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Abstract 

Power transformers’ age is highly related to the strength status of its insulation 

system. Oil-paper insulation system is the main type of insulation for most of the 

power and distribution transformers in the network. However, such insulation system 

is subjected to electrical, mechanical and chemical stresses that deteriorate its 

strength. One of the main sources of such stresses is partial discharge (PD) 

phenomena. PD within the insulation system can happen at any point from different 

defect sources like sharp points or voids in the insulation. Knowing the source or type 

of PD activities provides vital information for maintenance scheduling because PD 

types have different levels of severity. Since PD activities consume only few mA, 

they cannot be detected by the typical protective relays. However, PD activities emit 

energy in different forms that make it possible to detect them using different methods. 

In practice for power transformers, dissolved gas in oil analysis (DGA), ultra high 

frequency (UHF) pulses, and acoustic emission (AE) methods are the most common 

methods used to detect PD. Among these methods, AE has several advantages such as 

being the most cost effective and easiest to install while the transformer is energized. 

However, measuring AE in the field can be affected by several measurement 

challenges. The main contribution of this research is to identify the source of PD 

under different AE measurement conditions. Four common types of PDs are 

considered for the classification problem; surface discharge, PD from a sharp point to 

ground plane, PD from semi parallel plates, and PD from an air void in the insulation. 

The collected AE signals are processed using pattern recognition techniques to 

identify their corresponding PD types. For feature extraction and reduction, principle 

component analysis (PCA) is utilized, whereas k-nearest-neighborhood (KNN) is 

applied for classification. The measurement conditions include having aged insulation 

material (oil/paper), a tank size of 1×1×0.5 m dimensions, and high surrounding noise 

level. In addition, the influence of other practical conditions on the recognition rate is 

studied including PD location, sensor location, oil temperature, and having a barrier in 

the line-of-sight between the PD source and the AE sensor. A recognition rate of 94% 

is achieved while classifying the different PD types measured at the same conditions. 

In addition, it has been found that PD source location, oil temperature, and barrier 
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insertion have a significant impact on the recognition rate. However, by including AE 

samples at different conditions in the training process, a recognition rate of around 

90% for all cases is achieved.   
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Chapter 1: Introduction 

1.1 Problem Statement  

Power transformers are the most important assets in any transmission and 

distribution systems. In most countries, these systems have existed for more than a 

century [1]. According to a report prepared for the U.S. Department of Energy (DOE) 

in June 2012, “the average age of installed large power transformers (LPTs) in the 

United States is approximately 40 years, with 70 percent of LPTs being 25 years or 

older” [2]. Due to their high cost and critical role in delivering uninterrupted power, 

large power transformers cannot be easily replaced and usually serve for more than 

half a century. In case of failure, beside businesses interruption and environmental 

damage, a typical 100 MVA transformer can cost millions of dollars and an interval 

of 1.5-2 years to manufacture or substitute [3]. It has been reported that in the U.S., 

the main cause of power transformer failure and the most costly from 1997 to 2001 

was a failure of its insulation system as depicted in Table 1  [4]. 

 
Table 1: Oil-paper insulated transformer failure in the U.S. from 1997 to 2001 [4] 
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The aging of a transformer insulation system during its operational life is a 

natural phenomenon [5]. However, insulation aging can be accelerated when 

transformers are subjected to abnormal electrical, mechanical, and thermal stresses 

[6]. An important cause of such stresses on transformer insulation is partial discharge 

(PD) activities [6], [7]. As a result, it is crucial to continuously assess PD activities as 

an indicator to potential catastrophic transformer failure by a monitoring system. PD 

inside an oil-paper insulated transformer can be initiated by different sources that are 

different in terms of severity. An important aspect of PD monitoring is to identify the 

source of the PD, which provides vital assets management information to schedule 

maintenance.   

1.2 Thesis Contribution 

Identifying sources of PD activities has been an important research area due to 

the PD’s direct effect on insulation failure. There are many attempts that have 

addressed achieving high recognition rates for different PD types [8]-[10]. However, 

most of these attempts were not made to simulate PD in a practical transformer tank 

environment, as most of them did not take into account the effect of the transformer 

tank dimensions, the transformer’s complex inner structure, or conditions of the oil 

such as age and temperature. Other studies presented in [6] and [11] reported a high 

recognition rate for PD inside a transformer, but the mechanisms used were only 

applicable when the transformer was off-line. A recent work [12] used a low 

bandwidth acoustic emission (AE) sensor, 20kHz to 80kHz, to study the effect of 

increasing the tank size, the presence of barriers between the PD source and the AE 

sensor, and oil age on PD detection capability. The results of this work showed a 

recognition rate in the range of 96-100% for a small tank using both spectral and 

statistical features. When barriers were placed between the PD source and the AE 

sensor, the recognition rate stayed high; however, it dropped significantly when a 

large tank, 1×1×0.5 m, and old oil were used, with recognition rates in the range of 

50-78% and 60-88% respectively. Moreover, the classification problem in this work 

was for only two classes presented as PD (from sharp electrode) or no PD. In [13], 

three types of PD were investigated inside a test oil tank of 50×50×80 cm dimensions, 

namely, PD due to surface discharge in the pressboard, floating metal in the 
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pressboard, and bubbles in the pressboard. Three AE sensors were used to measure 

the signals. For feature extraction, time-frequency transformation was proposed from 

the short-time Fourier transform using seven descriptors [13]. The study shows 

different descriptor values based on averaging 11 training samples for each PD model. 

There is no testing provided for classification and the training is performed with a low 

number of samples. Moreover, there is no consideration of other factors that would 

affect feature extraction, such as the oil condition.  

Recently, a novel attempt to correlate gas formation in oil to common PD 

types has been investigated [14]. The work is based on dissolved gas in oil analysis 

(DGA) and PD statistical parameters. The study utilizes phase-resolved partial 

discharge (PRPD) and canonical correlation analysis (CCA) for feature extraction and 

classification. The study includes some of the important practical conditions in the 

simulation like having heated and circulated oil inside the tank. Three common 

standard defects or PD types in oil-paper insulation are investigated in the study, i.e. 

corona (sharp discharge), surface discharge, and cavity or void discharge. The results 

show classification results only for surface and cavity discharges since corona 

discharge has smaller gas formation. Based on 50 DGA samples collected at different 

stages of PD and gas formation, the laboratory’s results shows a recognition rate of 

65% at the early stage, 75% at the mid stage, and 80% at the late stage for surface 

discharge. Likewise, a recognition rate of 70% at the early stage, 65% at the mid 

stage, and 100% at the late stage for cavity discharge were achieved based on another 

50 DGA samples. However, when the system was tested with data from an actual 

transformer at an unknown PD stage, the recognition rate dropped to 56% and 52% 

for surface and cavity discharges, respectively, based on 50 samples for each PD type. 

Another PD recognition study for oil-paper insulation is presented in [15] which uses 

ultra-high frequency (UHF) signals. The study uses wavelet analysis for feature 

extraction and an improved bagging algorithm (IBA) with a back propagation neural 

network (BPNN) and support vector machine (SVM) for classification. Four common 

PD types are used in the study; i.e. cavity discharge, surface discharge, corona or 

sharp discharge, and oil floating electrode discharge. The PD models are simulated in 

laboratory conditions in a rectangular tank of 9×70×90 cm dimensions. The UHF 

antenna used is a third-order Peano fractal antenna installed in the inner wall of the 
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tank. 50 samples are collected per PD type at different applied voltages. The results of 

the study show recognition rates of 94.56% and 96% using IBA with BPNN and SVM 

respectively, which has a small improvement of 2-3% when using the traditional 

bagging algorithm (BA) and non-bagging approach (NBA). However, this study 

provides no practical conditions for UHF measurements like having a barrier in the 

line-of-sight of the antenna and PD source or changing the PD location.        

In this thesis, the main contribution, besides achieving a high recognition rate 

for different simulated PD types using AE signals, is to consider practical 

measurement conditions. The measurement conditions include having aged insulation 

material (oil/paper), a tank size of 1×1×0.5 m dimensions, and a high surrounding 

noise level. In addition, other practical conditions’ influence on the recognition rate 

are studied such as different PD locations, sensor locations, oil temperatures, and 

having a barrier in the line-of-sight between the PD source and the AE sensor. Four 

common types of PDs are considered for the classification problem; surface 

discharge, PD from a sharp point to ground plane, PD from semi-parallel plates, and 

PD from an air void in the insulation.  

1.3 Thesis Arrangement 

The next chapters of this thesis are arranged as follows. Chapter 2 provides 

background on PD and the methods used to identify it. Chapter 3 introduces the 

experiment setup used and the data collection phase. Chapter 4 is an overview of the 

pattern recognition techniques used to identify the different PD types. Chapter 5 

presents the results of PD type recognition on the conducted experiments. Finally, 

Chapter 6 contains conclusions and recommendations. 
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Chapter 2: Partial Discharge Background 

In this chapter, background information about partial discharge (PD) is 

presented. The background includes the definition of PD, PD types, and models for 

oil-paper insulating systems. In addition, background information is presented for PD 

sensing methods especially for transformers’ oil-paper insulating system. As acoustic 

emission (AE) is the method used to sense PD activities in this thesis, different related 

issues like challenges and factors effecting AE measurement in on-site conditions are 

addressed.  

