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Abstract 

The aim of this thesis is twofold. First of all, in Chapters 1 and 2, we review the well-known 

Adomian Decomposition Method (ADM) and Variational Iteration Method (VIM) for obtaining 

exact and numerical solutions for ordinary differential equations, partial differential equations, 

integral equations, integro-differential equations, delay differential equations, and algebraic 

equations in addition to calculus of variations problems. These schemes yield highly accurate 

solutions. However, local convergence is a main setback of such approaches. It means that the 

accuracy deteriorates as the specified domain becomes larger, that is as we move away from the 

initial conditions. Secondly, we present an alternative uniformly convergent iterative scheme that 

applies to an extended class of linear and nonlinear third order boundary value problems that 

arise in physical applications. The method is based on embedding Green's functions into well-

established fixed point iterations, including Picard's and Krasnoselskii-Mann's schemes. The 

effectiveness of the proposed scheme is established by implementing it on several numerical 

examples, including linear and nonlinear third order boundary value problems. The resulting 

numerical solutions are compared with both the analytical and the numerical solutions that exist 

in the literature. From the results, it is observed that the present method approximates the exact 

solution very well and yields more accurate results than the ADM and the VIM. Finally, the 

numerical results confirm the applicability and superiority of the introduced method for tackling 

various nonlinear equations.   
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CHAPTER 0: INTRODUCTION 

 
 The aim of this thesis is twofold. First, we survey two major iterative methods that appear 

in the literature, which have been explored extensively for attaining analytical and/or numerical 

solutions for various linear and nonlinear problems, particularly those that model applications in 

the physical sciences. Secondly, we introduce a novel method based on manipulating Green’s 

functions and some popular fixed point iterations schemes, such as Picard's and Mann's. 

 

In the first Chapter, we will discuss and give a thorough review of the Adomian 

Decomposition Method (ADM). The decomposition method was first introduced and developed 

by George Adomian in [3, 5]. It has been receiving much attention from researchers in recent 

years in the field of applied mathematics, in general, and in the area of initial and boundary value 

problems in particular. The method efficiently handles a wide class of linear/nonlinear ordinary 

and partial differential equations, linear and nonlinear integral equations, and integro-differential 

equations. The ADM provides several significant advantages; it demonstrates fast convergence 

of the solution. It also handles the problem in a direct way without using linearization, 

perturbation, or any other restrictive assumptions that may change the physical behavior of the 

model under study. Furthermore, it provides an efficient numerical solution in the form of an 

infinite series that is obtained iteratively and usually converges to the exact solution using 

Adomian polynomials. The method is well addressed and used by many researchers in the 

literature [1-2, 4, 6-19]. 

  In this Chapter, we apply the decomposition method on some problems of the 

linear/nonlinear ordinary and partial differential equations, algebraic equations, delay differential 

equations, integral equations, and integro-differential equations. The main advantage of the 

method is that it is capable of greatly reducing the size of computational work without affecting 

the accuracy of the numerical solutions. Also, it yields highly accurate solutions close to the 

initial conditions. However, the limitation of the ADM is that it converges locally, which means 

that as we move away from the left endpoints, the approximations deteriorate.  

 

In the second Chapter, we will comprehensively review another well-known method, 

namely, the Variational Iteration Method (VIM). The VIM was first established by Ji-Huan He 

[29-32], and later used by several authors to solve various problems [20-28]. The technique is of 
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great interest in the applied sciences. It was and still is utilized by mathematicians to handle a 

wide variety of applications that arise in engineering and sciences, such as homogeneous and 

inhomogeneous linear problems, as well as those that are nonlinear. Essentially, the VIM 

accurately computes the solutions in a series form that rapidly converges to the exact solution in 

an iterative fashion with specific features for each scheme. It yields several successive 

approximations by using the iteration of the correction functional. The VIM is a powerful and 

efficient method that results in approximations that are highly accurate, and also gives closed 

form solutions if they exist. This powerful technique handles both linear and nonlinear problems 

in a unified manner. Therefore, the VIM reduces the volume of calculations without requiring the 

use of Adomian polynomials, and hence the computations are direct and straightforward.  

In this Chapter, we apply the variational iteration method on some problems, including 

linear/nonlinear ordinary and partial differential equations, calculus of variations problems, 

integral differential equations, and integro-differential equations. The advantages of the method 

are that it gives highly accurate numerical solutions and reduces the size of computational work. 

It is important to mention that a major shortcoming of the variational iteration method is that the 

error slowly deteriorates as we increase the values of 𝑥 over the entire domain; hence, the 

convergence is local and not uniform. 

 

In the third Chapter, the core part of the thesis begins. In this chapter, a new approach is 

introduced for the solution of a wide class of third order linear and nonlinear boundary value 

problems. The underlying strategy of the approach is based on manipulating Green's functions 

and fixed point iterations, such as Picard's and Krasnoselskii-Mann's schemes using a tailored 

and appropriately selected integral operator. The reliability and accuracy of the strategy are 

verified by implementing it on a number of test examples. The resulting numerical solutions are 

compared with both the analytical and the numerical solutions that are available in the literature. 

The proposed method provides an efficient computational tool for treating the third order linear 

and nonlinear boundary value problems.  

We start the Chapter with a concise survey of the properties of the Green's functions 

essential to implement the method. Also, we apply two well-known fixed point iterations, 

namely, Picard's and Krasnoselskii-Mann's schemes, on a carefully selected integral operator. 

Finally, we introduce the method, provide related proofs, and apply it on several problems. The 
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numerical results are illustrated and depicted through a number of tables and graphs. The 

comparisons with other numerical methods and with the available exact solutions are included. 

 

In the final Chapter, we will summarize this dissertation, as well as discuss directions for 

future research. 
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CHAPTER 1: ADMIAN DECOMPOSITION METHOD  

1.1 Method Description 

 

The Adomian Decomposition Method (ADM) is applied for solving a wide class of linear 
and nonlinear ordinary differential equations, partial differential equations, algebraic equations, 
difference equations, integral equations and integro-differential equations as well. 
 
Consider the following equation: 
 𝐿𝑢 + 𝑁𝑢 + 𝑅𝑢 = 𝑔, (1.1) 

where 𝐿 is a linear operator, 𝑁 represents a nonlinear operator and 𝑅 is the remaining linear part. 
By defining the inverse operator of 𝐿 as 𝐿−1, assuming that it exists, we get 
  
 𝑢 = 𝐿−1𝑔 − 𝐿−1𝑁𝑢 − 𝐿−1𝑅𝑢. (1.2) 

 
The Adomian Decomposition Method assumes that the unknown function 𝑢  can be expressed by 
an infinite series of the form 
 
 

𝑢 = � 𝑢𝑛

∞

𝑛=0

, 
 

(1.3) 

or equivalently 
 
 𝑢 = 𝑢0 + 𝑢1 + 𝑢2 + ⋯, (1.4) 

 
where the components 𝑢𝑛 will be determined recursively. Moreover, the method defines the 
nonlinear term by the Adomian polynomials. 
 
More precisely, the ADM assumes that the nonlinear operator 𝑁(𝑢) can be decomposed by an 
infinite series of polynomials given by 
 

𝑁(𝑢) = � 𝐴𝑛

∞

𝑛=0

, 
 

(1.5) 

where 𝐴𝑛 are the Adomian’s polynomials defined as 𝐴𝑛  =  𝐴𝑛(𝑢0 , 𝑢1, 𝑢2, … , 𝑢𝑛). Substituting 
(1.3) and (1.4) into equation (1.2) and using the fact that 𝑅 is a linear operator we obtain 
 

� 𝑢𝑛

∞

𝑛=0

= 𝐿−1𝑔 − 𝐿−1 �� 𝑅(𝑢𝑛)
∞

𝑛=0

� − 𝐿−1 �� 𝐴𝑛(𝑢0 , 𝑢1, 𝑢2, … , 𝑢𝑛)
∞

𝑛=0

�, 
 

(1.6) 

 
or equivalently 
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𝑢0 + 𝑢1 + 𝑢2 + ⋯ =  𝐿−1𝑔 − 𝐿−1 �� 𝑅(𝑢𝑛)

∞

𝑛=0

� − 𝐿−1(𝐴0 + 𝐴1 + ⋯ ) 
 

(1.7) 

Therefore the formal recurrence algorithm could be defined by 
 
 𝑢0 = 𝐿−1𝑔, 

…, 

𝑢𝑛+1 = −𝐿−1�𝑅(𝑢𝑛)� − 𝐿−1(𝐴𝑛(𝑢0, 𝑢1, … , 𝑢𝑛)), 

 

 

(1.8) 

 
or equivalently, 
 𝑢0 = 𝐿−1𝑔, 

𝑢1 = −𝐿−1�𝑅(𝑢0)� − 𝐿−1�𝐴0(𝑢0)�, 

𝑢2 = −𝐿−1�𝑅(𝑢1)� − 𝐿−1�𝐴1(𝑢0, 𝑢1)�, 

…. 

