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Abstract

The aim of this thesis is twofold. First of all, in Chapters 1 and 2, we review the well-known
Adomian Decomposition Method (ADM) and Variational Iteration Method (VIM) for obtaining
exact and numerical solutions for ordinary differential equations, partial differential equations,
integral equations, integro-differential equations, delay differential equations, and algebraic
equations in addition to calculus of variations problems. These schemes yield highly accurate
solutions. However, local convergence is a main setback of such approaches. It means that the
accuracy deteriorates as the specified domain becomes larger, that is as we move away from the
initial conditions. Secondly, we present an alternative uniformly convergent iterative scheme that
applies to an extended class of linear and nonlinear third order boundary value problems that
arise in physical applications. The method is based on embedding Green's functions into well-
established fixed point iterations, including Picard's and Krasnoselskii-Mann's schemes. The
effectiveness of the proposed scheme is established by implementing it on several numerical
examples, including linear and nonlinear third order boundary value problems. The resulting
numerical solutions are compared with both the analytical and the numerical solutions that exist
in the literature. From the results, it is observed that the present method approximates the exact
solution very well and yields more accurate results than the ADM and the VIM. Finally, the
numerical results confirm the applicability and superiority of the introduced method for tackling

various nonlinear equations.
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CHAPTER 0: INTRODUCTION

The aim of this thesis is twofold. First, we survey two major iterative methods that appear
in the literature, which have been explored extensively for attaining analytical and/or numerical
solutions for various linear and nonlinear problems, particularly those that model applications in
the physical sciences. Secondly, we introduce a novel method based on manipulating Green’s

functions and some popular fixed point iterations schemes, such as Picard's and Mann's.

In the first Chapter, we will discuss and give a thorough review of the Adomian
Decomposition Method (ADM). The decomposition method was first introduced and developed
by George Adomian in [3, 5]. It has been receiving much attention from researchers in recent
years in the field of applied mathematics, in general, and in the area of initial and boundary value
problems in particular. The method efficiently handles a wide class of linear/nonlinear ordinary
and partial differential equations, linear and nonlinear integral equations, and integro-differential

equations. The ADM provides several significant advantages; it demonstrates fast convergence

of the solution. It also handles the problem in a direct way without using linearization,
perturbation, or any other restrictive assumptions that may change the physical behavior of the

model under study. Furthermore, it provides an efficient numerical solution in the form of an
infinite series that is obtained iteratively and usually converges to the exact solution using
Adomian polynomials. The method is well addressed and used by many researchers in the
literature [1-2, 4, 6-19].

In this Chapter, we apply the decomposition method on some problems of the
linear/nonlinear ordinary and partial differential equations, algebraic equations, delay differential
equations, integral equations, and integro-differential equations. The main advantage of the
method is that it is capable of greatly reducing the size of computational work without affecting
the accuracy of the numerical solutions. Also, it yields highly accurate solutions close to the
initial conditions. However, the limitation of the ADM is that it converges locally, which means
that as we move away from the left endpoints, the approximations deteriorate.

In the second Chapter, we will comprehensively review another well-known method,
namely, the Variational Iteration Method (VIM). The VIM was first established by Ji-Huan He

[29-32], and later used by several authors to solve various problems [20-28]. The technique is of

11



great interest in the applied sciences. It was and still is utilized by mathematicians to handle a
wide variety of applications that arise in engineering and sciences, such as homogeneous and
inhomogeneous linear problems, as well as those that are nonlinear. Essentially, the VIM
accurately computes the solutions in a series form that rapidly converges to the exact solution in
an iterative fashion with specific features for each scheme. It yields several successive
approximations by using the iteration of the correction functional. The VIM is a powerful and
efficient method that results in approximations that are highly accurate, and also gives closed
form solutions if they exist. This powerful technique handles both linear and nonlinear problems

in a unified manner. Therefore, the VIM reduces the volume of calculations without requiring the
use of Adomian polynomials, and hence the computations are direct and straightforward.

In this Chapter, we apply the variational iteration method on some problems, including

linear/nonlinear ordinary and partial differential equations, calculus of variations problems,
integral differential equations, and integro-differential equations. The advantages of the method

are that it gives highly accurate numerical solutions and reduces the size of computational work.

It is important to mention that a major shortcoming of the variational iteration method is that the
error slowly deteriorates as we increase the values of x over the entire domain; hence, the

convergence is local and not uniform.

In the third Chapter, the core part of the thesis begins. In this chapter, a new approach is
introduced for the solution of a wide class of third order linear and nonlinear boundary value
problems. The underlying strategy of the approach is based on manipulating Green's functions
and fixed point iterations, such as Picard's and Krasnoselskii-Mann's schemes using a tailored
and appropriately selected integral operator. The reliability and accuracy of the strategy are
verified by implementing it on a number of test examples. The resulting numerical solutions are
compared with both the analytical and the numerical solutions that are available in the literature.
The proposed method provides an efficient computational tool for treating the third order linear
and nonlinear boundary value problems.

We start the Chapter with a concise survey of the properties of the Green's functions
essential to implement the method. Also, we apply two well-known fixed point iterations,
namely, Picard's and Krasnoselskii-Mann's schemes, on a carefully selected integral operator.

Finally, we introduce the method, provide related proofs, and apply it on several problems. The

12



numerical results are illustrated and depicted through a number of tables and graphs. The

comparisons with other numerical methods and with the available exact solutions are included.

In the final Chapter, we will summarize this dissertation, as well as discuss directions for

future research.
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CHAPTER 1: ADMIAN DECOMPOSITION METHOD
1.1 Method Description

The Adomian Decomposition Method (ADM) is applied for solving a wide class of linear
and nonlinear ordinary differential equations, partial differential equations, algebraic equations,
difference equations, integral equations and integro-differential equations as well.

Consider the following equation:
Lu+ Nu+Ru=g, (1.2

where L is a linear operator, N represents a nonlinear operator and R is the remaining linear part.
By defining the inverse operator of L as L™, assuming that it exists, we get

u=L19g—LNu—L1Ru. (1.2)

The Adomian Decomposition Method assumes that the unknown function u can be expressed by
an infinite series of the form

4 Z o (1.3)

n=0

or equivalently

uU=ug+u +u;+-, (14)

where the components u,, will be determined recursively. Moreover, the method defines the
nonlinear term by the Adomian polynomials.

More precisely, the ADM assumes that the nonlinear operator N (u) can be decomposed by an
infinite series of polynomials given by

Nw = ) A,
W=, w5

where A,, are the Adomian’s polynomials defined as 4,, = A, (ug,uy, Uy, ..., Uy). Substituting
(1.3) and (1.4) into equation (1.2) and using the fact that R is a linear operator we obtain

i u, =L 1g—L"1 (ZR(u@) — L1 (Z A, (ug , uq, Uy, ...,un)>, (16)

n=0

or equivalently

14



uo + ul + uz + = L_lg - L_l (z R(un)> - L_l(AO +A1 + "')
n=0

(1.7)
Therefore the formal recurrence algorithm could be defined by
uy = L1'g,
sy = —L 7 (R(11n)) = L™ (An (o, s, -, 1)), (18)
or equivalently,
uy =L"g,
u = _L_I(R(uo)) - L_l(Ao(uo)),
up = =L7(R(wy)) — L7 (A1 (uo, uy)),
(1.9)

Consider the nonlinear function f(u). Then, the infinite series generated by applying the
Taylor’s series expansion of f about the initial functionwu, is given by

F@) = f(ug) + £ (o) (u = g) + 3 £ (o) (w = wg)? + -+ (1.10)

By substituting (1.4) into equation (1.10), we have:

f) = f(ug) + f'up)(uy +uy+....) + %f”(uo)(u1 F Uyt )+ e (1.12)

Now, we expand equation (1.11). To obtain the Adomian polynomials, we need first to reorder
and rearrange the terms. Indeed, one needs to determine the order of each term in (1.11) which
actually depends on both the subscripts and the exponents of the u,’s. For instance, u, is of
order 1; u, 2 is of order 2; u,3 is of order 6; and so on. In general, u,,* is of order kn. In case a
particular term involves the multiplication of w,,'s, its order is determined by the sum of the
terms of the u,,'s in each term. For example, u,3u,? is of order 8 since (3)(2) + (2)(1) = 8.

As a result, rearranging the terms in the expansion (1.11) according to the order, we have

15



1
f) = f(ug) + f (ueduy + ' (uglu, + zf”(uoﬁh2 + f'(up)us
2 r 1 1224 3 ! 1 124 2
+ Ef (ug)uqu, + gf (up)us® + f'(ugluy + Ef (up)u,
2 3 1
+ ﬁf”(uo)uﬂ% + af”’(uo)%zuz + af””(uo)ufL + o (1.12)

The Adomian polynomials are constructed in a certain way so that the polynomial A; consists of
all terms in the expansion (1.12) of order 1, A, consists of all terms of order 2, and so on. In
general, A,, consists of all terms of order n. Therefore, the first nine terms of Adomian
polynomials are listed as follows:

Ay = f(uo),

Ay = [ (up)uy,

Az = f'(uolu, + %f”(uoﬁhza

A3 = ' (uo)us + = " (uo)ugu + 5 /" (uodws?,

Ay = f'(updu, + %f”(uo)(zuﬂ% +u?) + %f’”(uo)%zuz + if””(uo)uf},

1 12 1 nr
As = f'(up)us + Ef (uo) (2usuy + 2uzuz) + ;f (uo)(3u12u3 + 3711“22)

4 1
+ Ef(@(uo)lhguz + Ef(s)(uo)uls,

1 1
Ag = f'(ug)ug + Ef”(uo)( 2ujus + 2ujuy, + u32) + ?fm(uo)(:gulzuz; + u23 + 6u U, u3)

1 5 1
+ Ef(4)(uo)(4u13u3 + 6u12u22) + Ef(s)(uo)u14u2 + af(6)(uo)u16,

1 144
Ay = f'(ug)u; + Ef (uo) (2uqug + 2uyus + 2usuy)
2
+ yf’”(uo)(Sulzus + 3uguz? + 3uzuy? + 6u uUy,)
!
+ Ef(“) () (4uq3uy + 12u;2uyus + 4ugu,?)

1 1 1
+ Ef(S)(uO)(5u14u3 + 10u13u22) + Ef(@(uo)lhsuz + ﬁfm(uo)uf,

1
Ag = f'(up)ug + Ef”(uo)( 2ujuy + 2uyug + 2uzus + u42)

16



+%f”,(u0)(3u12u6 + 3uy%uy + 3uyug? + 6ug U Us + 6U UsU,)
+ %f(4)(u0)(4u13u5 + 12u 2uyuy, + 12uuy%us + 61, %us?
+ux*) + %f(s)(uo)(5u14u4 + 20U, *uyus + 10u,%u,?)
+ éf@(uo)(u15u3 + 15u, *u,?) + %fﬁ) (o) s 1, (1.13)
2 FO g

The Adomian polynomial A,, was first introduced by Adomian himself; it was defined via the
general formula

1 dn c

An(uo Uy, o Up) = ——— N (Z uk/lk>] , n=0,12,..

nldA e o (1.14)

To find the A4,,’s by Adomian general formula, these polynomials will be computed as follows:
AO = N(uO)l

d
Ay = aN(uo + w3 =0 = N(up)uy,

1d

14} ! 1 1",
2 = ;a((’h + 2u A)N"(ug + u1/1))|/1=0 = N'(up)u, + ZN (uo)ulz,

(1.15)

In the subsequent sections, the ADM method and a modified version of it will be used for
solving several interesting linear and nonlinear equations which are of physical importance.

1.2 Convergence Analysis

It is clear from (1.14) that the A4,,'s are indeed polynomials and hence the u,,, term is
obtained from (1.8). Cherruault [1] has given the first proof of convergence of the Adomian
Decomposition Method and he used fixed point theorems for abstract functional equations. The
order of convergence of the ADM was discussed by Babolian and Biazar [4].

Consider the general functional equation

u—N@) =f, for u € H. (1.16)
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where H is a Hilbert space and N is a nonlinear operator where N: HH — H and f is a given

function in H. The decomposition method assumes a series solution for u given by

00
w= Z un,
n=0

while the nonlinear term N (u) as the sum of the series

N(uw) = i An,
n=0

where the A,,’s are the Adomian polynomials in u, ..., u,, obtained by

N (Z ukak>] , n=01.2,..
A=0

k=0

1 4d"

An(uo,ul, ...,un) = EW

Substituting equations (1.17) and (1.18) into the functional equation (1.16) gives

S Saer

n=0 n=0

The method consists of the following scheme:

{u(,:f,

Upy1 = An(uO,ul, ...,un).

(1.17)

(1.18)

(1.19)

(1.20)

(1.21)

The Adomian technique is equivalent to determining the sequence S,, = u; +u, + -+ u, by

using the iterative scheme defined by

So = O,
Sn+1 = Nn(uo + Sn):

where Ny, (uy + Sp) = Y40 A; .

If there exist limits
S=lim S,, N = lim N,,

n—oo n—oo

(1.22)

(1.23)

in a Hilbert space H, then S solves the functional equation S = N(uy+S) in H. The
convergence of the Adomian decomposition method has been proved in [1-2], under the

following two conditions:

INIl<1,  |INy =Nl =&, =0 as n— oo

(1.24)

In the first condition, the nonlinear function N(u) has to be a contraction, while the second

condition implies the convergence of the series Y7, Ay,.
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Theorem 1.1 Let N be a nonlinear operator from a Hilbert space H where: H — H and u be
the exact solution of (1.16). The decomposition series Y..—,u, Of u converges to u when
Fa <1 (lupsll < alluyll, Vn € N U0}

Proof:
We have the sequence
Sp=u +u; +--+uy, (1.24)

We need to show that this sequence is a Cauchy sequence in the Hilbert space H. To do that let
ISni1 = Sl = Nl < ellugll < @llup 4|l < - < @™ Hlugll. (1.25)

Since
”Sm - Sn” = ”(Sm - Sm—l) + (Sm—l - Sm—z) + et (Sn+1 - Sn)”
< ”Sm - m—l” + ”Sm—l - Sm—z” + -t “Sn+1 - Sn”

< a™lull + @™ Hlugll + -+ + a™lul|

n+1
< (@ + a™? + )|yl = T2 llugll, for n,m € N,m > n.
(1.26)
Thus, S,,, converges to S,, and
lim ||S,, — Syl = 0. (1.27)
n,m—oo
From (1.27), the sequence {S, }n—, is a Cauchy sequence in the Hilbert space H.
Hence,
lim S, =S, for S € Hi, (1.28)

n—-oo

where S = Y7o Up.

Solving Eq. (1.16) is the same as solving the functional N(u, + S); by assuming that N is a
continuous operator we get

N(ug+S) =N (T{ggo(uo +50) = lim N(ug +5,.) = lim S,y = 5. (1.29)
n—->0o

Therefore, the solution of Equation (1.16) is S.
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1.3 Algebraic Equations

In this section, we will apply the ADM for obtaining solution of algebraic equations.
First, we will show an alternate proof of the quadratic formula using an iterative decomposition
approach.

Consider the quadratic equation

ax? + bx +c = 0. (1.30)

Upon completing the square on (1.30) leads to the widely known quadratic formula,

—b ++Vb? — 4ac
X = )
2a (1.31)

where a, b, and c are real numbers with a # 0. Next we give another proof.

Proof:
First, we rewrite the quadratic equation as

c_a., (1.32)

The Adomian decomposition method suggests the solution of (1.30) to be decomposed as an
infinite series of the form

[ee]
x=x0+x1+x2+"'=an.

~ (1.33)
More specifically, we can write the quadratic equation in the operator form
Lu+ Nu=g, (1.34)
where Nx = ax?, Lx = bxand g = —c.
Then we have
bx = —c — ax?, (1.35)
or equivalently
Lu=—-g— Nu. (1.36)
Now, to solve the quadratic equation (1.31), we first rewrite it by dividing both sides of the
equation by b, so we have the equation (1.32). Let a = —%, B = —%, then (1.37) becomes
x = a+ x> (1.37)
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The solution x of (1.32) is decomposed by the above infinite series of the components, while the
nonlinear term x? is expressed in terms of an infinite series of polynomials

o (1.38)
xz =AO +A1+A2+=2An,
n=0

where the 4,,'s are the Adomian polynomials. Substituting (1.33) and (1.38) into (1.37) gives

15
3><
I
S
_|_
=
g
>

(1.39)

n=0 n=0

The various components x,, of the solution x can be easily determined by using the recursive
relation
xo =aQ,

Xpi1 = fA, n =0. (1.40)

Since Nx = x?2, therefore by using (1.13), the first few Adomian polynomials A4, are given by

o 2
A = Xo%,

Al = 2x0x1,
AZ = x12 + 2x0x2,

A3 = lexZ + ZXOX3,
A4 = xzz + le.X3 + 2x0x4,

Ag = 2x0x5 + 2x1X4 + 2X,X3,
Ag = x3% + 2x9x¢ + 2x1X5 + 2X,Xy,
Ay = 2x0X7 + 2X1Xg + 2X3X5 + 2X3Xy,
Ag = x4% + 2x9xg + 2x1X7 + 2X,Xg + 2X3Xs,
(1.41)
Therefore the x;'s are given by

Xo = Q,

x1 = BAg = B(x0?),

x; = BA; = B(2x0xy),

X3 = pA; = ,B(x12 + 2x0%3),
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x4 = Az = f(2x0x4 + 2X1X3),

(1.42)
Solving the equations (1.42) iteratively we get,
X = a,
x; = pxg = pa’,
x; = B(2x9xy) = pl2a(a?p)] = 2p%a®,
x3 = B(x1?2 + 2x9x,) = B[B%a* + 2a(2B%a®)] = 5B%a*,
x4 = B(2xox4 + 2x12x,) = B[2a(53a*) + 2a?B(2B%a3)] = 14p*a®, (L43)

Hence, the infinite series solution of the quadratic equation is given by:
X =Xxg+x1+x,+ ",

=a+ pa®+ 2B%a3 + 5p%a* + 14p%*a° + -,

B % [2aB +2(aB)? + 4(aB)® + 10(aB)* + 28(ap)® + -],

_ % [1—1+2aB + 2(af)? + 4(aB)?® + 10(ap)* + 28(ap) + -],
11
= E — E[l _ 26!,8 - 2(61’8)2 _ 4(61’8)3 _ 10(61,8)4 _ 28(6¥ﬁ)5 _ ] (144)

Notice that the last expansion is almost identical to the Maclaurin series expansion of the
following root function:

n

- 2
V1—4x = 1—2x—z 1.3.5.. (2n—3)gx”

n=2

=1—2x — 2x2 — 4x3 — 10x* — 285 — . (1.45)
Thus the latter solution can be rewritten as
1 1 (1.46)
X —E—E 1-4(&5)

The Maclaurin expansion in (1.46) converges for

—c—a; 4lac| (1.47)
l4x| = |4aB| = 4 |77 =—7 <1,
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which implies that the scheme converges if
b? — 4|ac| > 0. (1.48)

Substituting the values of a = —%, B = —%, given in equation (1.32), then the solution in
(1.46) becomes:

1 1 T )_—b+b L 4ac
XT287 28 P =t b2
-b b
=—+-—-V1—4ac. (1.49)
2a  2alb|

Two cases follow from the solution given in equation (1.49).

Case 1: If b > 0 then the solution in (1.49) becomes

—b +Vb?% — 4ac (1.50)
x = )
2a

Therefore, the technique converges to the only one root, and the second solution can be
approximated by factoring the quadratic equation. The solution in (1.50) implies that:

e If b > 0&a > 0 then the method converges to the smaller solution.
e Ifb > 0&a < 0 then the method converges to the larger solution.

Case 2: If b < 0 then the solution in (1.49) becomes

—b —Vb? — 4ac (1.51)
X = .
2a

As for the second solution, again it can be approximated by factoring. The solution in (1.51)
implies that:

e |Ifb < 0&a > 0 then the method converges to the larger solution.
e If b < 0&a < 0 then the method converges to the smaller solution.

Next, we use the ADM to solve a number of nonlinear algebraic equations.

Example 1.1 Consider the equation

x2+4x+3=0, (1.52)

whose solutions are x = —1 and x = —3. Write it in the form
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4x = —3 — x?, (1.53)
or
301, (1.54)

Apply the ADM: decompose x as an infinite series while express the nonlinear term x?2 as an
infinite series of Adomian polynomials. Hence we have

+x +x, + 3 1§:A
Xog T X1 T X2 =72 2 n
n=0
3.1, 1, (1.55)
T4 470 47t

3
xO = _Z,
1 1
X1 = _ZAO = —Z(xoz),
1
X2 = _ZA1 = —Z(zxoxﬂ,
1 1
x3 = _ZAZ = _Z(xlz + ZxOxz),
1 1
x4_ = _ZA3 = _Z(ZxOx4_ + 2x1x2),
(1.56)
Thus, upon solving these last equations, the scheme (1.56) yields the following values:
xo = _0.75,
x; = —0.140625,
x, = —0.052734,
x3 = —0.024719,
x, = —0.012977,
(1.57)

xs = —0.007300.
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n- Term Approximation Numerical Solutions Absolute Errors
YRog X
n=1 —0.750000 0.250
n=2 —0.890625 0.109
n=3 —0.943359 0.057
n=4 —0.968078 0.032
n=>5 —0.981055 0.019
n==6 —0.988355 0.012

Table 1.1 Comparison of the n-th term approximation of ADM to the exact solution x of
Example 1.1.

In Table 1.1 we compute the absolute error and it is obvious that the ADM converges fast using
only few terms of the iterative scheme. Note that the scheme is approaching the negative root
which is —1.

Example 1.2 Consider the equation
—x?2+5x+6=0, (1.58)

whose solutions are x = —1 and x = 6. Write it in the form

5x = —6 + x?,
6 N 1, (1.59)
X = 5 5x .
Applying the decomposition approach we have
V. P i A
Xo T X1 T X3 ~ Tt Tg n
n=0
6 1 1 (1.60)
Xo +x1 +x2 + = —§+§A0 +§A1 + .-

Matching both sides, as was done in the previous example, the latter scheme yields the following
first five values of the iterates

x, = —1.2000,
x, = 0.2880,
x, = —0.1382,
x; = 0.0829,
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x, = —0.0557,

xs = 0.06790. (1.61)
n- Term Approximation | Numerical Solutions | Absolute Errors

ko0 X
n=1 —1.200 0.200
n=2 —0.912 0.088

= —1.050 0.050
n=4 —-0.967 0.032
n=>5 —1.023 0.023
n==~6 —0.983 0.017

Table 1.2 Comparison of the n-th term approximation of ADM to the exact solution x of
Example 1.2.

From the numerical results in Table 1.2, it is clear the scheme yields numerical values that
converge pretty fast to the smaller root, which is x = —1.

Example 1.3 Consider the fifth order algebraic equation
x°—3x*+2x3 +5x2 —6x—4 =0, (1.62)

whose solutions are x = 1.76518195942719, x = —1.09890396313245 and x =
—0.528896048966185. Write it in the form

6x = x> — 3x* + 2x3 4+ 5x% — 4,

45,245 3,154 (1.63)
X = 6 6x 6X 6x 6X

Applying the decomposition approach we have

Xo+x1+x, + ———+ ZA +6ZB ——ZC +6ZD

4 5 2 3 1
x0+x1+x2+"':_€+6A0+6B0 6Co+€D0+"'. (164)

where A,,, B, C,and D,, are Adomian polynomials. Matching both sides, as was done in the
previous example, the latter scheme yields the following first four values of the iterates

4
Xo = e —0.6666666667,

5 2 3
X1 =—x§+—=x5 ——x5 +

1
Z x> =
c c G xg = 0.1508916324,

6
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5 2 3 5 4
x2 = _xoxl + xoxl - Zxoxl + gxoxl = 0.0136609708,

3
5 5 5
Xg = ZXoXp + 2 +Zx8% + S xixf — 2x3%,—3x§x] + xfx, + xoxf
= —0.03656980055.

Consequently, the solution in a series form is given by

X = Xy + X1 + X5 + X3 + .= _05386838640

Example 1.4 Consider the system of nonlinear algebraic equations

{xf—10x1+x22+8=0
x1x2 +x, —10x, +8=0"

with exact solution

X" = (x,x)" = (LD~

By rewriting the system (1.67)

( (o] [ee]
le,n ~08+0.1 ZAM +0.1 ZAM
n=0 n=
z xz’n = 0.8 + 0.1 z xl,n <Z 27’1) + O 1 (Z xl’n
n=0

n=0 0 0

Applying the decomposition approach we have

{ x; = 0.8+ 0.1x{ + 0.1x3
Xy, = 0.8+ 0.1x;x2 + 0.1x;

The latter scheme yields the following first seven values of the iterates
xl = xl'o + xl'l + xl'z + x1'3 + x1'4 + x1’5 + x1’6 = 0.997853,
Xo = X0t Xpq tXop tXo3+ X040+ Xp5 + X6 =0.997562.

The absolute errors are
AE1 = |xf —0.997853 | = 2.14 x 1073,

AE2 = |x5 — 0.997562 | = 2.43 x 1073,
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To our knowledge, no research papers exist in the literature that examines the
approximation of complex roots rather than real ones using ADM. However, through a number
of experiments, we found out that if the initial term x, is appropriately chosen as a complex
number close to the root, then the ADM might converge to a complex root.

1.4 Ordinary Differential Equations

In this section, we will employ the Adomian Decomposition Method to linear and
nonlinear ordinary differential equations (ODEs). These will include initial value problems
(IVPs) as well as boundary value problems (BVPs). We will implement the method on both will
first-order and higher order ODEs.

1.4.1 Linear ODEs

To apply the Adomian Decomposition Method for solving linear ordinary differential
equations, we consider the following general equation written in operator form:

L(uw) + Ru = g(x), (1.73)

where the linear differential operator L may be considered as the highest order derivative in the
equation, R is the remainder of the differential operator, and g(x) is an inhomogeneous term. If
L is a first order operator defined by
_d (1.74)
=

Then, assuming that L is invertible, then the inverse operator L1 is given by

x 1.75
0 = [ Qax 79
0
so that
L™ 'Lu = u(x) — u(0). (1.76)
However, if L is a second order differential operator given by
_a (L77)
~dx?
then the inverse operator L~! is a two-fold integration operator given by
X X
L) = f f () dxdx,
0 -0 (1.78)
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Hence, we have
L Lu = u(x) — u(0) — xu’(0). (1.79)
In a parallel manner, if L is a third order differential operator, we can easily show that

L™ 'Lu = u(x) — u(0) — xu’'(0) — %xZu”(o)_ (1.80)

For higher order ODEs it the latter equation can be generalized in a similar fashion.

Now, to implement the ADM, we proceed by first applying L™ to both sides of (1.73) and after
rearranging the terms we get

u(x) = &y + L 1g(x) — L Ru, (1.81)

where, as explained above, we have

( d
u(0), L=—
d2
u(0) + xu'(0), L=—
_ dx
®o =) 1 d?
! S —
u(0) + xu'(0) + XU (0), L= R
1 1 d*
! 20,0 a3, — (182)
Lu(0)+xu (O)+2!x u (0)+3!x u'""(0), L_dx4

and so on. The Adomian decomposition method admits the decomposition of u in the form of an
infinite series of components

u(x) = nz::‘)un, (183)

where u,(x), n =0 are the components of u(x) that will be determined recursively.
Substituting (1.82) into (1.81) gives

Z U, =Py + L 1g(x) — LR (Z un>. (154)

n=0 n=0

The various components u,, of the solution u can be easily determined by using the recursive
relation

uy = ® + L 1g(x),

Upsy = —L7'Ru, , n = 0. (1.85)
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It is worth mentioning that the determination of the u, term depends on the specified initial
conditions u(0),u’(0),u'' (0), ....

1.4.2 Nonlinear ODEs

Consider the following nonlinear ordinary differential equation written in operator form:

Lu+ Ru+ N(u) = g(x), (1.86)

where the linear operator L is the highest order derivative, R is the remainder of the differential
operator, N (u) is the nonlinear terms and g(x) expresses an inhomogeneous term. Without loss
of generality, let L be the first order differential operator

d (1.87)

L=—,
dx

then, assuming that L is invertible, then its inverse L™ is given by

() = f O (188)
0
Therefore,
L™ 'Lu = u(x) — u(0). (1.89)
On the other hand, if L is a second derivative operator given by
B d_2 (1.90)
dx?
then the inverse operator L1 is given by
L) = fxfx(.)dxdx, (1.99)
0 Y0
which means that
L™ Lu = u(x) — u(0) — xu'(0). (1.92)
While, if L is a third order differential operator, we can show that
x? (1.93)

L Lu = u(x) — u(0) — xu'(0) — ?u”(O),

and so forth. In general, if L is a differential operator of order n + 1, we can easily show that
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xz 3 X
L7 Lu = u(x) = u(0) — xu'(0) = 7 u"(0) = Zyu" (0) — -+ = —ul™(0).
' ' ' (1.94)
Applying L™ to both sides of (1.75) gives
u=®,— L Ru—LIN)+ L 1g(x), (1.95)
where
(0) L
e L= dx
2
u(0) + xu'(0), if L= =
xz d3
Dy = u(0)+xu’(0)+§u”(0), if L =——
! xz n X3 nr . d4
u(0) +xu'(0) + - u"(0) + 5 u(0), ifl=—7
xZ x.3 xn ' dn+1
(0) + 30 (0) + 7w (0) + 5w (0) + - 4+ —u™(©)  if L= (1.96)

The decomposition technique consists of decomposing the solution into a sum of an infinite
number of terms defined by the decomposition series

u= Z Uy,
~ (1.97)

while the nonlinear term N (u) is to be expressed by an infinite series of polynomials

Nw =) 4,
w ; (1.98)

where the 4,,s are the Adomian polynomials. Substituting (1.97) and (1.98) into (1.95) yields

[ee)

Zun =d,— LR (i un> - L1 (Z An> + L7 1g(x). (1.99)

n=0 n=0
To construct the iterative scheme, we match both sides so that the u, term is expressed in terms

of the previously determined terms. More specifically, the Adomian decomposition method gives
the following iterative algorithm:
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uO = CDO + L_lg(x)!
Uny1 = —L7'Ruy, — L7'4,, n=0. (1.100)

This in turn gives
uy = Py + L1g(x),

ul = _L_lRuO - L_le,
uz = _L_lRul - L_lAl,
U,3 s _L_lRuZ - L_1A2,

(1.101)

In (1.13), we calculated the first few Adomian polynomials for general form of nonlinearity that
may arise in any ordinary or partial differential equation.

1.4.3 Initial Value Problems

In this section, we apply the ADM to initial value problems for both linear and nonlinear
ordinary differential equations.

In the following, we consider some examples for the illustration of the technique and to conform
its applicability and efficiency.

Example 1.5 Consider the second order linear ordinary differential equation
u’' —u=1, (1.102)
subject to the initial conditions
u(0) =0, u'(0) =1. (1.103)

Solution:
In operator form, Eq. (1.102) can be written as

Lu=1+u, u(0) =0, u'(0) =1, (1.104)

where L is the second order differential operator Lu = u’. It is clear that L™ is invertible and is

given by
0= [ Odede (1.105)

Applying L~ to both sides of (1.104) and using the initial conditions into (1.96) gives
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2

x
u=u0)+xu'(0)+L "1 =x+ - + Lt

Upon using the decomposition series for the solution u(x), results

o

Zun=x+7+L‘1 Zun :
n=0

n=0
Upon matching both sides, this leads to the recursive relation

xZ

U =x+—,
0 2

Unt1 = L—l (un)' n = 0.
The first few components are thus determined as follows:

2

X
u0==x-+75,
x3  x*
Tt
x>  x®
Uz =gt

Consequently, the solution in a series form is given by
2 x3 x4 xS x6

u(x)::x-+7?-F7§-F§Z-F§T4—€T+~~y

and clearly in a closed form is given by

ulx) =e* -1,

which the exact solution of the problem. This is a case where the ADM converges to the

solution.

33

(1.106)

(1.107)

(1.108)

(1.109)

(1.110)

(1.111)



x ADOMIAN EXACT ABSOLUTE ERROR
0.0 0.0 0.0 0.0
0.1 0.1051709181 0.105170918 1.0 x 10710
0.2 0.2214027556 0.221402758 2.4 %x107°
0.3 0.3498587625 0.349858808 4.6 x 1078
0.4 0.4918243556 0.491824698 3.4 %1077
0.5 0.6487196181 0.648721271 1.7 x 107°
0.6 0.8221128000 0.822118800 6.0 X 107°
0.7 1.0137348180 1.013752707 4.6 X 107°
0.8 1.2254947560 1.225540928 1.8 x 107°
0.9 1.4594963620 1.459603111 1.1x107*
1.0 1.7180555560 1.718281828 23x107*

Table 1.3 Comparison between the (ADM) solution and the exact solutions using three

iterations.

1404

1201 | — EXACT

—— ADOMIAN

80
60+

401

Figure 1.1 Comparison between the exact solution y = e* — 1 and the ADM approximation
using three iterations.

It must be stated here that (ADM) will only work for this particular test problem if
0 < x < 1 and that the efficiency of the approach can be enhanced by computing further terms
of the series. Comparison between the numerical solution using ADM and the exact solution are
depicted in Figure 1.1 and Table 1.3 Note form the figure that the scheme yields highly accurate
solution close to 0 but as we move away from this left end point the approximation deteriorates.
This is a deficiency of the ADM as it gives highly accurate local approximation. In later, section,
we will suggest domain decomposition strategy in order to improve the approximation as we
move away from 0.
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Example 1.6 Consider the first order nonlinear ordinary differential equation
u +u?=1, (1.112)

subject to the initial condition
u(0) = 0. (1.113)

Solution:
Applying L1 we obtain to both sides of the equation and using the initial conditions into (1.96)
gives

u=u(0)+L M —-LTut=-L"1u?+x. (1.114)

Using the decomposition series for wu and the Adomian polynomial representation for the
nonlinear term u?, gives

Zun =L ZAn+x,
L (1.115)

n=0

where the 4,'s are the Adomian polynomials for u? as shown above. Matching both sides of the
equation results in the following ADM iterative scheme:

Uy = X,
Uy = —L71(Ay). (1.116)
This in turn gives
Uy = X,
x3
u; = —L71(A4y) = =L (u?) = 3
2x5
uZ = _L_I(Al) = _L_l( 2u0u1) = -,
15
17x7
— _7-1 — _g-1 2y -
uz = —L7(4,) L™ Quou, +uy”) 315"
(1.117)
The solution in a series form is thus given by
) x3 N 2x5  17x7 N
ux)=x——+—- S
3 15 315 (1.118)

which clearly converges to the exact solution
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u(x) = tanh(x). (1.119)

In Figure 1.2 and Table 1.4 we compare the solution obtained by ADM and the exact solution,
using only three iterations of the scheme. It is easy to see that the standard decomposition
method converges to the exact solution very slowly. It is to be noted that only three iterates were
needed to obtain an error of less than 10~° for values close to 0.The overall errors can be made
even much smaller by adding new terms of the decomposition. However, the solution
deteriorates, as we mentioned earlier as we take values away from 0. The further the values from
0, the worst the approximation. Actually for x > 1 the method diverges as is clear from Figure

1.2.

x ADOMIAN EXACT ABSOLUTE ERROR
0.0 0.0 0.0 0.0
0.1 0.09966799460 0.09966799462 2.0 x 10711
0.2 0.1973753092 0.1973753202 1.0 x 1078
0.3 0.2913121971 0.2913126125 4.2 x1077
0.4 0.3799435784 0.3799489623 54 x10°°
0.5 0.4620783730 0.4621171573 3.9 x 1075
0.6 0.5368572343 0.5370495670 1.9 x107*
0.7 0.6036314822 0.6043677771 7.3x107*
0.8 0.6617060368 0.6640367703 23x1073
0.9 0.7099191514 0.7162978702 6.4 %1073
1.0 0.7460317460 0.7615941560 1.6 X 1072

Table 1.4 Comparison between the exact solution and the approximate solution u(x) obtained

using decomposition method with three iterations.