2.1 Partial Discharge (PD) 

2.1.1 PD Definition 

Partial Discharge, or PD, as defined by the International Electro-Technical 

Commission, IEC 60270, is a “localized electrical discharge that only partially 

bridges the insulation between conductors.” PD activities can be initiated at any point 

in the insulation system where the breakdown down strength of such points is less 

than the applied electric field strength. PD is usually observed when the insulation 

system is aging with time. In addition, improper installation, poor design and/or 

workmanship, especially in cable joints and terminations that are assembled on-site, 

can be a main cause of PD to initiate. PD in general can occur externally or internally 

with respect to the insulation medium. After initiation, PD usually propagates and 

expands causing further insulation degradation and aging. In power transformers as an 

example, external PD can occur on the surface of oil impregnated paper because of 

different insulation medium interfacing that can intensify the electric field and lead 

eventually to failure in the paper insulation [16]. For internal PD in power 

transformers, one source can be due to the presence of air voids inside the insulation 

paper that can cause electric field enhancement inside the insulation, which may lead 

to a complete breakdown.  
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2.1.2 PD Types and Modeling  

 PD inside an oil-paper insulated system can be initiated by different sources 

that intensify the electric field beyond the strength of the insulation system. It can 

happen along the interface of different materials with different dielectric constants 

causing the electric field to be intensified. This type of PD is called surface discharge 

that usually has high energy, which may accelerate the aging of the insulation system 

[7]. Figure 1 shows surface discharge tracking within a cast resin circuit breaker spout 

[17]. 

 
Figure 1: Surface discharge tracking within a cast resin circuit breaker spout [17] 

Another type of PD that can happen is due to voids in the paper insulation, which 

intensify the electric field. Here, PD propagates through the insulation in a manner 

similar to trees’ roots. Figure 2 shows the propagation of electric treeing with respect 

to time [18].   

 

 
Figure 2: Electrical tree propagation due to air-filled void in insulation [18]  
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In the literature, several models have been proposed to simulate PD activities inside 

oil-paper insulation systems [16], [19], [20]. Ziomek et al. summarized the important 

rules to simulate PD activities as follows [7]: 

 The construction of models should have the same material structure, shape and 

proportional geometrical dimensions as the part of the insulation that is 

modeled; it should reproduce the same mechanism of initiation and 

development of partial discharges. 

 The construction of models should reproduce real distribution of electric field. 

 The oil in the model should have similar composition as the real one – content 

of water, dissolved gases and solid impurities. 

In this study, the PD models inside oil-transformers were divided into ten different 

models as described in Table 2. 
Table 2: Ziomek et al. PD models [7] 

 
Figure 3 shows the schematic diagram of PD3 and PD4 mentioned in Table 2. 

Feliciano et al., however, divided PD models in oil-transformers into only four main 

categories [19]. The categories are corona in oil from sharp points, floating electrode 

in oil, air-filled cavity, and surface discharge as demonstrated in Figure 4.  
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Figure 3: Schematic diagram for PD 3 and PD 4 in Table 2 considering an internal gas void presence in the pressboard for PD 4 
[7] 

 

 
Figure 4: (a) oil-corona discharge, (b) oil-floating electrode discharge, (c) air cavity discharges, and (d) surface discharge [19] 

H. Ma et al. recently presented five models for different PD types that can happen in 

oil-paper insulated systems as shown in Figure 5 [21].  

 
Figure 5: PD models used in H. Ma et al. experimental setup [21].  
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2.2 PD Sensing Methods 

When PD activities are initiated, the resulting energy is transformed into 

different energy forms as mechanical energy represented by acoustic emissions, 

electrical, thermal, and chemical energy [7]. As a result, a wide range of sensors and 

techniques can be used to detect PD activities as presented in [22]. Figure 6 shows the 

use of different sensors to detect PD in a gas-insulated switchgear (GIS). 

 
Figure 6: Different sensing methods to detect PD in GIS [22] 

However, for oil-paper insulated systems in transformers, not all measurement sensors 

are applicable due to transformers’ complicated internal structure and large outside 

dimensions [22]. In practice, three types of sensors are commonly used with oil-paper 

insulated systems for transformers [7], [22]. The methods are dissolved gas in oil 

analysis (DGA), ultra high frequency (UHF), and acoustic emission (AE). These 

methods will be explained in the following subsection.  

2.2.1 Dissolved Gas in Oil Analysis (DGA) 

Different gases can be formed and dissolved in power transformer’s oil during 

the aging of its oil-paper insulation system. These gases tend to form as a result of 

electrical and thermal abnormalities that can be a result of PD activities or even 

overloading the transformer. The percentages of these gases in oil are correlated to the 

source of the abnormalities inside the oil-paper transformer and serve as good 

indicators to the health status of the insulation system. For example, pyrolysis of 

hydrocarbons is formed when the insulation system is overheated. In addition, 

separation of acetylene and hydrogen or ethylene and methane are results of PD 
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activities in the transformer. Therefore, DGA is utilized by taking oil samples from 

the transformer periodically and sending them to a specialized laboratory for analysis. 

There are several standards for sampling, analyzing, and testing the oil samples to 

interpret and correlate different gas concentrations. These include the ASTM D3613, 

ASTM D3612, and ANSI/IEEE C57.104. Table 3 shows an interpretation of an oil 

sample test and the recommended actions where ppm stands for part per million. [23] 
Table 3: ANSI/IEEE C57.104 oil test interpretation [23] 

 
However, DGA has some limitations and drawbacks. According to SIEMENS, 

a leading manufacturer of oil-paper power transforms, DGA cannot help in finding 

the fault location, detecting acute faults that develop within seconds or minutes, or 

detecting temperatures that are below 150°C degrees for a long time as the one caused 

by faulty cooling operation and leads to the degradation of the paper and oil [24]. In 

addition, DGA is a lengthy and time-consuming process. Furthermore, the fact that it 

is done periodically might give misleading information about the health status of the 

transformer where abnormalities might happen right after the sampling process. 

Moreover, the DGA sampling process is done usually when the transformer is offline, 

which is extremely inconvenient for both the utility and the customer. Although some 

manufactures have developed on-site DGA units, which are suitable for integration 

with the new smart grid concept, there is a high price tag associated with them.         
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2.2.2 Ultra High Frequency (UHF)  

Ultra high frequency (UHF) components and electromagnetic waves (EM) in 

form of pulses are emitted as a result of PD activities in the insulation system of the 

power transformer. UHF probes are utilized to sense such signals; a typical UHF 

probe is shown in Figure 7. UHF probes usually take advantage of the transformer 

tank structure that serves as a Faraday cage, which minimizes the interference of the 

noises outside the tank. Therefore, UHF probes are inserted inside the transformer 

tank through customized windows or often through the oil valves of the transformer 

tank, which limit the number of probes that can be used. In addition, installment of 

such probes is done usually when the transformer is offline, which is not convenient 

for the utility or the customers.   

 
Figure 7: UHF probe for standard oil valve [25] 

A UHF probe is a very sensitive sensor that can give sometimes false alarms, which is 

non-desirable for cost effective maintenance scheduling. However, this high 

sensitivity can be used to trigger other less-sensitive sensors such as an acoustic 

emission sensor to start capturing. Furthermore, signals received by UHF probes can 

be correlated to the type or source of PD activities. In addition, with the help of 

multiple UHF probes, the location of the PD activities can be determined. The typical 

frequency range that such probes can capture is 300 MHz to 3 GHz. Such a high 

frequency range makes it very expensive to process in terms of the equipment 

specifications and time requirements.   
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2.2.3 Acoustic Emission (AE)  

Acoustic emission (AE) is a mechanical energy form emitted among other 

energy forms when different PD activities are initiated within the insulation system. 

AE sensors utilize such emissions or waves through a piezoelectric material that 

converts them into electrical signals, which are easy to process. AE sensors are 

usually very small in size as they can reach up to 200 grams and 30x60 mm in 

dimension [26]. Figure 8 shows different types and sizes of available AE sensors.  

 
Figure 8: Different types and sizes of AE sensors [26] 

The installation of AE sensors is quite easy for power transformers, where they can be 

mounted on a magnetic holder that can stick on the metallic walls of the transformer 

while it is online, as depicted in Figure 9.  

 
Figure 9: AE sensor installation 

Besides being small and easy to install, AE sensors are inexpensive compared to other 

types of sensors, which makes it very convenient to use multiple sensors around the 

tank for better coverage. Furthermore, the frequency range of AE waves is from 20 

kHz up to 1 MHz, which is much less than the UHF range, which makes AE sensors 

cost-effective in terms of equipment specifications and time requirements. Table 4 

summarizes and compares online PD sensing methods for power transformers.  
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Table 4: Comparison between practical PD sensing methods within transformer’s insulation system [7] [22] 

Method 

DGA UHF AE 

Measured 

Quantity  

Dissolved gases in 

oil 

Electromagnetic wave Sound 

Detection 

Sensitivity  

High (depending on 

PD activity time) 

High (depending on 

distance and location 

of the PD source) 

Moderate 

(depending on the 

location of the PD 

source) 

Intensity 

Measurement   

No Limited Limited 

PD Identification  Limited Yes Yes 

Frequency Band  NA 300 MHz to 3 GHz 20 kHz to 1 MHz  

PD Location No Yes Yes 

Installation 

Difficulty  

Moderate  

(transformer must be 

turned off) 

Moderate (through oil 

valve, transformer 

under load /through 

dielectric window, 

transformer must be 

turned off and 

opened) 

Low (transformer 

under load) 

Number of Sensors  1 

(due to high cost) 

Limited by number of 

oil valves or dielectric 

windows 

Open structure, 

typically 1-16 

  

Due to the clear advantages of AE over the other possible methods, AE has been 

chosen for this thesis work. Next, further concentration is presented on AE practical 

measurement in the field.  
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2.3 Challenges with AE Measurement in the Field  

There are several challenges that can affect measuring AE signals in the field 

environment. The following subsections explore the main challenges such as selecting 

AE sensor bandwidth, field mechanical noises, barriers inside the transformer tank, 

and variation in oil temperatures.  