 

 

 

(1.9) 

 

Consider the nonlinear function 𝑓(𝑢).  Then, the infinite series generated by applying the 
Taylor’s series expansion of 𝑓 about the initial function 𝑢0 is given by 
 
 𝑓(𝑢) = 𝑓(𝑢0) + 𝑓′(𝑢0)(𝑢 − 𝑢0) + 1

2!
𝑓′′(𝑢0)(𝑢 − 𝑢0)2 + ⋯. (1.10) 

By substituting (1.4) into equation (1.10), we have: 
 
 
 𝑓(𝑢) = 𝑓(𝑢0) + 𝑓′(𝑢0)(𝑢1 + 𝑢2+. … ) + 1

2!
𝑓′′(𝑢0)(𝑢1 + 𝑢2+. … )2 + ⋯. (1.11) 

Now, we expand equation (1.11). To obtain the Adomian polynomials, we need first to reorder 
and rearrange the terms. Indeed, one needs to determine the order of each term in (1.11) which 
actually depends on both the subscripts and the exponents of the 𝑢𝑛′𝑠. For instance, 𝑢1 is of 
order 1; 𝑢1

2 is of order 2; 𝑢2
3 is of order 6; and so on. In general, 𝑢𝑛

𝑘 is of order 𝑘𝑛. In case a 
particular term involves the multiplication of 𝑢𝑛′𝑠, its order is determined by the sum of the 
terms of the 𝑢𝑛′𝑠 in each term. For example, 𝑢2

3𝑢1
2  is of order 8 since (3)(2) + (2)(1) = 8.  

 
As a result, rearranging the terms in the expansion (1.11) according to the order, we have  
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 𝑓(𝑢) = 𝑓(𝑢0) + 𝑓′(𝑢0)𝑢1 + 𝑓′(𝑢0)𝑢2 +
1
2!

𝑓′′(𝑢0)𝑢1
2 + 𝑓′(𝑢0)𝑢3

+
2
2!

𝑓′′(𝑢0)𝑢1𝑢2 +
1
3!

𝑓′′′(𝑢0)𝑢1
3 + 𝑓′(𝑢0)𝑢4 +

1
2!

𝑓′′(𝑢0)𝑢2
2

+
2
2!

𝑓′′(𝑢0)𝑢1𝑢3 +
3
3!

𝑓′′′(𝑢0)𝑢1
2𝑢2 +

1
4!

𝑓′′′′(𝑢0)𝑢1
4 + ⋯ . 

 

 

 

(1.12) 

The Adomian polynomials are constructed in a certain way so that the polynomial 𝐴1 consists of 
all terms in the expansion (1.12) of order 1, 𝐴2 consists of all terms of order 2, and so on. In 
general, 𝐴𝑛  consists of all terms of order 𝑛 . Therefore, the first nine terms of Adomian 
polynomials are listed as follows: 
 
𝐴0 =  𝑓(𝑢0), 
 
𝐴1 = 𝑓′(𝑢0)𝑢1, 
 
𝐴2 = 𝑓′(𝑢0)𝑢2 + 1

2!
𝑓′′(𝑢0)𝑢1

2, 
 
𝐴3 = 𝑓′(𝑢0)𝑢3 + 2

2!
𝑓′′(𝑢0)𝑢1𝑢2 + 1

3!
𝑓′′′(𝑢0)𝑢1

3, 
 
𝐴4 = 𝑓′(𝑢0)𝑢4 + 1

2!
𝑓′′(𝑢0)(2𝑢1𝑢3 + 𝑢2

2) + 3
3!

𝑓′′′(𝑢0)𝑢1
2𝑢2 + 1

4!
𝑓′′′′(𝑢0)𝑢1

4, 
 

𝐴5 = 𝑓′(𝑢0)𝑢5 +
1
2!

𝑓′′(𝑢0)( 2𝑢1𝑢4 + 2𝑢2𝑢3) +
1
3!

𝑓′′′(𝑢0)�3𝑢1
2𝑢3 + 3𝑢1𝑢2

2�

+
4
4!

𝑓(4)(𝑢0)𝑢1
3𝑢2 +

1
5!

𝑓(5)(𝑢0)𝑢1
5, 

 

𝐴6 = 𝑓′(𝑢0)𝑢6 +
1
2!

𝑓′′(𝑢0)( 2𝑢1𝑢5 + 2𝑢2𝑢4 + 𝑢3
2) +

1
3!

𝑓′′′(𝑢0)(3𝑢1
2𝑢4 + 𝑢2

3 + 6𝑢1𝑢2𝑢3)

+
1
4!

𝑓(4)(𝑢0)(4𝑢1
3𝑢3 + 6𝑢1

2𝑢2
2) +

5
5!

𝑓(5)(𝑢0)𝑢1
4𝑢2 +

1
6!

𝑓(6)(𝑢0)𝑢1
6, 

 

𝐴7 = 𝑓′(𝑢0)𝑢7 +
1
2!

𝑓′′(𝑢0)( 2𝑢1𝑢6 + 2𝑢2𝑢5 + 2𝑢3𝑢4)

+
1
3!

𝑓′′′(𝑢0)(3𝑢1
2𝑢5 + 3𝑢1𝑢3

2 + 3𝑢3𝑢2
2 + 6𝑢1𝑢2𝑢4)

+
1
4!

𝑓(4)(𝑢0)(4𝑢1
3𝑢4 + 12𝑢1

2𝑢2𝑢3 + 4𝑢1𝑢2
3)

+
1
5!

𝑓(5)(𝑢0)�5𝑢1
4𝑢3 + 10𝑢1

3𝑢2
2� +

1
6!

𝑓(6)(𝑢0)𝑢1
5𝑢2 +

1
7!

𝑓(7)(𝑢0)𝑢1
7, 

 
 𝐴8 = 𝑓′(𝑢0)𝑢8 +

1
2!

𝑓′′(𝑢0)( 2𝑢1𝑢7 + 2𝑢2𝑢6 + 2𝑢3𝑢5 + 𝑢4
2)  
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                        +
1
3!

𝑓′′′(𝑢0)(3𝑢1
2𝑢6 + 3𝑢2

2𝑢4 + 3𝑢2𝑢3
2 + 6𝑢1𝑢2𝑢5 + 6𝑢1𝑢3𝑢4)

+
1
4!

𝑓(4)(𝑢0)(4𝑢1
3𝑢5 + 12𝑢1

2𝑢2𝑢4 + 12𝑢1𝑢2
2𝑢3 + 6𝑢1

2𝑢3
2

+ 𝑢2
4) +

1
5!

𝑓(5)(𝑢0)�5𝑢1
4𝑢4 + 20𝑢1

3𝑢2𝑢3 + 10𝑢1
2𝑢2

3�

+
1
6!

𝑓(6)(𝑢0)�𝑢1
5𝑢3 + 15𝑢1

4𝑢2
2� +

7
7!

𝑓(7)(𝑢0)𝑢1
6𝑢2

+
1
8!

𝑓(8)(𝑢0)𝑢1
8. 

 

 

 

 

(1.13) 

The Adomian polynomial 𝐴𝑛 was first introduced by Adomian himself; it was defined via the 
general formula 
 
 

𝐴𝑛(𝑢0, 𝑢1, … , 𝑢𝑛) =
1
𝑛!

𝑑𝑛

𝑑𝜆𝑛 �𝑁 �� 𝑢𝑘𝜆𝑘
∞

𝑘=0

��
𝜆=0

,      𝑛 = 0,1,2, …. 
 

(1.14) 

To find the 𝐴𝑛’s by Adomian general formula, these polynomials will be computed as follows: 
 
 𝐴0 =  𝑁(𝑢0), 

𝐴1 = 𝑑
𝑑𝜆

𝑁(𝑢0 + 𝑢1𝜆)|𝜆=0 = 𝑁(𝑢0)𝑢1, 

𝐴2 = 1
2!

𝑑
𝑑𝜆

�(𝑢1 + 2𝑢2𝜆)𝑁′′(𝑢0 + 𝑢1𝜆)�|𝜆=0 = 𝑁′(𝑢0)𝑢2 + 1
2!

𝑁′′(𝑢0)𝑢1
2, 

⋯. 

 

 

 

 

(1.15) 

In the subsequent sections, the ADM method and a modified version of it will be used for 
solving several interesting linear and nonlinear equations which are of physical importance. 
 

 

1.2 Convergence Analysis  

 

It is clear from (1.14) that the 𝐴𝑛′𝑠 are indeed polynomials and hence the 𝑢𝑛+1 term is 
obtained from (1.8). Cherruault [1] has given the first proof of convergence of the Adomian 
Decomposition Method and he used fixed point theorems for abstract functional equations. The 
order of convergence of the ADM was discussed by Babolian and Biazar [4]. 
 