— EXACT

——ADOMIAN
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Figure 1.2 Comparison between the exact solution of Example 1.6 and the approximate
solution using ADM.

Example 1.7 Consider the Bratu-type initial value problem which arises in many applications
such as radiative heat transfer, chemical reaction theory and nanotechnology

u'’' —2e* =0, 0<x<1, (1.120)

subject to the initial conditions
u(0) =u'(0) = 0. (1.121)

Solution:
Applying L~ we obtain to both sides of the equation and using the initial conditions into (1.96)
gives

u=2L"te" (1.122)

Using the decomposition series for u and the Adomian polynomial representation for the
nonlinear term e*, gives

Z u, = 2L71 Z A,
L (1.123)

n=0

where the A4,,'s are the Adomian polynomials for e* as shown above. Matching both sides of the
equation results in the following ADM iterative scheme:

uO s 0,
Upyq = 2L71(Ay). (1.124)

This in turn gives
uO s 0,

u; = 2L71(Ay) = 2L (e%) = x2?,
x4
U, = 2L71(Ay) = 2L (uyete) = 6’
1 2x°
uz = 2L71(A4;) = L7 (uzeul + zu%eul) T 45

(1.125)

-1 “1( u u 1 5., 17x8
uy =2L7(A3) =L (e ‘uz + e'uqu, +gu1 e 0) = 1260

The solution in a series form is thus given by
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) = 2_}_x‘*_l_2x6_|_17x8_}_ (1.126)
W =X T s T 1260 T

X ABSOLUTE ERROR

0.0 0.0

0.1 439 x 10~
0.2 4.54 x 10711
0.3 2.66 X 107°
0.4 4.85 x 1077
0.5 4.67 x 107
0.6 3.01 x 107
0.7 1.48 x 1075
0.8 6.00 x 10~*
0.9 2.11x107*
1.0 6.65 X 10~*

Table 1.5 Errors of the ADM for initial value problem of the Bratu-type

1.4.4 Boundary Value Problems

In this section, we apply the Adomian decomposition method to obtain numerical and/or
exact solutions to a number of linear/nonlinear boundary value problems.

Example 1.8 Consider the following seventh order linear boundary value problem
uP(x) = xu + e*(x? — 2x — 6), 0<x<1, (1.127)
which complimented with the boundary conditions
u(0) =1, u(1) =0,
u'(0) =0, u'(1) = —e,

u'(0)=-1, u'"(1) =-2e,

20y = —2. (1.128)
The exact solution of this problem (1.127) is
ulx) = (1 —x)e*. (1.129)
Solution:
In an operator form, Equation (1.127) becomes
Lu = xu + e*(x? — 2x — 6), (1.130)
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where the differential operator L is given by

o’ (1.131)

T dx”

and therefore the inverse operator L=t will be defined by

L] :fxfxfxfxfxfxfx[.] dx dx dx dx dx dxdx . (1.132)
o Jo Jo Jo Jo Jo Jo

Operating with L=t on both sides of (1.130) and using the boundary conditions (1.128) at x =
0 we obtain

2 2 24 30 120

i 6 X(_ 2 -1
+ 350 (2+7)x° +e* (-8 + x)? + L (xu(x)), (1133)

35 1 «a 1
u(x) = =63 = 6x — o — a4 (=54 7 )xt (__"'i)ﬁxS

where o, 8 and y are constants and
uP(0) = a, u®0)=p, and u®(0)=1y. (1.134)

Substituting the series assumption (1.3) into both sides of (1.133) yields

o

5o -o s (Lo e (o o
Un (%) = S TR 2 " 24)% 30 T 120/ P*

n=0

1 co
+—Q+py)x®+e*(-8+x)*+ L1 (x un(x)>.
n=0

360
(1.135)
Following the decomposition method we obtain the following recursive relation
35 1 « 1 B
— _ _ I 3 _ _ 4 o - 5
uy(x) = —63 — 64x T 4x +( 2+24)x +( 30+120),8x
1
- 6 X(__ 2
+360(2+y)x + e*(—8 + x)~,
Unyr(x) = L (xu, (%)), n=012,... (1.136)

To find the unknown constants «, f and y we have to use the boundary conditions at x = 1 on
the first four terms given by

U =1ug+u +u;+us. (1.137)
Upon solving the resulting equations, the values of the constants o, 3 and y are determined to be

a = —3.0000001, B = —3.9999991, y = —5.0000021. (1.138)
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Thus, the series solution can be written as

2 3 7 8

u) =1 —— =X 0.125x% — 0.03333x5 — 0.00694x6 — —— — —
2 3 840 5760
x9 xlO x11 s 1
~ 75360 403200 3991680  \(2296%107)x
— (1.606 x 10710)x13 + ...,
(1.139)
x ADM EXACT ABSOLUTE
ERROR
0.0 1.0 1.0 0.0
0.1 0.9946538264 0.9946538262 2.0 x 10710
0.2 0.9771222079 0.9771222064 1.5 % 10~°
0.3 0.9449011766 0.9449011656 1.1x 1078
0.4 0.8950948709 0.8950948188 52 % 1078
0.5 0.8243608089 0.8243606355 1.7 x 1077
0.6 0.7288479868 0.7288475200 4.7 x 1077
0.7 0.6041268954 0.6041258121 1.1x 107°
0.8 04451104431 0.4451081856 2.3 x 1076
0.9 0.2459646419 0.2459603111 43 %1076
1.0 0.0000077797 0 7.8 x 1076

Table 1.6 Absolute error for Example 1.8 resulting from ADM using three iterations.

= = s EXACT —— ADOMIAN

T T T T f
0 02 04 0.6 0.8 1

Figure 1.3 Exact solution for Example 1.8 compared with the approximate solution using
ADM.
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Table 1.6 and Figure 1.3 compare the exact solution with the numerical solution obtained by
ADM. Clearly, the absolute error is extremely small using only few iterates. The error starts
worsening as we consider values away from 0, but highly accurate in a neighborhood of 0.

Example 1.9 Consider the following nonlinear sixth order BVP:
u®(x) = e *u?(x), 0<x<1, (1.140)
subject to the boundary condition
u(0) =u"(0) =u""(0) =1,
w() =u"(1) =u""(0) =e. (1.141)
The exact solution to this problem is
u(x) = e*. (1.142)

Solution:
In operator form, Eq. (1.140) can be written as

Lu(x) = e *u?(x), 0<x<1, (1.143)

where L is a first order differential operator. It is clear that L™ is invertible and given by

L_l[-]=fxfxfxfxfxfx[.] dx dx dx dx dx dx . (1.144)

Operating with L™1, and using the boundary conditions at x = 0, we obtain

1 1 1 1 (1.145)
— 42 _ 3 4 __ .5 -1(,—x,,2
u(x) 1+ax+2x +6,8x +24x +120x +L (e u(x)),
where a, 8, & y are constants and
a=u'(0), B=u"0), y=uB(0) (1.146)

Substituting the decomposition series (1.3) for u(x) and the series of polynomials (1.5) for the
nonlinear term u?(x) into (1.145) gives

oo

1 1 1 1 =

— 42 _ 3 4 _ = .5 -1 -X

E u, (x) 1+ax+2x +6ﬁx +24x +120x + L (e EOAn(x))
n=

n=0

(1.147)

where the 4,,'s are the Adomian polynomials. Consequently, the components of u(x) can be
elegantly determined by using the recursive relation
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up(x) =1,

1 1 1 1
— 22 0 S pa3 A 5 p-1(,—X
uy (x) ax+2x +6ﬁx +24x +120x + L7t (e™™A,),

Upe1(x) = L1(e™*A,), n>1. (1.148)

To determine the components recurrently, we can use the scheme in (1.13). Using these
polynomials into (1.148), the first few components can be determined recursively by

ug(x) =1,
1 1 1 1
— 22 4 23 4 54 [-1(e=*4
uy (x) ax+2x +6ﬁx +24x +120x + L7t (e™™A,)
1 1 1 1
_ Lo B s ~ )5 4 1.149
1+(a+1)x+<6ﬁ+6)x +(120y+120)x +e7*, ( )

Consequently, the solution in a series form is given by

1 1 1 1 1.1
UG = G+ D+ (G + )+ (557 +135) %7 + e -
We expand e™* to obtain the approximation of u(x) as
(1.151)

1 1 1 1
_ e R 4 5.4 ...
u(x) 1+ax+2x +6/3x +24x +120yx + e

Now we use the boundary conditions at x = 1 on this 2-term approximant in order to determine
the values of the constants «, 8 and y. We get

a = 1.006979226, B = 0.9319015233, y = 1.718281828. (1.152)

Consequently, the series solution becomes

1 1
u(x) =1+ 1.006979226x + Exz + 0.1553169206x3 + — x*

24
+0.01431901523x5 + ---. (1.153)

Table 1.7 depicts the numerical results obtained by ADM using only two iterations. The error
seems this time to be uniformly distributed on the interval [0, 1].
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x ADM EXACT ABSOLUTE
ERROR

0.0 1 1 0.0

0.1 1.105857550 1.105170918 6.9 X 107*
0.2 1.222709629 1.221402758 1.3x 1073
0.3 1.351659620 1.349858808 1.8x 1073
0.4 1.493945267 1.491824698 2.1x1073
0.5 1.650955864 1.648721271 2.2%x1073
0.6 1.824249438 1.822118800 21x1073
0.7 2.015569926 2.013752707 1.8x 1073
0.8 2.226864366 2.225540928 1.3x 1073
0.9 2.460300073 2.459603111 7.0 x 107*
1.0 2.718281829 2.718281828 1.0 x 107°

Table 1.7 Absolute errors for Example 1.9 using two iterations of the ADM.

1.4.5 Singular Boundary Value Problems

In this section, we will consider differential equations which possess a singularity. To
start, consider the singular boundary value problem of order n + 1 given by

utl +mu" + Nu = g(x)
x )

subject to the boundary conditions

u(0) = ay,

u'(0) = ay,

u(n—l) (0) = an-1,

u(b) =c,

(1.154)

(1.155)

where N is a nonlinear differential operator of order less than n, g(x) is a given function and
ay, a4, ..., a,_1, b, c are constants. Consider the following operator L, defined as below,

. d
L(.)=x 1@

n+il-m i xm-n ( ),

dx

where m < n. Thus, in operator form, Eq. (1.135) becomes

Lu = g(x) — Nu.

We propose the inverse operator L1, as defined below

L71() =xvm foxxm‘”‘l fox fox ...foxx(.)dx .dx.

Applying the inverse operator L™ to both sides of equation (1.157), we have

(1.156)

(1.157)

(1.158)



u(x) = d(x) + L'1g(x) — L 1Nu, (1.159)

where L®(x) = 0. By Adomian decomposition method applied to Eq. (1.159), we have the
following resulting equation:

o)

Z w, = d(x) + L1g(x) — L i A,

n=0

(1.160)

where the A,'s are the Adomian polynomials that can be evaluated for different forms of
nonlinearity. Matching both sides, via application of the ADM, gives the recursive relation

uy = d(x) + L g(x),

ul = _L_le,
U, = —L_lAl,
U,3 s _L_lAz,

(1.161)

There are various research papers dealing with differential equations that possess singularities.
The way to tackle such problems is to construct a tailored integral operator that overcomes the
singular point. The choice of integral operator differs depending on the type of singularity.

In the following, several examples will be discussed for the illustration of the above iterative
schemes for problems with similar singularity.

Example 1.10 Consider the inhomogeneous Bessel equation

1 .
u”+;u’+u=4—9x+x2—x3, (1.162)
complimented with the boundary conditions
u(0) =0andu(1) = 0. (1.163)

Equation (1.162) has a singular point at x = 0 and the differential operator L, as stated above
employs the first two derivatives in the form

L=x

_1i<xi)_ (1.164)
dx \ dx

In view of (1.163), the inverse operator L~*we shall consider is the twofold integral operator
defined by
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L) = jx x~ 1 J.xx(.)dxdx (1.165)

Applying L~ defined in (1.165), to the first two terms u'’ + iu’ of Eqg. (1.162), will lead to the
following:
1
L1 — f f u' + u dxdx
X

X
=f x~ lxu —fudx+fu’dxldx
1 0 0

_ fl w dx = u(x) —u(l). (1.166)

Operating with L™* on both sides of (1.162) and applying the decomposition method, it then
follows that

Zun =L1(4—-9x +x2—x3)— L‘lzun,
i L (1.167)
or
i 0 + + X Lt i
Uy =——+x2—x34+———x" - Uy,
= 400 16 25 4~ (1.168)

The various terms u,, (x) of the solution u(x) can be easily determined by using the recursive
relation

9 4 xS
() = =5 +x" —x + g e,

. 3139 9x2 x* x> «x° x”
w(x) = =L uy = + +—=———+

176400 * 1600 16 ' 25 576 1225

() = — L1y, = 314039 3139x2 x4 +x5 o
W)= TR T 81985120 176400 25600 25 576 | 1225

N 29 (1.169)
*36864 99225

8

and so forth. Based on these calculations, the solution in a series form is given by

. 1955 70643 , 9x* N x® x°
WX =95322432 770560 T 25600 ' 36864 99225

(1.170)

The exact solution for this problem is
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u(x) = x? — x5. (1.171)

x ADM EXACT ABSOLUTE

ERROR
0.0 —0.00084 0.000 8.4 x 107
0.1 0.008170 0.009 8.3x107*
0.2 0.03120 0.032 8.0 x 10~*
0.3 0.06226 0.063 7.4 %1074
0.4 0.09534 0.960 6.6 X 107*
0.5 0.12443 0.125 5.7 x107*
0.6 0.14354 0.144 4.6 x 107*
0.7 0.14665 0.147 3.5x107*
0.8 0.12777 0.128 23x107*
0.9 0.08089 0.081 1.1x107*
1.0 0.00000 0.000 0.00

Table 1.8 Absolute errors for Example 1.10 using ADM with three iterations.

0.144

0.124

0.101

0.08

0.06+

0.044

— Exact snnns ADM

0.024

Figure 1.4 Exact solution for Example 1.10 compared with the approximate solution using
ADM.

In order to verify numerically whether the proposed approach (ADM) leads to accurate solutions,
we used the Computer Algebra System MAPLE to evaluate the decomposition series solutions
using 3-terms approximation. The numerical results show that a good approximation is achieved
using only few terms of the iterative scheme.

Moreover, comparison between the exact solution and the approximate solution u(x) obtained
using the decomposition method with three iterations is summarized in Table 1.8 and Figure 1.4.
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The numerical experiments show that the absolute error is small using only few terms and thus
the proposed approach is highly accurate.

Example 1.11 Consider the nonlinear BVP

2
uIII _ _uII — U — u2 — g(x)’ (1172)
X
where
g(x) = 7x%e* + 6xe* — 6e* — x%e?*, (1.173)

and complimented with the boundary conditions
u(0)=u'(0) =0, u(l) =e. (1.174)

Solution:
We define the new integral operator L as follows:

d? _d (1.175)
L[] = x‘lﬁxsax“‘[.],

and thus its inverse operator, L1, is given by

L] = x* fxx_s fxfxx[.] dx dx dx. (1.176)

Applying L™ to the first two terms u’"’ — %u”of Eq. (1.172) we find
2 X X X 2
L1 (u”’ — —u”) = x4J x5 j J x (u”’ — —u”) dx dx dx,
X 1 0o Jo X
X X X X X
— x4f x5 U f xu'" dxdx — f f 2u' dx dxl dx,
1 0 Y0 0 Y0

= x* jxx—5[Xu’ — 4u]dx = x*[x*u(x) — u(1)] = u(x) — x*e. (1.177)
1

Operating with L™ton (1.172), it then follows that
u(x) = x*e — L™ 'u — L2 + L 1g(x), (1.178)

Using the Adomian decomposition strategy to equation (1.159), gives

Z u, =xte—L71 Z u, |- L1t Z Ay | + L7 (7x%e* + 6xe* — 6e* — x%e?¥),
n n=0 (1.179)
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The Adomian polynomials A,’s for u? have been derived and used before. Following the
decomposition method we get from the recursive relation the following three terms:

uy = x*e,

1
u; = x3 + Exs + 0.15x° + 0.0215x7 + 0.0095x1* — 1.6810x*,

1
U, = %xﬁ +0.0082x7 + 0.0022x8 + 0.0004x° + 0.0101x1° — 0.0375x%*.  (1.180)
Based on these calculations, the solution in a series form is given by

5
X
u(x) = x3 4+ 0.9997x* + - + 0.1666x° + 0.0297x7 + 0.0095x !

+0.0022x8 + 0.0004x° + 0.0101x. (1.181)
The closed form solution for this problem is given by
@) = xe”. (1.182)

The numerical results obtained by ADM are given in Table 1.9 and Figure 1.5 .It is important to
mention that the ADM starts diverging, as is clear from Figure 1.5, for values of x > 1.

x ADM EXACT ABSOLUTE

ERROR
0.0 —0.00084 0.0 8.4 x 107
0.1 0.008170 0.009 8.3x107*
0.2 0.03120 0.032 8.0 x 10~*
0.3 0.06226 0.063 7.4 %1074
0.4 0.09534 0.960 6.6 X 10~*
0.5 0.12443 0.125 5.7 x107*
0.6 0.14354 0.144 4.6 x 107*
0.7 0.14665 0.147 3.5x107*
0.8 0.12777 0.128 23x107*
0.9 0.08089 0.081 1.1x107*
1.0 0.0 0.0 0.0

Table 1.9 Absolute errors obtained for Example 1.11 using ADM with three iterations.
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—— Exact —— ADOMIAN /

Figure 1.5 Comparison of the exact solution for Example 1.11 with ADM’s approximate
solution.

1.4.6 Boundary Value Problems over an Infinite Domain

In this section, we apply Adomian decomposition method to a boundary value problem on
an infinite domain. Padé approximations are crucial for such problems and will be manipulated
to handle the condition at infinity.

Example 1.12 Consider the nonlinear boundary value problem

1
u" (x) + Eu(x)u’(x) =0, (1.183)
subject to the boundary conditions
u(0) =0, u'(0) =1, u'(o0) =0, (1.184)

where 0 < x < oo.

Solution:

Since it is necessary to have three initial conditions to apply the ADM, we set u'”’(0) = a. The
value of « can then be found using the condition at infinity. To start, we write (1.183) in
operator form as
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1
=~ S, (1.185)

where L is a third order differential operator, and hence its inverse L™ is defined by

L) = fxfxfx(.)dx dx dx. (1.186)
0 0 Y0

Applying L™ to both sides of (1.185) and using the initial conditions we obtain

1 1 .
u(x) =x+ Eax2 - EL_l[uu”]. (1.187)

Using the decomposition series u(x) and the polynomial representation for uu'’, we have

z u(x) =x+ Saxt = EL <Z An), (1.188)

n=0 n=0

where the A4,,s are the Adomian polynomials that represent the nonlinear terms uu"’. This leads
to the recursive relation

Uy =X
1 2 1
Uq Eax - EL Ay
1
Upq = —EL‘lAn, n>1 (1.189)

Next we calculate the first few terms of the Adomian polynomials.
Ay = upuyg,
A; = uouy + up''uy,
Ay = uguy +uy"ug + up''uy,

1.190
Az = uguy +uy"uy + uguy +uy''us, ( )

Applying the decomposition algorithm to equation (1.189), yields the following iterates

uO = X,
U = 1a:xz —=L1A
172 2 o
|-
uz == _EL Al'
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1
Uz = _EL_lAz,
(1.191)
This in turn gives
Uy = X,
1, x4
=@ Ty
u, = ——ax*+ L
2 24 240’
__r 5 1 6, 1f T 1\ 7 1 g 9
Us 120 X 144 ax” + 7( 720 180) 3360 241927 ' (1,192)
Hence we obtain the following solution
uO = X,
1, x4
Uy > ax o7
u, = ——ax*+ L
2 24 240’
__ 1 5 6, 1( 7a 1\ 7 1 g 9
Us 120 &% 142 0% + 7( 720 180) 3360 24192° ' (1.193)
Now, in order to find the value of @ we use the condition
lim u'(a) =0, (1.194)
o—00

which is obtained from the boundary condition at infinity, namely, u'(e) = 0. We apply Padé
approximation on the derivative of the solution, that is on u'. This will convert the series into a
rational function and thus it will become possibly to evaluate the limit at infinity, unlike the
failure to evaluate it in case we have infinite series expressed in powers of x. After applying the

[2,2] Padé approximant, the boundary condition gives

3 (4 + 3ax + (—az + 1) xz)
lim 3 = —-3a%+1.
a—oo 12 — 3ax + x2 (1.195)
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Solving the equation —3a? + 1 = 0, we get that a = 0.5773502692. If we apply the [3,3] Padé
approximant, we get this equation

1184 + 525a% 0 (1.196)
5 5a2+12

so we get a = 0.5920102959. For [4,4] Padé approximant, we get that a = 0.5163977795.
The [n, n] Padé approximants seem to converge.

Generally speaking, boundary conditions at infinity pose a problem when applying the various
numerical solution methods. So in order to tackle this problem and avoid such a difficulty, Padé
approximations with the ADM present a potential and effective answer to the condition at
infinity.

1.4.7 Systems of Differential Equations

Now, we will demonstrate how one can apply the ADM for systems. Let us consider the
following system of ordinary differential equations:

vi' = 1YL Y2 e Yu) + 91

v2' = L0 yL Y e V) + 92

' 1.197
Yn :fn(xryliyz'-""yn) + gn ( )

where f, f>, ..., f, are nonlinear functions, g4, 95, ...., g, are known functions, and we are
seeking the solution y,, y,, ..., y,, satisfying (1.197).
Rewrite (1.197) in operator form by using the nth equation as:

Ly, = Ny (X, Y1, V2 oo Vie) + G n=12,...,m. (1.198)

where L = % is the linear operator and N,,(x, y1, Y2, -+, Vi) = fu(X, V1, V2, - ., Yi) represent the

nonlinear operators. Appling the inverse operator of L (namely, L™1[.] = fot[.] dt) gives

Yn = Yn(0) + LN, (6, y1, Y2, e, Vi) + L2 g (1.199)

The Adomian technique consists of approximating the solution of (1.178) as an infinite series

YV = Z Ynk n=12,..,m,
=0 (1.200)

and decomposing the nonlinear operator N,, as
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Nn(x’yl'yZ"""yk):ZATL,I(I nzllzl"lml
= (1.201)

where 4,, ; are called Adomian polynomials of y,,y, ...., y. Substituting (1.200) and (1.201)
into (1.199) we get:

z Ynk = yn(o) + L1 Z An,k + L_l.gn'
= = (1.202)

The various terms y,, . of the solution y,, can be easily determined by using the recursive relation

Yno = yn(o) + L_lgnr

Vi1 = L g (Yo, V1, o0 Vi) n=12.., k=012,.. (1.203)

Two examples are solved next to show the applicability of the method for systems of ODEs.

Example 1.13 Consider the following system of ODEs, with initial values y; (0) = 1,
y2(0) = 0,and y;(0) = 2.
y'1 =3 — cos(x),

Y2 =y;—e”,
V'3 =Y1 =2 (1.204)
Solution:
Applying the inverse operator L™ = fox(. )dx to both sides of (1.204) we get
y; =1—L"1cos(x) + L7 1y;,
y, = —L7te* + L1y,
y3=2+L"1(y — ). (1.205)
The Adomian decomposition method gives
Y10 = 1 —sin(x), Vik+1 = L_l)’3,k;
Y20 =1—¢%, Y2kt =L Y300
Y30 =2, Yajer1 = L ik —Yax) k=012, ... (1.206)

After finding the first few terms we get the exact solutions:
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y1 = e*, y, = sin(x), y;= e*+ cos(x). (1.207)

Example 1.14 Consider the following nonlinear system of ordinary differential equation, with
the initial conditions u,(0) = 1, u,(0) = 1, and u3(0) = 0 and with exact solutions u; (x) =
e?*, u,(x) = e* and u3(x) = xe*.

u'y = 2u3,

u', = e *uy,

u’3 = uz + u3. (1.208)
Solution:
Using the inverse operator L™t = fox[.] dx we get:
u; = 1+ 2L 13,
u, =1+ L e ™u,,
(1.209)

U3 == L_l(uZ + U3).

Using the scheme (1.13) to compute the Adomian polynomials, the decomposition procedure
would be as follows:

Y10 =1, Y1k+1 = 2L Ay,
Y20 = 1, Y o2k+1 = L_le_xul,k'

: (1.210)
Y30 =0, Y3k+1 = L 1(3’2,k - Y3,k)' k=012,..

1.4.8 ADM and Domain Decomposition

We have seen earlier, from the various numerical experiments that we have conducted,
one key setback of the ADM. The error worsens as we move away from the specified initial
condition, that is, the convergence is local and is highly accurate mainly in a neighborhood of the
initial point and deteriorates as we move far away from it, that is, as the applicable domain
increases. In this section, we will overcome this setback by applying a domain decomposition
technique that will improve the error for large values of the independent variable.

The main thrust of the DD is to decompose the domain of the problem into a union of

disjoint subintervals in such a way that the error is uniformly distributed. The spirit of the DD is
to decompose one large global problem into many smaller subdomain problems. The
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computational domain is initially partitioned into a number M of non-overlapping subdomains
X; = [x;,x;41],i = 0,1,...,M — 1 with overlap at the mesh point x;,,; between neighboring
regions X; and X;,;. The ADM, which converges fast locally near the left endpoint x = 0, is
applied at first in a small neighborhood of thickness & about the origin. Then, from the resulting
numerical solution on the first subinterval, an initial condition is estimated at x = §, that
approximates the value of the true solution at x = §, then the ADM is applied again on the
second subdomain.

Therefore the ADM is applied on the first subdomain and the values on inter-domain
right endpoint boundary are calculated, that is the original problem is solved by computing sub-
problems in parallel. In comparison with the standard ADM approach, non-overlapping domain
decomposition approach is more efficient especially if a highly accurate numerical solution with
uniform error distribution is required.

To explain the DD more precisely, assume we have a BVP on [0,1] subject to the
boundary conditions y(0) = a,y(1) = b . First, we solve the problem directly by the ADM
over the interval [0,1], then obtain the first value of x from resulting numerical solution, say
x = §;, that satisfies the condition

|¥n1(81) — ¥n1-1(61)| < Tol,

where Tol is an assigned tolerance and n1 denotes the number of ADM terms that are needed to
satisfy the later condition. Set Y; = y,;(x) on [8,, 6;], where &8, = 0. The next step is to apply
the ADM again on the same problem on the domain [§;, 1] subject to the boundary conditions

y(8,) = Y1(61), y(1) = b,

where Y; (6,) is the numerical approximation obtain by the first application of the ADM. From
this we get the value of &, and hence the solution on [8,,,]. The procedure is repeated in a
similar fashion till we get the approximate solution on [, 1].

Example 1.15 We will apply the domain decomposition (DD) combined with the ADM on
Example 1.6 which is given by:

u +ut=1, u(0) = 0. (1.211)

Solution:

To solve our example, we will subdivide the domain into two sub-domains, [0,0.5] and the
second is [0.5, 1]. Applying the ADM on [0, 0.5] first, then from equation (1.118) we can get an
estimate of the value of the solution at x = 0.5, in particular, we get the following value:

18631 (1.212)
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This value is now used as the initial condition when applying the ADM on the sub-interval
[0.5,1]. Applying the inverse operator L~*and using this initial condition gives

u =u(0.5) +x — 0.5 — L™ (u?). (1.213)

By ADM, we can represent the nonlinear term u? by an infinite series of Adomian polynomials
A,, and the term u(x) by decomposition series. We have

- 1529 -
U, (x) = — +x— L1 Ay ).
40320 (1.214)

n=0 n=0

Upon matching both sides of the latter equation, and after computing the Adomian polynomials
A, for u?, we get the following recursive relation:

_ 1529
Yo = T303207 %
Unpy = — L4, n 20, (1.215)

Upon solving we get the first few iterates:

uy = —0.0379216270 + x,

Uu; = _L_l(Ao)
= 0.03290528481 — 0.001438049794x + 0.03792162700x?
—0.3333333x3,

u, = —L7(4,)
= 0.004165858722 + 0.002495643874x — 0.03295981800x*
+0.001917399726x3 — 0.02528108467x*
+ 0.1333333333x5,

uz; = —L7'(4;)
= 0.0004964057573 — 0.0002254266030x
— 0.004047560127x2 — 0.002913307842x3
+0.01927200482x* — 0.001390114801x5
+0.01221919092x° — 0.04603174602x7. (1.216)

Based on these calculations, the solution in a series form is given by
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u(x) = —0.00035407771 + 1.000832167x + 0.00091424887 x>
—0.3343292414x3 — 0.00600907985x* + 0.1319432185 x°

1.217
+0.01221919092x° — 0.04603174602x7 + ---. ( )

In Table 1.10 we give a comparison between the solution obtained solely by the ADM and the
second using DD. It is obvious that for larger values of x, the approximate solution starts
improving after applying the DD. For smaller values of x, both yield similar results since the
ADM converges fast locally and hence such a DD improvement is not necessary.

X ADM EXACT Error Error
using ADM and DD | using ADM
0.0 0.0 0.0 0.0 0.0
0.1 0.100334672 0.100334672 1.0 x 10710 1.0 x 10710
0.2 0.202710036 0.202710024 1.1x 1078 1.1x 1078
0.3 0.309335803 0.309336250 45x 1077 45 x 1077
0.4 0.422787088 0.422793219 6.1 x 107 6.1 x 107
0.5 0.546254960 0.546302490 3.9x107° 48 x 107>
0.6 0.683878766 0.684136808 2.8x107° 2.6 x107*
0.7 0.841187184 0.842288381 1.3x 1075 1.1x 1073
0.8 1.025675296 1.029638557 6.9 x 107 4,0x 1073
0.9 1.247544849 1.260158218 44 x107% 1.3 x 1072
1.0 1.520634921 1.557407725 2.4 x 1073 3.8 x 1072
1.3 2.866033456 3.602102448 5.1 x 1072 0.73607
1.5 4.559598214 14.10141995 0.20634 9.54182
1.7 7.445335506 —7.696602139 0.64497 15.1419
2.0 15.84126984 —2.185039863 2.617691 18.0263

Table 1.10 Comparison of the absolute errors obtained by ADM and those by DD for Example
1.6 of subsection (1.4.3) using four iterations for both methods.

1.5 Partial Differential Equations

In this previous section, we applied the Adomian Decomposition Method to linear and

nonlinear ordinary differential equations (ODESs). Now, we will show how the method can be
implemented to partial differential equations (PDEs) as well.

1.5.1 Linear PDEs

the general linear partial differential equation written in operator form:

Lyu+Liu+Ru=g,
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First, we will employ the ADM for solving linear partial differential equations. Consider

(1.218)




where L, is the highest order differential in x, L. is the highest order differential in u, R is the

remainder of the differential operator consisting of lower derivatives, and g is an inhomogeneous
term.

Applying the inverse operator L, ~* to the equation (1.218) yields

u=®0)-L, "Leu—L, 'Ru+1L, g, (1.219)
where

u(0,t) Jif L= %
62

u(0,t) + xu,(0,t) Jif L= EPe
2 ) 63

O(x) = u(0,t) + xux(()2 t) + uxx(O3 t) Jif L= ?
u(0,t) + xu,(0,t) + uxx(O t) + uxxx(O t) Jif L= Fr

2 3. xn 5 an+1

u(0,t) + xu,(0,t) + uxx(O t) + uxxx(O t) + + [ Worx..n(times). 00,t) ifL= prry

(1.220)

The Adomian decomposition method suggests that the linear terms u(x, t) be decomposed by an
infinite series of components of the form

[0

u(x, t) = ;un(x, t), (1.221)

where u, (x, t) is the components of u(x,t) that will be elegantly determined in a recursive
manner. Substituting (1.221) into (1.219) gives

Z Un(x,8) = ®(0) — L, 'L, (Z Un (, t)) — L, 'R (Z Un (%, ”) L'y, (1.222)

n=0 n=0 n=0

Following the decomposition analysis strategy, equation (1.222) is transformed into a set of
recursive relations given by

u(x,t) = ®(0) + L, g,

U1 (6, 1) = =Ly (Leun (x,0)) = Ly 'Rup(x,0),  n 0. (1.223)

This latter algorithm will be later used on a number of test examples to show the efficiency and
applicability of the technique.
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1.5.2 Non-Linear PDEs

We will generalize the ideas of the previous subsection to general nonlinear partial
differential equation of the form. To start the ADM, we need to rewrite the PDE in operator form
as:

Lyu+Liu+Ru+F(u) =g, (1.224)

where L, is the highest order differential in x, L, is the highest order differential in u, R is the
remainder of differential operator consisting of lower order derivatives, F(u) is an analytic
nonlinear term, and g is the specified inhomogeneous term.

