

MODELLING AND IDENTIFICATION OF NONLINEAR DC MOTOR DRIVE

SYSTEMS USING RECURRENT WAVELET NETWORKS

by

Sarah Hussain Zahidi

A Thesis Presented to the Faculty of the

American University of Sharjah

College of Engineering

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in

Electrical Engineering

Sharjah, United Arab Emirates

January 2013

© 2013 Sarah Hussain Zahidi. All rights reserved.

Approval Signatures

We, the undersigned, approve the Master’s Thesis of Sarah Hussain Zahidi.

Thesis Title: Modelling and Identification of Nonlinear DC Motor Drive Systems

Using Recurrent Wavelet Networks

Signature Date of Signature
 (dd/mm/yyyy)

___________________________ _______________

Dr. Rached Dhaouadi

Professor,

Department of Electrical Engineering

Thesis Advisor

___________________________ _______________

Dr. Aydin Yesildirek

Associate Professor,

Department of Electrical Engineering

Thesis Committee Member

___________________________ _______________

Dr. Mohammad Jaradat

Visiting Associate Professor,

Department of Mechanical Engineering

Thesis Committee Member

___________________________ _______________

Dr. Mohamed El-Tarhuni

Head,

Department of Electrical Engineering

___________________________ _______________

Dr. Hany El Kadi

Associate Dean, College of Engineering

___________________________ _______________

Dr. Yousef Al Assaf

Dean, College of Engineering

___________________________ _______________

Dr. Khaled Assaleh

Director of Graduate Studies

Acknowledgements

 I would like to thank my research advisor, Dr. Rached Dhaouadi, for his

continued support, encouragement, understanding and patience through the course of

my thesis at the American University of Sharjah.

 I would like to also extend my thanks to the graduate committee for their time

and invaluable suggestions.

 Finally, I would like to express my gratitude to my parents, and most

especially, my brother, without whose prayers, love and words of wisdom, this thesis

would not have been accomplished.

5

Abstract

The main objective of this research is to study the use of Recurrent Wavelet Networks

(RWN) for the modelling and identification of nonlinear dynamic systems. Since the

vast majority of physical processes and systems exhibit nonlinearities in their

behavior, mathematical models may be difficult to obtain as processes may be

affected by external operating conditions and a number of parameters may not be

identified. Electromechanical systems are an example of nonlinear systems where

parameters such as viscous and coulomb friction, and distributed inertias are often

unknown. In such cases, a model is required that will capture the nonlinearities and

the dynamics of the system. In this thesis, an online identification method is

developed using structured Recurrent Wavelet Networks (RWN) in order to

simultaneously identify linear and nonlinear mechanical parameters of an

electromechanical system. Network learning is implemented using the gradient

descent algorithm. Stability analysis is carried out based on the minimization of a

Lyapunov function in order to obtain Adaptive Learning Rates (ALR) for training the

network. Simulations are carried out to validate the performance of the proposed

adaptive learning rate based modeling and identification technique.

Search Terms: Wavelet Networks, Recurrent Wavelet Networks, DC Motor

Parameter Identification, Friction Identification, Adaptive Learning Rates

6

Table of Contents

Acknowledgements .. 4

Abstract .. 5

List of Tables ... 13

Chapter 1: Introduction .. 15

1.1 Background .. 15

1.2 Literature Review ... 17

1.3 Objectives of Research ... 24

1.4 Thesis Organization.. 25

Chapter 2: Wavelet Networks .. 26

2.1 Wavelets ... 26

2.2 Conventional Wavelet Networks ... 28

2.2.1 Architecture. .. 28

2.2.2 Initialization algorithms. .. 29

2.2.2 Training algorithms ... 31

2.3 Nonlinear Function Approximation ... 35

2.3.1 Offline training. ... 36

2.3.2 Online training. .. 49

Chapter 3: Modelling of Dynamic Systems Using Recurrent Wavelet Networks 57

3.1 Architecture .. 58

3.2 Training Algorithm .. 59

3.3 Convergence and Stability Analysis .. 62

3.4 Adaptive Learning Rates .. 66

3.5 Simulations ... 76

3.5.1 Nonlinear DC motor discretized using Bilinear transformation. 76

3.5.2 Nonlinear DC motor discretized using Euler Forward transformation. 81

3.5.3 Friction... 84

Chapter 4: DC Motor Identification Using Structured Recurrent Wavelet Network .. 91

4.1 DC Motor Model Derivation .. 91

4.2 Architecture for DC Motor Parameter Identification ... 94

4.3 Training Algorithm .. 96

4.4 Convergence and Stability Analysis .. 99

4.5 Adaptive Learning Rates .. 100

7

Chapter 5: Case Studies and Simulation Analysis ... 116

5.1 Nonlinear Friction Identification of DC Motor .. 116

5.2 Linear Parameter Identification of Frictionless DC Motor 124

5.3 Linear Parameter Identification of DC Motor with Viscous Friction 127

5.4 Simultaneous Linear and Nonlinear Parameter Identification of DC Motor ... 132

Chapter 6: Conclusion and Future Work ... 140

6.1 Conclusion .. 140

6.2 Recommendations for Future Work ... 142

References .. 143

Appendix A .. 145

Appendix B .. 146

Appendix C .. 149

Appendix D .. 150

Appendix E .. 151

8

List of Figures

Figure 1: Artificial Intelligence Based Modelling and Control Techniques................ 15

Figure 2: RWNN-Based Mobile Robot Control Structure .. 21

Figure 3: RWNN-Based SPC Scheme ... 22

Figure 4: RWN Based Dynamic System Identification Architecture 22

Figure 5: Indirect Adaptive Control Architecture Using RWNs 23

Figure 6: First Order Derivative of Gaussian Function ... 27

Figure 7: Morlet Wavelet ... 27

Figure 8: Conventional Wavelet Network Architecture .. 28

Figure 9: Dyadic Grid .. 31

Figure 10: Levenberg Marquardt Flowchart .. 34

Figure 11: Approximation of Static Nonlinear Function ... 35

Figure 12: SISO Nonlinear Function ... 36

Figure 13: MSE for Varying Nw for SISO Static Function Approximation using

Heuristic Method ... 37

Figure 14: MSE for Varying Nw for SISO Static Function Approximation using

Dyadic Grid Method ... 38

Figure 15: MSE for Varying µ for SISO Static Function Approximation using

Heuristic Method ... 39

Figure 16: MSE for Varying µ for SISO Static Function Approximation using Dyadic

Grid Method .. 39

Figure 17: MSE for LM and GD Trained Networks for SISO Static Function

Approximation .. 41

Figure 18: Output of Networks Trained using LM and GD Algorithms 41

Figure 19: MSE for Network Trained using Different Activation Functions 42

Figure 20: Output of Networks Trained using Different Activation Functions........... 43

Figure 21: MISO Nonlinear Function .. 43

file:///C:/Users/Sar_Z/Downloads/Thesis_Final_v13.docx%23_Toc345723095
file:///C:/Users/Sar_Z/Downloads/Thesis_Final_v13.docx%23_Toc345723097
file:///C:/Users/Sar_Z/Downloads/Thesis_Final_v13.docx%23_Toc345723098

9

Figure 22: MSE for Varying Nw for MISO Function Approximation using Heuristic

Method .. 44

Figure 23: MSE for Varying Nw for MISO Function Approximation using Dyadic

Grid Method .. 45

Figure 24: MSE for Varying µ for MISO Function Approximation using Heuristic

Method .. 46

Figure 25: MSE for Varying µ for MISO Function Approximation using Dyadic Grid

Method .. 46

Figure 26: MSE for LM and GD Trained Networks for MISO Function

Approximation .. 47

Figure 27: MSE of Networks Trained using Different Activation Functions for MISO

Function Approximation ... 48

Figure 28: Gaussian Function .. 49

Figure 29: Online Training of SISO CWN .. 50

Figure 30: Mean Square Error for Approximation of Gaussian Function 50

Figure 31: Block Diagram for Testing Wavelet Network ... 51

Figure 32: Output of CWN for Gaussian Function Approximation 51

Figure 33: MSE for Different Activation Functions for Online SISO Function

Approximation .. 52

Figure 34: MISO Function for Online Training .. 53

Figure 35: Training Signals for MISO Function.. 53

Figure 36: Online Training of MISO CWN ... 54

Figure 37: Mean Square Error for Approximation of MISO Function 54

Figure 38: Block Diagram for Testing MISO Wavelet Network 55

Figure 39: Output of CWN for MISO Function Approximation 55

Figure 40: MSE for Different Activation Functions for Online MISO Function

Approximation .. 56

Figure 41: Training Structure for Dynamic Systems ... 57

Figure 42: RWN Architecture .. 58

Figure 43: Flowchart for Updating Adaptive Learning Rates 65

Figure 44: Frictional Torque .. 77

file:///C:/Users/Sar_Z/Downloads/Thesis_Final_v13.docx%23_Toc345723128
file:///C:/Users/Sar_Z/Downloads/Thesis_Final_v13.docx%23_Toc345723129
file:///C:/Users/Sar_Z/Downloads/Thesis_Final_v13.docx%23_Toc345723130

10

Figure 45: Training RWN for DC Motor, Bilinear Discretization 78

Figure 46: MSE for DC Motor RWN, Bilinear Discretization 78

Figure 47: Learning Rates for Translation and Dilation over First Training Cycle 79

Figure 48: Testing RWN for DC Motor, Bilinear Discretization 80

Figure 49: DC Motor RWN Test Output, Bilinear Discretization 80

Figure 50: Training RWN for DC Motor, Euler Forward Discretization 81

Figure 51: MSE for DC Motor RWN, Euler Forward Discretization.......................... 82

Figure 52: Learning Rates for Translation and Dilation over First Training Cycle 82

Figure 53: Testing RWN for DC Motor, Euler Forward Discretization 83

Figure 54: DC Motor RWN Test Output, Euler Forward Discretization 83

Figure 55: Nonlinear Friction Identification .. 84

Figure 56: Friction Characteristics ... 85

Figure 57: Generating Training Data for Friction Identification 85

Figure 58: Training Signal for Friction Identification ... 86

Figure 59: MSE for Varying Nw for Friction Identification 86

Figure 60: Learning Rates for Translation and Dilation over First and Last Training

Cycle, Nw=3 ... 87

Figure 61: Learning Rates for Translation and Dilation over First and Last Training

Cycle, Nw=7 ... 88

Figure 62: Learning Rates for Translation and Dilation over First and Last Training

Cycle, Nw=15 ... 88

Figure 63: Testing Signal for Friction Identification ... 89

Figure 64: Torque Speed Characteristic for Varying Nw after Testing for Friction

Identification ... 90

Figure 65: Continuous Time Model of DC Motor ... 91

Figure 66: Discretized Integrator using Euler-forward Method 92

Figure 67: Step 1 of Discretization of DC Motor System ... 92

Figure 68: Step 2 of Discretization of DC Motor Model ... 93

Figure 69: Step 3 of Discretization of DC Motor Model ... 93

file:///C:/Users/Sar_Z/Downloads/Thesis_Final_v13.docx%23_Toc345723142
file:///C:/Users/Sar_Z/Downloads/Thesis_Final_v13.docx%23_Toc345723144
file:///C:/Users/Sar_Z/Downloads/Thesis_Final_v13.docx%23_Toc345723152
file:///C:/Users/Sar_Z/Downloads/Thesis_Final_v13.docx%23_Toc345723153
file:///C:/Users/Sar_Z/Downloads/Thesis_Final_v13.docx%23_Toc345723154
file:///C:/Users/Sar_Z/Downloads/Thesis_Final_v13.docx%23_Toc345723155
file:///C:/Users/Sar_Z/Downloads/Thesis_Final_v13.docx%23_Toc345723156

11

Figure 70: Structured Recurrent Wavelet Network Representing DC Motor Model .. 94

Figure 71: DC Motor Parameter Identification Training Structure 95

Figure 72: Simplified DC Motor Parameter Identification Training Structure 97

Figure 73: Nonlinear Friction Identification .. 116

Figure 74: Training Signal for Nonlinear Frictional Function Identification 117

Figure 75: MSE for Varying Nw for Nonlinear Frictional Function Approximation 118

Figure 76: ALRs for Nonlinear Function Approximation over First and Last Training

Cycle, Nw=15 ... 118

Figure 77: Testing Signal for Nonlinear Frictional Function Approximation 119

Figure 78: Torque Speed Characteristics of DC Motor ... 120

Figure 79: Training Signal for Nonlinear Frictional Function Identification 121

Figure 80: MSE for Different Activation Functions for Nonlinear Frictional Function

Approximation .. 122

Figure 81: Testing Signal for Nonlinear Frictional Function Identification 122

Figure 82: Torque Speed Characteristics ... 123

Figure 83: Linear Parameter Identification for Frictionless DC Motor 124

Figure 84: Training Signal for DC Motor Parameter Training 124

Figure 85: MSE for Training Linear Parameters of Frictionless DC Motor.............. 125

Figure 86: ALRs for Linear Parameter Identification of Frictionless DC Motor 126

Figure 87: Convergence of Kt and J for Parameter Identification of Frictionless DC

Motor ... 126

Figure 88: Network Learning Structure for DC Motor with Viscous Friction 127

Figure 89: MSE for Training DC Motor with Viscous Friction 128

Figure 90: ALRs for Linear 2 Parameter Identification of DC Motor with Viscous

Friction .. 129

Figure 91: Convergence of B and J for Parameter Identification of DC Motor with

Viscous Friction .. 129

Figure 92: Network Learning Structure for Linear Parameter Identification 130

Figure 93: MSE for Training Linear Parameters of DC Motor with Unknown Viscous

Friction .. 130

file:///C:/Users/Sar_Z/Downloads/Thesis_Final_v13.docx%23_Toc345723157
file:///C:/Users/Sar_Z/Downloads/Thesis_Final_v13.docx%23_Toc345723158
file:///C:/Users/Sar_Z/Downloads/Thesis_Final_v13.docx%23_Toc345723159
file:///C:/Users/Sar_Z/Downloads/Thesis_Final_v13.docx%23_Toc345723160
file:///C:/Users/Sar_Z/Downloads/Thesis_Final_v13.docx%23_Toc345723170
file:///C:/Users/Sar_Z/Downloads/Thesis_Final_v13.docx%23_Toc345723175
file:///C:/Users/Sar_Z/Downloads/Thesis_Final_v13.docx%23_Toc345723179

12

Figure 94: ALRs for Linear 3 Parameter Identification of DC Motor with Viscous

Friction .. 131

Figure 95: Convergence of B, J and Kt for DC Motor with Viscous Friction 132

Figure 96: Network Learning Structure for Linear and Nonlinear DC Motor Parameter

Identification ... 132

Figure 97: Initialization of RWN for Simultaneous Identification 133

Figure 98: Training Signal for Simultaneous DC Motor Parameter Identification ... 133

Figure 99: Torque Speed Characteristics of DC Motor ... 134

Figure 100: MSE for Initialization of Friction RWN .. 134

Figure 101: MSE for Simultaneous Parameter Identification 135

Figure 102: ALRs for Simultaneous Linear and Nonlinear Parameter Identification of

DC Motor .. 136

Figure 103: Convergence of B, J for DC Motor with Nonlinear Friction 136

Figure 104: Estimated Frictional Torque Speed Characteristic 137

Figure 105: Estimated Combined Frictional Characteristic for Simultaneous

Identification ... 139

Figure 106: Comparison of Combined Frictional Characteristic 139

file:///C:/Users/Sar_Z/Downloads/Thesis_Final_v13.docx%23_Toc345723183
file:///C:/Users/Sar_Z/Downloads/Thesis_Final_v13.docx%23_Toc345723183
file:///C:/Users/Sar_Z/Downloads/Thesis_Final_v13.docx%23_Toc345723184

13

List of Tables

Table 1: MSE for Varying Nw for SISO Static Function Approximation using

Heuristic and Dyadic Grid Method ... 37

Table 2: MSE for Varying µ for SISO Function Approximation using Heuristic and

Dyadic Grid Method ... 38

Table 3: MSE for LM and GD Trained Networks for SISO Static Function

Approximation .. 40

Table 4: MSE for Different Activation Functions for SISO Static Function

Approximation .. 42

Table 5: MSE for Changing Nw for MISO Function Approximation using Heuristic

Method .. 44

Table 6: MSE for Changing µ for MISO Function Approximation using Heuristic

Method .. 45

Table 7: MSE for LM and GD Trained Networks for MISO Function Approximation

 ... 48

Table 8: MSE for Different Activation Functions for MISO Function Approximation

 ... 49

Table 9: MSE for Different Activation Functions for Online SISO Function

Approximation .. 52

Table 10: MSE for Different Activation Functions for Online MISO Function

Approximation .. 56

Table 11: MSE for Varying Nw for Friction Identification ... 87

Table 12: MSE for Varying Nw after Testing for Friction Identification 89

Table 13: MSE after Training for Varying Nw for Nonlinear Frictional Function

Approximation .. 117

Table 14: MSE after Testing for Varying Nw for Nonlinear Frictional Function

Approximation .. 119

Table 15:MSE after Training for Different Activation Functions for Nonlinear

Function Approximation ... 121

Table 16: MSE after Testing for Different Activation Functions for Nonlinear

Frictional Function Approximation .. 123

Table 17: Results of Training Linear Parameters of Frictionless DC Motor 125

14

Table 18: Results of Training Linear Parameters of DC Motor with Known Viscous

Friction .. 128

Table 19: Results of Training Linear Parameters of DC Motor with Unknown Viscous

Friction .. 130

Table 20: Results of Simultaneous Training of Linear and Nonlinear DC Motor

Parameters ... 137

15

Chapter 1: Introduction

1.1 Background

Traditionally, complex nonlinear systems were modelled using linearization

techniques in order to facilitate the design and implementation of PID controllers. In

many cases, mathematical models may be difficult to obtain as processes are affected

by external operating conditions and a number of process parameters may not be

identified. Electromechanical systems are a prime example of nonlinear systems

where parameters such as viscous friction, coulomb friction and distributed inertias

are often unknown. In such cases, development of an optimized controller requires a

more detailed model to capture the nonlinearities and the dynamics of the system.

Over the last few decades, there has been an upsurge in the trend of using

Artificial Intelligence (AI) based modelling techniques for modelling nonlinear time

varying systems. Such techniques make use of available system input and output data

to produce complex mappings and reproduce system models. A number of AI based

techniques are available as shown in Figure 1.

Figure 1: Artificial Intelligence Based Modelling and Control Techniques

Artificial Neural Networks (ANNs) are parallel processing networks that

consist of neurons interconnected to form a layered structure in the form of an input

layer, hidden layer(s) and an output layer. Typical activation functions used in ANNs

Artificial Neural

Networks

Wavelet

 Networks
Fuzzy

Logic

Recurrent

ANN

Neuro

Fuzzy

Recurrent

WN

Fuzzy

WN

Recurrent

Fuzzy ANN

Recurrent

Fuzzy WN

16

include the sigmoid, the log-sigmoid and the tan-sigmoid functions. ANNs have been

widely used in system modelling and identification [1-4] and are able to effectively

model system nonlinearities. The distributive nature of the neural network

architecture also makes it highly fault tolerant.

