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Abstract 

This work investigates the feasibility of using the dynamic features of the eyes 

for biometric identification. Identifying individuals using eye movements is typically 

limited by a low accuracy, thus preventing this technique from becoming 

commercially viable. In addition, the human eyes constitute a rich source of 

information, still only partially understood so far, hence more research is needed to 

understand exactly what kind of information they can provide, and what technique 

should be applied to analyze such information. It is also largely unknown what kind 

of feature will yield accurate data most useful to biometric identification, or which 

stimuli most influence most the dynamic features of the eyes and their usability as a 

biometrical trait. We show that, by combining eye movement features and iris 

constriction and dilation parameters, the dynamic features of the eye can yield a good 

level of accuracy for biometric systems. The approach consists of recording and 

categorizing eye movements as well as changes in pupil size into segments consisting 

of saccades and fixations, and computing for each the many velocity and acceleration 

features that are used to train the classifier to perform the biometric identification. We 

tested four types of stimuli to hypothesize which will provide a viable stimulating 

method for extracting eye features. The results suggest that simple stimuli such as 

images and graphs can appropriately excite the dynamic features of the eye for the 

purpose of biometric identification. 

Search Terms: Behavioral Biometrics, Eye-Movement Biometrics, Iris Biometrics, 

Non-Intrusive Identification, Task-Independent Identification, Stealth Identification, 

Machine Learning.  
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Nomenclature 

mean of eye fixation angular velocity   
 

 
 

standard deviation of fixation angular 

velocity 
  

  

mean of eye movement fixation velocity of 

the left eye 
    

 
 

standard deviation of eye movement 

fixation velocity of the left eye 
    

  

mean of eye movement fixation 

acceleration of the left eye 
    

 
 

standard deviation of eye movement 

fixation acceleration of the left eye 
    

  

mean of eye movement fixation velocity of 

the right eye 
    

 
 

standard deviation of eye movement 

fixation velocity of the right eye 
    

  

mean of eye movement fixation 

acceleration of the right eye 
    

 
 

standard deviation of eye movement 

fixation acceleration of the right eye 
    

  

peak of eye movement fixation velocity of 

the left eye 
    

 
 

peak of eye movement fixation acceleration 

of the left eye 
    

 
 

peak of eye movement fixation velocity of 

the right eye 
    

 
 

peak of eye movement fixation acceleration 

of the right eye 
    

 
 

difference mean of eye movement fixation 

velocity between left and right eye 
    

 
 

difference standard deviation of eye 

movement fixation velocity between left 

and right eye 

    
  

difference mean of eye movement fixation 

acceleration between left and right eye 
    

 
 

standard deviation of eye movement 

fixation acceleration of the right eye 
    

  

mean of eye saccade angular velocity   
 

 
 

standard deviation of saccade angular 

velocity 
   

  

mean of eye movement saccade velocity of 

the left eye 
    

 
 

standard deviation of eye movement 

saccade velocity of the left eye 
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mean of eye movement saccade 

acceleration of the left eye 
    

 
 

standard deviation of eye movement 

saccade acceleration of the left eye 
    

  

mean of eye movement saccade velocity of 

the right eye 
    

 
 

standard deviation of eye movement 

saccade velocity of the right eye 
    

  

mean of eye movement saccade 

acceleration of the right eye 
    

 
 

standard deviation of eye movement 

saccade acceleration of the right eye 
    

  

peak of eye movement saccade velocity of 

the left eye 
    

 
 

peak of eye movement saccade acceleration 

of the left eye 
    

 
 

peak of eye movement saccade velocity of 

the right eye 
    

 
 

peak of eye movement saccade acceleration 

of the right eye 
    

 
 

difference mean of eye movement saccade 

velocity between left and right eye 
    

 
 

difference standard deviation of eye 

movement saccade velocity between left 

and right eye 

    
  

difference mean of eye movement saccade 

acceleration between left and right eye 
    

 
 

standard deviation of eye movement 

saccade acceleration of the right eye 
    

  

mean of pupil size fixation of the left eye     
 

 

standard deviation of pupil size fixation of 

the left eye 
    

  

mean of pupil size fixation of the right eye     
 

 

standard deviation of pupil size fixation of 

the right eye 
    

  

mean of pupil size velocity fixation of the 

left eye 
    

 
 

standard deviation of pupil size velocity 

fixation of the left eye 
    

  

mean of pupil size acceleration fixation of 

the left eye 
    

 
 

standard deviation of pupil size 

acceleration fixation of the left eye 
    

  

peak of pupil size velocity fixation of the 

left eye 
    

 
 

peak of pupil size acceleration fixation of 

the left eye 
    

 
 

mean of pupil size velocity fixation of the 

right eye 
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standard deviation of pupil size velocity 

fixation of the left eye 
    

  

mean of pupil size acceleration fixation of 

the right eye 
    

 
 

standard deviation of pupil size 

acceleration fixation of the right eye 
    

  

peak of pupil size velocity fixation of the 

right eye 
    

 
 

peak of pupil size acceleration fixation of 

the right eye 
    

 
 

difference of mean of pupil size velocity 

fixation between the eyes 
    

 
 

difference of standard deviation of pupil 

size velocity fixation between the eyes 
    

  

difference of mean of pupil size 

acceleration fixation between the eyes 
    

 
 

difference of standard deviation of pupil 

size acceleration fixation between the eyes 
    

  

difference of mean of pupil size fixation 

between eyes 
    

 
 

difference of standard deviation of pupil 

size fixation between the eyes 
    

  

difference of peak of pupil size velocity 

fixation between the eyes 
    

 
 

difference of peak of pupil size acceleration 

fixation between the eyes 
    

 
 

mean of pupil size saccade of the left eye     
 

 

 
standard deviation of pupil size saccade of 

the left eye 
    

  

mean of pupil size saccade of the right eye     
 

 

 
standard deviation of pupil size saccade of 

the right eye 
    

  

mean of pupil size velocity saccade of the 

left eye 
    

 
 

standard deviation of pupil size velocity 

saccade of the left eye 
    

  

mean of pupil size acceleration saccade of 

the left eye 
    

 
 

standard deviation of pupil size 

acceleration saccade of the left eye 
    

  

peak of pupil size velocity saccade of the 

left eye 
    

 
 

peak of pupil size acceleration saccade of 

the left eye 
    

 
 

mean of pupil size velocity saccade of the 

right eye 
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standard deviation of pupil size velocity 

saccade of the left eye 
    

  

mean of pupil size acceleration saccade of 

the right eye 
    

 
 

standard deviation of pupil size 

acceleration saccade of the right eye 
    

  

peak of pupil size velocity saccade of the 

right eye 
    

 
 

peak of pupil size acceleration saccade of 

the right eye 
    

 
 

difference of mean of pupil size velocity 

saccade between the eyes 
    

 
 

difference of standard deviation of pupil 

size velocity saccade between the eyes 
    

  

difference of mean of pupil size 

acceleration saccade between the eyes 
    

 
 

difference of standard deviation of pupil 

size acceleration saccade between the eyes 
    

  

difference of mean of pupil size saccade 

between eyes 
    

 
 

difference of standard deviation of pupil 

size saccade between the eyes 
    

  

difference of peak of pupil size velocity 

saccade between the eyes 
    

  

difference of peak of pupil size acceleration 

saccade between the eyes 
    

 
 

distance between the gazes during saccades    

 
distance between the gazes during fixations    
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1 Introduction 

Security and data protection are increasingly becoming a major concern due to 

the huge demand for services provided by access-based systems. Biometric 

identification seems to fulfill this demand by providing secure, low cost, and 

convenient access techniques by relying on the anatomy of the human body (e.g., 

fingerprints [1], facial features [2], and iris matching [3]).  

However, counterfeiting and replication of biometrics have become possible 

with new advances in technology. For example, hackers have discovered a way to use 

the picture of a person's iris to bypass iris-scanning security systems [4]. Such 

incidents raise new security challenges such as how to detect spoofing and to prevent 

reverse engineering.  

Numerous techniques have been proposed to improve human identification 

and authorization methods. Some of these techniques investigated the emerging field 

of biometrics known as behaviometrics [5]. It has been hypothesized that individuals 

can be identified based on the characteristics of their behavioral traits, such as body 

posture [6], gestures, and keystrokes [7]. Biometric identification based on eye 

movements has emerged as a consequence of this assumption [8].  

Current methods described in the literature for biometric identification using 

eye movements are typically limited by a low accuracy, thus preventing eye 

movements-based biometrics from becoming commercially viable. To address this 

limitation, research in eye movements investigated multimodal feature extraction 

methods to combine eye movements with static eye features such as iris matching [9] 

and distance between eyes [10]. 

Human eyes are very complex in their anatomical structure and constitute a 

rich source of information; therefore, more research is needed to take advantage of 

this complexity for biometrics. In the area of eye movement biometrics, it is still 

largely unknown which features are most useful for identifying users or which stimuli 

most influence the dynamic features of the eyes and their usability as a biometrical 

trait. For example, moving objects have been used mostly, whereas images and 

figures remain to be explored.  

The present work investigates eye movements and iris features by testing 

several types of visual stimuli and comparing their viability for biometric 

identification in terms of identification accuracy. We also investigate the features of 
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the sphincter muscles in the iris that encircle and constrict the pupil, and the dilation 

muscles that expand the pupil, to suggest new dynamic features for biometric 

identification. This investigation correlates the described iris data with the stimulus 

used for exciting the iris. By proposing to combine the dynamic features of the eyes, 

which consist of the eye movements and the iris constriction and dilation behavior, we 

aim to improve the identification accuracy of state-of-the-art eye movement 

biometrics and to propose highly dynamic traits as an alternative to static biometrics 

traits. The work evaluates eye movements and iris features separately, and then 

performs feature fusion to evaluate their combined accuracy.  

1.1 Biometric identification 

Biometrics is a form of identification and access control that is based on 

characteristics and traits of individuals. Biometrics relies on identifying distinctive, 

measurable traits to label and describe individuals [11].  This method of access 

control emerged from traditional access control techniques that rely on using a 

personal token or memorizing a password. Biometrics is often categorized as 

behavioral and physiological [12], as elaborated hereafter. 

Physiological biometrics is used for identifying individuals based on body 

traits. Normally, the body trait that is used as a biometric property includes the iris, 

face, fingerprints, and voice. Each physiological biometric method has its pros and 

cons thus, highly secure systems often use two or more traits. Fig. 1 illustrates the 

ranking of the most common biometrics [13]. According to the assessment criteria 

(i.e., intrusiveness, distinctiveness, accuracy, and cost) keystroke dynamics is the least 

costly biometric technique, while iris scanning is the most accurate and requires the 

least effort, and voice scanning is the least intrusive.  
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Figure 1. Static biometric ranking: The ideal biometrics will have the 

assessment factors as far from the center as possible [13]. 

  

Behavioral biometrics includes personal distinctive traits such as body 

movements (including eye movements) and actions (including typing patterns), all of 

which are associated with muscles. This category of biometrics is known to be very 

hard to use for fraudulent purposes [8]. Since this thesis investigates eye movements 

and other behavioral traits exhibited by the eyes, we examine the physiology of the 

components that form the eyes in the next sections. 