Consider the general functional equation 
 
 𝑢 − 𝑁(𝑢) = 𝑓,          for  𝑢 ∈  ℍ.    (1.16) 
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where ℍ is a Hilbert space and 𝑁 is a nonlinear operator where 𝑁: ℍ ⟶ ℍ and 𝑓 is a given 
function in ℍ. The decomposition method assumes a series solution for 𝑢  given by  

 
𝑢 = � 𝑢𝑛

∞

𝑛=0

, 
 

(1.17) 

while the nonlinear term  𝑁(𝑢) as the sum of the series 
 
 

𝑁(𝑢) = � 𝐴𝑛

∞

𝑛=0

, 
 

(1.18) 

where the 𝐴𝑛’s are the Adomian polynomials in 𝑢0, … , 𝑢𝑛 obtained by 
 
 

𝐴𝑛(𝑢0, 𝑢1, … , 𝑢𝑛) =
1
𝑛!

𝑑𝑛

𝑑𝜆𝑛 �𝑁 �� 𝑢𝑘𝜆𝑘
∞

𝑘=0

��
𝜆=0

, 𝑛 = 0,1,2, …. 
 

(1.19) 

Substituting equations (1.17) and (1.18) into the functional equation (1.16) gives 
 
 

� 𝑢𝑛 − � 𝐴𝑛

∞

𝑛=0

= 𝑓
∞

𝑛=0

, 
 

(1.20) 

The method consists of the following scheme: 
 
 

�
𝑢0 = 𝑓,                                  
𝑢𝑛+1 = 𝐴𝑛(𝑢0, 𝑢1, … , 𝑢𝑛). 

 

(1.21) 

The Adomian technique is equivalent to determining the sequence  𝑆𝑛 = 𝑢1 + 𝑢2 + ⋯ + 𝑢𝑛 by 
using the iterative scheme defined by 
 
 𝑆0 = 0,                          

𝑆𝑛+1 = 𝑁𝑛(𝑢0 + 𝑆𝑛), 
 

(1.22) 

where 𝑁𝑛(𝑢0 + 𝑆𝑛) = ∑ 𝐴𝑖
𝑖
𝑛=0  .  

 
If there exist limits 
 𝑆 = lim

𝑛⟶∞
𝑆𝑛 , 𝑁 = lim 

𝑛⟶∞
𝑁𝑛, (1.23) 

in a Hilbert space ℍ , then 𝑆  solves the functional equation 𝑆 = 𝑁(𝑢0 + 𝑆)  in ℍ . The 
convergence of the Adomian decomposition method has been proved in [1-2], under the 
following two conditions: 
 
 ‖𝑁‖ < 1,          ‖𝑁𝑛 − 𝑁‖ = 𝜀𝑛 → 0  𝑎𝑠  𝑛 → ∞. (1.24) 

In the first condition, the nonlinear function 𝑁(𝑢) has to be a contraction, while the second 
condition implies the convergence of the series ∑ 𝐴𝑛

∞
𝑛=0 . 
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Theorem 1.1  Let  N be a nonlinear operator from a Hilbert space ℍ where: ℍ ⟶ ℍ and 𝑢 be 
the exact solution of (1.16). The decomposition series ∑ 𝑢𝑛

∞
𝑛=0   of 𝑢 converges to 𝑢  when 

∃ α < 1, ‖𝑢𝑛+1‖ ≤ α‖𝑢𝑛‖, ∀ 𝑛 ∈ 𝑁 ∪ {0}. 
 
Proof: 
We have the sequence  
 𝑆𝑛 = 𝑢1 + 𝑢2 + ⋯ + 𝑢𝑛 (1.24) 

We need to show that this sequence is a Cauchy sequence in the Hilbert space ℍ. To do that let  
 
 ‖𝑆𝑛+1 − 𝑆𝑛‖ = ‖𝑢𝑛+1‖ ≤ 𝛼‖𝑢𝑛‖ ≤ 𝛼2‖𝑢𝑛−1‖ ≤ ⋯ ≤ 𝛼𝑛+1‖𝑢0‖. (1.25) 

Since  
 
‖𝑆𝑚 − 𝑆𝑛‖ = ‖(𝑆𝑚 − 𝑆𝑚−1) + (𝑆𝑚−1 − 𝑆𝑚−2) + ⋯ + (𝑆𝑛+1 − 𝑆𝑛)‖   

 
           ≤ ‖𝑆𝑚 − 𝑆𝑚−1‖ + ‖𝑆𝑚−1 − 𝑆𝑚−2‖ + ⋯ + ‖𝑆𝑛+1 − 𝑆𝑛‖           
 
          ≤ 𝛼𝑚‖𝑢0‖ + 𝛼𝑚−1‖𝑢0‖ + ⋯ + 𝛼𝑛+1‖𝑢0‖ 

 
≤ (𝛼𝑛+1 + 𝛼𝑛+2 + ⋯ )‖𝑢0‖ =

𝛼𝑛+1

1 − 𝛼
‖𝑢0‖,     for  𝑛, 𝑚 ∈ 𝑁 , 𝑚 ≥ 𝑛. 

 

(1.26) 

Thus, 𝑆𝑚 converges to 𝑆𝑛 and  
 lim

𝑛,𝑚→∞
‖𝑆𝑚 − 𝑆𝑛‖ = 0. (1.27) 

From (1.27), the sequence {𝑆𝑛}𝑛=0
∞  is a Cauchy sequence in the Hilbert space ℍ. 

Hence, 
 lim

𝑛→∞
𝑆𝑛 = 𝑆,                for 𝑆 ∈ ℍ, (1.28) 

where 𝑆 = ∑ 𝑢𝑛
∞
𝑛=0 . 

 
Solving Eq. (1.16) is the same as solving the functional 𝑁(𝑢0 + 𝑆); by assuming that 𝑁 is  a 
continuous operator we get   
 
 𝑁(𝑢0 + 𝑆) = 𝑁 � lim

𝑛→∞
(𝑢0 + 𝑆𝑛)� = lim

𝑛→∞
𝑁(𝑢0 + 𝑆𝑛) = lim 𝑆𝑛+1

𝑛→∞
= 𝑆. (1.29) 

Therefore, the solution of Equation (1.16) is 𝑆. 
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1.3 Algebraic Equations  

 

In this section, we will apply the ADM for obtaining solution of algebraic equations. 
First, we will show an alternate proof of the quadratic formula using an iterative decomposition 
approach.  
 
Consider the quadratic equation  
 
 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0. (1.30) 

Upon completing the square on (1.30) leads to the widely known quadratic formula, 
 
 

𝑥 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
, 

 

(1.31) 

where 𝑎, 𝑏, and 𝑐 are real numbers with 𝑎 ≠ 0. Next we give another proof. 
 
 Proof:  
 First, we rewrite the quadratic equation as  
 
 𝑥 = −

𝑐
𝑏

−
𝑎
𝑏

𝑥2. (1.32) 

The Adomian decomposition method suggests the solution of (1.30) to be decomposed as an 
infinite series of the form 
 

𝑥 = 𝑥0 + 𝑥1 + 𝑥2 + ⋯ = � 𝑥𝑛

∞

𝑛=0

. 
 

(1.33) 

More specifically, we can write the quadratic equation in the operator form 
 
 𝐿𝑢 + 𝑁𝑢 = 𝑔, (1.34) 

where 𝑁𝑥 = 𝑎𝑥2,  𝐿𝑥 = 𝑏𝑥 and  𝑔 = −𝑐. 
 
Then we have  
 𝑏𝑥 = −𝑐 − 𝑎𝑥2, (1.35) 

or equivalently 
 𝐿𝑢 = −𝑔 − 𝑁𝑢. (1.36) 

Now, to solve the quadratic equation (1.31), we first rewrite it by dividing both sides of the 
equation by  𝑏, so we have the equation (1.32). Let 𝛼 = − 𝑐

𝑏
, 𝛽 = − 𝑎

𝑏
, then (1.37) becomes 

 
 𝑥 = 𝛼 + 𝛽𝑥2. (1.37) 
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The solution 𝑥 of (1.32) is decomposed by the above infinite series of the components, while the 
nonlinear term 𝑥2 is expressed in terms of an infinite series of polynomials 
 
 

𝑥2 = 𝐴0 + 𝐴1 + 𝐴2 + ⋯ = � 𝐴𝑛

∞

𝑛=0

, 
(1.38) 

where the 𝐴𝑛′𝑠 are the Adomian polynomials. Substituting (1.33) and (1.38) into (1.37) gives 
 
 

� 𝑥𝑛

∞

𝑛=0

= 𝛼 + 𝛽 � 𝐴𝑛

∞

𝑛=0

. 
 

(1.39) 

The various components  𝑥𝑛 of the solution 𝑥 can be easily determined by using the recursive 
relation 
 𝑥0 = 𝛼,         

𝑥𝑛+1 = 𝛽𝐴𝑛,      𝑛 ≥ 0. 