ANNs, however, suffer from a number of drawbacks including slow

convergence and local minima. Wavelet networks were developed based on ANNs

and the wavelet transform theory, as an alternative to feedforward neural networks for

the approximation of nonlinear functions, for system modelling, identification and

control [5-10]. Using wavelets as activation functions, wavelet networks maintain all

the advantages of ANNs while offering a number of additional advantages such as

faster convergence as well as providing a much smaller computational overhead due

to reduced network sizes. In addition, wavelet networks are capable of handling inputs

of higher dimensions.

A number of different modelling techniques exist in literature and the choice

of a given technique depends on the requirement from the model as well as the data

available. If the structure of the system to be modelled is unknown, simple input

output based function mapping may be carried out which is also known as black box

modelling. However, in this case, the intricacies of the system are not explicitly

identified. More and more emphasis is now being laid on moving from black box

modelling towards grey box modelling in which the partially known system structure

and approximations are used in developing the network structure and finally to white

box modelling in which all system information is available a priori and is

incorporated to create an optimum network training structure which will allow for

explicit identification of the system parameters [11].

 In this research, wavelet networks, both conventional and recurrent, are used

for the modelling and identification of a nonlinear electromechanical system. Black

box modelling is first carried out and then, based on the a priori knowledge of the

system under consideration, a white box approach is adopted in order to identify the

linear and nonlinear mechanical parameters that constitute the system.

17

1.2 Literature Review

Neural networks have been widely used in the area of system modelling and

identification for the approximation of continuous nonlinear functions. Wavelet

networks were developed based on Artificial Neural Networks (ANN) and the

wavelet transform theory, as an alternative to feedforward neural networks for the

approximation of nonlinear functions for system modelling and identification. Initial

work by Pati and Krishnaprasad in [7], demonstrates how the standard feed forward

architecture can be used as a wavelet network given that the activation function

satisfies the Morlet-Grossmann admissibility conditions, details of which are provided

in Chapter 2. The authors propose the use of an activation function formed through

the linear combination of sigmoid functions and highlight the importance of

extracting information contained in the training set in order to optimize the network

architecture by ensuring the selected activation functions span the spectral range of

the given data.

In one of the seminal papers on wavelet networks [5], Zhang and Benenviste

were able to successfully develop a wavelet network for black box modelling which

not only maintains the universal approximation property inherent in neural networks

but also provides an explicit link between the network coefficients and the wavelet

transform to allow for better network initialization schemes. In addition, through their

work, it is observed that wavelet networks are able to achieve the same approximation

quality as traditional feed forward neural networks, with a smaller network size.

In [5-7] and [9], formal initialization procedures were developed in order to

improve the efficiency of the wavelet network. In [5], the translation and dilation

coefficients are initialized using a regular dyadic grid structure. Grid formation is

carried out through division of the input domain into two subintervals by the centre of

gravity of the density function of the available data. The translation and dilation

coefficients are then selected in each interval and the procedure is repeated within

each subinterval until all the translation and dilation coefficients are initialized. In the

event that the number of wavelets is not a power of 2, the remaining wavelets are

initialized randomly from the finest remaining scale. An alternative initialization

method proposed by Zhang in [8], also involves the division of the input domain into

a dyadic grid. After grid formation, wavelet selection is carried out based on the least

18

square error between the observed output and the network output using all wavelets in

the grid. The wavelet contributing the least per iteration is eliminated until the number

of remaining wavelets equals the number of neurons in the network. In [6], a new

correlation based initialization procedure was developed for enhanced network

performance. Based on this procedure, a dyadic grid denser in the translation axis is

obtained where the number of dilation levels is selected based on the number of

neurons in the network. As the wavelet coefficient is a linear correlation coefficient

representative of the degree of similarity between the wavelet and the signal to be

approximated, once the initialization grid is created, the wavelets with the highest

coefficients, and therefore better correlation, are selected. Oussar and Dreyfus provide

two other approaches to initializing the translation and dilation parameters in [9].

Using the Heuristic Method, the translation and dilation parameters are selected such

that the wavelets extend over the entire input region. The method of Initialization by

Selection proposed by Oussar and Dreyfus involves the use of wavelet frames for

initialization. A library of wavelets is generated whose dilations are discrete and

whose translations lie in the domain of the input vectors given by [ak,bk]. Taking

three successive dilations to ensure the wavelets extend over the entire domain, for

each dilation set, the corresponding translation set is selected. Once the library is

generated, the direct connection weights are computed using the Least Squares

Method and the training sequence for the non-linear part of the model is obtained by

subtracting the output of the linear model and the training set. The wavelets are then

ranked using the Gram-Schmidt method and selected using the linear model residuals.

The remaining network parameters, namely the direct connection weights and the bias

weights, are usually initialized to small random values often in the range [0,1] or

zeros as in [5] and [9,10,12]. Alternatively, these weights could also be initialized

using the Least Squares Method [9].

Training of both neural and wavelet networks used for modelling of static

systems is typically carried out using the back propagation type gradient descent

algorithm, of which variations are proposed for application to wavelet networks in [5]

and [6]. In [5], learning is carried out using the stochastic gradient method. In [6], the

training algorithm involves updating the translation and dilation coefficients based on

direct minimization techniques while the remaining network parameters are obtained

via linear combination. The most important feature of this training procedure involves

19

the use of a dynamic learning rate which decreases if the error of the current iteration

is smaller than the error of the previous iteration and vice versa. Oussar and Dreyfus

made used of the Broyden-Fletcher-Golfarb-Shanno gradient algorithm (BFGS) for

the training of network parameters [10].

While traditional feedforward neural networks and their conventional wavelet

network counterparts discussed above provide a static input/output mapping and have

been successfully used for static function approximation as well as system

identification and control, the black box modelling of systems with time-varying

inputs or outputs is carried out using recurrent networks.

Recurrent wavelet networks (RWN), through internal feedback in the wavelet

layer, are able to preserve past network states which allows them to capture the

dynamic response of a system with time varying inputs or outputs and adapt quickly

to changes in the system [13-16]. The proposed four layer network architecture

consists of an input layer, a wavelet layer with self-feedback, a product layer and an

output layer. This architecture is a generalized form of the conventional wavelet

network since the RWN structure is the same as that of the conventional wavelet

network when the self-feedback weights, which represent the rate of information

storage, are zero. In [17], Lin et. al propose an alternate four layer architecture. The

fundamental difference between the two is the presence of direct weighted

connections between the input and the output layer in [13-16] which provide the

RWN with the added advantage of improved extrapolation outside the training data

and allow for initialization based on process knowledge. An alternate five layer

structure is proposed by Lu in [18] in which an adaptive node layer was added called

the consequent part of the network. The activation function is selected as the first

derivative of the Gaussian function in [13-16], [18] and [16] while the differentiable

Mexican hat wavelet was used in [17].

In order to effectively a train the RWN to model a nonlinear dynamic system,

it is essential to understand the different models that can be used to represent

nonlinear dynamic systems in order to select the best training structure and best

training inputs for the network. Four different models were discussed in [11], which

are shown in Equations 1.1 to 1.4. The model shown in Equation 1.1 assumes the

20

system output is a nonlinear function of the input and a linear function of the delayed

output.

 () (() () ()) ∑ ()

 (1.1)

where u represents the input signal, y represents the output, represents a linear

coefficient, f represents an unknown nonlinear function and the discrete time index

 .

Similarly, the model represented by Equation 1.2 assumes the output varies linearly

with the input and nonlinearly with the delayed output.

 () (() () ()) ∑ ()

 (1.2)

In the third model described by Equation 1.3, the output depends nonlinearly on both

delayed inputs and delayed outputs in a separable manner.

 () (() () ()) (() () ()) (1.3)

The fourth model given by Equation 1.4 is a generalized model which assumes the

output varies nonlinearly with both the delayed inputs and delayed outputs.

 () (() () () () () ()) (1.4)

Training of recurrent networks can be done using a number of different

training algorithms, the most popular of which are the backpropagation type gradient

descent algorithm and real time recurrent learning (RTRL) [1-4,19]. While these

methods typically make use of static learning rates, it was observed in [1] and [20]

that such static learning rates were impractical since not only is the selection of the

21

optimal leaning rate a trial and error based process but also because very large

learning rates lead to system instability and small learning rates lead to slow network

training. As a result, in order to ensure network stability and to guarantee

convergence, adaptive learning rates were developed based on the Lyapunov Stability

Theory, for use in recurrent neural networks [20-21]. This method was then adopted

for use in RWN [13-17], however recurrent terms in the network equations were

assumed negligible when solving for the adaptive learning rates.

In [13], two RWNs were used to generate two control inputs, namely the

translational and rotational displacements, for the stable path tracking of a mobile

robot as shown in Figure 2. Here, the authors made use of ALRs for training of the

network based on the gradient descent algorithm.

Figure 2: RWNN-Based Mobile Robot Control Structure [13]

In [18], Lu developed a stable predictive control (SPC) scheme based on the

RWN as shown in Figure 3. The nonlinear modelling of the system is carried out

using a RWN where the gradient descent algorithm with ALR is employed for the

precondition part of the network for updating the translation and dilation coefficients

and the feedback weights while the consequent parameters are identified using the

recursive least squares method. As in [13], network convergence is guaranteed using

Lyapunov’s Stability Theorem which ensures the learning rate remains within the

stable region.

22

Figure 3: RWNN-Based SPC Scheme [18]

In [14] and [16], dynamic system identification is carried out using the series

parallel method as shown in Figure 4 where the inputs of the RWN identifier are the

current input and the previous output of the dynamic system.

Figure 4: RWN Based Dynamic System Identification Architecture [14]

Training of the dynamic system identifier is carried out offline using ALR based

gradient descent method while an indirect online adaptive control technique for a

RWN is used to control the system [14]. The RWN controller inputs consist of the

reference signal and the last plant output as shown in Figure 5. The proposed control

system is applied to the Duffing and water bath system and the performance of the

23

RWN controller with ALR is compared to that of a traditional wavelet network and an

RWN with static learning rates. It is seen that for a fixed number of iterations, the

RWN with ALR outperforms the other two controllers showing faster convergence

and lowest mean square error. The ability of the RWN controller to recover from

disturbances is also tested and is seen to have a fast rejection capability.

Figure 5: Indirect Adaptive Control Architecture Using RWNs [14]

In the previous papers, emphasis was laid on black box modelling and using

RWNs in order to control highly nonlinear systems. However, since black box models

are unable to provide the intrinsic details of the system being modelled [11], research

is now looking towards the application of neural and wavelet networks for parameter

identification of nonlinear systems.

In [22], the authors make use of a partially recurrent network known as an

Elman Recurrent Network in order to identify the mechanical and electrical

parameters of a linear DC motor without nonlinear friction. The structure of the

network is selected such that it is equivalent to the state space equations of the DC

motor. In this case, the back propagation algorithm is not used; rather, the authors

favour the use of Genetic Algorithms (GA) for updating the network parameters. All

parameters are estimated except the resistance of the DC motor which is assumed

known and the network is seen to produce satisfactory results.

In [23-24], the authors provide some of the leading work done in the use of

structured recurrent neural networks in order to identify the parameters of nonlinear

24

systems. Full use is made of a priori knowledge of the system at hand in order to carry

out intelligent modelling and identification. In [23], simultaneous identification of the

linear and nonlinear parts of the system is accomplished by first discretizing the

system in order to create a structured recurrent neural network where training is

carried out using the gradient descent algorithm. The nonlinearity in the system is

learnt by a Radial Basis Function Network (RBFN) or Multi-Layer Perceptron

Network (MLP). Simulations are carried out on a two-body system coupled by a

damped elastic spring in order to identify the linear parameters and the friction torque

which acts as the nonlinearity in the system. In [23], no stability analysis is carried out

but the range of the unknown system parameters are limited to ensure overall system

stability. The work done in [24] follows the same principle of creating a structured

network in order to model and identify the parameters of a system with an isolated

nonlinearity. The authors mention, however, that the structure is only capable of

correctly identifying the system parameters provided the system being modelled is

unique. In [24], identification is carried out for a multi stand rolling system. The

parameters are all correctly identified, however, due to the complexity and size of the

system, convergence time is very large. In addition static learning rates are used

which may contribute to the slow speed of convergence.

In [25], a structured recurrent network is developed for a nonlinear two mass

system which is trained using the Levenberg-Marquardt (LM) algorithm which

involves computation of the Jacobian using Real Time Recurrent Learning (RTRL).

The training is carried out in a quasi-online fashion in order to be able to use the LM

optimization algorithm; however, it is observed that this kind of training and

optimization might lead to getting trapped in local minima thereby giving incorrect

desired values.

1.3 Objectives of Research

The aim of this thesis is to build and expand on the work done in [13] and [23]

in order to develop a structured Recurrent Wavelet Network (RWN) which will not

only provide an accurate representation of the real plant but will also be able to

identify linear mechanical parameters as well as static or time-varying nonlinearities

of the system. The first part of the thesis is dedicated to developing a RWN model as

25

well as a structured RWN based on the system under investigation. Mathematical

modelling of the system is carried out and stability analysis is carried out based on the

Lyapunov theory in order to derive the adaptive learning rates (ALR). The second part

of the thesis involves carrying out online identification of the system and observing

the effects of changing RWN parameters on the learning capabilities of the network.

The original contributions of this thesis include developing a structured RWN for

simultaneous linear and nonlinear mechanical parameter identification for a DC

Motor and the derivation and application of ALRs using the Lyapunov stability theory.

1.4 Thesis Organization

This work is organized as follows. Chapter 1 gives a general overview of the

topics under consideration and provides a comprehensive literature review addressing

the work that has been accomplished in this field. Chapter 2 introduces wavelets,

conventional Wavelet Networks (WN) and the various initialization and training

algorithms available. The use of WN for the modelling of static nonlinear systems is

studied. Chapter 3 presents the Recurrent Wavelet Network (RWN) together with a

complete study on stability analysis. The derivation of adaptive learning rates to

ensure network stability is also carried out for the black box modelling of a DC Motor.

Chapter 4 builds on the RWN and involves the design and construction of structured

RWN for a DC Motor. The effectiveness of the structured RWN in identifying the

linear and nonlinear mechanical parameters of the system is detailed in Chapter 5. The

conclusion of this research and recommendations for future work are provided in

Chapter 6.

26

Chapter 2: Wavelet Networks

2.1 Wavelets

In order for a function to be considered a mother wavelet in the Morlet-

Grossmann sense, certain admissibility conditions, given below, must be satisfied [5].

In essence, mother wavelets should be band pass signals.

 Zero mean

 Oscillatory

 Fast decay to zero

 ∫

| ()|

A set of daughter wavelets is constructed through the translation and dilation of

the mother wavelet h(t) as given in Equation 2.1 where m and d are the translation and

dilation coefficients respectively. Using a set of the daughter wavelets, it is possible to

approximate a signal.

 () (

) (2.1)

One of the popularly used wavelets is the first derivative of the Gaussian

function given by Equation 2.2 and shown in Figure 6.

 ()

(2.2)

27

Figure 6: First Order Derivative of Gaussian Function

The Morlet wavelet, also known as the Cos-Gaussian function, is given by

Equation 2.3 and shown in Figure 7.

 ()

 () (2.3)

Figure 7: Morlet Wavelet

A number of other mother wavelets are commonly used including the Mexican

Hat wavelet, the Haar wavelet, the Meyer wavelet and the Daubechies wavelet.

-5 -4 -3 -2 -1 0 1 2 3 4 5
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
First derivative of Gaussian function

-5 -4 -3 -2 -1 0 1 2 3 4 5
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
Morlet Wavelet

28

Φ1

Φ2

Φ3

ΦNw

∑

∑

∑

x1

x2

 ̂

 ̂

 ̂

2.2 Conventional Wavelet Networks

The conventional wavelet network is used for static modelling of a nonlinear

system. The architecture along with the initialization and training algorithms are

provided in the following sections.

2.2.1 Architecture. The architecture of a conventional MIMO wavelet

network consisting of inputs, wavelets in the hidden layer and outputs is

shown below in Figure 8.

Each output of the wavelet network is given by Equation 2.4,

 ̂ ∑

 ∑

 (2.4)

where represents the weights of the direct connections between the outputs and

the inputs, represents the weight of the outputs of the neurons and represents

Figure 8: Conventional Wavelet Network Architecture

29

the weight of the output bias. is a multidimensional wavelet given as the product of

 scalar wavelets as shown in Equation 2.5,

 ∏ (

)

 ∏ ()

 (2.5)

where is the translation coefficient and is the dilation coefficient.

In this thesis, the first derivative of the Gaussian function is chosen as the

mother wavelet as given in Equation 2.6.

 ()

 (2.6)

The complete set of network parameters is given by the vector

 { } .

2.2.2 Initialization algorithms. The network parameters can be initialized

using a number of different techniques as in [5], [6] and [9]. Typically, the weights of

the direct connections, the weights from the neurons to the outputs and the output bias

weights are initialized to small random values. The Least Squares Method can also be

used to initialize the direct connection and bias weights and respectively.

Based on the Least Squares Method, the weights and will be determined using

Equation 2.7.

 () (2.7)

where x is the matrix of inputs and Y is the matrix of the desired outputs.

30

Several different methods to initialize the translation and dilation coefficients

have been developed such as the heuristic method, initialization by selection, as well

as several variations of the dyadic grid method.

In the heuristic method, proposed by Oussar and Dreyfus in [9], the maximum

and minimum of each input are determined as and respectively. The translation

and dilation coefficients are then selected using Equations 2.8 and 2.9, to ensure the

wavelets extend over the entire input domain.

 () (2.8)

 () (2.9)

The dyadic grid method, introduced by Zhang [5] and elaborated on in [6],

involves selection of the translation and dilation coefficients based on the division of

the input domain into a dyadic grid. Grid formation is carried out through the division

of the input domain, given by [a,b], into two subintervals by p, the centre of gravity of

the density function of the available data. The translation and dilation coefficients are

selected using Equations 2.10 and 2.11.

 (2.10)

 () (2.11)

The procedure is repeated within each subinterval until all the translation and

dilation coefficients are initialized. In the event that the number of wavelets is not a

power of 2, the remaining wavelets are initialized randomly from the finest remaining

scale. The resulting dyadic grid formation from which the wavelets are selected is

shown in Figure 9.

31

Figure 9: Dyadic Grid [5]

2.2.2 Training algorithms

2.2.3.1 Gradient descent algorithm. Training a conventional wavelet network

is carried out using the gradient descent algorithm which involves adjusting the

network parameters, , to ensure the minimization of a cost function given by

Equation 2.12.

 ()

∑ ∑(̂)

∑ ∑()

 (2.12)

where is the error between the desired output and the output of the wavelet

network for a pattern, p.

Using Equation 2.4, the partial derivative of the cost function with respect to

the network parameters is given in Equation 2.13.

 ∑

 ̂

 (2.13)

The partial derivative of the network output ̂ with respect to the network

parameters is given in Equations 2.14 to 2.18.

32

 ̂

 (2.14)

 ̂

 (2.15)

 ̂

 (2.16)

 ̂

 ̂

 (2.17)

 ̂

 ̂

 (2.18)

The partial derivative of the multidimensional wavelet function with respect to

 is given by Equation 2.19.

 () () () (

) (2.19)

Each parameter is then updated using Equation 2.20, where µ is the learning

rate, γ is the momentum coefficient and n is the iteration index.

 ()

 () (2.20)

The parameters will continue to be updated until the mean squared error,

computed as in Equation 2.21, reaches a particular desired value.

∑(̂)

(2.21)

33

2.2.3.2 Levenberg-Marquardt algorithm. A conventional wavelet network can

also be trained using the Levenberg-Marquardt (LM) algorithm which is a

combination of the gradient descent method and the Gauss Newton method [26].