 

1.2 Composition of the eye  

1.2.1 Anatomy of the eye  

Natural eye movement and pupil behavior occur when the eye adjusts the 

amount of light and its projection angle on the retina in order to be able to sense the 

visual information carried by the light. The light-sensitive area of the retina, known as 

the fovea, plays a vital role during this process because the light entering the eye must 

be projected on it. Naturally 50% of the vision happens at the foveal area, and when 

we move our eyes we essentially place the fovea region on the visual area that our 

brain needs to acquire [14]. Fig. 2 illustrates how the coming light from the image is 

projected on the fovea inside the eye globe. 



20 

 

 

Figure 2. Projection of light coming to the eye is adjusted by the eye 

globe to be concentrated on the fovea [15]. 

 

 

 

Figure 3. F: foveal area (1-2°); PF: para-foveal area (2-5°); P: 

peripheral area (6-220°). 
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The human foveation process happens when the brain continuously sends 

nervous signals to the sensory-motor system to bring the image that we look at onto 

the fovea. For scene perception and processing of visual acuity, the retina is classified 

into three areas, namely the foveal area, parafoveal area, and peripheral area [16]. Fig. 

3 illustrates how a human eye processes a scene. The foveal area (F) constitutes 1-2° 

degrees of the field of vision and forms the center of concentration in the eyes. The 

parafoveal area surrounds the foveal area and constitutes 2-5° degrees. The parafoveal 

area provides a distorted image to the brain that can also play a role in the vision 

process [17].  

The eye globe is connected to a neural system that includes a complex set of 

nerves to move the eye and adjust its position to focus the light that is coming from 

the scene onto the retina [18], [19]. Fig. 4 shows the components of the muscular 

system that moves the globe. Those movements were found to be unique [9] because 

the neuronal signals and muscles are different in each person, which makes these 

components a potential biometric trait.  

 

 

 

Figgure 4. The muscular system of the eye globe [20]. 

 

1.2.2 Anatomy of the iris 

  Pupil constriction and dilation occur when the iris adjusts the amount of light 

that should enter through the pupil to the retina [21]. The continuous tuning of pupil 

size is managed by a nervous system that regulates the tension and elasticity of the 

muscles that make up the iris. This process is highly linked with the stimulus that the 
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person looks at, and the activation of areas in the brain throughout the visual and 

cognitive tasks. The iris is made up of two types of muscles: sphincter muscles that 

encircle and constrict the pupil, and dilation muscles that expand the pupil [21]. The 

iris muscles are shown in Fig. 5. 

 

 

 

Figure 5. The circular and radial muscles of the eyes [21]. 

 

 

1.3  Eye movements and iris behavior 

1.3.1 Eye movements 

Natural eye movement is described by two types of motion:  fixations and 

saccades [22]. A fixation is the sustaining of the eye focus on a single area [23].  A 

saccade is the rapid movement of the eye between any two given consecutive fixation 

points on the viewed scene. Saccades can be differentiated from fixations by 

determining whether the distance between consecutive fixations points is larger than a 

given threshold [24]. Figure 6 illustrates an example of two fixation points and a 

saccade between them.  

 

Figure 6. The eye behavior representation as fixations and saccades. 
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The circles in Fig. 6 characterize the fixation points on the shown image as an 

indicator of the visual attention, and the line between the circles represents the 

saccades between the fixation points. 

 

Figure 7. The measured eye movements, depicting saccades and fixations [24].  

An illustration of the eye movement signal that shows the fixations and 

saccades is presented in Fig. 7. During fixations, the signal has a low frequency 

profile, and during saccades, the signal has a high frequency profile [24]. 

 

 

 

Figure 8. Variations in velocity between saccades and fixations [26]. 

 

 

The saccadic velocity, measured in visual degrees per seconds (°/s), is 

important for filtering and identifying saccades and fixations. Identifying eye 

movements is achieved by applying a velocity threshold between the eye‟s trajectories 

[25]. Fig. 8 illustrates the variation between eye movement saccades and fixations. 
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Figure 9. Eye movement behavior differences in two different users.  

We conducted two preliminary experiments to investigate the behavior 

differences of the eye movements in two users A and B, where two different stimuli 

were presented, one in each experiment. A short-term window of the resulting signals 

is plotted in Fig. 9. We found that user A had an eye movement signal that was steep 

and had high frequencies; this behavior of the signal was caused by the saccades. In 

user B, the signal was smoother and had fewer fluctuations, as shown in the top two 

plots. When we repeated the experiment and introduced a new stimulus the same 

behavior in both signals occurred, as shown in the bottom plots. Such discrepancies 

can potentially yield unique eye movement features used to distinguish between 

individuals.  

1.3.2 Iris dilation and constriction 

The muscles in the iris control the size of the pupil by using sets of smooth 

muscles. These muscles continuously excite the pupil in response to the overall state 

of alertness or the mental workload required to perform a task, and in response to 

external factors [27], [28]. Pupillography has been employed in many perception 

experiments to monitor brain activities and the mental condition of the person, and 



25 

 

has been investigated by cognitive science researchers to determine the brain‟s 

cognition and processing level [29].   

 

 

Figure 10. Pupil constriction and dilation behavior differences in two different users. 

 

The muscles that make up the iris are unique to each person [30]; thus they 

might be responsible for unique contraction and expansion behavior. Moreover, there 

could be differences in the muscular properties of the iris in the left and the right eyes 

that can also make up a unique biometric trait [30]. In the preliminary experiments 

that we conducted earlier (described in the previous section), we measured the pupil 

dilation and constriction behavior by recording the size of the pupil during the 

experiments. Fig. 10 shows the plot of a short-term window of the pupil behavior in 

the same experiment. We can see in the plots that user A had a smooth signal but 

rapidly changed its frequency, which is an indicator that the pupil size changes are 

small, but the change occurs very rapidly. In the plot of user B, we can see that the 

signal is steep and has higher frequency. This is an indicator that the pupil size in the 

second user had a large range of size changes, unlike the first user. Such discrepancies 

are a potential biometric trait. 
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2 State of the art in eye movement biometrics 

 

The natural behavior of the eyes has increasingly been gaining attention from 

the research community, in particular in relation to eye movements and pupil size.  

Eye movements can reveal information about the attentional and mental capacity of 

the person; therefore, eye movements were a subject of study in different fields of 

science, such as human computer interaction [31], cyber security [32], media research 

[33], and human identification [24]. Pupil constriction and dilation behavior has been 

a subject of study in brain cognition sciences. For example, it was found to be a good 

source of information to determine an individual‟s cognition and processing level 

[29]. In this work, eye movements as well as iris dilation and constriction responses 

are referred to as the dynamic feature of the eyes.    

This thesis focuses on the development of a biometric system based on the 

dynamic features of the eyes. In this section we provide a review of the related work 

in human identification using the dynamic features of the eyes. The development of 

eye movement biometrics comprises four fundamental areas of research, namely: 

identifying the stimulus that must be used to excite the eye movements; extracting the 

eye movement features that can make up a biometric trait; selecting the techniques 

used to adequately process the features; and choosing the best machine learning 

approach for classifying users based on the resulting features. The following sections 

present existing work in the literature of eye movement biometrics organized 

according to these four fundamental areas.  

2.1 Visual stimuli methodology 

Human eyes exhibit different movements that indicate the attentional and 

mental capacity of the person in relation to the visual stimuli. Those movements are 

not random and are influenced by certain factors including cognitive aspects such as 

attention and memory [34]. During some cognitive processes such as attention to the 

visual scene, the brain guides the eyes to acquire informative visual components [35]. 

The past work in the literature has deployed eye movements in biometrics primarily 

focused on two types of visual stimuli: static and dynamic stimuli. A static stimulus is 

a visual scene that does not change in time (e.g., images and texts). A dynamic 

stimulus is a visual scene that changes in time (e.g., movies and animated pictures).  
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2.1.1 Static stimuli 

Text-based stimuli  
 

Reading activates a series of eye movements known as the scan path, which is 

the sequence of eye fixations and saccades made when someone looks at a 

visual scene or reads a text [36]. Holland et al. [37] have proposed a method for 

human identification based on the scan path using a text as a stimulus. The authors 

have reported the eye‟s trajectories of the participants during a short reading task and 

analyzed quantitative properties of the scan path such as the number of fixations and 

the average duration of each fixation. Fig. 11 illustrates an example of the scan path 

that the authors reported from a participant in their study. 

 

 

Figure 11. An example of a text-based stimulus and the scan path 

followed by the eyes when reading [37]. 

 

 

The authors concluded that individuals tend to repeat certain scan paths during 

repeated viewings of the same text-based stimulus. The variations in the scan path 

between individuals and the path‟s similarity in the same person might make the text-

based stimulus a promising candidate to excite the behavior of the eyes for eye 

movement biometrics. 

The findings of Noton and Stark [36] were supported by Holland et al. [37], 

where the authors found that the scan path made by the eye movements of a subject 

during reading was repeated in 65% of subsequent text readings.  These findings 

suggest that the text-based stimulus can be a good method to investigate for eye 
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movement biometrics. Moreover, a text-based stimulus is highly usable since reading 

is a very common activity.  

However, the authors did not discuss whether the language of the text and the 

reading skills of the individuals had any influence on the findings. For example, 

individuals might have a different scan path when the text is familiar and easy to read. 

Also, previous studies did not report whether the learning factor, which means to 

become familiar with the task, had any effect on the scan path. These disadvantages 

make the text-based stimulus a priori a less efficient method to implement for a 

commercial eye movement biometrics application. Therefore, we did not investigate 

text as a stimulus in the experiments that we conducted. Instead, a task-independent 

approach is investigated in this work, which will solve the problem of the learning 

effect.  

Image-based stimuli 

Bednarik et al. [38] have investigated the images for exciting the eye 

movements of individuals for biometric identification. The authors have also studied 

other stimuli such as a text and a moving object. The study did not report whether 

images alone could be a good method for eye movement biometrics since all stimuli 

were studied together without being compared for their effect.  

Komogortsev et al. [9] investigated the use of static images as a stimulus for 

eye movements; They used a complex pattern image known as Rorschach inkblots 

[39] as illustrated in Fig. 12. 

 

 

Figure 12. An example of an image-based stimulus [9]. 
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Although the authors concluded that the inkblots could be used for eye 

movement biometrics, they did not investigate other types of images and especially 

more common ones. Moreover, the inkblots are used in psychological tests in which 

the subjects' acuity of the inkblots is recorded and analyzed, and might therefore be a 

less reliable stimulus for most common individuals [39]. While the effect of text 

stimuli and the characteristics of the scanpath are well-known, the influence of 

different types of image stimuli remains largely unexplored and requires further 

investigation. The work presented in this thesis proposes the use of general-purpose 

images for exciting the eye movements and compares the images to other stimuli to 

validate images viability for biometric identification. 