 

(1.40) 

Since 𝑁𝑥 = 𝑥2,  therefore by using (1.13), the first few Adomian polynomials 𝐴𝑛are given by 
 
 𝐴0 = 𝑥0

2,  

𝐴1 = 2𝑥0𝑥1, 

𝐴2 = 𝑥1
2 + 2𝑥0𝑥2, 

𝐴3 = 2𝑥1𝑥2 + 2𝑥0𝑥3, 
𝐴4 = 𝑥2

2 + 2𝑥1𝑥3 + 2𝑥0𝑥4, 

𝐴5 = 2𝑥0𝑥5 + 2𝑥1𝑥4 + 2𝑥2𝑥3, 

𝐴6 = 𝑥3
2 + 2𝑥0𝑥6 + 2𝑥1𝑥5 + 2𝑥2𝑥4, 

𝐴7 = 2𝑥0𝑥7 + 2𝑥1𝑥6 + 2𝑥2𝑥5 + 2𝑥3𝑥4, 

𝐴8 = 𝑥4
2 + 2𝑥0𝑥8 + 2𝑥1𝑥7 + 2𝑥2𝑥6 + 2𝑥3𝑥5, 

⋮ 

 

 

 

 

 

 

 

 

 

(1.41) 

Therefore the 𝑥𝑘′𝑠 are given by 
 
 𝑥0 = 𝛼, 

𝑥1 = 𝛽𝐴0 = 𝛽(𝑥0
2), 

𝑥2 = 𝛽𝐴1 = 𝛽(2𝑥0𝑥1), 

                                    𝑥3 = 𝛽𝐴2 = 𝛽(𝑥1
2 + 2𝑥0𝑥2), 
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                                    𝑥4 = 𝛽𝐴3 = 𝛽(2𝑥0𝑥4 + 2𝑥1𝑥2), 

 ⋮ 

 

(1.42) 

Solving the equations (1.42) iteratively we get, 
 
 𝑥0 = 𝛼, 

𝑥1 = 𝛽𝑥0
2 = 𝛽𝛼2, 

𝑥2 = 𝛽(2𝑥0𝑥1) = 𝛽[2𝛼(𝛼2𝛽)] = 2𝛽2𝛼3, 

𝑥3 = 𝛽(𝑥1
2 + 2𝑥0𝑥2) = 𝛽[𝛽2𝛼4 + 2𝛼(2𝛽2𝛼3)] = 5𝛽2𝛼4, 

𝑥4 = 𝛽(2𝑥0𝑥4 + 2𝑥1𝑥2) = 𝛽[2𝛼(5𝛽3𝛼4) + 2𝛼2𝛽(2𝛽2𝛼3)] = 14𝛽4𝛼5, 

⋮ 

 

 

 

 

 

(1.43) 

Hence, the infinite series solution of the quadratic equation is given by: 
 
 𝑥 = 𝑥0 + 𝑥1 + 𝑥2 + ⋯, 

    = 𝛼 + 𝛽𝛼2 + 2𝛽2𝛼3 + 5𝛽2𝛼4 + 14𝛽4𝛼5 + ⋯, 

    =
1

2𝛽
[2𝛼𝛽 + 2(𝛼𝛽)2 + 4(𝛼𝛽)3 + 10(𝛼𝛽)4 + 28(𝛼𝛽)5 + ⋯ ], 

    = 1
2𝛽

[1 − 1 + 2𝛼𝛽 + 2(𝛼𝛽)2 + 4(𝛼𝛽)3 + 10(𝛼𝛽)4 + 28(𝛼𝛽)5 + ⋯ ], 

    =
1

2𝛽
−

1
2𝛽

[1 − 2𝛼𝛽 − 2(𝛼𝛽)2 − 4(𝛼𝛽)3 − 10(𝛼𝛽)4 − 28(𝛼𝛽)5 − ⋯ ]. 

 

 

 

 

 

 

(1.44) 

Notice that the last expansion is almost identical to the Maclaurin series expansion of the 
following root function:  
 
 

√1 − 4𝑥 = 1 − 2𝑥 − � 1.3.5 … (2𝑛 − 3)
2𝑛

𝑛!
𝑥𝑛

∞

𝑛=2

 

                         = 1 − 2𝑥 − 2𝑥2 − 4𝑥3 − 10𝑥4 − 28𝑥5 − ⋯. 

 

 

(1.45) 

Thus the latter solution can be rewritten as  
 
  𝑥 =

1
2𝛽

−
1

2𝛽
�1 − 4(𝛼𝛽). (1.46) 

The Maclaurin expansion in (1.46) converges for  
 
 

|4𝑥| = |4𝛼𝛽| = 4 �
−𝑐
𝑏

−𝑎
𝑏

� =
4|𝑎𝑐|

𝑏2 < 1, 
(1.47) 



  
 

23 
 

which implies that the scheme converges if  
 
 𝑏2 − 4|𝑎𝑐| > 0. (1.48) 

Substituting the values of  𝛼 = − 𝑐
𝑏

, 𝛽 = − 𝑎
𝑏

, given in equation (1.32), then the solution in 
(1.46) becomes: 
 
 

𝑥 =
1

2𝛽
−

1
2𝛽

�1 − 4(𝛼𝛽) =
−𝑏
2𝑎

+
𝑏

2𝑎
�1 − 4

𝑎𝑐
𝑏2 

    =
−𝑏
2𝑎

+
𝑏

2𝑎|𝑏| √1 − 4𝑎𝑐. 

 

 

(1.49) 

Two cases follow from the solution given in equation (1.49). 
 
Case 1: If 𝑏 > 0 then the solution in (1.49) becomes 
 
 

𝑥 =
−𝑏 + √𝑏2 − 4𝑎𝑐

2𝑎
. 

(1.50) 

Therefore, the technique converges to the only one root, and the second solution can be 
approximated by factoring the quadratic equation. The solution in (1.50) implies that: 
 

• If 𝑏 > 0 & 𝑎 > 0 then the method converges to the smaller solution. 
• If 𝑏 > 0 & 𝑎 < 0 then the method converges to the larger solution. 

 
Case 2: If 𝑏 < 0 then the solution in (1.49) becomes 
 
 

𝑥 =
−𝑏 − √𝑏2 − 4𝑎𝑐

2𝑎
. 

(1.51) 

As for the second solution, again it can be approximated by factoring. The solution in (1.51) 
implies that: 
 

• If 𝑏 < 0 & 𝑎 > 0 then the method converges to the larger solution. 
• If 𝑏 < 0 & 𝑎 < 0 then the method converges to the smaller solution. 

 
 
 
Next, we use the ADM to solve a number of nonlinear algebraic equations. 
 
Example 1.1   Consider the equation 
  

𝑥2 + 4𝑥 + 3 = 0, 

 

(1.52) 

whose solutions are 𝑥 = −1 and 𝑥 = −3. Write it in the form 
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   4𝑥 = −3 − 𝑥2, (1.53) 

or 
 𝑥 = −

3
4

−
1
4

𝑥2. (1.54) 

Apply the ADM: decompose 𝑥 as an infinite series while express the nonlinear term 𝑥2 as an 
infinite series of Adomian polynomials. Hence we have 
 
 
 

𝑥0 + 𝑥1 + 𝑥2 + ⋯ = −
3
4

−
1
4

� 𝐴𝑛              
∞

𝑛=0

 

                                  = −
3
4

−
1
4

𝐴0 −
1
4

𝐴1 − ⋯. 

 

 

(1.55) 

Therefore the 𝑥𝑘′𝑠 are given by 
 
 𝑥0 = −

3
4

, 

𝑥1 = −
1
4

𝐴0 = −
1
4

(𝑥0
2), 

𝑥2 = −
1
4

𝐴1 = −
1
4

(2𝑥0𝑥1), 

                                    𝑥3 = − 1
4

𝐴2 = − 1
4

(𝑥1
2 + 2𝑥0𝑥2), 

                                   𝑥4 = − 1
4

𝐴3 = − 1
4

(2𝑥0𝑥4 + 2𝑥1𝑥2), 

 ⋮ 

 

 

 

 

 

 

 

 

(1.56) 

Thus, upon solving these last equations, the scheme (1.56) yields the following values:  
 
 𝑥0 = −0.75, 

𝑥1 = −0.140625, 

𝑥2 = −0.052734, 

𝑥3 = −0.024719, 

𝑥4 = −0.012977, 

𝑥5 = −0.007300. 

 

 

 

 

 

(1.57) 
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𝒏- Term Approximation 

∑ 𝒙𝒌
𝒏−𝟏
𝒌=𝟏  

Numerical Solutions Absolute Errors 

𝒏 = 𝟏 −0.750000 0.250 
𝒏 = 𝟐 −0.890625 0.109 
𝒏 = 𝟑 −0.943359 0.057 
𝒏 = 𝟒 −0.968078 0.032 
𝒏 = 𝟓 −0.981055 0.019 
𝒏 = 𝟔 −0.988355 0.012 

 
Table 1.1  Comparison of the 𝑛-th term approximation of ADM to the exact solution 𝑥 of 
Example 1.1. 
 
