking 

three successive dilations to ensure the wavelets extend over the entire domain, for 

each dilation set, the corresponding translation set is selected. Once the library is 

generated, the direct connection weights are computed using the Least Squares 

Method and the training sequence for the non-linear part of the model is obtained by 

subtracting the output of the linear model and the training set. The wavelets are then 

ranked using the Gram-Schmidt method and selected using the linear model residuals. 

The remaining network parameters, namely the direct connection weights and the bias 

weights, are usually initialized to small random values often in the range [0,1] or 

zeros as in [5] and [9,10,12]. Alternatively, these weights could also be initialized 

using the Least Squares Method [9].  

Training of both neural and wavelet networks used for modelling of static 

systems is typically carried out using the back propagation type gradient descent 

algorithm, of which variations are proposed for application to wavelet networks in [5] 

and [6]. In [5], learning is carried out using the stochastic gradient method. In [6], the 

training algorithm involves updating the translation and dilation coefficients based on 

direct minimization techniques while the remaining network parameters are obtained 

via linear combination. The most important feature of this training procedure involves 
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the use of a dynamic learning rate which decreases if the error of the current iteration 

is smaller than the error of the previous iteration and vice versa. Oussar and Dreyfus 

made used of the Broyden-Fletcher-Golfarb-Shanno gradient algorithm (BFGS) for 

the training of network parameters [10].  

While traditional feedforward neural networks and their conventional wavelet 

network counterparts discussed above provide a static input/output mapping and have 

been successfully used for static function approximation as well as system 

identification and control, the black box modelling of systems with time-varying 

inputs or outputs is carried out using recurrent networks.  

Recurrent wavelet networks (RWN), through internal feedback in the wavelet 

layer, are able to preserve past network states which allows them to capture the 

dynamic response of a system with time varying inputs or outputs and adapt quickly 

to changes in the system [13-16]. The proposed four layer network architecture 

consists of an input layer, a wavelet layer with self-feedback, a product layer and an 

output layer.  This architecture is a generalized form of the conventional wavelet 

network since the RWN structure is the same as that of the conventional wavelet 

network when the self-feedback weights, which represent the rate of information 

storage, are zero. In [17], Lin et. al propose an alternate four layer architecture. The 

fundamental difference between the two is the presence of direct weighted 

connections between the input and the output layer in [13-16] which provide the 

RWN with the added advantage of improved extrapolation outside the training data 

and allow for initialization based on process knowledge. An alternate five layer 

structure is proposed by Lu in [18] in which an adaptive node layer was added called 

the consequent part of the network. The activation function is selected as the first 

derivative of the Gaussian function in [13-16], [18] and [16] while the differentiable 

Mexican hat wavelet was used in [17].  

In order to effectively a train the RWN to model a nonlinear dynamic system, 

it is essential to understand the different models that can be used to represent 

nonlinear dynamic systems in order to select the best training structure and best 

training inputs for the network. Four different models were discussed in [11], which 

are shown in Equations 1.1 to 1.4. The model shown in Equation 1.1 assumes the 
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system output is a nonlinear function of the input and a linear function of the delayed 

output.  

 

 (   )   ( ( )  (   )  (     ))  ∑    (   )

   

   

 (1.1) 

 

where u represents the input signal, y represents the output,   represents a linear 

coefficient, f represents an unknown nonlinear function and the discrete time index 

   . 

 

Similarly, the model represented by Equation 1.2 assumes the output varies linearly 

with the input and nonlinearly with the delayed output.  

 

 (   )   ( ( )  (   )  (     ))  ∑    (   )

   

   

 (1.2) 

 

In the third model described by Equation 1.3, the output depends nonlinearly on both 

delayed inputs and delayed outputs in a separable manner.  

 

 (   )   ( ( )  (   )  (     ))   ( ( )  (   )   (     )) (1.3) 

 

The fourth model given by Equation 1.4 is a generalized model which assumes the 

output varies nonlinearly with both the delayed inputs and delayed outputs.  

 

 (   )   ( ( )  (   )  (     )  ( )  (   )  (     )) (1.4) 

 

Training of recurrent networks can be done using a number of different 

training algorithms, the most popular of which are the backpropagation type gradient 

descent algorithm and real time recurrent learning (RTRL) [1-4,19]. While these 

methods typically make use of static learning rates, it was observed in [1] and [20] 

that such static learning rates were impractical since not only is the selection of the 
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optimal leaning rate a trial and error based process but also because very large 

learning rates lead to system instability and small learning rates lead to slow network 

training. As a result, in order to ensure network stability and to guarantee 

convergence, adaptive learning rates were developed based on the Lyapunov Stability 

Theory, for use in recurrent neural networks [20-21]. This method was then adopted 

for use in RWN [13-17], however recurrent terms in the network equations were 

assumed negligible when solving for the adaptive learning rates.  

In [13], two RWNs were used to generate two control inputs, namely the 

translational and rotational displacements, for the stable path tracking of a mobile 

robot as shown in Figure 2. Here, the authors made use of ALRs for training of the 

network based on the gradient descent algorithm.  

 

 

 

Figure 2: RWNN-Based Mobile Robot Control Structure [13] 

 

 

In [18], Lu developed a stable predictive control (SPC) scheme based on the 

RWN as shown in Figure 3. The nonlinear modelling of the system is carried out 

using a RWN where the gradient descent algorithm with ALR is employed for the 

precondition part of the network for updating the translation and dilation coefficients 

and the feedback weights while the consequent parameters are identified using the 

recursive least squares method. As in [13], network convergence is guaranteed using 

Lyapunov’s Stability Theorem which ensures the learning rate remains within the 

stable region. 
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Figure 3: RWNN-Based SPC Scheme [18] 

 

 

In [14] and [16], dynamic system identification is carried out using the series 

parallel method as shown in Figure 4 where the inputs of the RWN identifier are the 

current input and the previous output of the dynamic system.  

 

 

Figure 4: RWN Based Dynamic System Identification Architecture [14] 

 

 

Training of the dynamic system identifier is carried out offline using ALR based 

gradient descent method while an indirect online adaptive control technique for a 

RWN is used to control the system [14]. The RWN controller inputs consist of the 

reference signal and the last plant output as shown in Figure 5. The proposed control 

system is applied to the Duffing and water bath system and the performance of the 
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RWN controller with ALR is compared to that of a traditional wavelet network and an 

RWN with static learning rates. It is seen that for a fixed number of iterations, the 

RWN with ALR outperforms the other two controllers showing faster convergence 

and lowest mean square error. The ability of the RWN controller to recover from 

disturbances is also tested and is seen to have a fast rejection capability.  

 

 

Figure 5: Indirect Adaptive Control Architecture Using RWNs [14] 

 

 

In the previous papers, emphasis was laid on black box modelling and using 

RWNs in order to control highly nonlinear systems. However, since black box models 

are unable to provide the intrinsic details of the system being modelled [11], research 

is now looking towards the application of neural and wavelet networks for parameter 

identification of nonlinear systems.  

In [22], the authors make use of a partially recurrent network known as an 

Elman Recurrent Network in order to identify the mechanical and electrical 

parameters of a linear DC motor without nonlinear friction. The structure of the 

network is selected such that it is equivalent to the state space equations of the DC 

motor. In this case, the back propagation algorithm is not used; rather, the authors 

favour the use of Genetic Algorithms (GA) for updating the network parameters. All 

parameters are estimated except the resistance of the DC motor which is assumed 

known and the network is seen to produce satisfactory results.  

In [23-24], the authors provide some of the leading work done in the use of 

structured recurrent neural networks in order to identify the parameters of nonlinear 
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systems. Full use is made of a priori knowledge of the system at hand in order to carry 

out intelligent modelling and identification. In [23], simultaneous identification of the 

linear and nonlinear parts of the system is accomplished by first discretizing the 

system in order to create a structured recurrent neural network where training is 

carried out using the gradient descent algorithm. The nonlinearity in the system is 

learnt by a Radial Basis Function Network (RBFN) or Multi-Layer Perceptron 

Network (MLP). Simulations are carried out on a two-body system coupled by a 

damped elastic spring in order to identify the linear parameters and the friction torque 

which acts as the nonlinearity in the system. In [23], no stability analysis is carried out 

but the range of the unknown system parameters are limited to ensure overall system 

stability. The work done in [24] follows the same principle of creating a structured 

network in order to model and identify the parameters of a system with an isolated 

nonlinearity. The authors mention, however, that the structure is only capable of 

correctly identifying the system parameters provided the system being modelled is 

unique. In [24], identification is carried out for a multi stand rolling system. The 

parameters are all correctly identified, however, due to the complexity and size of the 

system, convergence time is very large. In addition static learning rates are used 

which may contribute to the slow speed of convergence.   

In [25], a structured recurrent network is developed for a nonlinear two mass 

system which is trained using the Levenberg-Marquardt (LM) algorithm which 

involves computation of the Jacobian using Real Time Recurrent Learning (RTRL). 

The training is carried out in a quasi-online fashion in order to be able to use the LM 

optimization algorithm; however, it is observed that this kind of training and 

optimization might lead to getting trapped in local minima thereby giving incorrect 

desired values.  

 

1.3 Objectives of Research 
 

The aim of this thesis is to build and expand on the work done in [13] and [23] 

in order to develop a structured Recurrent Wavelet Network (RWN) which will not 

only provide an accurate representation of the real plant but will also be able to 

identify linear mechanical parameters as well as static or time-varying nonlinearities 

of the system. The first part of the thesis is dedicated to developing a RWN model as 
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well as a structured RWN based on the system under investigation. Mathematical 

modelling of the system is carried out and stability analysis is carried out based on the 

Lyapunov theory in order to derive the adaptive learning rates (ALR). The second part 

of the thesis involves carrying out online identification of the system and observing 

the effects of changing RWN parameters on the learning capabilities of the network. 

The original contributions of this thesis include developing a structured RWN for 

simultaneous linear and nonlinear mechanical parameter identification for a DC 

Motor and the derivation and application of ALRs using the Lyapunov stability theory.  

 

1.4 Thesis Organization 
 

This work is organized as follows. Chapter 1 gives a general overview of the 

topics under consideration and provides a comprehensive literature review addressing 

the work that has been accomplished in this field. Chapter 2 introduces wavelets, 

conventional Wavelet Networks (WN) and the various initialization and training 

algorithms available. The use of WN for the modelling of static nonlinear systems is 

studied. Chapter 3 presents the Recurrent Wavelet Network (RWN) together with a 

complete study on stability analysis. The derivation of adaptive learning rates to 

ensure network stability is also carried out for the black box modelling of a DC Motor. 

Chapter 4 builds on the RWN and involves the design and construction of structured 

RWN for a DC Motor. The effectiveness of the structured RWN in identifying the 

linear and nonlinear mechanical parameters of the system is detailed in Chapter 5. The 

conclusion of this research and recommendations for future work are provided in 

Chapter 6.  
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Chapter 2: Wavelet Networks 

 

2.1 Wavelets 
 

In order for a function to be considered a mother wavelet in the Morlet-

Grossmann sense, certain admissibility conditions, given below, must be satisfied [5]. 

In essence, mother wavelets should be band pass signals. 

 Zero mean 

 Oscillatory  

 Fast decay to zero 

    
 ∫

|  ( )| 

 
  

 

 
   

A set of daughter wavelets is constructed through the translation and dilation of 

the mother wavelet h(t) as given in Equation 2.1 where m and d are the translation and 

dilation coefficients respectively. Using a set of the daughter wavelets, it is possible to 

approximate a signal. 

    ( )   (
   

 
) (2.1) 

 

One of the popularly used wavelets is the first derivative of the Gaussian 

function given by Equation 2.2 and shown in Figure 6.  

 

 ( )      
  

  

 

 

 

(2.2) 
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Figure 6: First Order Derivative of Gaussian Function 

 

The Morlet wavelet, also known as the Cos-Gaussian function, is given by 

Equation 2.3 and shown in Figure 7.  

 ( )    
  

     (   ) (2.3) 

 

 

Figure 7: Morlet Wavelet 

 

A number of other mother wavelets are commonly used including the Mexican 

Hat wavelet, the Haar wavelet, the Meyer wavelet and the Daubechies wavelet.  
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2.2 Conventional Wavelet Networks 

 

The conventional wavelet network is used for static modelling of a nonlinear 

system. The architecture along with the initialization and training algorithms are 

provided in the following sections.  

 

2.2.1 Architecture. The architecture of a conventional MIMO wavelet 

network consisting of    inputs,    wavelets in the hidden layer and   outputs is 

shown below in Figure 8.  

 

 

 

 

 

 

 

 

 

 

 

Each output of the wavelet network is given by Equation 2.4, 

 ̂     ∑     

  

   

 ∑     

  

   

 (2.4) 

 

where     represents the weights of the direct connections between the outputs and 

the inputs,     represents the weight of the outputs of the neurons and    represents 

Figure 8: Conventional Wavelet Network Architecture 
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the weight of the output bias.    is a multidimensional wavelet given as the product of 

   scalar wavelets as shown in Equation 2.5, 

 

   ∏ (
      

   
)

  

   

 ∏ (   )

  

   

 (2.5) 

 

where     is the translation coefficient and     is the dilation coefficient.  

In this thesis, the first derivative of the Gaussian function is chosen as the 

mother wavelet as given in Equation 2.6. 