Applying the inverse operator L, ~*, the equation (1.224) becomes

u=®0)—-L, 'Leu—L, 'Ru—L, "Flu)+ L, g, (1.225)
where
u(0,t) Jif L= :_x
62
u(0,t) + xu,(0,t) Jif L =5
2 ) 63
o) = u(0,t) + xu,C(O2 t) + u,m(()3 t) Jf L= a—)f
u(0,t) + xu,(0,t) + uxx(O )+ uxxx(O t) Jif L= Fe
x2 3. XM E n+1
u(0,t) + xu,(0,t) + uxx(O t) + uxxx(O t) + + [ Werx.n(times).. L0,t) ifL= ol
(1.226)

The method admits the decomposition of u(x, t) into an infinite series of terms expressed as:

oo

u(x, t) = Z up(x,t)
~ (1.227)
and the nonlinear term F (u) is to be equated to an infinite series of polynomials
(1.228)

F(u(x, t)) = Z A,
n=0

where A,, are the Adomian polynomials that represent the nonlinear term F(u(x, t)). Inserting
(1.226) and (1.227) into (1.225) yields
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Z w,(x, ) = d(0) — L, 'L, ( (2, t)) ~ LR (Z (2, t))
n=0 n=0 n=0
—L,? A, |+L, tg.
oy

The various terms u,, (x, t) of the solution u(x, t) can be easily determined by using the recursive
relation

(1.229)

uy = ®(0) + L, g,
Ups1 = _Lx_lLtun(x: t) - Lx_lRun(x’ t) - Lx_lAn' (1230)
Consequently, the first few terms of the solution are given by
uy = ®(0)+L, g
U, = _Lx—lLtu’O(xl t) - Lx_lRu'O(x' t) - Lx_lAO'
Uy = _Lx_lLtul(x' t) — Lx_lRul(x' t) — Lx_lAlv
(1.231)
Uz = —Lx_lLtuz(x: t) - Lx_lRuZ(x’ t) - Lx_lAZ'

Examples will be given next sections to illustrate this algorithm.

1.5.3 Initial Value Problems
In this current unit, we will implement the strategy behind the ADM algorithm described

previously apply to some examples in which the linear and nonlinear partial differential
equations are subjected only to initial conditions.

Example 1.16 Consider the initial value problem of nonlinear partial differential equation

1
Usy +Zu§ =u(x,t), u(0,t)=1+t? u,(0,t) = 1. (1.232)
Solution:
We first rewrite equation (1.232) in an operator form as
(1.233)

— 2
Lu=u _Zut'

-1

where L, is a second order partial differential operator. Operating with L,~~ on both sides of the

PDE and using the initial conditions gives
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1 1.234
u=1+t2+x+Lx‘1u—ZLx‘1u?, (1.234)

so that

[ee)

z Un(,t) = 1+ 2+ x + L, (Z un(x, t)> - %Lx_l (Z A")' (1.235)
n=0 '

n=0 n=0

Equations (1.234) and (1.235) imply that the various iterates are given by

ug(x, t) =1+ t? + x,

1 1 (1.236)
Upr1 (6, t) = L, " u,(x,t) — ZLX A, n=0,

where the A, are the Adomian polynomials. The first few polynomials for the nonlinear
quadratic term u? are given by

., 2
Ay = u, %,

Al = ZuOtult,

1.237
A2 = ZuOtuZt + ultz. ( )
Consequently, the first three terms of the solution u(x, t) are given by
uo(x, t) =1+t +x,
_ 1 _ x? x3
u (x,t) = Ly, tug(x, t) — 7L Mo=L, (1 +x) = TR
1 x2  x%\ x* x°
— -1 _ - -1 _ -1(= = \_" -
u,(x, t) =L, uy(x,t) 4Lx Ay =1L, (2! + 3!> =7 + o
(1.238)
Thus, the infinite solution in a series form is given by
x? x3 x* x® (1.239)
— ¢2 IS IR TR I
u(x,t) =t +<1+2!+3!+4!+5!+ >

Note that infinite series is the McLaurin series expansion of e*. Indeed, the latter equation leads
to the exact solution of our IVVP which is given by

u(x,t) = t? + e*. (1.240)
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x t=0.1 t=0.2 t=0.3
0.0 0.0 0.0 0.0
0.2 9.1 x 1078 9.1 x 1078 9.1 x 1078
0.4 6.0 x 107° 6.0 x 10°° 6.0 x 107°
0.6 7.1 %x107° 7.1%x107° 7.1 x 1075
0.8 41x107% 41x107% 41x 107
1.0 1.6 x 1073 1.6 x 1073 1.6 x 1073

Table 1.11 Absolute error obtained using ADM with three iterations.

The numerical results are depicted in Table 1.11. The absolute error is very small for small
values of x and t, however the error starts worsening for larger values. Thus, more iterates are
obviously needed to improve the error.

Example 1.17 Consider the following nonlinear initial value problem:

1 5 (1.241)

Up +%xu2xx =x3,  u(x0)=0.

Solution:
According to the scheme applied to the PDE in Equation (1.241), we have

1 .
u(x, t) = x3t — ELt—l(xuzxx)_ (1.242)

Using the decomposition assumptions for the linear and the nonlinear terms we find

(o] 1 B [o.0)
Z un(x, 1) = 2%t — gl (Z A”)’ (1.243)

n=0 n=0

where A,, are the Adomian polynomials that represent the nonlinear term xu?,,,.
Equations (1.243) and (1.13) imply that the various iterates are given by:

ug(x, t) = x3t,

1
u;(x, t) = — §x3t3,

2
u,(x,t) = Ex3t5,

(1.244)
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Upon summing these iterates we get
1 2 (1.245)
t) = 3(t——t3 +—t5+ )
ulx,t) =x 3 1
If we proceed with iterating, we will notice that the term in brackets turns out to be the McLaurin
series expansion of the tanh t. Actually, this way we obtain the latter equation we get the closed

form solution of the problem which is

u(x,t) = x3tanht. (1.246)
t x=0.1 x=0.2 x=0.3

0.0 0.0 0.0 0.0

0.1 5.4 x 10712 43 x 10711 1.5x 10710
0.3 1.1x 108 9.1 x 1078 3.1x 1077
0.5 3.8x 1077 3.1 x10°° 1.0 x 107>
0.7 3.7x107° 3.0x107° 1.0 x 107*
0.9 1.9 x 1073 1.6 x 1074 5.2 %1073

Table 1.12 Absolute error obtained using ADM with three iterations.

1.5.4 Boundary Value Problems

In this section, we will tackle BVPs and in particular we will apply the ADM to the two
dimensional Laplace’s equation with specified boundary conditions.

Consider the following Laplace’s equation of the form
Uy T U =0, 0<x<aq, 0<t<hb, (1.247)

Subject to the boundary conditions

u(0,t) =0, u(a,t) = f(t),
u(x,0) =0, u(x,b) =0, (1.248)

where u = u(x, t) is the solution of Laplace’s equation. We can write the equation (1.247) in
operator form as

Lou(x,t) = —L,u(x,t), (1.249)

where
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92 92 (1.250)

b=z M=o

and hence L, "*and L, ™" are the inverse operators defined by

L, ) = Lx fox(.)dx dx,

t rt
Lt‘l(.)zf f(.)dtdt.
070 (1.251)

Applying the inverse operator L, ~* to the operator form of our problem (1.13), and using the
proper boundary conditions and assuming that g(x) = u.(x, 0), we find that

u(x, t) = tg(x) — L, *Lyu(x, t). (1.252)
The decomposition method assumes a series solution given by
- (1.253)
u(x,t) = z u,(x, t).

n=0

Substituting (1.253) into both sides of (1.252) gives

Z U (x,t) = tg(x) — L 'Ly (Z Un (¥, t)) (1.254)

n=0 n=0

This gives the recursive relation

up(x, ) = tg(x),

1.255
Upeq(x,t) = =L, Lou, (x,t), n=0. ( )
Thus,
uy(x,t) = tg(x),
-1 1 3 11
ul(x! t) = _Lt LxuO(x! t) = _yt g (X),
-1 1 5 (4
uZ(xr t) = _Lt Lxul(x’ t) = Et g( )(x)l
(1.256)
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So the solution is given by

1 1
u(x,t) = tg(x) — §t3g”(x) n atsg(‘”(x) N (1.257)

We should find g(x) in order to complete the solution u(x, t). We can find it using the boundary
condition u(a,t) = f(t). After substituting x by a, using the Taylor expansion for f(t), and
comparing the coefficients in both sides we can determine g(x).

In the following we apply the decomposition procedure described above to some particular
boundary value problems.

Example 1.18 Consider the boundary value problem
Uyy + U = 0, O0<x,t<m,
u(0,t) =0, u(m,t) =sinhm sint,
u(x,0) =0, u(x,m) =0. (1.258)

Solution:
We first rewrite (1.258) in an operator form as

Liu(x, t) = —L,u(x,t). (1.259)

Applying the inverse operator L,~! to the operator form of (1.259), and using the proper
boundary conditions, we find

u(x, t) = tg(x) — L, *Lyu(x, t), (1.260)

where
g(x) = u(x,0). (1.261)

Using the decomposition series

o)

u(x,t) = z u,(x,t)

n=0

(1.262)

into both sides of (1.260) gives

z U (x,t) = tg(x) — L | Ly (Z Up (%, t)> : (1.263)

n=0 n=0

Decomposition analysis admits the use of the recursive relation

up(x, ) = tg(x),
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Upyq(x,t) = =L, 'Lou,(x,t), n>0. (1.264)

This leads to
u’O(xl t) = tg(x)l

—_ 1 144
Uy (x,t) = =Ly "Lyug(x, £) = _§t39 (),

- 1
uy (x, t) = =Ly "Lyuy (x,8) = §t5g(4)(x),

) 1
u3(,t) = =L Lewp (0, 8) = =79 @ (x), (1.265)

In view of (1.265), we can write

1.5, 1 1 1.266
u(x,t) = tg(x) — §t3g (x) + gth(“)(x) — at7g(6)(x) + - ( )

To find the function g(x), we have to use the boundary condition u(m, t) = sinhm sint; using
also the Taylor expansion of sin t we get

1 1 1
tg(m) — §t3g”(n) + ath(‘*)(n) — at7g(6)(n) + o

1 1 1
= sinhn(t——t3 + =t —=t7 + )

3! 5! 7! (1.267)
Equating the coefficients of like terms on both sides gives
g@m) = g"(m) = g®(m) = g© () = -+ = sinhr (1.268)
Thus,
g(x) = sinhx. (1.269)
Consequently, the solution in a series form is given by
1 1 1 (1.270)
— o 43 4 45 47 .
u(x,t)—smhx<t 3!t +5!t 7!t + >
This obviously leads to the exact solution which is given by
u(x,t) = sinh x sin t. (1.271)
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1.5.5 Systems of Equations

We will now consider the numerical solution of systems of nonlinear partial differential
equations and examine them using the decomposition method.

Consider the following system:
us + v + Ny (w,v) = gy,
Uy + Uy + Ny(u,v) = gy, (1.272)

with initial conditions

u(x, 0) = f1(x),
v(x,0) = f,(x). (1.273)
We rewrite a system (1.272) in operator form as
Liu+ Lyv+ Ny (w,v) = g, (1.274)
Liv+ Lyu+ Ny(u,v) = gy,

where L, and L, are considered, without loss of generality, first order partial differential
operators, N; and N, are nonlinear operators, and g, and g, are source terms.

Applying the inverse operator L, ™! to the system (1.274) and using the initial conditions (1.273)
yields

u(x,t) = fi(x) = L 'Ly = L Ny (w,v) + L gy,
v(x,t) = f,(x) =L, 'Lyu— L Ny,(u,v) + L g, (1.275)

The linear terms u(x, t) and v(x, t) can be represented by the decomposition series

o)

u(x,t) = Z u,(x,t),

n=0

[ee)

v(x,t) = Z vn(x, £), (1.276)

n=0

and the nonlinear terms N; (u, v)and N, (u, v) by an infinite series of polynomials

Nl(ui U) = z An(x' t);
n=0
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N, v) = Y B, (x,0),
(w,v) ; (. 1) (1.277)

where A,, and B,, are the Adomian polynomials. Substituting (1.276) and (1.277) into (1.275)

gives
u, (6, 1) = f1(x) = L 'Ly < v (x, t)) — L ( An(x, t)) + L g1,
> 1 > Z ,

n=0 n=0
v, (x,t) = fLb(x) — L _le< u,(x, t)> - Lt ( B, (x, t)> + Lt
; t ; t ; t
+ L, g, (1.278)

This results in the recursive relation
uy(x,t) = fi(xX)L " gs,
Upsq(x,t) = =L, ' Lov,(x,t) — L, A, (x,t), n=0.
and
vo(x,t) = fL(0)L Mgy,

Ve (6, t) = =L, 'Lou,(x,t) — L, B, (x,t), n=0.

(1.279)
Next, we will consider particular examples.
Example 1.19 Use Adomian decomposition method to solve the nonlinear system:
ur+vu, +u=1,
v +uv, —v =1, (1.280)
with initial conditions
u(x,0) =e*, v(x,0)=e*. (1.281)

Solution:

Applying the inverse operator L, ! to the system (1.280) and using the initial conditions (1.281)
yields
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u(x, t) =e*+t-— Lt_l(vux + U,), (1282)

v(x,t) = e * +t+ L, (uv, + v).

The linear terms u(x, t) and v(x, t) can be represented by the decomposition series

o)

u(x,t) = Z u,(x,t),

n=0

[ee)

v(x, t) = Z v, (x, 1),

(1.283)
n=0
and the nonlinear terms vu,and uv, by an infinite series of polynomials
M) = D An(x,0)
n=0
o = 3B -
n=

where A,, and B,, are Adomian polynomials. Substituting (1.283) and (1.284) into (1.282) gives

[oe)

Z u,(x,t) =e*+t—L, " <§: An(x,t) + i u, (x, t)),

n=0
Z v (x,t) =e*+t+L " (Z Bn(x,t) + Z vn (2, ”)- (1.285)
n=0 n=0 n=0 |

The decomposition method defines the recursive relations in the form
uy(x, t) =e* +t,
Upsq(x,t) = —Lt_l(An + u, (x, t)), n=0,
and
volx,t) =e™ +t,

Vper(x, t) = Lt_l(Bn + u, (x, t)), n=0.
(1.286)

We can use the derived Adomian polynomials (1.13) into (1.286) to get the pairs of components.
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1.6 Delay Differential Equations

In this section, we will present the solution of linear and nonlinear delay differential
equations using Adomian decomposition method (ADM).

Consider the delay differential equation written in general form
Lu(x) = f (xu(),u(g()), 0<x<1, (1.287)
with initial conditions
u'(0)=aqa;, for i=012,..,n—1, (1.288)

where L is n order operator defined by

dn() (1.289)
dxm’

L() =

As a consequence, the inverse operator L1 is regarded an n-fold integration operator defined by

X X X X 12
L) = f f f f () dxdxdx ...dx , (n times). (1.290)
o Jo Jo 0
Applying the L™ to both sides of (1.287) gives
u(x) = @ + L (x,u(), u(g(x)) (1.291)
where
) d
u(O), lfL = a
d2
u(0) + xu'(0), if L= dxZ
XZ d3
®, = u(0) + xu'(0) + 7u"(0), if L= o
! xz. " x3 nr dx‘;
u(0) + xu (0)+Eu (0)+§u (0), ifL:W
0 "0 x2 "o X3 r;r 0 xn_l (n-1) 0 . _ d*
u()+xu()+iu()+§u ()+---.+(n_1)!u (0) LfL—W (1.292)

The decomposition technique consists of decomposing the solution into a sum of an infinite
number of terms defined by the decomposition series
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il (1.293)

U@ = ) un (),

n=0

while the nonlinear term f(x,u(x),u(g(x))) is to be expressed by an infinite series of
polynomials as

(1.294)

f (xu@,u(g)) = > 4,

n=0

where the A,,'s are the Adomian polynomials. Substituting (1.293) and (1.294) into (1.291)

yields
Up =D+ L1 ) 4y ).
Z o (Z ") (1.295)

n=0 n=0

The various components u,, of the solution y can be easily determined by using the recursive
relation
Uy = CD(), (1296)

Having determined the components u,, n = 0, the solution u in a series form follows
immediately. As stated before, the series may be summed to provide the solution in closed form.

In the following, a number of examples will be discussed for illustration.

Example 1.20 Consider the linear differential delay equation of the first order

1 x /,x 1
u'(x) =§ezu(§)+§u(x), 0<x<1  u(0)=1.
(1.297)

The exact solution is u(x) = e*.
Solution:
In an operator form, Eq. (1.297) can be written as

B —1(1 x ,xy 1 (1.298)

u(x)=1+1L (E ezu (E) + Eu(x))

where L71(.) = [, [.]dx .
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The decomposition method suggests that the solution u(x) be expressed by the decomposition
series

i (1.299)
u(x) = Z U, (x).
n=0
Inserting (1.299) into (1.298) yields
d (1 i 1 — (1.300)
Zun(x) =1+1L 1<Eex/22un (;)-'_E un(x)).
n=0 n=0 n=0
This leads to the recursive relation
uo(x) =1,
_1/1 X 1
a0 = L7 (52 (3) + 5100
(1.301)

Consequently, the first few components of the solution are given by
uO(x) = 1'

_1/1 & 1 x 1 1.302
u; (x) =L 1(58 /20, (;)+Eu0(x)>=—1+ez +=x, ( )

N

If we take four terms of the series, we get the absolute error given in Table 1.13. Note that the
error deteriorates as we move away from the initial point x = 0. In order to improve the accuracy
and overcome this setback; we will subdivide the domain into three subintervals [0,1] =
[0,0.1]U[0.1,0.2]U[0.2,0.3]U[0.3,1] using Domain Decomposition method (DDM) that
discussed earlier in Section 1.4.8.

Applying the ADM on [0,0.1] first, then we can get an estimate of the value of the solution at
x = 0.1. In particular, we get the following value:

u(0.1) = 1.10517090608515. (1.303)

This value is now used as the initial condition when applying the ADM on the sub-interval
[0.1,0.2]. Then, again applying the ADM on [0.1, 0.2] and therefore we can get an estimate of
the value of the solution at x = 0.2, we get the following value:

u(0.2) = 1.22140268244442 (1.304)
Same as before, this value is now used as the initial condition when applying the ADM on the

sub-interval [0.2, 1]. Applying the inverse operator L~and using this initial condition gives
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u=u(0.2) + L1 (% eZu (;) + %u(x))_ (1.305)

By ADM, we can represent the term u(x) by decomposition series. We have

Z u, (x) = 1.22140268244442 + L1 (E ez Z un (E) + Ez un(x))
- (1.306)

n=0 n=0

Upon matching both sides of the latter equation, we get the following recursive relation:

uy, = 1.22140268244442,

_ L_l(lg (f)+l ) >0
Unt1 = 262 Un(3) T, n =0 (1.307)

Taking four terms of the series, we get the absolute error as given in Table 1.13. The table shows
a comparison between ADM and DDM approaches and clearly the accuracy improves when we
decompose the domain.

X ADM DDM
0.1 1.2x10°8 1.2x 1078
0.2 3.9x 1077 7.6 X 1078
0.3 3.1x107° 2.9x10°°
0.4 1.3x 1075 2.6 x10°°
0.5 4.2 %1075 1.9x10°°
0.6 1.1x107* 42 x10°°
0.7 24 x107* 1.5x 107°
0.8 48 x 10~* 4.6 X 107°
0.9 8.9 x 107 1.2x107*

Table 1.13 Comparison between ADM and DDM for the same number of terms.

x h =0.001[13] h = 0.001[14] ADM[12]
0.2 137 x 10~ 11 3.10 x 10715 0.0

0.4 3.27 x 10711 7.54 x 10715 2.23 x 10716
0.6 5.86 x 10~ 11 139 x 10~ 2.22 x 10716
0.8 9.54 x 1011 2.13 x 10~14 133 x 10715
1.0 1.43 x 10710 3.19 x 10~ 14 488 x 1015

Table 1.14 Comparison between ADM [12] using 13 terms and other methods [13,14].
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Example 1.21 Consider the nonlinear differential delay equation of the third order
X
u" (x) = —1 + 2u? (E) 0<x<1, (1.308)

with initial conditions
u(0) =0,u'(0) =1,u"(0) = 0. (1.309)
The exact solution is u(x) = sin(x).

Solution:

Using the ADM, we represent the linear term as the decomposition series of components and
equating the nonlinear term u? by the series of Adomian polynomials 4,. Then, we get the
following recurrence relations

3
Up(x) = x — %,
(1.310)

Uy (x) = 2L71(4,), n=0,

where L71(.) = [ [~ [*(.) dxdxdx .
The Adomian polynomials A, for u? have been derived and used before. Following the first
few components of the solution, we get
3
X

up(x) = x — ?,

uy () = 2L (4,) = 2L <u02 (f)> 2171 ((i) _ (%)3>

_ 1 9 1 7+ 1
T 129024F T 1440" T8

w, (%) = 2L71(A,) = 211 <2u0 (;) w (;))

(1.311)

Then, the solution in series form is given by

u(x) = ug(x) + uy () + uy (x) + . (1.312)
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X ADM Exact
0.0 0.0 0.0
0.2 0.19866933079506122 0.19866933079506122
0.4 0.3894183423086505 0.3894183423086505
0.6 0.56464224733950355 0.56464224733950355
0.8 0.7173560908995227 0.7173560908995228
1.0 0.84147109848078966 0.84147109848078965

Table 1.15 Comparison between the exact solution and approximation solution (ADM).

1.7 Integral Equations

In this section, we will tackle integral equations and demonstrate how they can be
handled pretty efficiently using the ADM. We will consider both Fredholm and Volterra integral
equations. As anticipated, in the case of a nonlinear integral equation, the linear term u(x) is
represented by an infinite sum of components, but the nonlinear terms such as
u?, u®, cosu ,e%, etc that arise in the equation should be expressed in terms of Adomian
polynomial A,,.While for linear integral equation, the linear term u(x) is represented by an
infinite sum of components.

To start with, recall that an integral equation is an equation in which the unknown function u(x)
appears under an integral sign. A standard integral equation in u(x) is of the form:

h(x
u(x) = f(x) + Af ( )K(x, t)F (u(t))dt,

g(x) (1.313)
where F(u(x)) is a nonlinear function of u(x), g(x) and h(x) are the limits of the integral, X is
a constant parameter, and K (x, t) is a function of two variables x and t called the kernel or the
nucleus of the integral equation. We have to mention that the limits of integration g(x) and h(x)
can be variables, constants, or mixed.

By the decomposition method, assume the series solution for the unknown function u(x) to be in
the form
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2 1.314
u(x) = Z u,(x,t), ( )

n=0

while writing F (u(x)) in terms of Adomian polynomials as

°° (1.315)
Fu() = ) An(x0).
n=0

From (1.314) and (1.315), we get

o)

(x) d 1.316
Zun(x, £) = f(x) +,1fh K(x,t) (Z An> dt. (1316

n=0 9(x) n=0

Assuming the nonlinear function is F(u(x)), therefore by using (1.13), the Adomian
polynomials A,, can be easily determined. Applying the decomposition method for the equation
(1.316), the terms are given by the iterative scheme

Uy = f(.X'),
h(x)
Uy = A . K(x,t)A,dt, n =0, (1.317)
or equivalently,
h(x)
uy = f(x), U, = /1] K(x,t)A,dt,
g)
h(x) h(x)
u; =4 K(x,t)Adt, u; = 1 K(x,t)A,dt, (1.318)
g(x) g
and so on.
From (1.318), it is clear that the terms wu, u,, u,, ... are totally determined.
Example 1.22 We will apply ADM to solve the Fredholm integral equation
T 1.319
u(x) =2+ cosx + f tu(t)dt. ( )
0
Solution:
Using the Adomian decomposition method we find
00} T ©o
Z u,(x) =2+ cosx + f tz u,(t) dt.
~= 0o = (1.320)

The Adomian decomposition method admits the use of the recurrence relation:
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uy(x) = 2+ cosx,

T

U (x) = j tuy(t)dt = —2 + m?,
0

T

1
u,(x) = j tu, (t)dt = —m? +§T[4.
0

(1.321)
Using (1.321) gives the series solution
u(x) = cosx + %n“ + e (1:322)
The exact solution is given by
u(x) = cosx. (1.323)

Example 1.23 We will now use the Adomian decomposition method to solve the following
nonlinear Volterra integral equation:

ulx) =x+ J.xuz (t)dt. (1.324)

0

Solution:
Substituting the series (1.295) and the Adomian polynomials (1.296) into the left side and the
right side of (1.305) respectively gives

o)

Z w,(x) = x + fo xZAn(t) dt, was)

n=0

where the 4,,'s are the Adomian polynomials for u?(x) as shown previously. Using the
ADM strategy, we set

Ug = X,
X
= | 4,dt, n=012..
Ynt1 fo n n (1.326)

This gives
uO = X,

X X 1
u; = f Aydt = J. ud (t)dt = §x3,
0 0
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X X 2
U, = J- Aldt = J. Zuo (t)ul(t)dt = Exs,
0 0

(1.327)

Using (1.327) yields the series solution

1 2 (1.328)
— 43 5 ...
u(x)—x+3x +15x +

This is basically the McLaurin series expansion of the exact solution of the integral equation
which is given by

u(x) = tanx. (1.329)

1.8 Integro-Differential Equations

Finally, in this last section we will handle integro-differential equations. Recall that an
integro-differential equation is an equation that contains u™ (x), which is the nth derivative of
u(x), and an unknown function u(x) that appears under an integral sign. A standard integro-
differential equation is of the form:

h(x)
u™(x) = f(x) + 2 K(x, O)F (u®)dt, (1.330)
g(x)

where F(u(x))is a nonlinear function of u(x), g(x) and h(x) are the limits of the integral , X is
a constant parameter, K(x,t) is a function of two variables x and t called the kernel or the

nucleus of the equation. We have to mention that the limits of integration g(x) and h(x) can be
variables, constants, or mixed.

Without loss of generality, we may assume and consider a second order integro-differential
equation given by

h(x) (1.331)
u"(x) = f(x) + AJ K(x, OF (u(®))dt, u(0) =a, u'(0)=h.

gx)

Integrating both sides of equation (1.331) twice from 0 to x and then using the initial conditions
u(0) = a, u'(0) = b gives
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h(x)
u(x) =a+bx + L (f(x)) + AL™? (f K(x, t)F(u(t))dt),

g(x) (1.332)
where L™t = fox fox(. )dx dx . Then use the decomposition series
u(@) = Y 4y (@)
g (1.333)
and the Adomian polynomials for the nonlinear term
Fu(t)) = 2 A,
~ (1.334)

into both sides of (1.332) to obtain

o

h(x) >
> () = @+ b+ L)) + 2L ( [RER (Z An> dt)- 1335
] .

n=0 €9 n=0

This in turn is equivalent to

Ug+u + U+ =a+bx+ L(f(x))

h(x) h(x)
+AL? ( f K(x, t)AOdt> ALY ( f K (x, t)Aldt>
g(x) g(x)

h(x)
+AL! (f K(x, t)Azdt> + - (1.336)
g(x)

Here the A,,'s are the Adomian polynomials and upon utilizing the scheme (1.13) we can find
these polynomials easily. To determine the terms uy(x), u;(x), u,(x), ... of the solution u(x),
we construct and set the recurrence relation

Uy = a + bx + L71(f (%)),
h(x) (1.337)
Upyq = ALY (f K(x, t)Andt>, n = 0.
gx)
The terms uy(x), uq (x), u,(x), ... are completely determined. The series solution converges to
the exact solution if such a solution exists.
Example 1.24 Use the Adomian method to solve the Volterra integro-differential equation

X

u(x) =1 —j u?(t)dt, wu(0)=0.
0 (1.338)
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Solution:
Applying the one-fold integral operator L~ defined by

L) =f (.)dx. (1.339)
0

to both sides of (1.339), and using the initial condition we obtain

u(x) =x—-L7" (fxuz(t)dt ) (1.340)
0

Using the decomposition series (1.333), Adomian polynomials (1.334), and using the recurrence
relation (1.337) we obtain

up(x) = x
x 1
1y (x) = —L1 <f Ay (O)dt ) S
0 12
* 1
UZ(X) =-L1 <f Al(t)dt ) = mxg
0 (1.341)
This gives the solution in a series form
1 1 (1.342)
e 48 ...
ulx) =x 12x +252x .

Example 1.25 Using Adomian method we will solve the Volterra integro-differential equation

u’(x)=-1+x— jx(x —tu(t)dt, u(0)=1, u'(0)=-1, u'"(0)=1.
0

(1.343)
Solution:
Applying the three-fold integral operator L~ defined by
xrxor* 1.344
L) = J. f j (.) dxdxdx, ( )
o Y0 YO
to both sides of (1.324), and using the initial conditions we obtain
1 1 1 x 1.345
u(x) = 1—x+5x2—§x3+zx4—L‘1 <f (x — Hu(t)dt ) ( )
! ! ! 0

Using the decomposition series (1.333), and the recurrence relation (1.337) we obtain
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1 1 1
—1_ 2 T3, 4
uy(x) =1 x+2!x TR +4!x,
(7 1 .01 .11 . 1

(1.346)

Note that the decomposition solution given above, namely u = uy + uy + -+ is clearly the
McLaurin series expansion of the true solution which is given by

u(x) =e™*, (1.347)

An important conclusion can made here. The Adomian Decomposition method has many
advantages and disadvantages. The main advantage of ADM is that it can be applied directly for
all types of differential and integral equations, homogeneous or inhomogeneous. Another
important advantage is that it is capable of reducing the size of computational work while still
maintaining high accuracy of the numerical solution. The effectiveness and the usefulness of the
method are demonstrated by finding exact solutions to the models that will be investigated.
However, one major deficiency is that the ADM requires finding and evaluating the Adomian
polynomials for the nonlinear terms, and this is costly as it needs extensive calculations. The
error in ADM is not uniform across the interval. Further, the convergence is accurate locally,
mainly in a neighborhood of the boundary point(s).

More specifically, the ADM vyields a series solution which has to be truncated
for practical applications. Furthermore, the rate and region of convergence are likely deficiencies
and limitations. Though in certain situations the series converges very rapidly in a very small
region or neighborhood of the boundary points, it has very slow convergence rate in the wider
and/or outer region, where he truncated series solution is an inaccurate solution in that region,
which will greatly restrict the application area of the method.
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CHAPTER 2: THE VARIATIONAL ITERATION METHOD
2.1 Method Description

The variation iteration method (VIM), first introduced by J. H. He, is a scheme that in
many instances gives rapidly convergent successive approximations of the exact solution if such
a solution exists. If convergence is assured, the obtained approximations by this technique are of
high accuracy level even if some iterations are used.

Consider the nonlinear differential equation

Lu+ Nu = g(x), (2.1)

where L and N are linear and nonlinear operators respectively, and g(x) is analytical function.
We can construct a correction functional according to the variational iteration method for Eq.
(2.1) in the form

Up1(X) = u, (x) + f A (s)(Lun(s) + Nii,(s) — g(s))ds, n=0, (2.2)
0

where A is a general Lagrange multiplier, which can be identified optimally via the variational
theory, u, is the nth approximate solution and i, is a restricted variation, which means
ot, = 0.

It is clear that the main steps of the He’s variational iteration method is to determine the
Lagrange multiplier A(s) . Integration by parts is usually used to determine A(s). More
specifically, we can use

f M) w(s)ds = A(S)un(s) — f A () (s)ds,

f A(s) 1, (s)ds = A(S)uy(s) — M(S)uy(s) + j (s) 1, (5)ds, (2:3)

and so forth. The Successive approximations u,,,(x) of the solution u(x) will be readily
obtained upon using selective function u,(x). However, for fast convergence, the function u,(x)
should be selected by using the initial conditions as follows:

uo(x) = u(0), for the first order u’,,
uy(x) = u(0) + xu'(0), for the second order u",,,
ue(x) = u(0) + xu'(0) + %xzu”(O), for the third order u'",,. (2.4)
Consequently, the solution is given by
u = lim u,. (2.5)
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2.2 Derivation of Iteration Schemes:

In this section, we derive some useful iteration formulas for certain classes of first order
and higher order differential equations and determine the Lagrange multiplier A(s) for each class
as well.

Summary of Iteration Formulas: First, we give the following summary for some useful
iteration formulas that correspond to certain classes of differential equations:

u'+ f(u,u’) = 0:
) * (2.6)
tr () = () = [ [ () + )]s
0
u'+au+ f(u,u’) =0:
) X (2.7)
a0 = () = [ €<CI () + @t (5) + f )]s,
0
u"+ f(u,u’,u") = 0:
x 28
(I {umm = up(x) + f (s = [ (5) + F (0, 1] ds, 28)
0
u”"+ p%u+ f(u,u’,u") = 0: (2.9)
v { 1 (0) = n(x) + % [ 5B =) [4'n(8) + B2n () + f Gt w1,
0
u"—a’u+ f(u,u,u") = 0: (2.10)
A {un+1(x) = Uy (x) + %f (ea(s—x) - ea(x—s))[uun - azun(s) + f Uy, u'y, u"y)]ds.
0
(2.11)

uIII_I_ f(u’u!'uii'uiii) — O:
(VD)

1 X
a0 = 1y () =5 [ (5 = X210 5D+t i ' )]s
0
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u® + f(u,uw,u"u"u®) =0:

(VID) 1 (* o (2.12)
Upiq () = u, () + Ef (s —x)3 [ug)(s) + f(un,u ' u n,ug))] ds.
0
u(n) +f(u’u/’uu,um, ...,u(n)) =0:
VIII x4 ) n
( ) {un+1(x) = un(x) + (_1)71.[0 —(n — 1)' (S — x)n—l[u_fl )(S) + f(un,u'n,u”n,u’”n’ “_,u; ))]ds (1.13)

Derivations of Iteration Formulas: Next, we will show the derivation of the above formulas;
other formulas can be proved in an analogous fashion.

(I) Consider the first order equation ordinary differential equation of the form

u'+ f(w,u) =0, u(0) = a. (2.14)
Proof: The VIM employs the correction functional
X
Upeq (X)) = u,(x) + f A (s)[(un)s + ]‘;(u,u’)]ds, n =0, (2.15)
0

where f, is a restricted variation, (§f, = 0).

To find the value of A(s), we start by taking the variation with respect to u,,(x), which yields

X
Olnir _ 0 AR 2.16
. 1 +6un f&(s)[(un)s + fu(wu)ds |, (2.16)
0
or equivalently,
X
Supy, =0u, +6 fl(s)[(un)s +f;(u,u’)]ds . (2.17)
0

Applying the variation to Eq. (2.176) gives

X

SUupyq = O6u, +6 f/l (s)(uy)sds |- (2.18)

0
Integrating the integral in Eq. (2.18) by parts we have
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f A () (un)s(s)ds = [A(x) (up) (x) — 2(0) (up)(0)]
0

x (2.19)
— f A (s)u,(s)ds.