 
In Table 1.1 we compute the absolute error and it is obvious that the ADM converges fast using 
only few terms of the iterative scheme. Note that the scheme is approaching the negative root 
which is −1. 
 
 
Example 1.2   Consider the equation 
 
 −𝑥2 + 5𝑥 + 6 = 0, (1.58) 

whose solutions are 𝑥 = −1 and 𝑥 = 6. Write it in the form 
 
 5𝑥 = −6 + 𝑥2, 

𝑥 = −
6
5

+
1
5

𝑥2. 

 

(1.59) 

Applying the decomposition approach we have 
 
 

  𝑥0 + 𝑥1 + 𝑥2 + ⋯ = −
6
5

+
1
5

� 𝐴𝑛

∞

𝑛=0

 

  𝑥0 + 𝑥1 + 𝑥2 + ⋯ = −
6
5

+
1
5

𝐴0 +
1
5

𝐴1 + ⋯. 

 

 

(1.60) 

Matching both sides, as was done in the previous example, the latter scheme yields the following 
first five values of the iterates 
 
 𝑥0 = −1.2000, 

𝑥1 = 0.2880, 

𝑥2 = −0.1382, 

𝑥3 = 0.0829, 
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𝑥4 = −0.0557, 

𝑥5 = 0.06790. 

𝒏- Term Approximation 
∑ 𝒙𝒌

𝒏−𝟏
𝒌=𝟏  

Numerical Solutions Absolute Errors 

𝒏 = 𝟏 −1.200 0.200 
𝒏 = 𝟐 −0.912 0.088 
𝒏 = 𝟑 −1.050 0.050 
𝒏 = 𝟒 −0.967 0.032 
𝒏 = 𝟓 −1.023 0.023 
𝒏 = 𝟔 −0.983 0.017 

 

 

(1.61) 

 
Table 1.2  Comparison of the 𝑛-th term approximation of ADM to the exact solution 𝑥 of       
Example 1.2. 
 
From the numerical results in Table 1.2, it is clear the scheme yields numerical values that 
converge pretty fast to the smaller root, which is  𝑥 = −1. 
 
 
Example 1.3   Consider the fifth order algebraic equation  
 
 𝑥5 − 3𝑥4 + 2𝑥3 + 5𝑥2 − 6𝑥 − 4 = 0, (1.62) 

whose solutions are 𝑥 = 1.76518195942719, 𝑥 = −1.09890396313245 and 𝑥 =
−0.528896048966185. Write it in the form 
 
 6𝑥 = 𝑥5 − 3𝑥4 + 2𝑥3 + 5𝑥2 − 4, 

𝑥 = −
4
6

+
5
6

𝑥2 +
2
6

𝑥3 −
3
6

𝑥4 +
1
6

𝑥5. 

 

(1.63) 

Applying the decomposition approach we have 
 

  𝑥0 + 𝑥1 + 𝑥2 + ⋯ = −
4
6

+
5
6

� 𝐴𝑛

∞

𝑛=0

+
2
6

� 𝐵𝑛

∞

𝑛=0

−
3
6

� 𝐶𝑛

∞

𝑛=0

+
1
6

� 𝐷𝑛

∞

𝑛=0

 

  𝑥0 + 𝑥1 + 𝑥2 + ⋯ = −
4
6

+
5
6

𝐴0 +
2
6

𝐵0 −
3
6

𝐶0 +
1
6

𝐷0 + ⋯. 

 

 

 

(1.64) 

where 𝐴𝑛, 𝐵𝑛, 𝐶𝑛and 𝐷𝑛 are Adomian polynomials. Matching both sides, as was done in the 
previous example, the latter scheme yields the following first four values of the iterates 
 𝑥0 = −

4
6

= −0.6666666667, 

𝑥1 =
5
6

𝑥0
2 +

2
6

𝑥0
3 −

3
6

𝑥0
4 +

1
6

𝑥0
5 = 0.1508916324, 
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𝑥2 =
5
3

𝑥0𝑥1 + 𝑥0
2𝑥1 − 2𝑥0

3𝑥1 +
5
6

𝑥0
4𝑥1 = 0.0136609708, 

x3 =
5
3

x0x2 +
5
6

𝑥1
2 +

5
6

𝑥0
4x2 +

5
3

𝑥0
3𝑥1

2 − 2𝑥0
3x2−3𝑥0

2𝑥1
2 + 𝑥0

2x2 + x0𝑥1
2

= −0.03656980055. 

 

 

(1.65) 

 
Consequently, the solution in a series form is given by 
 
   𝑥 = x0 + x1 + x2 + x3 + ⋯ = −0.5386838640. (1.66) 

 
 
Example 1.4   Consider the system of nonlinear algebraic equations 
 
 

� 𝑥1
2 − 10𝑥1 + 𝑥2

2 + 8 = 0 
𝑥1𝑥2

2 + 𝑥1 − 10𝑥2 + 8 = 0 
, 

 

(1.67) 

with exact solution 
 𝑋∗ = (𝑥1

∗, 𝑥2
∗)𝑡 = (1,1)𝑡 . (1.68) 

 
By rewriting the system (1.67)  
 
 

 

⎩
⎪
⎨

⎪
⎧ � 𝑥1,𝑛

∞

𝑛=0

= 0.8 + 0.1 �� 𝐴1,𝑛

∞

𝑛=0

� + 0.1 �� 𝐴2,𝑛

∞

𝑛=0

�

� 𝑥2,𝑛

∞

𝑛=0

= 0.8 + 0.1 � 𝑥1,𝑛

∞

𝑛=0

�� 𝐴2,𝑛

∞

𝑛=0

� + 0.1 �� 𝑥1,𝑛

∞

𝑛=0

�

. 

 

 

(1.69) 

Applying the decomposition approach we have 
 
 

  � 𝑥1 = 0.8 + 0.1𝑥1
2 + 0.1𝑥2

2

𝑥2 = 0.8 + 0.1𝑥1𝑥2
2 + 0.1𝑥1

. 
(1.70) 

The latter scheme yields the following first seven values of the iterates 
 
 𝑥1 = 𝑥1,0 + 𝑥1,1 + 𝑥1,2 + 𝑥1,3 + 𝑥1,4 + 𝑥1,5 + 𝑥1,6 = 0.997853, 

𝑥2 = 𝑥2,0 + 𝑥2,1 + 𝑥2,2 + 𝑥2,3 + 𝑥2,4 + 𝑥2,5 + 𝑥2,6 = 0.997562. 

 

(1.71) 

The absolute errors are 
 𝐴𝐸1 = |𝑥1

∗ − 0.997853 | = 2.14 × 10−3, 

𝐴𝐸2 = |𝑥2
∗ − 0.997562 | = 2.43 × 10−3. 

 

(1.72) 
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To our knowledge, no research papers exist in the literature that examines the 
approximation of complex roots rather than real ones using ADM. However, through a number 
of experiments, we found out that if the initial term  x0 is appropriately chosen as a complex 
number close to the root, then the ADM might converge to a complex root.  
 

 

1.4 Ordinary Differential Equations 

 

In this section, we will employ the Adomian Decomposition Method to linear and 
nonlinear ordinary differential equations (ODEs). These will include initial value problems 
(IVPs) as well as boundary value problems (BVPs). We will implement the method on both will 
first-order and higher order ODEs.  
 

1.4.1 Linear ODEs 
 

To apply the Adomian Decomposition Method for solving linear ordinary differential 
equations, we consider the following general equation written in operator form: 
 
 𝐿(𝑢) + 𝑅𝑢 = 𝑔(𝑥), (1.73) 

where the linear differential operator  𝐿 may be considered as the highest order derivative in the 
equation, 𝑅 is the remainder of the differential operator, and 𝑔(𝑥) is an inhomogeneous term. If 
𝐿 is a first order operator defined by 
 

𝐿 =
𝑑

𝑑𝑥
, 

(1.74) 

Then, assuming that 𝐿 is invertible, then the inverse operator  𝐿−1 is given by 
 
 

𝐿−1(. ) = � (. )𝑑𝑥
𝑥

0
, 

(1.75) 

so that  
 𝐿−1𝐿𝑢 = 𝑢(𝑥) − 𝑢(0). (1.76) 

However, if 𝐿 is a second order differential operator given by  
 
 

𝐿 =
𝑑2

𝑑𝑥2, 
(1.77) 

then the inverse operator  𝐿−1 is a two-fold integration operator given by  
 
 

𝐿−1(. ) = � � (. )
𝑥

0
𝑑𝑥𝑑𝑥,

𝑥

0
 

 

(1.78) 
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Hence, we have 
 
 𝐿−1𝐿𝑢 = 𝑢(𝑥) − 𝑢(0) − 𝑥𝑢′(0). (1.79) 

In a parallel manner, if 𝐿 is a third order differential operator, we can easily show that 
 
 𝐿−1𝐿𝑢 = 𝑢(𝑥) − 𝑢(0) − 𝑥𝑢′(0) −

1
2!