Training involves adjusting the network parameters, , to ensure the minimization of

a cost function given by Equation 2.22.

 () ∑ ∑(̂)

 ∑ ∑()

 (2.22)

where is the error between the desired output and the output of the wavelet

network for a pattern, p, and is a function of the network parameters

Using Equation 2.4, the partial derivatives of the network output with respect

to the network parameters are computed in order to form the Jacobian matrix as given

in Equation 2.23.

[

 ̂

 ̂

 ̂

 ̂

 ̂

 ̂

 ̂

 ̂

 ̂

 ̂

]

(2.23)

Each parameter is then updated using Equation 2.24, where µ is the learning

rate, J is the Jacobian matrix, I is the identity matrix and Y and ̂ are the matrices of

the desired network output and the actual network outputs respectively.

 () (̂) (2.24)

The network output is then calculated for the new values of the network parameters

and the cost function given in Equation 2.25, (), is recomputed. If the sum

of the square of errors is seen to be reduced from the initial calculation, the learning

rate µ is reduced by a factor of β, and the process then repeated. If

the sum of square of errors is not reduced then the learning rate µ is increased by a

34

factor of β, is recomputed and () calculated again. The algorithm is said

to converge when the sum of the squares of the error has reduced to the target value or

when a certain number of iterations has been reached. In this way the LM algorithm

can be used for offline batch training of a CWN. The LM algorithm can be

summarized in the form of a flowchart as shown in Figure 10.

Apply all inputs

Calculate network

outputs

Calculate sum of

square of errors

over all inputs, V(θ)

Compute Jacobian,

J(θ)

Solve for Δθ

Calculate sum of

square of errors over

all inputs, V(θ+Δθ)

µ=µ/β

θ =θ+Δθ

µ=µ*β

 V(θ+Δθ) <V(θ)

Start Iteration

 Iterations

Complete?

End

 Iterations

Complete?

Figure 10: Levenberg Marquardt Flowchart

F

F F

T T

T

35

Φ

1

Φ

2

Φ

3

ΦNw

∑

∑

∑

x

1

x

2

 ̂

 ̂

 ̂

Nonlinear function

Wavelet

Network

Y

 ̂

e

2.3 Nonlinear Function Approximation

Figure 11 shows a block diagram of the training structure for a wavelet

network used for the approximation of static nonlinear functions.

This is a black box model in which the inputs are presented to the wavelet

network which then trains so as to minimize the error between the network output and

the output of the original system. MATLAB and Simulink were used to simulate the

training of the network for a single input single output (SISO) and a multi input single

output (MISO) nonlinear function. Both functions to be approximated were taken

from seminal papers [8,9] on wavelet modelling. The default activation function used

is the first derivative of the Gaussian.

For both cases, offline training was carried out using wavelet networks

initialized using the heuristic method and the dyadic grid method in order to compare

the initialization techniques in terms of speed of convergence and mean squared error

(MSE). Further, the effect of changing the number of neurons in the hidden layer was

investigated. The effect of changing the learning rates was also studied. In each case,

the system performance was evaluated based on the mean square error obtained after

a fixed number of iterations. The next step involved comparing the performance of the

systems when using different activation functions. Finally, the gradient descent

Figure 11: Approximation of Static Nonlinear Function

36

method for training was compared with the Levenberg Marquardt (LM) algorithm in

order to determine which method is more efficient for offline training.

Online training was then carried out for a SISO Gaussian function and a MISO

system using different activation functions to compare the network efficiency.

2.3.1 Offline training.

2.3.1.1 SISO system. The nonlinear function to be approximated is given by

Equation 2.25 and shown in Figure 12.

 () {

 ()

)
)
)

 (2.25)

Figure 12: SISO Nonlinear Function

The translation and dilation coefficients were initialized using the heuristic

method while the weights of the direct connections, hidden layer to output weights

and the output bias weights were initialized using the least squares method. The

number of iterations was fixed to 10000. In order to determine the effect of changing

the number of neurons in the hidden layer on the MSE, the learning rate and

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

37

momentum rate were set to 0.01 and 0.4 respectively and the number of neurons was

varied. The simulation was the repeated, initializing the translation and dilation

coefficients using the dyadic grid method, keeping all other conditions identical. The

results are tabulated in Table 1 and shown graphically in Figures 13 and 14.

Table 1: MSE for Varying Nw for SISO Static Function Approximation using Heuristic and Dyadic

Grid Method

Iterations Nw Heuristic Method MSE Dyadic Grid Method MSE

10000

7 0.6208 0.3019

15 1.0511 0.0828

31 1.1262 0.1292

Figure 13: MSE for Varying Nw for SISO Static Function Approximation using Heuristic Method

10
0

10
1

10
2

10
3

10
4

10
-1

10
0

10
1

10
2

10
3

Iterations

M
e
a
n
 S

q
u
a
re

 E
rr

o
r

Mean Square Error

Nw=7

Nw=15

Nw=31

38

Figure 14: MSE for Varying Nw for SISO Static Function Approximation using Dyadic Grid Method

The number of neurons was then fixed at 15 and the momentum rate fixed at

0.6. The effect of altering the learning rate was then investigated and the MSE after

10000 iterations was determined for both cases when the translation and dilation

coefficients are initialized using the heuristic method and the dyadic grid method. The

results are tabulated in Table 2 and a graphical representation is shown in Figures 15

and 16.

Table 2: MSE for Varying µ for SISO Function Approximation using Heuristic and Dyadic Grid

Method

Iterations µ Heuristic Method MSE Dyadic Grid Method MSE

10000

0.01 0.7853 0.0232

0.02 0.2841 0.0190

0.04 0.0983 0.0170

0.08 0.0198 0.0103

10
0

10
1

10
2

10
3

10
4

10
-2

10
-1

10
0

10
1

10
2

Iterations

M
e
a
n
 S

q
u
a
re

 E
rr

o
r

Mean Square Error

Nw=7

Nw=15

Nw=31

39

Figure 15: MSE for Varying µ for SISO Static Function Approximation using Heuristic Method

Figure 16: MSE for Varying µ for SISO Static Function Approximation using Dyadic Grid Method

10
0

10
1

10
2

10
3

10
4

10
-2

10
-1

10
0

10
1

10
2

Iterations

Mean Square Error

=0.01

=0.02

=0.04

=0.08

10
0

10
1

10
2

10
3

10
4

10
-2

10
-1

10
0

10
1

10
2

Iterations

Mean Square Error

=0.01

=0.02

=0.04

=0.08

40

From the results obtained it was observed that the network initialized using the

dyadic grid method performed better that the one initialized using the heuristic

method. Faster convergence and lower MSE were observed. It was also seen that for

this function, smaller network sizes performed better than larger networks. Keeping

the momentum rate fixed, an increase in the learning rate also served to reduce the

MSE. An important observation was that the selection of the learning and the

momentum rates was arbitrary being done through trial and error in order to

determine the ranges in which the network would be able to model the system.

Next, a comparison was drawn between the gradient descent algorithm and the

LM algorithm. The network trained using the LM algorithm consists of a hidden layer

with 15 neurons with a learning rate of 0.1 and a β of 2. The performance of this

network was compared to a network trained using the gradient descent algorithm with

a learning rate of 0.08 and momentum rate of 0.6 which is initialized using the dyadic

grid method. Training was carried out for 100 iterations.

Table 3 and Figure 17 show the MSE of the network trained using each of the

two algorithms. Figure 18, which compares the network outputs for both cases, shows

that the LM algorithm provides much faster convergence and better response.

Table 3: MSE for LM and GD Trained Networks for SISO Static Function Approximation

 Mean Square Error

Iterations LM Algorithm Gradient Descent Algorithm

100 0.01081 0.6716

41

Figure 17: MSE for LM and GD Trained Networks for SISO Static Function Approximation

Figure 18: Output of Networks Trained using LM and GD Algorithms

10
0

10
1

10
2

10
-2

10
-1

10
0

10
1

10
2

Mean Squared Error

Number of Iterations

M
S

E

LM Algorithm

GD Algorithm

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

Desired Output

Network Output using LM

Network Output using GD

42

The effect of changing the activation function on the network performance

was tested for a wavelet network with 15 neurons in the hidden layer, with learning

and momentum rates set to 0.08 and 0.6 respectively. Initialization of the translation

and dilation parameters was done using the dyadic grid method. The gradient descent

algorithm was used for training. Table 4 shows the MSE after 1000 iterations for the

network which was tested using the first derivative of the Gaussian function, the

Mexican Hat wavelet and the Morlet wavelet as activation functions. It is seen that the

first derivative of the Gaussian function provides the best network performance.

Table 4: MSE for Different Activation Functions for SISO Static Function Approximation

 Mean Square Error

Iterations 1
st
 Derivative of Gaussian Mexican Hat Morlet

1000 0.0158 0.0301 0.0430

Figure 19 shows the comparison of the MSE for the three different activation

functions and Figure 20 shows the comparison in the network output after 1000

iterations.

Figure 19: MSE for Network Trained using Different Activation Functions

10
0

10
1

10
2

10
3

10
-2

10
-1

10
0

10
1

10
2

Number of Iterations

M
S

E

Mean Squared Error

Gaussian

Mexican Hat

Morlet

43

Figure 20: Output of Networks Trained using Different Activation Functions

2.3.1.2 MISO system. The nonlinear function to be approximated is given by

Equation 2.26 and shown in Figure 21.

 () () (()) (()) (2.26)

Figure 21: MISO Nonlinear Function

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10
Desired Output

Gaussian

Mexican Hat

Morlet

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

1

2

3

4

Output Required

44

The translation and dilation coefficients were initialized using the heuristic

method while the weights of the direct connections, hidden layer to output weights

and the output bias weights were initialized to small random values. The simulation

was run for 10000 iterations. In order to study the effect of changing the number of

neurons in the hidden layer the learning rate and momentum rate were fixed to 0.1 and

0.6 respectively. The simulation was the repeated, this time initializing the translation

and dilation coefficients using the dyadic grid method, keeping all other conditions

identical. The results are tabulated in Table 5 and shown graphically in Figures 22 and

23.

Table 5: MSE for Changing Nw for MISO Function Approximation using Heuristic Method

Iterations Nw Heuristic Method MSE Dyadic Grid Method MSE

10000

7 0.0136 0.0104

15 5.0251e-4 4.4011e-4

31 7.6238e-4 2.3128e-4

Figure 22: MSE for Varying Nw for MISO Function Approximation using Heuristic Method

10
0

10
1

10
2

10
3

10
4

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Iterations

Mean Square Error

Nw=7

Nw=15

Nw=31

45

Figure 23: MSE for Varying Nw for MISO Function Approximation using Dyadic Grid Method

The number of neurons was then fixed at 31 and the momentum rate fixed at

0.6. The effect of altering the learning rate was then investigated and the MSE after

10000 iterations was determined for both cases when the translation and dilation

coefficients are initialized using the heuristic method and the dyadic grid method. The

results are tabulated in Table 6 and a graphical representation is shown in Figures 24

and 25.

Table 6: MSE for Changing µ for MISO Function Approximation using Heuristic Method

Iterations µ Heuristic Method MSE Dyadic Grid Method MSE

10000

0.02 0.0028 7.4482e-4

0.05 0.0013 3.3013e-4

0.08 7.5450e-4 4.0521e-4

10
0

10
1

10
2

10
3

10
4

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Iterations

Mean Square Error

Nw=7

Nw=15

Nw=31

46

Figure 24: MSE for Varying µ for MISO Function Approximation using Heuristic Method

Figure 25: MSE for Varying µ for MISO Function Approximation using Dyadic Grid Method

10
0

10
1

10
2

10
3

10
4

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Iterations

Mean Square Error

=0.02

=0.05

=0.08

10
0

10
1

10
2

10
3

10
4

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Iterations

Mean Square Error

=0.02

=0.05

=0.08

=0.1

47

From the results, it is seen that for this system, the network performs better

when the number of neurons are increased. In addition, the dyadic grid initialization

method provided better results with the network converging faster and producing a

smaller MSE. Trial and error was used again in the selection of the momentum rate

and the learning rate. Increasing the learning rate up to 0.1 for a fixed momentum rate

was seen to improve the network training.

Next, a comparison was drawn between the gradient descent algorithm and the

LM algorithm. The network trained using the LM algorithm consists of a hidden layer

with 31 neurons with a learning rate of 0.5 and a β of 8. The performance of this

network was compared to a network trained using the gradient descent algorithm with

a learning rate of 0.1 and momentum rate of 0.6 which is initialized using the dyadic

grid method. Training was carried out for 100 iterations.

Figure 26 and Table 7 show the MSE of the network trained using each of the

two algorithms.

Figure 26: MSE for LM and GD Trained Networks for MISO Function Approximation

10
0

10
1

10
2

10
-8

10
-6

10
-4

10
-2

10
0

10
2

Number of Iterations

M
S

E

Mean Squared Error

GD Algorithm

LM Algorithm

48

Table 7: MSE for LM and GD Trained Networks for MISO Function Approximation

 Mean Square Error

Iterations LM Algorithm Gradient Descent Algorithm

100 2.628e-7 0.361

The effect of changing the activation function on the network performance

was tested for a wavelet network with 31 neurons in the hidden layer, with learning

and momentum rates set to 0.1 and 0.6 respectively. Initialization of the translation

and dilation parameters was done using the dyadic grid method. The gradient descent

algorithm was used for training. Table 8 shows the MSE after 1000 iterations for the

network which was tested using the first derivative of the Gaussian function, the

Mexican Hat wavelet and the Morlet wavelet as activation functions. It is seen that the

first derivative of the Gaussian function provides the best network performance.

Figure 27 shows the comparison of the MSE for the three different activation

functions.

Figure 27: MSE of Networks Trained using Different Activation Functions for MISO Function

Approximation

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

Number of Iterations

M
S

E

Mean Squared Error

Gaussian

Mexican Hat

Morlet

49

Table 8: MSE for Different Activation Functions for MISO Function Approximation

 Mean Square Error

Iterations 1
st
 Derivative of Gaussian Mexican Hat Morlet

1000 0.0027 0.0060 0.0077

2.3.2 Online training.

2.3.2.1 SISO system. The nonlinear Gaussian function to be approximated is

given by Equation 2.27 and shown in Figure 28.

 ()

 (2.27)

Figure 28: Gaussian Function

Training was carried out using a chirp signal and the simulation was run for

10000 iterations for a wavelet network with seven neurons in the hidden layer and the

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Gaussian Function

50

learning and momentum rates set to 0.1 and 0.9 respectively. The Simulink block

diagram for training the network online is shown in Figure 29 and the MSE is

provided in Figure 30. After training for 10000 iterations, the final value of the MSE

was found to be 4.6294e-8.

Figure 29: Online Training of SISO CWN

Figure 30: Mean Square Error for Approximation of Gaussian Function

Training Signal

Output

MATLAB

Function

OCWN

In

Input

x y d

Gaussian f(x)

Error

Yd

Desired Output

Chirp Signal

10
0

10
1

10
2

10
3

10
4

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

Iterations

M
S

E

Mean Squared Error

51

After training the network, the network was then tested using sinusoids and

triangular waves as the input signals. The block diagram for testing of the network is

shown in Figure 31.

Figure 31: Block Diagram for Testing Wavelet Network

A graph of the network output versus the input was plotted and is shown in

Figure 32. From the graph it can be seen that the network was trained to successfully

approximate the desired Gaussian function. After testing, the mean square error was

found to be 2.7517e-5.

Figure 32: Output of CWN for Gaussian Function Approximation

Testing Sequence

Testing Sequence Selector

Repeating Sequence 1

Sine Wave 0

Gaussian Function

in_test

x

x y

f(x)

network_out_test

Y_hat

actual_out_test

Y

XY Graph1

XY Graph

Switch

Sine Wave

0

Selector

Repeating

Sequence

Output

MATLAB

Function

OCWN

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

Y

Gaussian Function

CWN Function

52

The effect of changing the activation function for online training of the SISO

system was then tested. A network with 7 neurons in the hidden layer was selected

with a learning rate of 0.1 and a momentum rate of 0.9. Three different activation

functions were tested: first derivative of the Gaussian, Morlet and Mexican Hat

wavelets. Table 9 and Figure 33 show the MSE of each network after 1000 iterations.

It was seen that selecting the Morlet wavelet as the activation function allowed for

faster network convergence.

Table 9: MSE for Different Activation Functions for Online SISO Function Approximation

 Mean Square Error

Iterations 1
st
 Derivative of Gaussian Mexican Hat Morlet

1000 1.819e-7 3.38e-8 1.359e-9

Figure 33: MSE for Different Activation Functions for Online SISO Function Approximation

10
0

10
1

10
2

10
3

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

Number of Iterations

M
S

E

Mean Squared Error

Gaussian

Mexican Hat

Morlet

53

2.3.2.2 MISO system. The nonlinear function to be approximated, for the input

range of [-0.5, 0.5], is given by Equation 2.28 and shown in Figure 34.

 () () (()) (()) (2.28)

Figure 34: MISO Function for Online Training

In order to train the network over the entire input domain, the training signals

were chosen so as to form a dense spiral over the desired input domain as shown in

Figure 35.

 Figure 35: Training Signals for MISO Function

-0.5

0

0.5

-0.5

0

0.5
0

1

2

3

4

54

The Simulink block diagram for training the network online is shown in

Figure 36. The simulation was run for 1600 iterations for a wavelet network with 31

neurons in the hidden layer. The momentum rates for the translation and dilation

coefficients were selected to be different from those used for the direct connection

and bias weights. The momentum coefficients were set to 0.8 and 0.6 respectively and

the learning rate was selected as 0.001.

Figure 36: Online Training of MISO CWN

A graph of the MSE per iteration is shown in Figure 37. At the end of 1600

iterations the error was found to be 0.0013.

Figure 37: Mean Square Error for Approximation of MISO Function

Sine Wave1

Sine Wave

Repeating

Sequence1

Repeating

Sequence

Product1

Product

Output

MATLAB

Function

OCWN

Yo

Network Output

xi2

Input 2

xi1

Input 1

f(u)

Fcn

Error

Ya

Actual Output

10
0

10
1

10
2

10
3

10
4

10
-3

10
-2

10
-1

10
0

Iterations

M
S

E

Mean Squared Error

55

The network was then tested for an input mesh between -0.5 and 0.5 as shown

in Figure 38.

Figure 38: Block Diagram for Testing MISO Wavelet Network

From Figure 39 it can be see that the network output closely follows the

desired output signal. The MSE upon testing was found to be 0.0094. With further

network training, this error can be further reduced to provide a more accurate

representation.

Figure 39: Output of CWN for MISO Function Approximation

Yot

Y_hat

Yat

Y

xt

Testing Sequence

Output

MATLAB

Function

OCWN

In2.mat

From File1

In1.mat

From File
f(u)

Fcn

-0.5

0

0.5

-0.5

0

0.5
0

1

2

3

4

56

The effect of changing the activation function for online training of the MISO

system was then tested. A network with 31 neurons in the hidden layer was selected

with a learning rate of 0.001 and momentum rates of 0.8 and 0.6 were selected for the

translation and dilation coefficients and the remaining network coefficients

respectively. Three different activation functions were tested: first derivative of the

Gaussian function, Morlet and Mexican Hat wavelets. Table 10 and Figure 40 show

the MSE of each network after 1500 iterations. In this case the Mexican Hat wavelet

gave the smallest MSE after 1500 iterations.