0

Replacing the integral in Eq. (2.19) by its value in Eq. (2.18) we obtain

X
Suyyq = Suy + S[A) (W) ()] = 6 < f A (s)un(s)ds> = 0. (2.20)
0
By Simplifying Eqg. (2.20) we get
X
Oupy, = [1 4+ A(x)]6u, — & <f A (s)un(s)ds> =0. (2.21)
0
The last equation is satisfied if the following ‘stationary conditions’ are satisfied:
A(s) =0,
14+ A(s)|s=x = 0. (2.22)

By solving (2.22) for A(s) we have A(s) = —1.
Substituting this value of A(s) into Eq. (2.15) gives the corresponding iterative scheme.

U1 (0) = 2 (x) — f [Cun)s + fo(,u)] ds, (2.23)

0
Thus, in general, the differential equation of the form u'(x) + f(u,u’) = 0 has this iteration
formula

Unsr () = Uy (x) — f [ (s) + f (up, un)lds. (2.24)
0

(IT) Consider the first order equation ordinary differential equation of the form

u'+au+ f(u,u) =0, u(0) = a,
(2.25)

where « is a constant.

Proof: The (VIM) admits the construction of the correction functional for equation (2.25) given
by
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a0 = () + [ 2y + awn @) + e udlds, n>0, (2.26)
0
where f, is arestricted variation (87, = 0).

To find the optimal value of A(s), we proceed as follows. Take the variation with respect to
u, (x); this leads to

X
SUppp = 06U, +6 <f A (s)[(un)s + au,(s) + ﬁ(u,u')]ds). (2.27)
0
Applying the variation to the integrand yields

SuUpsp =0u, +6 <f AGS)(up)s +a .fx/l(s)un(s) ds). (2.28)
: 0

Integrating the later integral by parts we get
X X
[ A6 adeds = B @)@ = 20 EIO] - [ X (sun)es: (2.29)
0 0
Replacing the integral in (2.28) by its equivalent in (2.29) then operating the variation we have

Supyq = 06Uy (x) + A(x)6u,(x) — & <f A (s)un(s)ds>
0

X

+46| a f A(s)u,(s)ds |. (2.30)
0
After simplifying, the last equation can be written as
X X
Sttyyy = [1 + A(0)]6uy (x) — 8 ( j Pt (s)un(s)ds> +6 <a f A (s)un(s)ds>.
° ° (2.31)
Hence, we obtain the stationary conditions
A'(s) — ai(s) =0,
(2.32)

14+ A(s)|s=x = 0.

Solving (2.30) for A(s) yields A(s) = —e®(—),

Then according to (2.32), we have the following VIM iteration formulation:
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X

U1 (0) = tn(x) — f e~ [(u,); + aun(s) + fo(w, u)lds, (2.33)

0
where n > 0.

Therefore, in general, the differential equation of the form u’'+ au + f(u,u’) = 0 has this
iteration formula

U1 (0) = U (X) — f €%~ [(un)s + it (5) + f (i, ') ]ds. (2.:34)

(IIT) Consider the second order equation ordinary differential equation of the form

u" + flu,u',u'") =0, u(0) = aq, u'(0) = b. (2.35)

Proof: The VIM employs the correction functional
X
Un+1 () = up(x) + f 2(®)[w)ss + fu(wuiu]ds, n=0. (2.36)
0

where £, is a restricted variation, (§f, = 0).

To find the value of A(s), start with taking the variation with respect to u,, (x). This yields

Suni1

s ([ .
5w, =1+ S_un f/l (s)[(un)ss + fn(u,u’,u")]ds , (2.37)
0

or equivalently

Supy1 = O0u, +6 fA )[wn)ss + frnwu,un]ds |- (238)
; :

Applying the variation to Eq. (2.38) gives

X
SUupyq = O6u, +6 fxl (s)(uy)ssds |- (2.39)

0

Integrating the integral in Eq. (2.39) by parts we have
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j A () (un)ss(s)ds = [A(x) (up)s(x) — 2(0) () (0)]
0

X

) () () — A(0) () (0)] + j A7 (5)up(5)ds. (2.40)

0
Substituting the integral in Eqg.(2.39) by the value of the integral (2.40) we obtain

Bitns1 = Sty + STACO) Un)s ()] = STLCE) () ()] + 6 ( f A" (S)“n(s)ds> “r a

By simplifying Eq. (2.41) we get

Supyr = [1 — 2 (0)]0u, + S[Ax)(u,)s(x)] + 6 (f A”(s)un(s)ds> = 0. (2.42)
0

So, the following stationary conditions are obtained
A"(s) =0,
1-2()s=x =0,
A(5) |52 = O. (2.43)

By solving (2.41) for A(s) we have A(s) = (s — x).

Thus, in general, the differential equation of the form u”(x) + f(u,u’,u”) =0 has this
iteration formula:

un+1(x) = un(x) + f (S - x) [(un)ss + f(unru'n’u”n)]ds' (2.44)
0

(IV) Consider the second order equation ordinary differential equation of the form
u”+ B*u+ f(u,u\u") =0, u(0) =a, u'(0) = b. (2.45)

Proof: The VIM employs the correction functional

Un+1(X) = up(x) + f A (S)[(un)ss + lgzun(s) + ﬁ:l(u: u’, u”)]ds: n=0 (2.46)
0
where f, is a restricted variation, (6f, = 0).

To find the value of A(s), start with taking the variation with respect to u,, (x) yields
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Su,
0

x
Rnsr _ 4 % < f A () (n)ss + FPun(s) + f(u u">]ds>, (247)
which is the same as

u”"+ f(u,u’,u') =0, u(0) = a, u'(0) = b. (2.48)
Applying the variation to Eq. (2.48) gives

SUpyy = Sy + 8 ( f A(8)(Up)ss + f xﬁz/l(s)un(s) ds>. (2.49)
0

0
Integrating the integral in Eq. (2.47) by parts we have

f A () (un)ss(s)ds = [A(x) (up)s(x) — 2(0) () (0)]

) (W) () — 2(0) () ()] + j 27 (5t (5)ds. (2.50)

0
Substituting the integral in Eq. (2.49) by the value of the integral (2.50) we obtain

Sups1 = Sup + 8[A00) (un)s ()] — [ (ur) ()] + 6 (f A" (S)un(S)dS>

0

+6 (fxﬁz/l(s)un(s) ds) = 0. (2.51)
By simplifying Eq. (2.51) we get

Suppq = [1 = 2'(0)]6up + 8[A(0) (up)s ()] + 6 (f /’l”(S)un(S)dS>
0

+6 (J-xﬁzl(s)un(s) ds> = 0. (2.52)

So, the following stationary conditions are obtained
A"(s) + B2A(s) = 0,
1- /1,(5)|5=x = 0'

A(8) sy = O. (2.53)

By solving (2.53) for A(s) we have A(s) = %sin(ﬁ(s —x))
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In general, the differential equation of the form u” + f?u + f(u,u’,u") = 0 has this iteration

formula

U1 (X) = un () + % [ "Sn(B(s — 1)) [n)es + BPitn + (it ds.
0

(V) Consider the second order equation ordinary differential equation of the form
u"—a’u+ flu,u,u) =0, u(0)=aq, u'(0) = b.

Proof: The VIM employs the correction functional

X
i (@) = () + [ 25| Candss = @ + Foat )]s,
0
n=0,
where f,, is a restricted variation, (6f, = 0).

To find the value of A(s), start with taking the variation with respect to u,, (x)yields

Su, Su,

0

Otnys =1+ i(f A (S)[(un)ss - azunfn(u,u’,u”)]ds ’

which is the same as

Supyq = Ouy, +6 (f 2()[(up)ss — a? + ﬁ(u,u',u”)]ds).
0

Applying the variation to Eg. (2.56) gives

Supy1 =O0u, +6 (f A (s)(un)ssds> ) <j A (s)azunds)
0 0

Integrating the integral in Eq. (2.59) by parts we have

f A (8) (up)ss(s)ds = [A(x) (un)s(x) — 2(0) (un)s(0)]
0

X

V) () () — 2°0) (un) (O)] + f A7 (5t (s)ds.

0

Substituting the integral in Eq. (2.59) by the value of the integral (2.60) we obtain
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X

Suniq = Sup + S[A00) (un)s(0)] = 8[A'(0) (un) ()] + & j A" (S)un(s)ds

0

x (2.61)
) f&(s)azunds =0.
0
By simplifying Eq. (2.61) we get
X
Sunty = [1 = ' (0)]6uy, + 5[0 (U)s(x)] + 6 f A" ($)un(s)ds
0
X
) f/’l(s)azun(s)ds =0. (2.62)
0
So, the following stationary conditions are obtained
A"(s) — a?A(s) = 0,
1=2(s)|s=x =0,
A(S)]5=x = 0. (2.63)

By solving (2.63) for A(s) we have A(s) = i (e¥(s™®) — ga(x=5)),

Thus, in general, the differential equation of the form u” — a?u + f(u,u’,u") = 0 has this
iteration formula

U1 (X) = up(x) .
1
_|_f ﬁ(ea(s—x) _ ea(x—s)) [(un)ss _azun
0

+ f (upu'y, u"n)] ds. (2.64)

(VI) Consider the third order equation ordinary differential equation of the form
u"(x) + fwu,u"u") =0, u(0)=a, u'(0)=>b u"(0)=c. (2.65)

Proof: The VIM employs the correction functional
X
Upy1(X) = up (%) + f A (5)[(un)sss + ﬁl(u: u',u”, um)]dsl n=0, (2.66)
0

where £, is arestricted variation (6f, = 0).

To find the value of A(s), start with taking the variation with respect to wu,, (x) yields
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5un+1 _
ou,

s (1 )
T E(f A () (n)sss + fn(“’”"u”'u”')]dS) (2.67)
0

which is the same as

X
SUupyr = O6u, +6 <f 2 ($)[ () sss + fn(u,u',u”,u”’)]ds>. (2.68)
0
Applying the variation to Eq. (2.68) gives

Supyp =0u, +6 (f A (s)(un)sssds) (2.69)
0

Integrating the integral in Eq. (2.69) by parts we have

fﬂ (S)(un)sss(s)ds = [A(x)(un)ss(x) - A(O)(un)ss(o)] - [A’(x)(un)s(x) - AI(O)(un)s(o)]
0

+[2"(0) (un) () = 2(0) (ur) (0)] — f A" ($)up(s)ds. (2.70)

Substituting the integral in Eqg.(2.69) by the value of the integral (2.70) we obtain
Sunt1 = 8up + 8[A(0) (un)ss(0)] = 6[2'00) () s ()] + 8[A"(x) (un) ()]
X

) J-A'”(s)un(s)ds = 0. (2.71)
0

By Simplifying Eq. (2.71) we get
Supsr = [1 4+ 2"(0)]6u, — 6[2'00) (wn)s ()] + S[A(x) (ur) s (x)]

) (j A”’(s)un(s)ds> =0. (2.72)

0
So, the following stationary conditions are obtained
A"(s) =0,
14+ 2"(s)|s=x = 0,
A'($)|s=x = 0,

A($)]s=x = 0. (2.73)
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By solving (2.73) for A(s) we have A(s) = — % (s —x)2.

In general, the differential equation of the form u""(x) + f(u, u’,u”,u'") = 0 has this iteration
formula

* 1 (2.74)
un+1(x) = un(x) + f _E(S - x)z [(un)sss + f(unu’n: u'y, u”’n)]ds-
0
(VII) Consider the fourth order equation ordinary differential equation of the form
u!m(x) + f(u, u',u”,u”', umr) — 0’
w(0) = @, (0) = b,w"(0) = ¢,u”"(0) = d. (2.79)
Proof: The VIM employs the correction functional
X
Upp1(X) = up (%) + j A () [(un)ssss + fu(u,u'u,u", u"]|ds, (2.76)
0
n = 0.
To find A(s) we can follow the same steps in (VI), we get
1 3
A(s) = E(S —x)°. 2.77)
and the correction functional for equation (2.77) is thus given by
*1
U1 (X) = Uy (x) + j 8(5 - X)3 [(Un)ssss + f uputy, u'yp, u"y, u"")]ds,
0 (2.78)
n = 0.
In general, using similar steps as before, the differential equation of the form
u™ ) + fu,uu”, ..., u™) =0, (2.79)

where f(u,u’, u”, ...,u(”)) is the linear or nonlinear term, gives the correction functional of the
form

X

1 (0) = U () + f ()| @ndsss...s + FoCtm i 0, uf™)]ds, 20 (280)

0

! (s — x)™. Hence the correction functional for equation (2.80) is given

(n-1)!

with A(s) = (—-1)"

by
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U1 (X) =

x 1 n
un(x) + (_]_)n 0_]- m (S — X)n [(un)sss..._s + f(un'u,nu”n' e ’u1(’l ))] ds, (2.81)

n=>0.

2.3 Implementation of the Method

The variational iteration method (VIM) handles nonlinear problems and linear problems
in a parallel manner. Unlike Adomian decomposition method, the variational iteration method
does not need specific treatment for the nonlinear operator. There is no need for Adomian
polynomials. As stated before, the main step in the variational iteration method is to determine
the Lagrange multiplier A(s). In this section, we will apply the VIM for certain classes of
nonlinear ordinary differential equations and show the resulting iterative formula. Numerical
results will be given in later sections.

In what follows we summarize the Lagrange multipliers as derived in section 2.2, and the
selective zeroth approximations:

u'+ flu,u) =0, A(s) = -1, uy(x) = u(0),
u"+ f(u,u’,u") =0, A(s) =5 —x, up(x) = u(0) + xu'(0),

1 1
u"+ fuu,u"u" =0 A(s) = —5(5 —x)?%,  up(x) =u(0) + xu'(0) + Exzu”(O),

(2.82)
Consequently, the solution is given by
u = lim w,. (2.83)
The VIM will be illustrated by studying the following examples.
Example 2.1 Consider the second order nonlinear ordinary differential equation
u”(x) +u?(x) =0, u(0)=a, u'(0)=b. (2.84)

Following the discussion presented above we find that A = (s — x) . Therefore, the iteration
formula is given by

oy () = 1y () + f (s = ) [(n(5))ss + u3(s)] ds. (2.85)
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Using the Taylor expansion and the specified initial conditions, we can choose uy(x) = u(0) +
u'(0)x = a + bx. Using uy,(x) = a + bx we have

uy(x) = a + bx,

u;(x) =a+bx + fx(s - x) [(uo(s))ss + uj (s)] ds,
0

X
(2.86)
uy (%) = u (x) + f (s—x) [(ul(s))sS + uf(s)] ds.
0
Consequently, the solution can be obtained from
u = lim up, (2.87)
Example 2.2 Consider the third order nonlinear ordinary differential equation
u”(x) + u?(x) = 0, u"(0) = ¢,u'(0) = b,u(0) = a. (2.88)

Following the discussion presented above we find that A = —%(s—x)z . Therefore, the
iteration formula is given by

*1
a0 = () = [ 55 = 27 n(5))ses +1B)] s (2.89)
0

Using the Taylor expansion, we can choose uy(x) = u(0) + u”(0)x + %(O)xz =a+ bx + gxz

from the given initial conditions. Using uy(x) = a + bx + gxz we have

c
ug(x) = a + bx +Ex2,

u;(x) =a+bx + %xz - fox% (s — x)? [(uo(s))sss + u (s)] ds,

u,(0) = 1 () — [ 3 (s — 0% [(w (), +1u3(s)] ds. (2.90)
Consequently, the solution can be obtained from

u = lim u,. (2.91)

n—oo

Example 2.3 Consider the first order nonlinear ordinary differential equation
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u'(x) + au(x) +u(x) =0, u(0)=aq, (2.92)
where « is a constant.

Following the discussion presented above we find that A = —e®(~%) _ Therefore, the iteration
formula is given by
X
a3 = 000 = [ I (5))s + i) + w3 (5)] . 2.93)

0

By Taylor expansion, we can choose u,(x) = u(0) = a from the given initial condition. Using
uy(x) = a, we have

uy(x) = a,

) — an fx pa(s—2) [(uo(s))s + auy(x) + ug(s)] ds,
0

u,(x) = uy(x) —f pa(s—x) [(ul(s))s + auy (x) + uf(s)] ds. (2.94)

0

Consequently, the solution can be obtained from

u = lim u,,. (2.95)

n—oo

Example 2.4 Consider the first order nonlinear partial differential equation
D w8 + 2,6 = w0, (0,0 =
7 L S U ) =u (1), u©t)=a (2.96)

Following the discussion presented above we find that A = —1. Therefore, the iteration formula
IS given by

X a a
Upsr1 (0, 0) = up(x,t) — f [gun(s, t) + 5 un(s, t) —up*(s,t) ]ds- (2.97)

Using the Taylor expansion, we can choose u,(x,t) = u(0,t) = a from the given condition.
Using uy(x,t) = a, we have

uy(x,t) = a,

*ro d
U (x,t) =a— fo [&uo(s, t) + auo(s, t) — ug(s, t)] ds,

X a a
u,(x,t) = uy(x, t) — f [&ul(sl t) + a%(sl ) —wu (s, t)] ds. (2.98)
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Consequently, the solution can be obtained from

u = lim u,,. (2.99)

n—oo

Example 2.5 Consider the second order partial differential equation

02 0 '

Wu(x, t)+ au(x, t)=0, u(0,t) =a, u (0,t) = b. (2.100)
Following the discussion presented above we find that A = s — x. Therefore, the iteration
formula is given by

X

02 d
Uprq (6, 8) = uy(x, t) + f (s —x) mun(s, t) + aun(s, t)

0

(2.101)

Using the Taylor expansion, we can choose uy(x,t) = a + bx from the given initial conditions.
Using uy(x,t) = a + bx, we have
uy(x,t) =a+ bx

X

uy (x, t)—a+bx+f
0

(s —x)[ > Uo(s, t) +iu0(s t)l ds

u,(x, t) = u (x) + jx(s —X) [—ul(s t) + iul(s t)l ds

(2.102)
Consequently, the solution can be obtained from
u = lim u,,. (2.103)

n—oo

2.4 Convergence of the Method

The variational iteration formula creates a recurrence sequence {u,(x)} ~,. Obviously,

the limit of the sequence will be the solution u(x), (2.5) if the sequence is convergent. In this
section, we will discuss the convergence of the variational iteration method.
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Theorem 2.1 The sequence {u,(x)} -, defined by (2.85) with uy(x) = a + bx (a,b are real

constant) converges to the solution, u(x), of problem (2.84) provided that u and the iterates
u,'s are bounded.

Proof:
By subtracting u(x) from both sides of (2.85), the equation can be rewritten as

Upq (1) = u(x) = up () — u(x) + f A(s) [(u = w)ss + ugs +un()lds, (2 104)
0

where 1 = s — x . Since u(x) is the exact solution of (2.84) then the term u in the integrand
can be replaced by —u?(s). By letting

E, (x) = u,(x) — u(x), equation (2.104) becomes

Braa (0 = EnG) + [ 469 [(Bn(9)),, = w2(9) + un()] . (2.105)
0

Integrating the first term in the integrand twice by parts we have

Basa () = By + A0 (5,00 ~ LB, 00 + V() Ba(s)ds

0

+f A(s) [—u?(s) + u?,,(s)]ds. (2.106)
0

Upon using the three stationary conditions (2.43) into the equation (2.106) we obtain
Buna ) = [ 265)06) + %, ()]s 2,107
Operating with the L2-norm on both sides of the last equation we get
| En+1 (GOll2 < fox/l(S) I=u?(s) + u®, ()l zds

X
< II/l(S)IIoof I=u?(s) + up ()l 2 ds, (2.108)
0
where [|A(s)|lc = maxgepor1|A(s)|. Clearly, A(s) is bounded since

Ao = lIs = X0 < llslleo + llxlle0 = 2T (2.109)

Applying the Mean Value Theorem to the integrand in (2.109), therefore equation (2.109)
becomes

X

NEn+1 ()2 < IIA(S)IIoof 2|lu() |l zllu, (s) —uls)ll 2 ds

0
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< 21A()]lon f 1Tz 11 B ()1l ds. (2.110)

Let

L = maxe[or)|A(s)| and P = maxgefo,ru(s)l.

Then, from inequality (2.110) we get

* 2111
Enia Gl < 2P [ B ()2 s (1
0
By induction and by letting M = 2LP, we get
X X
IEL (2 < Mf IEo(s)ll 2 ds < MIIEo(S)IIoof ds = M||Eo () |le x,
0 0
X X xz
1E:llz < M [ NNz ds < MBSl [ 5 ds = M2 B9l
0 0
X xSn n+1
|Eps1 GOllsz < M" fo 1Bn(®)lliz ds < MM 1EoC o | S7ds = MM HIE ()l oy
(2.112)
where [|[Eq(xX)|leo = maxyefo,r)|Eo(X)].
We have
lEo GOl = llug(x) — u()ll = lla + bx — ulx)ll,
< llall, + lIbx|l,, + lluCG)ll., = lal + |bL| + rg[g>;]lu(x)|-
XEo (2.113)

Where L = max,corlx|. Since u(x) is the exact solution of equation (2.84) then it belongs to
C?[0, T]. Therefore, it is bounded and consequently E,(x) is bounded as well. Let ¢ =
max,epor|u(x)|. Then we have from (2.112) and (2.113):

Xt (2.114)

IEp+1(Ol2 < M™1(Jal + |bIL + ) T D

xn+1
(n+1)!
and thus from (2.114) it follows that ||E,,;, (x)]||,z2 = 0, which means u,, (x) converges uniformly
to u(x).

As n — oo. Therefore, the sequence {M”*l(lal + |b|L + ¢) } converges uniformly to 0
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Theorem 2.2 The sequences {u,(x)} -, defined by (2.89) with wuy(x)=a+bx+

cx? (a, b, c are real constants) converges to the solution u(x), of the problem (2.88), provided
that u and the iterates u,,'s are bounded.

Proof:
By subtracting u(x) from both sides of (2.88), the equation (2.88) can be rewritten as

un+1(x) - u(x) = un(x) - u(x) + f A(s) [(un - u)sss t Ugss + uzn(s)]ds' (2.115)
0

where A = — i (s — x)2. Since u(x) is the exact solution of (2.89) then the term u, in the

integrand can be replaced by —u?(s). By letting E,(x) = u,,(x) — u(x), equation (2.115)
becomes

Epi1(x) = E,(x) + j A(8) |(Ea()),,, — () + u?, ()] ds. (2.116)
0

Integrating the first term in the integrand three times by parts we have
Eny1(x) = En(x) + A(x) (Ep)ss(x) — A (x)(En) (x) + 2" () Ep(x) (2.117)
f A'"(s)E,(s)ds +f A(s) [—u?(s) + u?,,(s)]ds.
0

0

Upon using the four stationary conditions (2.73) into the equation (2.117) we obtain

Fua@) = [ 206) [-u(5) + i (5))ds (2119)
0
Operating with the L?-norm on both sides of the last equation we get
| En+1(COll2 < f:/l(S) I=u?(s) + u®,(s)l zds
< 1) leo foxll—uz(S) +u?(s)ll2 ds. (2.119)
where [[A(s)[ = maxgepor1|A(s)| .Clearly, A(s) is bounded since
Ao = lls = xlle0 < lIslleo + llxllec = 2T (2.120)

Applying the Mean Value Theorem to the integrand in (2.120), therefore equation (2.120)
becomes

lEnt1 (Ol2 < IIA(S)IImf 2|lu(s) |l 2llun(s) —uls)ll 2 ds
0
< 2||/1(S)|Ioof a2l En ()l 2 ds. (2.121)
0

Let
L = max,e[or1|A(s)| and P = maxse[o 17/ (s)|. Then, from inequality (2.121) we get
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X
(2.122)
V@l < 2LP [ (9l .
0
By mathematical induction and letting M = 2LP , we conclude that
X X
IEL (2 < Mf IEo()l 2 ds < MIIEo(S)IIoof ds = M||Eo(s)|le x,
0x 0 X xZ
1Bl < M [ Bl ds < MIEln [ 5 ds = MBIl
0 0
X xsn
Vi Gl < M7 | B (512 ds < MM Bl [ 2 ds
0 n+1 0
— n+1l

where [|Eq(X)|lc = maxyepor|Eo ().
We have that

IEo () oo = llug(x) — u()llw = lla + bx + cx* — u(x)|lo
< llalle + Ibxlleo + llex?|loo + lu(x)lloo = lal + |DL| + |cL?| + xgl[g>;]lu(x)l, (2.124)

where L = maxyeporjlx| and L* = maxyeporlx®| . Since u(x) is the exact solution of
equation (2.88), then this implies that it belongs to C?[0,T] and so it is bounded and hence
Ey(x) is bounded by the latter inequality. Let d = max,.¢[or)lu(x)|.

Then we have from (2.123) and (2.124)

n+1

1Ens (Ollz < M™(Jal + [bLL + [elP] + d) =y (2.125)

n+1
as n — oo. Therefore, the sequence {M"“(Ial + |bL| + |cL?| + d) ﬁ} converges uniformly

to 0 and from (2.125) it follows that ||E,;;(x)||,2 = 0 and hence u,(x) converges uniformly
to u(x).

Theorem 2.3 The sequences {u,(x)} =, defined by (2.93) with u,(x) =a (a is a real

constant) converges to the solution ,u(x), of the problem (2.92), provided that u and the iterates
u,,'s are bounded.

Proof:
By subtracting u(x) from both sides of (2.93), the equation (2.93) can be rewritten as

Upy1 () —u(x) = u, (x) — ulx)

+ f A(s) [(un(s) — u(s))s + ug + au,(s) + u3n(s)] ds, (2.126)
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where 1 = —e®*G=%), Since u(x) is the exact solution of (2.92), then the term u; in the
integrand can replaced by [—au(s) — u3(s)]. By letting E,(x) = u, (x) — u(x), equation
(2.126) becomes

Epyr(x) = En(x) + fo 26) [(Ea(s)), = u3(s) = au(s) + auy(s) + u?n(s)| ds. (2.127)
Integrating the first term in the integrand once by parts we have
Buns3) = B, (0 + A EG) ~ [ 205) En()s
+ fo AGS) [, (5) — 13()]ds + @ fo “A(s) By (5)ds. (2.128)

Upon using the two stationary conditions (2.32) into the equation (2.128) we obtain

By () = j A(s) [u? () — u ()] ds. (2.129)
0

Operating with the L2-norm on both sides of the last equation we get
X
V@l < [ 4G 1n(0) = w5l 2ds

0
<A | NuPn(s) = ud()l 2 ds, (2.130)
0

where [|A(s)l., = maxgepor|A(s)|. Clearly, A(s) is bounded since

12l = || —e“C™|| < lle®™ ]I, + lle™ ||, = e + 1. (2.131)

Applying the Mean Value Theorem to the integrand in (2.130), then equation (2.130) becomes
X
|En+1 (Ol 2 < II/’l(S)IIoof 2@l zllun(s) — uls)lz ds

< 204, f 1T 2 En(s)l 2 ds. (2.132)
0

Let
L = maxgepory|A(s)] and P = maxepo 1l (s)|. (2.133)

Then, from inequality (2.132) we get

X
(2.134)
1Ens1(Oll,2 < 2LP j 1E, ()1l 2 ds.
0

By induction and upon letting M = 2LP, we get
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X pe
IE, ()l < M f 1Eo()ll,z ds < MIIEo()]l. f ds = MIIEy(s)]., x,

Ox 0 X x2
IE,(l,z < M f IE ()2 ds < M2[|Eo()]l. j sds = M2|Ey (51l 5,
0 0

X xSn
Ens1 GOl 2 < M"f IEn($)l,2 ds < M™H|Eg (o)l —ds
0 n+1 0
— n+1

where [|[Eq(X)|lo = maxyefor)|Eo(x)].
We have

1Eo )l = Nlug(x) —u()|l = lla — u)ll,
< llallos + [lu@)ll, = lal + xrg[g§]|u(x)l- (2.136)

Since u(x) is the exact solution of equation (2.92) then it belongs to €2[0, T]hence it is
bounded. This means that Eq(x) is also bounded. Let ¢ = max,corj|u(x)[. Then we have
from (2.135) and (2.136):

n+1

|Eps1 GOz < M™(lal +¢) m+ D (2.137)

xn+1

(n+1)!
(2.136) it follows that ||E,,4, (x)]|,2 = 0 and hence u, (x) converges uniformly to u(x).

as n — oo. Therefore, the sequence {M"“(lal +0) } converges uniformly to 0 and from

Theorem 2.4 Let u,(x,t) be the sequences {u,(x,t)} =, defined by (2.97) with uy(x,t) =

a (ais a real constant). If E,(x,t) = u,(x,t) — u(x,t) and ”%En(x, t)||L2 < |E,Cx, O)ll,2

o]

then the sequences {u,(x,t)},”,
[0,T] x [0, L], of the problem (2.96).

converges to the solution u(x,t) € (C(R))", (x,t) ER =

Proof:
By subtracting u(x, t) from both sides of (2.97), the equation (2.97) can be rewritten as

Uptq (%, ) —ulx, t)
= u,(x,t) —ulx,t)

x F) 0 d
¥ jo 36 o= (a0 = u(s,0) + 5-u(s,0) + w50 (213

—u,%(s, t) ] ds,
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where A = —1 . Since u(x,t) is the exact solution of (2.96) then the term %u(s, t) in the

integrand can be written as [—%u(s, t) + u?(s, t)] and by letting E,,(x,t) = u,(x,t) —u(x,t),
equation (2.138) becomes

En+1(x; t) = En(x! t)
+ fo A(s) [%( En(s,£))— %u(s, £) +1u2(s,t) + %un(s, 0

2.139
—u,%(s, t) ] ds. ( )
Integrating the first term in the integrand once by parts we have
X
Env1(x,t) = Ep(x,t) + 200 (Ep) (x, 1) — f A'(s) En(s, t)ds
0
X X
0
+ [ A6 0. 0) = w5, 01ds + [ 265) 52 (B0 (2.140)
0 0
Upon using the two stationary conditions (2.22) into the equation (2.140) we obtain
X X
0
— 2 2
Epi1(x,t) = —fo [u?, (s, t) — u?(s, t)] —fo 3¢ ( En(s,D))ds. (2.141)
Operating with the L2-norm on both sides of the last equation we get
X X a
VGOl < = [ (s, = w2, 0llzds = [ o BaGsi0)|| s
0 0 L
X X a
< |I-1Jl.. <f 2, (s, ) — u?(s, )]l 2 ds + f —(EaGs t))” ds>, (2.142)
0 0 L2
Where ||—1l|,, = maxsepo r)eefo,]|—11 . Clearly, A(s) is bounded since
Al = lI-11l, = 1 (2.143)
and
0
|5eEnte 0 | < 1EnCe 1 (2140
From (2.141), (2.143) and (2.144) we get
X X
1 GOl < | (0 = w25, 0llzds + [ B Olads 145
0 0

Applying the Mean Value Theorem to the first integrand in (2.145).Therefore the equation
(2.145) becomes

X

| Ena (2, )l 2 Sf 2lluls, Oll 2llun(s, ©) —uls, O)ll 2 ds
0
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X
<2 [ 176, Olla B, Ol ds, (2.146)
0

Let P = maxge[olu(s,t)l.

Then, substituting the inequality (2.146) into (2.145) we get
X X
s G Ollz < 2P [ (5Ol ds + [ 1B, Ol
0 0

X
= 1+ 2P) [ 1 Dl (2.147)
0
Then by induction and letting M = 1 + 2P, we get

X X
1E1 (x, Ol 2 < Mf IEo (s, Dl 2 ds < MI|Eo(s, t)”oof ds = M||Eo(s, )l x,
0 0
X

X
IE,(x, O)ll,2 < M j 1E, (s, Oll 2 ds < M2[|Eq (s, O, f s ds
0 0

xZ
= M2||Eo(s, Ol 5

X X an
| Epir G, )l2 < M”f IEn (s, Oll2 ds < M™HIEo G, Ol | s
0 o N
(Mx)™+* (2.148)
= ||Eo(X,t)||oom,

where ||Ey(x, Ol = maXxE[O,T],tE[O,L]lEO(x; t)l.
We have

1Eo (x, Ol = lluoCx, t) — ulx, Ol = lla —ulx, )l

< llall, + luCx, Ol = lal + xe[o’rpﬁé[o,”lu(x, t)| ( )

Since u(x, t) is the exact solution of equation (2.96) then it belongs to C?[0, T]hence it is
bounded. Let ¢ = maxye[or)tefo,.]|U(x, t)]. Then we have from (2.148) and (2.149):

n+1

1Ens1(x, Ol 2 < M™1(Jal + ¢) T (2.150)

xn+1

Asn — oo, Therefore the sequence {M”“(Ial +¢) }converges uniformly to 0 and from

(n+1)!
(2.150) it follows that || E,,41 (x, t)||,2 = 0 and hence w, (x, t) converges uniformly to u(x, t).

Theorem 2.5 Let u,(x, t) be the sequences {u,(x,t)} -, defined by (2.101) with u,(x,t)

IA

a+ bx(a,b are real constants). If E,(x,t) =u,(x,t) —u(x,t) and ”%En(x,t)”L2
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|E,(x,t)|[,2 then the sequences {un(x,t)}n‘j1 converges to the solution wu(x,t) €
(C(R)™, (x,t) € R =[0,T] x [0, L], of the problem (2.100).