𝑥2𝑢′′(0). (1.80) 

For higher order ODEs it the latter equation can be generalized in a similar fashion. 
 
Now, to implement the ADM, we proceed by first applying  𝐿−1 to both sides of (1.73) and after 
rearranging the terms we get     
 
 𝑢(𝑥) = Φ0 + 𝐿−1𝑔(𝑥) − 𝐿−1𝑅𝑢, (1.81) 

where, as explained above, we have  
 
 
 

Φ0 =

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧𝑢(0),                                                                      𝐿 =

𝑑
𝑑𝑥

𝑢(0) + 𝑥𝑢′(0),                                                      𝐿 =
𝑑2

𝑑𝑥2

𝑢(0) + 𝑥𝑢′(0) +
1
2!

𝑥2𝑢′′(0),                             𝐿 =
𝑑3

𝑑𝑥3

𝑢(0) + 𝑥𝑢′(0) +
1
2!

𝑥2𝑢′′(0) +
1
3!

𝑥3𝑢′′′(0), 𝐿 =
𝑑4

𝑑𝑥4

 

 

 

 

 

(1.82) 

 

and so on. The Adomian decomposition method admits the decomposition of 𝑢 in the form of an 
infinite series of components 
 

𝑢(𝑥) = � 𝑢𝑛

∞

𝑛=0

, 
 

(1.83) 

where  𝑢𝑛(𝑥), 𝑛 ≥ 0  are the components of 𝑢(𝑥 ) that will be determined recursively. 
Substituting (1.82) into (1.81) gives 
 

� 𝑢𝑛

∞

𝑛=0

= 𝛷0 + 𝐿−1𝑔(𝑥) − 𝐿−1𝑅 �� 𝑢𝑛

∞

𝑛=0

�. 
 

(1.84) 

The various components 𝑢𝑛 of the solution 𝑢 can be easily determined by using the recursive 
relation 
 
 𝑢0 = 𝛷0 + 𝐿−1𝑔(𝑥), 

𝑢𝑛+1 = −𝐿−1𝑅𝑢𝑛  , 𝑛 ≥ 0. 

 

(1.85) 
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It is worth mentioning that the determination of the 𝑢0 term depends on the specified initial 
conditions 𝑢(0), 𝑢′(0), 𝑢′′(0), …. 
 

 
1.4.2 Nonlinear ODEs 
 
Consider the following nonlinear ordinary differential equation written in operator form: 
 
 𝐿𝑢 + 𝑅𝑢 + 𝑁(𝑢) = 𝑔(𝑥), (1.86) 

where the linear operator  𝐿  is the highest order derivative, 𝑅 is the remainder of the differential 
operator, 𝑁(𝑢) is the nonlinear terms and 𝑔(𝑥) expresses an inhomogeneous term. Without loss 
of generality, let 𝐿 be the first order differential operator  
 
 

𝐿 =
𝑑

𝑑𝑥
, 

(1.87) 

then, assuming that 𝐿 is invertible, then its inverse  𝐿−1 is given by 
 
 

𝐿−1(. ) = � (. )𝑑𝑥.
𝑥

0
 

(1.88) 

Therefore, 
 
 𝐿−1𝐿𝑢 = 𝑢(𝑥) − 𝑢(0). (1.89) 

On the other hand, if 𝐿 is a second derivative operator given by 
 
 

𝐿 =
𝑑2

𝑑𝑥2, 
(1.90) 

then the inverse operator  𝐿−1 is given by 
 
 

𝐿−1(. ) = � � (. )𝑑𝑥𝑑𝑥
𝑥

0

𝑥

0
, 

(1.91) 

which means that  
 
 𝐿−1𝐿𝑢 = 𝑢(𝑥) − 𝑢(0) − 𝑥𝑢′(0). (1.92) 

While, if 𝐿 is a third order differential operator, we can show that 
 
 

𝐿−1𝐿𝑢 = 𝑢(𝑥) − 𝑢(0) − 𝑥𝑢′(0) −
𝑥2

2!
𝑢′′(0), 

(1.93) 

and so forth. In general, if 𝐿 is a differential operator of order  𝑛 + 1, we can easily show that 
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𝐿−1𝐿𝑢 = 𝑢(𝑥) − 𝑢(0) − 𝑥𝑢′(0) −

𝑥2

2!
𝑢′′(0) −

𝑥3

3!
𝑢′′′(0) − ⋯ −

𝑥𝑛

𝑛!
𝑢(𝑛)(0). 

 

(1.94) 

Applying 𝐿−1 to both sides of (1.75) gives 
 
 𝑢 = Φ0 − 𝐿−1𝑅𝑢 − 𝐿−1𝑁(𝑢) + 𝐿−1𝑔(𝑥), (1.95) 

where 
 

Φ0 =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ 𝑢(0),                                                                                                      𝑖𝑓 𝐿 =

𝑑
𝑑𝑥

      

𝑢(0) + 𝑥𝑢′(0),                                                                                     𝑖𝑓 𝐿 =
𝑑2

𝑑𝑥2     

𝑢(0) + 𝑥𝑢′(0) +
𝑥2

2!
𝑢′′(0),                                                               

𝑢(0) + 𝑥𝑢′(0) +
𝑥2

2!
𝑢′′(0) +

𝑥3

3!
𝑢′′′(0),                                         

⋮

𝑢(0) + 𝑥𝑢′(0) +
𝑥2

2!
𝑢′′(0) +

𝑥3

3!
𝑢′′′(0) + ⋯ . +

𝑥𝑛

𝑛!
𝑢(𝑛)(0)      

𝑖𝑓 𝐿 =
𝑑3

𝑑𝑥3     

𝑖𝑓 𝐿 =
𝑑4

𝑑𝑥4     
⋮

𝑖𝑓 𝐿 =
𝑑𝑛+1

𝑑𝑥𝑛+1

  

 
 
 
 
 
 
 
 
 
(1.96) 

 
 
The decomposition technique consists of decomposing the solution into a sum of an infinite 
number of terms defined by the decomposition series 
 
 

𝑢 = � 𝑢𝑛

∞

𝑛=0

, 
 

(1.97) 

 
while the nonlinear term 𝑁(𝑢) is to be expressed by an infinite series of polynomials 
 
 

𝑁(𝑢) = � 𝐴𝑛

∞

𝑛=0

, 
 

(1.98) 

where the 𝐴𝑛′s are the Adomian polynomials. Substituting (1.97) and (1.98) into (1.95) yields 
 
 

� 𝑢𝑛

∞

𝑛=0

= Φ0 − 𝐿−1𝑅 �� 𝑢𝑛

∞

𝑛=0

� − 𝐿−1 �� 𝐴𝑛

∞

𝑛=0

� + 𝐿−1𝑔(𝑥). 
 

(1.99) 

 
To construct the iterative scheme, we match both sides so that the 𝑢𝑛term is expressed in terms 
of the previously determined terms. More specifically, the Adomian decomposition method gives 
the following iterative algorithm: 
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 𝑢0 = Φ0 + 𝐿−1𝑔(𝑥), 

𝑢𝑛+1 = −𝐿−1𝑅𝑢𝑛 − 𝐿−1𝐴𝑛 ,    𝑛 ≥ 0. 

 

(1.100) 

This in turn gives 
 𝑢0 = Φ0 + 𝐿−1𝑔(𝑥), 

𝑢1 = −𝐿−1𝑅𝑢0 − 𝐿−1𝐴0, 

𝑢2 = −𝐿−1𝑅𝑢1 − 𝐿−1𝐴1, 

𝑢3 = −𝐿−1𝑅𝑢2 − 𝐿−1𝐴2, 

…. 

 

 

 

 

(1.101) 

In (1.13), we calculated the first few Adomian polynomials for general form of nonlinearity that 
may arise in any ordinary or partial differential equation. 
 

1.4.3 Initial Value Problems 
 

In this section, we apply the ADM to initial value problems for both linear and nonlinear 
ordinary differential equations. 
 
In the following, we consider some examples for the illustration of the technique and to conform 
its applicability and efficiency. 
 
Example 1.5    Consider the second order linear ordinary differential equation 
  
 𝑢′′ − 𝑢 = 1, (1.102) 

subject to the initial conditions 
 
 𝑢(0) = 0,    𝑢′(0) = 1. (1.103) 

Solution: 
In operator form, Eq. (1.102) can be written as 
 
 𝐿𝑢 = 1 + 𝑢,            𝑢(0) = 0,   𝑢′(0) = 1, (1.104) 

where 𝐿 is the second order differential operator 𝐿𝑢 = 𝑢′′. It is clear that 𝐿−1 is invertible and is 
given by 
 

𝐿−1(. ) = � � (. ) 𝑑𝑡 𝑑𝑡.
𝑥

0

𝑥

0
 

(1.105) 

Applying 𝐿−1 to both sides of (1.104) and using the initial conditions into (1.96) gives 
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𝑢 = 𝑢(0) + 𝑥𝑢′(0) + 𝐿−11 = 𝑥 +

𝑥2

2
+ 𝐿−1 𝑢. 