Table 10: MSE for Different Activation Functions for Online MISO Function Approximation

 Mean Square Error

Iterations 1
st
 Derivative of Gaussian Mexican Hat Morlet

1500 0.0013380 0.00083426 0.0013868

Figure 40: MSE for Different Activation Functions for Online MISO Function Approximation

10
0

10
1

10
2

10
3

10
-4

10
-3

10
-2

10
-1

10
0

Iterations

M
S

E

Mean Squared Error

Mexican Hat

Morlet

Gaussian

57

System

 ()

 ()

)

Figure 41: Training Structure for Dynamic Systems

RWN

 ̂()

+
-

Chapter 3: Modelling of Dynamic Systems Using Recurrent Wavelet

Networks

Unlike the conventional wavelet networks which are used to create static

mappings, Recurrent Wavelet Networks (RWN) are used for the modelling of

dynamic systems with time varying inputs or outputs as shown in Figure 41.

58

∑

x1

 ̂

∏

φ

∏

∏

φ

φ

φ

φ

φ

 Layer 1 Layer 2 Layer 3 Layer 4

Φ1

ΦNw

3.1 Architecture

Modelling of dynamic systems is made possible using RWN through the use

of feedback in the wavelet layer of the network. The most popular RWN architecture

is a four layer structure with self-feedback in the wavelet layer as shown in Figure 42

[13-16]. A generalization of the WNN structure, the RWN is equivalent to the WNN

when the feedback weights are set to zero.

The output of the recurrent wavelet network is given by Equation 3.1,

 ̂() ∑ ()

 ∑ ()

 (3.1)

Figure 42: RWN Architecture

59

where represents the weights of the direct connections between the output and the

input, represents the bias weight and represents the weight between the product

nodes of Layer 3 and the output node. is a multidimensional wavelet given as the

product of scalar wavelets given by Equation 3.2.

 () ∏ (())

 ∏ (
 ()

)

 (3.2)

where is the translation coefficient and is the dilation coefficient and

represents the input to Layer 2 and is given by Equation 3.3.

 () () (()) (3.3)

The mother wavelet is selected to be the first derivative of the Gaussian function,

therefore Equation 3.2 can be re-written as shown in Equation 3.4.

 () ∏ ()

 ∏ ()

 ()

 (3.4)

The complete set of network parameters is given by the weighting vector

] .

3.2 Training Algorithm

Training of the recurrent wavelet network is carried out using the gradient

descent algorithm which involves adjusting the network parameters, , to ensure the

minimization of a cost function given by Equation 3.5,

 ()

(() ̂())

(()) (3.5)

where is the error between the desired output and the output of the wavelet network.

60

The partial derivative of the cost function with respect to the network

parameters is given in Equation 3.6.

 ()

 ̂()

 (3.6)

The partial derivative of the network output ̂ with respect to each of the

network parameters is given in Equations 3.7 to 3.12.

 ̂()

 (3.7)

 ̂()

 () (3.8)

 ̂()

 () ∏ (())

 (3.9)

 ̂()

 ̂()

 ()

(

 ∏ (())

)

 (())

(

 ∏ (())

)

 (())

 (3.10)

 ̂()

 ̂()

 ()

(

 ∏ (())

)

 (())

(

 ∏ (())

)

 (())

(3.11)

 ̂()

 ̂()

 ()

(

 ∏ (())

)

 (())

(

 ∏ (())

)

 (())

 (3.12)

Equations 3.10 to 3.12 can be rewritten for ease as given in Equations 3.13 to 3.15,

where

 ()
 (())

 ()

 (())

 and ()

 (())

.

61

 ̂()

(

 ∏ (())

)

 () (3.13)

 ̂()

(

 ∏ (())

)

 () (3.14)

 ̂()

(

 ∏ (())

)

 () (3.15)

Recursive equations are then obtained as shown in Equation 3.16 to 3.18.

 (())

 (())

 ()

 ()

 (())

 (())

 ()

(

 (())

)

 ()
 (())

 ()

(())

(3.16)

 (())

 (())

 ()

 ()

 (())

 (())

 ()

(()

 (())

)

 ()
 (())

 ()

(() ())

(3.17)

62

 (())

 (())

 ()

 ()

 (())

 (())

 ()

((())

 (())

)

 ()
 (())

 ()

((()) ())

(3.18)

where
 (())

 ()
 (

 ())

 ()

Each parameter is then updated using Equation 3.19, where µ(n) represents the

adaptive learning rate and n represents a data point in the training cycle.

 () () () () ()

 (3.19)

3.3 Convergence and Stability Analysis

In order to ensure the convergence of the training algorithm for the structure

represented in Figure 41, adaptive learning rates are derived from the discrete

Lyapunov stability theorem. The discrete Lyapunov function is defined as in Equation

3.20 [13, 20-21].

 ()

 () (3.20)

The change in the Lyapunov function is given in Equation 3.21.

 () () ()

(() ()) (3.21)

The error term, (), can be approximated as shown in Equation 3.22.

 () () () () [
 ()

]

 (3.22)

63

where , the weighting vector, is

]

and

 [
 ()

]

 [
 ()

 ()

 ()

 ()

 ()

 ()

]

Substituting Equation 3.22 in Equation 3.21, the change in the Lyapunov function can

be written as shown in Equation 3.23.

 ()

(() () ()) () (()

 ()) (3.23)

The change in each of the weights, , is computed as in Equation 3.24.

 ()
 ()

 () ()

 ̂()

 (3.24)

Using Equations 3.22 and 3.24, the change in the Lyapunov function can be written as

shown in Equation 3.25.

 () () () [
 ()

]

 ̂()

(()

 () () [

 ()

]

 ̂()

) (3.25)

where
 ()

 ̂()

Therefore, () can be written as shown in Equation 3.26.

 () () () ‖
 ̂()

‖

(()

 () () ‖

 ̂()

‖

) (3.26)

64

Equation 3.26 is rewritten as Equation 3.27.

 () ()(() ‖
 ̂()

‖

 () ‖
 ̂()

‖

) () (3.27)

where

 () ‖
 ̂()

‖

(

 () ‖

 ̂()

‖

)

 can be rewritten in terms of η
i
 and µ

i
 as shown in Equation 3.28, where

 = () (‖
 ̂()

‖

).

 () ‖

 ̂()

‖

(

‖
 ̂()
 ‖

‖
 ̂()
 ‖

)

 () ‖

 ̂()

‖

()

(3.28)

since

‖
 ̂()
 ‖

‖
 ̂()
 ‖

To ensure convergence, () In order to meet this condition, . This is

possible by selecting the learning rate as shown in Equation 3.29.

 ()() (3.29)

Substituting for ηi

leads to Equation 3.30,

 ()(() (

‖
 ̂()

‖

)) (3.30)

From Equation 3.30, the learning rates for each of the weights should be selected as

shown in Equation 3.31, in order to guarantee convergence.

 ()

‖
 ̂()
 ‖

 (3.31)

65

Based on Equation 3.31, the method by which the adaptive learning rates are obtained

in each iteration is shown in the flowchart in Figure 43, where N represents the total

number of data points per iteration.

n=1

 () ‖
 ̂()

 ‖

 ()

 ()

 ()

 () () () () ()

n=n+1

End

Apply Inputs

F

F

T

T

Figure 43: Flowchart for Updating Adaptive Learning Rates

66

3.4 Adaptive Learning Rates

From the results of the stability analysis, adaptive learning rates were derived for

each of the network parameters that make up the weighting vector θ. Details on

computation of matrix norms can be found in Appendix A. Appendix B provides the

details on the solution of the Recursive Equations 3.16-3.18 which will be required to

solve for the adaptive learning rates.

For the bias weight at the output layer, the learning rate, () is selected as

shown in Equation 3.32.

From Equation 3.7,
 ̂()

 . Therefore the norm is given by Equation 3.33,

For the direct connections between the input layer and the output layer, the

learning rate, () is selected as shown in Equation 3.35.

 ()

‖
 ̂()

‖

(3.32)

‖
 ̂()

‖

(3.33)

From Equation 3.33, the adaptive learning rate is selected as shown in Equation 3.34.

 () (3.34)

 ()

‖
 ̂()

‖

(3.35)

67

From Equation 3.8,
 ̂()

 (). Therefore the norm is given by Equation 3.36,

The maximum of the norm at time index n is given by Equation 3.37.

From Equation 3.37 the maximum norm can be computed as shown in Equation 3.38,

where

| ()|

Substituting Equation 3.38 in Equation 3.35, the adaptive learning rate is selected as

shown in Equation 3.39.

The learning rate, () for the weights connecting the hidden layer to the output

layer is selected so as to satisfy Equation 3.40.

‖
 ̂()

‖ √

 ()
 ()

(3.36)

‖
 ̂()

‖ √

 ()

 ()

| ()|

where

(3.37)

‖
 ̂()

‖ √

(3.38)

 ()

 (3.39)

 ()

‖
 ̂()

‖
 (3.40)

68

From Equation 3.9,
 ̂()

 . Therefore the norm is given by Equation 3.41,

The maximum of the norm at time index n is given by Equation 3.42.

From Equation 3.42, the maximum norm is given by Equation 3.43,

Since the selected activation function is the first derivative of a Gaussian, then

| ()| The maximum norm can be computed as shown in Equation 3.44.

Substituting Equation 3.44 into Equation 3.40, the adaptive learning rate is selected as

shown in Equation 3.45.

‖
 ̂()

‖ √

 ()

 () (3.41)

‖
 ̂()

‖ √

 ()

 ()

| ()|

where

(3.42)

‖
 ̂()

‖ √

| ()|

where

(3.43)

‖
 ̂()

‖ √ (3.44)

 ()

 (3.45)

69

The learning rate, () for the translation coefficients is selected so as to satisfy

Equation 3.46.

In order to solve for the norm of the matrix
 ̂()

, first |

 ̂()

| must be computed.

Equations 3.13 and 3.16 are rewritten here for convenience,

where

Since | ()| , Equation 3.47 can be written as Equation 3.49.

The solution of the recursive equation, given by Equation 3.48, is given in Equation

3.50,

Since V1,ji(0)=0, Equation 3.50 can be simplified to Equation 3.51.

Since |
 | , Equation 3.51 can be written as shown in Equation 3.52.

 ()

‖
 ̂()

‖
 (3.46)

 ̂()

(

 ∏ (())

)

 (())

(

 ∏ (())

)

 () (3.47)

 ()
 (())

 ()

(()) (3.48)

|
 ̂()

| | || ()| (3.49)

 () (∏
 ()

)(() (

)

)

∑ ((

)

∏
 ()

)

 (3.50)

 ()

∑ ((

)

∏
 ()

)

 (3.51)

| ()| |

| ∑ |

|

 (3.52)

70

Assuming |

| , Equation 3.52 can be rewritten as shown in Equation 3.53 which

represents a finite geometric series.

where

 ,

The sum of the finite geometric series will therefore always be less than or equal to

the infinite series as shown in Equation 3.54.

The solution of the infinite geometric series is given by Equation 3.55.

Substituting Equation 3.55 in Equation 3.49, Equation 3.56 is obtained.

For a given point in time n, let () |
 ̂()

|. The maximum norm is

therefore given by Equation 3.57.

where

Substituting Equation 3.57 in Equation 3.46, the adaptive learning rate is selected as

shown in Equation 3.58.

| ()| |

| ∑ |

|

 (3.53)

| ()| |

|∑|

|

 (3.54)

| ()| |

|

 | ⁄ |
 (3.55)

|
 ̂()

| |

|

 | ⁄ |
 (3.56)

‖
 ̂()

‖ √ (3.57)

(())

 ()

 (3.58)

71

The learning rate, () for the dilation coefficients is selected so as to satisfy

Equation 3.59.

In order to solve for the norm of the matrix
 ̂()

, first |

 ̂()

| must be computed.

Equations 3.14 and 3.17 are rewritten here for convenience,

where

Since | ()| , Equation 3.60 can be written as Equation 3.62.

The solution of the recursive equation, given by 3.61, is given in Equation 3.63,

Since V2,ji(0)=0, Equation 3.63 can be simplified to Equation 3.64.

Since |
 | , Equation 3.64 can be written as shown in Equation 3.65.

 ()

‖
 ̂()

‖
 (3.59)

 ̂()

(

 ∏ (())

)

 (())

(

 ∏ (())

)

 () (3.60)

 ()
 (())

 ()

(() ())

(3.61)

|
 ̂()

| | || ()| (3.62)

 () (∏
 ()

)(() (

)

)

∑ (()(

)

∏
 ()

)

 (3.63)

 ()

∑ (()(

)

∏
 ()

)

 (3.64)

| ()| |

| ∑ | ()(

)

|

 (3.65)

72

Assuming |

| , Equation 3.65 can be rewritten as shown in Equation 3.66,

where

 ,

Equation 3.66 can then be written as shown in Equation 3.67.

From the inequality, | | | | | |, Equation 3.67 can be rewritten as Equatio

3.68.

Since, | ()| , Equation 3.68 can be further simplified as shown in

Equation 3.69.

Equation 3.69 can be written as shown in Equation 3.70,

| ()| |

|∑| ()| |

|

 (3.66)

| ()| |

|∑|
 () (())

| |

|

 (3.67)

| ()| |

 |∑(| ()| | (())| | |) |

|

 (3.68)

| ()| |

 |∑[| ()| |

|

 | | |

|

 | | |

|

]

(3.69)

| ()| |

 |∑[| | |

|

 | | |

|

 | | |

|

]

| ()|

where

(3.70)

73

Equation 3.70 is rewritten as shown in Equation 3.71 which represents a finite

geometric series.

where

 ,

Equation 3.71 represents the sum of finite geometric series which will always be less

than or equal to the infinite sum of the series as shown in Equation 3.72.

Solving the infinite geometric series leads to Equation 3.73.

Substituting Equation 3.73 in Equation 3.62 leads to Equation 3.74.

Let, () |
 ̂()

|. The maximum norm is therefore given by Equation

3.75.

where

Substituting Equation 3.75 in Equation 3.59, the adaptive learning rate is selected as

shown in Equation 3.76.

| ()| |

 |∑[| | |

|

 | | |

|

 | | |

|

]

(3.71)

| ()| |

 |∑[| | |

|

 | | |

|

 | | |

|

]

 (3.72)

| ()| |

 | (

| | | | | |

 | ⁄ |
)

(3.73)

|
 ̂()

| |

 | (

| | | | | |

 | ⁄ |
) (3.74)

‖
 ̂()

‖ √

(3.75)

(())

 ()

 (3.76)

74

The learning rate, () for the feedback coefficients is selected so as to satisfy

Equation 3.77.

In order to solve for the norm of the matrix
 ̂()

, first|

 ̂()

| must be computed.

Equations 3.15 and 3.18 are rewritten here for convenience,

where

Since | ()| Equation 3.78 can be written as Equation 80.

The solution of the recursive equation, given by Equation 3.79, is given in Equation

3.81,

Since V3,ji(0)=0, Equation 3.81 can be simplified to Equation 3.82.

Since |
 | , and | ()| Equation 3.82 can be written as shown in

Equation 3.83.

 ()

‖
 ̂()

‖

 (3.77)

 ̂()

(

 ∏ (())

)

 (())

(

 ∏ (())

)

 () (3.78)

 ()
 (())

 ()

((()) ()) (3.79)

|
 ̂()

| | || ()| (3.80)

 () (∏
 ()

)(() (

)

)

∑ (() (

)

∏
 ()

)

 (3.81)

 ()

∑ (() (

)

∏
 ()

)

 (3.82)

| ()| |

| ∑ |

|

 (3.83)

75

Assuming |

| , Equation 3.83 can be rewritten as shown in Equation 3.84 which

represents a finite geometric series.

where

 ,

The sum of the finite geometric series is therefore always less than or equal to the

infinite sum as shown in Equation 3.85.

Solving the infinite geometric series leads to Equation 3.86.

Substituting Equation 3.86 in Equation 3.80,

Let, () |
 ̂()

|. The maximum norm is therefore given by Equation

3.88.

where

Substituting Equation 3.88 in Equation 3.77, the adaptive learning rate is selected as

shown in Equation 3.89.

| ()| |

|∑ |

|

 (3.84)

| ()| |

|∑ |

|

 (3.85)

| ()| |

|

 | | | |⁄

(3.86)

|
 ̂()

| |

|

 | ⁄ |
 (3.87)

‖
 ̂()

‖ √

(3.88)

(())

 ()

 (3.89)

76

3.5 Simulations

In this section, grey box modelling of a DC motor with nonlinear friction,

represented by Equations 3.90 and 3.91, was carried out. The parameters of the DC

Motor can be found in Appendix C.

 () (3.90)

 (3.91)

The nonlinear friction of the motor represented by () is assumed to be unknown

and the load torque is selected as zero. As such, based on the a priori knowledge of

the linear system structure, the linear system is discretized using the Euler Forward

method as well as the Bilinear Transformation method in order to determine the

training inputs required to train the RWN. The transfer function of the linear DC

Motor without nonlinear friction is given in Equation 3.92.

 ()

 ()

()()
 (3.92)

3.5.1 Nonlinear DC motor discretized using Bilinear transformation. In order to

optimize the training of the RWN, the training inputs can be determined by

discretizing the DC Motor using the bilinear transform, given in Equation 3.93 in

order to determine the necessary training inputs. Equation 3.94 shows the discretized

linear DC Motor model.

 (3.93)

77

 ()

 ()

 ()

 (3.94)

where

 ,

From Equation 3.94, it can be seen that the speed is a function of the following inputs

given in Equation 3.95.

 () (() () () () ()) (3.95)

Online training was carried out using a chirp signal of magnitude 12 amd

frequency 0.1-4Hz over an interval of 1s and the RWN was selected with 3 neurons in

the hidden layer. The nonlinear frictional torque, () was selected as a

combination of viscous friction and coulomb friction and is shown in Figure 44.

Figure 44: Frictional Torque

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Speed (rad/s)

T
o
rq

u
e
 (

N
m

)

Torque Speed Characteristics

78

The network was trained as shown in Figure 45 and the MSE after training for 10000

iterations is shown in Figure 46. The MSE after training was found to be 6.4572e-6.

Figure 45: Training RWN for DC Motor, Bilinear Discretization

Figure 46: MSE for DC Motor RWN, Bilinear Discretization

Tl

dcmtrainop.mat

To File1

dcmtrainip.mat

To File

Step1

Output

 -2

Z

Integer Delay4

 -1

Z

Integer Delay3

 -2

Z

Integer Delay2

 -1

Z

Integer Delay1

12

Gain2

Va

TL

w

DC Motor

Chirp Signal

10
0

10
1

10
2

10
3

10
4

10
-6

10
-5

10
-4

Iterations

M
S

E

79

Since and are constant values and , the change in and over time

is observed. It was observed that the parameters only changed in the first iteration and

then remained constant for the rest of the training. The change in parameters over the

first cycle is shown in Figure 47.