 

 (   )       
 

   
 

  (2.6) 

 

The complete set of network parameters is given by the vector 

  {                  } . 

 

2.2.2 Initialization algorithms. The network parameters can be initialized 

using a number of different techniques as in [5], [6] and [9]. Typically, the weights of 

the direct connections, the weights from the neurons to the outputs and the output bias 

weights are initialized to small random values. The Least Squares Method can also be 

used to initialize the direct connection and bias weights     and    respectively. 

Based on the Least Squares Method, the weights    and     will be determined using 

Equation 2.7.  

 

      (   )      (2.7) 

 

where x is the matrix of inputs and Y is the matrix of the desired outputs.  
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Several different methods to initialize the translation and dilation coefficients 

have been developed such as the heuristic method, initialization by selection, as well 

as several variations of the dyadic grid method.  

In the heuristic method, proposed by Oussar and Dreyfus in [9], the maximum 

and minimum of each input are determined as    and    respectively. The translation 

and dilation coefficients are then selected using Equations 2.8 and 2.9, to ensure the 

wavelets extend over the entire input domain.  

 

       (     ) (2.8) 

 

       (     ) (2.9) 

 

The dyadic grid method, introduced by Zhang [5] and elaborated on in [6], 

involves selection of the translation and dilation coefficients based on the division of 

the input domain into a dyadic grid. Grid formation is carried out through the division 

of the input domain, given by [a,b], into two subintervals by p, the centre of gravity of 

the density function of the available data. The translation and dilation coefficients are 

selected using Equations 2.10 and 2.11.  

     (2.10) 

    (   )       (2.11) 

 

The procedure is repeated within each subinterval until all the translation and 

dilation coefficients are initialized. In the event that the number of wavelets is not a 

power of 2, the remaining wavelets are initialized randomly from the finest remaining 

scale. The resulting dyadic grid formation from which the wavelets are selected is 

shown in Figure 9.  
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Figure 9: Dyadic Grid [5] 

 

 

2.2.2 Training algorithms 

2.2.3.1 Gradient descent algorithm. Training a conventional wavelet network 

is carried out using the gradient descent algorithm which involves adjusting the 

network parameters,  , to ensure the minimization of a cost function given by 

Equation 2.12. 

 

 ( )  
 

 
∑ ∑(     ̂  )

 

  

   

  

   

 
 

 
∑ ∑(   )

 

  

   

  

   

 (2.12) 

 

where     is the error between the desired output and the output of the wavelet 

network for a pattern, p.  

Using Equation 2.4, the partial derivative of the cost function with respect to 

the network parameters is given in Equation 2.13.  

 

  

  
  ∑    

  ̂  

  

  

   

 (2.13) 

 

The partial derivative of the network output  ̂   with respect to the network 

parameters is given in Equations 2.14 to 2.18. 
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The partial derivative of the multidimensional wavelet function with respect to 

    is given by Equation 2.19.  

 

   

    
  (   )  (   )       (   )      (    

) (2.19) 

 

Each parameter is then updated using Equation 2.20, where µ is the learning 

rate, γ is the momentum coefficient and n is the iteration index.  

 

  ( )    
  

  
    (   ) (2.20) 

 

The parameters will continue to be updated until the mean squared error, 

computed as in Equation 2.21, reaches a particular desired value.  

 

    
 

  
∑(    ̂ )

 

  

   

 
 

(2.21) 
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2.2.3.2 Levenberg-Marquardt algorithm. A conventional wavelet network can 

also be trained using the Levenberg-Marquardt (LM) algorithm which is a 

combination of the gradient descent method and the Gauss Newton method [26]. 

Training involves adjusting the network parameters,  , to ensure the minimization of 

a cost function given by Equation 2.22. 

 

 ( )  ∑ ∑(     ̂  )
 

  

   

  

   

 ∑ ∑(   )
 

  

   

  

   

 (2.22) 

 

where     is the error between the desired output and the output of the wavelet 

network for a pattern, p, and is a function of the network parameters    

Using Equation 2.4, the partial derivatives of the network output with respect 

to the network parameters are computed in order to form the Jacobian matrix as given 

in Equation 2.23.  
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(2.23) 

 

Each parameter is then updated using Equation 2.24, where µ is the learning 

rate, J is the Jacobian matrix, I is the identity matrix and Y and  ̂ are the matrices of 

the desired network output and the actual network outputs respectively.  

 

   (      )    (   ̂) (2.24) 

 

The network output is then calculated for the new values of the network parameters 

and the cost function given in Equation 2.25,  (    ), is recomputed.  If the sum 

of the square of errors is seen to be reduced from the initial calculation, the learning 

rate µ is reduced by a factor of β,              and the process then repeated. If 

the sum of square of errors is not reduced then the learning rate µ is increased by a 
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factor of β,     is recomputed and  (    ) calculated again. The algorithm is said 

to converge when the sum of the squares of the error has reduced to the target value or 

when a certain number of iterations has been reached. In this way the LM algorithm 

can be used for offline batch training of a CWN. The LM algorithm can be 

summarized in the form of a flowchart as shown in Figure 10. 
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Figure 10: Levenberg Marquardt Flowchart 
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2.3 Nonlinear Function Approximation 

 

Figure 11 shows a block diagram of the training structure for a wavelet 

network used for the approximation of static nonlinear functions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This is a black box model in which the inputs are presented to the wavelet 

network which then trains so as to minimize the error between the network output and 

the output of the original system. MATLAB and Simulink were used to simulate the 

training of the network for a single input single output (SISO) and a multi input single 

output (MISO) nonlinear function. Both functions to be approximated were taken 

from seminal papers [8,9] on wavelet modelling. The default activation function used 

is the first derivative of the Gaussian. 

For both cases, offline training was carried out using wavelet networks 

initialized using the heuristic method and the dyadic grid method in order to compare 

the initialization techniques in terms of speed of convergence and mean squared error 

(MSE). Further, the effect of changing the number of neurons in the hidden layer was 

investigated. The effect of changing the learning rates was also studied. In each case, 

the system performance was evaluated based on the mean square error obtained after 

a fixed number of iterations. The next step involved comparing the performance of the 

systems when using different activation functions. Finally, the gradient descent 

Figure 11: Approximation of Static Nonlinear Function 
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method for training was compared with the Levenberg Marquardt (LM) algorithm in 

order to determine which method is more efficient for offline training.  

Online training was then carried out for a SISO Gaussian function and a MISO 

system using different activation functions to compare the network efficiency.  

 

2.3.1 Offline training. 

 

2.3.1.1 SISO system. The nonlinear function to be approximated is given by 

Equation 2.25 and shown in Figure 12. 

 

 

 ( )  {
                

      
                 (           )

 

         )
       )
       )

 (2.25) 

 

 

Figure 12: SISO Nonlinear Function 

 

The translation and dilation coefficients were initialized using the heuristic 

method while the weights of the direct connections, hidden layer to output weights 

and the output bias weights were initialized using the least squares method.  The 

number of iterations was fixed to 10000. In order to determine the effect of changing 

the number of neurons in the hidden layer on the MSE, the learning rate and 
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momentum rate were set to 0.01 and 0.4 respectively and the number of neurons was 

varied. The simulation was the repeated, initializing the translation and dilation 

coefficients using the dyadic grid method, keeping all other conditions identical. The 

results are tabulated in Table 1 and shown graphically in Figures 13 and 14.  

 

Table 1: MSE for Varying Nw for SISO Static Function Approximation using Heuristic and Dyadic 

Grid Method 

Iterations Nw Heuristic Method MSE Dyadic Grid Method MSE 

10000 

7 0.6208 0.3019 

15 1.0511 0.0828 

31 1.1262 0.1292 

 

 

 

Figure 13: MSE for Varying Nw for SISO Static Function Approximation using Heuristic Method 
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Figure 14: MSE for Varying Nw for SISO Static Function Approximation using Dyadic Grid Method 

 

 

The number of neurons was then fixed at 15 and the momentum rate fixed at 

0.6. The effect of altering the learning rate was then investigated and the MSE after 

10000 iterations was determined for both cases when the translation and dilation 

coefficients are initialized using the heuristic method and the dyadic grid method. The 

results are tabulated in Table 2 and a graphical representation is shown in Figures 15 

and 16. 

 

Table 2: MSE for Varying µ for SISO Function Approximation using Heuristic and Dyadic Grid 

Method 

Iterations µ Heuristic Method MSE Dyadic Grid Method MSE 

10000 

0.01 0.7853 0.0232 

0.02 0.2841 0.0190 

0.04 0.0983 0.0170 

0.08 0.0198 0.0103 
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Figure 15: MSE for Varying µ for SISO Static Function Approximation using Heuristic Method 

 

 

 

Figure 16: MSE for Varying µ for SISO Static Function Approximation using Dyadic Grid Method 
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From the results obtained it was observed that the network initialized using the 

dyadic grid method performed better that the one initialized using the heuristic 

method. Faster convergence and lower MSE were observed. It was also seen that for 

this function, smaller network sizes performed better than larger networks. Keeping 

the momentum rate fixed, an increase in the learning rate also served to reduce the 

MSE. An important observation was that the selection of the learning and the 

momentum rates was arbitrary being done through trial and error in order to 

determine the ranges in which the network would be able to model the system.  

Next, a comparison was drawn between the gradient descent algorithm and the 

LM algorithm. The network trained using the LM algorithm consists of a hidden layer 

with 15 neurons with a learning rate of 0.1 and a β of 2. The performance of this 

network was compared to a network trained using the gradient descent algorithm with 

a learning rate of 0.08 and momentum rate of 0.6 which is initialized using the dyadic 

grid method. Training was carried out for 100 iterations.  

Table 3 and Figure 17 show the MSE of the network trained using each of the 

two algorithms. Figure 18, which compares the network outputs for both cases, shows 

that the LM algorithm provides much faster convergence and better response.   

 

Table 3: MSE for LM and GD Trained Networks for SISO Static Function Approximation 

 Mean Square Error 

Iterations LM Algorithm Gradient Descent Algorithm 

100 0.01081 0.6716 
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Figure 17: MSE for LM and GD Trained Networks for SISO Static Function Approximation 

 

 

 

Figure 18: Output of Networks Trained using LM and GD Algorithms 
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The effect of changing the activation function on the network performance 

was tested for a wavelet network with 15 neurons in the hidden layer, with learning 

and momentum rates set to 0.08 and 0.6 respectively. Initialization of the translation 

and dilation parameters was done using the dyadic grid method. The gradient descent 

algorithm was used for training. Table 4 shows the MSE after 1000 iterations for the 

network which was tested using the first derivative of the Gaussian function, the 

Mexican Hat wavelet and the Morlet wavelet as activation functions. It is seen that the 

first derivative of the Gaussian function provides the best network performance.  

 

Table 4: MSE for Different Activation Functions for SISO Static Function Approximation 

 Mean Square Error 

Iterations 1
st
 Derivative of Gaussian  Mexican Hat Morlet 

1000 0.0158 0.0301 0.0430 

 

 

Figure 19 shows the comparison of the MSE for the three different activation 

functions and Figure 20 shows the comparison in the network output after 1000 

iterations. 

  

 

Figure 19: MSE for Network Trained using Different Activation Functions 
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Figure 20: Output of Networks Trained using Different Activation Functions 

 

 

2.3.1.2 MISO system. The nonlinear function to be approximated is given by 

Equation 2.26 and shown in Figure 21.   

 

 (     )       (         )           (  (      ) )             (  (      ) ) (2.26) 

 

 

 

Figure 21: MISO Nonlinear Function 
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The translation and dilation coefficients were initialized using the heuristic 

method while the weights of the direct connections, hidden layer to output weights 

and the output bias weights were initialized to small random values. The simulation 

was run for 10000 iterations. In order to study the effect of changing the number of 

neurons in the hidden layer the learning rate and momentum rate were fixed to 0.1 and 

0.6 respectively. The simulation was the repeated, this time initializing the translation 

and dilation coefficients using the dyadic grid method, keeping all other conditions 

identical. The results are tabulated in Table 5 and shown graphically in Figures 22 and 

23.  

 

Table 5: MSE for Changing Nw for MISO Function Approximation using Heuristic Method 

Iterations Nw Heuristic Method MSE Dyadic Grid Method MSE 

10000 

7 0.0136 0.0104 

15 5.0251e-4 4.4011e-4 

31  7.6238e-4     2.3128e-4 

 

 

 

Figure 22: MSE for Varying Nw for MISO Function Approximation using Heuristic Method 
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Figure 23: MSE for Varying Nw for MISO Function Approximation using Dyadic Grid Method 

 

 

The number of neurons was then fixed at 31 and the momentum rate fixed at 

0.6. The effect of altering the learning rate was then investigated and the MSE after 

10000 iterations was determined for both cases when the translation and dilation 

coefficients are initialized using the heuristic method and the dyadic grid method. The 

results are tabulated in Table 6 and a graphical representation is shown in Figures 24 

and 25. 