Proof:
By subtracting u(x, t) from both sides of (2.101), the equation (2.101) can be rewritten as

un+1(x, t) - u(x’ t)
=u,(x,t) —u(x,t)

+ fxz(s) 2 (s 0) = u(5,)) + (s, 0
o ds2 M ’ ds

d
2 (5,0 ] s, (2.151)

where 1 = s — x . Since u(x, t) is the exact solution of (2.100) then the term %u(s, t) in the

integrand can be written as [—%u(s, t)], and by letting E,(x,t) = u,(x,t) —u(x,t), equation
(2.151) becomes

x [ B B
Epyy(x,0) = By (x,0) + j A(s) [ﬁ( Ea(s,0) = 5u(s,0) + 55,00 | ds. (2159

Integrating the first term in the integrand once by parts we have
0
Ens1(x,8) = En(x,8) + 20x) 5= (En) (1, £) = X' () (En) (1, 1)
X
+ f A"(s) E (s, t)ds
0

x 0
+j0 A(s)a( E,(s,t))ds. (2.153)

Upon using the three stationary conditions (2.43) into the equation (2.153) we obtain

x 2
Eppi(x,t) = j (s —x)%( En(s,t))ds. (2.154)
0

Operating with the L2-norm on both sides of the last equation we get

110
1m0l < s =l + [ |52 Euts, )] s (2.155)

where ||=1l|., = maxgeo 1)eefo,L)|—11- Clearly, A(s) is bounded since

1Al = lls = xllos < lIsll + x|l = 2T, (2.156)

and

9
||aEn(x, 0|, < IECe Oz, (2.157)
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From (2.156) and (2.157) we get

X
| Epsr (x, O]l 2 < ZTf0 IEw (s, D]l 2ds. (2.158)

Then by induction and letting M = 2T , we get

X pe
IE, (x, O)ll2 < M j 1Eo (s, Ol 2 ds < MIIEy(s, Dl f ds = M|[Eo(s, Ol x,
0 0

X X
1B, G, Oll,2 < M f 1EL (s, O)ll2 ds < M2[1Eo(s, )]l f s ds
0 0

2
2 X
= M2[|Eo(s, Dl 5,

X xSn
Enoa GOl < M [ G, Ol ds < MMIE GOl [ s
0 0 '
(MX)n+1
= ||Eo(x.t)||oom' (2.159)

where ||[Eq(x, t)[lo = maXyeor)tefo,]| Eo(x, D).
We have

1Eo G Dl = llug e, ©) = uCe, Oll.o = lla + bx = uCx, Dl
< - _ 2.160
< llall., + Ibxll.. + luCe, Ollo = lal + [bN] + _ max = lu(x, 0] (2.160)
where N = max,e[ortefo.r]| (X, £)]. Since u(x, t) is the exact solution of equation (2.100) then
it belongs to C2[0,T] hence it is bounded. Let ¢ = maxyejoryeeforylte(x, t)|. Then we have
from (2.159) and (2.160):

n+1

i1 G Dl < M+ (lal + 1BIN + ) s (2.161)

x+1

(n+1)!
(2.161) it follows that ||E,41(x, t)||,;2 = 0 and hence u,(x,t) converges uniformly to u(x,t).

As n — o, the sequence {M”*l(lal + |bN| + ¢) } converges uniformly to 0 and from

2.5 Ordinary Differential Equations

2.5.1 Initial Value Problems

In this section, we will apply the VIM method, as presented before, to some examples
involving linear and nonlinear 1\VPs.
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Example 2.6 Consider the following first order nonlinear ordinary differential equation subject
to an initial condition:

u'(x)—u?(x) =1, u(0)=0. (2.162)

Solution:
Following the discussion presented above, we find that A(s) = —1. Therefore, the iteration
formula is given by

s () = 100 = [ [(n (525 —18) = 1] ds. (2.163)

We can choose uy(x) = u(0) = 0 and this choice is appropriate based on the given condition.
Using uy(x) = 0 we have

uy(x) =0,
u (x) =0— j [(uo(s))s —u3(s) — 1] ds = x,
0

3

X
x
u, (x) :x—f [(ul(s))s—uf(s)—l] ds:x+?,
0
3 x x3 2 1
_ X 20 _ - B
u;(x) =x+ 3 fo [(uz(s))s us(s) 1]ds-x+ 3 +15x +63x,
1 2 17 1 4 134
_ 23,2 5, 20 7 15 13 11
() =X 2x” + Tex e Fegese X T 12285 T51975%
L 38,
2835"
x3 2 1 (2.164)
= S - S R vy A T '
u,(x) = x+ 3 +15x +63x + .-
The VIM admits the use of
u(x) = lim u, (x). (2.165)
n—-oo

Note that the infinite series solution obtained by the VIM is basically the McLaurin series
expansion of the exact solution of the problem which is given by

u(x) = tanx. (2.166)

Table 2.1 shows the resulting absolute error obtained by comparing the VIM, with three
iterations and four iterations, with the exact solution which is tan(x). The method yields highly
accurate numerical solution using few iterates particularly for values of x in the vicinity of 0.
However, it is important to mention that the error is not uniformly distributed over the entire
domain and slowly deteriorates as we increase the values of x, that is, for larger values that are

108



further away from the origin. Later, we will suggest a domain decomposition that will somewhat
overcome this setback. Figure 2.1 also depicts the numerical results.

X EXACT [tan(x) — uz(x)| [tan(x) — uy(x)|

0 0.0 0.0 0.0
0.1 0.100334672 39x107° 1.0 x 10710
0.2 0.202710036 5.0x%x 1077 43 x107°
0.3 0.309336250 8.8x107° 1.8 x 1077
0.4 0.422793219 6.9 x 107° 2.5 x107°
0.5 0.546302490 3.5x107* 2.0x107°
0.6 0.684136808 1.3x 1073 1.1x 107>
0.7 0.842288380 42 %1073 5.1%x107*
0.8 1.029638557 1.2 x 1072 1.9 x 1073
0.9 1.260158218 3.1 x 1072 6.5x 1073
1.0 1.557407725 7.5 x 1072 2.0 x 1072

Table 2.1 Error obtained using VIM with three and four iterations.

200 EXACT e Up (X))  m U3 (X) e 2y ()

0.5

Figure 2.1 Comparison between exact and VIM solutions with two, three and four iterations.

Example 2.7 Consider the following first order nonlinear ordinary differential equation subject
to an initial condition:

u'(x) + u?(x) =0, u(0) = 1. (2.167)
Solution:

Following the discussion presented above, we find that A(s) = —1. Therefore, the iteration
formula is given by
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ey () = 1, (x) — f [t (5))s + 12 ()] dis. (2.168)

We can choose uy(x) = u(0) = 1 and this choice is appropriate based on the given condition.
Using u,(x) = 1 we have

up(x) =1,
X

W) =1- j [(un(8))s +u2(s)] ds = 1—x,
0

X
x
u,(x) = x — f [(un(s))s +ui(s)]ds =1—x +x2 — EY
0
53
Up(x) = 1—x+x? gt (2.169)
The VIM admits the use of
u(x) = lim u, (x). (2.170)
n—o0

Note that the infinite series solution obtained by the VIM is basically the McLaurin series
expansion of the exact solution of the problem which is given by

v =gy (2.171)
In order to accelerate the convergent rate, we can differentiate both sides of equation (2.167)
with respect to x, so we get
u'" 4+ 2uu’ = 0. (2.172)
From equation (2.167) we can find that
u' =—u? u(0)=1u'(0)=-1. (2.173)
Substituting (2.173) into (2.172) we get
u”" —2u=0, u(0)=14(0)=-1. (2.174)

Using VIM to solve Eq.(2.174), therefore, the iteration formula is given by
X
s =t + [ 5= D)) = 0 (] . 2175)
0

We can choose uy(x) = u(0) + u'(0)x = 1 — x, using the first two terms of McLaurin series
and the given initial conditions

uy(x) =1—x,
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u(x)=1—x+ f (s —x) [(uo(s))ss - 2u30(s)] ds

3 4 5

_ 1 N x? x N xt x
ST T Ty T
x2  x3 x% x5 x , (2.176)
u(x)=1—-x+ 77 + =20 + J; (s —x) [(ul(s))ss —2u 1(5)] ds,

Table 2.2 shows the resulting absolute error obtained by comparing the VIM, before and after

differentiating using only two iterations, with the exact solution which is (1T1x) The method

yields highly accurate numerical solution after differentiating the first order equation (2.167) into
the second order equation (2.174).

X 1st order 2nd grder

0 0.0 0.0
0.1 5.1x 1073 3.7 x 1073
0.2 2.0 X 1072 1.1 x 1072
0.3 4.5 %x 1072 1.7 x 1072
0.4 8.0 x 1072 2.2 X 1072
0.5 1.2x 1071 2.6 X 1072
0.6 1.8x 1071 3.0 x 1072
0.7 2.4 %1071 3.6 X 1072
0.8 3.1x 1071 47 x 1072
0.9 3.8x 1071 6.1 X 1072
1.0 46x 1071 8.0 x 1072

Table 2.2 Comparison between the error obtained using the 1% and 2" order equation for
Example 2.7 by VIM using two iterations.

Example 2.8 Consider the second order homogenous ordinary differential equation
u’" +u=0, u'(0) =1, u(0)=1. (2.177)

Solution:
From (2.43) we find that 1 = s — x. Therefore, the iteration formula is given by

Uy = 11, + j (s — ) [ s6(5) + tn(s)] . (2.178)
0

We can choose uy(x) = 1 + x by using the first two terms of McLaurin series and from the
given initial conditions. Using u,(x) = 1 + x we have
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uy(x) =1+ x,

X xZ x3
ul(x)=1+x+J0 (s —x) [(uo(s))ss+uo(s)]ds=1+x—§—§,
x2 X3 X
u,(x) =1 +x—E—§+f0 (s—x) [(ul(s))ss +u1(s)] ds
x? x3 x* xb
=1+X—E—§+I+§,
1 1 1 1 1 1
= (1= —x2 4 x4 _ _x6 ) ( 34 a5 T )
up (x) ( TR TR R Rl E A TR R T (2.179)
The VIM admits the use of
u(x) = lim u, (x). (2.180)
n—-oo

The VIM solution in series form is basically the McLaurin series expansion of the exact solution
to this IVP which is given by

u(x) = cosx + sin x. (2.181)

The numerical results are summarized in Table 2.3 and illustrated in Figure 2.2. Similar, to our
analysis as in Example 2.6; the error is very small in the vicinity of 0 and worsens away from it.
Only two iterations were necessary to obtain accurate results. The error can be improved by
taking more terms but this is at the expense of CPU time.

x EXACT VIM

0 1.0 0.0
0.1 1.094837582 1.0 x 10~°
0.2 1.178735909 9.2 x 1078
0.3 1.250856696 1.1 x10°°
0.4 1.310479336 6.0 X 107°
0.5 1.357008100 2.3 x107°
0.6 1.389978088 7.0 X 1075
0.7 1.409059874 1.8x107*
0.8 1.414062800 4.0 x 107*
0.9 1.404936878 8.2x107*
1.0 1.094837582 1.6 x 1073

Table 2.3 Error obtained using VIM with two iterations.
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1.4

= EXACT - VIM

Figure 2.2 Comparison of the exact solution with VIM using two iterations.

Example 2.9 We will now apply the variational iteration method to solve the following third
order linear homogeneous I\VP:

W +u' =0, u(0)=1, w'(0)=0, u’'(0)=1. (2.182)

Solution:
From (2.73) we find that 1 = — % (s — x)2. Therefore, the iteration formula is given by

1
Up+1 = Up — J;) E (S - x)z[(un)sss(s) + (un)S(s)] ds. (2-183)

2 2
We can choose uy(x) = 1 + x? from the given condition. Using uy(x) = 1 + % we have

2

X
ug(x) =1 +7,
x? x X2yt
u(x) =1 +7+f0 (s—x) [(uo(s))sss +u'0(s)] ds =1 +E+E’
xZ x3 x
u(x) =1+x s TheC TS jo (s —x) [(ul(s))ss +u1(s)] ds
2 4 46

(2.184)

113



The latter VIM solution in series form is basically the McLaurin series expansion of the exact
solution to this IVVP which is given by

u(x) = cosh x.

(2.185)

The numerical results are shown in Table 2.4 and Figure 2.3. We have similar observations as
those in the previous two examples.

X EXACT VIM

0 1.0 0.0
0.1 1.005004168 0.0
0.2 1.020066756 0.0
0.3 1.045338514 2.0x107°
0.4 1.081072372 1.6 x 1078
0.5 1.127625965 9.7 x 1078
0.6 1.185465218 4.1 %1077
0.7 1.255169006 1.4 x10°°
0.8 1.337434946 4.2 x10°°
0.9 1.433086385 1.1 x107°
1.0 1.005004168 2.5x 1075

Figure 2.3 Comparison between the exact and VIM solution using two iterations.

Table 2.4 Error obtained using VIM with two iterations.

= EXACT

- VIM
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2.5.2 Boundary Value Problems
In this section, we apply the variational iteration method for solving boundary value
problems.

Consider a general differential equation given in operator form as:

Lu+ Nu = g(x), (2.186)

where L and N are linear and nonlinear operators, respectively, and g(x) is an analytical
function. According to VIM, we need to construct a correctional functional as follows:

Upr () = u,(x) + f A (s)(Lun(s) + Nii,(s) — g(s))ds, n =0, (2.187)
0

where A(s) is a general Lagrange multiplier, which can be identified optimally via the variational
theory, u,, is the nth approximate solution and i, is a restricted variation, which means
61, = 0. In the following, we will present some examples to illustrate the power of the method
in solving certain classes of boundary value problems.

Example 2.10 We will apply the variational iteration method to solve the second order linear
differential equation

u" +u+x=0, 0<x<1, (2.188)

subject to the boundary conditions

u(0) =u(1) =0. (2.189)

Solution:
From (2.53) we find that A = sin(s — x). Therefore, the iteration formula is given by

X

Uprq () = u,(x) + f sin(s — x) (u'',,(s) + u,(s) + s) ds. (2.190)
0

We can choose u,(x) = 0 + Ax that can be justified by substituting the given condition in the
first two terms of the McLaurin series expansion. Here A is the value of u'(0) which will ne
given in the problem, however it will be easily found by applying the second boundary
condition, namely u(1) = 0. Upon using u,(x) = 0 + Ax we have

uy(x) = Ax,
X
uy(x) = Ax + j sin(s — x) [(uO(s))ss +up(s) + S] ds = Asinx +sinx — x. (2.191)
0
By imposing the second boundary conditions given in (2.189), this yields the value of A =
_1 — 1, and so we have u; = Si.nx -
sin1 sin1
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Example 2.11 The VIM will be used to solve the fifth order nonlinear boundary value problem
u® —e*y2 =0, 0<x<1, (2.192)
with the boundary conditions
u(0)=u'(0)=u"(0)=1, u(l)=u'(1) =e. (2.193)
Solution:

From (2.81), we find that A = (—1)° % (s — x)*. Therefore, the iteration formula is given by

X

Upp1 () = u, (%) — f%(s —x)* (U, (s) —e™u2) ds. (2.194)

0
As explained earlier, using the boundary conditions and McLaurin series expansion, one can
select the start function to be wuy(x) =1+ x+ %xz + §x3 + %x“‘. Note that 4, B are the

values of u"”(0) and u™(0), respectively which will be determined later from the resulting
solution and the other unemployed boundary conditions.

Using ug(x) =1+ x +%x2 +%x3 +%x4 , We have

1 A B
_ A2 .3 _ L4
uo(X)—1+x+2x TR TES )
1 A B 1 _
() =1+x+oxt+500 W"“L 76— (wo), ., — e uf]ds. (5195

By imposing the second set of boundary conditions (2.193), namely u(1) = u'(1) = e, yields

A =0.8582214341and B = 2.044641409. (2.196)
The exact solution for this problem is given by
u(x) = e”. (2.197)

Table 2.5 and Figure 2.4 show the numerical solution that resulted from the VIM using only one
iteration. The error is relatively very small which can be improved by adding more iterates. Note
further that the absolute error is almost uniformly distributed within the domain.
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x EXACT ABSOLUTE ERROR

0 1.0 0.0
0.1 1.105170918 7.1x107°
0.2 1.221402758 2.8x10°°
0.3 1.349858808 1.6 x 107*
0.4 1.491824698 5.2%x107*
0.5 1.648721271 8.2x107*
0.6 1.822118800 8.2x107*
0.7 2.013752707 9.5x 10~*
0.8 2.225540928 6.2 x107*
0.9 2.459603111 1.9 x 1074
1.0 1.105170918 8.2x107°

Table 2.5 Error obtained from VIM using one iterate.

= EXACT = VIM

02 04 06 0’8 1 12 14 15 18
X

Figure 2.4 Comparison of the exact solution with VIM using the first iteration.

Example 2.12 The thin film flow of a third grade fluid down that includes a plane of inclination
a # 0, is governed by the following nonlinear boundary value problem

d?u N 6(B, + B3) (du)z d*u  pgsina _

dy? P ay) o2t 4 0, (2.198)

with the boundary conditions

u(0) =0, =0 aty=6. (2.199)

Introduce the following parameters
8%pgsina

y =6y7, u=——-uu"
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662p?g?sin?a
13

= (B2 + B3). (2.200)

The exact solution for § = 0 is given by

1 2.201
u(y) = 5[y~ 12~ 1] (2200
Solution:
Using the parameters (2.200) we get
d §%pgsina_,
d_u _ du dy* _ du l _ u u l _ dpgsin a du” (2.202)
dy dy*dy dy*é dy* 1) U dy*
and
d du
d*u _“\dy) ©épgsinad®u’dy” pgsinad®u’ (2.203)
dy?  dy uooody?dy poody”
Substituting (2.202) and (2.203) into equation (2.198), we get
pgsin a d*u* N I6(/32 + B3) 6%p?g?sin*a (du*)zl N pgsina 0
po dy? u p? dy* p ’
sinad?u*  6(B, + du*\* d?u* sina
pg 4 (B2 i B3) 523 gdsin 3a< ) : pg _o,
U dy* U dy*/ dy* U
2u* L 6s, + )Szngzsin 2a <du*)2 d*u* 10
iy B2 + B3 PE dy) ay2 T (2.204)
Using the parameters (2.200) we get
d?u* 5 (du*)z d?u* 1-0
dy*? dy*) dy*? =Y (2.205)
with the boundary conditions
du _ (2.206)

u(0) =0, 0 aty =1.

dy
By integrating both sides of the Equation (2.205) and letting u = u*, we get

du iy <du>3 o (2.207)

where C is a constant. Using the second condition of (2.206) in Equation (2.207) we get that
C = 1. Hence, the system (2.207) can be written as
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d 3
¢ 2ﬂ< )+y—1=0, u(0) = 0. (2.208)

Now, apply the VIM on Equation (2.208) and note that from (2.22), we have that A = —1.
Therefore, the iteration formula is given by

Unt1(Y) = up(y) — jy (du" 2/3( ")3 +5— 1) ds. (2.209)

0
We can choose u,(x) = 0 from the given initial condition. Using u,(x) = 0 we have

uy(x) =0,
3

() = up() - f( +2p ("2 )+s—1>ds=—%[(y—1)2—1],

0, () = uy (y) — f( +2p(20 1>3+S—1>ds

1 B
——E[(}’—l)z—1]+E[()’—1)4_1]'

y
d duy\’®
w) =0 - [ (GE+2p(GE) +5-1)as
0
1
= 2l -2~ 11+ 5 1y - D - 11 - 282 - e 1]
+ 300y~ D~ 1] - i [y -1~ 1],
(2.210)

It is clear that by setting f = 0 in the scheme (2.210), we recover the exact solution for the case
of Newtonian fluid. Hence, the first approximation of the nonlinear system solved by the VIM
gives the exact solution of this linear equation. Therefore, we can say that the VIM can be

2.5.3 Singular Boundary Value Problems

In this section, we will apply the variational iteration method for the numerical solution
of the following class of singular boundary value problems of the form

a
u +;u = f(x,u), (2.211)

with boundary conditions
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u(0) = A(or u’(0) =B), u(1l)=C (oru'(1) = D). (2.212)

The VIM employs the correction functional

X

tir () = 100 + [ 1) [(ndes +% )y = o, uD]ds,  n0, (2.213)

0

where f, is a restricted variation, (§f, = 0).

To find the value of A(s), start with taking the variation with respect to u,,(x), which yields

SUn 41

=1+ % < f 265D | s + = (s = Faae ', w0 ds>, (2.214)
0

du,
which is equivalent to
X
Sthp1 = Oup + ( j 1(5) | (un)ss + % (s — fuw ', u")| ds>. (2.215)
0
Applying the variation to Eq. (2.215) gives
X
a
SUpiq = 06Uy, +6 (f A(s) ((un)ss + . (un)s) dg>, (2.216)
0
Evaluating the integral in Eq. (2.216) by parts we have

f A () (Un)ss(s)ds = [A00) (un)s (x) — 2(0) ()5 (0)]
0

x (2.217)
) () () — 2'(0) () ()] + f A7 (5)itn(s)ds

0

and
X X b
a a a a
f 2() ) (5)ds = = A (x) - f SXun)ds + f A un(s)ds. (2218)
0 0 0
Substituting the integral into Eq.(2.216) by the value of the integral (2.218) we obtain
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Bts = Sty + ST ()5 ()] = S () () (O] + 8 [ A, ()]

+6 ( f A" (s)un(s)ds> ) ( f %A'(s)(s)un(s)ds>
0 0

+6 (j %A(s)uﬂs)ds) =0. (2.219)
0

By simplifying Eq. (2.219) we get
Sy = [1 — () + %A(x)] Su, + S[AG) (W) ()] + 8 ( f A"(s)un(s)ds>
0

—6 (j <%/1'(S) - S%Ms)) (S)ds) = 0. (2.220)
0

So, the following stationary conditions are obtained

A7(s) — (%A'(s) - %A@)) —0,

1-2(8)s=x =0, (2.221)
A($)|s=x = 0.
By solving (2.221) for A(s) we have
Casel: Fora=0
A(s) = (s — x).
Case 2: For a = 1, it becomes a cylindrical problem
—an (S (2.223)
A(s) = sin (x)

Case 3: For a = 2, it becomes a spherical problem

s(s—x) 2.224
A(s) = o ( )
Case 4: For general case a > 2,
s(s* 1 —xe 1 (2.225)
A(s) = @ Dx 1

Example 2.13  Consider the linear singular boundary value problem
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v, 42 xz_o (2.226)
u ;u u Z—E— )

with boundary conditions

17
u'(0)=0 u(l)= I (2.227)

2
The exact solution is u(x) = 1 + ’1“—6

Solution:
Since a = 1, and according to (2.222) the iteration formula is given by

X
2

s 1 5 s
un+1(x) = un(x) + f sin (;) l(un)ss(s) + E (un)s(s) +u, + Z - 1_6 ds. (2228)
0

We can choose uy(x) = u(0) +u'(0)x = u(0) = A, by using Taylor’s expansion and the given
conditions, taking into consideration that the value of A will be determined later using the
boundary condition at x = 1. Using uy(x) = A we have

uO(x)=A1
* S 1 5 =2

u; (x) = Ax + j shn () [(uass(s) = ()5 () + g + 7 — 72| ds
= A— x4 ot oot 2.229
IR S TR T T (2.229)

By imposing the second boundary condition in (2.227) yields A = 0.9947916667. Thus we
have

u; = 0.9947916667 + 0.0638020833x% + 0.003906250000x*. (2.230)

The error resulting from the VIM using one iteration is listed in Table 2.6. The error is uniformly
distributed and can be improved by taking more iterates. This result shows the fast convergence
of the VIM for this case. Figure 2.5 shows the numerical and exact solutions and they are almost
compatible from the first iterate.
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X EXACT ERROR

0 1.0 5.2 %1073
0.1 1.000625000 52x1073
0.2 1.002500000 5.2 %1073
0.3 1.005625000 5.1x1073
0.4 1.010000000 49 %1073
0.5 1.015625000 4.6 x 1073
0.6 1.022500000 42 %1073
0.7 1.030625000 3.6 x 1073
0.8 1.040000000 2.7 %1073
0.9 1.050625000 1.6 x 1073
1.0 1.000625000 0.0

Table 2.6 Error obtained using VIM with one iteration.

1.06

= EXACT = VIM

1.05

1.03

1.02 4

1.01

X

Figure 2.5 The exact solution versus the VIM solution using one iteration.

Example 2.14 Consider the linear singular boundary value problem
" 2 / 5 _

with boundary conditions

3
uw(0)=0, u(l)= g (2.232)

1

%2
1+?
Solution:

Since a = 2, and according to (2.224) the iteration formula is given by

The exact solution is u(x) =
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s(s

x_ a2 [(un)ss(s) + % (up)s(s) + uSn] ds. (2.233)

s 1 (0) = n(x) + j
0

We can choose uy(x) = A from the given conditions. Using u,(x) = A we have
uy(x) = 4,
u(x) =A+ f

D ) 6) + 5 ) () + s

1
=A- EASXZ,
1, () = Ax — — A5 + f iCintd) [(ul)ss(s) 2 ). + usl] ds.
6 0 X S
(2.234)

By imposing the second boundary condition in (2.232) that is specified at x = 1 yields A =
0.9936779905. Thus, we have

u, = 0.9936779905 — 0.1614645186x2 + 0.03935498878x* (2.235)
—0.006090345429x° + 0.0005772848378x®
—0.00003069950679x° + 7.034948337 - 10~ x12.

The numerical results using two iterates of the VIM are given in Table 2.7 and illustrated in
Figure 2.6. Obviously, the error is acceptable since we used only two steps of the method.

X EXACT ABSOLUTE ERROR

0 1.0 6.3 x 1073
0.1 0.9983374885 6.3 x 1073
0.2 0.9933992682 6.1 x1073
0.3 0.9853292777 59x 1073
0.4 0.9743547036 5.5%x 1073
0.5 0.9607689226 5.1x 1073
0.6 0.9449111829 45x 1073
0.7 0.9271455412 3.8x 1073
0.8 0.9078412994 29x1073
0.9 0.8873565094 1.6 x 1073
1.0 0.8660254041 0

Table 2.7 Error obtained using variational method with two iterations.
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Figure 2.6 Comparison between the exact solution and second iterate of VIM.

2.5.4 System of Equations

In this section, we apply the variational iteration method (VIM) to solve a system of
differential equations of first order. Since we can convert every ordinary differential equations of
higher order into a system of differential equations of the first order, so this method can be used
for solving higher systems as well. The method will be illustrated by discussing some examples.

Consider a system of ordinary differential equations of the first order with initial conditions of
the form:

u'y = 100U, Uy, o uy),  ug(xg) = uy,
u'y = 00U, Uy, o Uy), U (Xg) = Uy,

Up = fru(ug, Uy, e ty),  up(Xp) = Uy, (2.236)

where each equation represents the first derivative of one of the unknown functions that depend
on the independent variable x, and n unknown functions fi, f5, ..., fu-

Every ordinary differential equation of order n can be written as a system of n ordinary
differential equation of order one. For example, consider an equation of the form

u®™ = f(x,u,u’,u”, .., u®D), (2.237)

with initial conditions u(x,) = a,u'(x,) = b,u”’ (xo) = ¢, ..., u™ VY (x,) = d.
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Let u(x) = uy (%), u'(x) = uy (%), ..., u™ Y (x) = u,(x). Thus, we can rewrite Eq.(2.236) as
follows:

u'p =ux(x),  uy(xp) = ulx),
Uy = uz(x), ux(x) = u'(x),

u,n = fn(x’ ul) uz; ’un); un(xO) - u(”_l)(xo), (2238)

where the system (2.238) is a system of differential equations of the first order.

Example 2.15  We will use the variational iteration method to solve the system of non-
homogeneous differential equations:

u'y =uz;—cosx, u(0) =1,
u'; =uz —e*, u,(0) =0,
u,3 = Uy — Uy, u3(0) = 2. (2239)

Solution:
From (2.22) we find that A, (s) = A,(s) = 15(s) = —1. Therefore, the iteration formula is given

by

X
— — ! —
Up,,, = U, <j0 (u'y, —us, + cos s)ds),
X
_ _ r s
Uy, oy = Uz, (fo (v, —us, +e )ds>,

x
Uzppq = Uz, — (j;) (ul?’n — Uy, + uzn)d‘g)' (2240)

We can choose uy ,(x) = 1,u,,(x) = 0,uz,(x) = 2, from the given conditions. Using u, ,(x) =
1,uy,(x) = 0,uz,(x) = 2 we have

u,(x) =1+ 2x —sinx,
Uy, (x) =1+ 2x —e”,
uz, (x) =2 +x,

uy,(x) =1+ 2x —sinx +§x2,

1
Uy, (x) =1+2x —e* +§x2,

uz,(x) = cosx +e*, (2.241)

If we do more iterates, we will get infinite series solutions which are namely either the exact
solution or the McLaurin expansion of the exact solutions that will converge to it. It is worth
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noting that noise terms might errors as we do more iterates but eventually they will disappear as
we pass to the limit. The iterates will converge to the exact solutions which are given by

uy (x) = e”,
u,(x) = sinx,
us(x) = e* + cosx. (2.242)
Example 2.16 We now use the VIM to solve the following Euler-Lagrange equation of order
three:
1 .
uIII+_2uI__3u= 0’ (2 243)
X X
with the initial conditions
u(l) =1, u'(1)=2, u"(1)=3. (2.244)

Solution:
Let u;(x) = ulx), u,(x) = u'(x), us(x) =u"(x). Thus, upon converting EQ.(2.243) into
system of three differential equations of order one, we have

u'y = uy, u () =1,
ulz = us, uz(l) =2,
I 1 1 =
u 3= —Fuz + Ful; u3(1) - 3' (2'245)

From (2.22) we find that 1, (s) = 1,(s) = A3(s) = —1. Therefore, the iteration formula is given
by

x
J— — ! —_
Uipyr = U1y (j; (u’ In uzn)ds>'
x
J— — ! —_
Uzpyq = U2y <f1 (u’ 2n u3n)ds)'

x 1 1
u3n+1 = u3n - <f1 <ul3n + S_zuZn - S_3u1n> dS> (2246)

We can choose uq ,(x) = 1,u,,(x) = 2,uz,(x) = 3, from the given conditions. Using u; ,(x) =
1uy(x) = 2,uz,(x) = 3, we have

u, (x) = -1+ 2x,
Uy, (x) = =1+ 3x,
3 2 1

us; () =5+ - - (2.247)

The higher iterates can be found in a similar fashion.
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2.5.5 Domain Decomposition Method

In this section, we will use the domain decomposition approach to compliment the VIM,
which will help to overcome the deterioration of the error for larger values of the independent
variable. The VIM produces accurate error but locally, but the error worsens as we move away
from the initial point. The domain decomposition will improve the accuracy for larger values and
can make the error uniform across the domain. In order to implement this method, we subdivide
our computational domain, as a union of sub-domains, and then solve the BVP or IVP on each of
these sub-domains separately. The initial condition on the nth sub-domain can be obtain and
approximates from the VIM solution obtained on the (n — 1)th sub-domain. We will do an
example to show the efficiency of the proposed method.

Example 2.17 We will apply the domain decomposition (DD) combined with the VIM on
Example (2.6) which is given by:

u'(x) —u?(x) =1, u(0) = 0. (2.248)

Solution:
To solve our example, and illustrate the DD approach, it suffices to subdivide the domain into

two sub-domains, [0, 0.5] and the second is [0.5,1]. Applying the VIM on [0, 0.5] first, then
from equation (2.164) we can get the solution in series form and thus use it to estimate the value
of the solution at x = 0.5, in particular, we get the following value:

u(0.5) = 0.5459573413. (2.249)

This value is now used as the initial condition when applying the VIM on the sub-interval
[0.5,1]. From (2.22) we find that A = —1. Therefore, the iteration formula is given by

Uny1(0) = up(x) — f [(un(5))s — ur(s) — 1] ds. (2.250)
0.5

We now choose uy(x) = u(0.5) = 0.5459573413. Using this value we get the following
iterates:

uy(x) = 0.5459573413,

w, (%) = 0.5459573413 — fx [(uo(s))s —u2(s) — 1] ds =
01030773677 + 1.298069418x,

u,(x) = —0.1030773677 + 1.298069418x — fox [(ul(s))s —u2(s) — 1] ds

= 0.0038875885 + 1.010624944x — 0.1338015787x?
+ 0.5616614046x3,
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X
uz(x) = 0.5462824390 + 1.298424503x — f |(uz(5)), —u3(s) — 1] as
0

= —0.000556306464 + 1.000015113x + 0.0039288939x2
+ 0.3401074828x3 — 0.06651985228x* + 0.2306321827x>

—0.02505039421x° + 0.04506621906 x”.

The infinite series solution will clearly converge to the exact solution which is given by

In Table 2.8 we compare the solution arising from VIM alone with that using VIM and DD
combined. Clearly the accuracy will improve for larger values of x when we modify the VIM via
using DD. Though the accuracy is slightly improved but that is because we subdivided the
domain only into two subintervals. One has to subdivide the domain in a larger number of sub-

u(x) = tanx.

domains in order to achieve uniform convergence.

X EXACT Error Error
using VIM using VIM and DD

0 0.0 0.0 0.0
0.1 0.100334672 3.9x107° 3.9x107°
0.2 0.202710036 5.0 x 1077 5.0 x 1077
0.3 0.309336250 8.8x 10°° 8.8 x107°
0.4 0.422793219 6.9 x 107° 6.9 x 107°
0.5 0.546302490 3.5x107* 3.5x107*
0.6 0.684136808 1.3x 1073 4.0x107*
0.7 0.842288380 42 %1073 7.0 x 107*
0.8 1.029638557 1.2 x 1072 23x1073
0.9 1.260158218 3.1x 1072 8.8x 1073
1.0 1.557407725 7.5 x 1072 3.0 x 1072

Table 2.8 Comparison of the absolute errors obtained by VIM and those by DD and VIM using

four iterations for both methods.
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2.6 Partial Differential Equations

2.6.1 Initial Value Problems

In this section, we will apply the VIM method as presented before to some examples
involving linear and nonlinear PDEs.

Example 2.18 We use the variational iteration method to solve the following homogeneous
partial differential equation

u, —u, =0, u(0,t)=t u(x0) =ux (2.253)

Solution:
From (2.22) we find that A = —1. Therefore, the iteration formula is given by

aun(s t) aun(s t) (2.254)
T ds.

U (6, 8) = 1 (2, 6) — f

We can choose uy(x,t) = u(0,t) = t from the specified conditions. Using u,(x, t) = t we have

uo(x,t) =
d t) 0 ,t
ul(xt)—t—j [uo(s ) uoa(: )ds=t+x,
d t) 0 t
uz(xt)—t+x—f Iul(s ) _ ula(f )l =t+x,
= (2.255)
u,(x,t) =t+x.
This gives the exact solution which is given by
u(x, t) =x+t. (2.256)

Example 2.19 Use the variational iteration method to solve nonhomogeneous partial
differential equation
u,+u,=x+t, u(0,t)=0, u(x0)=0. (2.257)

Solution:
From (2.22) we find that A = —1. Therefore, the iteration formula is given by

Un1(x,0) = up(x,t) — f [6un(s 2 + au";f D s —t|ds. (2.258)

We can choose uy(x,t) = u(0,t) = 0 from the given conditions. Using u,(x,t) = 0 we have
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uy(x,t) =0

“louy(s,t)  duy(s,t) 1,
u(x, t) = O—fo s + FT —t|ds —Ex + xt,
0 t)y 0 ,t
Uy (x, t) ——x + xt — f [ u(s,t) ula(; )—s—tl ds = xt,

;in(x, t) = xt. (2.259)

Note that in the first iterate u, (x, t) we got the term %xz which we refer to as noise term. This

term will disappear or cancels as we take higher iterates. In the limit, the iterates converge to the
exact solution which is given by

u(x,t) = xt. (2.260)

2.6.2 Boundary Value Problems

We will now apply the VIM method as presented before to some examples involving
linear and nonlinear PDEs which are complimented with boundary conditions.