Figure 47: Learning Rates for Translation and Dilation over First Training Cycle

Testing was then carried out as shown in Figure 48, using a sinusoidal input of

magnitude 3V and frequency 1Hz. From Figure 49, it can be seen that the network has

been trained to represent the DC Motor with nonlinear friction. The MSE after testing

was found to be 1.2912e-5.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.0177

0.0177
m

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
3.5595

3.5595

3.5595

3.5595

3.5595

3.5595
x 10

-6

d

1.7691641e-02 1.7691643e-02

3.5595073e-06

3.5595073e-06

3.5595077e-06

n

n

80

Figure 48: Testing RWN for DC Motor, Bilinear Discretization

Figure 49: DC Motor RWN Test Output, Bilinear Discretization

Tl

testop.mat

To File1

testip.mat

To File

Step1

Sine Wave

Output

 -2

Z

Integer Delay4

 -1

Z

Integer Delay3

 -2

Z

Integer Delay2

 -1

Z

Integer Delay1

Va

TL

w

DC Motor

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-6

-4

-2

0

2

4

6

Time

S
p
e
e
d

Actual Output

Estimated Output

81

3.5.2 Nonlinear DC motor discretized using Euler Forward transformation. In

this section, the training inputs were selected based on the Euler Forward

discretization of the DC Motor given in Equation 3.96. Equation 3.97 shows the

discretized linear DC Motor model.

 (3.96)

 ()

 ()

 () ()

 (3.97)

From Equation 3.97 it can be seen that the speed of the DC Motor is a function of the

inputs shown in Equation 3.98.

 () (() () ()) (3.98)

The RWN with 3 neurons in the hidden layer was trained as shown in Figure

50, using a chirp signal of magnitude 12 and frequency 0.1-4Hz over an interval of 1s,

and the MSE after training for 10000 iterations is shown in Figure 51. The MSE after

training was found to be 6.8587e-6.

.

Figure 50: Training RWN for DC Motor, Euler Forward Discretization

Tl

dcmtrainop.mat

To File1

dcmtrainip.mat

To File

Step1

Output

 -2

Z

Integer Delay4

 -1

Z

Integer Delay3

 -2

Z

Integer Delay2

12

Gain2

Va

TL

w

DC Motor

Chirp Signal

82

Figure 51: MSE for DC Motor RWN, Euler Forward Discretization

Since and are constant values and , the change in and over time

is observed. It was observed that based on the initial conditions selected, the

parameters remained constant over the course of the training as shown in Figure 52.

Figure 52: Learning Rates for Translation and Dilation over First Training Cycle

10
0

10
1

10
2

10
3

10
4

10
-6

10
-5

10
-4

Iterations

M
S

E

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.01

0.02

0.03

0.04

0.05

m

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.2

0.4

0.6

0.8

1
x 10

-5

d

3.3855783e-02

6.8116862e-06

83

Testing was then carried out as shown in Figure 53, using a sinusoidal input of

magnitude 3V and frequency 1Hz. From Figure 54, it can be seen that the network has

been trained to represent the DC Motor with nonlinear friction. The MSE after testing

was found to be 1.6747e-5.

Figure 53: Testing RWN for DC Motor, Euler Forward Discretization

Figure 54: DC Motor RWN Test Output, Euler Forward Discretization

Tl

testop.mat

To File1

testip.mat

To File

Step1

Sine Wave

Output

 -2

Z

Integer Delay4

 -1

Z

Integer Delay3

 -2

Z

Integer Delay2

Va

TL

w

DC Motor

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-6

-4

-2

0

2

4

6

Time

S
p
e
e
d

84

Nonlinear Friction

RWN

 ̂ ()

 () ()

)

Figure 55: Nonlinear Friction Identification

+
-

From the two results, it can be seen that a priori knowledge of the DC motor

structure enables the selection of the most relevant inputs to ensure that the RWN

provides a highly accurate black box model of the DC Motor with nonlinearities such

as viscous and coulomb friction.

3.5.3 Friction. In this section, the RWN was trained to learn the nonlinear friction of

a DC Motor as shown in Figure 55. Here it is assumed that the frictional torque ()

is a measurable value.

The frictional function in consideration is the Tustin Armstrong Helouvry model

where the signum function is approximated using a hyperbolic tan function,

represented using Equation 3.99 and shown in Figure 56.

 () () (()
 | |) (3.99)

where is a large positive constant, represents the Coulomb friction, represents

the static friction coefficient, represents the viscous friction coefficient and

represents the stiction coefficient. For the simulation, is taken as 10.

85

Figure 56: Friction Characteristics

The network used for training is shown in Figure 57. A 1V sine wave with

frequency of 1Hz was applied to the DC motor for generating the training signal

which is shown in Figure 58.

-1.5 -1 -0.5 0 0.5 1 1.5
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
Friction Characteristics

 (rad/s)

(N

m
)

Figure 57: Generating Training Data for Friction Identification

86

Figure 58: Training Signal for Friction Identification

Training was carried out for 100000 iterations for varying number of neurons in the

hidden layer. The MSE after training is shown in Figure 59 and given in Table 11.

Figure 59: MSE for Varying Nw for Friction Identification

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1.5

-1

-0.5

0

0.5

1

1.5

Time (s)

S
p
e
e
d
 (

ra
d
/s

)

Training Signal

10
1

10
2

10
3

10
4

10
5

10
-11

10
-10

10
-9

10
-8

Iterations

Mean Squared Error

Nw=3

Nw=7

Nw=15

87

Table 11: MSE for Varying Nw for Friction Identification

Nw MSE

3 8.2753e-10

7 2.7731e-10

15 3.7961e-11

Since and are constant values and , the change in and

over time is observed. Figures 60-62 shows the learning rate change during the first

training cycle and the last training cycle for both parameters for each of the three

network sizes tested.

Figure 60: Learning Rates for Translation and Dilation over First and Last Training Cycle, Nw=3

0 5000 10000
0

2

4

6

8

x 10
4

X: 1

Y: 8.333e+04

1st iteration

m

X: 1e+04

Y: 269.4

0 5000 10000
5.26

5.261

5.262

5.263

5.264

5.265

X: 1

Y: 5.262

Last iteration

m

0 5000 10000
0

2000

4000

6000

8000

X: 1

Y: 7041

1st iteration

d

X: 1e+04

Y: 26.37

0 5000 10000

0.1862

0.1862

0.1863

0.1863

0.1863

X: 1

Y: 0.1863

Last iteration

d

88

Figure 61: Learning Rates for Translation and Dilation over First and Last Training Cycle, Nw=7

Figure 62: Learning Rates for Translation and Dilation over First and Last Training Cycle, Nw=15

0 2000 4000 6000 8000 10000
0

2000

4000

6000

8000

10000

X: 1

Y: 8929

1st iteration

X: 1e+04

Y: 84.49

0 2000 4000 6000 8000 10000
1.4191

1.4192

1.4193

X: 1

Y: 1.419

Last iteration

0 2000 4000 6000 8000 10000
0

50

100

150

X: 1

Y: 138.6

1st iteration

X: 1e+04

Y: 2.364

0 2000 4000 6000 8000 10000

0.0337

0.0337

0.0338

0.0338

0.0338

X: 1

Y: 0.03376

Last iteration

0 2000 4000 6000 8000 10000
0

200

400

600

800

1000

X: 1

Y: 1042

1st iteration

m

X: 1e+04

Y: 32.55

0 2000 4000 6000 8000 10000
0

1

2

3

4

X: 1

Y: 3.521

1st iteration

d

X: 1e+04

Y: 0.2708

0 2000 4000 6000 8000 10000
5

6

7

8
x 10

-3

X: 1

Y: 0.006422

Last iteration

d

0 2000 4000 6000 8000 10000
0.7362

0.7362

0.7363

0.7363

0.7364

X: 1

Y: 0.7363

Last iteration

m

89

Testing was then carried out by applying a chirp signal of magnitude 0.75V

and frequency ranging from 0.1-4Hz to the DC Motor to generate the test signal

shown in Figure 63.

Figure 63: Testing Signal for Friction Identification

The error after testing is shown in Table 12 and the torque speed characteristics of the

RWN are shown in Figure 64. From Figure 65 it can be seen that using 15 neurons in

the hidden layer allowed for accurate representation of the frictional function.

Table 12: MSE for Varying Nw after Testing for Friction Identification

Nw MSE

3 1.3724e-4

7 1.4662e-5

15 4.9190e-7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Time (s)

S
p
e
e
d
 (

ra
d
/s

)

Testing Signal

90

Figure 64: Torque Speed Characteristic for Varying Nw after Testing for Friction Identification

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Speed (rad/s)

T
o
rq

u
e
 (

N
m

)

Torque Speed Characteristics

Actual

Nw=15

Nw=7

Nw=3

91

i(t) V(t)
ω(t)

+
-
-

+
-
-

Chapter 4: DC Motor Identification Using Structured Recurrent

Wavelet Network

From the results of Chapter 3, it is evident that a DC motor with nonlinearities

can be modelled using a recurrent wavelet network. In this section, a structured

recurrent wavelet network is designed to allow for simultaneous linear and nonlinear

parameter identification of a DC motor with nonlinear frictional characteristics.

4.1 DC Motor Model Derivation

The DC Motor, as shown in Figure 65, is represented by the Equations 4.1 and

4.2.

 () (4.1)

 (4.2)

The State Space model of the DC Motor is given in Equations 4.3 and 4.4.

[

]

[

]

[

] [

] [

] () (4.3)

] [

] (4.4)

Figure 65: Continuous Time Model of DC Motor

92

V(n)

i(n)

+
-
-

+
+

B

ω(n)
+

+

-
-
+

Figure 67: Step 1 of Discretization of DC Motor System

 () ()

+
+

Figure 66: Discretized Integrator using Euler-forward Method

The DC Motor system is discretized using the Euler-forward method which is

represented in Equation 4.5 and shown in block diagram form in Figure 66. Here, T

represents the sampling time which is selected to be 5 to 10 times less than the

electrical time constant of the DC Motor.

 () () () (4.5)

The discretized DC Motor model is shown in Figure 67.

93

i(n) V(n)

ω(n)

+
-
- +

+

+
+

-
-
+

Figure 68: Step 2 of Discretization of DC Motor Model

V(n)

i(n)

ω(n)

+
-
+

 -
+

+

Figure 69: Step 3 of Discretization of DC Motor Model

After discretization, the next step involves developing a model for a structured

recurrent network which can be trained to learn both the linear and nonlinear

parameters of the DC Motor system. Figure 68 and 69 show the intermediate steps in

developing the structured network which is shown in Figure 70.

94

4.2 Architecture for DC Motor Parameter Identification

The following structure, shown in Figure 71, shows the online training

structure for the structured recurrent wavelet network representing the DC Motor.

This structure allows for simultaneous learning of both the linear and nonlinear parts

of the system. For the purpose of this research it is assumed that the time constant of

the motor being modelled is available. In order to train the network, since () is a

measurable output of the system, ̂ is obtained as a function of () rather than the

approximated speed ̂().

V(n)

 ()

φ

φ

φ

∑

 ()

 ()

Figure 70: Structured Recurrent Wavelet Network Representing DC Motor Model

95

 () ()

Figure 71: DC Motor Parameter Identification Training Structure

φ

φ

φ

∑

 ̂()

 ̂

 ̂ ̂

 ̂

DC Motor

 ()

 ̂()

 ()

+ -

 ̂ ()

 ̂ ̂

The linear network parameters are given by the vector ̂ and the parameters of

the recurrent wavelet network are given by the vector θ as given below.

 ̂ ̂ ̂ ̂] [

]

where and are assumed to be known a priori.

 ̂ [̂ ̂ ̂ ̂]

.

96

The network can be represented in state space form by Equations 4.6 and 4.7.

[
 ̂ ()

 ̂ ()
] [

 ̂ ̂ ̂ ̂

 ̂
] [

 ̂ ()

 ̂ ()
] [

] () [
 ̂

] ̂ () (4.6)

 ̂()] [
 ̂ ()

 ̂ ()
] (4.7)

where

 ̂() [
 ̂ ()

 ̂ ()
] [

 ̂()

 ̂()
] () ()

The state space equations can then be rewritten in matrix form as shown in Equations

4.8 to 4.10.

 ̂() ̂() () ̂ () (4.8)

 ̂() ̂()

(4.9)

 ̂ () ∑ ̂ ()

(4.10)

4.3 Training Algorithm

A simplified training structure is provided in Figure 72 which shows the

structure in terms of Equations 4.8 to 4.10. Training of the structured network is

carried out using the gradient descent algorithm which involves adjusting the network

parameters, ̂ and ̂ to ensure the minimization of a cost function given by Equation

4.11.

(() ̂())

 () (4.11)

where is the error between the desired output and the output of the network.

97

 () ̂ ()

φ

φ

φ

∑

 ()

H

A

B

C

 ()

 ̂()

 -
 +

 ̂()

Figure 72: Simplified DC Motor Parameter Identification Training Structure

The partial derivative of the cost function with respect to the linear network

parameters, vi, is given in Equation 4.12.

 ̂
 ()

 ̂()

 ̂
 (4.12)

The partial derivative of the network output ̂ with respect to the linear

network parameters is given in Equations 4.13 to 4.18. Since ̂ () is a function

of (),
 ̂ ()

 ̂
 .

 ̂()

 ̂

 ̂ ()

 ̂
 (̂ ̂)

 ̂ ()

 ̂
 ̂ ̂

 ̂ ()

 ̂
 ̂ ̂ () (4.13)

 ̂ ()

 ̂
 ̂

 ̂ ()

 ̂

 ̂ ()

 ̂
 (4.14)

 ̂()

 ̂

 ̂ ()

 ̂
 (̂ ̂)

 ̂ ()

 ̂
 ̂ ̂

 ̂ ()

 ̂
 ̂ ̂ ()

 ̂ ̂ () ̂ ()

(4.15)

98

 ̂ ()

 ̂
 ̂

 ̂ ()

 ̂

 ̂ ()

 ̂

(4.16)

 ̂()

 ̂

 ̂ ()

 ̂
 (̂ ̂)

 ̂ ()

 ̂
 ̂ ̂

 ̂ ()

 ̂
 ̂ ̂ () (4.17)

 ̂ ()

 ̂
 ̂

 ̂ ()

 ̂

 ̂ ()

 ̂
 ̂ () (4.18)

The recursive equation of the system can be rewritten such that,

 ()
 ̂()

 ̂

 ̂ ()

 ̂
 ()

 ̂ ()

 ̂

The linear parameters, vi, of the structured network are updated using Equation 4.19.

 ̂ () ̂ ()

 ̂
 ̂ () ̂

() ()
 ̂()

 ̂
 (4.19)

The partial derivative of the cost function with respect to the parameters of the

recurrent wavelet network used to model the friction is given in Equation 4.20.

 ̂
 ()

 ̂()

 ̂
 (4.20)

The partial derivative of the network output ̂ with respect to the parameters of the

recurrent wavelet network is given in Equations 4.21 to 4.28.

 ̂()

 ̂

 ̂ ()

 ̂
 (̂ ̂)

 ̂ ()

 ̂
 ̂ ̂

 ̂ ()

 ̂
 ̂

 ̂ ()

 ̂
 (4.21)

 ̂ ()

 ̂
 ̂

 ̂ ()

 ̂

 ̂ ()

 ̂
 (4.22)

 ̂()

 ̂

 ̂ ()

 ̂
 (̂ ̂)

 ̂ ()

 ̂
 ̂ ̂

 ̂ ()

 ̂
 ̂

 ̂ ()

 ̂

 (4.23)

 ̂ ()

 ̂
 ̂

 ̂ ()

 ̂

 ̂ ()

 ̂
 (4.24)

99

 ̂()

 ̂

 ̂ ()

 ̂

 (̂ ̂)
 ̂ ()

 ̂

 ̂ ̂

 ̂ ()

 ̂

 ̂

 ̂ ()

 ̂

 (4.25)

 ̂ ()

 ̂

 ̂

 ̂ ()

 ̂

 ̂ ()

 ̂

 (4.26)

 ̂()

 ̂

 ̂ ()

 ̂
 (̂ ̂)

 ̂ ()

 ̂
 ̂ ̂

 ̂ ()

 ̂
 ̂

 ̂ ()

 ̂

 (4.27)

 ̂ ()

 ̂
 ̂

 ̂ ()

 ̂

 ̂ ()

 ̂
 (4.28)

The recursive equation of the system can be rewritten such that,

 ̂
()

 ̂()

 ̂

 ̂ ()

 ̂

 ̂
()

 ̂ ()

 ̂

The parameters of the RWN are then updated using Equation 4.29.

 ̂() ̂()

 ̂
 ̂() ̂

() ()
 ̂()

 ̂
 (4.29)

4.4 Convergence and Stability Analysis

In order to guarantee convergence of the proposed simultaneous identification

structure, adaptive learning rates are derived from the discrete Lyapunov stability

theorem as described in Chapter 3. The adaptive learning rates for the parameters, ̂

and ̂ are computed as shown in Equation 4.30 and 4.31. The ALRs are updated as

per Figure 43.

 ̂
()

‖
 ̂()
 ̂

‖
 (4.30)

 ̂
()

‖
 ̂()

 ̂

‖
 (4.31)

100

4.5 Adaptive Learning Rates

The following two theorems are used to derive the adaptive learning rates.

Theorem 1 shown in Equation 4.32 states that:

 ()

(| |) (4.32)

where () is the spectral radius of the matrix A [27]. From this it can be concluded

that when () , Equation 4.33 is valid.

‖ ‖ (4.33)

The eigen decomposition theorem states that any non-singular matrix can be

decomposed as shown by Equation 4.34.

(4.34)

where D is a diagonal matrix where the diagonal elements are equal to the eigenvalues

of A and M is the matrix of eigenvectors of A. If a matrix does not have a set of

linearly independent eigenvectors, the matrix is not diagonalizable. Matrices that are

not diagonalizable do not have an eigen decomposition.

 ̂

The learning rate, ̂
 is selected so as to satisfy Equation 4.35.

 ̂

‖
 ̂()
 ̂

‖
 (4.35)

In order to compute the norm of
 ̂()

 ̂
, the solution of Equation 4.36 must be

computed.

101

[
 ()

 ()
] [

 ̂ ̂ ̂ ̂

 ̂
] [

 ()

 ()
] [

 ̂

] ̂ () (4.36)

where

 ()
 ̂ ()

 ̂
 ()

 ̂ ()

 ̂

Equation 4.36 can be rewritten as shown in Equation 4.37 and 4.38

 () () ̂ () (4.37)

 () () (4.38)

where () [
 ()
 ()

]

The solution to the Equation 4.38 is shown in Equation 4.39.

 () (() ∑ ̂ ()

) (4.39)

Since () , Equation 4.39 can be simplified to Equation 4.40.

 () ∑ ̂ ()

 (4.40)

Changing the index such that r=n-m-1, Equation 4.40 can be rewritten as shown in

Equation 4.41.

 () ∑ ̂ ()

 (4.41)

The norm of () is given in Equation 4.42.

‖ ()‖ ‖ (∑

 ̂ ())‖ (4.42)

Using Rule 1 and 2 of matrix norms given in Appendix D, Equation 4.42 can be

further decomposed as shown in Equations 4.43.

‖ ()‖ ‖ ‖ ‖ ‖ ‖ ̂ ()‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ̂ ()‖ (4.43)

102

Since ‖ ‖ ‖ ‖ | ̂ | Equation 4.43 can be simplified to Equation 4.44.

‖ ()‖ | ̂ |(‖ ̂ ()‖ ‖ ‖ ‖ ̂ ()‖ ‖ ‖ ‖ ̂ ()‖) (4.44)

This can be rewritten as shown in Equation 4.45.