2.3.1 Acoustic Sensor Bandwidth 

AE sensors, as stated earlier, convert mechanical acoustic waves into electrical 

signals through a piezoelectric material. The typical frequency range of the AE 

sensors used to register PD activities is divided into two bandwidths; narrowband 

sensors (20-100 kHz) and wideband sensors (100 kHz up to 1MHz). Selection of the 

optimal acoustic emission sensor type for registering PD activities is a tradeoff 

between sensitivity and PD types the sensor can cover.  Narrowband sensors are 

recommended by some professionals because of their higher sensitivity in the 

narrowband bandwidth [7]. On the other hand, wideband sensors are recommended by 

others as they are capable of detecting all types of PD activities in oil-paper insulated 

transformers [7]. However, this type of sensor is less sensitive to surface discharges 

[7]. Figure 10 and Figure 11 show typical narrowband and wideband sensors’ 

bandwidth versus their sensitivity, respectively.  

 

 
Figure 10: Narrow bandwidth, 20-80 kHz [26] 
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Figure 11: Wide bandwidth, 100-450 kHz [26] 

2.3.2 Environmental Noises   

Another concern in using AE sensors, especially on-site, is the presence of 

other mechanical disturbances or noises. The following list shows the main 

disturbance sources that might be presence on-site [7]: 

 Switching of on-load tap changer 

 Thermal faults of transformer's active part 

 High-voltage switchgear operations near the investigated transformer 

 Environmental noises (thunderstorms, rain, wind) 

 Core magnetostriction noise (Barkhausen effect) 

 Loose shielding connection in transformer tank 

Fortunately, most of the AE sensors’ bandwidth for PD detection is of good 

nature as PD has higher spectral components than mechanical environmental noises as 

wind or rain as seen in Figure 12 [27]. This also gives a good hint for choosing the 

proper bandwidth for the AE sensor.  

 
Figure 12: Frequency spectra of acoustic measurement using piezoelectric sensor [27] 
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2.3.3 Oil Temperature  

Besides insulation, transformer oil serves an important role in cooling the 

transformer into safe operation limits. Power transformer’s oil has different 

temperatures based on its loading. The oil temperature during heavy loading can reach 

80 0C using high efficiency copper conductors [28]. AE waves in oil have different 

propagation speeds at different oil temperatures. Table 5 shows the effect of 

increasing the oil temperature on the acoustic wave speed. 

 
Table 5: Speed of AE waves in oil at different oil temperatures [7] 

Oil Temperature (ºC)         AE wave speed (m/s) 
20 1413 

50 1300 

80 1200 

110 1100 
 

The speed of AE waves has a direct relationship with the acoustic impedance 

(Z) of the medium. The acoustic impedance, which is analogous to the electrical 

impedance, determines the ease of AE propagation through the medium [29]. The 

acoustic impedance can be expressed as the product of the equilibrium density of the 

medium (ρ), and the AE wave speed (V) [29]: 

𝑍 = ρ V                                                                                             (1) 

Therefore, the acoustic impedance will vary depending on the AE speed at the 

different oil temperatures.  

2.3.4 Barrier inside the Transformer  

Power transformers contain different materials like oil, pressboard, and 

metallic core and conductors. The speed of the AE wave varies depending on the 

material it propagates through. Table 6 shows the acoustic wave speed in different 

transformer materials. Consequently, the acoustic field inside the transformer tank is 

very complex because of wave reflection and diffraction caused by having an acoustic 

impedance mismatch in the different mediums (steel, copper, pressboard, oil) [7], 

[29]. 
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Table 6: Speed of AE wave in different mediums [7] 

Medium at 20 ºC    AE wave speed (m/s)  

Transformer oil 1413 

Impregnated pressboard 1500 

Copper 3570 

Steel 5100 
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Chapter 3: Experimental Setup 

In this chapter, the experimental setup is described. The description includes 

the explanation of the equipment used, the PD models simulated, and the choice of the 

AE sensor type. In addition, the experiment details are described for each of the 

simulated practical conditions. The practical conditions simulated (the data collection 

phase) is based on varying the PD location, changing the sensor location, altering the 

oil temperature, and finally inserting a metallic barrier in the line-of-site between the 

PD source and the AE sensor.    

3.1 Main Equipment List  

Figure 13 shows the overall experimental setup used throughout the study.  

 

 
Figure 13: Overall experimental setup  

 The following subsections give a description for each item used in the setup.  
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3.1.1 Oil Tank 

The oil tank used has a dimension of 1x1x0.5 m and is filled with aged oil 

received from a local utility company. The tank top cover has 9 symmetrical holes 

that can be used as possible PD locations as shown in Figure 14.  

 
Figure 14: Tank bird's-eye view 

The oil level inside the tank is about 20 cm where the AE sensor can be placed 

at three different depths as depicted in Figure 15. However, the sensor is always fixed 

on the tank’s west wall close to hole or PD location 1 as shown in Figure 14. The AE 

sensor is fixed on the tank’s wall with a magnetic holder, Figure 9. In addition, 

silicone grease was applied between the tank surface and AE sensor to increase the 

quality of the transferred AE signal and to reduce the reflections on the contact 

surface.   

 
Figure 15: Different locations of AE sensor  
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3.1.2 High Voltage Supply   

The high voltage source used in the setup is a 40 kV, 10mA 50/60 Hz AC 

tester. The high voltage source is accompanied with a control panel to adjust the 

desired voltage level and trip the source at a preset current limit. The control panel 

also has digital meters to accurately give the readings of both the voltage in kV and 

current in mA. The control panel and the high voltage source shown in Figure 16 can 

be connected together through a 3 meter long cable for a safe distance to the operator.  

 

 
Figure 16: High voltage source and the control panel 

The high voltage source is connected to the high voltage electrode through a 

cable. The cable is suspended in the air to prevent it from being close to the earthed 

tank, which would introduce undesired PD between the cable and the tank. In 

addition, a ceramic bushing is used to provide insulation between the earthed tank and 

the immersed high voltage source going inside the tank through one of the possible 

holes on its top cover.  However, the available bushing can efficiently insulate only up 

to 15 kV, which limits the possibility to use the full range of the high voltage device. 

Nevertheless, the 15 kV is sufficient to produce the PD types examined in this thesis. 

Finally, the grounding reference for the high voltage source is connected to the system 

common ground with the earthed tank.    
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3.1.3 PD Types Electrodes  

The selection of PD types in this work is based on the most common types 

found in the literature as previously described in subsection 2.1.2. The ground 

electrode has a height of 8 cm and a disk diameter of 10 cm as shown in Figure 17. 

Both the high voltage and ground electrodes are fully immersed in the tank’s oil as 

depicted in Figure 15. In addition, the location of the ground electrode can be adjusted 

to be aligned with the high voltage electrodes coming through any hole in the tank’s 

top cover.  

 

 
Figure 17: Ground electrode top and side view 

The following is a description of the four PD electrode types used in this study:   

1- Sharp electrode to ground plane: This type of PD occurs mostly when there 

are defects in the manufacturing or assembling of the transformer windings or 

tank structure. The sharp point intensifies the electric field around it to a level 

beyond the insulation system strength that initiates dangerous PD activities. 

Figure 18 shows the electrode arrangement used in this study.  

 
Figure 18: Sharp point to ground electrode 
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2- Semi parallel plate electrode: electrode arrangement simulates PD due to semi-

uniform electric field. Such an arrangement is less severe compared to the 

point-plane arrangement. Figure 19 shows the electrode setup used.  

 
Figure 19: Semi parallel plate electrode 

3- Surface discharge: This type of PD happens mostly along the interface of 

different materials with different dielectric constants causing the electric filed 

to be intensified. This type of PD is very dangerous as it has high energy 

associated with it, which accelerates the aging of the paper insulation and 

affects the oil strength. Figure 20 shows the electrode setup used with oil-

impregnated aged insulation paper. The reason to choose a sharp electrode 

with the surface setup is to reduce the voltage required to initiate PD activities 

and keep it within the 15kV limit. In addition, such a configuration represents 

a worst-case scenario.  
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Figure 20: Surface discharge electrode 

4- Void discharge. This type of PD happens mostly due to defects in the 

manufacturing phase of the paper insulation. This type of PD has a significant 

effect on the life of the paper insulation system as it propagates with time and 

expands, which ultimately leads to catastrophic failure. To simulate a void in 

the insulation, three PVC discs are glued with special material together, where 

an air-filled hole or void is inserted in the center of the middle disc. The 

reason to choose PVC is because it has a very close dielectric constant to an 

impregnated insulation paper in oil [30]. Figure 21 shows the electrode setup 

used. PVC discs have bigger diameter than the ground electrode to insure PD 

is only initiated within the inserted void and not due to surface discharge.  

 
Figure 21: Void discharge electrode 
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3.1.4 AE Sensor Bandwidth Selection  

As previously discussed, there are two types of AE sensors. The first type is 

the narrow band sensors with a bandwidth ranging from 20 kHz-100 kHz. These 

sensors are sensitive to surface discharge but not immune to acoustic noise. On the 

other hand, the second type is the wide band sensor with a bandwidth of 100 kHz to 

1MHz. The major advantages of the wide band sensors are their ability to detect all 

types of PD signals. Moreover, they are immune to most of the acoustic noise as 

depicted in Figure 12 where PD signals above 100 kHz have considerable higher 

spectral components than mechanical environmental noises as wind or rain. The use 

of two different sensors in this research has been investigated. The first sensor has a 

bandwidth of 20-80 kHz and the second has a bandwidth of 100-450 kHz. The former 

sensor performs extremely undesirably with a great response when a small level of 

noise is introduced in the level of 50dB, which is the level of noise in a quiet suburb 

or at around 30.5 meters from a large electrical transformer [31]. Figure 22 shows the 

narrow bandwidth sensor response in quiet lab conditions around 35dB to 40dB, 

whereas Figure 23 shows its response at 50dB noisy conditions. Using an AE sensor 

with a narrow bandwidth would be extremely unreliable in field conditions. 