 

Table 6: MSE for Changing µ for MISO Function Approximation using Heuristic Method 
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Figure 24: MSE for Varying µ for MISO Function Approximation using Heuristic Method 

 

 

 

Figure 25: MSE for Varying µ for MISO Function Approximation using Dyadic Grid Method 
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From the results, it is seen that for this system, the network performs better 

when the number of neurons are increased. In addition, the dyadic grid initialization 

method provided better results with the network converging faster and producing a 

smaller MSE. Trial and error was used again in the selection of the momentum rate 

and the learning rate. Increasing the learning rate up to 0.1 for a fixed momentum rate 

was seen to improve the network training.  

Next, a comparison was drawn between the gradient descent algorithm and the 

LM algorithm. The network trained using the LM algorithm consists of a hidden layer 

with 31 neurons with a learning rate of 0.5 and a β of 8. The performance of this 

network was compared to a network trained using the gradient descent algorithm with 

a learning rate of 0.1 and momentum rate of 0.6 which is initialized using the dyadic 

grid method. Training was carried out for 100 iterations.  

Figure 26 and Table 7 show the MSE of the network trained using each of the 

two algorithms.  

 

 

Figure 26: MSE for LM and GD Trained Networks for MISO Function Approximation 
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Table 7: MSE for LM and GD Trained Networks for MISO Function Approximation 

 Mean Square Error 

Iterations LM Algorithm Gradient Descent Algorithm 

100 2.628e-7 0.361 

 

 

The effect of changing the activation function on the network performance 

was tested for a wavelet network with 31 neurons in the hidden layer, with learning 

and momentum rates set to 0.1 and 0.6 respectively. Initialization of the translation 

and dilation parameters was done using the dyadic grid method. The gradient descent 

algorithm was used for training. Table 8 shows the MSE after 1000 iterations for the 

network which was tested using the first derivative of the Gaussian function, the 

Mexican Hat wavelet and the Morlet wavelet as activation functions. It is seen that the 

first derivative of the Gaussian function provides the best network performance. 

Figure 27 shows the comparison of the MSE for the three different activation 

functions. 

 

 

Figure 27: MSE of Networks Trained using Different Activation Functions for MISO Function 

Approximation 
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Table 8: MSE for Different Activation Functions for MISO Function Approximation 

 Mean Square Error 

Iterations 1
st
 Derivative of Gaussian  Mexican Hat Morlet 

1000 0.0027 0.0060 0.0077 

 

 

2.3.2 Online training. 

 

2.3.2.1 SISO system. The nonlinear Gaussian function to be approximated is 

given by Equation 2.27 and shown in Figure 28. 

 

 ( )        
 
 (2.27) 

 

 

 

Figure 28: Gaussian Function 

 

 

Training was carried out using a chirp signal and the simulation was run for 

10000 iterations for a wavelet network with seven neurons in the hidden layer and the 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Gaussian Function



50 

 

learning and momentum rates set to 0.1 and 0.9 respectively. The Simulink block 

diagram for training the network online is shown in Figure 29 and the MSE is 

provided in Figure 30.  After training for 10000 iterations, the final value of the MSE 

was found to be 4.6294e-8.  

 

 

Figure 29: Online Training of SISO CWN 

 

 

 

Figure 30: Mean Square Error for Approximation of Gaussian Function 
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After training the network, the network was then tested using sinusoids and 

triangular waves as the input signals. The block diagram for testing of the network is 

shown in Figure 31.  

 

 

 

Figure 31: Block Diagram for Testing Wavelet Network 

 

 

A graph of the network output versus the input was plotted and is shown in 

Figure 32. From the graph it can be seen that the network was trained to successfully 

approximate the desired Gaussian function. After testing, the mean square error was 

found to be 2.7517e-5.  

 

 

Figure 32: Output of CWN for Gaussian Function Approximation 
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The effect of changing the activation function for online training of the SISO 

system was then tested. A network with 7 neurons in the hidden layer was selected 

with a learning rate of 0.1 and a momentum rate of 0.9. Three different activation 

functions were tested: first derivative of the Gaussian, Morlet and Mexican Hat 

wavelets. Table 9 and Figure 33 show the MSE of each network after 1000 iterations. 

It was seen that selecting the Morlet wavelet as the activation function allowed for 

faster network convergence. 

 

Table 9: MSE for Different Activation Functions for Online SISO Function Approximation 

 Mean Square Error 

Iterations 1
st
 Derivative of Gaussian  Mexican Hat Morlet 

1000 1.819e-7 3.38e-8 1.359e-9 

 

 

 

 

Figure 33: MSE for Different Activation Functions for Online SISO Function Approximation 
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2.3.2.2 MISO system. The nonlinear function to be approximated, for the input 

range of [-0.5, 0.5], is given by Equation 2.28 and shown in Figure 34.  

 

 (     )       (         )           (  (      ) )             (  (      ) ) (2.28) 

 

 

 

Figure 34: MISO Function for Online Training 
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Figure 35.  

 

                    Figure 35: Training Signals for MISO Function 

-0.5

0

0.5

-0.5

0

0.5
0

1

2

3

4



54 

 

The Simulink block diagram for training the network online is shown in 

Figure 36. The simulation was run for 1600 iterations for a wavelet network with 31 

neurons in the hidden layer. The momentum rates for the translation and dilation 

coefficients were selected to be different from those used for the direct connection 

and bias weights. The momentum coefficients were set to 0.8 and 0.6 respectively and 

the learning rate was selected as 0.001.  

 

 

Figure 36: Online Training of MISO CWN 

 

A graph of the MSE per iteration is shown in Figure 37. At the end of 1600 

iterations the error was found to be 0.0013.  

 

 

Figure 37: Mean Square Error for Approximation of MISO Function 
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The network was then tested for an input mesh between -0.5 and 0.5 as shown 

in Figure 38. 

 

 

Figure 38: Block Diagram for Testing MISO Wavelet Network 

 

 

From Figure 39 it can be see that the network output closely follows the 

desired output signal. The MSE upon testing was found to be 0.0094. With further 

network training, this error can be further reduced to provide a more accurate 

representation. 

 

 

 

Figure 39: Output of CWN for MISO Function Approximation 
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The effect of changing the activation function for online training of the MISO 

system was then tested. A network with 31 neurons in the hidden layer was selected 

with a learning rate of 0.001 and momentum rates of 0.8 and 0.6 were selected for the 

translation and dilation coefficients and the remaining network coefficients 

respectively. Three different activation functions were tested: first derivative of the 

Gaussian function, Morlet and Mexican Hat wavelets. Table 10 and Figure 40 show 

the MSE of each network after 1500 iterations. In this case the Mexican Hat wavelet 

gave the smallest MSE after 1500 iterations.  

 

Table 10: MSE for Different Activation Functions for Online MISO Function Approximation 

 Mean Square Error 

Iterations 1
st
 Derivative of Gaussian  Mexican Hat Morlet 

1500 0.0013380 0.00083426 0.0013868 

 

 

 

Figure 40: MSE for Different Activation Functions for Online MISO Function Approximation 
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Figure 41: Training Structure for Dynamic Systems  
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Chapter 3: Modelling of Dynamic Systems Using Recurrent Wavelet 

Networks 
 

Unlike the conventional wavelet networks which are used to create static 

mappings, Recurrent Wavelet Networks (RWN) are used for the modelling of 

dynamic systems with time varying inputs or outputs as shown in Figure 41. 
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3.1 Architecture 
 

Modelling of dynamic systems is made possible using RWN through the use 

of feedback in the wavelet layer of the network. The most popular RWN architecture 

is a four layer structure with self-feedback in the wavelet layer as shown in Figure 42 

[13-16]. A generalization of the WNN structure, the RWN is equivalent to the WNN 

when the feedback weights are set to zero.  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

The output of the recurrent wavelet network is given by Equation 3.1, 
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 ∑    ( )

  

   

 (3.1) 

Figure 42: RWN Architecture 
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where    represents the weights of the direct connections between the output and the 

input,   represents the bias weight and    represents the weight between the product 

nodes of Layer 3 and the output node.    is a multidimensional wavelet given as the 

product of    scalar wavelets given by Equation 3.2. 

 

  ( )  ∏ (   ( ))

  

   

 ∏ (
   ( )     

   
)

  

   

 (3.2) 

 

where     is the translation coefficient and     is the dilation coefficient and     

represents the input to Layer 2 and is given by Equation 3.3.   

 

   ( )    ( )      (   (   )) (3.3) 

 

The mother wavelet is selected to be the first derivative of the Gaussian function, 

therefore Equation 3.2 can be re-written as shown in Equation 3.4. 

 

  ( )  ∏   ( )

  

   

 ∏    ( )

  

   

  
   

 ( )

  (3.4) 

 

The complete set of network parameters is given by the weighting vector 

                  ] . 

 
 

3.2 Training Algorithm 

 
Training of the recurrent wavelet network is carried out using the gradient 

descent algorithm which involves adjusting the network parameters,  , to ensure the 

minimization of a cost function given by Equation 3.5, 

 

 ( )  
 

 
( ( )   ̂( ))  

 

 
( ( ))  (3.5) 

 

where   is the error between the desired output and the output of the wavelet network.  
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The partial derivative of the cost function with respect to the network 

parameters is given in Equation 3.6.  

 

  

  
   ( )

  ̂( )

  
 (3.6) 

 

The partial derivative of the network output  ̂  with respect to each of the 

network parameters is given in Equations 3.7 to 3.12. 
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Equations 3.10 to 3.12 can be rewritten for ease as given in Equations 3.13 to 3.15, 

where 
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Recursive equations are then obtained as shown in Equation 3.16 to 3.18.  
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where  
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 (   
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Each parameter is then updated using Equation 3.19, where µ(n) represents the 

adaptive learning rate and n represents a data point in the training cycle. 

 

 (   )   ( )    ( )   ( )   ( )
  

  
 (3.19) 

 

3.3 Convergence and Stability Analysis 

 
In order to ensure the convergence of the training algorithm for the structure 

represented in Figure 41, adaptive learning rates are derived from the discrete 

Lyapunov stability theorem. The discrete Lyapunov function is defined as in Equation 

3.20 [13, 20-21].  
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  ( ) (3.20) 

 

The change in the Lyapunov function is given in Equation 3.21.  
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The error term,  (   ), can be approximated as shown in Equation 3.22.  
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where  , the weighting vector, is   

 

                  ]  

and 
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Substituting Equation 3.22 in Equation 3.21, the change in the Lyapunov function can 

be written as shown in Equation 3.23.  
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The change in each of the weights,    , is computed as in Equation 3.24.  
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Using Equations 3.22 and 3.24, the change in the Lyapunov function can be written as 

shown in Equation 3.25.  

 

  ( )    ( ) ( )  [
  ( )

   
]

 

 
  ̂( )

   
( ( )  

 

 
  ( ) ( )  [

  ( )

   
]

 

 
  ̂( )

   
) (3.25) 
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Therefore,   ( ) can be written as shown in Equation 3.26.  

 

 

  ( )     ( ) ( ) ‖
  ̂( )

   
‖

 

( ( )  
 

 
  ( ) ( ) ‖

  ̂( )

   
‖

 

) (3.26) 

 

 

 

 

 

 



64 

 

Equation 3.26 is rewritten as Equation 3.27. 
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To ensure convergence,   ( )      In order to meet this condition,    . This is 

possible by selecting the learning rate as shown in Equation 3.29.   
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Substituting for ηi
 
leads to Equation 3.30,  
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From Equation 3.30, the learning rates for each of the weights should be selected as 

shown in Equation 3.31, in order to guarantee convergence.  
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Based on Equation 3.31, the method by which the adaptive learning rates are obtained 

in each iteration is shown in the flowchart in Figure 43, where N represents the total 

number of data points per iteration.  
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Figure 43: Flowchart for Updating Adaptive Learning Rates 
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3.4 Adaptive Learning Rates 
 

From the results of the stability analysis, adaptive learning rates were derived for 

each of the network parameters that make up the weighting vector θ. Details on 

computation of matrix norms can be found in Appendix A. Appendix B provides the 

details on the solution of the Recursive Equations 3.16-3.18 which will be required to 

solve for the adaptive learning rates.  

 

    

For the bias weight at the output layer, the learning rate,   ( )   is selected as 

shown in Equation 3.32. 

 

From Equation 3.7, 
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  . Therefore the norm is given by Equation 3.33, 

 

    

For the direct connections between the input layer and the output layer, the 

learning rate,   ( )   is selected as shown in Equation 3.35. 
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From Equation 3.33, the adaptive learning rate is selected as shown in Equation 3.34.  
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From Equation 3.8, 
  ̂( )

   
   ( ). Therefore the norm is given by Equation 3.36, 

 

 

 

The maximum of the norm at time index n is given by Equation 3.37.  

 

 

 

From Equation 3.37 the maximum norm can be computed as shown in Equation 3.38,  
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Substituting Equation 3.38 in Equation 3.35, the adaptive learning rate is selected as 

shown in Equation 3.39.  
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From Equation 3.9, 
  ̂( )

   
   .  Therefore the norm is given by Equation 3.41,  

 

 

 

The maximum of the norm at time index n is given by Equation 3.42.  

 

 

From Equation 3.42, the maximum norm is given by Equation 3.43,  

 

 

Since the selected activation function is the first derivative of a Gaussian, then 

|  ( )|     The maximum norm can be computed as shown in Equation 3.44. 

 

 

 

Substituting Equation 3.44 into Equation 3.40, the adaptive learning rate is selected as 

shown in Equation 3.45. 
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The learning rate,   ( )  for the translation coefficients is selected so as to satisfy 

Equation 3.46.  