‖ ()‖ | ̂ |(‖ ‖ ‖ ‖) ‖ ̂ ‖ (4.45)

where

‖ ̂ ‖

‖ ̂ ()‖

Equation 4.45 can then be written in the form of a series summation as shown in

Equation 4.46.

‖ ()‖ | ̂ | (∑‖ ‖

) ‖ ̂ ‖ (4.46)

Using Theorem 1, the sum of the finite series will be less than or equal to the infinite

sum of the series as shown in Equation 4.47.

‖ ()‖ | ̂ | (∑‖ ‖

) ‖ ̂ ‖ (4.47)

From eigenvalue decomposition, Equation 4.47 can then be written as shown in

Equation 4.48,

‖ ()‖ | ̂ | (∑‖ ‖

) ‖ ̂ ‖ (4.48)

Using Rules 1 to 3 from Appendix D, Equation 4.48 can be written as Equation 4.49.

‖ ()‖ | ̂ |‖ ‖ (∑‖ ‖

) ‖ ‖ ‖ ̂ ‖ (4.49)

103

This can be further simplified as shown in Equation 4.50, using Rule 4 from

Appendix D.

‖ ()‖ | ̂ | (
‖ ‖ ‖ ‖

 ()
)‖ ̂ ‖ (4.50)

Using Equation 4.50, the maximum norm can be computed as shown in Equation 4.51

where ‖ ()‖.

‖| ̂ | (
‖ ‖ ‖ ‖

 ()
) ‖ ̂ ‖ ‖ (4.51)

Substituting Equation 4.51 in Equation 4.35, the adaptive learning rate is selected as

shown in Equation 4.52.

 ̂

 (4.52)

 ̂

The learning rate, ̂
 is selected so as to satisfy Equation 4.53.

 ̂

‖
 ̂()
 ̂

‖
 (4.53)

In order to compute the norm of
 ̂()

 ̂
, the solution of the Equation 4.54 must be

computed.

[
 ()
 ()

] [
 ̂ ̂ ̂ ̂

 ̂
] [

 ()
 ()

] [
 ̂

] ̂ ()

 [
 ̂

] ̂ () [

] ̂ ()

(4.54)

where

 ()
 ̂()

 ̂
 ()

 ̂ ()

 ̂

104

Equation 4.54 can be rewritten as shown in Equation 4.55 and 4.56 where

where () [
 ()
 ()

].

 () () ̂ () ̂ () ̂ () (4.55)

 () () (4.56)

The solution to the Equation 4.56 is shown in Equation 4.57.

 () (() ∑ (̂ () ̂ () ̂ ())

) (4.57)

Changing the index such that r=n-m-1 and since () , the norm of () given

in Equation 4.57 can be written as shown in Equation 4.58.

‖ ()‖ ‖ ∑

(̂ () ̂ () ̂ ())‖ (4.58)

Using Rule 1 and 2 of matrix norms given in Appendix D and the fact that

‖ ‖ ‖ ‖ ‖ ‖ | ̂ | ‖ ‖ | ̂ | Equation 4.58 can be further decomposed

as shown in Equation 4.59.

‖ ()‖ (‖ ‖ ‖ ‖) (| ̂ |‖ ̂ ‖ | ̂ |‖ ̂ ‖ ‖ ̂ ‖
) (4.59)

where

‖ ̂ ‖

‖ ̂ ()‖ ‖ ̂ ‖

‖ ̂ ()‖ ‖ ̂ ‖

‖ ̂ ()‖

Equation 4.59 can then be written in the form of a series summation as shown in

Equation 4.60.

‖ ()‖ (∑‖ ‖

) (| ̂ |‖ ̂ ‖ | ̂ |‖ ̂ ‖ ‖ ̂ ‖
) (4.60)

105

Using Theorem 1 and eigenvalue decomposition, Equation 4.60 can be simplified as

shown in Equation 4.61.

‖ ()‖ (∑‖ ‖

) (| ̂ |‖ ̂ ‖ | ̂ |‖ ̂ ‖ ‖ ̂ ‖
) (4.61)

Using Rules 1-4 from Appendix D, Equation 4.61 can be written as Equation 4.62.

‖ ()‖ (
‖ ‖ ‖ ‖

 ()
) (| ̂ |‖ ̂ ‖ | ̂ |‖ ̂ ‖ ‖ ̂ ‖

) (4.62)

Using Equation 4.62, the maximum norm can be computed as shown in Equation 4.63

where ‖ ()‖,.

‖(
‖ ‖ ‖ ‖

 ()
) (| ̂ |‖ ̂ ‖ | ̂ |‖ ̂ ‖ ‖ ̂ ‖

)‖ (4.63)

Substituting Equation 4.63 in Equation 4.53, the adaptive learning rate is selected as

shown in Equation 4.64.

 ̂

 (4.64)

 ̂

The learning rate, ̂
 is selected so as to satisfy Equation 4.65.

 ̂

‖
 ̂()
 ̂

‖
 (4.65)

In order to compute the norm of
 ̂()

 ̂
, the solution of the Equation 4.66 must be

computed.

[
 ()

 ()
] [

 ̂ ̂ ̂ ̂

 ̂
] [

 ()
 ()

] [
 ̂

] ̂ () [

] ̂ () (4.66)

106

where

 ()
 ̂()

 ̂
 ()

 ̂ ()

 ̂

Equation 4.66 can be rewritten as shown in Equation 4.67 and 4.68.

 () () ̂ () ̂ () (4.67)

 () () (4.68)

where () [
 ()
 ()

].

The solution to the Equation 4.68 is shown in Equation 4.69.

 () (() ∑ (̂ () ̂ ())

) (4.69)

Changing the index such that r=n-m-1 and since () , the norm of () is

given in Equation 4.70.

‖ ()‖ ‖ ∑

(̂ () ̂ ())‖ (4.70)

Using Rule 1 and 2 of matrix norms given in Appendix D and the fact that

‖ ‖ ‖ ‖ | ̂ |, ‖ ‖ | | Equation 4.70 can be further decomposed as

shown in Equation 4.71.

‖ ()‖ (‖ ‖ ‖ ‖) (| ̂ |‖ ̂ ‖ | |‖ ̂ ‖) (4.71)

where

‖ ̂ ‖

‖ ̂ ()‖ ‖ ̂ ‖

‖ ̂ ()‖

Equation 4.71 can then be written in the form of a series summation as shown in

Equation 4.72.

‖ ()‖ (∑‖ ‖

) (| ̂ |‖ ̂ ‖ | |‖ ̂ ‖) (4.72)

107

Using Theorem 1 and eigenvalue decomposition, Equation 4.72 can be rewritten as

shown in Equation 4.73.

‖ ()‖ (∑‖ ‖

) (| ̂ |‖ ̂ ‖ | |‖ ̂ ‖) (4.73)

Using Rules 1-4 from Appendix D, Equation 4.73 can be written as Equation 4.74.

‖ ()‖ (
‖ ‖ ‖ ‖

 ()
) (| ̂ |‖ ̂ ‖ | |‖ ̂ ‖)

(4.74)

Using Equation 4.74, the maximum norm can be computed as shown in Equation 4.75

where ‖ ()‖,.

‖(
‖ ‖ ‖ ‖

 ()
) (| ̂ |‖ ̂ ‖ | |‖ ̂ ‖)‖ (4.75)

Substituting Equation 4.75 in Equation 4.65, the adaptive learning rate is selected as

shown in Equation 4.76.

 ̂

 (4.76)

 ̂

The learning rate, ̂ is selected so as to satisfy Equation 4.77.

 ̂

‖
 ̂()
 ̂

‖
 (4.77)

In order to compute the norm of
 ̂()

 ̂
, first ‖

 ̂()

 ̂
‖ needs to be computed by solving

Equation 4.78.

108

[
 ̂

()

 ̂
()

] [
 ̂ ̂ ̂ ̂

 ̂
] [

 ̂
()

 ̂
()

] [
 ̂

]
 ̂()

 ̂
 (4.78)

where

 ̂
()

 ̂ ()

 ̂

 ̂()

 ̂
 ̂

()
 ̂ ()

 ̂

Equation 4.78 can be rewritten as shown in Equation 4.79 and 4.80

 ̂
() ̂

() ̂
() (4.79)

 ̂
() ̂

() (4.80)

where ̂
() [

 ̂
()

 ̂
()

].

The solution to the Equation 4.80 is shown in Equation 4.81.

 ̂
() (̂

() ∑ ̂
()

) (4.81)

Changing the index such that r=n-m-1 and since ̂
() , the norm of ̂

() is

written as shown in Equation 4.82.

‖ ̂
()‖ ‖∑ ̂

()

‖ (4.82)

Using Rule 1 and 2 of matrix norms given in Appendix D and the fact that

‖ ‖ and ‖ ‖ | ̂ |, Equation 4.82 can be further decomposed as shown in

Equation 4.83.

‖ ̂
()‖ | ̂ | (‖ ̂

()‖ ‖ ‖ ‖ ̂
()‖ ‖ ‖ ‖ ̂

()‖) (4.83)

This can be rewritten as shown in Equation 4.84.

‖ ̂
()‖ | ̂ |(‖ ‖ ‖ ‖) ‖ ̂

‖

 (4.84)

109

where

‖ ̂
‖

 ‖ ‖

‖ ‖

The derivation procedure is continued as before to compute the norm as shown in

Equation 4.85.

‖ ̂
()‖ | ̂ | (

‖ ‖ ‖ ‖

 ()
) (4.85)

The maximum norm, at any time n, of the elements of the vector is given in Equation

4.86 where ̂
() ‖ ̂

()‖.

 ̂
()

‖| ̂ | (

‖ ‖ ‖ ‖

 ()
)‖ (4.86)

The maximum norm of the vector is therefore given by Equation 4.87.

.

‖
 ̂()

 ̂
‖ √ ̂

 (4.87)

where

Substituting Equation 4.87 in Equation 4.77 the adaptive learning rate is selected as

shown in Equation 4.88.

 ̂

 ̂
 (4.88)

 ̂

The learning rate, ̂ is selected so as to satisfy Equation 4.89.

 ̂

‖
 ̂()
 ̂

‖
 (4.89)

 ̂

(̂

())

110

In order to compute the norm of
 ̂()

 ̂
, first ‖

 ̂()

 ̂
‖needs to be computed by solving

Equation 4.90.

[
 ̂

()

 ̂
()

] [
 ̂ ̂ ̂ ̂

 ̂
] [

 ̂
()

 ̂
()

] [
 ̂

]
 ̂()

 ̂
 (4.90)

where

 ̂
()

 ̂ ()

 ̂
 ̂

()
 ̂ ()

 ̂

Equation 4.90 can be rewritten as shown in Equation 4.91 and 4.92 where

where ̂
() [

 ̂
()

 ̂
()

].

 ̂
() ̂

() ̂
() (4.91)

 ̂
() ̂

() (4.92)

where

 ̂
()

 ̂()

 ̂
 ̂

 ()

 ̂
 ̂ ()

The solution to the Equation 4.92 is shown in Equation 4.93.

 ̂
() (̂

() ∑ ̂
()

) (4.93)

Changing the index such that r=n-m-1 and since ̂
() , the norm of ̂

() is

as shown in Equation 4.94.

‖ ̂
()‖ ‖∑ ̂

()

‖ (4.94)

Equation 4.94 can be further decomposed as shown in Equation 4.95.

‖ ̂
()‖ | ̂ | (‖ ̂

()‖ ‖ ‖ ‖ ̂
()‖ ‖ ‖ ‖ ̂

()‖) (4.95)

111

This can be rewritten as shown in Equation 4.96.

‖ ̂
()‖ | ̂ | (‖ ‖ ‖ ‖) ‖ ̂

‖

 (4.96)

where

‖ ̂
‖

‖ ̂ ‖

The derivation procedure is continued as before to compute the norm as shown in

Equation 4.97.

‖ ̂
()‖ | ̂ | (

‖ ‖ ‖ ‖

 ()
) ‖ ̂

‖

 (4.97)

The maximum norm, at any time n, of the elements of the vector is given in Equation

4.98 where ̂
() ‖ ̂

()‖.

 ̂
()

‖| ̂ | (

‖ ‖ ‖ ‖

 ()
) ‖ ̂

‖

‖ (4.98)

The maximum norm of the vector is therefore given by Equation 4.99.

‖
 ̂()

 ̂
‖ √ ̂

 (4.99)

where

Substituting Equation 4.99 in Equation 4.89, the adaptive learning rate is selected as

shown in Equation 4.100.

 ̂

 ̂
 (4.100)

 ̂

(̂

())

112

 ̂

The learning rate, ̂ is selected so as to satisfy Equation 4.101.

 ̂

‖
 ̂()

 ̂
‖

 (4.101)

In order to compute the norm of
 ̂()

 ̂
, first ‖

 ̂()

 ̂
‖ needs to be computed by solving

Equation 4.102.

[
 ̂

()

 ̂
()

] [
 ̂ ̂ ̂ ̂

 ̂
] [

 ̂
()

 ̂
()

] [
 ̂

]
 ̂()

 ̂

 (4.102)

where

 ̂
()

 ̂ ()

 ̂

 ̂
()

 ̂ ()

 ̂

Equation 4.102 can be rewritten as shown in Equation 4.103 and 4.104

 ̂
() ̂

() ̂
() (4.103)

 ̂
() ̂

() (4.104)

where

 ̂
() [

 ̂
()

 ̂
()

] and ̂
()

 ̂()

 ̂
 ̂

 ()

 ̂
 ̂ ()

The solution to the Equation 4.104 is shown in Equation 4.105.

 ̂
() (̂

() ∑ ̂
()

) (4.105)

Changing the index such that r=n-m-1 and since ̂
() the norm of

 ̂
() is written as shown in Equation 4.106.

‖ ̂
()‖ ‖∑ ̂

()

‖

(4.106)

113

Equation 4.106 can be further decomposed as shown in Equation 4.107.

‖ ̂
()‖ | ̂ | (‖ ̂

()‖ ‖ ‖ ‖ ̂
()‖ ‖ ‖ ‖ ̂

()‖) (4.107)

This can be rewritten as shown in Equation 4.108.

‖ ̂
()‖ | ̂ | (‖ ‖ ‖ ‖) ‖ ̂

‖

 (4.108)

where

‖ ̂
‖

‖ ̂ ‖

The derivation procedure is continued as before to compute the norm as shown in

Equation 4.109.

‖ ̂
()‖ | ̂ | (

‖ ‖ ‖ ‖

 ()
) ‖ ̂

‖

 (4.109)

The maximum norm, at any time n, of the elements of the vector is given in Equation

4.110 where ̂
() ‖ ̂

()‖.

 ̂
()

‖| ̂ | (

‖ ‖ ‖ ‖

 ()
) ‖ ̂

‖

‖ (4.110)

The maximum norm of the vector is therefore given by Equation 4.111.

‖
 ̂()

 ̂
‖ √ ̂

 (4.111)

where

Substituting Equation 4.111 in Equation 4.101, the adaptive learning rate is selected

as shown in Equation 4.112.

 ̂

 (4.112)

 ̂

(̂

())

114

 ̂

The learning rate, ̂ is selected so as to satisfy Equation 4.113.

 ̂

‖
 ̂()

 ̂
‖

 (4.113)

In order to compute the norm of
 ̂()

 ̂
, first ‖

 ̂()

‖ needs to be computed by solving

Equation 4.114.

[
 ̂

()

 ̂
()

] [
 ̂ ̂ ̂ ̂

 ̂
] [

 ̂
()

 ̂
()

] [
 ̂

]
 ̂()

 ̂
 (4.114)

where

 ̂
()

 ̂ ()

 ̂
 ̂

()
 ̂ ()

 ̂

Equation 4.114 can be rewritten as shown in Equation 4.115 and 4.116.

 ̂
() ̂

() ̂
() (4.115)

 ̂
() ̂

() (4.116)

where

 ̂
() [

 ̂
()

 ̂
()

] and ̂
()

 ̂()

 ̂
 ̂

 ()

 ̂
 ̂ ()

The solution to the Equation 4.116 is shown in Equation 4.117.

 ̂
() (̂

() ∑ ̂
()

) (4.117)

Changing the index such that r=n-m-1 and since ̂
() , the norm of

 ̂
() is written as shown in Equation 4.118.

‖ ̂
()‖ ‖∑ ̂

()

‖

(4.118)

115

Equation 4.118 can be further decomposed as shown in Equation 4.119.

‖ ̂
()‖ | ̂ | (‖ ̂

()‖ ‖ ‖ ‖ ̂
()‖ ‖ ‖ ‖ ̂

()‖) (4.119)

This can be rewritten as shown in Equation 4.120.

‖ ̂
()‖ | ̂ | (‖ ‖ ‖ ‖) ‖ ̂

‖

 (4.120)

where

‖ ̂
‖

‖ ̂ ‖

The derivation procedure is continued as before to compute the norm as shown in

Equation 4.121.

‖ ̂
()‖ | ̂ | (

‖ ‖ ‖ ‖

 ()
) ‖ ̂

‖

 (4.121)

The maximum norm, at any time n, of the elements of the vector is given in Equation

4.122 where ̂
() ‖ ̂

()‖.

 ̂
()

‖| ̂ | (

‖ ‖ ‖ ‖

 ()
) ‖ ̂

‖

‖ (4.122)

The maximum norm of the vector is therefore given by Equation 4.123.

‖
 ̂()

 ̂
‖ √ ̂

 (4.123)

where

Substituting Equation 4.123 in Equation 4.113, the adaptive learning rate is selected

as shown in Equation 4.124.

 ̂

 ̂

 (4.124)

 ̂

(̂

())

116

Nonlinear System

RWN

 ̂

Figure 73: Nonlinear Friction Identification

Chapter 5: Case Studies and Simulation Analysis

In this chapter, simulations for different case studies are carried out to assess

the learning method and network structure developed in Chapter 4. In the first case

study, the linear parameters are assumed known and the system is used to learn the

nonlinear friction only in order to determine the optimum number of wavelets and

mother wavelet for training. In the second case study, the ability of the network to

learn the linear parameters of a frictionless DC motor is studied. The third case study

determines the effectiveness of the network in learning the linear network parameters

for a motor with viscous friction. The final case study demonstrates the ability of the

network to simultaneously learn both linear and nonlinear system parameters for a DC

motor with friction. The motor parameters are provided in Appendix C and the

sampling rate T is selected as 0.1ms.

5.1 Nonlinear Friction Identification of DC Motor

In this section, a recurrent wavelet network (RWN) is used to learn the DC

motor friction assuming all the linear parameters of the network are known. The

network learning structure is shown in Figure 73 and the friction function is given in

Equation 5.1 where β is 10.

 () () (()
 | |) (5.1)

117

Training was carried out by applying a 1V sine wave of frequency 1Hz to the

DC Motor to generate the training signal shown in Figure 74.

Figure 74: Training Signal for Nonlinear Frictional Function Identification

Training was carried out for 100000 iterations using the first derivative of the

Gaussian as the mother wavelet, for varying number of neurons in the hidden layer in

order to determine the optimum size for the RWN. The MSE after training is given in

Table 13 and shown in Figure 75.

Table 13: MSE after Training for Varying Nw for Nonlinear Frictional Function Approximation

Nw MSE

7 8.3151e-5

15 3.3040e-5

31 1.4045e-5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1.5

-1

-0.5

0

0.5

1

1.5

Time (s)

S
p
e
e
d
 (

ra
d
/s

)

Training Signal

118

Figure 75: MSE for Varying Nw for Nonlinear Frictional Function Approximation

The adaptive learning rates for the network with 15 wavelets in the hidden layer are

shown in Figure 76. It should be noted that .