 
Figure 22: Narrow bandwidth sensor response in quiet lab conditions 
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Figure 23: Narrow bandwidth sensor response in a noisy condition  

The later sensor, with a bandwidth of 100 kHz to 450 kHz, was tested against a noise 

level of up to 80 dB, which is the level of noise in an average factory [31]. Figure 24 

shows the high bandwidth sensor performance in around 80dB noisy conditions. The 

sensor shows an immune response to the noise introduced. Therefore, the high 

bandwidth AE sensor, 100 kHz to 450 kHz, is chosen for data collection in this thesis.      

 

 
Figure 24: High bandwidth sensor response in noisy conditions 
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3.1.5 AE Sensor Interfacing   

The AE sensor chosen has a bandwidth that spans from 100 kHz to 450 kHz. 

Therefore, the least sampling frequency should be equal to or greater than double the 

maximum frequency limit of the sensor, according to the Nyquist theorem. However, 

in practice and by viewing a sample PD pulse signal on the scope, a sampling 

frequency of 10 MHz sample per second is sufficient to view a complete pulse signal, 

as shown in Figure 25.   

 
Figure 25: Sample AE signal from PD pulse 

 

The data acquisition equipment used is a 60 MHz bandwidth oscilloscope that can 

only save a 2500 point per viewed signal. Therefore, with a 10 MHz sampling 

frequency, the viewed signal has a length of 250 micro seconds. The scope has been 

interfaced with Matlab to register the signals directly in specified directories on a 

computer.  

Before connecting the AE sensor to the oscilloscope, an amplifier stage of 

46dB into 50 ohms is installed. The signal is then fed into the oscilloscope that has a 

setting to filter or reject any high frequency noises that arise, especially the ones that 

are induced from the high voltage source. The next subsection discusses the collected 

data of the conducted experiments.       
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3.2   Data Collection 

 In this work, data from the four different PD types have been captured at 

different simulated field conditions. These conditions can affect the measured AE 

signals emitted from PD activities. The simulated field conditions are: 

a) Changing PD location. 

b) Changing sensor location. 

c) Changing oil temperature. 

d) Having a barrier in the line-of-sight between the PD source and the 

AE sensor.  

The following subsections give descriptions about the experiments conducted to 

simulate these conditions.  

3.2.1 PD Location  

PD activities can be initiated at any point in the insulation system for power 

transformers. Therefore, different PD types have been simulated at three different 

locations in the tank model as demonstrated in Figure 26. Table 7 summarizes the 

experiments done with the different PD types at the different locations.  

 

 
Figure 26: PD location considered 
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Table 7: PD types and locations data 

PD Type   PD Location  Applied 
Voltage (kV) 

Measured 
current (mA) 

Sharp Point  4,9 8  0.20 
Surface Discharge 3,4,9 11.8  0.25 
Semi Uniform  4 9.5 0.23 
Void  3,4,9 6 0.18 

 

The line-of-sight distance between the AE sensor and PD at locations 3, 4, and 9 are 

75, 36, and 95 cm, respectively.   

3.2.2 AE Sensor Location  

The sensor, as discussed earlier, can be placed at three different depths as 

depicted in Figure 15. However, the sensor is always fixed on the tank’s west wall 

close to hole or PD location 1, as shown in Figure 26. PD location 4 has data for all 

PD types at the three different sensor depth locations.  

3.2.3 Oil Temperature 

Power transformer’s oil has different temperatures based on the loading 

condition. In addition as discussed, AE waves propagate at different oil temperatures 

at different speeds. To study the temperature effect, different data sets were taken at 

around 23 0C, 50 0C, and 70 0C. All data were taken at PD location 3 and at sensor 

location b. Only surface discharge and void discharge experiments were conducted at 

the different temperature levels. Figure 27 shows the equipment used in the heating 

experiments as the thermometer and one of the heaters.  
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Figure 27: Oil temperature experiment   

3.2.4 Barrier Insertion  

AE waves have different propagation speeds through the transformer’s 

different materials. The core of the transformer can act as a barrier between the AE 

waves emitted from a PD source and the AE sensor. To simulate the barrier effect, a 

metallic obstacle made of transformer core silicon steel is inserted in the line-of-sight 

between the AE sensor and the PD source. The experiment configuration is shown in 

Figure 28.   

 

 
Figure 28: Barrier insertion experiment 

The PD measurements were conducted at PD location 9 with the AE sensor fixed at 

location a. Only surface and void discharge data had been collected. However, 

because of attenuation caused by the barrier, the AE samples could only be detected 

by increasing the applied voltage to around 4 kV compared to Table 7. This 

attenuation might be one of the main disadvantages of the AE method.  
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3.3 Experimental Observations 

  In this subsection, experimental observations are listed.  

1- The PD signal tends to be more repetitive when the high voltage source is 

applied for a longer time. This agrees with the fact that the insulation loses its 

strength faster with time when PD activities are present.  

2- Some PD signals registered at sensor location c contain reflection 

interferences. This can be explained by the fact that the sensor at location c is 

very close to an edge with the tank’s base that may result in multiple 

reflections. Figure 29 and Figure 30 show an AE signal at PD location 4 with 

the sensor fixed at location b and c respectively.   

 
Figure 29: Typical AE signal at sensor location b 
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Figure 30: AE signal with interferences at sensor location c 

3- Most PD signals received from PD location 9, which has a 95 cm line-of-sight 

distance from the AE sensor, were registered with some reflection 

interferences. This can be explained by the relatively long distance the signals 

are travelling through oil and hence the high possibility of the AE signal to 

interfere with other AE signals traveling at different speeds in the tanks’ 

metallic walls. Figure 31 shows a signal registered from PD location 9 with 

the AE sensor fixed at location b.    

 
Figure 31: AE signal with interferences from PD location 9 
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4- In the oil heating experiments, PD activities were initiated at a lower applied 

voltage for heated oil than at room temperature. Table 8 shows the oil 

temperature and the corresponding applied voltage for the surface discharge 

experiment at PD location 9. This indicates that the insulation system strength 

gets weaker as the temperature rises. This can be explained by the fact that 

free electrons at higher temperatures have higher energy to initiate PD 

activities.  

   
Table 8: Applied voltage for surface discharge at different oil temperatures  

Oil Temperature (ºC)         Applied Voltage (kV)  
23 11.8 

70 6.9 
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Chapter 4: Pattern Recognition  

This chapter provides a background on pattern recognition in general, and 

gives emphasis to the selected feature extraction methods and classifiers used in this 

study.  

4.1 Pattern Recognition Review  

Pattern recognition can be defined as the process that assigns labels to 

unlabeled inputs based on discriminating properties they possess, usually referred to 

as “features”. The assigned labels correspond to distinct groups usually referred to as 

“classes”. The system that does the pattern recognition is referred to as the 

“classifier”.  There are a wide range of features to choose from and classifiers to 

select. This selection is usually dependent on the type of data that needs to be 

recognized. For example, in voice recognition, if the data that needs to be classified 

are the different language phonemes, frequency features might be ideal for such kind 

of data. In addition, the classifier selection is usually based on the distribution shape 

of the data. In general, there are two types of classifiers, i.e. parametric and non-

parametric. In parametric classifiers, the distribution shape of the different classes is 

usually known. Therefore, with sufficient training data, parameters of distribution can 

be estimated such as the mean and variance, and classifiers as maximum likelihood 

(ML) can be used. On the other hand, non- parametric classifiers follow no theoretical 

assumptions nor have information about the data distribution shape, which is the case 

with most of the “real world” or practical data.  

Pattern recognition processes usually follow certain procedures and steps. 

Figure 32 shows the complete structure of a typical pattern recognition system [32].  
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Figure 32: Pattern recognition steps [32] 

The data collection phase is responsible for gathering representative raw data for each 

class under real conditions. If the environmental conditions presented at the data 

collection phase are not realistic, the pattern recognition system usually achieves poor 

results when tested in practice. For example, in voice recognition, this effect is very 

clear when training with data without noise, as in a quiet room and test in a noisy 

environment as a busy street. The second phase, pre-processing, is responsible for 

making the data more representative, such as by removing outliers from the data set. 

The feature extraction phase, as stated earlier, depends on the data type and aims to 

obtain the most distinguished features for the different classes. Furthermore, the 

classifier design depends on the distribution shape of the data. Usually large or 

sufficient pre-known class data is used as part of the classifier design, and is referred 

to as the “training data”. The last step is to validate and test the design with data 

unseen by the system before, which are referred to as the “testing data”.    