 

In order to solve for the norm of the matrix 
  ̂( )

  
, first |

  ̂( )

    
|  must be computed.  

Equations 3.13 and 3.16 are rewritten here for convenience,   

 

where 

 

Since   |   ( )|   , Equation 3.47 can be written as Equation 3.49.  

 

 

The solution of the recursive equation, given by Equation 3.48, is given in Equation 

3.50,  

 

Since V1,ji(0)=0, Equation 3.50 can be simplified to Equation 3.51.  
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Assuming |
   

   
|   , Equation 3.52 can be rewritten as shown in Equation 3.53 which 

represents a finite geometric series. 

 

where 

       , 

 

The sum of the finite geometric series will therefore always be less than or equal to 

the infinite series as shown in Equation 3.54.   

 

The solution of the infinite geometric series is given by Equation 3.55.  

 

 

Substituting Equation 3.55 in Equation 3.49, Equation 3.56 is obtained.  

 

 

For a given point in time n, let       ( )        |
  ̂( )

    
|. The maximum norm is 

therefore given by Equation 3.57.  

 

where 

 

Substituting Equation 3.57 in Equation 3.46, the adaptive learning rate is selected as 

shown in Equation 3.58.  
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The learning rate,   ( )  for the dilation coefficients is selected so as to satisfy 

Equation 3.59.  

 

In order to solve for the norm of the matrix 
  ̂( )

  
, first |

  ̂( )

    
|  must be computed.  

Equations 3.14 and 3.17 are rewritten here for convenience,  

 

 

where 

 

Since   |   ( )|   , Equation 3.60 can be written as Equation 3.62.  

 

The solution of the recursive equation, given by 3.61, is given in Equation 3.63,  

 

 

Since V2,ji(0)=0, Equation 3.63 can be simplified to Equation 3.64.  

 

Since   |   
 |   , Equation 3.64 can be written as shown in Equation 3.65. 
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Assuming |
   

   
|   , Equation 3.65 can be rewritten as shown in Equation 3.66, 

 

where   

 

     , 

 

Equation 3.66 can then be written as shown in Equation 3.67.  

 

 

From the inequality, |   |  | |  | |, Equation 3.67 can be rewritten as Equatio 

3.68.  

 

 

Since,   |   ( )|   , Equation 3.68 can be further simplified as shown in 

Equation 3.69.  

 

 

Equation 3.69 can be written as shown in Equation 3.70, 
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Equation 3.70 is rewritten as shown in Equation 3.71 which represents a finite 

geometric series. 

where 

     , 

 

Equation 3.71 represents the sum of finite geometric series which will always be less 

than or equal to the infinite sum of the series as shown in Equation 3.72.  

 

Solving the infinite geometric series leads to Equation 3.73.  

 

Substituting Equation 3.73 in Equation 3.62 leads to Equation 3.74.  

 

 

Let,       ( )        |
  ̂( )

    
|. The maximum norm is therefore given by Equation 

3.75.  

where 

 

Substituting Equation 3.75 in Equation 3.59, the adaptive learning rate is selected as 

shown in Equation 3.76. 
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The learning rate,   ( )  for the feedback coefficients is selected so as to satisfy 

Equation 3.77.  

 

In order to solve for the norm of the matrix 
  ̂( )

  
, first|

  ̂( )

    
|  must be computed.  

Equations 3.15 and 3.18 are rewritten here for convenience,  

 

 

where 

 

Since   |   ( )|     Equation 3.78 can be written as Equation 80.  

 

The solution of the recursive equation, given by Equation 3.79, is given in Equation 

3.81,  

 

Since V3,ji(0)=0, Equation 3.81 can be simplified to Equation 3.82.  

 

 

Since   |   
 |   , and   |   ( )|     Equation 3.82 can be written as shown in 

Equation 3.83. 
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Assuming |
   

   
|   , Equation 3.83 can be rewritten as shown in Equation 3.84 which 

represents a finite geometric series.  

where 

       , 

 

The sum of the finite geometric series is therefore always less than or equal to the 

infinite sum as shown in Equation 3.85.  

Solving the infinite geometric series leads to Equation 3.86.  

 

Substituting Equation 3.86 in Equation 3.80,  

 

 

Let,       ( )        |
  ̂( )

    
|. The maximum norm is therefore given by Equation 

3.88.  

where 

 

Substituting Equation 3.88 in Equation 3.77, the adaptive learning rate is selected as 

shown in Equation 3.89.  
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3.5 Simulations 
 

In this section, grey box modelling of a DC motor with nonlinear friction, 

represented by Equations 3.90 and 3.91, was carried out. The parameters of the DC 

Motor can be found in Appendix C.  

 

 
  

  
          ( )     (3.90) 

 
  

  
          (3.91) 

 

The nonlinear friction of the motor represented by   ( ) is assumed to be unknown 

and the load torque    is selected as zero. As such, based on the a priori knowledge of 

the linear system structure, the linear system is discretized using the Euler Forward 

method as well as the Bilinear Transformation method in order to determine the 

training inputs required to train the RWN. The transfer function of the linear DC 

Motor without nonlinear friction is given in Equation 3.92.  
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(    )(    )      
 (3.92) 

 

3.5.1 Nonlinear DC motor discretized using Bilinear transformation. In order to 

optimize the training of the RWN, the training inputs can be determined by 

discretizing the DC Motor using the bilinear transform, given in Equation 3.93 in 

order to determine the necessary training inputs. Equation 3.94 shows the discretized 

linear DC Motor model. 
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 (          )

           
 (3.94) 

 

where  

                                  , 

                                                  

 

From Equation 3.94, it can be seen that the speed is a function of the following inputs 

given in Equation 3.95. 

 

 ( )   ( ( )  (   )  (   )  (   )  (   )) (3.95) 

 

Online training was carried out using a chirp signal of magnitude 12 amd 

frequency 0.1-4Hz over an interval of 1s and the RWN was selected with 3 neurons in 

the hidden layer. The nonlinear frictional torque,   ( )  was selected as a 

combination of viscous friction and coulomb friction and is shown in Figure 44. 

 

 

Figure 44: Frictional Torque 
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The network was trained as shown in Figure 45 and the MSE after training for 10000 

iterations is shown in Figure 46. The MSE after training was found to be 6.4572e-6.  

 

 

Figure 45: Training RWN for DC Motor, Bilinear Discretization 

 

 

 

Figure 46: MSE for DC Motor RWN, Bilinear Discretization 
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Since    and    are constant values and      , the change in    and    over time 

is observed. It was observed that the parameters only changed in the first iteration and 

then remained constant for the rest of the training. The change in parameters over the 

first cycle is shown in Figure 47.  

 

 

 

Figure 47: Learning Rates for Translation and Dilation over First Training Cycle 

 

 

Testing was then carried out as shown in Figure 48, using a sinusoidal input of 

magnitude 3V and frequency 1Hz. From Figure 49, it can be seen that the network has 

been trained to represent the DC Motor with nonlinear friction. The MSE after testing 

was found to be 1.2912e-5.  
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Figure 48: Testing RWN for DC Motor, Bilinear Discretization 

 

 

 

Figure 49: DC Motor RWN Test Output, Bilinear Discretization  
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3.5.2 Nonlinear DC motor discretized using Euler Forward transformation. In 

this section, the training inputs were selected based on the Euler Forward 

discretization of the DC Motor given in Equation 3.96. Equation 3.97 shows the 

discretized linear DC Motor model. 

 

  
   

 
 (3.96) 
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 ( )
 

     
  

   (            )    (                      ) 
  

 (3.97) 

 

From Equation 3.97 it can be seen that the speed of the DC Motor is a function of the 

inputs shown in Equation 3.98.  

 

 ( )   ( (   )  (   )  (   )) (3.98) 

 

The RWN with 3 neurons in the hidden layer was trained as shown in Figure 

50, using a chirp signal of magnitude 12 and frequency 0.1-4Hz over an interval of 1s,  

and the MSE after training for 10000 iterations is shown in Figure 51. The MSE after 

training was found to be 6.8587e-6. 

 

.  

Figure 50: Training RWN for DC Motor, Euler Forward Discretization 
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Figure 51: MSE for DC Motor RWN, Euler Forward Discretization 

 

 

Since    and    are constant values and      , the change in    and    over time 

is observed. It was observed that based on the initial conditions selected, the 

parameters remained constant over the course of the training as shown in Figure 52.  

 

 

Figure 52: Learning Rates for Translation and Dilation over First Training Cycle 
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Testing was then carried out as shown in Figure 53, using a sinusoidal input of 

magnitude 3V and frequency 1Hz. From Figure 54, it can be seen that the network has 

been trained to represent the DC Motor with nonlinear friction. The MSE after testing 

was found to be 1.6747e-5.  

 

 

 

Figure 53: Testing RWN for DC Motor, Euler Forward Discretization 

 

 

 

Figure 54: DC Motor RWN Test Output, Euler Forward Discretization 
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Nonlinear Friction 
 

 
RWN   

  ̂ ( ) 

  

 ( )   ( ) 

) 

Figure 55: Nonlinear Friction Identification 

    

+ 
- 

From the two results, it can be seen that a priori knowledge of the DC motor 

structure enables the selection of the most relevant inputs to ensure that the RWN 

provides a highly accurate black box model of the DC Motor with nonlinearities such 

as viscous and coulomb friction.  

 

3.5.3 Friction. In this section, the RWN was trained to learn the nonlinear friction of 

a DC Motor as shown in Figure 55. Here it is assumed that the frictional torque   ( ) 

is a measurable value.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The frictional function in consideration is the Tustin Armstrong Helouvry model 

where the signum function is approximated using a hyperbolic tan function, 

represented using Equation 3.99 and shown in Figure 56.  

 

  ( )      (  )  (   (     ) 
  | | )     (3.99) 

 

where   is a large positive constant,     represents the Coulomb friction,    represents 

the static friction coefficient,   represents the viscous friction coefficient and   

represents the stiction coefficient. For the simulation,   is taken as 10.  
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Figure 56: Friction Characteristics 

 

 

The network used for training is shown in Figure 57. A 1V sine wave with 

frequency of 1Hz was applied to the DC motor for generating the training signal   

which is shown in Figure 58.   
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Figure 57: Generating Training Data for Friction Identification 
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Figure 58: Training Signal for Friction Identification 
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hidden layer. The MSE after training is shown in Figure 59 and given in Table 11.  

 

 

 
 

Figure 59: MSE for Varying Nw for Friction Identification 
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Table 11: MSE for Varying Nw for Friction Identification 

Nw MSE 

3 8.2753e-10 

7 2.7731e-10 

15 3.7961e-11 

 

 

Since    and    are constant values and      , the change in    and    

over time is observed. Figures 60-62 shows the learning rate change during the first 

training cycle and the last training cycle for both parameters for each of the three 

network sizes tested.  

 

 

 

Figure 60: Learning Rates for Translation and Dilation over First and Last Training Cycle, Nw=3 
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Figure 61: Learning Rates for Translation and Dilation over First and Last Training Cycle, Nw=7 

 

 

 

Figure 62: Learning Rates for Translation and Dilation over First and Last Training Cycle, Nw=15 
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Testing was then carried out by applying a chirp signal of magnitude 0.75V 

and frequency ranging from 0.1-4Hz to the DC Motor to generate the test signal 

shown in Figure 63.  

 

 

Figure 63: Testing Signal for Friction Identification 

 

 

The error after testing is shown in Table 12 and the torque speed characteristics of the 
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Table 12:  MSE for Varying Nw after Testing for Friction Identification 

Nw MSE 

3 1.3724e-4 
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Figure 64: Torque Speed Characteristic for Varying Nw after Testing for Friction Identification 
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Chapter 4: DC Motor Identification Using Structured Recurrent 

Wavelet Network 
 

From the results of Chapter 3, it is evident that a DC motor with nonlinearities 

can be modelled using a recurrent wavelet network. In this section, a structured 

recurrent wavelet network is designed to allow for simultaneous linear and nonlinear 

parameter identification of a DC motor with nonlinear frictional characteristics.  

4.1 DC Motor Model Derivation 
 

The DC Motor, as shown in Figure 65, is represented by the Equations 4.1 and 

4.2.  
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          (4.2) 

 
 
 
 

 

 

 

  

 

 

The State Space model of the DC Motor is given in Equations 4.3 and 4.4.  
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Figure 65: Continuous Time Model of DC Motor 
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Figure 67: Step 1 of Discretization of DC Motor System 
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Figure 66: Discretized Integrator using Euler-forward Method 

The DC Motor system is discretized using the Euler-forward method which is 

represented in Equation 4.5 and shown in block diagram form in Figure 66. Here, T 

represents the sampling time which is selected to be 5 to 10 times less than the 

electrical time constant of the DC Motor.  
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The discretized DC Motor model is shown in Figure 67.  
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Figure 68: Step 2 of Discretization of DC Motor Model 
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Figure 69: Step 3 of Discretization of DC Motor Model 

After discretization, the next step involves developing a model for a structured 

recurrent network which can be trained to learn both the linear and nonlinear 

parameters of the DC Motor system. Figure 68 and 69 show the intermediate steps in 

developing the structured network which is shown in Figure 70.  
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4.2 Architecture for DC Motor Parameter Identification 
 

The following structure, shown in Figure 71, shows the online training 

structure for the structured recurrent wavelet network representing the DC Motor. 