Figure 76: ALRs for Nonlinear Function Approximation over First and Last Training Cycle, Nw=15

10
0

10
1

10
2

10
3

10
4

10
5

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Iterations

M
S

E

Mean Squared Error

Nw=7

Nw=15

Nw=31

0 2000 4000 6000 8000 10000
0

0.5

1

x 10
-3

X: 1

Y: 0.001242

1st iteration

m

X: 1e+04

Y: 2.497e-07

0 2000 4000 6000 8000 10000
0

1

2
x 10

-7

X: 1

Y: 9.66e-08

Last iteration

m

0 5000 10000
0

5
x 10

-6

X: 1

Y: 4.198e-06

1st iteration

d

X: 1e+04

Y: 6.701e-10

0 5000 10000
6.1223

6.1224

6.1225
x 10

-10

X: 1

Y: 6.122e-10

Last iteration

d

0 5000 10000
0

0.5

1
x 10

-7

X: 1

Y: 7.949e-08

1st iteration

w

0 5000 10000
0

0.5

1
x 10

-7

X: 1

Y: 7.949e-08

Last iteration

w

119

Testing was then carried out where the testing signal shown in Figure 77 was

generated by applying a 0.75V chirp signal of frequency ranging from 0.1-4Hz to the

DC Motor.

Figure 77: Testing Signal for Nonlinear Frictional Function Approximation

The MSE after testing is shown in Table 14 and the torque speed characteristics of the

trained network after testing are shown in Figure 78.

Table 14: MSE after Testing for Varying Nw for Nonlinear Frictional Function Approximation

Nw MSE

7 1.5425e-4

15 5.4618e-5

31 4.2923e-5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Testing Signal

Time (s)

S
p
e
e
d
 (

ra
d
/s

)

120

Figure 78: Torque Speed Characteristics of DC Motor

From the results, it can be seen that increasing the number of neurons in the

hidden layer improves the accuracy of the RWN, however this is done at the expense

of training time with larger networks taking significantly longer to train.

The network was then trained using different mother wavelets in order to

optimize the network structure. The number of neurons in the hidden layer was set to

15 and training was carried out for 100000 iterations with the training signal shown in

Figure 79.

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
Torque Speed Characteristics

Speed (rad/s)

T
o
rq

u
e
 (

N
m

)

Actual

Nw=7

Nw=15

Nw=31

121

Figure 79: Training Signal for Nonlinear Frictional Function Identification

Training was carried out for three different activation functions and the MSE

after training is shown in Table 15 and in Figure 80.

Table 15:MSE after Training for Different Activation Functions for Nonlinear Function Approximation

Activation Function MSE

1
st
 Derivative of Gaussian 3.1385e-5

Mexican Hat 4.8973e-4

Morlet 21.0638

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1.5

-1

-0.5

0

0.5

1

1.5
Training Signal

Time (s)

S
p
e
e
d
 (

ra
d
/s

)

122

Figure 80: MSE for Different Activation Functions for Nonlinear Frictional Function Approximation

Testing was carried out using a sine wave as shown in Figure 81.

Figure 81: Testing Signal for Nonlinear Frictional Function Identification

10
0

10
1

10
2

10
3

10
4

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Iterations

M
S

E

Gaussian

Mexican Hat

Morlet

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Testing Signal

Time (s)

S
p
e
e
d
 (

ra
d
/s

)

123

The MSE after testing is given in Table 16 and the torque speed characteristics are

shown in Figure 82 from where is can be seen that the first derivative of the Gaussian

provides a better approximation for the nonlinear friction.

Table 16: MSE after Testing for Different Activation Functions for Nonlinear Frictional Function

Approximation

Activation Function MSE

1
st
 Derivative of Gaussian 2.5062e-4

Mexican Hat 0.0027

Figure 82: Torque Speed Characteristics

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
Torque Speed Characteristics

Speed (rad/s)

T
o
rq

u
e
 (

N
m

)

Actual

Gaussian

Mexican Hat

124

Linear System

Linear RWN

 ̂ ̂⁄

Figure 83: Linear Parameter Identification for Frictionless DC Motor

5.2 Linear Parameter Identification of Frictionless DC Motor

In this section, the linear mechanical parameters of a frictionless DC motor are

learned, assuming the motor resistance and inductance are known. The network

learning structure for parameter identification is shown in Figure 83. The training

signal used, shown in Figure 84, is a chirp signal of magnitude 1V and frequency

range from 0 to 4 Hz.

Figure 84: Training Signal for DC Motor Parameter Training

0 0.5 1 1.5 2 2.5 3 3.5 4

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

V
o
lt
a
g
e
 (

V
)

125

 Online training is carried out for 50 iterations assuming initial conditions

within 20% and within 50% of the actual values. Figure 85 shows the mean squared

error during training. Figure 86 shows the adaptive learning rates for the parameters

during the 1
st
 training cycle, after which the ALRs remained constant. Figure 87

shows the convergence of the network parameters during the first ten and last ten

cycles of training.

Figure 85: MSE for Training Linear Parameters of Frictionless DC Motor

Table 17 shows the results after training and it can be seen that the network is able to

accurately learn the motor inertia as well as the motor torque constant.

Table 17: Results of Training Linear Parameters of Frictionless DC Motor

Case 1 Actual Value Initial Value Final Value Error (%)

J 1.8e-4 1.44e-4 1.8e-4 0

Kt 0.0550 0.0440 0.0550 0

Case 2 Actual Value Initial Value Final Value Error (%)

J 1.8e-4 9e-5 1.8e-4 0

Kt 0.0550 0.0275 0.0550 0

10
0

10
1

10
2

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Iterations

M
S

E

Case 1

Case 2

126

Figure 86: ALRs for Linear Parameter Identification of Frictionless DC Motor

Figure 87: Convergence of Kt and J for Parameter Identification of Frictionless DC Motor

0 0.5 1 1.5 2

x 10
4

2

4

6

8

10

12

14

16
x 10

-6

X: 1

Y: 1.532e-005

v2

X: 2e+004

Y: 9.165e-006

X: 1

Y: 5.844e-006

X: 2e+004

Y: 2.023e-006

0 0.5 1 1.5 2

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2
x 10

-8

X: 1

Y: 1.021e-008

v3

X: 2e+004

Y: 6.668e-009

X: 1

Y: 9.826e-010

X: 2e+004

Y: 2.853e-010

20%

50%

20%

50%

Initial Values with Error Within Initial Values with Error Within

0 0.5 1 1.5 2

x 10
5

0.02

0.03

0.04

0.05

0.06

X: 1

Y: 0.0275

First 10 iterations

K
t

X: 2e+005

Y: 0.055

X: 2e+005

Y: 0.05453
X: 1

Y: 0.044

0 0.5 1 1.5 2

x 10
5

0.054

0.0545

0.055

0.0555

0.056

X: 2e+005

Y: 0.055

Last 10 iterations

K
t

0 0.5 1 1.5 2

x 10
5

0

0.5

1

1.5

2

2.5
x 10

-4

X: 2e+005

Y: 0.0001801

First 10 iterations

J

X: 2e+005

Y: 0.0001784

X: 1

Y: 0.000144

X: 1

Y: 9e-005

0 0.5 1 1.5 2

x 10
5

1.79

1.795

1.8

1.805

1.81
x 10

-4

X: 2e+005

Y: 0.00018

Last 10 iterations

J

X: 2e+005

Y: 0.0001801

127

Linear System

Linear RWN

 ̂ ̂⁄

5.3 Linear Parameter Identification of DC Motor with Viscous Friction

In this case, the network is used to learn the motor inertia and viscous friction

of a DC Motor assuming the torque constant, resistance and inductance are known a

priori and that there is no nonlinear friction. The network learning structure is shown

in Figure 88.

 Training was carried out for 50 iterations and Figure 89 shows the MSE

during training. Table 18 shows the results of the simulations. The adaptive learning

rates over the first and last iteration for three different cases in which the initial

conditions were assumed within 10%, 20% and upto 40% of the actual values are

shown in Figure 90. The convergence of the network parameters over the first and last

ten cycles of training is shown in Figure 91.

Figure 88: Network Learning Structure for DC Motor with Viscous Friction

128

Figure 89: MSE for Training DC Motor with Viscous Friction

Table 18: Results of Training Linear Parameters of DC Motor with Known Viscous Friction

Case 1 Actual Value Initial Value Final Value Error (%)

J 1.8e-4 1.98e-4 1.8e-4 0

B 0.060 0.0540 0.060 0

Case 2 Actual Value Initial Value Final Value Error (%)

J 1.8e-4 1.44e-4 1.8e-4 0

B 0.060 0.0720 0.060 0

Case 3 Actual Value Initial Value Final Value Error (%)

J 1.8e-4 1.08e-4 1.8e-4 0

B 0.060 0.0780 0.06 0

10
0

10
1

10
2

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

Iterations

M
S

E

10%

20%

Upto 40%

Initial Values with Error Within

129

Figure 90: ALRs for Linear 2 Parameter Identification of DC Motor with Viscous Friction

Figure 91: Convergence of B and J for Parameter Identification of DC Motor with Viscous Friction

0 0.5 1 1.5 2

x 10
4

0.5

1

1.5

2
x 10

-4

X: 1

Y: 0.0001548

1st iteration

v
1

X: 1

Y: 8.078e-005
X: 1

Y: 7.859e-005

X: 2e+004

Y: 0.0001611
X: 2e+004

Y: 0.000141

X: 2e+004

Y: 0.0001043

0 0.5 1 1.5 2

x 10
4

1

1.2

1.4

1.6

1.8
x 10

-4

Last iteration

v
1

X: 2e+004

Y: 0.0001611

X: 2e+004

Y: 0.000141
X: 2e+004

Y: 0.0001043

0 0.5 1 1.5 2

x 10
4

0

2

4

6

x 10
-3

X: 1

Y: 0.003346

1st iteration

v
2

X: 1

Y: 0.00516

X: 1

Y: 0.001572

X: 2e+004

Y: 0.005913

X: 2e+004

Y: 0.0049

X: 2e+004

Y: 0.002554

0 0.5 1 1.5 2

x 10
4

2.5

3

3.5

4
x 10

-3

X: 2e+004

Y: 0.003595

Last iteration

v
2

X: 2e+004

Y: 0.002554

X: 2e+004

Y: 0.003618

10%

20%

upto 40%

Initial Values with Error Within

0 0.5 1 1.5 2

x 10
5

0.04

0.05

0.06

0.07

0.08

X: 2e+005

Y: 0.04622

First 10 iterations

B X: 2e+005

Y: 0.05431

X: 2e+005

Y: 0.06249

0 0.5 1 1.5 2

x 10
5

0.059

0.0595

0.06

0.0605

X: 2e+005

Y: 0.06

Last 10 iterations

B

0 0.5 1 1.5 2

x 10
5

1

1.2

1.4

1.6

1.8

2
x 10

-4

X: 1.961e+005

Y: 0.0001894

First 10 iterations

J X: 1.967e+005

Y: 0.0001593

X: 1.954e+005

Y: 0.0001307

0 0.5 1 1.5 2

x 10
5

1.79

1.795

1.8

1.805

1.81
x 10

-4

X: 1.974e+005

Y: 0.00018

Last 10 iterations

J

130

Linear System

Linear RWN

 ̂ ̂ ̂⁄

The next case study involves identification of the motor torque, viscous

friction and motor inertia of the DC motor assuming the resistance and induction are

known a priori. The network learning structure is given in Figure 92. Figure 93 and

Table 19 show the results of the simulations for initial conditions within 10% and

20% of the actual values. The adaptive learning rates and convergence of network

parameters are shown in Figures 94 and 95 respectively. Based on the results, it can

be seen that the method can be extended to also learn the motor torque constant,

however the time taken for the network to converge to the exact values will be much

higher as shown in Figure 93.

Figure 93: MSE for Training Linear Parameters of DC Motor with Unknown Viscous Friction

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

Iterations

M
S

E

10%

20%

Initial Values with Error Within

Figure 92: Network Learning Structure for Linear Parameter Identification

131

Table 19: Results of Training Linear Parameters of DC Motor with Unknown Viscous Friction

Case 1 Actual Value Initial Value Final Value Error (%)

J 1.8e-4 1.98e-4 1.84e-4 2.2

Kt 0.0550 0.0495 0.0562 2.18

B 0.060 0.0540 0.0611 1.83

Case 2 Actual Value Initial Value Final Value Error (%)

J 1.8e-4 2.16e-4 1.86e-4 3.76

Kt 0.0550 0.044 0.0566 2.86

B 0.060 0.048 0.0615 2.49

Figure 94: ALRs for Linear 3 Parameter Identification of DC Motor with Viscous Friction

0 0.5 1 1.5 2

x 10
4

0

0.5

1
x 10

-5

X: 2e+004

Y: 5.385e-007

1st iteration

v
1

X: 1

Y: 8.822e-006

0 0.5 1 1.5 2

x 10
4

0

2

4

x 10
-9

X: 2e+004

Y: 9.625e-010

Last iteration

v
1

0 0.5 1 1.5 2

x 10
4

0

2

4
x 10

-4

1st iteration

v
2

X: 1

Y: 0.0001907

X: 2e+004

Y: 1.159e-005

0 0.5 1 1.5 2

x 10
4

0

2

4

x 10
-8

X: 2e+004

Y: 2.072e-008

Last iteration

v
2

0 0.5 1 1.5 2

x 10
4

0

2

4

6
x 10

-6

X: 2e+004

Y: 3.034e-007

1st iteration

v
3

X: 1

Y: 4.959e-006

0 0.5 1 1.5 2

x 10
4

0

0.5

1
x 10

-9

X: 2e+004

Y: 5.423e-010

Last iteration

v
3

132

Nonlinear System

Structured RWN

 ̂ ̂⁄ ̂

Figure 95: Convergence of B, J and Kt for DC Motor with Viscous Friction

5.4 Simultaneous Linear and Nonlinear Parameter Identification of DC

Motor

In this section, simultaneous linear and nonlinear parameters identification of

the DC Motor is carried out as shown in Figure 96. The results of sections 5.1 to 5.3

are used to optimize the network structure. The number of neurons in the hidden layer

was set to 15, the first derivative of the Gaussian was used as the mother wavelet and

the network was used to learn the motor inertia, viscous friction and coulomb friction.

0 0.5 1 1.5 2

x 10
5

0.05

0.055

0.06

0.065

First ten iterations

B

X: 2e+005

Y: 0.06115

0 0.5 1 1.5 2

x 10
5

0.061

0.0611

0.0612

0.0613
X: 2e+005

Y: 0.06117

Last ten iterations

B

0 0.5 1 1.5 2

x 10
5

1.8

1.9

2
x 10

-4

X: 2e+005

Y: 0.0001844

First ten iterations

J

0 0.5 1 1.5 2

x 10
5

1.84

1.845

1.85
x 10

-4

Last ten iterations

X: 2e+005

Y: 0.0001844

0 0.5 1 1.5 2

x 10
5

0.045

0.05

0.055

0.06

X: 2e+005

Y: 0.05621

First ten iterations

K
t

0 0.5 1 1.5 2

x 10
5

0.056

0.0562

0.0564

Last ten iterations

K
t

X: 2e+005

Y: 0.05623

Figure 96: Network Learning Structure for Linear and Nonlinear DC Motor Parameter Identification

133

 In order to initialize the nonlinear friction learning RWN which is used to

learn only the coulomb friction and stiction, if any, training was carried out keeping

the initial estimated values of the linear parameters constant as shown in Figure 97.

Training was carried out to initialize the parameters ̂ ̂ ̂ ̂ ̂ .

The training signal was generated by applying a 1V chirp signal to the DC

motor of frequency 0-4Hz as shown in Figure 98 and the torque speed characteristic

of the DC Motor under consideration is shown in Figure 99. Training was carried out

for 10000 iterations and the MSE for the initialization of the RWN is shown in Figure

100.

Figure 98: Training Signal for Simultaneous DC Motor Parameter Identification

0 0.5 1 1.5 2 2.5 3 3.5 4
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

V
o
lt
a
g
e
 (

V
)

Nonlinear System

 ̂ ̂

Structured RWN

 ̂

Figure 97: Initialization of RWN for Simultaneous Identification

 ̂

134

Figure 99: Torque Speed Characteristics of DC Motor

Figure 100: MSE for Initialization of Friction RWN

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Speed (rad/s)

T
o
rq

u
e
 (

N
m

)

10
0

10
1

10
2

10
3

10
4

10
-3

10
-2

10
-1

10
0

Iterations

M
S

E

135

 The initialized parameters were then used in the simultaneous training for both

linear and nonlinear parameters. Training was carried out for 200000 iterations and

the MSE after training is shown in Figure 101.

Figure 101: MSE for Simultaneous Parameter Identification

Figure 102 shows the adaptive learning rates for all the network parameters for the

first training iteration. It was observed that the learning rates did not change after the

first iteration. The convergence of network parameters is shown in Figure 103.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
-3

10
-2

10
-1

Iterations

M
S

E

136

Figure 102: ALRs for Simultaneous Linear and Nonlinear Parameter Identification of DC Motor

Figure 103: Convergence of B, J for DC Motor with Nonlinear Friction

0 0.5 1 1.5 2

x 10
4

0

5
x 10

-5

X: 2e+004

Y: 1.407e-009

n

v
1

0 0.5 1 1.5 2

x 10
4

0

2

4
x 10

-4

X: 2e+004

Y: 5.675e-009

n

v
2

0 0.5 1 1.5 2

x 10
4

0

5
x 10

-6

X: 2e+004

Y: 1.285e-010

n

w

0 0.5 1 1.5 2

x 10
4

0

2

4
x 10

-7

X: 2e+004

Y: 7.815e-012

n

m

0 0.5 1 1.5 2

x 10
4

0

0.5

1
x 10

-8

n

d

X: 2e+004

Y: 1.94e-013

0 0.5 1 1.5 2

x 10
4

0

2

4
x 10

-7

n

c

X: 2e+004

Y: 7.815e-012

0 0.5 1 1.5 2

x 10
5

0.046

0.047

0.048

0.049

0.05

0.051

X: 2e+005

Y: 0.05075

First 10 iterations

B

0 0.5 1 1.5 2

x 10
5

0.0767

0.0768

0.0769

X: 2e+005

Y: 0.07683

Last 10 iterations

B

0 0.5 1 1.5 2

x 10
5

2.0187

2.0188

2.0188

2.0189

2.0189

2.019

x 10
-4

X: 2e+005

Y: 0.0002019

Last 10 iterations

J

0 0.5 1 1.5 2

x 10
5

2.156

2.158

2.16
x 10

-4

X: 2e+005

Y: 0.000216

First 10 iterations

J

137

Table 20 shows the values of the linear motor parameters after training. From Table

20, it can be seen that while the value of J is converging to the expected value, the

value for the viscous friction is not.

Table 20: Results of Simultaneous Training of Linear and Nonlinear DC Motor Parameters

Variable Actual Value Initial Value Final Value Error (%)

J 1.8e-4 2.16e-4 2.01e-4 11

B 0.060 0.048 0.0735 22.5

 Testing of the network was carried by applying a 1V sine wave of frequency

1Hz to the system and Figure 104 shows the comparison between the desired torque

speed characteristic and the torque speed characteristic of the nonlinear network

responsible for learning the coulomb and stiction friction. The MSE after testing was

found to be 0.0017.