In this thesis, different feature extraction methods were tested including 

principle component analysis (PCA), discrete Fourier transform (DFT), and wavelet 

decomposition. In addition, different classifiers were used with the extracted features 

such as K-nearest neighbor (KNN), polynomial classifier, quadratic discriminant 

analysis (QDA), and support vector machine (SVM). Compared to the other 

combinations, PCA followed by KNN proved to have high and stable recognition 

rates when applied at different data conditions. The next section describes the pattern 

recognition system components used in this thesis. PCA and KNN are considered as 

the main feature extraction method and classifier, respectively; hence, they are 

described first.  
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4.2 Principle Component Analysis (PCA) 

Principle Component Analysis (PCA) or the Karhunen-Lo`eve expansion [33] 

is a reduction technique that preserves data information in the reduced space with 

minimum loss [34], [35]. It does so by projecting the data on the direction of the 

largest variance in a lower dimension, which maximizes the scatter of all projected 

samples [36]. Therefore, PCA analysis can be a good feature extractor for 

classification only if the direction of the maximum variance carries distinguished 

class information. However, not all dimensions can carry such discriminant 

information. Figure 33 demonstrates how projecting two classes’ data, green and red, 

into 2 principle components dimension can be separable and ideal for classification, 

while applying PCA further causes the classes to not be separable.  

 
Figure 33: Influence of PCA component number [34] 

Therefore, the choice of the new dimension order is critical for achieving a high 

recognition rate.  

The PCA method works by processing all training samples regardless of class. 

Assume we have m training feature vectors or samples from different classes as 

{𝑥1 , 𝑥2, … . , 𝑥𝑚}T with each sample 𝑥𝑖  of size d. The first step of the method is to 

subtract the sample mean from the data as follows:  
 

𝑧𝑖 =  (𝑥𝑖 − 𝜇)                                                                                   (2) 

where the sample mean is defined as follows: 

𝜇 =
1
𝑚
�𝑥𝑖                                                                                                        (3)           
𝑚

𝑖=1

 

Moreover, let’s assume a linear transformation matrix E of d×k size to project the 

samples from d dimension to k dimension, where k < d. The new reduced feature 

vectors 𝒚𝒊 of size k are defined as follows: 
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𝑦𝑖 = 𝑧𝑖 𝐸    𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2, … ,𝑚                                               (4) 

The transformation matrix E is derived from the data scatter matrix that is defined as:                                        

𝑆 =  �𝑧𝑇𝑖𝑧𝑖

𝑚

𝑖=1

                                                                                  (5) 

The PCA, as stated earlier, maximizes the scatter of all projected samples. Therefore, 

the transformation matrix E is:  

 

         𝐸 =  [𝑒1 𝑒2 … 𝑒𝑘]                                                                (6) 

where {𝑒𝑖|𝑖 = 1,2, … ,𝑘} is the eigenvectors corresponding to the k largest 

eigenvalues of the scatter matrix. The testing samples should be shifted by the same 

sample mean of the training data before using the obtained transformation matrix E to 

project them into the new reduced diminution k. 

One obstacle with PCA is the size of the scatter matrix S, where it is clear 

from Equation (5) that it would be a d×d matrix. However, this can be tackled using 

the snapshot method proved in [37]. For an m×d matrix containing all the training 

samples, the maximum number of non-zero eigenvalues that the matrix can have is 

min (m-1, d-1). The number of training samples (m) is usually much less than the 

number of the row features d. Therefore, the most non-zero eigenvalues that can be 

found are equal to m-1. So we can calculate eigenvalues of 𝒛𝒊 𝒛𝑻𝒊 (an m×m matrix) 

instead of 𝒛𝑻𝒊𝒛𝒊 (a d×d matrix). It is obvious that the dimension of 𝒛𝑻𝒊𝒛𝒊 is much 

lower than 𝒛𝒊 𝒛𝑻𝒊. The eigenvectors of the snapshot matrix are related to the first m 

eigenvectors corresponding to the largest eigenvalues of the scatter matrix as follows: 

 

𝑛𝑜𝑟𝑚 (𝐸 𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑓𝑖𝑟𝑠𝑡 𝑚 𝑣𝑒𝑐𝑡𝑟𝑜𝑠)  =  𝑛𝑜𝑟𝑚( 𝑧𝑇  𝐸 𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡)       (7) 
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4.3 K-Nearest Neighbor Classifier (KNN)  

Although simple and easy to implement, K-Nearest Neighbor (KNN) is a 

classification algorithm that has been reported as one of the top 10 algorithms in data 

mining [38]. In addition, it has been claimed by some researchers that KNN can 

achieve better results for multi-model classes than SVM, which is by far a much more 

complicated algorithm [38]. The KNN method is a non-parametric technique and that 

makes it very convenient for practical real-world data that do not follow theoretical 

assumptions as being linearly separable or mixtures of Gaussian distributions. The 

implementation of KNN is based on comparing each test sample with the entire 

training data set, and then making a classification decision based on certain 

algorithmic parameters. The first of these parameters is the choice of the value K that 

decides the number of the neighbor training samples that should be used to decide the 

class of a test sample. The selection of the best K value can be tricky; however, there 

are several conventions that give a good hint. For example, the classification rate 

might be very sensitive to noise if the value of K is chosen to be too small when the 

neighborhood has many data from different classes. However, in this work, K= 1 and 

2 show similar high results with PCA, while the recognition rate drops by increasing 

K beyond K= 2.  

Another important parameter for the KNN algorithm is the choice of the 

comparison method, which is usually referred to as the distance measure. There are 

several types of distances that can be used to calculate the similarity or distance 

between two points; nevertheless, it is always preferable to choose the distance type 

that can achieve the smallest distance that implies a larger likelihood of being the 

correct class. The choice of the best distance measure usually depends on the nature 

of the data. For example, for high dimensional data, it is advisable not to choose the 

Euclidean distance, as it tends to be less discriminating for large feature vectors. The 

following is a step-by-step algorithm for building a typical KNN classifier.  

Given a training data set D and a test sample 𝑧 = (𝑥�𝑖,𝑦�𝑖), the KNN algorithm 

calculates the distances or similarities between the test point and all training points 

(𝑥,𝑦) ∈ 𝐷 to determine its nearest neighbor list, 𝐷𝑧, where: 
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 𝑥�𝑖 is the test data while 𝑦�𝑖 is its class 

 𝑥 is the training data set and y is the corresponding class set.  

The test data is classified based on the majority class of its nearest neighbors 

as follows. First, calculate 𝑑(𝑥�𝑖, 𝑥)or the distance between the testing data 𝑧 and each 

training sample (𝑥,𝑦) ∈ 𝐷. After that, select 𝐷𝑧 ⊆ 𝐷, the set of the closest K training 

objects to 𝑧. Finally, the algorithm should output the class 𝑦� of each testing data as: 

𝑦� = (arg𝑚𝑎𝑥)𝑣 � 𝐼(𝑣 = 𝑦𝑖)
(𝑥𝑖,𝑦𝑖)∈𝐷𝑧

                                               (8) 

where 𝑣 is a class label,  𝑦𝑖 is the class label of the ith nearest neighbor, and the 

function  𝐼(⋅) is an indicator function that returns the value 1 if the argument is true or 

0 if it is false.  

4.3.1 Distance Correlation  

As stated in the previous section, one of the most important parameter settings 

for KNN classifiers is the choice of the distance measure. A proper choice for this 

measure is the one that yields minimum value, which implies higher probability of 

being near to a sample from a similar class. This subsection describes distance 

correlation while the next subsection briefly describes the other distance measures 

used.     

The distance correlation measures the statistical dependence between two 

random variables or vectors [39]. The main difference between the classical definition 

of correlation, Pearson’s correlation, and distance correlation is the type of 

relationship between the random vectors when the correlation is zero. A couple of 

random vectors is said to be uncorrelated if correlation=0, but this does not 

necessarily mean they are independent. However, if the distance correlation=0 

between two random vectors, the two vectors are said to be independent. Distance 

correlation is derived mainly from other statistical measures such as variance, 

standard deviation, and distance covariance. A typical formulation for distance 

correlation is as follows: 

𝑑𝐶𝑜𝑟�𝑥𝑔,𝑦𝑝� =
𝑑𝐶𝑜𝑣�𝑥𝑔,𝑦𝑝�

�𝑑𝑉𝑎𝑟�𝑥𝑔�𝑑𝑉𝑎𝑟�𝑦𝑝�
′
                                           (9)       
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Or 

𝑑𝐶𝑜𝑟�𝑥𝑔,𝑦𝑝� =
�𝑥𝑔 − �̅�𝑔��𝑦𝑝 − 𝑦�𝑝�

��𝑥𝑔 − �̅�𝑔��𝑥𝑔 − �̅�𝑔�
′��𝑦𝑝 − 𝑦�𝑝��𝑦𝑝 − 𝑦�𝑝�

′
         (10) 

�̅�𝑔 =
1
𝑛
�𝑥𝑔𝑗
𝑗

                                                                                                  (11) 

𝑦�𝑝 =
1
𝑛
�𝑦𝑝𝑗
𝑗

                                                                                                   (12) 

Next are some of the major properties of distance correlation: 

i. 0 ≤ 𝑑𝐶𝑜𝑟�𝑥𝑔,𝑦𝑝� ≤ 1. 

ii. 𝑑𝐶𝑜𝑟�𝑥𝑔,𝑦𝑝� = 0 if and only if  𝑥𝑔  and  𝑦𝑝 are independent.  