(1.106) 

Upon using the decomposition series for the solution 𝑢(𝑥), results 
 
 

� 𝑢𝑛 =
∞

𝑛=0

𝑥 +
𝑥2

2
+ 𝐿−1  �� 𝑢𝑛

∞

𝑛=0

�. 
 

(1.107) 

Upon matching both sides, this leads to the recursive relation 
 
 

𝑢0 = 𝑥 +
𝑥2

2
,                    

𝑢𝑛+1 = 𝐿−1 (𝑢𝑛),      𝑛 ≥ 0. 

 

(1.108) 

The first few components are thus determined as follows: 
 
 

𝑢0 = 𝑥 +
𝑥2

2
, 

𝑢1 =
𝑥3

6
+

𝑥4

24
, 

𝑢2 =
𝑥5

5!
+

𝑥6

6!
. 

 

 

 

 

(1.109) 

Consequently, the solution in a series form is given by 
 
 

𝑢(𝑥) = 𝑥 +
𝑥2

2
+

𝑥3

6
+

𝑥4

24
+

𝑥5

5!
+

𝑥6

6!
+ ⋯, 

(1.110) 

and clearly in a closed form is given by 
 
 𝑢(𝑥) = 𝑒𝑥 − 1, (1.111) 

 which the exact solution of the problem. This is a case where the ADM converges to the 
solution.  
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𝒙 ADOMIAN EXACT ABSOLUTE ERROR 
𝟏. 𝟏 0.0 0.0 0.0 
𝟏. 𝟏 0.1051709181 0.105170918 1.0 × 10−10 
𝟏. 𝟐 0.2214027556 0.221402758 2.4 × 10−9 
𝟏. 𝟑 0.3498587625 0.349858808 4.6 × 10−8 
𝟏. 𝟒 0.4918243556 0.491824698 3.4 × 10−7 
𝟏. 𝟓 0.6487196181 0.648721271 1.7 × 10−6 
𝟏. 𝟔 0.8221128000 0.822118800 6.0 × 10−6 
𝟏. 𝟕 1.0137348180 1.013752707 4.6 × 10−5 
𝟏. 𝟖 1.2254947560 1.225540928 1.8 × 10−5 
𝟏. 𝟗 1.4594963620 1.459603111 1.1 × 10−4 
𝟏. 𝟏 1.7180555560 1.718281828 2.3 × 10−4 

 
Table 1.3 Comparison between the (ADM) solution and the exact solutions using three 
iterations. 

 
 
Figure 1.1 Comparison between the exact solution 𝑦 = 𝑒𝑥 − 1 and the ADM approximation 
using three iterations. 
 

It must be stated here that (ADM) will only work for this particular test problem if 
0 < 𝑥 < 1 and that the efficiency of the approach can be enhanced by computing further terms 
of the series. Comparison between the numerical solution using ADM and the exact solution are 
depicted in Figure 1.1 and Table 1.3 Note form the figure that the scheme yields highly accurate 
solution close to 0 but as we move away from this left end point the approximation deteriorates. 
This is a deficiency of the ADM as it gives highly accurate local approximation. In later, section, 
we will suggest domain decomposition strategy in order to improve the approximation as we 
move away from 0.  
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Example 1.6   Consider the first order nonlinear ordinary differential equation 
 
 𝑢′ + 𝑢2 = 1, (1.112) 

subject to the initial condition 
 𝑢(0) = 0. (1.113) 

Solution: 
Applying 𝐿−1 we obtain to both sides of the equation and using the initial conditions into (1.96) 
gives 
 𝑢 = 𝑢(0) + 𝐿−11 − 𝐿−1 𝑢2 = −𝐿−1 𝑢2 + 𝑥. (1.114) 

Using the decomposition series for  𝑢  and the Adomian polynomial representation for the 
nonlinear term  𝑢2, gives 
 
 

� 𝑢𝑛

∞

𝑛=0

= −𝐿−1  � 𝐴𝑛

∞

𝑛=0

+ 𝑥, 
 

(1.115) 

where the 𝐴𝑛′s are the Adomian polynomials for 𝑢2 as shown above. Matching both sides of the 
equation results in the following  ADM iterative scheme: 
 
 𝑢0 = 𝑥, 

𝑢𝑛+1 = −𝐿−1( 𝐴𝑛). 

 

(1.116) 

This in turn gives  
 𝑢0 = 𝑥, 

𝑢1 = −𝐿−1( 𝐴0) = −𝐿−1( 𝑢0
2) = −

𝑥3

3
, 

𝑢2 = −𝐿−1( 𝐴1) = −𝐿−1( 2𝑢0𝑢1) =
2𝑥5

15
, 

𝑢3 = −𝐿−1( 𝐴2) = −𝐿−1(2𝑢0𝑢2 + 𝑢1
2) = −

17𝑥7

315
, 

⋮ 

 

 

 

 

 

 

(1.117) 

The solution in a series form is thus given by 
 
 

𝑢(𝑥) = 𝑥 −
𝑥3

3
+

2𝑥5

15
−

17𝑥7

315
+ ⋯, 

 

(1.118) 

which clearly converges to the exact solution 
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 𝑢(𝑥) = tanh(𝑥). (1.119) 

In Figure 1.2 and Table 1.4 we compare the solution obtained by ADM and the exact solution, 
using only three iterations of the scheme.  It is easy to see that the standard decomposition 
method converges to the exact solution very slowly. It is to be noted that only three iterates were 
needed to obtain an error of less than 10−6 for values close to 0.The overall errors can be made 
even much smaller by adding new terms of the decomposition. However, the solution 
deteriorates, as we mentioned earlier as we take values away from 0. The further the values from 
0, the worst the approximation. Actually for 𝑥 ≥ 1 the method diverges as is clear from Figure 
1.2.  

         𝒙 ADOMIAN EXACT ABSOLUTE ERROR 
𝟏. 𝟏 0.0 0.0 0.0 
𝟏. 𝟏 0.09966799460 0.09966799462 2.0 × 10−11 
𝟏. 𝟐 0.1973753092 0.1973753202 1.0 × 10−8 
𝟏. 𝟑 0.2913121971 0.2913126125 4.2 × 10−7 
𝟏. 𝟒 0.3799435784 0.3799489623 5.4 × 10−6 
𝟏. 𝟓 0.4620783730 0.4621171573 3.9 × 10−5 
𝟏. 𝟔 0.5368572343 0.5370495670 1.9 × 10−4 
𝟏. 𝟕 0.6036314822 0.6043677771 7.3 × 10−4 
𝟏. 𝟖 0.6617060368 0.6640367703 2.3 × 10−3 
𝟏. 𝟗 0.7099191514 0.7162978702 6.4 × 10−3 
𝟏. 𝟏 0.7460317460 0.7615941560 1.6 × 10−2 

 
Table 1.4 Comparison between the exact solution and the approximate solution 𝑢(𝑥) obtained 
using decomposition method with three iterations. 
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Figure 1.2  Comparison between the exact solution of Example 1.6 and the approximate 
solution using ADM. 
 
 
Example 1.7   Consider the Bratu-type initial value problem which arises in many applications 
such as radiative heat transfer, chemical reaction theory and nanotechnology 

 𝑢′′ − 2𝑒𝑢 = 0,           0 < 𝑥 < 1, (1.120) 

 

subject to the initial conditions 
 𝑢(0) = 𝑢′(0) = 0. (1.121) 

Solution: 
Applying 𝐿−1 we obtain to both sides of the equation and using the initial conditions into (1.96) 
gives 
 𝑢 = 2𝐿−1𝑒𝑢. (1.122) 

Using the decomposition series for 𝑢  and the Adomian polynomial representation for the 
nonlinear term 𝑒𝑢, gives 
 
 

� 𝑢𝑛

∞

𝑛=0

= 2𝐿−1  � 𝐴𝑛

∞

𝑛=0

, 
 

(1.123) 

where the 𝐴𝑛′s are the Adomian polynomials for 𝑒𝑢 as shown above. Matching both sides of the 
equation results in the following ADM iterative scheme: 
 
 𝑢0 = 0, 

𝑢𝑛+1 = 2𝐿−1( 𝐴𝑛). 