Figure 104: Estimated Frictional Torque Speed Characteristic

-1.5 -1 -0.5 0 0.5 1 1.5
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

F
ri
c
ti
o
n
 (

N
m

)

Speed (rad/s)

Torque Speed Characteristics

Actual

Estimated

138

 The results for the nonlinear friction characteristic can be explained as

follows. From Equation 5.2, it is seen that ̂ () has a linear relationship with ̂ but

a nonlinear relationship with ̂ ().

 ̂ () ̂ () ̂ (̂ ̂ () ̂ ̂ () ̂ ()) (5.2)

Equation 5.2 can be rewritten as given by Equation 5.3.

 ̂ () ̂ () ̂ (̂ ̂ () ̂ ̂ () ̂ ()) (5.3)

The estimated frictional torque, ̂ , and the viscous friction can therefore be written

as shown in Equation 5.4 and 5.5.

 ̂ () ̂ () ̂ ̂ () (5.4)

 ̂ ̂ ̂ (5.5)

 Based on these equations, it is seen that the system is not unique in that the

nonlinear RWN may learn some or all of the parameter ̂ . Figure 105 shows the

combined frictional characteristic which is identical to the desired friction, showing

that the network has successfully learnt the viscous and coulomb friction. Figure 106

shows the comparison of the results obtained with the desired frictional torque speed

characteristic.

139

Figure 105: Estimated Combined Frictional Characteristic for Simultaneous Identification

Figure 106: Comparison of Combined Frictional Characteristic

-1.5 -1 -0.5 0 0.5 1 1.5
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

F
ri
c
ti
o
n
 (

N
m

)

Speed (rad/s)

Torque Speed Characteristics

Actual

Estimated

-2 -1 0 1 2
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Speed (rad/s)

T
o
rq

u
e
 (

N
m

)

-2 -1 0 1 2
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Speed (rad/s)

T
o
rq

u
e
 (

N
m

)

B

fe

B+
fe

B

f

B+
f

140

Chapter 6: Conclusion and Future Work

6.1 Conclusion

The aim of this thesis is to develop a recurrent wavelet network based

algorithm for the modelling and identification of nonlinear time varying

electromechanical systems. Black box modelling was first carried out with

conventional wavelet networks in order to study and compare the different

initialization algorithms available as well as to determine the effect of changing the

mother wavelet and network size on the rate of convergence. It was observed that

compared to the heuristic initialization method, the dyadic grid method provided

faster convergence and a lower mean squared error. Comparison between three of the

most commonly used mother wavelets, namely the first derivative of the Gaussian, the

Morlet and Mexican Hat wavelets, showed that the effectiveness of mother wavelet

depends largely on the type of function being modelled. In most cases, it was

observed that the first derivative of the Gaussian performs well in terms of

convergence speed and mean squared error. Similarly, the effect of the network size

on the network performance was seen to depend on the type of function being

modelled. In some cases, larger networks performed better, giving a smaller training

mean square error. However, in other instances, a larger network size was seen to

provide a negligible improvement in the mean square error and this was done at the

expense of the speed of convergence. The effect of changing the learning rates on the

network performance was also studied and simulation results showed that selection of

learning rates significantly impacted the network performance and rate of

convergence.

The selection of learning rates by trial and error proved to be tedious and for

the case of recurrent wavelet networks, was unable to guarantee network stability. As

a result, a need for adaptive learning rates which guarantee both network convergence

and stability was observed. Adaptive learning rates were derived based on the

Lyapunov Stability Theorem and grey box modelling was carried out to determine the

performance of recurrent wavelet networks with adaptive learning rates when learning

nonlinear time varying systems. The network was used to model a DC motor with

viscous and coulomb friction and was able to accurately model the system. Similarly,

141

the recurrent wavelet network with adaptive learning rates was used to model

coulomb and viscous friction. The results proved the ability of the network to

accurately model highly nonlinear systems, while ensuring stability.

The next step after carrying out black and grey box modelling, involved the

development of a structured recurrent wavelet network for white box modelling of the

DC motor to identify the linear and nonlinear mechanical parameters of the system.

Identification of linear network parameters, assuming the friction was known a priori,

was carried out first, and it was seen that the network was able to accurately converge

to the desired result even when the initial values were set to differ by over 20% of the

actual values. An important observation was that in order for the network to converge

to the desired values, the system being modelled must be unique. Nonlinear friction

identification was also carried out, assuming the linear parameters of the motor were

known a priori, and the recurrent wavelet network was able to accurately approximate

the friction. Further validation of the proposed method was carried out through

simultaneous identification of both linear and nonlinear system parameters. It was

observed that while the parameter representing the motor inertia converged to the

desired value, the linear parameter representing the viscous friction and the network

representing the coulomb friction and stiction did not quite converge to the expected

results. This was explained mathematically by observing that the nonlinear network

was also able to learn a portion of the viscous friction. The linear combination of both

was seen to reproduce the desired frictional torque speed characteristics of the motor

being identified.

To summarize, the contributions of this thesis are as follows:

- Developing the algorithms for the modelling and simulation of

conventional and recurrent wavelet networks.

- Developing the structured recurrent wavelet network for the DC motor and

simultaneous parameter identification of linear and nonlinear parameters

of the DC motor.

- Derivation and application of adaptive learning rates for recurrent wavelet

networks.

142

- The work done in this thesis can also be extended to identification of the

electrical network parameters and the relevant derivation for the ALRs is

provided in Appendix E.

6.2 Recommendations for Future Work

 Future work may involve:

- Carrying out simultaneous parameter identification for the electrical as well

as mechanical linear and nonlinear system parameters

- Investigating the effect of noise on the performance of the learning algorithm

- Developing optimization algorithms to improve the simulation and

convergence speed of the network.

143

References

[1] K. Narendra and K. Parthasarathy, “Identification and Control of Dynamical

Systems Using Neural Networks,” IEEE Trans. on Neural Networks, vol. 1, pp. 4-27,

Mar. 1990.

[2] S. Omatu, M. Khalid and R. Yusof, Neuro-Control and its Applications: Advances

in Industrial Control. New York: Springer, 1996.

[3] O. De Jesús, “Training General Dynamic Neural Networks,” Ph.D. dissertation,

Dept. Elect. and Comp. Eng., Oklahoma State Univ., Stillwater, OK, 2002.

[4] O. De Jesús and M. Hagan, “Backpropagation through Time for a Broad Class of

Dynamic Networks,” IEEE Trans. on Neural Networks, vol. 18, no. 1, pp. 14-27, Jan.

2007.

[5] Q. Zhang and A. Benveniste, “Wavelet Networks,” IEEE Trans. on Neural

Networks, vol. 3, no. 6, pp. 889-898, Nov. 1992.

[6] E. Garcia-Trevino, V. Alarcon-Aquino, J. Ramirez-Cruz, “Improving Wavelet-

Networks Performance with a New Correlation-based Initialization Method and

Training Algorithm,” in Proc. of the 15
th

 International Conference on Computing,

2006.

[7] Y.C.Pati and P.S. Krishnaprasad, “Analysis and Synthesis of Feedforward Neural

Networks Using Discrete Affine Wavelet Transformations,” IEEE Trans. on Neural

Networks, vol. 4, pp. 73-85, Jan. 1993.

[8] Q. Zhang, “Using Wavelet Network in Nonparametric Estimation,” IEEE Trans.

on Neural Networks, vol. 8, no. 2, pp. 227-236, 1997.

[9] Y. Oussar and G. Dreyfus, “Initialization by Selection for Wavelet Network

Training,” Journal of Neurocomputing, vol. 34, pp. 131-143, Sept. 2000.

[10] Y. Oussar, I. Rivals, L. Personnaz, G. Dreyfus, “Training Wavelet Networks for

Nonlinear Dynamic Input-Output Modelling,” Journal of Neurocomputing, vol. 20,

pp. 173-188, Feb. 1998.

[11] J. Sjöberg et al., “Nonlinear Black-box Modelling in System Identification: A

Unified Overview,” Automatica, vol. 31, no. 12, pp. 1691-1724, Dec. 1995.

[12] S. Postalcioglu and Y. Becerikli, “Nonlinear System Modelling Using Wavelet

Networks,” in Proc. of the International Conference on Signal Processes, 2003.

[13] S.J. Yoo, J.B. Park and Y.H. Choi, “Direct Adaptive Control Using Self

Recurrent Wavelet Neural Network Via Adaptive Learning Rates for Stable Path

Tracking of Mobile Robots,” Proc. American Control Conference, 2005, pp.288-293.

[14] S.J.Yoo, J.B. Park and Y.H. Choi, “Indirect Adaptive Control of Nonlinear

Dynamic Systems Using Self Recurrent Wavelet Neural Networks Via Adaptive

Learning Rates,” Information Sciences, vol. 177, pp. 3074-3098, Feb. 2007.

144

[15] S.J. Yoo, J.B. Park and Y.H. Choi, “Generalized Predictive Control Based on

Self Recurrent Wavelet Neural Network for Stable Path Tracking of Mobile Robots:

Adaptive Learning Rates Approach,” IEEE Trans. On Circuits and Systems, vol. 3,

no. 6, pp. 1381-1394, June 2006.

[16] S.J.Yoo, J.B. Park and Y.H. Choi, “Stable Predictive Control of Chaotic Systems

Using Self-Recurrent Wavelet Neural Network,” International Journal of Control,

Automation and Systems, vol. 3, no. 1, pp. 43-55, March 2005.

[17] C.Lin, C. Lee and C. Chin, “Dynamic Recurrent Wavelet Network Controllers

for Nonlinear System Control,” Journal of the Chinese Institute of Engineers, vol. 29,

no. 4, pp. 747-751, 2006.

[18] C. Lu, “Design and Application of Stable Predictive Controller Using Recurrent

Wavelet Neural Networks,” in IEEE Trans. on Industrial Electronics, vol. 56, no. 9,

pp. 3733-3742, Sept. 2009.

[19] R.J. Williams and D. Zipser, “A Learning Algorithm for Continually Running

Fully Recurrent Neural Networks,” Neural Computation, vol. 1, no. 2, pp. 270-280,

1989.

[20] C.C. Ku and K.Y. Lee, “Diagonal Recurrent Neural Networks for Dynamic

Systems Control,” in IEEE Trans. Neural Networks, vol. 6 (1), pp. 144–156, Jan.

1995.

[21] J. Peng and R. Dubay, “Identification and Adaptive Neural Network Control of a

DC Motor System with Dead-zone Characteristics,” ISA Transactions, vol. 50, no. 4,

pp. 588-598, Oct. 2011.

[22] A.A. Al-Qassar and M. Z. Othman, “Experimental Determination of Electrical

and Mechanical Parameters of DC Motor using Genetic Elman Neural Network,”

Journal of Engineering Science and technology, vol. 3, no. 2, pp. 190-196, 2008.

[23] D. Schröder, C. Hintz and M. Rau, “Intelligent Modeling, Observation, and

Control for Nonlinear Systems,” in IEEE Trans. on Mechatronics, vol. 6, no. 2, pp.

122-130, 2001.

[24] C. Hintz, M. Rau and D. Schröder, “Identification of a Nonlinear Multi Stand

Rolling System by a Structured Recurrent Neural Network,” Proc. of IEEE Industry

Applications Conference, vol. 2, pp. 1121-1128, Oct. 2000.

[25] C. Endisch et. al, “Identification of Mechatronic Systems with Dynamic Neural

Networks using Prior Knowledge,” Proc. of the WCEAS, vol. 2, pp. 859-865, Oct.

2009.

[26] M.T. Hagan and M.T. Mehnaj, “Training Feedforward Networks with the

Marquardt Algorithm,” in IEEE Trans. on Neural Networks, vol. 5(6), pp. 989-993,

Nov. 1994.

[27] R.A. Horn and C. R. Johnson, Matrix Analysis, Cambridge: Cambridge

University Press, 1999.

145

Appendix A

MATRIX NORMS

Let A be a matrix,

 [

]

The L1 norm, also known as the maximum absolute column sum, is given as

‖ ‖

∑| |

 | |

The L∞ norm, also known as the maximum absolute row sum, is given as

‖ ‖

∑| |

 | |

From,

‖ ‖
 ‖ ‖ ‖ ‖

‖ ‖
 | |

Therefore the L2 norm is given by

‖ ‖ √ | |

146

Appendix B

GENERAL SOLUTION OF RECURSIVE EQUATIONS FOR RWN

 ()

 ()

(())

Using MAPLE, the recursive equation is solved as shown

The solution of the recursive equation is as follows,

This can be rewritten as,

 ()

(∏

 ()

)(

)

[

 () ∑

(

(

)

 ()

∏
 ()

)

]

 () (∏
 ()

)(() (

)

)

∑ ((

)

∏
 ()

)

147

 ()
 (())

 ()

(() ())

Using MAPLE, the recursive equation is solved as shown

The solution of the recursive equation is as follows,

This can be rewritten as

 ()

(∏

 ()

)(

)

[

 () ∑

(

(

)

 () ()

∏
 ()

)

]

 () (∏
 ()

)(()(

)

)

∑ (()(

)

∏
 ()

)

148

 ()
 (())

 ()

((()) ())

Using MAPLE, the recursive equation is solved as shown

The solution of the recursive equation is as follows,

This can be rewritten as,

 ()

(∏

 ()

)(

)

[

 () ∑

(

(

)

 () ()

∏
 ()

)

]

 () (∏
 ()

)(() (

)

)

∑ (() (

)

∏
 ()

)

149

Appendix C

DC MOTOR DATA SHEET

150

Appendix D

RULES FOR VECTOR AND MATRIX NORMS

Rule 1:

‖ ‖ ‖ ‖ ‖ ‖

Rule 2:

‖ ‖ ‖ ‖ ‖ ‖

Rule 3:

‖ ‖ ‖ ‖

Rule 4:

For a diagonal matrix, D, where is the absolute maximum element of the matrix,

∑‖ ‖

 | |

151

Appendix E

DERIVATION OF ALR FOR ELECTRICAL PARAMETERS OF DC MOTOR

The learning rate, ̂
 is selected so as to satisfy Equation E.1.

 ̂

‖
 ̂()
 ̂

‖
 (E.1)

In order to compute the norm of
 ̂()

 ̂
, the solution of the Equation E.2 must be

computed.

[
 ()
 ()

] [
 ̂ ̂ ̂ ̂

 ̂ ̂ ̂
] [

 ()
 ()

] [

 ̂
] ̂ () [

] () (E.2)

where

 ()
 ̂()

 ̂
 ()

 ̂ ()

 ̂

Equation E.2 can be rewritten as shown in Equation E.3 and E.4 where

where () [
 ()
 ()

].

 () () ̂ () () (E.3)

 () () (E.4)

The solution to the Equation E.4 is shown in Equation E.5.

 () (() ∑ (̂ () ())

) (E.5)

152

Changing the index such that r=n-m-1 and since () , the norm of () given

in Equation E.5 can be written as shown in Equation E.6.

‖ ()‖ ‖ ∑

(̂ () ())‖ (E.6)

Using Rule 1 and 2 of matrix norms given in Appendix D and the fact that

‖ ‖ ‖ ‖ ‖ ‖ | ̂ | Equation E.6 can be further decomposed as shown in

Equation E.7.

‖ ()‖ (‖ ‖ ‖ ‖) (| ̂ |‖ ̂ ‖ ‖ ‖) (E.7)

where

‖ ‖

‖ ()‖ ‖ ̂ ‖

‖ ̂ ()‖

Equation E.7 can then be written in the form of a series summation as shown in

Equation E.8.

‖ ()‖ (∑‖ ‖

) (| ̂ |‖ ̂ ‖ ‖ ‖) (E.8)

Using Theorem 1 and eigenvalue decomposition, Equation E.8 can be simplified as

shown in Equation E.9.

‖ ()‖ (∑‖ ‖

) (| ̂ |‖ ̂ ‖ ‖ ‖) (E.9)

Using Rules 1-4 from Appendix D, Equation E.9 can be written as Equation E.10.

‖ ()‖ (
‖ ‖ ‖ ‖

 ()
) (| ̂ |‖ ̂ ‖ ‖ ‖)

(E.10)

153

Using Equation E.10, the maximum norm can be computed as shown in Equation

E.11 where ‖ ()‖,.

‖(
‖ ‖ ‖ ‖

 ()
) (| ̂ |‖ ̂ ‖ ‖ ‖)‖ (E.11)

Substituting Equation E.11 in Equation E.1, the adaptive learning rate is selected as

shown in Equation E.12.

 ̂

 (E.12)

The learning rate, ̂
 is selected so as to satisfy Equation E.13.

 ̂

‖
 ̂()
 ̂

‖
 (E.13)

In order to compute the norm of
 ̂()

 ̂
, the solution of the Equation E.14 must be

computed.

[
 ()
 ()

] [
 ̂ ̂ ̂ ̂

 ̂ ̂ ̂
] [

 ()
 ()

] [

] ̂ () (E.14)

where

 ()
 ̂()

 ̂
 ()

 ̂ ()

 ̂

Equation E.14 can be rewritten as shown in Equation E.15 and E.16 where

where () [
 ()
 ()

].

 () () ̂ () (E.15)

 () () (E.16)

154

The solution to the Equation E.16 is shown in Equation E.17.

 () (() ∑ (̂ ())

) (E.17)

Changing the index such that r=n-m-1 and since () , the norm of () given

in Equation E.17 can be written as shown in Equation E.18.

‖ ()‖ ‖ ∑

(̂ ())‖ (E.18)

Using Rule 1 and 2 of matrix norms given in Appendix D and the fact that

‖ ‖ ‖ ‖ Equation E.18 can be further decomposed as shown in Equation

E.19.

‖ ()‖ (‖ ‖ ‖ ‖) (‖ ̂ ‖) (E.19)

where

‖ ̂ ‖

‖ ̂ ()‖

Equation E.19 can then be written in the form of a series summation as shown in

Equation E.20.

‖ ()‖ (∑‖ ‖

) (‖ ̂ ‖) (E.20)

Using Theorem 1 and eigenvalue decomposition, Equation E.20 can be simplified as

shown in Equation E.21.

‖ ()‖ (∑‖ ‖

) (‖ ̂ ‖) (E.21)

Using Rules 1-4 from Appendix D, Equation E.21 can be written as Equation E.22.

‖ ()‖ (
‖ ‖ ‖ ‖

 ()
) (‖ ̂ ‖)

(E.22)

155

Using Equation E.22, the maximum norm can be computed as shown in Equation

E.23 where ‖ ()‖,.

‖(
‖ ‖ ‖ ‖

 ()
) (‖ ̂ ‖)‖ (E.23)

Substituting Equation E.23 in Equation E.13, the adaptive learning rate is selected as

shown in Equation E.24.

 ̂

 (E.24)

156

Vita

 Sarah Hussain Zahidi graduated from English Medium School in Dubai,

where she secured 10 As in O Levels and 2 As in the A Level exams. She continued

her education at the American University of Sharjah where she graduated Summa

Cum Laude as Bachelor of Electrical Engineering in 2009.

 Following her graduation, she began the Master’s degree in Electrical

Engineering at the American University of Sharjah where she also worked as a

Graduate Teaching Assistant. During the course of her degree, Ms. Zahidi joined

MARS, GCC as a Project Control Engineer and then changed roles to become a

Maintenance Planning Engineer also at MARS, GCC. She was awarded the Master of

Science degree in Electrical Engineering in Fall 2012.