If the correlation distance or 𝑑𝐶𝑜𝑟�𝑥𝑔,𝑦𝑝� = 1, then 𝑥𝑔  and  𝑦𝑝 are 

completely dependent which implies that they are from the same class if KNN is used 

for classification. However, since it is preferable to have the nearest distance in KNN 

be correct, and since 0 ≤ 𝑑𝐶𝑜𝑟�𝑥𝑔,𝑦𝑝� ≤ 1, the distance correlation can be modified 

as such: 

𝑑𝐶𝑜𝑟�𝑥𝑔,𝑦𝑝�𝑠 = 1 −
�𝑥𝑔 − �̅�𝑔��𝑦𝑝 − 𝑦�𝑝�

��𝑥𝑔 − �̅�𝑔��𝑥𝑔 − �̅�𝑔�
′��𝑦𝑝 − 𝑦�𝑝��𝑦𝑝 − 𝑦�𝑝�

′
 (13) 

For example, if 𝑑𝐶𝑜𝑟�𝑥𝑔,𝑦𝑝� = 0, which implies that 𝑥𝑔  and  𝑦𝑝 are 

completely independent, then the distance, according to Equation (13), 𝑑𝐶𝑜𝑟�𝑥𝑔,𝑦𝑝�𝑠 

is maximum and equal to 1, which implies a minimum chance for 𝑥𝑔  and  𝑦𝑝 to be 

from the same class. The next subsection briefly describes the formulas of the other 

tested distance measures. 

4.3.2 Other Distance Measures 

The following list describes the formulas of Euclidean, cityblock, and cosine 

distance measures: 
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1- The Euclidean distance is the basic distance measure described by the 

Pythagorean formula as follows: 

𝑑�𝑥𝑔,𝑦𝑝� = �� �𝑥𝑔
(𝜅) − 𝑦𝑝

(𝜅)�
2𝑑

𝑘=1
                                         (14)                   

2- The cityblock or Manhattan distance is an approximation of the Euclidean 

distance. A typical formula for this distance measure is: 

      𝑑�𝑥𝑔, 𝑦𝑝� = � �𝑥𝑔
(𝜅) − 𝑦𝑝

(𝜅)�
𝑑

𝑘=1
                                                (15)                    

3- The cosine distance is based on computing the inner product between two 

vectors, which measures the similarity between them. The following is the 

cosine distance formula: 

 𝑑�𝑥𝑔,𝑦𝑝� =
𝑥𝑔𝑇.𝑦𝑝

�𝑥𝑔��𝑦𝑝�
                                                               (16)                    

 

The next section briefly describes the tested feature extraction methods and 

classifiers, namely DFT and wavelet decomposition for feature extraction, and 

polynomial, QDA, and SVM for classification.  

4.4 Other Feature Extraction Methods 

4.4.1 Discrete Fourier Transform (DFT) 

Discrete Fourier Transform (DFT) is a well-established technique for 

analyzing the frequency content of discrete time domain signals. A typical 

formulation to obtain the DFT coefficients Xk of a discrete signal xn= [x1 x2 … xN-1] 

is: 

𝑋𝑘 = �𝑥𝑛𝑒−𝑖2𝜋𝑘𝑛∕𝑁
𝑁−1

𝑛=0

                                                                                 (17)      

In this thesis, a small subset of the frequencies corresponding to the largest 

amplitudes of the DFT coefficients  |𝑋𝑘| is used as feature vectors for the different PD 

classes. Figure 34 demonstrates applying DFT on an AE sample signal.  



55 
 
 

 

 
Figure 34: DFT of an AE sample signal  

4.4.2 Wavelet Decomposition 

Wavelet decomposition is a very useful technique for analyzing non-stationary 

or transient signals whose frequency response varies with time. The method is usually 

used for denoising, signal compression, and feature extraction. It is based on signal 

windowing within a variable-sized region. In other words, it processes a time domain 

signal with consecutive high-pass and low-pass filters. The high-pass filters reveal the 

high frequency contents referred to as the detail coefficients, whereas low-pass filters 

reveal the low frequency contents referred as approximation coefficients. Figure 35 

illustrates three-level wavelet decomposition algorithm where S, H, L, ai, and di stand 

for signal, high-pass filter, low-pass filter, signal approximation at level i, and signal 

detail at level i, respectively.  

 
Figure 35: 3-levels wavelet decomposition [12] 
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The wavelet decomposition is usually represented by scales and time axes. The 

scales are related to frequencies by a relation that is governed mainly by the mother 

wavelet used. As in [12], the mother wavelet used is ‘db 15’ with five-level 

decomposition. Figure 36 demonstrates some of the decomposed coefficients of an 

AE sample x (n).  

 
Figure 36: Decomposed coefficients of an AE sample  

In this thesis, the extracted features from the decomposed coefficients are 

based on sub-band entropy, which is “a statistical measure of the energy dispersion 

among different spectral bands” [12]. The sub-band entropy used is log-energy 

described by the following formula:  

𝐸𝑖 = � log (𝑠𝑖2)
𝑖

                                                                                                  (18)                  

where si  is a decomposed coefficient.  
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4.5 Other Classifiers  

4.5.1 Polynomial Classifier 

The polynomial classifier can be considered as an approximation to the 

optimal Bayes classifier [32]. The classifier expands an incoming feature vector by 

adding all pairwise products of the individual elements. For example, a quadratic 

expansion for X containing 2-dimensional training feature vectors of different classes 

can be expressed as: 

𝑋 = �
𝑥11 𝑥12
𝑥21 𝑥22
𝑥31 𝑥32

�                                                                               (19)                                                                                         

Hence the augmented features are defined as  

Xaug = �
1 𝑥11 𝑥12 𝑥11𝑥12 𝑥112 𝑥122

1 𝑥21 𝑥22 𝑥21𝑥22 𝑥212 𝑥222

1 𝑥33 𝑥32 𝑥31𝑥32 𝑥312 𝑥322
�                                     (20)                   

Assuming each row of X corresponds to a different class, the target matrix can be 

defined as: 

𝐵 = �
1 0 0
0 1 0
0 0 1

�                                                                                (21)                   

The weight matrix W is achieved by multiplying the Pseudo-inverse of X aug 

by the target matrix. Each incoming test feature vector Y has to undergo the same 

expansion of the training data. The class label of the test vector is then determined 

using the obtained weight matrix as follows: 

𝐶 = 𝑌𝑎𝑢𝑔𝑇𝑊                                                                                     (22)                  

4.5.2 Quadratic Discriminant Analysis (QDA) 

Quadratic discriminant analysis (QDA) is a typical classifier used in 

supervised learning problems [40]. The method is based on modeling the different 

classes as Gaussian distributions. The Gaussian distribution parameters can be 

estimated using ML on the training data of the different classes. After that, the 

posterior distributions are used to estimate the class of any testing sample. QDA is 

used instead of linear discriminant analysis (LDA) when the there is no assumption 

that the different classes have the same covariance. A typical formula for the 

quadrature discriminant function can be described as: 
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𝑔𝑖 = 𝑥𝑡𝑊𝑥 + 𝑤𝑡𝑥 + 𝑤𝑖𝑜                                                                 (23)                  

where W, wt, and wi0 are derived from the Gaussian distributions parameters. As can 

be seen from the first term of Equation (23), the function is quadratic in terms of x. 

Therefore, the resulting decision boundaries are quadratic, such as ellipses and 

parabolloids.  

4.5.3 Support Vector Machine (SVM) 

Support Vector Machine (SVM) classifier, developed in 1995, aims to 

construct the best hyperplane that separates the data corresponding to two classes 

[41]. The best hyperplane constructed by SVM is the one with the biggest margin 

among the different classes. The margin represents the maximal width of the slab 

parallel to the hyperplane that does not contain any internal data points. The data 

points located on the boundary of the slab are referred to as support vectors. Figure 37 

demonstrates the previous descriptions where “-” and “+” represents data points from 

two different classes [42].    

 
Figure 37: SVM example [42] 

The concept of SVM is mainly intended for two-class problems; however, it 

can be expanded to multi-class problems by reducing it to several binary problems. A 

complete formulation for the algorithm and code can be retrieved from [42]. 
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Chapter 5: Results  

In this chapter, the pattern recognition techniques discussed in Chapter 4 are 

applied on the data collected from the experiments described in Chapter 3. As 

described earlier, each AE signal sample consists of 2500 raw points, which can be 

considered as a raw feature vector. In this work, different feature extraction 

techniques are applied directly on the AE signals like DFT, wavelet decomposition, 

and PCA. In addition, the different feature extraction techniques are combined with 

polynomial, QDA, SVM, and KNN classifiers. PCA extraction followed by KNN 

showed high and stable recognition rates in all studied cases. A similar effective 

combination of PCA extraction followed by a KNN classifier has been reported in 

[21] and [43]. The following results are based on the described methods.  

5.1 PD Type Classification  

The main contribution of this thesis work is to study the effects of some main 

practical AE measurement conditions on recognizing common PD types. In addition, 

the proposed pattern recognition system should be able to achieve high recognition 

rate, above 90%, as in the previously reviewed literature in [15] and [21].  

In this work, the basic classification problem includes all the four PD classes 

measured at the same conditions as depicted in Table 9.  
Table 9: Measurement conditions of the basic classification problem  

Condition         Comment  
PD location 4 

Sensor Location a 

Oil temperature  23 0C 

Training samples per class 70 

Testing samples per class  40 
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The data are processed using different combinations of feature extraction techniques 

and classifiers, which were discussed in Chapter 4. The recognition rates of the 

different combinations are summarized in percentages in Table 10.  
Table 10: Recognition rates of classifying the four PD types measured at the same conditions  

Classifier/Feature DFT Wavelet PCA 

Polynomial (quadratic) 57 87 81 

QDA 62 88 91 

SVM 61 79 87 

KNN with Euclidean distance 86 85 89 

KNN with cityblock distance 86 84 90 

KNN with cosine distance 62 69 91 

KNN with correlation distance 25 63 94 

 

As can be seen from Table 10, PCA resulted in higher recognition rates using 

the different classifiers. This implies that applying PCA resulted in a separable 

dimension suitable for classification. In this work, the dimension or the number of 

principle components used was tuned to achieve the highest recognition rate. Figure 

38 depicts the tuning process where the best number of principle components to 

classify all the four PD types is 9.  