Example 2.20 Use the variational iteration method to solve the boundary value problem
Uy U =0, 0<x,t<m, (2.261)
with the boundary conditions

u(0,t) =0, wu(mt)=sinhmwsint
u(x,0) =0, u(x,m)=0. (2.262)

Solution:
From (2.43) we find that A = s — x. Therefore, the iteration formula is given by

x 0%u, (s,t)  0%u,(s,t)
un+1(x! t) = un(x' t) + f (S - .X') 652 + atz dS' (2263)
0

From the boundary conditions we can see that the solution contains sint with a function that
depends on x. So, we can choose uy(x,t) = (0 + x) sint from the given condition. Using
uy(x, t) = xsint we have

uy(x,t) = xsint,
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0%uy(s,t)  9%uy(s,t) 4
052 oz |©

X
uy (x,t) =xsint+] (s —x)
0

= xsint+§x3 sint,

Ozuo(s t) 0%uy(s,t)
at?

1
u,(x,t) = xsmt+3—x smt+f (s — )I
= t+ ! t+ t,
= x sin 3'x sin 5 X sin
1 1 .
uy(x,t) = smt(x+§x + 5!x + )
Clearly the iterates will converge to the exact solution which is given by

u(x, t) = sint sinh x.

(2.264)

(2.265)

Example 2.21  We use the variational iteration method to solve the boundary value problem

Uy YU =0, 0<xt<m
with the boundary conditions

u(0,t) =0, wu(mt)=0,
u(x,0) = cosx, u(x,m)= coshm cosx.

Solution:
From (2.43) we find that A = s — t. Therefore, the iteration formula is given by

0%u, (x,s)

Uprr (6, 8) = uy(x, t) + ft(s —t) azun(x ) + ds.

ot2

(2.266)

(2.267)

(2.268)

From the boundary conditions we can see that the solution includes cos x with a function that

2
depends on t. So, we can choose uy(x,t) = (1 + %) cos x from the given condition. Using

t2
uy(x,t) = cosx + — cosx, we have

2
uy(x,t) = cosx + ?cosx

0%uy(x,s) 0%uy(x,s
uy (x, t)—cosx+—cosx+](s—t)[ 0( ) 0(2 )
dx
t* t6
—cosx+—cosx+—cosx+—cosx,
2 4! 6!
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2 t4- t6

u,(x,t) = cosx+—cosx+—cosx+acosx

f -6 lazuo(t s) azuo(t s)l

0s? 0x?
+ + + e + - t8
= COS X —cosx —cosx —cosx +—t8cosx
1 2 4! 6! 8!
+—t0cosx,
10!

2.269)
1. 1, 1. 1 1 (
u,(x,t) = cosx(l +—t?2+—t*+ =t + —t8 + —¢1° >

2! 4! 6! 8! 10!
This gives the exact solution by

u(x,t) = cosx cosht. (2.270)

2.6.3 System of Equations

We will apply the variational iteration method to solve systems of partial differential
equations. The method will be illustrated by discussing some examples.

Consider a system of differential equations written in an operator form as

Liu+ Ry (u,v,w) + N, (u,v,w) = g4,
Lau+ Ry(w,v,w) + Na(uw, v,w) = gy,
L + Ry (w, v, w) + N3 (u, v, w) = gs, (2.271)

with initial conditions
u(x,0) = f1(x),
v(x,0) = fo(x),
w(x, 0) = f3(x), (2.272)

where L, is a first order partial differential operator, R;,R, and R; are linear operators,
N;, N, and N are nonlinear operators and g;, g, and g5 are source terms.
The VIM employs the correction functional as follows:

un+1(xr t) = un(x!tt)

t f At (Lt (%) + Ro(fig B W) + Ny Gl B W) — g1 (5))s,
0

t
vn+1(x: t) = vn(x, t) + j AZ (Lvn(x: S) + RZ (ﬁn' ﬁn» Wn) + NZ (ﬁn' ﬁn» Wn) - gz(S))dS,
0
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W1 (x, 1) = wy(x, t) (2.273)
t
+ f A3 (LWn(x' S) + RB(ﬁnr ﬁn' Wn) + NB(ﬁnr ﬁn' Wn) — 93 (s))ds,
0
where 44, 1,, A;are Lagrange’s multipliers, i, 7, W,, as restricted variations (8t,, = 67, =

dw,, = 0).
The solutions are given by

u(x, t) = lim u,(x,t),
n—-oo

v(x,t) = lim v,(x,t),
n—-oo

w(x,t) = lim wy(x, £). (2.274)

Example 2.22 We use the variational iteration method to solve the inhomogeneous nonlinear
system

U +vu, +u=1,
U —uv, —v =1, (2.275)

with initial conditions
u(x,0) =e*, v(x,0)=e*. (2.276)

Solution:
From (2.22) we find that A, = 1, = —1. Therefore, the iteration formula is given by

Uns1 (6, 1) = up(x, t) — ft I%:s) + v (x, S)W + u,(x,s) — 1] ds,
0

Vni1(x,t) = v (x,t) — j [w — up(x, s)w —v(x,5) — 1] ds. (2.277)
0

We can choose uy(x,t) = e* and v,(x,t) = e~ from the given condition. Using uy(x,t) = e*
and vy (x,t) = e™* we have

uy(x,t) =e*, volx,t) =e™™*

touy(x, s) uy(x, s)

= x _— _— -
u(x, t) =e L [ s + vo(x, s) % + uy(x, s) 1] ds
=e* —te* =e*(1 —-1t),

tfo , 0 )
vi(x,t) =e ™ — j [M— uo(X,S)M— vo(x,s) — 1]

0 ds d

=e*+te ¥ =e¥(1+1),
(2.278)

Upon taking more iterates we will easily observe that the series solutions are converging to the
exact solutions given by
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u(x, t) = e*7t,
v(x, t) = e ¥, (2.279)

Example 2.23 The variational iteration method is now applied to solve the nonlinear system

Up — VW, =1,
U — WyD), =5,

Up — UyVy =5, (2.280)

with initial conditions

u(x,y,0) =x+2y, vix,y,0)=x—-2y, w(xy0)=—x+2y. (2.281)
Solution:
From (2.22) we find that A, = A, = A3 = —1. Therefore, the iteration formula is given by

un+1(x'y' t) = un(xfyﬂ t) )
tlou,(x,y,s) 0v,(x,y,s) 0w, (x,y,s)

[ [tz s
0

ds 0x dy

Vns1 (6,7, 6) = v (x,7,8) _
tov,(x,y,s) ow,(x,y,s) du,(x,y,s)

—f — —5|ds,
0

| Os 0x ay
Wn+1(x:3’; t) = Wn(9f;}7; t) )
B ft ow,(x,y,5)  Oun(x,y,5) 0vn(x,y,5) &l gs (2.282)
0 ds ox dy

We can choose uy(x, y,t) = x + 2y, vy(x,y,t) = x — 2y and wy(x,y,t) = —x + 2y from the
given conditions. Using these choices we get the higher iterates:

uy(x, t) = x + 2y, vo(x, t) = x — 2y, wo(x,y,t) = —x + 2y,

jt ouy(x,y,s) 0vy(x,y,s) owy(x,y,s) .
0 ds

u(x,t) =x+ 2y % 3y
=x+ 2y + 3¢,
Elovy(x,y,5)  0dwy(x,y,s) 0ug(x,y,s)
= x—2v— _ _
vi(x, t) =x—2y jo [ s % 3y 5] ds

=x — 2y + 3¢,
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tHlowy(x,y,s) 0ug(x,y,s)ovy(x,y,s
wy(x,y,t) = —x +2y—f [ o(x,y )_ 0(x,y,8) 0vy(x,y )_5 ds
0 ds 0x dy
(2.283)
=—-x +2y+3t
These iterate will converge to the exact solutions given by
u(x,t) =x+ 2y + 3t,
v(x,t) =x — 2y + 3¢,
w(x, t) = —x + 2y + 3t. (2.284)

2.7 Integro-Differential Equations

In this section, we will handle integro-differential equations. Recall that an integro-
differential equation is an equation that contains u® (x), which is the ith derivative of u(x), and
an unknown function u(x) that appears under an integral sign. A standard integro-differential

equation is of the form:
h(x)

w00 = f(x) + f K (e, )F (u(®))dt, (2.285)

gx)

where F(u(x))is a nonlinear function of u(x), g(x) and h(x) are the limits of the integral,
K(x,t) is a function of two variables x and t called the kernel or the nucleus of the equation.
We have to mention that the limits of integration g(x) and h(x) can be variables, constants, or
mixed.

The correction functional for the nonlinear integro-differential equation (2.285) is

x h(s)
Upp1 () = u, (%) + j A(s) (un(i)(s) —f(s) — f K(s, t)F(un(t))dt> ds, (2.286)

g(s)

where A is Lagrange’s multiplier, #%, as restricted variation ( 8%, =0). The zeroth
approximation u,, can be any selective function and we showed before how to find it.

Example 2.23 We use the variational iteration method to solve the nonlinear Volterra
integro-differential equation

X
u'(x) =1+ e* —2xe* —e?* + j e*~tu?(t)dt, u(0) = 2. (2.287)
. :

Solution:
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From (2.22) we find that A = —1. Therefore, the iteration formula is given by

X
S
Upsq (X) = up(x) — f (u’n(s) —1—e5+2ses+e? — f eS Tul(r)dr > ds.
0
0

(2.288)
We can choose uy(x) = 2 from the given initial condition. Using this value we have
uy(x) =2,
x S
u(x) =2— f <u’0(s) —1—e5+ 2se’ +e? —f eS~"uz(r)dr ) ds
0
0
1 3 19
_ Ze2_2.3_24_ "7 5
21+x+1x 32x 5139x 120x,
— a2 _ 3 _—.4__ 7 .5
u,(x) 2+x+%x 2% —g* —T50%
S
- f (u’l(s) —1—e5+2se’ +e? — f eS~"uz(r)dr ) ds
0
0
1 1 1 1 2.289
:2+x+_x2+_x3+_x4__x5. ( )

2 3! 4! 8

Clearly the series solution is the Taylor’s series expansion of the exact solution which is given
by

u(x) =1+ e~ (2.290)

Example 2.24 The variational iteration method will be used to solve the nonlinear Fredholm
integro-differential equation

T 1 ("
! —_ —_— —_ 2 =
u'(x) = cosx 28552 ) xu®(t)dt, u(0) = 0. (2.291)

Solution:

From (2.22) we find that A = —1. Therefore, the iteration formula is given by

X
Vs

1
Upr1 () = u, (x) — f u',(s) —coss + ls —— | su2(r)dr |ds. (2.292)
48° " 24,

0

We can choose uy(x) = 0 from the given initial condition. Using u,(x) = 0 we have

uy(x) =0,

48° " 24,
= sinx — 0.03272x?,

r , T 1,
ul(x)zo—f u'g(s) —coss+-—s——| sug(r)dr |ds
0
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X
s

T 1
u,(x) = sinx — 0.03272x2 — f u';(s) —coss+-—s——| su?(r)dr |ds
487 24 ),

0
= sinx — 0.00664x?,
X
s

s 1
uz(x) = sinx — 0.00664x2 — f u',(s) —coss +-—s—— | sui(r)dr |ds (2.293)
48° " 24,
0
= sinx — 0.001567x2.
Consequently, the solution is given by

lim u,, (x). (2.294)
n—-oo

There are some noise term appearing in the iterates and in the limit they will converge to zero
and hence we obtain the exact solution which is clearly

u(x) = sinx. (2.295)

2.8 Integral Equations

2.8.1 Volterra Integral Equations

In this section, we apply the variational iteration method for Volterra type of Integral
equations. We can solve the Volterra integral equations in two ways: the first one is by
converting the Volterra integral equation to an equivalent integro-differential equation by
differentiating both sides of the equation and solve it as in section 2.7, and the second is by
converting the Volterra integral equation to an initial value problem and then solve it easily.

A standard Volterra integral equation in u(x) is of the form:
u(x) = f(x) + [; KCe, )F (w(t))dt, (2.296)

Where F(u(x)) is a nonlinear function of u(x), 0and x are the limits of the integral, and
K(x,t) is a function of two variables x and t called the kernel or the nucleus of the integral
equation.

Example 2.25 We will solve the Volterra integral equation by using the variational iteration
method
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1 1(* 2.297
ux) =1+x+ Exz + E,f (x — t)?u(t)dt. ( )
0
Solution:
We can solve this problem by converting this Volterra integral equation to an integro-differntial
equation or by converting it to an initial value problem. To do that, differentiate both sides of

(2.297) three times with respect to x gives the following two integro-differential equations:

ux)=1+x+ fx(x —tu(t)dt, u(0) =1,
0

W) =1+ [ u@de, w© =1, w© =1, (2.299)
0
and an initial value problem given by

W) =ulx), w0 =1 w0 =1 u(0)=1 (2.299)

Then we can easily solve each equation using the variational iteration method as we mentioned
before in the previous sections.

2.8.2 Fredholm Integral Equations

Now, we will apply the variational iteration method to handle Fredholm integral
equations.

Consider the standard Fredholm integral equation given by

b
ux) = f(x) + f K(x, O)F (u(t))de, (2:300)

where F(u(x)) is a nonlinear function of u(x), a and b are constants and are the limits of the
integral, A is a constant parameter, and K (x, t) is a function of two variables x and t called the
kernel or the nucleus of the integral equation.

Note that K(x,t) is separable and can be written in the form K(x,t) = g(x)h(t). Thus,
equation (2.300) can be written as

b
1) = F) + g(x) f R(OF (u(D))dt. (2.301)

To solve the Fredholm integral equations we should convert the equation to an equivalent
integro-differential equation by differentiating both sides of the equation. In the following we
will study the case where g(x) = x™.

Example 2.25 We solve the following Fredholm integral equation by using the variational
iteration method
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1

u(x) =e*—x+ xj tu(t)dt. (2.302)
0
Solution:

First, we have to convert the Fredholm integral equation to an integro-differential equation by
differentiating both sides of the equation (2.302) with respect to x. We have

1
u'(x) =e*—1+ f tu(t)dt, (2.303

0
with initial condition u(0) = 1.

Recall that the integral at the right side represents a constant value. Now, we can easily solve this
integro-differential equation. From (2.22) we find that A = —1. Therefore, the iteration formula
is given by

1

Uprr (X)) = u,(x) — j <u’n(s) —eS+1-— f tun(t)dt> ds. (2.304)
. 0

We can choose uy(x) = 1 from the resulting initial condition. Using uy(x) = 1 we have

ug(x) =1,

X
1
1
u;(x)=1- f <u’o(s) —eS+1 —f tuo(t)dt> ds = e* —5%
0
0

1 1 1
u,(x) = e* —Ex - (u’l(s) —eS+1 —] tul(t)dt> ds = e* _Ex'
0

(2.305)

us(x) =e* ——x —

1
1
3 (u'z(S) —e*+1- f tuz(t)dt> ds = e* — —x,
0

18

O"RO“R

Note that there are noise terms in the iterates which will disappear as we pass to the limit. Thus,
The VIM admits the use of

ulx) = ,ll_rfo u,(x) =e”*, (2.306)

which is the exact solution of the problem.
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2.9 Calculus of Variations

Finally, in this last section we will handle some problems in calculus of variations. We
will apply the VIM for solving Euler-Lagrange equations which arises in calculus of variations
problems, more precisely when dealing with maximizing or minimizing a given functional.

Consider the general form of the variational problem:
X1
v[ul' Uy, o) un] = j F(x, Up, Uy, e, Up, U, U 5, e, u'n)dX, (2.307)
Xo

with the boundary conditions

uy (%) = ay, Uy (x9) = az, ..., U, (xo) = ay,
uy (1) = by, uy (%) = by, .o, Up(x1) = by (2.308)

We indent to maximize the functional to equation (2.306): the solution satisfies the Euler-
Lagrange equation of the form

d
By — aFu'k =0, k=12.,n (2.309)

with the same boundary conditions (2.308).

In the following examples, the variational iteration method for solving such kinds of problems
will be studied.

Example 2.26 We will use the variational iteration method to solve the calculus of variation

problem
o fl 1+ u?(x) p
minv = . uZ(x) X, (2.310)
with the boundary conditions
u(0) =0,u(1) = 0.5. (2.311)
The exact solution is given by
u(x) = sinh(0.481218250x). (2.312)

Solution:
The function which minimizes the integral satisfies the Euler-Lagrange equation which is given

by

u” +u'"u? —uu'? =0, (2.313)
with boundary conditions
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u(0)=0, u(l)=0.5. (2.314)

From (2.43) we find that A = s — x. Therefore, the iteration formula is given by
X
Ui () = 1000 + [ (5 =) (W) + WU (E) ~ uB(Dn(®) ds. (2319
0

We can choose uy(x) = 0 + Ax from the given initial condition at x = 0. Using u,(x) = Ax
we have

uy(x) = Ax,

0 () = Ax + [ (5= (W) + wB o) ~ uF(sduo(s)) ds
0

1
= Ax — = A%x®
X > x>,

X

u,(x) = Ax — %A3x3 + f(s —x) (u”l(s) + u(s)u";(s) — u'f (s)ul(s)) ds

0
1 1 1 1 (2.316)
=Ax + —A3x3 = —A%° — —Ax° + AT,
YT T192% Y Tt Tt "

By imposing the boundary conditions in u, at x = 1, we get

A = 0.4818977464. (2.317)

The error resulting from the VIM using two iterations is listed in Table 2.9. The error is
uniformly distributed and can be improved by taking more iterates. This result shows the fast
convergence of the VIM for this case. Figure 2.7 shows the numerical and exact solutions and
they are almost well-matched starting from the second iterate.

X EXACT ERROR

0 0.0 0.0
0.1 0.04813975661 6.9 X 1075
0.2 0.09639100946 1.4 x 1074
0.3 0.1448655131 21x107*
0.4 0.1936755390 2.7 x107*
0.5 0.2429341358 3.3x 107
0.6 0.2927553913 3.7x107*
0.7 0.3432546960 3.7%x107*
0.8 0.3945490113 3.3x107*
0.9 0.4467571396 22x107*
1.0 0.5 1.0 x 10710

Table 2.9 Error obtained using variational method with two iterations.
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0.5 -
0.4 = EXACT === VIM
0.5
0.2
o1
°% ooz 02 . os 0’s 1

Figure 2.7 Error obtained using variational method with two iterations.

Example 2.27 We use the variational iteration method to solve the calculus of variation
problem

™/

o[u), 2(0)] = f w00 + 22(0) + 2u(@®z(x)] dx, (2.318)

0

with the boundary conditions

u(0) = Ou(g) =1,

n) _ (2.319)

z(0) =0,z (E

Solution:
The Euler-Lagrange equations of this problem are given by

u'’' —z=0,
zZ"—u=0, (2.320)

with boundary conditions

u(0) = 0, u(g) —1,

200)=0, z (g) -1 (2.321)

Similar to Example 2.26 we find that A; = 1, = s — x. Therefore, the iteration formula is given
by
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U (0) = un () + f (s — ) (u"n(s) — 2n(s)) ds,
0

x (2.322)
tnir () = 1,0 + [ (5 = (70 (5) = () ds.

0
We can choose uy(x) =0+ Ax and z,(x) = 0+ Bx from the given conditions. Using
uy(x) = Ax and z,(x) = Bx we have

uy(x) = Ax, zy(x) = Bx,
X
1
u;(x) = Ax + f(s —x)(u"y(s) — zo(s)) ds = Ax + = Bx?,
, 6 (2.323)
r 1
z;(x) = Bx + f(s —x)(2"(s) —uo(s))ds = Bx + gAx3.
0
By imposing the boundary conditions on u,, z; at x = 1, we have
A =1.081277196, B = 1.081277196, (2.324)

and the series solution of the problem will be found.
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CHAPTER 3: A GREEN’S FUNCTION-FIXED POINT ITERATIVE
SCHEME

3.1 Green’s Functions

In Chapters 1 and 2, we gave a review of two well-known iterative strategies to obtain
numerical solution for various problems. However, we noted deficiencies in both of them,
particularly the accuracy deteriorates as the applicable domain increases and the convergence is
local. In this chapter, we propose an alternate approach based on embedding Green’s functions
into fixed point iterative schemes and then applying the scheme to a carefully selected integral
operator. The prominent characteristic and the main rationale behind this novel technique are to
surmount the deterioration of the numerical solution obtained by ADM and VIM as the domain
grows.

First, we will introduce Green’s functions and investigate how they may be used to derive
a general solution to an inhomogeneous boundary value problem. The history of the Green’s
function dates back to 1828, when George Green published article aimed at seeking solution for
the Poisson’s equation Au = f for the electric potential u defined inside a bounded volume
with given boundary conditions on the surface of the volume. He introduced a function that was
later referred to by Riemann as the “Green’s function.” We will restrict our discussion to Green’s
functions for ordinary differential equations.

3.1.1 First Order Equations

Consider the first order equation

Llul =u'(t) + p(Ou(t) = f(t), forx>a, (3.2)
subject to an initial condition,
Blu] = u(a) = a. (3.2
The general solution is given by
U =up+upy, (3.3)

where u;, is a homogeneous solution which is the solution of L[u] = 0 subject to the initial
condition (3.2) and u,, is a particular solution which satisfies L[u] = f(¢) with homogeneous
initial condition u(a) = 0. We represent the inhomogeneous solution (the particular solution) as
an integral of the Green’s function G (t|s) given by

u= fooG(tls)f(s) ds, (34)

where the Green function G (t|s) is defined as the solution to
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L|G(t|s)] = 6(t —s) subjectto G(als) =0, (3.5)
where 6(t —s) is the Dirac delta function defined as

6(t—s):{0' t*+s (3.6)

©, t=5s
Another way to define the delta function is as one that satisfies the following properties:

i | 6(t—s)dt=1,
_'0[ (3.7)

ii. f 6(t —s)f(s)dt = f(t),
where the_integral can be taken over any interval that includes t = s. To show that (3.3) is the

solution, we can use the definition of Green’s function (3.5) and the properties of the Dirac delta
function (3.7). Applying the linear operator L to the solution u

Llup +u,] =L UOOG(tls)f(s) dsl

- [ uewnfe)ds
a
= f 6(t—s)f(s)ds
a (3.8)
= f(®.
Applying the initial condition to u yields
B[uh + up] =B Iuh + f G(t|s)f(s) dsl
a
=a +f B[G(t|s)]f(s)ds
@ e (3.9)
= a+J. 0-f(s)ds = a.
The Green’s function satisfies the equation ‘
G'(t|s) + p(t)G(t|s) = 5(t — s). (3.10)
The solution to the corresponding homogeneous equation is
up, = e—fstp(x) dx_ (3.11)

Fort # s, Green’s function is a homogeneous solution to the differential equation L{u] = 0,
However, att =s Green’s function has a singular behavior. Therefore, Green’s function is
given by
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i p(x) dx (3.12)

Cle ) a<t<s
Cze_fstp(x) dx, t>s ’

G(tls) ={

where c¢; and c, are constants. We can find these two constants using the following properties of
Green's function:

1. The Green function satisfies the homogeneous initial condition

@ A
u= j G(t|s)f(s)ds, (3.13)
a
thus, we get ¢c; = 0. Green’s function becomes
0, a<t<s (3.14)
G(tls) = {Cze_fstp(x) dx’ t>s
2. Integrating equation (3.10), we get
st st
[ 6@ +p@ccisnax = [ s sax
s™ S+ S
6Gs*I9) = 6619+ | P0G = 1, (315)

S
G(sT|s) —G(s™|s) = 1.
Since G'(t|s) has a Dirac delta function type of singularity, thus G(t|s) has a jump
discontinuity att = s. Since at t = s, fstp(x) dx = 0 it follows from (3.15) that

Cze_fstp(x) dx __ 0 —_ 1'

o1 16)

The Green’s function becomes

0, a<t<s (3.17)
G(t]s) = {e_fstp(x) dx’ t>g -
We can use the Heaviside function to rewrite the equation (3.17). The Heaviside function is
defined as

o N_ (0, t<s (3.18)
H(t s)_{L oy
Thus, equation (3.17) becomes
G(tls) = e~ kPO Ay —g), (3.19)
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3.1.2 Initial Value Problems for Second Order Equations

Consider the second order equation

Llul=u" +p®u" +q®)u=f(t), fora<t<hb, (3.20)
subject to the initial conditions,
u(a) = a,
u'(a) = B. (3.21)
The general solution is given by
U=y, +up, (3.22)

where u;, is the homogeneous solution which is the solution of L[u] = 0 subject to the initial
conditions (3.21) while wu,, is a particular solution which satisfies L[u] = f(¢) with the initial
conditions u(a) = u'(a) = 0. We represent the inhomogeneous solution (the particular solution)
as an integral of the Green’s function G (t|s) as

u(t) = LtG(tls)f(s) ds. (3.23)
By applying the linear operator L, we can verify that (3.22) is correct
L[un + 1] = L UatG(tIs)f(s) dsl
- j LIGGISIF(s) ds
_ fa St —s) £(s)ds .

= f@),

so we do indeed have a solution to (3.20), namely (3.22). Let us consider the general solution of
the inhomogeneous problem u = c;u; + c,u,, then we have

u' = cyuy +cu'y + chuy + culs. (3.25)
Since c;and c, are constants, thus

Cllul + C,2u2 - O (326)
Therefore, from (3.26), we get

u' = cqu'y + cu's. (3.27)
Substituting expressions for u and u’ into equation (3.20), gives

'y +u’y +cHu'y + cu’’y F () (ciu'y + cpu’y) + q(®) (cruy + cpuy)

=f(@),
chu'y +cuy F @y Fp@uy + q(Ouy) + (W Fpu', + q(Wuy)  (3.28)

= f@®).

As we know, u, and u, satisfy the linear equation. Thus
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Cllull + Clzulz = f(t) (329)
The Green’s function satisfies the equation

G''(t]s) + p(O)G'(t]s) + q(O)G(tls) = 6(t —s), (3.30)
where G (t|s) is defined as the solution to
L[G(t]|s)] = 6(t —s) subjectto G(als) = G'(als) = 0. (3.31)

Now, assume that u; and u, are two linearly independent solutions to the homogeneous equation
Llu] = 0. For t <'s, G(t|s) is a linear combination of these solutions. Therefore, we can write

0, t<s

G(tls) = {clu1 + Uy, t>s (3.32)

The constants can be found by solving the system

c'iuy + ¢’'yuy, =0, (3.33)
{C’lu’1 + c'yu', = f(t),
whose solution is
,_ ~uxf(¢) IO, (3.34)
!(Cl_W“l‘fast
’ _ulf(t)_) _ tulf(S)d ’
L “Tweo 2T ), we ¢

where W(t) = u,u’, + u,u’y is usually referred to as the Wronskian of u; and u,. Since the
Wronskian is non-vanishing, only the trivial solution satisfies the homogeneous initial
conditions. The Green’s function must be

0,
G(tls) =1 ft—uz(S)f(S) et ftul(S)f(S) RN (3.35)
e W) e W
Thus, The solution for u is
u=up+u ft——u;ﬁ)sj)c(s) ds +u, ft—u1l§;)(];)(s) ds. (3:36)

simplifying Eq. (3.36) we get

u =y + ftu1(5)u2 (?VESI;Z(S)ul(t) £(s)ds
X A(s,
=u, + VI(/ist)) f(s)ds
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t (3.37)
=uy +] G(t|s)f(s)ds,
a
where % = G(t|s) is the Green’s function. Note that solution w[ill satisfy the initial
conditions if w,Tsatisfies the initial conditions of the inhomogeneous problem:
u(a) =u'(a) = 0. (3.38)

We can also find Green’s function in another way by using the properties of Green’s function to
determine the constants in (3.32). Green's function for Equation (3.20) has the following
properties:

1. G(t|s) satisfies the homogeneous initial condition

G(als) = G'(als) = 0. (3.39)
2. G(t|s) is continuous, that is
G(tls)ltHs_ = G(tls)ltHsJﬁ (3-40)
and hence,
ciuy (8) + cuy(s) = dyuy(s) + dyuy(s). (3.41)

3. Integrating equation (3.30), we get

+ st

| 167 + 6 els) + a@Gerde = [ 18- 9l (342

N

Since G(t|s) is continuous and G"'(t, s) has a Dirac delta function type of singularity,
thus G'(t|s) has only a jump discontinuity. Then

+ +

f_ p(t)G'(t|s)dt =0 and f_ q(t)G(t|s)dt = 0. (3.43)

Therefore,

+

ji G'(t|s)dx = fs [6(t — s)]dx

+

(6"l = [H(E = 915" (3.44)
G'(sT|s) —G'(s7|s) = 1.

As a result, we can easily determine the coefficients using these properties.
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Example 3.1  Solve the initial value problem
u"(t) + u(t) = 2cost, u(0) = 4, u'(0) = 0. (3.45)

Solution:
We first solve the homogeneous problem with nonhomogeneous initial conditions:

u'()+ult)=0 u(0)=4, u'()=0. (3.46)
Thus,

u, = 4cost. (3.47)
The Green’s function satisfies the equation

G"(t|s) + G(t|s) = 6(t — s). (3.48)

Next, we construct the Green’s function. We need two linearly independent solutions, u, (t),
u,(t), to the homogeneous differential equation satisfying u(0) = 0and u’ (0) = 0.
So, Green’s function is given by

a;sint + b;cost, 0<t<s (3.49)
a,sint + b, cost, t>s

G(tls) ={

Applying the homogeneous initial conditions G(0|s) = G'(0|s) = 0, we get

_ (0, 0<t<s (3.50)
G(tls) = {az sint + b,cost, t>s
Now G (t|s) is continuous, So we have
G(t]9)|tms— = G(t]S)] s+ (3.51)
therefore,
0 = a,sins + b, coss. (3.52)

Integrating equation (3.49), we get

+

s s* (3.53)
f_ [G"(t]s) + G(t|s)]dt = f [6(t — s)]dt.

Since G(t|s) is continuous and G''(t|s) has a Dirac delta function type of singularity, thus
G'(t|s) has only a jump discontinuity. Hence

j G (t]s)dx = f (8t — 5)]dx
[G'(t19)]32 = [H(t — 9)]E
G'(s*|s) —G'(s7|s) =1, (3.54)

a, coss — b, sins = 1.

+
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From (3.52) and (3.54), we get

a, =coss, b, =—sins, (3.55)
therefore,
(0, 0<t<s (3.56)
G(tls) = {cosssint —sinscost, t>s’
Then

Uy (t) =J;G(t|s)f(s) ds

t
=f (cosssint —-sinscost)2coss ds
0

_ (3.57)
=tsint.
The general solution is given by
U= Up + Uy (3.58)
From (3.56) and (3.57), we get the general solution
u(t) =4cost + tsint. (3.59)
We can find the solution directly using the Wronskian. We pick u,(t) = sint and u,(t) =
cos t. The Wronskian is found as
W) = u,(Ou',(t) —u' (H)u,(t) = —sin?t — cos?t = —1., (3.60)
Thus, we can write Green’s function in the form
0, 0<t<s
G(t|s) = Uy ($)u, () — uy (Duy(s) r>s (3.61)
w(t) ’
Therefore,
_ 0, 0<t<s
Gltls) = { —cosssint +sinscost, t>s (3.62)

The particular solution is u(t) = 4 cost + tsint. This is the same solution as the one we have
found earlier using Green’s function properties.

3.1.3 Boundary Value Problems for Second Order Equations

Consider the second order equation
Llul =u" () + p®)u'(t) + q)u(t) = f(t), fora<t <hb, (3.63)

subject to the boundary conditions,
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B;[u] = a;u(a) + a,u'(a) = a,
B,[u] = byu(b) + byu'(b) = B. (3.64)

The general solution is given by
U=y, +up, (3.65)

where u;, is the homogeneous solution which is the solution of L[u] = 0 subject to the boundary
conditions (3.64) and w,, is a particular solution which satisfies L[u] = f(¢) with the boundary
conditions B;[u] = B,[u] = 0. We represent the inhomogeneous solution (the particular
solution) as an integral of the Green’s function G (t|s):

b (3.66)
= f G(t|s)f(s)ds,
a
where the Green’s function G (t|s) is defined as the solution to
L[G(t|s)] = 6(t —s) subjectto B,[G(t|s)] = B,[G(t|s)] = 0. (3.67)

Here 6(t — s) is the Dirac delta function, which has been mentioned in Section 3.1.1.

To show that (3.65) is the solution, we can use the definition of Green’s function (3.5) and the
properties of the Dirac delta function (3.7). Applying the linear operator L to the solution

b

L[uh + up] =L U G(t|s)f(s) dsl
b a

- j LIG(t1)]f(s) ds

f §(t — $)f(s) ds (3.68)

= f(®.

Applying the boundary conditions
b
Byfu, + up] =B, [uh + f G(tls)f(s) dsl
b
= a+f Bi[G(t|s)]f(s)ds

b

a+ j 0]f(s)ds (3.69)

I

and

b
Bz[uh + up] =B, [uh + f G(t|s)f(s) dsl
b a
—p+ | BlGEDF ) ds

153



b 3.70
= p+ | 01D ds 579
=B.
The Green’s function satisfies the equation
G''(t|s) + p(t)G'(t|s) + q(t)G(t]s) = 6(t — s). (3.71)

Let u, and u, be two linearly independent solutions to L[u] = 0, which is the homogeneous
equation. For x # s, Green’s function is a homogeneous solution of the differential equation.
Therefore, Green’s function is given by

_[Gu Uy, t<s (3.72)
G(tls) = {dlu1 +d,u,, t>s

where ¢4, ¢, ,d, and d, are constants. We consider the properties of the Green's function:

1. G(t|s) satisfies the homogeneous initial conditions
B,[G(tls)] = B,[G(¢]s)] = 0. (3.73)

2. G(t|s) is continuous, that is
G(t1)ens- = GEIS)| st (3.74)
and hence,
ciuq (8) + cuy(s) = dyuy(s) + dauy(s). (3.75)
3. Integrating equation (3.71) gives

ot st (3.76)
| 1679 + 06 els) + a6 erde = [ [sc - 9l

N

Since G(t|s) is continuous and G''(t|s) has a Dirac delta function type singularity.
Thus, G'(t|s) has only a jump discontinuity, then

+ +

S N

f_ p(t)G'(t|s)dt =0 and J-_ q(t)G(t|s)dt = 0. (3.77)

Therefore,

+

fi G''(t|s)dx = js [6(t —s)]dt

+
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[6'(¢])]EE = [H(t — )]
G'(sT|s) —G'(s7|s) = 1.