 

2.1.2 Dynamic stimuli 

Jumping point stimuli  

The work of Kasprowski and Ober [24] was the first attempt to study eye 

movements as a personal trait for biometric identification. The authors designed a 3x3 

matrix of yellow dots as shown in Fig. 13 and used this stimulus to excite the 

movements of the eyes for biometric identification. 

 

 

 

Figure 13. An example of jumping dot stimulus [24].  

 

 

Each dot in the matrix flashed one after the other for 550 ms to create an 

animation of a jumping point, as illustrated in Fig. 14.  
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Figure 14. The sequence of dot matrices creating a jumping point animation [24]. 

 

 

The jumping point stimulus has been widely adopted by the researchers for 

eye movement biometrics. Komogortsev et al. [40] investigated a similar approach 

when they conducted a study to evaluate the feasibility of using eye movements for 

biometric identification. The authors presented a jumping point stimulus for exciting 

the movements of the eyes. The purpose of the experiment was to find the movements 

that could be used for biometric identification by using a simple dynamic stimulus 

such as a jumping point.  

Although the authors proposed a jumping point as a stimulus to find a simple 

way to excite eye movements, this stimulus required full attention from the 

individuals in order to follow the dot, and limited the individual‟s freedom in natural 

viewing. Furthermore, the jumping dot stimulus is hard to deploy as a general-purpose 

stimulus in commercial applications, especially those that require an ongoing 

validation of the user identity. In the experiments that we conducted, we tried to find 

more robust stimuli than the jumping point, for example, stimuli that require less 

attention from the user.  

 

Movie stimuli  

Kinnunen et al. [41] proposed using a movie as a stimulus for exciting the eye 

movements for biometric identification. The authors proposed this dynamic stimulus 

to excite the movements of the eyes because watching a movie is not correlated with a 

specific task or instructions, and movies as a stimulus method can be used for stealth 

identification. In their study, the participants were required to watch a 25-minute 
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movie that was presented on an eye tracker screen. Then, the eye movement signal 

was segmented into short-term signals to determine how much time was sufficient for 

collecting usable eye movement data for biometric identification. Fig. 15 shows an 

example of the overall eye movement scan path on the movie (right) and a short-term 

sample of the scan path (left).  

 

 

Figure 15. Representation of eye movement when watching a movie stimulus [41]. 

 

The authors found that at least 5 minutes of movie watching was sufficient to 

collect usable eye movement data for biometric identification.  

Although the authors‟ attempt to use a movie as a stimulus was found feasible 

for eye movement biometrics, it is impractical and requires users to watch the 

stimulus for a long duration. Therefore, the use of movies as a stimulus was not 

investigated in this thesis and instead we looked for more practical stimuli as 

elaborated in the next sections. 

2.2 Eye-movement features 

The movements of the eyes are generated by complex anatomical components, 

which include six extraocular muscles (EOMs) that move the eye globe. These 

movements are subject to the force-velocity relationship of the muscles, and the 

resistive factors found in tissues surrounding the eye globe [42]. The eye movement is 

described by two types of behavior: fixations and saccades as described in Section 

1.2.1.  

This section presents past research in eye movement biometrics that is related 

to the anatomical properties of the eye movements such as the oculomotor system, 
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and the behavioral properties that are generated by other complex factors such as the 

neuronal control and the brain. 

2.2.1 Anatomical characteristics 

A few studies have investigated the complex anatomical structure of the 

oculomotor plant (OP) for biometrics. OP is responsible for generating eye 

movements that are unique in individuals and can be used as biometric features [40] 

[42]. OP components include the eye globe and its surrounding tissues, EOMs, and 

other tissues [21].  

OP characteristics were proposed as a method for biometric identification by 

Bednarik [38], including: length tension, series elasticity, passive velocity, and 

relationships of force-velocity. 

Komogortsev et al. proposed a mathematical model to estimate eyes‟ OP 

values by finding the differences in the eyes‟ positional signal, and by comparing 

these values against the generated saccades to produce optimized OP values [42]. The 

authors concluded that the biometric identification based on the OP characteristics of 

the eyes is a promising method for biometric identification.  

The proposed anatomical characteristics in the previous work require 

advanced eye tracking technology with a high sampling rate, which can only be found 

in advanced research laboratories. The sampling rate of the eye tracker represents the 

number of captured eye movement samples per minute. Thus, the higher the sampling 

rates the better the accuracy of the captured eye movements. The eye tracker that was 

used in this thesis to report the movements of the eyes is a commercial product with a 

lower sampling rate, which makes investigating the OP characteristics hard. 

Therefore, we investigated the behavioral characteristics, as described in the next 

section, since the OP influences the behavioral characteristics in terms of the velocity 

and acceleration of the eye movements. 

2.2.2 Behavioral characteristics 

The behavioral characteristics of eye movements can be unique and 

individualized [38], [41], [43]. They are mainly brain-guided movements during the 

visual activities and perceptual process of acquiring the visual scene. These 

characteristics are a very rich source of information and they can produce a rather 

large number of features [43] such as the scan path and subsets of behavioral features 
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which include horizontal amplitude of saccades, vertical amplitude of saccades, 

saccades velocity, fixation count, fixation duration, and scan path length [9].  

Kasprowski et al. [24], [44] investigated the behavioral characteristics of the 

eyes during the visual activities and constructed three feature sets for biometric 

identification. The features included eyes‟ average velocity, direction and distance to 

the stimulus, and distance between eyes [38].  

The behavioral eye movements that were investigated in the literature were the 

first order derivative of eye movements as will be explained in Section 3.4. In this 

thesis, we will investigate the behavioral features that were investigated in the 

literature as well as the second-order derivative of the behavioral features such as the 

acceleration and peak acceleration of eye movements.  

 

2.3 Pupil constriction and dilation as a biometric trait 

Pupil constriction and dilation behavior, which refers to the size variations of 

the pupil, has been a subject of study in brain cognition sciences.  Recently, some 

work was done to investigate the feasibility of using the size of the pupil for 

biometrics [38].  

Bendarik et al. [38] were the first to investigate pupil size as a biometric trait 

by combining it with the velocity of eye movements to increase the identification 

accuracy of the eye movement biometrics system. The authors found that combining 

the pupil size with the eye movements increased the overall accuracy of the system. 

Bednarik et al.‟s work was the only attempt to investigate the pupil as a 

biometric trait, to the best of our knowledge. However, the extracted features were the 

size of the pupil, which might not serve as a biometric trait when a large group of 

users are investigated for their pupil size. That is because the size of the human pupil 

is limited to a small range of millimeters [45]. 

In this thesis, we will investigate the pupil constriction and dilation behavior 

for biometric identification by proposing to use features such as the acceleration and 

velocity of the pupil size changes, as elaborated in Section 3.4. 

2.4 Extracting eye movement features   

The characteristics of the eye movements that were investigated in the 

literature, as explained in the previous section, required a feature extraction process 
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where usable traits from eye movement characteristics could be extracted to be used 

in biometrics. This section focuses on the feature extraction techniques that were 

proposed in the literature.  

The past work in eye movement biometrics has used feature extraction 

techniques similar to those employed in fingerprint and hand geometry biometrics. 

Those techniques included Principal Component Analysis (PCA), Linear Discriminate 

Analysis (LDA), and transform methods such as the Discrete Fourier Transform 

(DFT) and Continuous Wavelet Transform (CWT). 

PCA has been investigated by Bednarik et al. [38] and Kasprowski et al. [46] 

for feature extraction in eye movement biometrics. PCA has the main advantage of 

being easy to use [47]. In this thesis, we also investigate PCA as feature extraction 

technique because of the many advantages that it offers. For instance, it allows our 

multivariate features to be represented by a smaller number of variables [24]. 

Linear discriminate analysis (LDA) has been investigated by Klami et al. [48] 

and Holland et al. [37] for eye movement feature extraction. LDA requires many 

more calculations than PCA and since in our work we investigated many eye 

movement and iris characteristics, feature extraction time was important. Therefore, 

the LDA technique was not investigated.  

DFT has been investigated in the literature for analyzing the frequency 

patterns of eye movements and extracting the hidden features in the original eye 

movements such as the micro-movements [38], [46]. The micro-movements of the 

eyes are a behavioral trait that is caused by the osculation of the eyes during fixations. 

Individuals‟ eyes might have different micro-movement behavior that can be 

considered a biometric feature [46]. The main disadvantage of deploying DFT for 

extracting the features that are hidden in the eye movement characteristics is that it 

requires good quality of signal, which is extracted from a high-grade eye tracker. That 

is because eye trackers with low sampling frequencies, such as the one used in our 

study, have residual noise that cannot be filtered, making noise appear similar to the 

micro-movement feature.  

The Continuous Wavelet Transform (CWT) has been investigated by Bulling 

et al. [43] for extracting eye movement features such as fixations and blinks. CWT 

has an advantage over DFT due to its ability to perform more feature extraction from 

the eye movements that are collected from eye trackers with a lower frequency [43], 
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[46]. In this work, we used a much simpler and faster technique to extract eye 

movement features as elaborated in Section 3.4. 

Other feature extraction techniques such as the Minimum Spanning Tree 

(MST) have been used to extract eye movement features for biometrics. MST has the 

advantage of transforming the raw data of eye movements into smaller regions that 

can be computed using statistical test methods to extract the features [49]. For 

example, Rigas et al. [50] applied MST to the raw eye movement characteristics to 

create small templates of eye movement fixations and saccades. The templates‟ mean 

and covariance were computed and compared for finding eye movement features for 

biometrics. Holland and Komogortsev [37] also investigated MST for extracting eye 

movement features; however, the authors used a different statistical method known as 

“weighted mean fusion” to produce new eye movement features for biometrics. Using 

MST with statistical techniques to extract eye movement features was very useful for 

extracting features for biometric identification and yielded low error rates, as will be 

discussed in the next section. In this thesis, we investigated a similar technique to 

MST, yet simpler. Our technique was based on segmenting the saccades and fixations 

and applying statistical techniques to the segments such as mean and variance, as 

elaborated in Section 3.4. 

Feature extraction techniques that are commonly used in voice recognition 

biometrics such as the Gaussian Mixture Model (GMM) and Universal Background 

Model (UBM) were investigated by Kinnunen et al. [41].  GMM and UBM were used 

by the authors to extract eye movement features for task-independent biometric 

identification. GMM and UBM require long computation times as well as a large 

number of raw eye movement samples, which makes them hard to implement for 

general-purpose eye movement biometrics.  

2.5 Classification and evaluation of eye movement features 

In the previous work in eye movement biometrics, many classification 

techniques were used to classify features of eye movements and build a machine 

learning model. However, four classification techniques were the most commonly 

investigated, namely: Support Vector Machine (SVM) [50], K-Nearest Neighbor 

(KNN) [38], Hotteling‟s/T-square test [24], [51], and the C45 decision tree [24], [44]. 

Five factors were used to estimate the performance of human identification via 

eye movements:  1) False Acceptance Rate (FAR);  2) False Rejection Rate (FRR);  
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3) Half Total Error Rate (HTER), which is the average of both FAR and FRR; 4) 

Equal Error Rate (EER), the point where FRR equals FAR; 5) recognition accuracy, 

which is the ratio of the number of records classified correctly to the total number of 

records (also equal to 1 – FAR – FRR). Table 1 shows a summary of the techniques 

used to evaluate biometric identification using eye movements.  