 
Figure 38: Tuning number of PCA components for classifying all the four PD types 
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PCA followed by KNN with distance correlation achieved the highest recognition rate 

in Table 10 when using K=1. The value of K=1 with the different distance measures 

showed the highest results when PCA was followed by KNN as shown in Figure 39. 

  
Figure 39: Tuning K value of KNN for classifying all the four PD types using PCA features 

In addition, DFT followed by Euclidean KNN and wavelet decomposition 

followed by a QDA classifier showed good results, which indicates that the different 

PD types have different AE frequency patterns. The above recognition rates are 

obtained using confusion matrices. A confusion matrix or contingency table is a 

method for visualizing the performance of classification techniques to predict the 

correct classes. The diagonal elements represent correct predictions while off-

diagonal elements represent misclassification or confusion. The total recognition rate 

of the confusion matrix is the percentage of the correct predictions with respect to the 

overall number of testing samples. Table 11 demonstrates the confusion matrix when 

testing and training with the four PD types measured at the same conditions using 

PCA followed by KNN with distance correlation.  
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Table 11: Confusion matrix (testing and training with the four PD types measured at the same conditions using PCA followed by 
KNN with distance correlation)   

A
ct

ua
l P

D
 T

yp
e 

 

Sharp 38 0 0 2 

Surface 1 39 0 0 

Semi  0 2 37 1 

Void  0 2 2 35 

Sharp Surface Semi  Void     94 % 

Predicted PD Type  
 

5.2 Practical Measurement Conditions   

The next subsections examine the impact of some of the practical AE 

measurement conditions on the recognition rate. The simulated practical conditions as 

mentioned earlier are: 

a) Changing PD location 

b) Changing sensor location 

c) Changing oil temperature 

d) Having a barrier in the line-of-sight between the PD source and the 

AE sensor. 

To study the influence of PD location, the recognition system is trained with 

data at one location and then tested with data at different location. Likewise, the effect 

of oil temperature on the recognition rate is examined by training the recognition 

system at a certain oil temperature and then testing it with data at a higher 

temperature. Similarly, the impact of the barrier is inspected by training with data 

taken when no barrier is inserted and testing with data taken when the barrier is 

inserted. In addition, the effect of the sensor location on the recognition rate is 

investigated.  
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5.2.1 PD Type Recognition at Different PD Locations 

In subsection 5.1, the classification problem used training and testing data 

from the same PD location. In this subsection, the effect of training the system from 

one location and testing it with another is addressed. Therefore, the recognition 

systems were trained with data at PD location 4 and tested at PD location 9 keeping 

all other conditions the same; only three types of PD were investigated in this study: 

sharp, surface and void PD’s. The recognition rates of the different classification 

method combinations for this condition are summarized in Table 12. 
Table 12: Recognition rates when training with data from PD location 4 and testing from PD location 9 

Classifier/Feature DFT Wavelet PCA 

Polynomial (quadratic) 18 52 32 

QDA 21 50 53 

SVM 19 38 32 

KNN with Euclidean distance 13 65 39 

KNN with cityblock distance 11 64 35 

KNN with cosine distance 26 64 35 

KNN with correlation distance 38 60 43 

 

As can be seen from Table 12, the recognition rate dropped significantly when 

the system was tested with data from another location. AE signals form PD location 9 

had to undergo a long propagation path that caused them to suffer either additive or 

subtractive interferences. For example, such interferences are obvious when 

comparing a void discharge at PD location 9 as depicted in Figure 40 with another 

sample taken from PD location 4 as shown in Figure 41.  
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Figure 40: Void discharge AE sample from PD location 9 

 
Figure 41: Void discharge AE sample from PD location 4 

To make sure that data of PD location 9 was not the main reason for 

misclassification, the classifiers are trained and tested only from that location. Most 

combinations classify the three PD types effectively as shown in Table 13.  
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Table 13: Recognition rates when training and testing with data from PD location 9 

Classifier/Feature DFT Wavelet PCA 

Polynomial (quadratic) 69 90 89 

QDA 63 91 89 

SVM 74 78 92 

KNN with Euclidean distance 84 89 90 

KNN with cityblock distance 85 90 91 

KNN with cosine distance 74 90 92 

KNN with correlation distance 33 91 89 

 

Since different combinations can effectively classify data trained and tested from the 

same location, a comprehensive system can be made if it is trained equally from both 

PD locations 4 and 9. Table 14 indicates the improvement on the recognition rates 

when training and testing equally from both locations.  
Table 14: Recognition rates when training and testing with data equally from PD location 4 and 9  

Classifier/Feature DFT Wavelet PCA 

Polynomial (quadratic) 57 80 77 

QDA 48 84 83 

SVM 55 76 83 

KNN with Euclidean distance 76 75 90 

KNN with cityblock distance 76 76 89 

KNN with cosine distance 71 69 88 

KNN with correlation distance 42 73 88 

 

PCA results followed by KNN show the highest results in Table 14. Table 15 

illustrates the performance of PCA followed by KNN with distance correlation. 
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Table 15: Confusion matrix (training and testing with data equally from PD location 4 and 9 using PCA followed by KNN with 
distance correlation) 

A
ct

ua
l P

D
 T

yp
e 

 

Sharp 68 9 3 

Surface 7 72 1 

Void  7 1 72 

 Sharp Surface Void 88.33% 
Predicted PD Type  

 
 

Based on the presented results, it can be concluded that PD location has an impact on 

recognition rate. However, including training data from different PD locations can 

reduce the PD location effect.  

 5.2.2 PD Type Recognition at Different sensor locations  

In this subsection, the effect of changing the sensor location is examined. All 

PD types were measured under the same conditions as in Table 9 except for changing 

the sensor location. The sensor locations as depicted in Figure 15 are varied at three 

different locations: a, b, c, which are 15, 10, and 5 cm respectively above the tank 

base. Similar to the results presented in Table 10, the recognition rates with the sensor 

placed at location b shows high recognition rates as shown in Table 16. In addition, 

most of the recognition rates with the sensor placed at location c presented in Table 

17 are high, but a bit lower than the results at location b. This could be justified since 

location c is close to the edge near the tank base, which caused some PD signals from 

different types to suffer small interference caused by reflections. This can be 

illustrated by comparing a sample taken from a sensor fixed at location b and another 

sample suffering from interference taken from sensor location c for semi discharge as 

shown in Figure 42 and Figure 43 respectively.  
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Table 16: Recognition rates when AE sensor is placed at location b  

Classifier/Feature DFT Wavelet PCA 

Polynomial (quadratic) 54 93 90 

QDA 53 92 84 

SVM 73 90 94 

KNN with Euclidean distance 79 90 91 

KNN with cityblock distance 79 88 92 

KNN with cosine distance 71 84 93 

KNN with correlation distance 21 71 93 

 
Table 17: Recognition rates when AE sensor is placed at location c 

Classifier/Feature DFT Wavelet PCA 

Polynomial (quadratic) 60 78 84 

QDA 59 74 88 

SVM 63 61 71 

KNN with Euclidean distance 76 61 88 

KNN with cityblock distance 76 65 86 

KNN with cosine distance 70 63 91 

KNN with correlation distance 22 66 91 
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Figure 42: AE sample from semi-discharge at sensor location b 

 
Figure 43: AE sample from semi-discharge at sensor location c 

By comparing the recognition rate at the different sensor locations, it can be 

concluded that the recognition system is less affected by the sensor depth location. 

However, it would be recommended to keep the sensor away from any edges to avoid 

signal reflections and interferences.  
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5.2.3 PD Type Recognition at Different Oil Temperatures 

In this subsection, the effect of heating the oil insulation on PD’s from surface 

and void discharges is examined. AE waves in oil, as discussed earlier, have different 

propagation speeds at different oil temperatures, which have a direct relationship with 

the acoustic impedance (Z) of the oil. The measurement conditions for this 

investigation are shown in Table 18 . The first step in the analysis of the temperature 

effect is to test the recognition system when the system is tested and trained at the 

same oil temperature. The following recognition rates are presented when: 

1- Training and testing with data taken at 23 0C as illustrated in Table 19.  

2- Training and testing with data taken at 70 0C for void and surface 

discharges as shown in Table 20.  

 
Table 18: Measurement conditions for the oil temperature experiments 

Condition         Comment  
PD location 3 

Sensor Location b 

Oil temperature  23, 50, and 70 0C 

Training samples per class 135 

Testing samples per class  80 

 
Table 19: Recognition rates when testing and training at 23 0C 

Classifier/Feature DFT Wavelet PCA 

Polynomial (quadratic) 88 93 79 

QDA 88 94 88 

SVM 85 87 80 

KNN with Euclidean distance 85 88 91 

KNN with cityblock distance 85 88 90 

KNN with cosine distance 74 92 90 

KNN with correlation distance 50 88 91 
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Table 20: Recognition rates when testing and training at 70 0C 

Classifier/Feature DFT Wavelet PCA 

Polynomial (quadratic) 56 80 96 

QDA 63 84 99 

SVM 56 71 96 

KNN with Euclidean distance 84 70 98 

KNN with cityblock distance 85 64 98 

KNN with cosine distance 84 67 98 

KNN with correlation distance 50 68 98 

 

PCA combinations with the different classifiers effectively recognized the PD types 

when it was trained and tested at the same temperature. However, different data 

scatters can be noticed when comparing the first main three principle components of 

PCA for the data at 23 0C depicted in Figure 44 and the components for the data at 70 
0C presented in Figure 45.  