Hence,

diuq (s) + dauy(s) — ciuy () — caup(s) = 1.

(3.78)

(3.79)

Using Green’s function properties 1, 2 and 3 we can easily determine the four constants
1, Cy ,d,and d, to find the Green’s function for the second order differential equations with the

specified boundary conditions.

We can find Green’s function using the Wronskian W (t) of u, and u,. Since the homogeneous

equation with the homogeneous boundary conditions has only one trivial solution,

nonzero on the given interval. The Green’s function has the form

_(au(®), a<t<s
Gtls) = {czuz(t), s<t<b

From the continuity and jump conditions for the Green’s function we get

c1uy (s) — cauz(s) = 0,
ciu'4(s) —cu', = —1.
Thus, the solution is

c :uz(s) c :u1(5)
W)y P w(s)
Therefore, The Green’s function is

{uz(s)ul(t)’ Q<t<s
Gtls) = 4 W(s)
= uewo ,
L e S <t<

where the Wronskian is given by
W(t) = u (Hu',(t) + uy (Hu'1(8).
Example 3.2 Use a Green function to solve the boundary value problem
u"(t) = f(¢), u(0) = u(2m) = 0.

Solution:
First solve the homogeneous equation that satisfies the boundary conditions

u’"(t) =0, u(t)=at+>b
The Green function satisfies
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G'(t]s) =6(t —s), G(0|s) = G(2m|s) = 0.

Thus, the Green function has the form

a;t+b;, 0<t<s
at+b,, s<t<2m

G(tls) ={

Applying the two boundary conditions, we get that b; = 0 and b, = —2ma,. Hence

at, 0<t<s
a,(t —2m), s<t<2m

G(tls) ={

Since Green’s function is continuous at t = s, then

21
a,;s = a,(s — 2m) - a; =a, (1 — —)

From the jump condition, we have

(Gl =1,
G'(sT|s) —G'(s7|s) =1,

az—a1=1.

From (3.90) and (3.91), we get

Therefore,

and

u(t) =f G(tls)f(s)dszf
0 0

S S
CLIZE— ) az_ﬂ.
(2——1)t, 0<t<s
G(tls) = Sﬂ .
—(t — 2m), s<t<2m
21
t 2T

(i - 1) t f(s)ds + f 2 (¢ 2m)f (s)ds
2 ¢ 2m '

Green’s function (3.93) is symmetric, i.e. G(t|s) = G(s|t).

Example 3.3 Construct a Green’s function for the problem

Solution:

W) +ul) = £(¢),  u(0)=u(l) =0.

The general solution to the homogeneous equation is

Since G (t|s) satisfies

u,(t) = asint + b cost.
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G"(tls) + G(t|s) = 6(t —s), G(0|s) =G(1]s) =0, (3.97)
then,

a;sint +bycost, 0<t<s (3.98)
a,sint +bycost, s<t<1l

G(tls) ={

The condition G(0]s) = 0for0 < t < s implies that b; = 0, and the condition G(1|s) =0
fors <t <1 leadsto

G(1ls) = a,sinl + b,cos1 = 0. (3.99)
Therefore,
_ (aysint, 0<t<s (3.100)
G(tls) = {az sint —aytanlcost, s<t<1
Notice that
. a; . .
a,sint -a,tan1cost = (sintcost —sin1cost)
cos%
2 .
__ 1—0). (3.101)
COSlsm( t)

Since the coefficient is arbitrary at this point, we can write the result as

a . . 3.102
T o5 sin(1 —t) = ¢; sin(1 — ¢t). ( )
Therefore, the Green’s function has the form
_ (aysint, 0<t<s (3.103)
Gtls) = {C1 sin(1—-t), s<t<1l
The continuity at t = s, implies
sin(1 —s) (3.104)
ins = in(1 — =c—
a; sins = ¢, sin(1 —s) - a; =0 pr
From the jump condition, we have
(6"t =1,
G'(st|s)—=G'(s7|s) =1,
—c;cos(l —s)—aycoss =1
sin(1—s
—cycos(1—s) — cl(,—)coss =1
sins
—cysin(s +1—s)=1
B 1 _ sin(1—5s)
‘= Tsin1’ N = T Sintsins (3.105)
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Hence,

sint sin(1 —s)

" sinlsins 0<t<s
GEI =9 Gni-0 - (3.106)
-, s<t<1
sin1
3.1.4 Sturm -Liouville Problems
Consider the following problem
Llu] = (p(Ou")" + q@®u(t) = f(¢), (3.107)

subject to the boundary conditions

B;[u] = ayu(a) + byu'(a) =0,
B,[u] = a,u(b) + b,u’'(b) = 0. (3.108)

The Green’s function G (t|s) is defined as the solution to
L[G(t|s)] = &(t —s) subjectto B,[G] = B,[G] = 0. (3.109)

Let u, and u, be two linearly independent solutions to L[u] = 0, which is the homogeneous
equation. For x # s, the Green’s function is a homogeneous solution of the differential equation.
Therefore, the Green’s function is given by

_(cquy(t), a<t<s (3.110)
Gtls) = {czuz(t), s<t<b
Green’s function satisfies the equation
" p'(®) .. q() 8t —s) (3.111)
G+ Ly O =

The continuity of G(t|s) att = s implies
G(t1)|ens= = G(EIS) st (3.112)

c1uy(8) = caup(s).

Further, since G(t|s) is continuous and G'(t, s) has a Dirac delta function type of singularity,
thus G'(t|s) has only a jump discontinuity. Then

LG(t|s)dx—f IM;(;)S)l )
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Hls) = G/(57]s) = ——
G'(s*1s) = G(s7Is) = =,

cu'2(s) — qu'y(s) = m

We can determine these two constants c; and c, by solving the following system:

c1(S)us(s) — c2()uy(s) =0,

Q) — a5 = o
We can solve (3.114) by using Kramer’s rule. Hence
O W)
“O=owe Y T rewe

where W(t) is the Wronskian of u,(t) and u,(t). Thus, Green’s function is given

u(s)uq(t)

sl = SOWE) Gt
ug(s)u,(t) s<t< b.
\Lp(OW(s)’

The solution for this problem is given by

u(t) = up(t) +up(t)

b
= u,(t) +f G(t|s)f(s)ds.

Example 3.4 Use a Green’s function to solve the boundary value problem

W) = t2, u(0) = u(1) = 0,

Solution:
The general solution to the homogeneous equation is

u,(t) = at + b.
The Green’s function satisfies

G"(tls) = 8(t — s), G(0]s) = G(1]s) = 0.

Thus, the Green’s function has the form

at+b;, 0<t<s

G(tls) = {azt +b, s<t<1l
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The condition G(0|s) = 0 for 0 < t < s gives b; =0, and the condition G(1|s) = 0
for s <t < 1leadsto

Thus,
_( aqt, 0<t<s (3.123)
G(tls) = {azt +b, s<t<T

Since G (t|s) is continuous, then
a{S = a,s + by. (3.124)
By the jump condition, we have

(6" ()] =1,
G'(s*|s) = G"(s7|s) =1,

a2 - al = 1. (3'125)
Equations (3.124) and (3.125), give
a,=s—1, a,=s, b,=-s, (3.126)
and hence,
_((s—=1)t, 0<t<s (3.127)
G(tls)_{(t—l)s, s<t<1’

Now, in order to find the particular solution, we insert the Green’s function into the integral form
of the solution

1 t 1
u,(t) = fo G(t|s)f(s)ds = fo (s — Dt(s?)ds +ft (t — 1)s(s?)ds

—1( 1t4+t 1)
4\ 3 '

(3.128)

3.1.5 Boundary Value Problems for Third Order Equations

Third order BVPs arise in many scientific and engineering applications such as the
deflection of a curved beam having a constant or varying cross-section, three-layer beam, the
motion of rocket, thin film flow, electromagnetic waves, gravity-driven flows, the study of
draining and coating flows, boundary layer theory, the study of stellar interiors, control and
optimization theory and flow networks in biology.

There are various theorems regarding existence of a unique solution. In particular Lu™ and
Cui [47] provide the existence of a solution for the following case:
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u' (x) — f(x,u(x),u’(x),u”(x)) =0, 0<x<1, (3.129)
u(l)=0, u'(0)=0 u'(1)=0.

They proved that under the following assumptions:
(H1) f(x,y,z,w) € [0,1] x R3 is completely continuous;
(H2) f(x,y,z,w), f(x,y,2,w), f,(x,y,2z,w), f,(x,y,2z,w) and £, (x, y, z,w) are bounded;
(H3) f(x,y,z,w) >0 on[0,1] X R3,

where f(x,y,z,w) € W;[0,1] asy = y(x) € W;[0,1], z = z(x) € W;[0,1], w = w(x) € W;[0,1],
0<x<1-0<y,zw< ),

Problem (3.129) has a solution in W,[0,1]. For more existence theorems see Lu" and Cui, Feng and
Yao, and Feng [47, 49-50] and the references therein.

Now, consider the third order nonlinear equation
Llul =u""(t) + p(Ou" () + q(Ou'(t) + r(Hu(t) = f(t), (3.130)
where a < t < b and subject to the boundary conditions,
B;[u] = ayu(a) + a,u’(a) + azu’’(a) = «a, (3.131)
B,[u] = byu(b) + byu’(b) + azu''(b) = B.
The general solution is given by
U=y +u, (3.132)

where u;, is a homogeneous solution subject to boundary conditions (3.131) and u, is a
particular solution which satisfies L[u] = f(t) with boundary conditions B, [u] = B,[u] = 0.
We represent the inhomogeneous solution (the particular solution) as an integral of the Green’s
function G (t|s)

b (3.133)
Uy, =j G(t|s)f(s)ds,
a
where Green’s function G (t|s) is defined as the solution to
LIG(t]|s)] = 6(t —s) subjectto  B,[G(t|s)] = B,[G(t|s)] =0, (3.134)

where §(t — s) is the Dirac delta function. To show that (3.132) is the solution, we can use the
definition of Green’s function (3.5) and the properties of Dirac delta function (3.7). Applying the
linear operator L to the solution
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b

L[uh + up] =L U G(t|s)f(s) dsl
b a

- f LIG(tI)f(s) ds

b
- f §(t — $)f(s) ds

= £ (0. (3.135)
Applying the boundary conditions

b
By[up + up| = By |uy +f G(t|s)f(s) dsl

b
= a+f B1[G(t]|s)]f(s) ds

b
= a+ja 0-f(s)ds (3.136)

= Q.
and

b
B, [uh + up] =B, Iuh + f G(t|s)f(s) dsl

b
=+ [ BIGCf ) ds
ab
= ,8+fa0-f(s)ds (3.137)
The Green’s function satisfies the equation
G'"'(tls) + p()G" (t]s) + q(t)G'(t]s) + r(t)G(t]s) = 6(t — s). (3.138)

Let u,, u, and us be three linearly independent solutions to L[u] = 0, which is the homogeneous
equation. For t # s, Green’s function is a homogeneous solution to the differential equation.
Therefore,

G(tls) = {C1u1 T U HC3Uz, a<t<s (3.139)
- d1u1 + dzUz + d3u3, s<t<bpb

where ¢, ¢y, c3,dq,d, and ds are constants. The properties of Green's function are:
1. G(t|s) satisfies the homogeneous boundary conditions
B1[G(t|s)] = B,[G(t|s)] = 0. (3.140)

2. G(t]s) is continuous, that is
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G(t1)|tms— = G(E]S)|ens+ (3.141)
Therefore,

c Uy (8) + couy(s) + causz(s) = diuy(s) + dyuy(s) + dsug(s). (3.142)
3. G'(t|s) is continuous, that is,

G'(t]5)|tms— = G'(t]S)]pst- (3.143)

Therefore,
cu'1(s) + cpu'5(s) + cgu'5(s) = dqu'1(s) + dyu',(s) + dsu'5(s). (3.144)
4. Integrating equation (3.138), implies that

S (3.145)
[ 167 @) + @67 els) + a6 tls) + r©G el

st

- j (5t — $)]dt.

Since G(t|s) and G'(t|s) are continuous and G'"'(t|s) has a Dirac delta function type of
singularity, thus G"'(t|s) has only a jump discontinuity. Note that

+ + +

N N N

f p(t)G"(t|s)dt = 0, f q(t)G'(t|s)dt =0 and f r(t)G(t|s)dt = 0.

Therefore,

+

fi G"'(t|s)dx = fi [6(t —s)]dt

S S

+

(6"t = [H(t — )]

il (3.146)
G'(sT|s)=G"(s7|s) =1

Hence,

diu''1(s) + d,u’’,(s) + dsu''5(s) — cqu”’1(s) — cu”’5(s) —cgu’’5(s) = 1. (3.147)

Using Green’s function properties 1, 2, 3 and 4, we can easily determine the four constants
c1,Cy,d; and d, to find Green’s function for the third order differential equation.

Example 3.5 Use a Green’s function to solve the boundary value problem

@) +u"'@t) - @W@)P+1=0, 0<t<l1, (3.148)

subject to the boundary conditions
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u(0) =u'(0) =u(l) =0.
Solution:
The general solution to the homogeneous equation is

u, (t) = at? + bt + c.
Green’s function satisfies
G (t]s) + G"(tls) — (G'(tls))" +1=8(t —s),

G(0]s) = G'(0]s) = G(1]s) = 0.
Thus, Green’s function has the form

At>?+Bt+C, 0<t<s

6l - | .
(tls) Dt’?+Et+F, s<t<l1

(3.149)

(3.150)

(3.151)

(3.152)

The condition G(0|s) = 0 for0 < t < s, impliesthat C = 0 and the condition G'(0|s) =

0for 0 < t < s,impliesthat B 0.

Finally, G(1|s) =0fors < t < 0, leads to

D+E+F=0.
Hence,
At?, 0<t<s
G(tls):{ ; .
Dt?4+Et+F, s<t<l1

Since Green’s function G (t|s) must be continuous at t = s, then
As?> =Ds? +Es+F.
Also, G'(t|s) is continuous at t = s, then
2As +B =2Ds + E.
From the jump condition, we have
[G"(t1)]E" =1,
G'(s*|s)=G"(s7|s) =1,
2D —2A = 1.
From (3.155), (3.156) and (3.157), we get

1 1 1

1
A=—=-s*+s—-, D=—§sz+s, E = —s, F=Esz.

2 2

Therefore,
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1 1
(—Esz+s—§>t2, 0<t<s (3.159)
G(t|s) = . '

2

——s%+s tz—st+s— s<t<1
k 2 2’

Example 3.6 Use a Green function to solve the boundary value problem

u"'(t) —t?2u"(t) =0, 0<t<1, (3.160)

subject to the boundary conditions

u(0) =u'(1) =u(1) =0. (3.161)
Solution:
The general solution to the homogeneous equation is

u,(t) = at? + bt +c. (3.162)
Green’s function satisfies
G"'(t|s) — t2G""(t|s) = 6(t — s), G(0]s) = G'(1]s) = G(1]s) = 0. (3.163)
Thus, Green’s function has the form

At?+Bt+C, 0<t<s (3.164)

6l - | .
(tls) Dt’?+Et+F, s<t<l1

The condition G(0|s) = 0for0 < t < s, implies that C = 0, and the condition G'(1]s) =
0for0 < t < s, implies that

2Ds+E = 0. (3.165)

Finally, G(1|s) =0fors < t < 0, leadsto

D+E+F=0. (3.166)
Hence,
2
G(tls) = {At 2+ Bt, 0<t< s (3.167)
Dt*+Et+F, s<t<l1

Since Green’s function G (t|s) must be continuous at t = s, then

As? +Bs = Ds?+ Es +F. (3.168)

Also, G'(t|s) is continuous at t = s, thus

2As+ B =2Ds + E. (3.169)
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From the jump condition, we have

[G"(t]9)]E =1, (3.170)
G'(s*|s) = G"(s7|s) =1,
2D — 24 = 1.

From (3.168), (3.169) and (3.170), we get

1s2-2s+1 s(s?—2s+1) 1 s?
=3 s-1 0 BT T s—1  PeEgnTw
53 1 (3.171)
E=—m, F=§S'
Therefore,
f<152_25+1>t2—<s(52_25+1)>t 0<i<s
_J\2 2s-1 2s—1 ’
G(tls) = <l §2 )tz_ §3 t+i S<t<1. (3.172)
22s—1 2s—1 2’

3.1.6 Properties of Green’s Functions

In this section, we will summarize the properties of Green’s functions as a tool for
quickly constructing Green’s functions for boundary value problems. Here is a list of the
properties based upon the third order BVPs.

1. Differential Equation:

p@Ou" (@) + q(Ou" () +r(®)u'(©) + h(Out) = f(©). (3.173)

The Green’s function satisfies
p(OG"' (t]|s) + q(®)G" (t|s) + r(t)G'(t|s) + h(t)G(t]|s) = 5(t — s). (3.174)

Let u,, u, and wu5 be three linearly independent solutions to L[u] = 0, which is the
homogeneous equation. For t # s, Green’s function is a homogeneous solution of the differential
equation.

2. Boundary Conditions:

B1[G(t|s)] = B,[G(t]s)] = 0. (3.175)
Green’s function satisfies the homogeneous boundary conditions

166



3. Continuity of G(t|s):
G(t]9)|tms— = G(t]S)] s+ (3.176)
where
G(t]s)|tms— = ltim G(tls), t<s,
)

G(t]s)| st = ltim G(tls), t>s.
S

4. Continuity of G'(t|s):

(3.177)
G,(tls)ltHs_ = G,(tls)ltwsh
where
G'(t]s)]ps- = ltim G'(tls), t<s,
—s
G'(t]S)| s+ = ltim G'(tls), t>s.
)
5. Jump Discontinuity of G"(t|s) att = s:
" st st
[G (tls)]s_ = [H(t - S)]s_:
(3.178)

+ "is1s) =
G'"(sT|s)—G'"(s ls)_p(t)'

3.2 Picard’s iterative Method

In this section, we will discuss Picard’s iterative method for finding approximate
solutions of first order nonlinear ordinary differential equation of the form

, _du (3.179)
u'=—=fxuw,
with initial condition
u(xy) = uy. (3.180)
We integrate both sides of the equation (3.179) over the interval (x,, x). This gives
X
u(x) —u(xy) = f f(x,uw) dx
o s (3.181)
=u, + f f(x,u(x)) dx.
Xo
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The integral in (3.181) cannot be evaluated. Hence the exact value cannot be obtained. So we try
to solve this by iteration. Substituting an initial guess of u(x) = u, into the right hand side of
(3.181), we get

za(x)==uo+-j“f(x,uo)dx. (3.182)

X0
where the corresponding u, (x) is the value of u(x) and is called first approximation. To
determine better approximation we replace u, (x) by u,(x) as

x 3.183
w00 = o+ [ fOuu)dx (3189
Xo
In general, the n + 1 approximation is given by
X
(3.184)
Upr (X)) = ug + J f(x,u,) dx.
Xo
Therefore, we have a sequence of approximate solutions
Uy (), Uz (%), ooy Uy 1 (), oo (3.185)

3.3 The Krasnonsel’skii-Mann iteration algorithm (K-M)

There are several iteration techniques for approximating fixed points equations of various
classes. Some of them are Picard iteration technique, Mann iteration technique, Krasnosel’skii
iteration technique, and Newton iteration technique. The Picard’s iteration technique, the Mann
iteration technique and the Krasnosel’skii iteration technique are the most used of all those
methods. In particular, to implement our method, we need to use Krasnonsel’skii-Mann (K-M)
iteration algorithm.

The Krasnonsel’skii-Mann (K-M) iteration algorithm is aimed at solving the fixed point equation

Tx = x, (3.186)

where T is a self-mapping of closed convex subset. The K-M algorithm generates a sequence
{u,,} according to the recursive formula

Up1 = (1 - an)un + anT[un]’ n=0. (3187)

Obviously, for the special case a, = 1 for each n in the Krasnonsel’skii -Mann iterative
scheme, the result is Picard’s iteration technique.
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3.4 Method Description

In this section, we will discuss and describe the method that we will apply to obtain
numerical solutions for a class of third order linear and nonlinear boundary value problems.

First, consider the general third order equation
p(OuU'"" () + qu"(t) + ru'(t) + h(tu(t) = f(t), a<t<h, (3.188)
with boundary conditions

B;[u] = ayu(a) + a,u’(a) + azu’’(a) = «a,
B,[u] = byu(b) + b,u’(b) + azu''(a) = B. (3.189)

For the implementation of Green’s Function-Picard's fixed point iteration, we first define the
following linear integral operator T[u]

b (3.190)
Tlul = u, + f G(t]s) [p(s)u’""(s) + q(s)u"' (s) + r(s)u'(s) + h(s)u(s)] ds.
Now, adding and subﬁacting f(t) we get
b
Tlu] = up + f G(tls) [p(s)u""(s) + q(Ou" (s) + r(s)u’(s) + h(s)uls)
¢ b (3.191)
—f(s)] ds +f G(t|s) f(s)ds.
From (3.132) and (3.133) we get :
b
Tlu]l = uy + f G(tls) [p(s)u""(s) + q(s)u”(s) + r(s)u'(s) + h(s)uls)
a—f(s)] ds +u—uy,
b
Tlu]l =u+ f G(t]s) [p(s)u'""(s) + q(s)u"' (s) + r(s)u'(s) + h(s)u(s)
a (3.192)
— f(s)lds.
Applying Picard's iteration for n > 0, gives
b
Upsp = Uy + f G(tls) [p(Oun"" () + q($)uy" (s) + r($)uy'(s) + h(s)un(s)
a—f(S)] ds, (3.193)

which is equivalent to
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s = o + G (tls) ()™ (5) + a(5)1te” () + Sty ($) + h(Sutp ()
~F)ds
+ | GCE1s) (" (5) + (s (5) + (' (5)
+h(s)us(5) = f(s)) ds + -
¥ f G(t19) [p(O)un™ () + ()t (5) + ()t () 3.1
+ h(s)u,(s) — f(s)] ds.

We can choose u, by finding the solution for L[u] = 0 subject to the specified boundary
conditions (3.189). Next, we apply Krasnoselskii-Mann iterative algorithm (K-M) for the
approximation of fixed points given by (3.188). This implies

Up+1 = 1- an)un

+a, |u,
b
+ f G(tls) [p(Duy,""" () + q()uy," (s) + r(s)uy,'(s) + h(s)u,(s)

—f(s)] ds], (3.195)
or equivalently

b
Unty = Up + Ap l f G(tls) [p(Ouy"" () + q()uy" (s) + r()uy'(s) + h(s)uy(s)

(3.196)

3.5 Numerical Results

In this section, we will apply this method on the class of third order nonlinear and linear
boundary value problems and then comparing the numerical results to illustrate the efficiency of
this method.

Problem 3.1 Consider the following third order nonlinear (BVP)
u”' () +u@®u”’ () —u'?(t)+1=0, 0<t<1, (3.197)

with boundary conditions
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u(0) =u(1) =u'(0) = 0. (3.198)

This problem has no known exact solution.

i

First, we find Green’s function for L[u] = u""’ subject to u(0) = u(1) = u'(0) = 0 by applying
the properties described before. Using the Computer Algebra System Maple we find that

1 52
q—§§+ﬂ>ﬂ—¢s+3n 0<t<s

12+ 1t2 <t<1
(25 Sz)’s

Next we apply the method as shown in Section 3.4, where u, is the solution of L[u] = u""" =0
subject to u(0) = u(1) = u'(0) = 0. Hence the iterative algorithm is

Uy = 0,
t 2
i ((_%52 + S) t2 —ts+ %) (unm(s) + un(s)unu(s)
—u',2(s) + 1)ds

1
(- Be)erormomo o
+ 1)ds.

Unp+1 = Uy +f

(3.200)

Numerical results are given to illustrate the efficiency of the proposed method and are
compared with other numerical methods that exist in the literature. It is clear that the method is
highly accurate and reliable because it yields very accurate approximate solutions as is shown by
Tables 3.1 (a), (b), (c), (d) and (e) and depicted in Figure 3.1 (a). The error is better when using
Picard iterations while the suggested Krasnoselskii-Mann iteration is not implemented in this
problem since it did not show any significant improvement. Since this problem does not have a
known exact solution, thus we found the error by subtracting the nth iteration from then + 1
iteration |u,,; — uy|.

Also, the numerical solution can be substituted in the differential equation to show that it
satisfies the equation with high accuracy. It is worth mentioning that when we increase the
number of iterations, the maximum error at the mesh points t = 0.1,0.2, ...,0.9 is reduced as is
shown in Table 3.1 (a). Comparisons of the absolute error values between our proposed method
and those methods in [39-41] are shown in Tables 3.1 (c) and (e). It is obvious that our method
yields better results.
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t Numerical Solution Present Method: |u; — ug

0.0 0 0

0.1 0.00149606946549957007926034455974 1.0 x 10716
0.2 0.00531781872516839635122571694105 4,0 x 10716
0.3 0.0104662029209492814015920759592 8.8 x 10716
0.4 0.0159432809774814504168200940993 1.5 x 10715
0.5 0.0207523246456161601691631635018 2.2x 10715
0.6 0.0238978611427057135484820595047 2.8x 1071
0.7 0.0243858478971903422282362025053 3.2x 10715
0.8 0.0212241768032093085434390272793 3.2x 10715
0.9 0.0134237040224862097880788967389 2.3x 10715
1.0 —2.3x 10732 4.7 X 10742

Table 3.1 (a) Numerical solution for Problem 3.1 using 7 iterations of the iterative method.

- Uy
0020
|l | eceeece ulo
0.01 5
001 0
0 00 5
0 : : :
] o2 0.4 0.6 0 _8 1
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Figure 3.1 (a) Absolute error between approximate solution for 10" and 7" iterations.




Number of iterations Maximum Error

2 1.2x107%
1.2 x 1077

7.2%x107°
5.5x 10711
42 x 10713

32x107%°
2.5x 10"
9.7 x 1071°
10 9.7 x 10722

O R 3| & G | W

Table 3.1 (b) Maximum error of our method applied to Problem 3.1 using various iterations.

x Shooting Method[41] 10th HAM for Present Method
h =-0.922[39]
0.1 0.0006723 3.96 x 10~/ 45x%x 10723
0.3 0.0021682 3.00x 10" 11 3.9 x 10722
0.5 0.0033009 1.19 X 10~8 9.7 x 10722
0.7 0.0036213 6.89 X 1078 1.4 x 10722
0.9 0.0021849 1.02 x 1077 1.0 x 10722

Table 3.1 (¢) Comparison with other methods, for Problem 3.1 using 10 iterations.
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t Numerical Solution Present Method:
lugo — uol
0.0 0 0
0.1 0.00149606946549956931554415153542419674331216281 45x 10723
0.2 0.00149606946549956931554415153542419674331216281 1.8 x 10722
0.3 0.0104662029209492747487539290229974468662108890 3.9 x 10722
0.4 0.0159432809774814390988468700292006259628868318 6.7 X 10722
0.5 0.0207523246456161437085590234114926679241014935 9.7 x 10722
0.6 0.0238978611427056923179285459540071998662169585 1.2 x 10722
0.7 0.0243858478971903178263927431619211544095578985 1.4 x 10722
0.8 0.0212241768032092843770770158736263620581738920 1.4 x 10722
0.9 0.0134237040224861921260805616667454183654135393 1.0 x 10722
1.0 6.8 x 10747 1.4 x 1075°

Table 3.1 (d) Numerical solutions for Problem 3.1 using 10 iterations of the present method.

t 5™ HAM[40] 10" HAM [40] 15" HAM [40] | Present Method : uy,
0.1 2.7x 1073 1.4 x107° 32x107° 4.5 x 10723
0.2 2.6 x1073 1.3x107° 1.4 x 107 1.8 x 10722
0.3 26x1073 1.4 x107° 7.6 X 1077 3.9 x 10722
0.4 2.8x 1073 1.5x 1075 48 x 1077 6.7 X 10722
0.5 3.2x1073 1.7 x 1075 3.5x 1077 9.7 x 10722
0.6 3.7x 1073 1.8x 1075 2.4 x 1077 1.2 x 10722
0.7 4.6 x 1073 2.0 x 1075 1.2 x 1077 1.4 X 10722
0.8 5.9 x 1073 2.2x107° 1.7 x 1078 1.4 X 10722
0.9 7.7 x 1073 23x107° 1.1x 1077 1.0 x 10722

Table 3.1 () Comparison with the other methods for Problem 3.1 using 10 iterations.
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Problem 3.2 Solve the third order nonlinear equation

W) +2euO =2 p<r<1, (3.201)

(1+6)3’ - =
with boundary conditions

u(0) = v (0) = 1,u(1) = In(2). (3.202)

The exact solution is given by
u(t) =In(1 +t). (3.203)

n

First, we find Green’s function for L[u] = u'"" subject to u(0) = u(1) = u'(0) = 0 by applying
the properties described before and using Maple, we find that

1, ) 52
(—ES +s>t —t5+7, 0<t<s (3.204)
G(tls) = 1 1 )
(—Esz+s—§)t2, s<t<1

n

Next, we apply the method as described in Section 3.4, where u, is the solution of L{u] = u""’ =
0 subjectto u(0) = u'(0) = 1,u(1) = In(2). We get the following iterative algorithm:

up = t + (In(2) — 1)t2,

t 1 Sz
Uptr = Up T f <<_§Sz + S) t? —ts+ 7) <un”'(8) + 2¢73Un(s)
0
)
(1+5)3
1 1 1
c \\ 2 2
4 )d
(1+s)3) ™ (3.205)

The comparison of the absolute error values between the method developed in this
section and those in references [42] and [43] are shown in Table 3.2(a). The results show that our
present method is much better and gives more accurate results using only 31 iterations.

The absolute errors for our numerical solution are shown in Table 3.2 (c) and depicted in
Figures 3.2 (a), (b) and (c). Note that the numerical result is highly accurate. The K-M iteration
IS not reported since it did not show any improvement of the error as compared with the Picard’s
iteration.
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t | Khanand Aziz [43] | HPM and RKM [42] | Present Method

0.0 0 0 0

0.1 5.6 x 107° 3.1x1077 1.4 x 10753
0.2 9.5 x 107° 1.6 x 1077 1.0 x 10752
0.3 3.2x107° 1.3 x 1077 3.3 x 10752
0.4 1.6 x 1075 3.7 x 1077 6.4 x 107°2
0.5 29x107° 48x%x 1077 9.4 x 10752
0.6 29x107° 4.5 x 1077 1.2 x 10751
0.7 1.3x107° 3.3x1077 1.3 x 10751
0.8 5.1x107° 1.8 x 1077 1.4 x 10751
0.9 - 6.9 x 1077 7.3 x 10751
1.0 0 0 45x%x 10778

Table 3.2 (a) Comparison with other methods for Problem 3.1 using 31
iterations.

Number of Iterations Maximum Error
2 1.6%x107°
4 11x107°
6 73%x 10712
8 50x 1071°
10 33x 10718
12 22x 1072
16 9.6 x 10728
21 49 x 107"
26 1.8x107*
31 12x107°!

Table 3.2 (b) Maximum error of the present method for various iterations
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Figure 3.2 (a) Exact solution versus numerical solutions using 10 and 12 iterations

t Exact Solution Numerical Solution Error

0.0 0 0 0

0.1 | 0.0953101798043248600439521232808 0.0953101798043248600440463833557 | 9.4 x 1023
0.2 | 0.182321556793954626211718025155 | 0.182321556793954626212081386422 3.6 X 10722
0.3 | 0.262364264467491052035495986881 | 0.262364264467491052036270847385 7.7 x 10722
0.4 | 0.336472236621212930504593410217 | 0.336472236621212930505857497638 1.3 x 10721
0.5 | 0.405465108108164381978013115464 | 0.405465108108164381979750373379 1.7 X 10~21
0.6 | 0.470003629245735553650937031148 | 0.470003629245735553653018696893 2.1x%x 1021
0.7 | 0.530628251062170396231543163189 | 0.530628251062170396233722122096 2.2 % 10721
0.8 | 0.587786664902119008189731140619 | 0.587786664902119008191650076754 1.9 x 10~21
0.9 | 0.641853886172394775991035977203 | 0.641853886172394775992248067411 1.2 x 10721
1.0 | 0.693147180559945309417232121458 | 0.693147180559945309417232120582 8.8 x 10728

Table 3.2 (c) Comparison between the exact and numerical solutions using 12 iterations.
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Figure 3.2 (b) Absolute errors using 6 and 8 Figure 3.2 (c) Absolute errors using 10 and 12
iterations. iterations.

Problem 3.3 Consider the following third order nonlinear (BVP)

u"'(t) —u"(t) = 4e%u?(t), (3.206)
with boundary conditions

u(0) = 1,u'(0) = 2,u(1) = e?. (3.207)
The exact solution is u(t) = e?.

Applying the properties described before, the operator L[y] = u"" — u'" on (0,1) has the following
Green’s function

eeSs —eeS—eSs+e eeS—eSs—e eSs—2e5+2

— t
4 es(e —2) esS(e—2) Lt esS(e—2) e, 0<t<s
G(tls) = es+e—2e’ '
—————— (1 +t—eb), s<t<1 (3.208)
eS(e—2)

We apply Picard's fixed point iteration, where wu, is the solution of u'"" — u"" = 0 subject to
u(0) = 1,u'(0) = 2,u(1) = e>.