 

Table 1. The error rates of biometric classification tests in the literature. An „_‟ means that the 

results were not provided by the authors. 

 Classification 

technique 

FAR FRR HTER EER Recognition 

accuracy 

Kasprowski 

[46] 

NB 

C45 

C45.1 

SVM 

40.88% 

12.43% 

10.37% 

10.80% 

21.27% 

45.79% 

48.36% 

43.60% 

31.08% 

29.11% 

29.36% 

27.20% 

_ _ 

Komogortsev 

et al. [9] 

Hotteling‟s 

Pairwise Distance 

Comparison (PDC), 

Gaussian 

Cumulative 

Distribution (GCD) 

_ _ 37% 

 

36.3% 

 

33.6% 

_ _ 

Komogortsev 

et al. [42] 

Hotteling‟s/T-square 

test 

_ _ 15% _ _ 

Holland [37] Similarity scores _ _ _ 30% _ 

Rigas [50] KNN (K= 1and 3) _ _ _ 30% _ 

Bednarik  

[38] 

KNN, Leave-one-out 

cross validation, 

Fusion weight 

_ _ _ _ 40-90% 

Kasprowski et 

al.[44]  

2D histogram speed 

and direction, SVM 

_ _ _ _ 97.55% 

 

The lowest error rate in eye movement biometrics was the Half Total Error 

Rate (HTER) of 15% in the work of Komogortsev et al. [42], while the highest 

recognition accuracy (97.5%) was found in the work of Kasprowski et al. [44]. 

However, recognition accuracy is not a comparable metric that can be used to 

determine the accuracy of the biometric system. Thus, metrics such as HTER and 

EER must be provided to enable us to evaluate the obtained results. 

The error rate achieved in the investigated work clearly reflects the challenges 

yet to be addressed prior to the adoption of a standalone system that would rely solely 

on eye movements for human identification and authentication. Improvements are 

necessary in several areas, including: extracting features that are more purposeful for 

human identification (as those features investigated so far have yielded relatively low 
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identification accuracy), creating general-purpose methods for everyday identification 

activities, and conducting experiments with a large number of users (although this is 

obviously difficult due to the resource required). Our work aims at addressing these 

issues and expanding current research in eye movement-based biometrics by 

investigating a wide range of eye movement features, and incorporating other 

dynamic features found in the eyes. We also propose to investigate various stimuli 

and study their effect on the dynamic features of the eyes for classification purposes 

in order to identify stimuli that can be used in common identification activities.  

2.6 Eye tracking technology 

Eye tracking is the procedure of monitoring and reporting the natural behavior 

of the eyes. Eye tracking technology is increasingly applied to research in several 

areas, such as human computer interaction [52], [53], cognitive sciences that study the 

influence of the stimulus on the human brain [54], and in studying the eye area of 

interest during phishing attacks [55]. Various eye tracking technologies have been 

developed for tracking the movements of the eyes. These technologies include Infra-

red Corneal Reflection Oculography (IROG), Electro-Oculography (EOG), and 

Video-Oculography (VOG), explained hereafter. 

2.6.1 Electro-oculography  

The eye globe is a dipole with a positive pole at the cornea and a negative pole 

at the retina. The potential difference generates a steady electric potential field that 

can be measured to determine the movement of the eye globe. In order to measure the 

electric field, two pairs of electrodes must be placed on the skin surrounding the 

ocularcavity area in the opposite directions of the eye. This technique is known as the 

Electro-Oculogram (EOG). The EOG reports the horizontal and vertical movement 

components of the eyes, allowing them to be measured as signals that range between 

5 µv/° to 20 µv/° [51]. 

The main disadvantage of EOG is that the electrodes are required to maintain 

direct contact with the skin surrounding the eye, which makes this technique very 

intrusive. Moreover, dry skin or poor electrode placement can undermine the 

readings. EOG, however, remains the lowest cost eye-tracking method, making it 

highly affordable for eye tracking research.  
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2.6.2 Video-Oculography  

Video-Oculography (VOG) eye tracking technology uses the rotation and 

translation of the corneal reflection of the light to estimate the position of the eyes. 

Infra-red can be used as a source of light and its reflection from the eyes can be 

captured with a regular CCD camera that is mounted on the head like a helmet.  

The main disadvantage of VOG is the installation process that requires a 

person to wear the helmet and adjust the position of the camera to capture accurate 

readings of eye movements [56]. VOG does not require direct contact with the skin 

surrounding the eyes, which makes it a less intrusive eye-tracking method than EOG. 

2.6.3 Infra-red Corneal Reflection Oculography  

Infra-red Corneal Reflection Oculography (IROG) is a widely available 

commercial eye tracking technology. It takes advantage of a technique using the 

corneal-reflection and pupil-center to estimate the position of the eyes. This technique 

is quite simple and can be constructed by using a camera and an IR light source. The 

IR light generates bright pupil and dark pupil images that are sensed by a camera or 

sensor [57]. When the light enters the retina, it is reflected back and appears to the 

camera as a bright spot that can be tracked and identified by image processing 

methods [52]. 
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3 Methodology in investigating the eyes’ dynamic features  

This chapter presents the methodology that was employed to investigate the 

human identification problem using the dynamic features of the eyes. The following 

section presents a brief overview of the approach used to build the biometric 

identification system. Later sections describe the participants and the experimental 

procedure, the investigated stimuli for exciting the dynamic behavior of the eyes, the 

methodology used for processing the recorded data by the eye tracker, and the 

approach of extracting the dynamic features of the eyes from the processed signal.   

3.1 System overview 

The approach adopted in this work considers the behavior of the human eyes 

as an input comprising user-specific features. By using a visual scene as a stimulus to 

excite the eye movements, non-intrusive eye tracking technology can record the 

behavior of the eyes as sequences of pixel coordinates and present them as a time 

signal. The proposed system takes this signal as an input and extracts features such as 

acceleration and velocity. A classifier is trained using the created features and a 

machine learning model is built. An individual can be identified based on the eye 

movements for various security applications. The overall goal of the biometric system 

that was built in this work is to recognize individuals and validate their identity based 

on their eyes‟ behavior. This identification is achieved non-intrusively and without 

using a specific task or stimulus. To validate the system, the error rate was computed 

and compared with the similar values from published studies in eye movement 

biometrics.  The steps followed to create our system are illustrated in Fig.16.   
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Figure 16.  An overview of the system architecture.  

 

3.2 Eye tracking apparatus 

 

The research presented in this thesis employed IROG eye tracking technology 

by using a Tobii T120 [26] eye tracker with a sampling rate of 120 Hz for 

simultaneously recording the movements of the eyes and the pupil size. The tracker 

recorded eye movements in pixels on a 2D plane as coordinates on the tracker‟s 

display screen, where the origin point of the recorded eye positions was located at the 

top left corner of the display (as shown in Fig. 17), and records the pupil size in 

millimeters.  

 

 
 

 

Figure 17. 2D (X and Y) plane of eye gaze points on the image stimulus.  
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The main advantage of using the IROG technology in this work is its non-

intrusiveness and ability to provide high precession eye movements and pupil size 

readings. However, IROG technology is expensive, especially versions with higher 

sampling rates. 

The Tobii eye tracker estimates the position of the eye gaze by sending a beam 

of infra-red light in the opposite direction of the eye tracker screen. A small but 

sufficient amount of infra-red light is reflected on the user‟s cornea and received by 

the built-in sensors of the eye tracker, which estimates the position of the eyes based 

on the reflection angle. Fig. 18 illustrates this process, while Table 2 provides the 

technical specifications of the eye tracker. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18.  An overview of the system architecture.  
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Table 2. Technical specifications of the eye tracking apparatus used in the study [60]. 

 

Data rate 120Hz 

Accuracy 0.5 degrees 

Drift 0.1 degrees 

Spatial resolution 0.3 degrees 

Head movement error 0.2 degrees 

Head movement box (width x hight) 30 x 22 cm at 70 cm 

Tracking distance 50-80 cm 

Max gaze angles 35 degrees 

Latency maximum 33 ms 

Time to tracking recovery typical 300 ms 

 

 

 

The reported pupil size and the X and Y positions of the left and right eyes, 

were extracted using the Tobii Software Development Kit (SDK) [61] and exported to 

Matlab. Fig. 19 shows part of the raw data recorded by the eye tracker. 

 

 

 

Figure 19.  A sample of the data recorded by the eye tracker.  

 

 

3.3 Participants and procedure 

The study was approved by the Institutional Review Board (IRB) of the 

American University of Sharjah, and by Zayed University where the experiments 

were conducted, and received ethical clearance. Informed consent was obtained from 

participants, who had the right to stop and leave the experiment at any time.  

A total of 22 subjects volunteered to participate in the experiments (15 

females, 7 males). Their ages ranged between 17 and 52, with a mean of 20.4 and 

standard deviation of 5.2. The eye movements and pupillary behavior data was 
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collected from the participants using one eye tracking device that was adjusted for 

each participant to maintain a distance between the subject and the screen within 55 

mm and 62 mm, and with a maximum of 2° degrees of error in the visual angle as 

recommended by Komogortsev et al. [40]. Fig. 20 shows the setup of the eye tracker 

while a participant was conducting the experiment. 

 

 

           Figure 20.  The setup of the eye tracker apparatus in the laboratory.  

 

The eye tracker recorded the eye movements and the pupil size with a 100% 

accuracy indicating that all samples (eye recordings) were acquired. A lower accuracy 

indicated that the eye tracker did not detect the presence of the participant‟s eyes for a 

period of time due to blinks, head movement, or other temporal obstacles. For 

example, when the participant blinked or looked outside the screen that was 

presenting the stimulus, the eye tracker did not report any eye movements. During the 

experiment, poor eye tracking performance was also found in one participant that had 

long eyelashes, which distorted the infrared beams that were used by the eye tracker 

to determine the pupil position. Poor recording accuracy was also found in four 
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participants who used eye glasses infra-red reflection.  We excluded recordings that 

had accuracy rates below 80% to maintain reliable eye-tracking data. After exclusion, 

data recording from 17 participants remained, 11 females and 6 males, with ages 

ranging between 17 and 50, with a mean of 21.1 and standard deviation of 4.9. Each 

participant undertook four experiments as described in the next section.    

3.4 Performance metrics 

The performance of the proposed biometric system is measured through a 

number of parameters and summarized by a single variable which is the Half Total 

Error Rate (HTER) [57]. The HTER refers to the midpoint of errors between the False 

Acceptance Rate (FAR) and the False Rejection Rate (FRR) [57]. In statistics, FAR 

and FRR are referred to as the Type I and Type II errors, respectively [58]. We also 

provide the percentage of correctly classified instances to give insight into what 

fraction of the provided data was correctly classified.  