 

Figure 44: First three principle components scatter of data measured at 23 0C 
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Figure 45: First three principle components scatter of data measured at 70 0C 

Therefore, it would be expected to have a drop in the recognition rate if the system is 

trained from one temperature and tested at the other. Table 21 confirms this 

expectation when training at 23 0C and testing at 70 0C. 
Table 21: Recognition rates when training at 23 0C and at testing at 70 0C 

Classifier/Feature DFT Wavelet PCA 

Polynomial (quadratic) 44 58 73 

QDA 44 58 75 

SVM 42 41 76 

KNN with Euclidean distance 49 50 55 

KNN with cityblock distance 49 50 56 

KNN with cosine distance 51 46 58 

KNN with correlation distance 50 48 58 

 

As previously discussed, minimizing the recognition error can be achieved by 

training with data at the different temperatures. Table 22 presents enhancement on the 

recognition rates when training and testing equally at the different temperatures.  
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Table 22: Recognition rates when testing and training equally at both 23 0C and 70 0C 

Classifier/Feature DFT Wavelet PCA 

Polynomial (quadratic) 63 70 94 

QDA 76 78 93 

SVM 51 74 82 

KNN with Euclidean distance 79 70 93 

KNN with cityblock distance 79 69 92 

KNN with cosine distance 75 68 93 

KNN with correlation distance 50 72 93 

 

The confusion matrix of PCA followed by KNN with distance correlation in 

Table 22 is shown in Table 23. 

 
Table 23:  Confusion matrix (training and testing with equally from data at 23 0C and 70 0C using PCA followed by KNN with 

distance correlation) 

A
ct

ua
l P

D
 T

yp
e 

Surface 145 15 

Void 7 135 

Surface Void 93% 

Predicted PD Type 

 

A further analysis is to investigate whether it is necessary to include data samples 

measured at more temperatures in the training process. Therefore, a set of 150 testing 

samples from surface discharge at 50 0C are classified when training the classifiers at 

both 23 0C and 70 0C. Table 24 shows low recognition rates for such conditions. 

Hence, it would be recommended to include training data from different temperatures 

to have a robust AE recognition system.  
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Table 24: Recognition rates when training equally at 23 0C and 70 0C and testing at 50 0C 

Classifier/Feature DFT Wavelet PCA 

Polynomial (quadratic) 17 66 64 

QDA 13 57 69 

SVM 34 57 59 

KNN with Euclidean distance 46 65 67 

KNN with cityblock distance 46 64 69 

KNN with cosine distance 49 60 61 

KNN with correlation distance 50 56 60 

 

5.2.4 PD Type Recognition with Barrier Inclusion   

The core of the transformer can act as a barrier between the AE waves emitted 

from a PD source and the AE sensor. In this this subsection, the effect of inserting a 

barrier in the line of sight between the PD source and the AE sensor is examined. 

Only surface and void discharges have data “with” and “without” a barrier. All PD 

data are measured at conditions as in Table 25.  

 
Table 25: Measurement conditions for the barrier experiments 

Condition         Comment  
PD location 9 

Sensor Location a 

Oil temperature  23 0C 

Training samples per class 170 

Testing samples per class  100 

 

 

Table 26 presents the recognition rates when the barrier is inserted in the line-of-sight 

of the PD source. The results in Table 26 indicate high recognition rate, yet they are a 

bit lower when there is no barrier inserted as shown in Table 27. This could be 

justified by the fact that adding the barrier increases the acoustic field complexity 

inside the tank with extra wave reflections and diffractions, which caused the signals 

to lose some of their characteristics. The barrier effect might be better visualized by 
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comparing the scatter of the first three principle components of the data measured 

“with” and “without” a barrier presented in Figure 46 and Figure 47 respectively.   

 
Table 26: Recognition rates with barrier inserted in the line-of-site of the PD source  

Classifier/Feature DFT Wavelet PCA 

Polynomial (quadratic) 83 94 87 

QDA 84 93 87 

SVM 88 94 87 

KNN with Euclidean distance 84 88 89 

KNN with cityblock distance 82 87 89 

KNN with cosine distance 59 88 90 

KNN with correlation distance 51 89 90 

                                                                                                     
Table 27: Recognition rates without a barrier inserted in the line-of-site of the PD source 

Classifier/Feature DFT Wavelet PCA 

Polynomial (quadratic) 74 96 86 

QDA 72 96 97 

SVM 75 93 95 

KNN with Euclidean distance 85 95 94 

KNN with cityblock distance 85 95 92 

KNN with cosine distance 75 95 95 

KNN with correlation distance 50 94 94 
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Figure 46: First three principle components scatter of data measured without a barrier 

 
Figure 47: First three principle components scatter of data measured with a barrier 

The data scatter corresponding to the AE sample measured “without” a barrier shows 

more distinguished distribution compared to the scatter of the data corresponding to 

the AE sample measured “with” a barrier.  

A further analysis is carried out by training with data “without” a barrier and 

testing with data “with” a barrier. Table 28 shows significant drop in the recognition 

rate for this case.  
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Table 28: Recognition rates when training without a barrier and testing with barrier inserted in the line-of-site of the PD source 

Classifier/Feature DFT Wavelet PCA 

Polynomial (quadratic) 63 62 48 

QDA 65 59 63 

SVM 60 58 56 

KNN with Euclidean distance 68 63 51 

KNN with cityblock distance 67 62 50 

KNN with cosine distance 59 64 54 

KNN with correlation distance 50 76 54 

 

As previously discussed, minimizing the recognition error can be achieved by 

training from data taken “with” and “without” a barrier as shown in Table 29.    
Table 29: Recognition rates when training and testing equally from data with and without a barrier inserted in the line-of-site of 

the PD source 

Classifier/Feature DFT Wavelet PCA 

Polynomial (quadratic) 76 94 88 

QDA 78 92 87 

SVM 77 93 87 

KNN with Euclidean distance 84 90 89 

KNN with cityblock distance 83 90 89 

KNN with cosine distance 68 90 90 

KNN with correlation distance 50 92 90 

 

The confusion matrix of PCA followed by KNN with distance correlation in 

Table 29 is depicted in Table 30.   
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Table 30: Confusion matrix (training and testing with equally from data with and without a barrier inserted in the line-of-site of 
the PD source using PCA followed by KNN with distance correlation) 

A
ct

ua
l P

D
 T

yp
e 

Surface 185 15 

Void 24 176 

Surface Void 90% 

Predicted PD Type 

 

Based on the presented analysis, it would be recommended to train the system 

with data “with and without a barrier” to have a complete system. A multiple sensor 

system could help in minimizing the barrier effect because a PD source could be seen 

“with” or “without” a barrier with reference to the different locations of the installed 

sensors.       
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Chapter 6: Conclusions and Recommendations  

This thesis aimed not only to achieve high recognition rate for different 

simulated PD types using AE signals, but also to consider more AE practical 

measurement conditions. The measurement conditions include having aged insulation 

material (oil/paper), a tank size of 1×1×0.5 m dimensions, and a high surrounding 

noise level. In addition, other practical condition effects on the recognition rate are 

examined like changing of PD location, sensor location, oil temperature, and having a 

barrier in the line-of-sight between the PD source and the AE sensor. Four common 

types of PDs are considered for the classification problem; surface discharge, PD 

from a sharp point to ground plane, PD from semi parallel plates, and PD from an air 

void in the insulation.  

The results indicate the effectiveness of using PCA as a feature extractor in 

general with KNN as a classifier. In addition, the utilization of high frequency AE 

sensors, 100-450 kHz, proved to provide good detection for the different PD sources. 

Furthermore, the results show the effect of each simulated practical condition on the 

recognition rate as follows: 

1- Effect of PD location: PD location has an impact on the recognition rates 

since PD at different locations includes different amounts of interferences. 

However, by including training data from different PD locations, the 

recognition error is minimized.  

2- Effect of AE sensor location: the results indicate that the recognition rates 

are less affected by the sensor depth location. However, it is recommended 

to keep the sensor away from any edges to avoid signal reflections and 

interferences.     

3- Effect of oil temperature: a great impact can be noticed on the recognition 

rates when training the data at one temperature and testing it from another 

temperature. PD’s at higher temperatures tend to initiate at lower applied 

voltage levels. In addition, AE waves in oil have different propagation 
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speeds at different oil temperatures, which have a direct relationship with 

the acoustic impedance (Z) of the oil. Therefore, data taken at different 

temperatures must be considered in the training phase to achieve a high 

recognition rate.    

4- Effect of barrier insertion: a higher applied voltage was required to be able 

to detect AE signals. In addition, the barrier causes different data 

distribution compared to data collected when no barrier is inserted, which 

causes misclassification when training with data at one condition and 

testing with data at the other condition. However, by training with data 

taken “with” and “without” a barrier, high recognition rates are achieved.          

This work can be improved in the future by improving the capability of the 

high voltage laboratory with new equipment and higher voltage levels. Furthermore, 

more PD types and practical conditions can be added like having oil circulation. In 

addition, the oil tank can be upgraded by inserting real oil-paper insulated windings. 

Moreover, multiple AE sensors can be interfaced at different locations around the 

tank, which can minimize the PD location and barrier challenge. Finally, this research 

was based on receiving AE waves without knowing the shape of the original waves at 

the PD source. A future study can be conducted to simulate the propagation of an AE 

from the PD source until it reaches the sensor mounted on the tank’s wall under the 

different measurement conditions like PD location, oil temperature, and barrier 

insertion. With such simulations, the behavior of AE waves in a transformer 

environment can be investigated further, which could help in choosing more 

discriminant features.      
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