Therefore, the iterative scheme becomes:

—e—1+¢? —2e+1+ezt+—3+e2 .
Uy = — et,
0 e—2 e—2 e—2
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eeS—eSs—e

+ft<eess—ees—ess+e
Up1 = U
n+1 n 0 es(e_z)
eSs —2e5+2 .
e —
eS(e—2)
+f1 esS+e—2e
t es(e—2)

— 4e72u,%(s))ds.

eS(e—2)

) (u"'(s) — u,"" () — 4e~ %5, 2(s))ds

N

(T+t—e) | (un""(s) —uy" ()

(3.29)

In this problem, the Krasnoselskii-Mann iteration method yields better approximate
solutions than Picard’s iterations method. Table 3.3 (c) and Figure 3.3 (b) demonstrate that the
matching between the approximate and exact solution is better for « = 0.94 rather than a = 1.
From the numerical results in Table 3.3 (a) and Figure 3.3 (a) we notice that the method yields
very accurate approximate solutions. The maximum errors for Mann’s iterative method using
a = 0.94 for certain iterations are reported in Table 3.3 (b).

t Exact Solution Numerical Solution Error
0.0 1 0.99999999999999999999996390425574351 | 3.6 x 10~23
0.1 | 1.2214027581601698339210719946396742 | 1.2214027581601698339180452562755077 | 3.0 x 1021
0.2 | 1.4918246976412703178248529528372223 | 1.4918246976412703178177098950343530 | 7.1 x 1021
0.3 | 1.8221188003905089748753676681628645 | 1.8221188003905089748659999287480198 | 9.4 x 1021
0.4 | 2.2255409284924676045795375313950768 | 2.2255409284924676045668849966006017 | 1.3 x 10~20
0.5 | 2.7182818284590452353602874713526625 | 2.7182818284590452353474856105695440 | 1.3 x 10~20
0.6 | 3:3201169227365474895307674296016443 | 3.3201169227365474895199355831208524 | 1.1 x 1020
0.7 | 40551999668446745872241088952286203 | 4.0551999668446745872155208861574196 | 8.6 x 1021
0.8 | 4.9530324243951148036542863564239643 | 4.9530324243951148036484576165199068 | 5.8 x 1021
0.9 | 6.0496474644129460837310239530277253 | 6.0496474644129460837284305314126319 | 2.6 x 1021
1.0 | 7.3890560989306502272304274605750078 | 7.3890560989306502272302433899503734 | 1.8 x 1022

Table 3.3 (a) Comparison between the exact and numerical solutions for Problem 3.3 using

15 iterations.
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Figure 3.3 (a) Exact solution versus numerical solution using 15 iterations.

Number of iterations Max. Error
5 24 %1078
6 1.1 x107°
7 3.5x 10711
8 2.3 x 10712
9 6.0 x 10714
10 52 x 10715
11 1.7 x 10716
13 49 x 10718
15 1.3 x 10720

Table 3.3 (b) Maximum error arising from Mann’s iterative method when a = 0.94 for various
iterations.
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Figure 3.3 (b) Mann’s iteration method with @ = 0.94 and Picard’s iterative method using 15

iterations.
PICARD’s MANN'’s

‘ a=1 a=0.9 a=0.92 a=0.94
0.0 2.5x1072° 6.9 x 10723 3.1 x 10724 3.6 x 10723
0.1 1.5 x 10717 9.0 x 10719 2.4 x 10720 3.0x 10721
0.2 5.9 x 10717 1.5x 10718 3.3x 10720 7.1x 10721
0.3 1.4 x 10716 3.8x1071° 1.3 x 10720 9.4 x 10721
0.4 2.4 x 10716 1.6 x 10718 7.0 x 10720 1.3 x 10720
0.5 3.5x 10716 2.6 x 10718 8.0 x 10720 1.3 x 10720
0.6 4.6 x 10716 1.4 x 10718 2.1x 10720 1.1 x 10720
0.7 5.2 x 10716 1.8 x 10718 8.0 x 10720 8.6 x 10721
0.8 5.0 x 10716 5.6 x 10718 1.7 x 10719 5.8 x 10721
0.9 3.4 x 10716 7.2x 10718 2.0x 1071° 2.6 x 10721
1.0 6.1 x 10723 4.1x 10723 7.1 x 10722 1.8 x 10722

Table 3.3 (c) Comparison between Picard’s and Mann’s iteration method for certain values of a.
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Problem 3.4 Consider the following third order nonlinear (BVP)

u'"'(t) = e 2tu3(¢), (3.210)
with boundary conditions

u(0) =u'(0) =1,u(l) =e. (3.211)

The exact solution is given by u(t) = et.

Since the linear operator L[u] = u'"" and the interval 0 < t < 1 are the same as in Problems 3.1
and 3.2, thus Green’s function will be the same, which is

(( 12+>152 t+s2 0<t<
calsy =1\ 20 ) TR ’ (3:212)
1 1 '
(—Esz+s—§)t2, s<t<1

Applying Picard's fixed point iteration, then we have the following iterative algorithm:

ug=1+t+ (e —2)t?
2

t 1
Uptp = Up T j (<_ESZ + S) t? —ts + S?) (un’”(s) - e_Ztuns(S))dS

0

1 1 1
+ ( ——s?+s—= tz) ("' (s) — e72tu, 3(s))ds,
J (252 +5-3) -

where u, is the solution of u'"" = 0 subject to u(0) = u'(0) = 1,u(1) =e.

The K-M iteration for this problem has no affect in improving the error. The numerical
results are reported in Table 3.4 (a) and Figure 3.4 (a), which show that our method is accurate
and efficient. The maximum errors for certain iterations are reported in Table 3.4 (b). Moreover,
Table 3.4 (c) shows the absolute error obtained for some iterations, while Figure 3.4 (b) shows a
comparison of the absolute error between the 13™ and 15" iterations. Further accuracy may be
achieved using more iterations.
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t Exact Solutions Numerical Solutions Errors
0.0 1 1.000000000000000000000000003 | 3.0 x 1027
0.1 | 1.10517091807564762481170782649 | 1.105170918075647624811706467 | 1.4 x 10~24
0.2 | 1.22140275816016983392107199464 | 1.221402758160169833921066580 | 5.4 x 1024
0.3 | 1.34985880757600310398374431333 | 1.3498588075760031039837324340| 1.2 x 1023
0.4 | 1.49182469764127031782485295284 | 1.4918246976412703178248328408| 2.0 x 10~23
0.5 | 1.64872127070012814684865078781 | 1.648721270700128146848621880 | 2.9 x 1023
0.6 | 1.82211880039050897487536766816 | 1.822118800390508974875331282 | 3.6 x 1023
0.7 | 2.01375270747047652162454938858 | 2.0137527074704765216245092865| 4.0 x 10~23
0.8 | 2.22554092849246760457953753140 | 2.2255409284924676045795004075| 3.7 x 1021
0.9 | 2.45960311115694966380012656360 | 2.459603111156949663800102027 | 2.5 x 1023
1.0 | 2.71828182845904523536028747135 | 2.718281828459045235360287471 0

Table 3.4 (a) Comparison between the exact and the numerical solution for Problem 3.4 using 15

iterations .

2.64
244
224
Exact ——
2
1.8 Uqsg * k%
1.6
1.4
1.2
1% T T T .
o 02 o4 0.6 0.8 1
.

Figure 3.4 (a) Exact solution versus numerical solution using 15 iterations.

183




Number of Iterations

Maximum Error

5 43x107°
7 6.7 x 1072
9 1.0x 107
11 1.6 x 107V
13 2.6 x107%°
15 40x107%3

Table 3.4 (b) Maximum error of the present method for various iterations.

t u; Ug Uqq Uq3 Ugsg
0.0 20%x10732 | 1.9x 10732 0 3.0%x107%7 | 3.0x 107%
0.1| 1.4x1071° | 36x1071% | 56 x1071° | 8.7%x107%% | 1.4 x 10724
0.2|58x1071° | 14x10715 | 22x107%8 | 35%x 1072 | 54 x 10724
0.3| 1.3x107° | 3.1x10715 | 49x10718 | 7.6 x 1072t | 1.2 x 10723
0.4 21x107° | 53x107% | 82x 10718 | 1.3x1072° | 2.0 x 10723
0.5| 3.1x107° | 76 x10715 | 1.2x 1071 | 1.8%x1072° | 29 %x 10723
0.6 39%x107° | 95x10715 | 1.5x 107 | 23%x1072° | 3.6 x 10723
0.7 | 43x107° | 1.0x107* | 1.6 X107 | 2.6 x1072% | 4.0 x 10723
0.8| 40x107° | 9.7x10715 | 1.5x107Y | 24x1072° | 3.7 x 10721
0.9| 26x107° | 64x10715 | 1.0x 107 | 1.6 x1072% | 25%x 10723
1.0 0 3.5%x1073% | 7.5x 10733 0 0

Table 3.4 (c) Comparison of the numerical solutions using 7, 9, 11, 13 and 15 iterations.
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Figure 3.4 (b) Comparison of the absolute errors using 13 and 15 iterations.

Problem 3.5 Consider the following third order nonlinear (BVP)

w(t) +ul(t) = et (3 + t(5 + t + tet (t — 1)2)), (3.214)
with boundary conditions

u(0) = 0,u'(0) = —1,u(1) = 0, (3.215)

whose exact solution is given by u(t) = t(t — 1)e".

Since the linear operator L[u] = u'"" and the interval 0 < t < 1 are the same as in Problems 3.1,
3.2 and 3.4, thus Green’s function is given by

1 52
((——52+s>t2—t5+—, 0<t<s
G(tls)zi 2 2 .

1 1
(—Es +s—§)t, s<t<i (3.216)

Applying Picard's fixed point iteration, we have the following iterative algorithm:

Uy = t2 +t,
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Un+1 =un+]

2

2 2

0

—eS(3+s(5+s+seS(s— 1)2))) ds

t ((_152 + s) t2 —ts+ S—) (un”’(s) + u,%(s)

(b e)rirnnco

—eS(3+s(5+s+se(s— 1)2))) ds,

where u, is the solution of u”"" = 0 subjectto u(0) =0, u'(0) = -1, u(1) = 0.

The comparison of the absolute errors between our method and that of [42] is shown in
Table 3.5 (b). The numerical results using 15 iterations are presented in Table 3.5 (a) and Figure
3.5 (a). It is clear from both of them the high accuracy and fast convergence of the method. In
Table 3.5 (c), we introduce the maximum absolute error for different iterations. In addition, in
Figure 3.5 (b) we compare the numerical results between those arising from the fifth iteration
and the fifteenth iteration. As in Problem 3.4, the K-M iteration for this problem does not affect

the accuracy or rate of convergence.

Numerical Solution

Error

0.0

0

0

0.1

0.0994653826268082862330537043841.

5.0 x 10733

0.2

0.1954244413056271734273715191423¢

2.0 x 10732

0.3

0.2834703495909606518365863057989!

4.2 x 10732

0.4

0.3580379274339048762779647086810!

7.2 X 10732

0.5

0.4121803176750320367121626969536:

1.1x 10731

0.6

0.4373085120937221539700882403592!

1.4 x 10731

0.7

0.4228880685688000695411553716025¢

1.5 x 10731

0.8

0.3560865485587948167327260050233.

1.4 x 10722

0.9

0.2213642800041254697420113907243]

9.3x 10732

1.0

4.0%x 10735

2.0 x 10735

Table 3.5 (a) Numerical solutions and absolute errors for Problem 3.5 using 15 iterations.
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t HPM and RKM HPM and RKM Present Method
|Us03 — u| [42] |U703 — u| [42] Uqs

0.0 - - 0

0.1 1.8 x 107° 7.8 x 1077 5.0 x 10733
0.2 49 x 107° 2.2x107° 2.0 X 10732
0.3 8.8x107° 4.1x107° 4.2 x 10732
0.4 1.3x 1075 6.1 x 107° 7.2 X 10732
0.5 1.7 x 1075 8.0x 1076 1.1 x 10731
0.6 1.9 x 1075 9.2 x 107° 1.4 x 10731
0.7 2.0x 1075 9.6 X 107 1.5 x 10731
0.8 1.7 x 107> 8.5 x 107 1.4 x 10721
0.9 1.1x 1075 5.5 x 107° 9.3 x 10732
1.0 - - 2.0 x 10735

Table 3.5 (b) Comparison with other numerical methods for Problem 3.5.

Number of Iterations Maximum Error
5 1.7x 1071
6 1.7x107"
7 1.7x 1071
8 1.7x107Y
9 1.6x 107"
10 1.6x 1072
15 1.7x 10731

Table 3.5 (c) Maximum Error of our method for certain iterations.

187




Figure 3.5 (a) Exact solution versus numerical solutions of Problem 3.5 using 15 iterations.

ﬁ 'l
Usg * k% ok
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_0.24 -
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1] 02 0.4 0.6 0.8 1

Figure 3.5 (b) Numerical solutions for Problem 3.5 using 5 and 15 iterations.

Problem 3.6 Consider the following third order nonlinear
w() —u' @) —u@®u" () +urt) =2t +t2 —tet 1 Ret" T+t - 1) (3.318)

with boundary conditions
u(0) =1Lu()=-1,uv'1) =1, (3.319)
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whose exact solution is given by

u(t) =t+1—tet 1. (3.320)

Applying the properties described before, the operator L[y] = u""" — u' on (0,1), has the following
Green’s function

G(t|s)
(—(e*—2e"+1e e*—2e+1 , (e —2e5+1)e? |
e e 0<t<s
es(ez—2e+1) 2es(e2—2e+1) 2es(e2 —2e+1) '’
e’e’—ee® —e+e® e?—e?+2e°—2e , 2e’e’—2ee’ —e?+e”
L es(e? —2e+1) 2es(e? —2e+1) ¢ 2es(e? —2e+1)

et s<t< | (3321)

We apply Picard's fixed point iteration. Hence, the resulting fixed point iterative scheme reads:

2e(e”1—-1) el—-1 ot 4 e—1

T 2ele—el—e 2ele—el—e 2e le—el—p¢
t/—(e? —2e5+1)e e —2e°+1 |
Up1 = Uy +f Y + > e
o \ es(e?—2e+1) 2es(e? —2e+1)
(e?s —2e® + 1)e? _ . , ,
7ot —zer 0 ) ") —un'(9) —un(up" )
+u,2(s) —2s —s? +se571(2e5 T+ s — 1))ds
fl e?eS —ee?S —e+eS e?—e? +2e5—2e
" es(e?—2e+1) 2es(e? —2e+1) ¢
2e%e’ —2ee* —e? +e* _ . ,
T 2e5(eZ—2e+1) © t ) (1) = ' (9)

— U ()" () + up?(s) — 2s — s2 + seS"H(2e571 + s — 1))ds,

et

Uy

t

(3.322)
where 1w, is the solution of 1"’ —u'" = 0 subject to u(0) = 1,u’(0) = 2,u(1) = e2.

Table 3.6 (a) and Figure 3.6 (a) show the numerical results and the errors obtained by
using the proposed algorithm with 20 iterations. Again in this problem, the Krasnoselskii-Mann
iteration method gives better approximate solutions than the Picard’s iterations method. Table
3.6 (b) and Figure 3.6 (b) show that the matching of the numerical solution with the exact
solution is better for @ = 0.93 than for @« = 1.Table 3.6 (c) shows the maximum error of the
Mann’s iterative method when a = 0.93 for some selected iterations. Examining that Table, it is
clear that the absolute errors values are relatively very small. Higher accuracy can be achieved
by taking and evaluating more iterates.
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t Exact Solution Numerical Solution Error
0.0 1 1.0000000000000000000000002178635023 | 4.2 X 10~25
0.1 1.0593430340259400888116545760354374| 1.0593430340259400890306879080948485 | 2.2 x 1071°
0.2 | 1.1101342071765556817139795229968874| 1.1101342071765556819868868250392407 | 2.7 x 1071°
0.3 | 1.1510244088625771455885599719807413| 1.1510244088625771457947078894641595 | 2.1 x 1071°
0.4 | 1.1804753455623894269486164331069728| 1.1804753455623894270416613903825568 | 9.3 x 1072°
0.5 1.1967346701436832881981002325044098| 1.1967346701436832881956770992810634 | 2.4 x 102!
0.6 | 1.1978079723786164195533402449113044| 1.1978079723786164195036626018159413 | 5.0 x 102°
0.7 | 1.1814272455227974937531883544775282| 1.1814272455227974937013901240971390 | 5.2 x 1072°
0.8/ 1.1450153975376145130640515931047685| 1.1450153975376145130336090039163179 | 3.0 x 1072°
0.9 1.0856463237676363841521758464982070| 1.0856463237676363841436536643266162 | 8.5 x 102!
1.0 1 0.99999999999999999999999903701671267 | 9.6 x 102>

Table 3.6 (a) Comparison between the exact and the numerical solutions for Problem 3.6 using 20
iterations

Exact

Uy * ko %

Figure 3.6 (a) Exact solution and numerical solutions for Problem 3.6 using 20 iterations.
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PICARD’s MANN'’s
‘ a=1 a=0.97 a=0.95 a=0.93 a=0.9
0.0 2.8 x 10724 2.3x1072° 2.2 x 10724 42 % 10725 4,6 X 1072°
0.1 4,0 x 10718 53 x1071° 3.0x 1071° 2.2x1071° 8.5 x 10720
0.2 5.5x 10718 5.4 x1071° 3.6 x1071° 2.7 x1071° 2.7x1071°
0.3 5.2x 10718 2.6 x1071° 2.5x1071° 21x1071° | 4.1x1071°
0.4 3.3x 10718 6.8 x 10720 8.9 x 10720 93x 1072 | 44 x1071°
0.5| 14x10718 2.7 x 10719 3.7 x 10721 24x10721 | 3.7x1071°
0.6 1.3 x 1071 3.1x1071° 9.1 x 10720 5.0 x 10720 2.5x1071°
0.7 3.8x1071° 23x1071° 8.3x 10720 5.2 x 10720 1.3x 1071
0.8 3.4x1071° 1.2 x 10719 47 x 10720 3.0x 10720 | 4.7 x 10720
0.9 1.1 x 10719 3.0 x 10720 1.3 x 10720 8.5 x 10721 7.7 x 10721
1.0 9.2 x 10723 1.3 x 10723 3.8x 10723 9.6 x 1072° 2.3 x 10724

Table 3.6 (b) Comparison between of Picard’s and Mann’s iteration methods.

Number of Iterations Maximum Error
5 21%x107°
10 1.5x 1071
15 46x1071°
20 2.7 %1071

Table 3.6 (c) Maximum error of the Mann’s iterative method when @ = 0.93 for some selected
iterations.
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Figure 3.6 (b) Mann’s iteration method with ¢ = 0.93 and Picard’s iterative method for
Problem 3.6 using 20 iterations.

Problem 3.7 Consider the following third order linear (BVP)
u’"(t)=tut+et(-3-5t—2t2+t3), 0<t<1, (3.323)
with boundary conditions

u(0) =0,u"(0) =0,u(1) =0, (3.324)
whose exact solution is given by

u(t) = t(1 —t)et. (3.325)

We find Green’s function for L[u] = u'" subject to u(0) = u(1) = u"'(0) = 0 by applying
Green’s properties. Green’s function is found to be

1, (1, 1y 1,
=S +<—§S —§>t+§t, 0<t<s
Gtls) = .

( 2 + 1)t <t<1
—=s“+s—=]|t, s
2 2

(3.326)

Applying Picard's fixed point iteration we have the subsequent iterative scheme:

u0=0,
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Uny1 = un"’f
0

t

<12+( 1 1
2° 2°

t+= tz) (u"'(s) — suy

—eS(—3 =55 —2s% +s%))ds

11
+f (—52—25+2+
¢ \2

(12+2 2
25 S

— e5(=3 — 55— 252 + s%))ds,

) t) (u"'(s) — suy

where u, is the solution of u'"" = 0 subjectto u(0) =0, u”(0) =0, u(1) = 0.

Comparison of errors between our method and the numerical method presented in [44] is
demonstrated in Table 3.7 (a), which shows that our method yields better results. Figure 3.7 (a)
exhibits the exact and numerical solutions using 30 iterations. In addition, in Table 3.7 (b), we
computed the maximum absolute errors for different iterates. From Table 3.7 (c), it is obvious
that evaluating more iterates will enhance the numerical solution dramatically. It is important to

note that the K-M iteration for this problem has no affect in improving the error.

Example 1 in [44] Present Method
t h=0.010 h =0.005

0.0 0 0 0

0.1 2.99 x 1076 7.67 X 1077 1.7 x 10716
0.2 5.33x 107 1.37 x 107 3.4 x 10716
0.3 7.97 X 1076 1.81x 107° 5.1 x 10716
0.4 7.98 x 107 2.08 x10°° 6.7 x 10716
0.5 8.28 x 107 2.11x10°° 8.0 x 10716
0.6 7.89 x 1076 2.11x10°° 8.8 x 10716
0.7 6.91 x 107 1.87 x 107 8.8 x 10716
0.8 5.18 X 1076 1.46 x 107 7.6 X 10716
0.9 3.15x 107 1.31x 1077 48 x 10716
1.0 0 0 0

Table 3.7 (a) Comparison with another method for Problem 3.7 using 8 iterations.
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x

Figure 3.7 (a) Exact versus numerical solution using 30 iterations.

Number of Iterations Maximum Error
5 3.0x 107"
10 1.8x 107"
15 12x107%®
20 7.4x 10738
25 47x 107"
30 3.0x107°°

Table 3.7 (b) Maximum error of the present method for certain iterations.
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t | 10iterations | 15iterations | 20 iterations | 25 iterations | 30 iterations
0.0 0 0 0 0 0
0.1 3.6x1072° 2.3x107%° 1.4x1073® | 92x107*® | 58 x 10757
0.2 | 7.2x10720 4.6 x 1072° 29x1073 | 1.8x 1077 | 1.2 x 1075
0.3| 1.1x107%° 6.8%x1072° | 43x107%® | 27x107*7 | 1.7 x 1075
0.4 | 1.4x10°% 8.9 x 1072° 56 x1073® | 3.6 x107%7 | 2.3 x107°%°
0.5| 1.7x1071° 1.1 x 10728 6.7 x 10738 | 43x107%7 | 2.7 x 1075
0.6 1.8x10°% 1.2 x 10728 7.4%x10738 | 47x107%7 | 3.0 x 107
0.7 | 1.8x1071° 1.2 x 10728 7.4x10738 | 47x107*7 | 3.0 x 1075
0.8 1.6x1071° 1.0 x 10728 6.4x 10738 | 41x107* | 2.6 x 1075
0.9 1.0x 107 % 6.4%x1072° | 40x1073® | 26 x107*7 | 1.6 x 1075
1.0 0 47 x 10735 7.2 x 10747 0 2.6 X 1076°

Table 3.7 (¢c) Absolute Errors resulting from various iterations.

Problem 3.8 Consider the following third order linear (BVP)

u”'(t) = tu(t) +et(3+t—61t? —60t3 — 15t* —t>+ %), —1<t<1,

with boundary conditions

u(—-1) =0,

The exact solution is given by

We find Green’s function for L[u] = u

12
(-1 ==,

e

u(t) = t(1 —tHet.

nr

Green’s function’s properties. This yield

4

((lsz+ls_l)+(

G(t|s) = i

2 4

2 4

—=5

1 1
2° 7%

2

( , 1 1) 1,1 1
——=Ss“+-5s—— +(——s +-5——

4 2
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1
t+=t?

u(1) =0.

2

4

)t, s<t<1

(3.329)

(3.330)

subject to u(0) = u(1) = u’’(0) = 0 by applying

-1<t<s

(3.328)

(3.331)



Applying Picard's fixed point iteration, we have the subsequent iterative scheme:

6
)

t /1 1 1 1 1 1 1
— 2 e e 42 "
Upi1 un+f_1<<4s +35s 4)+< 25038 4>t+2t>(un (s)

— su,(s) —e5(3+ s — 6152 — 60s3 — 155* — s> + 5°) )ds

1 1,1 1 1, 1 1 y
+ft (3 +ze-3)+ (3 —3)e e
— su,(s) —e5(3+ s — 61s? — 60s3 — 155* — s> + 5°) )ds,

where u, is the solution of 4"’ = 0 subject to u(—1) = 0, u"(-1) = 1?2 u(1) = 0.

(3.332)

Numerical results of this linear third-order differential equation confirm that our
approach is more accurate than the method in [44] as observed in table 3.8 (a). Table 3.8 (b)
shows the errors of the numerical solutions for different iterations; higher accuracy can be
obtained by evaluating more iterates. The K—-M iteration is not implemented in this problem
since it did not show any noteworthy improvement. Moreover, the maximum errors for some
iterates are reported in Table 3.8 (c). Figure 3.8 (a) shows the approximate solution which is

clearly highly accurate.

Example 2 in [44] Present Method
t h=0.010 h =0.005

-1.0 0 0 3.0x 10713
-0.8 8.15x 107 1.93 x 107° 8.8 x 10710
—0.6 1.43 x 1075 3.30 x 107 1.7 x107°
-0.4 1.87 x 1075 441 x107° 2.4 x107°
-0.2 2.10 x 1075 476 x 107 29%x107°
0.0 2.16 X 1075 5.18 x 1075 3.1x107°
0.2 2.06 x 107° 4.66 X 1075 29x107°
0.4 1.78 x 1075 3.03 x 1075 24%x107°
0.6 1.29 x 107> 1.96 x 107° 1.7 x 107°
0.8 6.31 X 107 5.96 x 1077 8.9 x 10710
1.0 0 0 0

Table 3.8 (a) Comparison with the method in [44] for Problem 3.8 using 8 iterations.
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Figure 3.8 (a) Exact versus numerical solution using 30 iterations.

t 10 iterations | 15 iterations | 20 iterations | 25 iterations | 30 iterations
—-1.0| 83x10720 | 2.0x 10720 0 2.0 x 10730 0
—-0.8| 56x107%2 | 19x107Y | 57%x107% | 1.9x107%® | 59 x 10734
—-0.6| 1.1x107' | 35x107'7 | 1.1 x107%2 | 3.6 x107%8 | 1.1 x 10733
—0.4| 1.5x107 | 49x107Y | 1.6 x107%%2 | 49x1072%% | 1.6 x 10733
—-0.2| 1.8x107 | 59x107Y | 1.9x107%% | 6.1 x107%8 | 1.9x 10733
0.0 | 1.9x107 | 6.2%x10717 | 20%x 10722 | 6.4x 10728 | 2.0x 10733
0.2 | 1.8x107* | 59x107Y | 1.9x107%%2 | 6.1x 10728 | 1.9x 10733
0.4 | 1.5x107' | 49x10717 | 1.6 x107%%2 | 5.0 x 10728 | 1.6 x 10733
0.6 | 1.1x107' | 35x107'7 | 1.1 x107%2 | 3.6 x107%8 | 1.1 x 10733
0.8 | 56x107 | 1.8x107Y | 57%x107%® | 1.9x107%® | 59 x 10734
1.0 0 6.0x1072% | 2,0x107°° | 3.0x1073° | 1.0 x 107%°

Table 3.8 (b) Absolute Errors for Problem 3.8 for various iterations.
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Number of Iterations Maximum Error
5 6.1x107°
10 31x107 M
15 62x 107"
20 2.0 x 1072
25 6.4x107%8
30 20x10733

Table 3.8 (c) Maximum error of the present method for some iterations.

Problem 3.9 Consider the following third order nonlinear (BVP)
u"'(t) = —e 2O/ (t) + tu"(t) — 2t(@W'(t)?), 1<t <2, (3.333)

with boundary conditions

u(1) =0,u'(1) = -1, u(2) = In(2). (3.334)

The exact solution is given by

u(®) = In(o). (3.335)

We find Green function for L[u] = u"" subject to u(1) = u(2) = u'(1) = 0 by applying
Green’s function’s properties. It is found to be

1 1
52—25+2+(——52+s—2)t+—t2, 1<t<s
G(tls) = 2 2

, 1 (3.336)
R —Zs+2+<—§sz+25—2)t, s<t<?2

Applying Picard's fixed point iteration, then we have the iterative scheme

3 1,
Uy = —1 — In(2) +<E+ln(2))t—§t ,
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t

1 1
Ups1 = Uy T+ j (52 —25+ 2+ <__SZ +5s— 2) t +—t2> (unur(s)

1 2 2
+ 4e—2un(5)(unl(s) + su,” (s) — Zs(un/(s))z)) ds

2

1 .

+[ (352 -2s+2 (3:337)

t

() (o

+ &2 () (5) + 51y (5) = 25’ (1)) ) s,

where u is the solution of """ = 0 subjectto u(1) = 0,u'(1) = —1,u(2) = In(2).

The comparison of the absolute errors between our method and that in [44] is shown in
Table 3.9 (a). The approximate solutions at the mesh points t = 1.0,1.1,...,2.0 using 20
iterations, as well as the exact solution are depicted in Figure 3.9 (a) from which it is evident that
in case we choose o = 0.77, the approximate solution agrees very well with the exact solution.
As in Problems 3.3 and 3.6, the K-M iteration for this problem has a tangible effect in improving
the error. Table 3.9 (b) and Figure 3.9 (b) show that the best results are achieved using 20
iterations, when we choose a = 0.77 in which the maximum absolute error is 1.1 x 10717,
However, when a =1, a = 0.9, a = 8 and a = 0.7 the maximum absolute errors are 7.8 x
1071°,6.8 x 10713, 2.6 x 107> and 2.6 x 10715 using 20 iterations, respectively. Table 3.9
(c) shows that the choice a = 0.77 gives the best accuracy.

Example 4 in [44] Present Method
t h=0.010 h =0.005
1.0 0 0 2.0 x 10736
1.1 1.54 x 107° 4.24 x 1077 3.5x 10718
1.2 2.65 x 1076 7.15x 1077 9.1x 10718
1.3 3.30 x 107 8.34 x 1077 1.1x 107"
1.4 3.75x 1076 9.83 x 1077 6.3 x 10718
1.5 3.81x 107 1.01 x 107¢ 2.2 %1071
1.6 3.60 x 107° 9.23 x 1077 3.0x 10718
1.7 3.15x 107 8.34 x 1077 1.2x 10718
1.8 244 x 107 6.55 x 1077 2.2x10718
1.9 1.31x 107° 3.57 X 1077 3.5x 10718
2.0 0 0 9.9 x 10726

Table 3.9 (a) Comparison with method in [44] for Problem 3.9 using 20 iterations.
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* kk 3k

1.4

Figure 3.9 (a) Exact versus numerical solution using 20 iterations.

PICARD’s MANN'’s
‘ a=1 a=0.9 a=0.8 a=0.77 a=0.7

1.0 2.0x10736 1.0 x 1073¢ 0 2.0 x 1073¢ 0

1.1 21x1071° 2.5x 10713 1.0 x 10715 3.5%x 10718 5.2 x 10716
1.2 41x1071° 4.4 x 10713 1.8 x 1071° 9.1 x 10718 2.6 x 10716
1.3| 57x1071° 5.8x 10713 2.3%x 10715 1.1x107Y 1.4 x 10715
1.4| 7.0x1071° 6.5 x 10713 2.3 x 10715 6.3 x 10718 2.6 x 10715
1.5| 7.7x1071° 6.8 x 10713 2.6 x 10715 2.2x107%° 2.2x10718
1.6 | 7.8x10710 6.5 x 10713 2.5 x 10715 3.0x 10718 6.6 x 10716
1.7 | 71x1071° 5.7 x 10713 2.1x10718 1.2 x 10718 1.0 x 10715
1.8| 57x1071° 4.3 x 10713 1.6 x 10715 2.2x 10718 2.0 x 10715
1.9 33x107% 2.4x10713 9.0 x 10716 3.5x 10718 1.7 x 10715
2.0 50x10730 9.0 x 10730 2.3 x 10737 9.9 x 10726 4.5 x 10736

Table 3.9 (b) Comparing Picard’s and Mann’s schemes for Problem 3.9 using 20 iterations.
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Figure 3.9 (b) Mann’s with & = 0.77 and Picard’s for Problem 3.9 using 20 iterations.

t 5 iterations | 10 iterations | 15 iterations | 20 iterations | 25 iterations
1.0 | 10.0x 10737 | 10.0 x 10732 | 1.0 x 1073® | 2.0 x 1073¢ | 2.0 x 107*5
1.1| 86x1078 6.5 x 10712 3.7x 1071 | 35x1071® | 23 x 10720
1.2 | 2.0x1077 1.0 x 10711 1.3x107% | 9.1 x1071® | 4.1 x1072%0
1.3 | 29x1077 6.9 x 10712 57x107% | 1.1x10717 | 5.1x 10720
1.4 | 3.2x1077 31x1071 | 40x107% | 63%x10718 | 54x1072°
1.5| 3.2x1077 4.1x 10711 82x107% | 22x1071 | 5.6 x10720
1.6 | 29x1077 3.2x 10711 23x107* | 3.0x107'® | 5.6 x 10720
1.7 | 26x1077 8.8 x 10712 33x107 | 1.2x10718® | 52x 10720
1.8 2.2x1077 1.4 x 10711 32x107" | 22x1071® | 42x 10720
1.9| 1.5x1077 2.2x 10711 20x 1071 | 35x10718 | 24 x 10720
2.0 5.0x 10728 5.8 X 10725 1.4x107%° | 99x 10726 | 59 x 10734

Table 3.9 (c) Errors of numerical solutions for some iterations using Mann’s with @ = 0.77.
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CHAPTER 4: CONCLUSIONS

4.1 Summery

This thesis was divided into three chapters in which we surveyed two existing techniques
and introduced a novel one to obtain numerical solutions for various types of differential
equations, particularly for a wide class of boundary value problems. In the first chapter we
started with the Adomian Decomposition Method (ADM) for solving ordinary differential
equations, partial differential equations, algebraic equations, delay differential equations, integral
equations, and integro-differential equations. This method tackles many differential equations,
whether they are homogeneous, inhomogeneous, linear, or nonlinear, in a straightforward
manner without any restrictive assumptions, such as linearization or perturbation. In addition, the
(ADM) often converges to the exact solution if it exists. On the other hand, we noticed that the
method gives highly accurate approximations only close to the initial condition but not as we

move away from it.

In the second chapter, we introduced the Variational Iteration Method (VIM) for solving
ordinary differential equations, partial differential equations, calculus of variations, integral
equations, and integro-differential equations. This method gives rapidly convergent successive
approximations of the exact solution if such a solution exists. It also provides an approximation
with high level of accuracy by applying few iterations only. Actually, the variational iteration
method proved to be an effective tool to handle nonlinear equations without the use of Adomian
polynomials. However, we noticed that for this method, as we increase the values of x, the error

slowly deteriorates over the entire domain.

Finally, in the third chapter, we presented a new approach for obtaining numerical
solutions for third order linear and nonlinear boundary value problems by utilizing Green's
functions and manipulating fixed point iterations, such as Picard's and Krasnoselskii-Mann's
schemes. The aim of our alternative strategy is to overcome the major deficiency of both the
ADM and VIM, particularly the local convergence of the method and the deterioration of the
error as the domain increases. A number of examples were solved to illustrate the method and
demonstrate its reliability and accuracy. Moreover, we compared our results with both the

analytical and the numerical solutions obtained by other methods that exist in the literature.
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4.2 Future Work

In future research, we will work on deriving the necessary conditions for the convergence
of the iterative method as well as its rate of convergence. Also, we will try to generalize and
apply the scheme to BVPs other than third order, such as fourth order. In the approach we used
Picard’s and Mann’s fixed point schemes, therefore in the future work, we will explore other
schemes such as the Ishikawa iteration and try to embed it into our method. Moreover, my
ultimate goal is to publish all this work in an international and reputed journal.
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