3.5 Methodology for designing and using the visual stimuli 

The stimuli in our experiments were designed to test the feasibility of eye 

movement biometrics for general-purpose identification and authorization. We took 

two parallel pathways in developing the visual stimuli to determine the best stimulus 

for exciting the dynamic features of the eyes for building a biometric system. We 

called the first pathway the task-driven stimulus, and the other pathway the task-

independent stimulus. Both pathways are explained in detail in the next section. 

The study scenarios involved four stimuli that were chosen to represent a 

much broader set of stimuli that could be used for general-purpose eye movement 

biometrics. The experiments that are elaborated in the next sections are as follows. 

The first experiment examined a task-driven stimulus that required the participants to 

replicate a task, for instance drawing a given shape. The second experiment examined 

a task-driven stimulus that consisted of replication and redrawing of memorized 

shapes such as a password pattern. The third experiment examined a graph-based 

stimulus that was also task-driven and required participants to trace the plots of the 

graph with their eyes. The fourth experiment examined task-independent stimulus that 

consisted of images such as a natural scene. 
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3.5.1 Task-driven stimuli 

We call a stimulus “task-driven” when it is related to a task that is required to 

be accomplished, for instance drawing a pattern or replicating a shape by moving the 

eyes. Task-driven stimuli have no time limit; thus the participants decide when the 

task is finished. The following section describes the stimuli and the task used in each 

experiment.  

Experiment 1. Short term cognition  

Short-term cognition is a field of study in cognitive science [62], [63]. Visual 

short-term cognition is defined as the ability to briefly retain a small amount of visual 

information such a shapes and colors, and make the retained visual information active 

and available for a short period of time [62].  

 

  
(a)                    (b) 

Figure 21. The short term cognition stimuli used in Experiment 1. Users were required 

to replicate the shape (top), on the pad (bottom). 

In the first experiment, the stimuli consisted of two high-resolution shapes and 

a 4x4 dot-pad that had a full screen size (1280 x 1024) as shown in Fig. 21.  These 

types of stimuli were chosen for two reasons: to hypothesize whether it is possible to 

extract usable dynamic features from the participants‟ eyes for biometric 
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identification using short and simple tasks, and to study the response of the eyes to 

stimuli and activities that require short term cognition. We proposed to present two 

stimuli in order to increase the number of acquired samples and extract an adequate 

amount of dynamic eye movement data that could be used for biometric 

identification. 

The 22 participants were advised to look at the screen and follow the 

experiment instructions. The first task required them to look at the shape shown in 

Fig. 21 (top) and to replicate it on the pad that is shown in the bottom. Participants 

were asked to complete their tasks in one trial and press the space key on the 

keyboard after completing the experiment.  

Experiment 2. Long-term cognition   

Long-term cognition is another well-established subject of study in cognitive 

and neural sciences [64]. Visual long-term cognition is the process of retaining visual 

information such as shapes and colors and making it available for a long period of 

time. Such activities are commonly practiced by people on a daily basis. 

Visual stimuli were 4 x 4 dots with consistent low luminance and a black 

background. Two images were presented with a 1280 x 1024 resolution, as shown in 

Fig. 22. This stimulus was chosen for two reasons: a pattern lock screen is a password 

interface element used by various operating systems in smart touch phones, and it 

allows studying the response of the eyes to activities that require long term cognition.  

 

 

(a) 

 

(b) 

Figure 22. The long-term cognitive stimulus that was used in Experiment 2. 
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Participants were asked to choose a shape that could connect at least 7 dots in 

the dot pad shown in Fig. 22. Each participant had to memorize and practice two 

different shapes before undertaking the experiment. The stimulus shown in Fig. 22 

was presented to all participants on two consecutive slides; a and b, respectively. Each 

viewed stimulus continued as long as the viewer did not press the space bar, which is 

an indication that the task was completed. 

Experiment 3. Simple activity  

 The stimulus that was presented in the third experiment was designed to study   

the eye movements during simple tasks. The stimulus consisted of three plots in one 

figure, as shown in Fig. 23, to provide more time to collect an adequate amount of eye 

movement data from the participants.  

 

 
Figure 23. The stimulus that was presented in Experiment 3. 

 

The plot stimulus has the advantage of being easy to generate by the device 

that will authenticate users based on their eye movement biometrics. Moreover, this 

type of stimulus is common and users might find it easy to simulate.   

Participants were asked to trace with their eyes each of the three plots during 

the experiment, and to press the space bar after they traced the plots.  

3.5.2 Task-independent stimuli 

The task-driven stimuli presented in the previous section assumed that the 

same or similar tasks appear in training and testing of eye movements for user 

identification. This approach has the advantage of identifying the user with a 
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relatively low margin of error as elaborated in Section 4. However, when eye 

movement biometrics is deployed in scenarios that require repeated authentication 

such as security, the user is forced to perform tasks that become learned. The learning 

effect in eye movement biometrics has not yet been studied, to the best of our 

knowledge; however, it has been found that the learning effect has a negative impact 

on the classification accuracy in other types of behavioral biometrics such as 

keystrokes [65], [66]. The task-independent stimulus can solve this issue by 

presenting to the users stimuli that require neither prior knowledge nor a specific 

activity to be performed. For example, images are considered task-independent 

stimuli because the users can freely watch them without having to follow any 

instructions. However, if the user is instructed to look at or search for particular areas 

in the image, the image is considered a task-driven stimulus. One of the advantages of 

using this type of stimulus is that they are common and can be used for many 

applications such as stealth identification.  

 

Experiment 4. Task-independent  

The stimuli in Experiment 4 were two high-resolution images that were 

presented in a full screen size. The image-based stimuli were chosen as stimuli for 

determining images‟ usefulness for extracting eye movements and pupillary response 

features for biometric identification. Participants were asked to look at the images that 

were displayed but without advising any specific task. The image-based stimuli are 

shown in Fig. 24.  

  

(a) (b) 

Figure 24.  The task-independent stimulus that was presented in Experiment 4.  
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Participants were instructed to look at the displayed image, but no particular 

guidance was given. Each image was presented for 20 seconds. Since the average 

presentation time of each of the previously used stimuli was 17 seconds, this enabled 

us to compare the results from all experiments.  

 

 

Figure 25. Experiment time sequence, and the order of the presented stimuli. 

 

Fig. 25 summarizes the timeline of the experiments and shows their mean 

duration. The participants undertook all four experiments sequentially. In Experiment 

1, they were presented with the stimulus shown in Fig. 21-a, which was followed by a 

stimulus that had a cross shape at the screen center, called neutralizing stimulus, 

which was displayed for 2 seconds. Using the neutralizing stimulus between all 

displayed stimuli was necessary to re-center the eyes of the participants on the eye 

tracker display. The stimulus shown in Fig. 21-b was displayed after the neutralizing 

stimulus. The mean displaying duration of the first and second stimuli was 34 

seconds. Experiment 2 displayed the stimuli shown in Fig. 22-a and b, respectively. 

The mean duration of displaying the stimuli was 16 seconds. Experiment 3 displayed 

the stimulus shown in Fig. 23; the mean time was 20 seconds. Experiment 4 displayed 

the stimuli shown in 24-a and b respectively; each image stimulus was displayed for 

20 seconds.       
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3.6   Raw data pre-processing 

The eye tracker that we used in the experiments had a frequency of 120 Hz 

and recorded the actual position of the eye and the physical size of the pupil. The 

tracker provided an eye movement signal that was noisy; therefore, a pre-processing 

step was required to remove the noise before we could transform the signal into 

features. It is important to recognize the source of noise to determine the appropriate 

filtering method to use. In our case, the noise was caused by technical and human 

factors: the technical source of the noise originated from electromagnetic and light 

interference in the laboratory, whereas the human factor consisted of the eye blinks 

and head movements of the participants during the eye tracking experiment. In this 

thesis, we used a low-pass filter and a moving average technique to filter the noise 

caused by the technical factors and interpolation to recover the lost or badly acquired 

samples due to human factors.  

In this section, the approach of the pre-processing step to filter the eye 

movement signal is presented. Fig. 26 summarizes the steps that are described 

hereafter.  

 

 
 

Figure 26. Methodology diagram of data processing (step2). 

 

 
 

 

3.6.1 Noise reduction 

The low-pass filter smooth out and reduces the noise spikes of a signal by 

removing its high frequencies; therefore we chose this filter to process our raw signal. 

An example of a processed signal with a low-pass filter is illustrated in Fig. 27. 

 



51 

 

 
 

 

Figure 27. Comparison between a noisy signal and its true signal before filtering (left) and after 

filtering (right). 

 

 

 

 

   

The Tobii Software Development Kit (SDK) was used to remove the noise in 

the signal using a low-pass filter [61]. Then, the non-weighted moving-average filter 

[67] was applied to provide a further noise reduction to the residual noise in the 

signal. In this work, we defined the value of the averaging window size to     

samples, which means that each sample in the signal is the average of the previous 

three and next three samples, as given by Eq. 1, where      is the filtered signal and 

  represents the number of samples in the signal. 

 

      
 

      
 ∑        

                    Eq. 1 

 

The value of the averaging window has a profound impact on the velocity 

threshold (I-VT) that is discussed in section 3.6. This is because if the window size is 

configured to average fewer samples, the I-VT algorithm will identify the quick 

changes between samples as saccades. On the other hand, if it is configured with a 

high value to average more samples, the calculated velocity during saccades will be 

shorter, which may completely discard short fixations. We chose an averaging 

window size of 3 samples after experimentally testing three values: 3, 5, and 7. We 

found that taking 5 and 7 samples makes the signal very smooth, causing 

misidentification errors of the saccades.  
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There were situations when the previous samples were not found (i.e., the 

beginning of the signal) and other situations when the later samples were not found 

(i.e., the end of the signal), which caused the moving average method to be 

unsuccessful in reducing the noise at the boundaries of the signal. To overcome this 

situation, we included a threshold value of 25ms at the beginning and end of each 

experiment before we started processing the signal. This threshold value ensured that 

there were three samples before the first averaged sample, and three samples after the 

last averaged sample to provide a moving average with an adequate number of 

samples at the boundaries.  

 

3.6.2 Normalization and interpolation of the signal  

Interpolation is required to fill in the missing samples in the signal. In this 

work, the interpolation of the eye movement signal is correlated with the 

identification of fixations and saccades by the I-VT algorithm, and thus requires 

careful implementation. The missing data can be caused by several factors as 

explained earlier, and a “filling-the-gaps” procedure must be able to distinguish 

between those two sources. The following sections describe the interpolation process 

and the identification of fixations and saccades. 

 

Sample normalization  
 

The eye tracker provided a quality measure (validity code) that is between 1 

and 4 for each acquired sample. The value of 0 meant that a high accuracy of the eye 

position was obtained, and a value of 4 meant that a low accuracy or no sample was 

recorded. The validity codes are described in Table 3.  

The samples that had a value of 2 or 4 in the left and right eyes were discarded 

as they were poorly recorded by the eye tracker. 
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Table 3. Validity codes for the Tobii eye-tracker. 