This structure allows for simultaneous learning of both the linear and nonlinear parts 

of the system. For the purpose of this research it is assumed that the time constant of 

the motor being modelled is available. In order to train the network, since  ( ) is a 

measurable output of the system,   ̂ is obtained as a function of  ( ) rather than the 

approximated speed  ̂( ).  
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Figure 70: Structured Recurrent Wavelet Network Representing DC Motor Model 
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Figure 71: DC Motor Parameter Identification Training Structure 
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The linear network parameters are given by the vector  ̂ and the parameters of 

the recurrent wavelet network are given by the vector θ as given below.  

 

 ̂    ̂  ̂  ̂     ]  [ 
 

 
  

 

 
  

  

 
] 

 

where    and   are assumed to be known a priori.  

 

 ̂  [ ̂  ̂   ̂   ̂  ]
 
. 
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The network can be represented in state space form by Equations 4.6 and 4.7.  

 

[
 ̂ ( )

 ̂ ( )
]  [

   ̂  ̂  ̂  ̂ 

  ̂     
] [

 ̂ (   )

 ̂ (   )
]  [

 
  

]  (   )  [
  ̂ 

 
]  ̂ (   ) (4.6) 

 

 ̂( )     ] [
 ̂ ( )

 ̂ ( )
] (4.7) 

where 

 

 ̂( )  [
 ̂ ( )

 ̂ ( )
]  [

 ̂( )

 ̂( )
]  ( )   ( ) 

 

The state space equations can then be rewritten in matrix form as shown in Equations 

4.8 to 4.10. 

 

 ̂( )    ̂(   )    (   )    ̂ (   ) (4.8) 

 
 ̂( )    ̂( ) 

(4.9) 

 

 ̂ ( )  ∑ ̂   ( )

  

   

 
(4.10) 

 

4.3 Training Algorithm 
 

A simplified training structure is provided in Figure 72 which shows the 

structure in terms of Equations 4.8 to 4.10. Training of the structured network is 

carried out using the gradient descent algorithm which involves adjusting the network 

parameters,  ̂ and  ̂ to ensure the minimization of a cost function given by Equation 

4.11. 

 

  
 

 
( ( )   ̂( ))  

 

 
  ( ) (4.11) 

 

where   is the error between the desired output and the output of the network.  
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Figure 72: Simplified DC Motor Parameter Identification Training Structure 

 

 

 
 

 

 

 

 

 

 

 

 

The partial derivative of the cost function with respect to the linear network 

parameters, vi, is given in Equation 4.12.  

 

  

  ̂
   ( )

  ̂( )

  ̂
 (4.12) 

 

The partial derivative of the network output  ̂  with respect to the linear 

network parameters is given in Equations 4.13 to 4.18. Since  ̂ (   ) is a function 

of  (   ), 
  ̂ (   )

  ̂ 
  . 

 

  ̂( )

  ̂ 
 

  ̂ ( )

  ̂ 
 (   ̂  ̂ )

  ̂ (   )

  ̂ 
  ̂  ̂ 

  ̂ (   )

  ̂ 
  ̂  ̂ (   ) (4.13) 

 
 

 

  ̂ ( )

  ̂ 
   ̂   

  ̂ (   )

  ̂ 
   

  ̂ (   )

  ̂ 
 (4.14) 

 

 
  ̂( )

  ̂ 
 

  ̂ ( )

  ̂ 
 (   ̂  ̂ )

  ̂ (   )

  ̂ 
  ̂  ̂ 

  ̂ (   )

  ̂ 
  ̂  ̂ (   ) 

 

                                         ̂  ̂ (   )   ̂ (   ) 

(4.15) 
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  ̂ ( )

  ̂ 
   ̂   

  ̂ (   )

  ̂ 
   

  ̂ (   )

  ̂ 
 

(4.16) 

  ̂( )

  ̂ 
 

  ̂ ( )

  ̂ 
 (   ̂  ̂ )

  ̂ (   )

  ̂ 
  ̂  ̂ 

  ̂ (   )

  ̂ 
  ̂  ̂ (   ) (4.17) 

 

 

  ̂ ( )

  ̂ 
   ̂   

  ̂ (   )

  ̂ 
   

  ̂ (   )

  ̂ 
    ̂ (   ) (4.18) 

 

 

The recursive equation of the system can be rewritten such that,  

 

 

  ( )  
  ̂( )

  ̂ 
 

  ̂ ( )

  ̂ 
   ( )  

  ̂ ( )

  ̂ 
 

 

The linear parameters, vi, of the structured network are updated using Equation 4.19.  

 

 

 ̂ (   )   ̂ ( )   
  

  ̂ 
  ̂ ( )    ̂ 

( ) ( )
  ̂( )

  ̂ 
 (4.19) 

 

The partial derivative of the cost function with respect to the parameters of the 

recurrent wavelet network used to model the friction is given in Equation 4.20.  

 

  

  ̂
   ( )

  ̂( )

  ̂
 (4.20) 

 

The partial derivative of the network output  ̂ with respect to the parameters of the 

recurrent wavelet network is given in Equations 4.21 to 4.28. 

 

 

  ̂( )

  ̂ 
 

  ̂ ( )

  ̂ 
 (   ̂  ̂ )

  ̂ (   )

  ̂ 
  ̂  ̂ 

  ̂ (   )

  ̂ 
  ̂ 

  ̂ (   )

  ̂ 
 (4.21) 

 
  ̂ ( )

  ̂ 
   ̂   

  ̂ (   )

  ̂ 
   

  ̂ (   )

  ̂ 
 (4.22) 

 
  ̂( )

  ̂ 
 

  ̂ ( )

  ̂ 
 (   ̂  ̂ )

  ̂ (   )

  ̂ 
  ̂  ̂ 

  ̂ (   )

  ̂ 
  ̂ 

  ̂ (   )

  ̂ 

 (4.23) 

 
  ̂ ( )

  ̂ 
   ̂   

  ̂ (   )

  ̂ 
   

  ̂ (   )

  ̂ 
 (4.24) 
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  ̂( )

  ̂ 

 
  ̂ ( )

  ̂ 

 (   ̂  ̂ )
  ̂ (   )

  ̂ 

  ̂  ̂ 

  ̂ (   )

  ̂ 

  ̂ 

  ̂ (   )

  ̂ 

 (4.25) 

 
  ̂ ( )

  ̂ 

   ̂   

  ̂ (   )

  ̂ 

   

  ̂ (   )

  ̂ 

 (4.26) 

 
  ̂( )

  ̂ 
 

  ̂ ( )

  ̂ 
 (   ̂  ̂ )

  ̂ (   )

  ̂ 
  ̂  ̂ 

  ̂ (   )

  ̂ 
  ̂ 

  ̂ (   )

  ̂ 

 (4.27) 

 
  ̂ ( )

  ̂ 
   ̂   

  ̂ (   )

  ̂ 
   

  ̂ (   )

  ̂ 
 (4.28) 

 

 

The recursive equation of the system can be rewritten such that,  

 

  ̂ 
( )  

  ̂( )

  ̂ 

 
  ̂ ( )

  ̂ 

   ̂ 
( )  

  ̂ ( )

  ̂ 

 

 

The parameters of the RWN are then updated using Equation 4.29.  

 

 

 ̂(   )   ̂( )   
  

  ̂
  ̂( )    ̂ 

( ) ( )
  ̂( )

  ̂
 (4.29) 

 
 

4.4 Convergence and Stability Analysis 
 

In order to guarantee convergence of the proposed simultaneous identification 

structure, adaptive learning rates are derived from the discrete Lyapunov stability 

theorem as described in Chapter 3. The adaptive learning rates for the parameters,  ̂  

and  ̂  are computed as shown in Equation 4.30 and 4.31. The ALRs are updated as 

per Figure 43.  

 

    ̂ 
( )  

 

   
 

‖
  ̂( )
  ̂ 

‖
  (4.30) 

 

    ̂ 
( )  

 

   
 

‖
  ̂( )

  ̂ 

‖
  (4.31) 
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4.5 Adaptive Learning Rates 
 

The following two theorems are used to derive the adaptive learning rates. 

Theorem 1 shown in Equation 4.32 states that: 

 

   
   

             ( )     
     

(|  |)    (4.32) 

 

where  ( ) is the spectral radius of the matrix A [27]. From this it can be concluded 

that when  ( )   , Equation 4.33 is valid.  

 

   
   

‖  ‖     (4.33) 

 

The eigen decomposition theorem states that any non-singular matrix    can be 

decomposed as shown by Equation 4.34.  

 

          
 

(4.34) 

 

where D is a diagonal matrix where the diagonal elements are equal to the eigenvalues 

of A and M is the matrix of eigenvectors of A. If a matrix does not have a set of 

linearly independent eigenvectors, the matrix is not diagonalizable. Matrices that are 

not diagonalizable do not have an eigen decomposition. 

 

   ̂ 
 

The learning rate,   ̂ 
  is selected so as to satisfy Equation 4.35.  

 

    ̂ 
 

 

   
 

‖
  ̂( )
  ̂ 

‖
  (4.35) 

 

 

In order to compute the norm of  
  ̂( )

  ̂ 
, the solution of Equation 4.36 must be 

computed.  
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[
  ( )

  ( )
]  [

   ̂  ̂  ̂  ̂ 

  ̂     
] [

  (   )

  (   )
]  [

  ̂ 

 
]  ̂ (   ) (4.36) 

 

where 

  ( )  
  ̂ ( )

  ̂ 
       ( )  

  ̂ ( )

  ̂ 
      

 

 

Equation 4.36 can be rewritten as shown in Equation 4.37 and 4.38 

 

  ( )     (   )     ̂ (   ) (4.37) 

 

  ( )     ( ) (4.38) 

 

where    ( )  [
  ( )
  ( )

] 

 

The solution to the Equation 4.38 is shown in Equation 4.39.  

 

  ( )   (    ( )  ∑          ̂ ( )

   

   

) (4.39) 

 

 

Since   ( )   , Equation 4.39 can be simplified to Equation 4.40. 

 

  ( )   ∑          ̂ ( )

   

   

 (4.40) 

 

Changing the index such that r=n-m-1, Equation 4.40 can be rewritten as shown in 

Equation 4.41.  

  ( )   ∑      ̂ (     )

   

   

 (4.41) 

The norm of   ( ) is given in Equation 4.42. 

 

‖  ( )‖  ‖ (∑   

   

   

   ̂ (     ))‖ (4.42) 

 

Using Rule 1 and 2 of matrix norms given in Appendix D, Equation 4.42 can be 

further decomposed as shown in Equations 4.43.  

 

‖  ( )‖  ‖ ‖ ‖  ‖ ‖ ̂ (   )‖    ‖ ‖ ‖    ‖ ‖  ‖ ‖ ̂ ( )‖ (4.43) 
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Since ‖ ‖    ‖  ‖  | ̂ |  Equation 4.43 can be simplified to Equation 4.44.  

 

 

‖  ( )‖  | ̂ |(‖ ̂ (   )‖  ‖ ‖ ‖ ̂ (   )‖    ‖    ‖ ‖ ̂ ( )‖) (4.44) 

 

This can be rewritten as shown in Equation 4.45. 

 

‖  ( )‖  | ̂ |(  ‖ ‖    ‖    ‖) ‖ ̂ ‖    (4.45) 

 

where  

 

‖ ̂ ‖       
 

‖ ̂ ( )‖ 

 

Equation 4.45 can then be written in the form of a series summation as shown in 

Equation 4.46. 

 

‖  ( )‖  | ̂ | (∑‖  ‖

   

   

)  ‖ ̂ ‖    (4.46) 

 

Using Theorem 1, the sum of the finite series will be less than or equal to the infinite 

sum of the series as shown in Equation 4.47.  

 

‖  ( )‖  | ̂ | (∑‖  ‖

 

   

)  ‖ ̂ ‖    (4.47) 

 

From eigenvalue decomposition, Equation 4.47 can then be written as shown in 

Equation 4.48, 

 

‖  ( )‖  | ̂ | (∑‖      ‖

 

   

)  ‖ ̂ ‖    (4.48) 

 

Using Rules 1 to 3 from Appendix D, Equation 4.48 can be written as Equation 4.49.  

 

‖  ( )‖  | ̂ |‖ ‖ (∑‖ ‖ 

 

   

)  ‖   ‖ ‖ ̂ ‖    (4.49) 
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This can be further simplified as shown in Equation 4.50, using Rule 4 from 

Appendix D. 

‖  ( )‖  | ̂ | (
‖ ‖ ‖   ‖

   ( )
)‖ ̂ ‖    (4.50) 

 

Using Equation 4.50, the maximum norm can be computed as shown in Equation 4.51 

where            ‖  ( )‖. 

 

          
 

‖| ̂ | (
‖ ‖ ‖   ‖

   ( )
) ‖ ̂ ‖   ‖ (4.51) 

 

Substituting Equation 4.51 in Equation 4.35, the adaptive learning rate is selected as 

shown in Equation 4.52.  

 

    ̂ 
 

 

      
  (4.52) 

 

 

   ̂ 
 

The learning rate,   ̂ 
  is selected so as to satisfy Equation 4.53.  

 

 

    ̂ 
 

 

   
 

‖
  ̂( )
  ̂ 

‖
  (4.53) 

 

 

In order to compute the norm of  
  ̂( )

  ̂ 
, the solution of the Equation 4.54 must be 

computed.  

 

 

[
  ( )
  ( )

]  [
   ̂  ̂  ̂  ̂ 

  ̂     
] [

  (   )
  (   )

]  [
 ̂ 

 
]  ̂ (   )

 [
  ̂ 

 
]  ̂ (   )  [

  

 
]  ̂ (   ) 

(4.54) 

 

where 

  ( )  
  ̂( )

  ̂ 
       ( )  

  ̂ ( )

  ̂ 
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Equation 4.54 can be rewritten as shown in Equation 4.55 and 4.56 where 

where    ( )  [
  ( )
  ( )

]. 

 

  ( )     (   )     ̂ (   )     ̂ (   )     ̂ (   ) (4.55) 

 

  ( )     ( ) (4.56) 

 

The solution to the Equation 4.56 is shown in Equation 4.57.  

 

  ( )   (    ( )  ∑       (   ̂ ( )     ̂ ( )     ̂ ( ))

   

   

) (4.57) 

 

 

Changing the index such that r=n-m-1 and since   ( )   , the norm of   ( ) given 

in Equation 4.57 can be written as shown in Equation 4.58.  

 

‖  ( )‖  ‖ ∑   

   

   

(   ̂ (     )     ̂ (     )     ̂ (     ))‖ (4.58) 

 

Using Rule 1 and 2 of matrix norms given in Appendix D and the fact that  

‖ ‖  ‖  ‖    ‖  ‖  | ̂ | ‖  ‖  | ̂ | Equation 4.58 can be further decomposed 

as shown in Equation 4.59.  

 

‖  ( )‖  (  ‖ ‖    ‖    ‖) (| ̂ |‖ ̂ ‖    | ̂ |‖ ̂ ‖    ‖ ̂ ‖   
) (4.59) 

 

where  

 

‖ ̂ ‖       
 

‖ ̂ ( )‖ ‖ ̂ ‖       
 

‖ ̂ ( )‖ ‖ ̂ ‖   
    

 
‖ ̂ ( )‖ 

 

Equation 4.59 can then be written in the form of a series summation as shown in 

Equation 4.60. 

 

‖  ( )‖  (∑‖  ‖

   

   

)  (| ̂ |‖ ̂ ‖    | ̂ |‖ ̂ ‖    ‖ ̂ ‖   
) (4.60) 
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Using Theorem 1 and eigenvalue decomposition, Equation 4.60 can be simplified as 

shown in Equation 4.61. 

 

‖  ( )‖  (∑‖      ‖

 

   

)  (| ̂ |‖ ̂ ‖    | ̂ |‖ ̂ ‖    ‖ ̂ ‖   
) (4.61) 

 

Using Rules 1-4 from Appendix D, Equation 4.61 can be written as Equation 4.62. 

 

‖  ( )‖  (
‖ ‖ ‖   ‖

   ( )
)  (| ̂ |‖ ̂ ‖    | ̂ |‖ ̂ ‖    ‖ ̂ ‖   

) (4.62) 

 

Using Equation 4.62, the maximum norm can be computed as shown in Equation 4.63 

where            ‖  ( )‖,. 

 

          
 

‖(
‖ ‖ ‖   ‖

   ( )
) (| ̂ |‖ ̂ ‖    | ̂ |‖ ̂ ‖    ‖ ̂ ‖   

)‖ (4.63) 

 

Substituting Equation 4.63 in Equation 4.53, the adaptive learning rate is selected as 

shown in Equation 4.64.  

 

    ̂ 
 

 

      
  (4.64) 

 

 

   ̂ 
 

The learning rate,   ̂ 
  is selected so as to satisfy Equation 4.65.  

 

 

    ̂ 
 

 

   
 

‖
  ̂( )
  ̂ 

‖
  (4.65) 

 

In order to compute the norm of  
  ̂( )

  ̂ 
, the solution of the Equation 4.66 must be 

computed.  

 

 

[
  ( )

  ( )
]  [

   ̂  ̂  ̂  ̂ 

  ̂     
] [

  (   )
  (   )

]  [
 ̂ 

 
]  ̂ (   )  [

 
   

]  ̂ (   ) (4.66) 
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where 

  ( )  
  ̂( )

  ̂ 
       ( )  

  ̂ ( )

  ̂ 
 

Equation 4.66 can be rewritten as shown in Equation 4.67 and 4.68. 

 

  ( )     (   )     ̂ (   )     ̂ (   ) (4.67) 

  ( )     ( ) (4.68) 

 

where    ( )  [
  ( )
  ( )

]. 

 

The solution to the Equation 4.68 is shown in Equation 4.69.  

 

  ( )   (    ( )  ∑       (   ̂ ( )     ̂ ( ))

   

   

) (4.69) 

 

 

Changing the index such that r=n-m-1 and since   ( )   , the norm of   ( ) is 

given in Equation 4.70. 

 

‖  ( )‖  ‖ ∑   

   

   

(   ̂ (     )     ̂ (     ))‖ (4.70) 

 

Using Rule 1 and 2 of matrix norms given in Appendix D and the fact that 

‖ ‖    ‖  ‖  | ̂ |, ‖  ‖  |  | Equation 4.70 can be further decomposed as 

shown in Equation 4.71.  

 

‖  ( )‖  (  ‖ ‖    ‖    ‖) (| ̂ |‖ ̂ ‖    |  |‖ ̂ ‖   ) (4.71) 

 

where  

 

‖ ̂ ‖       
 

‖ ̂ ( )‖ ‖ ̂ ‖       
 

‖ ̂ ( )‖ 

 

Equation 4.71 can then be written in the form of a series summation as shown in 

Equation 4.72. 

 

‖  ( )‖  (∑‖  ‖

   

   

)  (| ̂ |‖ ̂ ‖    |  |‖ ̂ ‖   ) (4.72) 
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Using Theorem 1 and eigenvalue decomposition, Equation 4.72 can be rewritten as 

shown in Equation 4.73. 

 

‖  ( )‖  (∑‖      ‖

 

   

)  (| ̂ |‖ ̂ ‖    |  |‖ ̂ ‖   ) (4.73) 

 

Using Rules 1-4 from Appendix D, Equation 4.73 can be written as Equation 4.74. 

  

‖  ( )‖  (
‖ ‖ ‖   ‖

   ( )
)  (| ̂ |‖ ̂ ‖    |  |‖ ̂ ‖   ) 

(4.74) 

 

Using Equation 4.74, the maximum norm can be computed as shown in Equation 4.75 

where            ‖  ( )‖,. 

 

          
 

‖(
‖ ‖ ‖   ‖

   ( )
) (| ̂ |‖ ̂ ‖    |  |‖ ̂ ‖   )‖ (4.75) 

 

 

Substituting Equation 4.75 in Equation 4.65, the adaptive learning rate is selected as 

shown in Equation 4.76.  

 

    ̂ 
 

 

      
  (4.76) 

 

   ̂ 

The learning rate,   ̂   is selected so as to satisfy Equation 4.77.  

 

 

    ̂  
 

   
 

‖
  ̂( )
  ̂

‖
  (4.77) 

 

 

In order to compute the norm of  
  ̂( )

  ̂
, first ‖

  ̂( )

  ̂ 
‖ needs to be computed by solving 

Equation 4.78.  

 

 



108 

 

[
  ̂ 

( )

  ̂ 
( )

]  [
   ̂  ̂  ̂  ̂ 

  ̂     
] [

  ̂ 
(   )

  ̂ 
(   )

]  [
  ̂ 

 
]
   ̂(   )

  ̂ 
 (4.78) 

 

where 

 

  ̂ 
( )  

  ̂ ( )

  ̂ 
 

  ̂( )

  ̂ 
       ̂ 

( )  
  ̂ ( )

  ̂ 
 

 

Equation 4.78 can be rewritten as shown in Equation 4.79 and 4.80 

 

  ̂ 
( )     ̂ 

(   )     ̂ 
(   ) (4.79) 

 

  ̂ 
( )     ̂ 

( ) (4.80) 

 

where   ̂ 
( )  [

  ̂ 
( )

  ̂ 
( )

]. 

 

The solution to the Equation 4.80 is shown in Equation 4.81.  

 

  ̂ 
( )   (    ̂ 

( )  ∑          ̂ 
( )

   

   

) (4.81) 

Changing the index such that r=n-m-1 and since   ̂ 
( )   , the norm of   ̂ 

( ) is 

written as shown in Equation 4.82.  

 

‖  ̂ 
( )‖  ‖∑       ̂ 

(     )

   

   

‖ (4.82) 

 

Using Rule 1 and 2 of matrix norms given in Appendix D and the fact that  

‖ ‖    and ‖ ‖  | ̂ |, Equation 4.82 can be further decomposed as shown in 

Equation 4.83.  

 

‖  ̂ 
( )‖  | ̂ | (‖  ̂ 

(   )‖  ‖ ‖ ‖  ̂ 
(   )‖    ‖    ‖ ‖  ̂ 

( )‖) (4.83) 

 

This can be rewritten as shown in Equation 4.84. 

 

‖  ̂ 
( )‖  | ̂ |(  ‖ ‖    ‖    ‖) ‖  ̂ 

‖
   

 (4.84) 
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where  

‖  ̂ 
‖

   
 ‖  ‖   

    
 

‖  ‖    

 

The derivation procedure is continued as before to compute the norm as shown in 

Equation 4.85. 

‖  ̂ 
( )‖  | ̂ | (

‖ ‖ ‖   ‖

   ( )
) (4.85) 

 

The maximum norm, at any time n, of the elements of the vector is given in Equation 

4.86 where   ̂   
( )      ‖  ̂ 

( )‖. 

 

  ̂   
( )     

 
‖| ̂ | (

‖ ‖ ‖   ‖

   ( )
)‖ (4.86) 

 

The maximum norm of the vector is therefore given by Equation 4.87. 

.  

   
 

‖
  ̂( )

  ̂
‖  √     ̂   

 (4.87) 

 

 

where 

 

 

Substituting Equation 4.87 in Equation 4.77 the adaptive learning rate is selected as 

shown in Equation 4.88.  

 

    ̂  
 

    ̂    
  (4.88) 

 

   ̂ 

The learning rate,   ̂   is selected so as to satisfy Equation 4.89.  

 

 

    ̂  
 

   
 

‖
  ̂( )
  ̂

‖
  (4.89) 

  ̂   
    

 
(  ̂   

( ))  
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In order to compute the norm of  
  ̂( )

  ̂
, first ‖

  ̂( )

  ̂ 
‖needs to be computed by solving 

Equation 4.90.  

 

 

[
  ̂ 

( )

  ̂ 
( )

]  [
   ̂  ̂  ̂  ̂ 

  ̂     
] [

  ̂ 
(   )

  ̂ 
(   )

]  [
  ̂ 

 
]
   ̂(   )

  ̂ 
 (4.90) 

 

where 

 

  ̂ 
( )  

  ̂ ( )

  ̂ 
       ̂ 

( )  
  ̂ ( )

  ̂ 
 

 

Equation 4.90 can be rewritten as shown in Equation 4.91 and 4.92 where 

where    ̂ 
( )  [

  ̂ 
( )

  ̂ 
( )

]. 

 

  ̂ 
( )     ̂ 

(   )     ̂ 
(   ) (4.91) 

 

  ̂ 
( )     ̂ 
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The solution to the Equation 4.92 is shown in Equation 4.93.  
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Changing the index such that r=n-m-1 and since   ̂ 
( )   , the norm of   ̂ 

( ) is 

as shown in Equation 4.94.  
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Equation 4.94 can be further decomposed as shown in Equation 4.95.  
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This can be rewritten as shown in Equation 4.96. 
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The derivation procedure is continued as before to compute the norm as shown in 

Equation 4.97. 
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The maximum norm, at any time n, of the elements of the vector is given in Equation 

4.98 where   ̂   
( )      ‖  ̂ 

( )‖. 
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The maximum norm of the vector is therefore given by Equation 4.99.  
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where 

 

 

 

Substituting Equation 4.99 in Equation 4.89, the adaptive learning rate is selected as 

shown in Equation 4.100.  
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   ̂ 

The learning rate,   ̂   is selected so as to satisfy Equation 4.101.  
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, first ‖
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Equation 4.102.  
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where 
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Equation 4.102 can be rewritten as shown in Equation 4.103 and 4.104  
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The solution to the Equation 4.104 is shown in Equation 4.105.  
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Changing the index such that r=n-m-1 and since   ̂ 
( )     the norm of 
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( ) is written as shown in Equation 4.106.  
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Equation 4.106 can be further decomposed as shown in Equation 4.107.  
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This can be rewritten as shown in Equation 4.108. 
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The derivation procedure is continued as before to compute the norm as shown in 

Equation 4.109. 
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The maximum norm, at any time n, of the elements of the vector is given in Equation 

4.110 where   ̂   
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The maximum norm of the vector is therefore given by Equation 4.111.  
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Substituting Equation 4.111 in Equation 4.101, the adaptive learning rate is selected 

as shown in Equation 4.112.  