Left eye Right eye 

 

Eyes detected Eye identification 

0 0 Both Correctly identified 

4 0 Right Correctly identified 

0 4 Left Correctly identified 

3 1 Right Estimated as probable 

1 3 Left Estimated as probable 

2 2 One eye Uncertain 

4 4 None Uncertain 

 

 

Identifying and interpolating gaps 

Gaps caused by the blinks are small and can be interpolated, whereas gaps 

caused by the eye tracking errors are large and must be discarded. A max-gap-length 

window was defined to distinguish between the two gaps. The gaps caused by the 

blinks had a window size of 75 ms [68], and the gaps caused by the temporal obstacle 

or head movements had more than a 75 ms window size. We used the interpolation 

method that was proposed by Olsen [69] as given by Eq. 2, where    is a scaling factor 

and         is the time stamp of the sample to be interpolated. 

 

  
                   

                    
                         Eq. 2 

 

Interpolating the small gaps replaced the missing samples with approximated 

ones, which might lower the quality of the signal that we obtained. However, this 

effect is expected to be marginal because of the limited number of small gaps. An 

example of the interpolated and discarded gaps is illustrated in Fig. 28. The gap fill-in 

interpolation was performed for the data collected from each eye separately.  
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Figure 28. Identifying and interpolating the gaps. 

  

3.7 Extraction of features 

After filtering and interpolating the raw signal, the basic dynamic features of 

the eyes were extracted from the filtered signal. The features included the position of 

the left and right eyes on the X access, and the position of the left and right eyes on 

the Y access. The pupil diameter was also provided by the eye tracker for the left and 

right eyes. Our method for extracting the features required the identification of the 

saccades and fixations of the eye movements and the implementation of a statistical 

procedure. This section provides the method used for extracting the features that were 

investigated in the work. Fig. 29 shows a sample of the signal that was processed in 

this section.   

  

 

Figure 29. Eye coordinates and pupil size. 
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3.7.1 Detection of saccades and fixations  
 

The velocity threshold (I-VT) algorithm is a simple fixation identification 

technique that calculates the velocity of the eyes and identifies the fixations based on 

a predefined threshold value [25]. I-VT uses the coordinates of the eyes to identify the 

fixations and saccades in the eye movements; by identifying the eye movement 

samples that are below the threshold and reporting them as fixations. In this work, we 

applied a threshold value of 40 °/s based on the recommendation from the work of T. 

Sen and T. Megaw [70]. The number of fixations and saccades identified by the 

threshold algorithm varied in the four experiments. Table 4 shows the mean count of 

saccades and fixations that were calculated by I-VT and the average duration for each 

experiment. 

Table 4. Average time for each experiment and mean count of fixations and saccades. 

experiment mean count of 

saccades 

mean count of 

fixations 

average time 

1 11 20 33 seconds 

2 7 12 15 seconds 

3 9 16 20 seconds 

4 15 24 40 seconds 

 

3.7.2 Creating the features of fixations and saccades 
 

The identified fixations and saccades of the eye movements were statistically 

processed to calculate their acceleration, velocity, and peak values, as elaborated in 

the next sections. 

Variations in pupil size were also investigated during each of the eye‟s 

fixation and saccade. Matching was performed by comparing the time stamps 

provided by the eye tracker for eye movement samples with the time stamps for the 

pupil size. Fig. 30 illustrates an example of the saccades and fixations of the obtained 

eye movements and pupil size. 
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Figure 30. Eye coordinates and pupil size. 

3.7.3 Velocity and acceleration of eye movements 
 

 

The velocity was calculated for the fixations and saccades using the position 

of the eye at point    and point     . The displacement of    to      is given by Eq. 

3. Fig. 31 shows an illustration of how the movement velocity is derived. 

   √                             Eq. 3 
 

 

 

 

 

 

Figure 31. Displacement of eye position ∆r between two points    and     . 
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Taking that    is the time interval between    and      when the eye moves along a 

curved path, the average velocity is the ratio of this displacement as given by Eq. 4. 

 

  
  

  
                      Eq. 4 

 

Regardless of the shape of the eye path, its magnitude    is always a straight 

line distance from    to     . Thus the eye trackers with a higher refresh rate provide 

more accurate information about the displacement of the eye. For example, a refresh 

rate of 120 Hz will yield    of 8.33 ms, whereas an eye tracker with higher refresh 

rate, for example 500 Hz, will yield a    of 2 ms. Based on the velocity, the 

acceleration of the eye movements were obtained from the acceleration function that 

is given by Eq. 5. 

 

      
  

  
                 Eq. 5 

 

3.7.4 Velocity and acceleration of pupil dilation 
 

The velocity of the pupil size dilation and constriction was found by  

measuring the differences in pupil diameter by using Eq. 6, where   is the pupil 

diameter. 

 

                                                  
  

  
                  Eq. 6 

 

The acceleration of pupil dilation and constriction was found by measuring the 

differences in the velocity of pupil dilation by using Eq. 7. 

 

                                                        
  

  
                    Eq. 7 

 

3.7.5 Distance between eyes 
 

The distance between the eyes (gaze points) is a static biometric trait that was 

investigated in the work of Kasprowski [46]. We used this trait to increase the 

classification accuracy of our model as elaborated in Section 4.5. This trait was 

calculated using the Euclidian distance formula in Eq. 8, where       is the X 
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coordinate of the nth gaze point of the right eye,      is the X coordinate of the nth 

gaze point of the left eye,      is the Y coordinate of the nth gaze point of the right 

eye, and      is the Y coordinate of the nth gaze point of the left eye. 

 

 

                √                                                      Eq. 8 

 

 

3.8 Eye movement and iris feature processing  

 

The extracted features from the previous section were processed using 

Principal Component Analysis (PCA) and the Chi-squared test to select the most 

relevant features that made up the input vectors for the classification process, as 

elaborated in the coming sections. The methodology diagram in Fig. 32 summarizes 

the steps discussed in this section.  

 

 

Figure 32. Methodology diagram of feature processing (step3). 

 

3.8.1 Creating vectors 

A vector of features was created for each participant in each experiment and 

was labeled to identify the person that provided the features. A vector was created for 

each trait, that includes 36 eye movement features, 48 iris features, and 2 features for 

the distance between the eyes. Table 5 shows the extracted features where   denotes 

the feature mean value,   is its standard deviation,   is the peak value,    denotes a 

fixation and   a saccade,   is the difference between the statistical values that were 

obtained from the left and right eyes,   is right eye, and   is left eye. 
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Table 5. Features used in this work. 

Source Type Features 
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3.8.1 Normalizing data 

The eye movements and iris data were of variable size and scale; therefore it 

was essential to scale the data variables so that they were comparable. Normalization 

is a technique that scales each data attribute into a range from 0 to 1 to avoid giving 

more importance to attributes with larger values. Normalization is given in Eq. 9, 

where        is the normalized value of the target feature   . 

 

       = 
     

   

  
      

                               Eq. 9 

 

3.8.2 Reducing data dimensionality  
 

Some of the extracted features turned out to be completely irrelevant and 

would thus increase the classification errors. In order to identify and discard such 

irrelevant features, we used two methods: Principal Component Analysis (PCA) and 
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Pearson‟s Chi-squared test. PCA was chosen because it is a widely used method for 

data processing and dimensionality reduction. For example, it has been used in the 

area of human face recognition [71] and in gene expression data analysis [72], and has 

also been investigated for eye movement biometrics [44]. Pearson‟s Chi-squared test 

was chosen because of its relatively low overhead computation and ability to rank the 

relevance of the features to the classification of the model.   

PCA transforms the features into a linear combination of all the original 

variables that contains a relevance description of the original data. The key to the 

transformation is to produce a set of fewer variables that are linearly-uncorrelated, 

which is done by finding the eigenvectors and eigenvalues of a features covariance 

matrix [73]. Let ∑  be a matrix for j features by p variables, and the covariance matrix 

be  . The linear combination of all variables is given by Eq. 10, where the i th 

variable is represented by   , and the linear combination coefficients for    is    , 

where           and is denoted by    , and normalized by   
    = 1. The variance of 

   (first principal component) is given by   
    

 where we can find vector    by 

maximizing the variance. 

 

       ∑      
 
                                   Eq. 10 

 

The second principal component that is orthogonal to the first one can be found in a 

similar manner by maximizing   
     which is subject to the constraints   

    = 1 and 

  
    = 0. Remaining principal components are derived in a similar way.  

The Pearson‟s Chi-squared test is a statistical technique for computing the 

relevance of each feature   with respect to class   that it represents. It is a commonly 

used technique for text classification [74]. The relevance is computer as per Eq. 11, 

where     is the observed frequency and     the expected frequency.  

                      

       
∑          

 
  

   
                          Eq. 11 

 

3.8.3 Combining feature vectors 

Data fusion was performed to determine whether combining the eye 

movement features with the iris features in one feature vector reduces the error rate of 
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the biometric system that we are proposing. Data fusion is a process of combining 

various sets of data to create a representational data set or decision. In this work, we 

used feature fusion because it is a widely implemented method in the area of 

biometrics, and can be carried out on dependent an independent sources of data [75] 

[76]. For example, feature fusion was implemented by Lupu and Emerich [77] and 

Ben-Yacoub et al. [78]. Fig. 33 shows a summary of the data fusion process. 

 

 

 

Figure 33. Data fusion diagram. 

 

 

Combining data was done by using an SVM classifier to evaluate the features 

in order to rank them based on the relevance in order to improve the prediction of the 

used classifier. SVM ranks the features by assigning a square value of the attribute 

weight for each class using a one-vs.-all method [79]. Based on the ranking results, 

we placed the features in a decreasing order starting at best performance features. 

Section 5.1.4 provides detailed results of the classification of the combined data and 

its contribution to our work. 

 

 

 

 

 

 

 

 

 



62 

 

3.9 Classification of features 

This section describes the classification approach while the next section 

evaluates the results. Both steps are illustrated in Figure 34. 

 

 

Figure 34. Feature processing and classification for identifying the users based on the 

collected features (step 4).  

Feature classification is a part of the machine learning model that we applied 

using the Weka data mining package [80]. There are many classification techniques 

that can be implemented to classify the biometric features in this work. However, 

based on the past work in eye movement biometrics, we validated our model using 

C4.5 decision trees, SVM, and Random Forest classifiers. The advantages of using 

these methods are elaborated in the coming sections and later when analysing the 

results, and a comparison between the three classifiers is presented to determine 

which was the best in terms of the accuracy and error rate, as shown in Fig. 37. 

3.9.1 Cross-validation   

A hold-out method was used to split data into a training set and a test set, 

which reserves a certain amount of data for validating the classifier later on while the 

rest is used exclusively for training. To ensure that the results are representative, and 

to avoid any bias or over-fitting, we repeated this process 10 times, thus deploying 10-

fold cross-validation, where the test set comprises 1/10 of the data while the training 

set consists of the remaining 9/10. This method was applied to all classification 

techniques as discussed in the following sections. 

This technique was used to test our proposed model, therefore when actually 

implementing the biometric system, the users who are going to be authenticated must 

provide training samples, which means they must conduct the same experiments as 
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the other users. The classifier will then be trained anew with the additional data and 

can subsequently be used to check the user identity. 