 

    ̂  
 

        
  (4.112) 

  ̂   
    

 
(  ̂   

( ))  



114 

 

   ̂ 

The learning rate,   ̂   is selected so as to satisfy Equation 4.113.  
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Equation 4.114 can be rewritten as shown in Equation 4.115 and 4.116.  
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The solution to the Equation 4.116 is shown in Equation 4.117.  
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Changing the index such that r=n-m-1 and since   ̂ 
( )   , the norm of 
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( ) is written as shown in Equation 4.118.  
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Equation 4.118 can be further decomposed as shown in Equation 4.119.  
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This can be rewritten as shown in Equation 4.120. 
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The derivation procedure is continued as before to compute the norm as shown in 

Equation 4.121. 
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The maximum norm, at any time n, of the elements of the vector is given in Equation 

4.122 where    ̂  
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The maximum norm of the vector is therefore given by Equation 4.123.  
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Substituting Equation 4.123 in Equation 4.113, the adaptive learning rate is selected 

as shown in Equation 4.124.  
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Figure 73: Nonlinear Friction Identification 

Chapter 5: Case Studies and Simulation Analysis 
 

In this chapter, simulations for different case studies are carried out to assess 

the learning method and network structure developed in Chapter 4. In the first case 

study, the linear parameters are assumed known and the system is used to learn the 

nonlinear friction only in order to determine the optimum number of wavelets and 

mother wavelet for training. In the second case study, the ability of the network to 

learn the linear parameters of a frictionless DC motor is studied. The third case study 

determines the effectiveness of the network in learning the linear network parameters 

for a motor with viscous friction. The final case study demonstrates the ability of the 

network to simultaneously learn both linear and nonlinear system parameters for a DC 

motor with friction. The motor parameters are provided in Appendix C and the 

sampling rate T is selected as 0.1ms.  

5.1 Nonlinear Friction Identification of DC Motor 
 

In this section, a recurrent wavelet network (RWN) is used to learn the DC 

motor friction assuming all the linear parameters of the network are known. The 

network learning structure is shown in Figure 73 and the friction function is given in 

Equation 5.1 where β is 10.  

 

 

 

 

 

 

 

 

  ( )      (  )  (   (     ) 
  | | )     (5.1) 
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Training was carried out by applying a 1V sine wave of frequency 1Hz to the 

DC Motor to generate the training signal shown in Figure 74.  

 

 

Figure 74: Training Signal for Nonlinear Frictional Function Identification 

 

 

Training was carried out for 100000 iterations using the first derivative of the 

Gaussian as the mother wavelet, for varying number of neurons in the hidden layer in 

order to determine the optimum size for the RWN. The MSE after training is given in 

Table 13 and shown in Figure 75.  

 

Table 13: MSE after Training for Varying Nw for Nonlinear Frictional Function Approximation 

Nw MSE 

7 8.3151e-5 

15 3.3040e-5 

31 1.4045e-5 
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Figure 75: MSE for Varying Nw for Nonlinear Frictional Function Approximation 

 

The adaptive learning rates for the network with 15 wavelets in the hidden layer are 

shown in Figure 76. It should be noted that      . 

 

 

Figure 76: ALRs for Nonlinear Function Approximation over First and Last Training Cycle, Nw=15 
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Testing was then carried out where the testing signal shown in Figure 77 was 

generated by applying a 0.75V chirp signal of frequency ranging from 0.1-4Hz to the 

DC Motor.  

 

 

Figure 77: Testing Signal for Nonlinear Frictional Function Approximation 

 

The MSE after testing is shown in Table 14 and the torque speed characteristics of the 

trained network after testing are shown in Figure 78.  

 

Table 14: MSE after Testing for Varying Nw for Nonlinear Frictional Function Approximation 

Nw MSE 

7 1.5425e-4 

15 5.4618e-5 

31 4.2923e-5 
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Figure 78: Torque Speed Characteristics of DC Motor 

 

From the results, it can be seen that increasing the number of neurons in the 

hidden layer improves the accuracy of the RWN, however this is done at the expense 

of training time with larger networks taking significantly longer to train.  

The network was then trained using different mother wavelets in order to 

optimize the network structure. The number of neurons in the hidden layer was set to 

15 and training was carried out for 100000 iterations with the training signal shown in 

Figure 79.  
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Figure 79: Training Signal for Nonlinear Frictional Function Identification 

 

Training was carried out for three different activation functions and the MSE 

after training is shown in Table 15 and in Figure 80.  

 

Table 15:MSE after Training for Different Activation Functions for Nonlinear Function Approximation 

Activation Function MSE 

1
st
 Derivative of Gaussian 3.1385e-5 

Mexican Hat 4.8973e-4 

Morlet 21.0638 
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Figure 80: MSE for Different Activation Functions for Nonlinear Frictional Function Approximation 

 

Testing was carried out using a sine wave as shown in Figure 81. 

 

 

Figure 81: Testing Signal for Nonlinear Frictional Function Identification 
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The MSE after testing is given in Table 16 and the torque speed characteristics are 

shown in Figure 82 from where is can be seen that the first derivative of the Gaussian 

provides a better approximation for the nonlinear friction.  

 

Table 16: MSE after Testing for Different Activation Functions for Nonlinear Frictional Function 

Approximation 

Activation Function MSE 

1
st
 Derivative of Gaussian   2.5062e-4 

Mexican Hat 0.0027 

  

 

 

Figure 82: Torque Speed Characteristics 
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Figure 83: Linear Parameter Identification for Frictionless DC Motor 

5.2 Linear Parameter Identification of Frictionless DC Motor 
 

In this section, the linear mechanical parameters of a frictionless DC motor are 

learned, assuming the motor resistance and inductance are known. The network 

learning structure for parameter identification is shown in Figure 83. The training 

signal used, shown in Figure 84, is a chirp signal of magnitude 1V and frequency 

range from 0 to 4 Hz.  

 

 

 

 

 

 

 

 

 

 

Figure 84: Training Signal for DC Motor Parameter Training 
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 Online training is carried out for 50 iterations assuming initial conditions 

within 20% and within 50% of the actual values. Figure 85 shows the mean squared 

error during training. Figure 86 shows the adaptive learning rates for the parameters 

during the 1
st
 training cycle, after which the ALRs remained constant. Figure 87 

shows the convergence of the network parameters during the first ten and last ten 

cycles of training.  

 

 

Figure 85: MSE for Training Linear Parameters of Frictionless DC Motor 

 

 

Table 17 shows the results after training and it can be seen that the network is able to 

accurately learn the motor inertia as well as the motor torque constant.  

 

Table 17: Results of Training Linear Parameters of Frictionless DC Motor 

Case 1 Actual Value Initial Value Final Value Error (%) 

J 1.8e-4 1.44e-4 1.8e-4 0 

Kt 0.0550 0.0440 0.0550 0 

Case 2 Actual Value Initial Value Final Value Error (%) 

J 1.8e-4 9e-5 1.8e-4 0 

Kt 0.0550 0.0275 0.0550 0 
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Figure 86: ALRs for Linear Parameter Identification of Frictionless DC Motor  

 

 

 

Figure 87: Convergence of Kt and J for Parameter Identification of Frictionless DC Motor 
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5.3 Linear Parameter Identification of DC Motor with Viscous Friction 
 

In this case, the network is used to learn the motor inertia and viscous friction 

of a DC Motor assuming the torque constant, resistance and inductance are known a 

priori and that there is no nonlinear friction. The network learning structure is shown 

in Figure 88.  

 

 

 

 

 

 

 

 

 

 Training was carried out for 50 iterations and Figure 89 shows the MSE 

during training. Table 18 shows the results of the simulations. The adaptive learning 

rates over the first and last iteration for three different cases in which the initial 

conditions were assumed within 10%, 20% and upto 40% of the actual values are 

shown in Figure 90. The convergence of the network parameters over the first and last 

ten cycles of training is shown in Figure 91.  

 

Figure 88: Network Learning Structure for DC Motor with Viscous Friction 
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Figure 89: MSE for Training DC Motor with Viscous Friction 

 

 

Table 18: Results of Training Linear Parameters of DC Motor with Known Viscous Friction  

Case 1 Actual Value Initial Value Final Value Error (%) 

J 1.8e-4 1.98e-4 1.8e-4 0 

B 0.060 0.0540 0.060 0 

Case 2 Actual Value Initial Value Final Value Error (%) 

J 1.8e-4 1.44e-4 1.8e-4 0 

B 0.060 0.0720 0.060 0 

Case 3 Actual Value Initial Value Final Value Error (%) 

J 1.8e-4 1.08e-4 1.8e-4 0 

B 0.060 0.0780 0.06 0 
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Figure 90: ALRs for Linear 2 Parameter Identification of DC Motor with Viscous Friction  

 

 

 

Figure 91: Convergence of B and J for Parameter Identification of DC Motor with Viscous Friction 
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The next case study involves identification of the motor torque, viscous 

friction and motor inertia of the DC motor assuming the resistance and induction are 

known a priori. The network learning structure is given in Figure 92. Figure 93 and 

Table 19 show the results of the simulations for initial conditions within 10% and 

20% of the actual values. The adaptive learning rates and convergence of network 

parameters are shown in Figures 94 and 95 respectively. Based on the results, it can 

be seen that the method can be extended to also learn the motor torque constant, 

however the time taken for the network to converge to the exact values will be much 

higher as shown in Figure 93. 

 

 

 

 

 

 

 

 

 

 

 

Figure 93: MSE for Training Linear Parameters of DC Motor with Unknown Viscous Friction 
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Figure 92: Network Learning Structure for Linear Parameter Identification 
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Table 19: Results of Training Linear Parameters of DC Motor with Unknown Viscous Friction 

Case 1 Actual Value Initial Value Final Value Error (%) 

J 1.8e-4 1.98e-4 1.84e-4 2.2 

Kt 0.0550 0.0495 0.0562 2.18 

B 0.060 0.0540 0.0611 1.83 

Case 2 Actual Value Initial Value Final Value Error (%) 

J 1.8e-4 2.16e-4 1.86e-4 3.76 

Kt 0.0550 0.044 0.0566 2.86 

B 0.060 0.048 0.0615 2.49 

 

 

 

Figure 94: ALRs for Linear 3 Parameter Identification of DC Motor with Viscous Friction 

 

 

 

0 0.5 1 1.5 2

x 10
4

0

0.5

1
x 10

-5

X: 2e+004

Y: 5.385e-007

1st iteration


v
1

X: 1

Y: 8.822e-006

0 0.5 1 1.5 2

x 10
4

0

2

4

x 10
-9

X: 2e+004

Y: 9.625e-010

Last iteration


v
1

0 0.5 1 1.5 2

x 10
4

0

2

4
x 10

-4

1st iteration


v
2

X: 1

Y: 0.0001907

X: 2e+004

Y: 1.159e-005

0 0.5 1 1.5 2

x 10
4

0

2

4

x 10
-8

X: 2e+004

Y: 2.072e-008

Last iteration


v
2

0 0.5 1 1.5 2

x 10
4

0

2

4

6
x 10

-6

X: 2e+004

Y: 3.034e-007

1st iteration


v
3

X: 1

Y: 4.959e-006

0 0.5 1 1.5 2

x 10
4

0

0.5

1
x 10

-9

X: 2e+004

Y: 5.423e-010

Last iteration


v
3



132 

 

 
 

Nonlinear System 

 
Structured  RWN 

 ̂   ̂⁄   ̂   

     

 

Figure 95: Convergence of B, J and Kt for DC Motor with Viscous Friction 

 

5.4 Simultaneous Linear and Nonlinear Parameter Identification of DC 

Motor 
 

In this section, simultaneous linear and nonlinear parameters identification of 

the DC Motor is carried out as shown in Figure 96. The results of sections 5.1 to 5.3 

are used to optimize the network structure. The number of neurons in the hidden layer 

was set to 15, the first derivative of the Gaussian was used as the mother wavelet and 

the network was used to learn the motor inertia, viscous friction and coulomb friction.  
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 In order to initialize the nonlinear friction learning RWN which is used to 

learn only the coulomb friction and stiction, if any, training was carried out keeping 

the initial estimated values of the linear parameters constant as shown in Figure 97. 

Training was carried out to initialize the parameters  ̂    ̂   ̂   ̂   ̂  . 

 

 

 

 

  

 

The training signal was generated by applying a 1V chirp signal to the DC 

motor of frequency 0-4Hz as shown in Figure 98 and the torque speed characteristic 

of the DC Motor under consideration is shown in Figure 99. Training was carried out 

for 10000 iterations and the MSE for the initialization of the RWN is shown in Figure 

100.  

 

 

 

Figure 98: Training Signal for Simultaneous DC Motor Parameter Identification 
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Figure 99: Torque Speed Characteristics of DC Motor 

 

 

 

Figure 100: MSE for Initialization of Friction RWN 
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 The initialized parameters were then used in the simultaneous training for both 

linear and nonlinear parameters. Training was carried out for 200000 iterations and 

the MSE after training is shown in Figure 101.  

 

 

Figure 101: MSE for Simultaneous Parameter Identification 
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Figure 102: ALRs for Simultaneous Linear and Nonlinear Parameter Identification of DC Motor  

 

 

 

 

Figure 103: Convergence of B, J for DC Motor with Nonlinear Friction 
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Table 20 shows the values of the linear motor parameters after training. From Table 

20, it can be seen that while the value of J is converging to the expected value, the 

value for the viscous friction is not. 