3.9.2 C45 decision tree 

C45 is a decision tree-based algorithm that provides a powerful tool for data 

classification [83]. We chose this algorithm to classify our data because it has been 

previously investigated in eye movement biometrics [44], thus making it possible to 

compare our classification results with results obtained in the literature. C45 finds the 

most convenient splits from the data sets to describe the class such that the gain is the 

maximum, and ranks the features based on their relevance to predict the class. The 

class is computed using the calculated entropy value. The entropy, which is also 

known as the information value, is the measure of uncertainty of an outcome and is 

computed by Eq. 12, where    ,    ,…,    of the entropy formula are expressed as 

fractions that add up to 1.  

  

entropy (  ,    ,…,    ) = −    log    −    log   …−     log        Eq. 12 

 

 

Splits divide data sets into two subsets and the entropy of both subsets is 

computed by finding the entropy of the data sets after the split. After computing the 

gain value, a split is chosen based on the highest gain value and the data set is divided 

into two tree nodes. The same procedures continue iteratively until a full decision tree 

is built. 

3.9.3 Support Vector Machines  

A Support Vector Machine (SVM) is a binary classifier which models the 

decision boundary between the classes as a separating hyper-plane. It has wide 

applications in pattern recognition and data classification and has been effectively 

implemented for eye movement biometrics [44][46]. SVM is considered a robust 

classifier because it is one of the machine learning techniques that provide a good 

sample generalization [84], which means that it is capable of choosing an appropriate 

generalization for the classes even when some bias exists for some features, therefore 

SVM was used as a data classification technique in this work. Therefore, SVM 

categorizes the target class as (+1) and the other irrelevant classes as (-1) [85]. Using 

the categorized training vectors, SVM solves optimization problems and finds a 
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splitting hyper-plane that maximizes the margin of split between the classes using Eq. 

13, where   is the Lagrangian multiplier which is the weight of each sample from the 

training set and is found by Eq. 14.   is the target class and   is the features vector.   

 

                ∑     〈    〉                                           Eq. 13 

 

∑      ∑           〈    〉           ∑                   Eq. 14 

 

 

John Platt‟s sequential minimal optimization (SMO) algorithm was used for 

training the support vector classifier [86], because it has been used in biometrics [87]. 

This version of SVM is not probabilistic, and only a single optimal value of the 

distance between the separating hyper-plane and origin is obtained for classification. 

Our employment of SVM using the Weka data mining package [80] used a special 

modification, which takes a probabilistic approach by assigning a probability value to 

each prediction using logistic models. We also configured SVM in Weka to use the 

quadratic Poly-kernel, to consider the interaction of features corresponding to 

different eye movement and pupil dilation values. In contrast, the original SVM 

implementation uses a linear Poly-kernel.  

The next section discusses the results and findings of the experiments and 

presents the data classification accuracy and classification errors. 

3.9.4 Random Forest classifier 

“Random Forest” is an algorithm that is based on the development of many 

decision tree classifiers [81]. Its main strength is the ability to classify big data sets 

and handle a large number of variables in a reasonable computing time. It is also 

capable of handling unbalanced data, as normally occurs when different biometric 

traits are used, which makes it a good technique to investigate for our data sets.  

Random Forest applies majority voting to an ensemble of decision trees to improve 

the classification results [81]. Based on recommendations by Larivière and Poel [82], 

we experimentally optimized the number of trees to 270 by testing different 

configurations and selecting that with the highest accuracy.  

The Random Forest method is based on generating an ensemble of 

classification trees known as forests based on a random sampling of features. 
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Generating forests is essential for passing instances through a voting process to 

determine the best classification results (often generated by one or more of the trees). 

Typically, a 10-fold cross-validation is applied by other classifiers to avoid bias in 

splitting data into training and testing sets.  
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4 Experimental Results 

This section presents the outcomes of the experiments and the classification 

results of the features that were extracted. An evaluation of the outcomes is provided 

to hypothesize which method was the most viable for building a biometric 

identification system.  

4.1 Ranking features 

The classification process was carried out on the most relevant features as 

described herein. For simplicity, only 10 relevant and irrelevant features are shown in 

Fig. 35. A full description of the notations is provided in Appendix A. 

 

 

Figure 35. Ranked attributes obtained from a Chi-squared test for eye 

movement features. 1 indicates the highest rank and 10 indicates the 

lowest rank.  

 

The lowest ranked features shown in Fig. 35 were removed in addition to 7 

more features that were ranked as irrelevant features. These included:  
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 . We determined the irrelevant features 

heuristically, by removing the feature that ranked the worst and running the classifier 

using the remaining features. We repeated this process until the accuracy obtained 

was less than the previous one. 

A similar technique was followed to remove the irrelevant pupil features 

which included:     
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The lowest ranked features that were removed after combining eye movement 

and iris features included:     
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Table 6 summarizes the number of features initially defined, removed via ranking, 

and used for classification purposes, respectively.  

            Table 6. Number of features defined, removed, and used in the classification.  

Source of features Defined initially Removed Used 

Eye movements 36 12 24 

Iris 48 30 18 

Distance between 

the eyes 

2 0 2 

 

4.2 Eye movement classification  

The percent of correctly-classified instances of data obtained from the 17 

participants using SVM was 35% for Experiment 1. The mean performance metrics of 

Experiment 1 are shown in Table 7 with the other three Experiments. The total 

percentage of correctly classified instances in Experiment 2, 3, and 4 was lower and 

reached as low as 31% of correctly-classified instances.  

The classification accuracy of C45 was also low, especially when compared 

with the other investigated classifiers in this work. C45 correctly classified 32% of the 

instances in Experiment 1. The classification accuracy was improved for Experiment 

2 and yielded 35% of correctly classified instances. It was also lower in Experiment 4 

where the correctly classified instances were 24%.  

Experiment 1 had 44% of correctly classified instances, which was higher than 

the obtained accuracy from the C45 and SVM classifiers. The lowest classification 

accuracy was obtained from Experiment 4, where the correctly identified instances 

were 37%.  
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Table 7. Accuracy and error rate results obtained from classifying eye movement data. 

Classifier  FAR FRR HTER Precision   Recall 

SVM Exp1 0.051 0.647 0.349 0.356 0.353 

 Exp2 0.044 0.648 0.346 0.351 0.352 

 Exp3 0.049 0.676 0.3625 0.309 0.324 

 Exp4 0.05 0.702 0.376 0.295 0.298 

 Combined 0.047 0.673 0.36 0.322 0.327 

C45 Exp1 0.06 0.681 0.3705 0.302 0.319 

 Exp2 0.046 0.647 0.3465 0.343 0.353 

 Exp3 0.048 0.705 0.3765 0.301 0.295 

 Exp4 0.054 0.761 0.4075 0.239 0.239 

 Combined 0.052 0.763 0.4075 0.239 0.237 

Random forest Exp1 0.056 0.557 0.3065 0.431 0.443 

 Exp2 0.045 0.574 0.3095 0.409 0.426 

 Exp3 0.046 0.574 0.31 0.41 0.426 

 Exp4 0.046 0.623 0.3345 0.369 0.377 

 Combined 0.047 0.638 0.3425 0.347 0.362 

  

The results suggest that the biometric identification using eye movements 

alone provide high error rate. This is because the stimuli that were presented in 

Experiments 1–3 provided an average HTER of 31%, and the stimuli that were 

presented in Experiment 4 provided an HTER of 33%. The results also show a small 

difference in the error rate obtained across all experiments, where the maximum 

difference was only 3%. Combining the data from all experiments also produced a 

high error rate as shown in Table 7.  

The main conclusions to be drawn from these results are: (1) the eye 

movement features that were investigated in this work achieved an error rate 

relatively higher than the error rate attained by Kasprowski and Ober [44], 

Komogortsev et al. [40], Kinnunen et al. [41], and Rigas et al. [50]. However, in this 

work we used a much simpler stimuli that could serve as a general-purpose methods 

for stimulating eye movements; (2) the influence of the stimulus on the eye 

movements was marginal because all experiments yielded almost similar HTERs, 

with a mean of 32% and a standard deviation of 1.6%. 

 

4.3 Iris classification  

Using SVM to classify iris features yielded better performance and accuracy 

than that obtained from classifying eye movement features. Experiment 1 yielded 
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76% correctly-classified instances and Experiment 2 and 3 yielded a similar value. 

The total number of correctly classified instances for experiment 4 was 62%, and 

combining data from all Experiments in one classifier yielded 60% correctly-

classified instances.  

Using the C45 algorithm provided results similar to SVM. Experiment 1 

yielded 74% correctly-classified instances and Experiment 2 yielded the highest 

classification accuracy with 78%. Combining data from the presented four 

experiments produced a lower accuracy with 58% correctly-classified instances. 

As we expected, using Random Forest with 270 trees yielded better accuracy 

than the previous techniques, and that is because it uses an ensemble method. The 

highest obtained was in Experiment 1 which yielded 84% correctly-classified 

instances. Experiments 2 and 3 yielded 86% correctly classified instances; however, 

Experiment 4 yielded the lowest accuracy with 71% correctly classified instances. 

When all data extracted from the four experiments were classified in one classifier, 

they yielded 69% accuracy. 

Table 8. Accuracy and error rate results obtained from classifying iris data. 

Classifier  FAR FRR HTER Precision   Recall 

SVM Exp1 0.02 0.237 0.1285 0.751 0.763 

 Exp2 0.016 0.231 0.1235 0.768 0.769 

 Exp3 0.017 0.249 0.133 0.749 0.751 

 Exp4 0.027 0.374 0.2005 0.626 0.626 

 Combined 0.029 0.399 0.214 0.592 0.601 

C45 Exp1 0.021 0.257 0.139 0.739 0.743 

 Exp2 0.015 0.214 0.1145 0.785 0.786 

 Exp3 0.016 0.248 0.132 0.756 0.752 

 Exp4 0.028 0.396 0.212 0.607 0.604 

 Combined 0.029 0.424 0.2265 0.576 0.576 

Random Forest Exp1 0.015 0.155 0.085 0.842 0.845 

 Exp2 0.011 0.143 0.077 0.858 0.857 

 Exp3 0.011 0.155 0.083 0.845 0.845 

 Exp4 0.02 0.289 0.1545 0.711 0.711 

 Combined 0.022 0.3 0.161 0.693 0.698 

 

The results shown in Table 8 suggest that the velocity and acceleration of 

pupil size variations can provide good biometric accuracy. The Half Total Error Rate 

(HTER) of 7.7% computed from Experiment 2 appears to be the best, whereas the 
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worst obtained HTER was 15.4% in Experiment 4. The results also show a lower 

difference in the error rate obtained across all experiments compared to that attained 

error rate from eye movements. That is because the difference in the achieved HTER 

in Experiments 2 and 4 was 7.7%, which is approximately a 100% increase in 

Experiment 4. This conclusion, however, must be further validated with studies that 

should include a big sample group of users; our study had only 17 users.  

The main conclusions to be drawn from these results are: (1) the pupil features 

that were investigated in this work achieved a much lower biometric error rate than 

eye movements; (2) the influence of the stimulus on the iris features was 

considerable; that is caused by the correlation between the iris constriction and 

dilation with the cognitive factors [17]. Hence the stimulus is an important factor for 

obtaining iris features for biometric identification.   

4.4 Classification of the combined eye movements and iris data 

 

We used a similar SVM configuration to classify fused eye movements and 

iris data. The first experiment yielded the highest accuracy with 77% of correctly 

classified instances; the lowest accuracy was obtained from Experiment 4 where the 

correctly classified instances were 66%. The combined data sets from all experiments 

yielded similar accuracy. 

The C45 classification tree model had a better classification accuracy. The 

correctly-classified instances were 81% in Experiment 1, Experiment 4 yielded the 

lowest accuracy with 67% correctly classified instances. Combining the experiments 

data set and classifying them using C45 yielded 66% correctly-classified instances. 

Classifying the data set with Random Forest improved the classification 

accuracy. Experiments 1, 2, and 3 yielded approximately 90% correctly-identified 

instances. However, Experiment 4 and data combined from all experiments yielded 

lower accuracy with 79% of correctly classified instances. 

The results that are shown in Table 9 suggest that a low error rate in biometric 

identification is achievable using the presented technique. Experiments 1 and 2 

attained a promising HTER, which was 5.3%; this value was the best across all 

conducted experiments. The worst HTER value was 11.4%, which was obtained from 

Experiment 4. This indicates that the stimuli that require a task to be performed, for 
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example stimulus 1 and 2, are better-suited for eye dynamic-based biometrics than the 

image-based stimulus. 

Table 9. Accuracy and error rate results obtained from classifying combined eye 

movements and iris data. 

Classifier  FAR FRR HTER Precision   Recall 

SVM Exp1 0.019 0.231 0.125 0.773 0.769 

 Exp2 0.021 0.321 0.171 0.687 0.679 

 Exp3 0.017 0.25 0.1335 0.757 0.75 

 Exp4 0.024 0.337 0.1805 0.662 0.663 

 Combined 0.025 0.353 0.189 0.639 0.647 

C45 Exp1 0.017 0.129 0.073 0.81 0.808 

 Exp2 0.012 0.174 0.093 0.829 0.826 

 Exp3 0.014 0.214 0.114 0.788 0.786 

 Exp4 0.023 0.33 0.1765 0.672 0.67 

 Combined 0.023 0.334 0.1785 0.666 0.666 

Random Forest Exp1 0.006 0.1 0.053 0.911 0.9 

 Exp2 0.007 0.099 0.053 0.909 0.901 

 Exp3 0.007 0.11 0.0585 0.89 0.89 

 Exp4 0.015 0.212 0.1135 0.788 0.788 

 Combined 0.016 0.22 0.118 0.777 0.78 

 

The main conclusions to be drawn from these results are: 

(1) Fusing eye movements and iris data considerably lowered the error rate of 

biometric identification using eye movements. The significance of this technique is its 

leveraging of the dynamic features that were obtained from the eyes. 

(2) The low error rate obtained is very promising and a first step towards achieving a 

commercially usable method for identification and authentication services. However, 

more validation is required with studies that include a larger sample group of users. 

 

4.5 Classification of the combined eye movement, iris, and distance between 

eyes  

 

Experiments 1, 2, and 3 yielded 81% correctly-classified instances when the 

SVM classification algorithm was used. The correctly-classified instances in 

Experiment 4 were 89%. The combined data set from all experiments yielded 79 % 

correctly-classified instances. 
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The classification tree model C45 correctly classified 90% of instances in 

Experiment 1. Experiment 2 yielded 91% correctly-classified instances. Experiment 3 

yielded 88% correctly-classified instances. Both Experiment 4 and combined data 

yielded 84% correctly-classified instances.  

Using Random Forest as a clarification method lowered the error rate like it 

did in the previous experiments that investigated other features. All experiments 

yielded very low error rate, as shown in Table 10. 

Table 10. Accuracy and error rate results obtained from classifying combined eye 

movements, iris, and distance between the eyes data. 

Classifier  FAR FRR HTER Precision   Recall 

SVM Exp1 0.010 0.165 0.087 0.810 0.835 

 Exp2 0.013 0.16 0.086 0.815 0.840 

 Exp3 0.019 0.18 0.0995 0.816 0.82 

 Exp4 0.021 0.187 0.104 0.891 0.813 

 Combined 0.022 0.195 0.108 0.792 0.805 

C45 Exp1 0.009 0.096 0.052 0.907 0.904 

 Exp2 0.009 0.1 0.054 0.91 0.9 

 Exp3 0.01 0.12 0.065 0.88 0.88 

 Exp4 0.011 0.154 0.082 0.845 0.846 

 Combined 0.014 0.18 0.097 0.83 0.82 

Random Forest Exp1 0.0001 0.002 0.00105 0.999 0.998 

 Exp2 0.0004 0.003 0.0017 0.996 0.997 

 Exp3 0.0009 0.01 0.0054 0.99 0.99 

 Exp4 0.001 0.01 0.0055 0.99 0.99 

 Combined 0.001 0.012 0.0065 0.988 0.988 

 

The results show that combining the distance between the eyes, which is a 

static biometric feature, with the dynamic features of the eyes achieves the lowest 

error rate. All experiments achieved a very good HTER, which was between 0.1% and 

0.5%. This indicates that using the static features might be beneficial and help 

lowering the error rate of the biometric system. However, the distance between the 

eyes might turn out to be not distinctive enough if deployed on a large scale.  
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5 Discussion and conclusion  

5.1 Task-driven vs. task-independent stimuli 
 

Relying on task-independent methods for extracting eye movement features 

for biometric identification was shown to be possible. Encouraging results were 

obtained when image-based stimuli were presented (Section 3.5.2 discussed a detailed 

experimental scenario). Fig. 36 shows a comparison between the task-driven stimuli 

and task-independent stimuli of the obtained HTER when eye movements and iris 

data were fused. The task-driven stimuli achieved lower HTER rate with an average 

HTER of 5.5%, whereas task-independent stimuli achieved an HTER of 11%.  

 

 

 

Figure 36. Comparison of the obtained accuracy results from eye movements alone 

across all experiments.  

  

5.2 Effect of stimuli on eye movements and iris 
 

Interesting results were obtained from comparing Experiments 2 and 4 as 

illustrated in Fig. 37. Experiment 2 was task-driven and consisted of a task that 

required long-term cognition, and Experiment 4 was task-independent and consisted 

of an image-based stimulus. In Experiment 2, the difference between the obtained 

HTER error rate from eye movements and irises was the highest because eye 

movements yielded an HTER of 31% and irises yielded 7.7%. This indicates that the 

stimulus in Experiment 2 was the worst across all task-driven stimuli for eye 
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movements and best for irises. Further investigation is required on the influence of the 

cognitive factor on this behavior.  

 

 

Figure 37. Comparison of the obtained error rates between eye movements and iris 

across all experiments. 

 

 

  In Experiment 4, the obtained HTER from the iris was almost 94% worse than 

the other experiments, whereas eye movements in Experiment 4 were only 10% worse 

than the previous experiments (1, 2, 3, and 4). The main conclusion that can be drawn 

from this behavior is that the pupil size changes are far more influenced by the 

stimulus type than eye movements. This behavior could originate from the fact that 

the size of the pupil is more correlated with the cognitive factor and the difficulty 

level of the stimulus. 

5.3 Effect of using random stimuli  
 

In order to test the viability of using random stimuli for eye movement 

biometrics, we combined the data sets obtained from the experiments in a single data 

file and used it for classification. In this case, using cross-validation randomly divided 

the data sets into training and testing data. The results illustrated in Fig. 38 show an 

HTER of 10.5%, which is approximately 90% less than the error rate that was 

obtained by Komogortsev et. al. [42]. The main conclusion that can be reached from 

these results, as well as the findings in the previous work presented in the literature 

review, is that it is possible to extract usable data from the eyes to serve as a biometric 
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trait for biometric identification when most types of stimuli are used to excite the 

eyes. The error rate of the biometric identification decreases when tasks that require 

long-term cognition are used. 

 

 

Figure 38. Comparison of the obtained error rates from combined eye movements, 

irises, and fused eye movements and iris data. 

 

5.4 Achievements 
 

This thesis proposed a task-independent approach designed to extract dynamic 

features from the eyes for biometric identification. We showed that extracting eye 

movements for biometric identification using a stimulus other that the one used for 

training the biometric system is practical, thus making task-independent person 

recognition possible for many security and general-purpose applications.   

The work investigated four different stimuli and compared the Half Total 

Error Rate (HTER) that was obtained using each stimulus. The results indicated that 

the stimulus impacts the quality of extracted eye movement features. However, all 

investigated stimuli were a useful source for obtaining eye movement features for 

biometrics.    

We found that the pupil constriction and dilation behavior is a biometric trait 

that can achieve far better biometric identification accuracy than eye movements. 

Therefore we proposed a method to increase the accuracy in eye movement 

biometrics by incorporating iris features with eye movement features. Our multi-

feature model decreased the HTER value from 30% to 5.3%. 

We also investigated the distance between the eyes as a biometric trait and 

combined it with iris and eye movement features. The HTER value that was obtained 

from this approach was 0.105%. This very low error rate could be sufficient to 
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propose a commercially-usable eye movements-based biometric system for 

identification and authentication purposes.  

 

5.5 Limitations 

 

It is worth mentioning that this work and previous work presented in the 

literature review had a small sample of users. Therefore, hypothesizing to use the 

dynamic features of the eyes as a biometric trait requires more investigation and 

testing on a larger group of users. While the small number of participants in this 

research domain is considered a limitation, the high cost of an eye tracking apparatus 

is another issue in the future implementation of such biometrics as a general-purpose 

identification method. 

 Also, the behavior of the eyes in individuals requires further investigation to 

hypothesize whether the oculomotor plant that moves the eyes changes it properties in 

individuals when they age or suffer from ocular diseases. 

 

5.6 Future work 

 

In future work, new eye movement and iris features must be examined, and 

new feature extraction methods must be investigated such as, the Gaussian mixture 

model (GMM) and Hidden Markov Model (HMM) which were widely implemented 

for feature extraction in speech recognition [88][89], in order to improve the accuracy 

of similar systems. Both GMM and HMM were used in extracting features in the text-

independent speaker recognition area [90], which might also be used to extract new 

features for the task-independent eye movement biometrics. The cognitive factors 

must also be investigated, such as the impact of task complexity on eye movements in 

correlation with the stimuli used to excite the eyes and extract their dynamic features, 

and the influence of using well-known images and the learning effect on eyes 

dynamics, in order to propose a highly viable stimulus for this kind of biometric 

identification.  

A larger group of users will need to be included in future work to attempt to 

build a large database of dynamic eye features to test this biometric method on a large 

scale. The eye tracking experiments must also be conducted in different places such as 

public and open areas; to test the impact of the environment on the identification 
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accuracy, and to investigate the efficiency of the proposed system for stealth 

identification in vital facilities such as airports and public services.  
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