 

Table 20: Results of Simultaneous Training of Linear and Nonlinear DC Motor Parameters 

Variable Actual Value Initial Value Final Value Error (%) 

J 1.8e-4 2.16e-4 2.01e-4 11 

B 0.060 0.048 0.0735 22.5 

 

 

 Testing of the network was carried by applying a 1V sine wave of frequency 

1Hz to the system and Figure 104 shows the comparison between the desired torque 

speed characteristic and the torque speed characteristic of the nonlinear network 

responsible for learning the coulomb and stiction friction. The MSE after testing was 

found to be 0.0017.  

  

 

Figure 104: Estimated Frictional Torque Speed Characteristic 
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 The results for the nonlinear friction characteristic can be explained as 

follows. From Equation 5.2, it is seen that   ̂ ( ) has a linear relationship with  ̂  but 

a nonlinear relationship with  ̂ (   ).   

 ̂ ( )   ̂ (   )   ̂ ( ̂  ̂ (   )   ̂  ̂ (   )   ̂ (   )) (5.2) 

 

Equation 5.2 can be rewritten as given by Equation 5.3.  

 ̂ ( )   ̂ (   )   ̂ ( ̂   ̂ (   )   ̂  ̂ (   )   ̂  (   )) (5.3) 

The estimated frictional torque,  ̂  , and the viscous friction can therefore be written 

as shown in Equation 5.4 and 5.5.  

 ̂  (   )   ̂ (   )   ̂   ̂ (   ) (5.4) 

 ̂   ̂    ̂   (5.5) 

 

 Based on these equations, it is seen that the system is not unique in that the 

nonlinear RWN may learn some or all of the parameter  ̂ . Figure 105 shows the 

combined frictional characteristic which is identical to the desired friction, showing 

that the network has successfully learnt the viscous and coulomb friction. Figure 106 

shows the comparison of the results obtained with the desired frictional torque speed 

characteristic.  
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Figure 105: Estimated Combined Frictional Characteristic for Simultaneous Identification 

 

 

Figure 106: Comparison of Combined Frictional Characteristic 
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Chapter 6: Conclusion and Future Work 
 

6.1 Conclusion 
 

The aim of this thesis is to develop a recurrent wavelet network based 

algorithm for the modelling and identification of nonlinear time varying 

electromechanical systems. Black box modelling was first carried out with 

conventional wavelet networks in order to study and compare the different 

initialization algorithms available as well as to determine the effect of changing the 

mother wavelet and network size on the rate of convergence. It was observed that 

compared to the heuristic initialization method, the dyadic grid method provided 

faster convergence and a lower mean squared error. Comparison between three of the 

most commonly used mother wavelets, namely the first derivative of the Gaussian, the 

Morlet and Mexican Hat wavelets, showed that the effectiveness of mother wavelet 

depends largely on the type of function being modelled. In most cases, it was 

observed that the first derivative of the Gaussian performs well in terms of 

convergence speed and mean squared error. Similarly, the effect of the network size 

on the network performance was seen to depend on the type of function being 

modelled. In some cases, larger networks performed better, giving a smaller training 

mean square error. However, in other instances, a larger network size was seen to 

provide a negligible improvement in the mean square error and this was done at the 

expense of the speed of convergence. The effect of changing the learning rates on the 

network performance was also studied and simulation results showed that selection of 

learning rates significantly impacted the network performance and rate of 

convergence.  

The selection of learning rates by trial and error proved to be tedious and for 

the case of recurrent wavelet networks, was unable to guarantee network stability. As 

a result, a need for adaptive learning rates which guarantee both network convergence 

and stability was observed. Adaptive learning rates were derived based on the 

Lyapunov Stability Theorem and grey box modelling was carried out to determine the 

performance of recurrent wavelet networks with adaptive learning rates when learning 

nonlinear time varying systems. The network was used to model a DC motor with 

viscous and coulomb friction and was able to accurately model the system. Similarly, 
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the recurrent wavelet network with adaptive learning rates was used to model 

coulomb and viscous friction. The results proved the ability of the network to 

accurately model highly nonlinear systems, while ensuring stability. 

The next step after carrying out black and grey box modelling, involved the 

development of a structured recurrent wavelet network for white box modelling of the 

DC motor to identify the linear and nonlinear mechanical parameters of the system. 

Identification of linear network parameters, assuming the friction was known a priori, 

was carried out first, and it was seen that the network was able to accurately converge 

to the desired result even when the initial values were set to differ by over 20% of the 

actual values. An important observation was that in order for the network to converge 

to the desired values, the system being modelled must be unique. Nonlinear friction 

identification was also carried out, assuming the linear parameters of the motor were 

known a priori, and the recurrent wavelet network was able to accurately approximate 

the friction. Further validation of the proposed method was carried out through 

simultaneous identification of both linear and nonlinear system parameters. It was 

observed that while the parameter representing the motor inertia converged to the 

desired value, the linear parameter representing the viscous friction and the network 

representing the coulomb friction and stiction did not quite converge to the expected 

results. This was explained mathematically by observing that the nonlinear network 

was also able to learn a portion of the viscous friction. The linear combination of both 

was seen to reproduce the desired frictional torque speed characteristics of the motor 

being identified.  

To summarize, the contributions of this thesis are as follows:  

- Developing the algorithms for the modelling and simulation of 

conventional and recurrent wavelet networks. 

- Developing the structured recurrent wavelet network for the DC motor and 

simultaneous parameter identification of linear and nonlinear parameters 

of the DC motor.  

- Derivation and application of adaptive learning rates for recurrent wavelet 

networks.  
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- The work done in this thesis can also be extended to identification of the 

electrical network parameters and the relevant derivation for the ALRs is 

provided in Appendix E.  

 

6.2 Recommendations for Future Work 
 

 Future work may involve: 

- Carrying out simultaneous parameter identification for the electrical as well 

as mechanical linear and nonlinear system parameters 

- Investigating the effect of noise on the performance of the learning algorithm 

- Developing optimization algorithms to improve the simulation and 

convergence speed of the network.  
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Appendix A 
 

 

MATRIX NORMS 
 

Let A be a       matrix,  

  [

        

   
          

] 

 

The L1 norm, also known as the maximum absolute column sum, is given as 
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The L∞ norm, also known as the maximum absolute row sum, is given as 
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From,  

‖ ‖ 
  ‖ ‖ ‖ ‖  

 

‖ ‖ 
      |   |   

 
 

Therefore the L2 norm is given by 
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Appendix B 
 

 

GENERAL SOLUTION OF RECURSIVE EQUATIONS FOR RWN 
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Using MAPLE, the recursive equation is solved as shown 
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Using MAPLE, the recursive equation is solved as shown 
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Appendix C 
 

 

DC MOTOR DATA SHEET 
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Appendix D 
 

 

RULES FOR VECTOR AND MATRIX NORMS 

 
Rule 1:  
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Rule 2:  
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Rule 3:  
 

‖  ‖  ‖ ‖  

 

Rule 4:  

 

For a diagonal matrix, D, where   is the absolute maximum element of the matrix,  
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Appendix E 
 

 

DERIVATION OF ALR FOR ELECTRICAL PARAMETERS OF DC MOTOR 
 

 

    

The learning rate,   ̂ 
  is selected so as to satisfy Equation E.1.  

 

    ̂ 
 

 

   
 

‖
  ̂( )
  ̂ 

‖
  (E.1) 

 

 

In order to compute the norm of  
  ̂( )

  ̂ 
, the solution of the Equation E.2 must be 

computed.  

 

[
  ( )
  ( )

]  [
   ̂  ̂  ̂  ̂ 

  ̂  ̂  ̂ 
] [

  (   )
  (   )

]  [
 

  ̂ 
]  ̂ (   )  [

 
 
]  (   ) (E.2) 

 

where 

  ( )  
  ̂( )

  ̂ 
       ( )  

  ̂ ( )

  ̂ 
 

 

 

Equation E.2 can be rewritten as shown in Equation E.3 and E.4 where 

where    ( )  [
  ( )
  ( )

]. 

 

  ( )     (   )     ̂ (   )     (   ) (E.3) 

 

  ( )     ( ) (E.4) 

 

The solution to the Equation E.4 is shown in Equation E.5.  

 

  ( )   (    ( )  ∑       (   ̂ ( )     ( ))

   

   

) (E.5) 
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Changing the index such that r=n-m-1 and since   ( )   , the norm of   ( ) given 

in Equation E.5 can be written as shown in Equation E.6.  

 

‖  ( )‖  ‖ ∑   

   

   

(   ̂ (     )     (     ))‖ (E.6) 

 

Using Rule 1 and 2 of matrix norms given in Appendix D and the fact that  

‖ ‖  ‖  ‖    ‖  ‖  | ̂ | Equation E.6 can be further decomposed as shown in 

Equation E.7.  

 
‖  ( )‖  (  ‖ ‖    ‖    ‖) (| ̂ |‖ ̂ ‖    ‖ ‖   ) (E.7) 

 

where  

 

‖ ‖       
 

‖ ( )‖ ‖ ̂ ‖       
 

‖ ̂ ( )‖ 

 

Equation E.7 can then be written in the form of a series summation as shown in 

Equation E.8. 

 

‖  ( )‖  (∑‖  ‖

   

   

)  (| ̂ |‖ ̂ ‖    ‖ ‖   ) (E.8) 

 

Using Theorem 1 and eigenvalue decomposition, Equation E.8 can be simplified as 

shown in Equation E.9. 

 

‖  ( )‖  (∑‖      ‖

 

   

)  (| ̂ |‖ ̂ ‖    ‖ ‖   ) (E.9) 

 

Using Rules 1-4 from Appendix D, Equation E.9 can be written as Equation E.10. 

 

‖  ( )‖  (
‖ ‖ ‖   ‖

   ( )
)  (| ̂ |‖ ̂ ‖    ‖ ‖   ) 

(E.10) 
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Using Equation E.10, the maximum norm can be computed as shown in Equation 

E.11 where            ‖  ( )‖,. 

 

          
 

‖(
‖ ‖ ‖   ‖

   ( )
) (| ̂ |‖ ̂ ‖    ‖ ‖   )‖ (E.11) 

 

Substituting Equation E.11 in Equation E.1, the adaptive learning rate is selected as 

shown in Equation E.12.  

 

    ̂ 
 

 

      
  (E.12) 

 

 

    

The learning rate,   ̂ 
  is selected so as to satisfy Equation E.13.  

 

    ̂ 
 

 

   
 

‖
  ̂( )
  ̂ 

‖
  (E.13) 

 

 

In order to compute the norm of  
  ̂( )

  ̂ 
, the solution of the Equation E.14 must be 

computed.  

 

[
  ( )
  ( )

]  [
   ̂  ̂  ̂  ̂ 

  ̂  ̂  ̂ 
] [

  (   )
  (   )

]  [
 

 
]  ̂ (   ) (E.14) 

 

where 

  ( )  
  ̂( )

  ̂ 
       ( )  

  ̂ ( )

  ̂ 
 

 

 

Equation E.14 can be rewritten as shown in Equation E.15 and E.16 where 

where    ( )  [
  ( )
  ( )

]. 

 

  ( )     (   )     ̂ (   ) (E.15) 

 

  ( )     ( ) (E.16) 
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The solution to the Equation E.16 is shown in Equation E.17.  

 

  ( )   (    ( )  ∑       (   ̂ ( ))

   

   

) (E.17) 

 

Changing the index such that r=n-m-1 and since   ( )   , the norm of   ( ) given 

in Equation E.17 can be written as shown in Equation E.18.  

 

‖  ( )‖  ‖ ∑   

   

   

(   ̂ (     ))‖ (E.18) 

 

Using Rule 1 and 2 of matrix norms given in Appendix D and the fact that  

‖ ‖  ‖  ‖     Equation E.18 can be further decomposed as shown in Equation 

E.19.  

 
‖  ( )‖  (  ‖ ‖    ‖    ‖) (‖ ̂ ‖   ) (E.19) 

 

where  

 

‖ ̂ ‖       
 

‖ ̂ ( )‖ 

 

Equation E.19 can then be written in the form of a series summation as shown in 

Equation E.20. 

 

‖  ( )‖  (∑‖  ‖

   

   

)  (‖ ̂ ‖   ) (E.20) 

 

Using Theorem 1 and eigenvalue decomposition, Equation E.20 can be simplified as 

shown in Equation E.21. 

 

‖  ( )‖  (∑‖      ‖

 

   

)  (‖ ̂ ‖   ) (E.21) 

 

Using Rules 1-4 from Appendix D, Equation E.21 can be written as Equation E.22. 

 

‖  ( )‖  (
‖ ‖ ‖   ‖

   ( )
)  (‖ ̂ ‖   ) 

(E.22) 
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Using Equation E.22, the maximum norm can be computed as shown in Equation 

E.23 where            ‖  ( )‖,. 

 

          
 

‖(
‖ ‖ ‖   ‖

   ( )
) (‖ ̂ ‖   )‖ (E.23) 

 

Substituting Equation E.23 in Equation E.13, the adaptive learning rate is selected as 

shown in Equation E.24.  

 

    ̂ 
 

 

      
  (E.24) 
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