 

(1.124) 

This in turn gives  
 𝑢0 = 0, 

𝑢1 = 2𝐿−1( 𝐴0) = 2𝐿−1( 𝑒𝑢0) = 𝑥2, 

𝑢2 = 2𝐿−1( 𝐴1) = 2𝐿−1( 𝑢1𝑒𝑢0) =
𝑥4

6
, 

𝑢3 = 2𝐿−1( 𝐴2) = 𝐿−1 �𝑢2𝑒𝑢1 +
1
2

𝑢1
2𝑒𝑢1� =

2𝑥6

45
, 

𝑢4 = 2𝐿−1( 𝐴3) = 𝐿−1 �𝑒𝑢0𝑢3 + 𝑒𝑢0𝑢1𝑢2 +
1
6

𝑢1
3𝑒𝑢0� =

17𝑥8

1260
 

⋮ 

 

 

 

 

 

 

(1.125) 

The solution in a series form is thus given by 
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𝑢(𝑥) = 𝑥2 +
𝑥4

6
+

2𝑥6

45
+

17𝑥8

1260
+ ⋯. 

(1.126) 

         𝒙 ABSOLUTE ERROR 
𝟏. 𝟏 0.0 
𝟏. 𝟏 4.39 × 10−14 
𝟏. 𝟐 4.54 × 10−11 
𝟏. 𝟑 2.66 × 10−9 
𝟏. 𝟒 4.85 × 10−7 
𝟏. 𝟓 4.67 × 10−6 
𝟏. 𝟔 3.01 × 10−6 
𝟏. 𝟕 1.48 × 10−5 
𝟏. 𝟖 6.00 × 10−4 
𝟏. 𝟗 2.11 × 10−4 
𝟏. 𝟏 6.65 × 10−4 

                 
Table 1.5  Errors of the ADM for initial value problem of the Bratu-type 

 
 

1.4.4 Boundary Value Problems 
 

In this section, we apply the Adomian decomposition method to obtain numerical and/or 
exact solutions to a number of linear/nonlinear boundary value problems. 
 
Example 1.8   Consider the following seventh order linear boundary value problem 

 𝑢(7)(𝑥) = 𝑥𝑢 + 𝑒𝑥(𝑥2 − 2𝑥 − 6),                       0 ≤ 𝑥 ≤ 1, (1.127) 

which complimented with the boundary conditions 
  
 𝑢(0) = 1,            𝑢(1) = 0, 

𝑢′(0) = 0,           𝑢′(1) = −𝑒, 

𝑢′′(0) = −1,       𝑢′′(1) = −2𝑒, 

𝑢′′′(0) = −2.       

 

 

 

(1.128) 

The exact solution of this problem (1.127) is 
  
 𝑢(𝑥) = (1 − 𝑥)𝑒𝑥. (1.129) 

Solution: 
In an operator form, Equation (1.127) becomes 
 
 𝐿𝑢 = 𝑥𝑢 + 𝑒𝑥(𝑥2 − 2𝑥 − 6),     (1.130) 
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where the differential operator 𝐿 is given by 
 
 

𝐿 =
𝑑7

𝑑𝑥7, 
(1.131) 

and therefore the inverse operator 𝐿−1 will be defined by 
 
 

𝐿−1[. ] = � � � � � � � [. ]  𝑑𝑥
𝑥

0
𝑑𝑥

𝑥

0
𝑑𝑥

𝑥

0
𝑑𝑥

𝑥

0
𝑑𝑥

𝑥

0
𝑑𝑥𝑑𝑥

𝑥

0
.

𝑥

0
 

(1.132) 

Operating with 𝐿−1 on both sides of (1.130) and using the boundary conditions (1.128) at 𝑥 =
0 we obtain 
 

𝑢(𝑥) = −63 − 64𝑥 −
35
2!

𝑥2 − 4𝑥3 + �−
1
2

+
𝛼

24� 𝑥4 + �−
1

30
+

𝛽
120� 𝛽𝑥5

+
1

360
(2 + 𝛾)𝑥6 + 𝑒𝑥(−8 + 𝑥)2 + 𝐿−1�𝑥𝑢(𝑥)�, 

 

 

(1.133) 

where α, β and γ are constants and  
 
 𝑢(4)(0) = 𝛼, 𝑢(5)(0) = 𝛽,    and    𝑢(6)(0) = 𝛾. (1.134) 

Substituting the series assumption (1.3) into both sides of (1.133) yields 
 
 

� 𝑢𝑛(𝑥)
∞

𝑛=0

= −63 − 64𝑥 −
35
2!

𝑥2 − 4𝑥3 + �−
1
2

+
𝛼

24� 𝑥4 + �−
1

30
+

𝛽
120� 𝛽𝑥5

+
1

360
(2 + 𝛾)𝑥6 + 𝑒𝑥(−8 + 𝑥)2 + 𝐿−1 �𝑥 � 𝑢𝑛(𝑥)

∞

𝑛=0

�. 

 

 

 

 

(1.135) 

Following the decomposition method we obtain the following recursive relation 
 
 

𝑢0(𝑥) = −63 − 64𝑥 −
35
2!

𝑥2 − 4𝑥3 + �−
1
2

+
𝛼

24� 𝑥4 + �−
1

30
+

𝛽
120� 𝛽𝑥5

+
1

360
(2 + 𝛾)𝑥6 + 𝑒𝑥(−8 + 𝑥)2, 

𝑢𝑛+1(𝑥) = 𝐿−1�𝑥𝑢𝑛(𝑥)�,       𝑛 = 0,1,2,…. 

 

 

 

(1.136) 

To find the unknown constants 𝛼, 𝛽 and 𝛾 we have to use the boundary conditions at 𝑥 = 1 on 
the first four terms given by  
 
 𝑢 = 𝑢0 + 𝑢1 + 𝑢2 + 𝑢3. (1.137) 

Upon solving the resulting equations, the values of the constants α, β and γ are determined to be 
 
 𝛼 = −3.0000001,    𝛽 = −3.9999991,      𝛾 = −5.0000021. (1.138) 



  40 
 

Thus, the series solution can be written as 
 
 

𝑢(𝑥) = 1 −
𝑥2

2
−

𝑥3

3
− 0.125𝑥4 − 0.03333𝑥5 − 0.00694𝑥6 −

𝑥7

840
−

𝑥8

5760

−
𝑥9

45360
−

𝑥10

403200
−

𝑥11

3991680
− (2.296 × 10−8)𝑥12

− (1.606 × 10−10)𝑥13 + ⋯. 

 

 

 

(1.139) 

 
𝒙 ADM EXACT ABSOLUTE 

ERROR 
𝟏. 𝟏 1.0 1.0 0.0 
𝟏. 𝟏 0.9946538264 0.9946538262 2.0 × 10−10 
𝟏. 𝟐 0.9771222079 0.9771222064 1.5 × 10−9 
𝟏. 𝟑 0.9449011766 0.9449011656 1.1 × 10−8 
𝟏. 𝟒 0.8950948709 0.8950948188 5.2 × 10−8 
𝟏. 𝟓 0.8243608089 0.8243606355 1.7 × 10−7 
𝟏. 𝟔 0.7288479868 0.7288475200 4.7 × 10−7 
𝟏. 𝟕 0.6041268954 0.6041258121 1.1 × 10−6 
𝟏. 𝟖 0.4451104431 0.4451081856 2.3 × 10−6 
𝟏. 𝟗 0.2459646419 0.2459603111 4.3 × 10−6 
𝟏. 𝟏 0.0000077797 0 7.8 × 10−6 

            
Table 1.6  Absolute error for Example 1.8 resulting from ADM using three iterations. 

 
 

 
 
Figure 1.3 Exact solution for Example 1.8 compared with the approximate solution using 
ADM. 
 
 

            EXACT             ADOMIAN        
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Table 1.6 and Figure 1.3 compare the exact solution with the numerical solution obtained by 
ADM. Clearly, the absolute error is extremely small using only few iterates. The error starts 
worsening as we consider values away from 0, but highly accurate in a neighborhood of 0. 
 
 
Example 1.9   Consider the following nonlinear sixth order BVP: 
 
 𝑢(6)(𝑥) = 𝑒−𝑥𝑢2(𝑥),                0 < 𝑥 < 1, (1.140) 

subject to the boundary condition  
 
 𝑢(0) = 𝑢′′(0) = 𝑢′′′′(0) = 1, 

𝑢(1) = 𝑢′′(1) = 𝑢′′′′(0) = 𝑒. 

 

(1.141) 

The exact solution to this problem is 
  
 𝑢(𝑥) = 𝑒𝑥. (1.142) 

Solution: 
In operator form, Eq. (1.140) can be written as 
 
 𝐿𝑢(𝑥) = 𝑒−𝑥𝑢2(𝑥),              0 < 𝑥 < 1,          (1.143) 

where 𝐿 is a first order differential operator. It is clear that  𝐿−1 is invertible and given by 
 
 

𝐿−1[. ] = � � � � � � [. ]  𝑑𝑥
𝑥

0
𝑑𝑥

𝑥

0
𝑑𝑥 𝑑𝑥

𝑥

0
𝑑𝑥

𝑥

0
𝑑𝑥

𝑥

0
.

𝑥

0
 

(1.144) 

Operating with 𝐿−1, and using the boundary conditions at  𝑥 = 0, we obtain 
 
 𝑢(𝑥) = 1 + 𝛼𝑥 +

1
2

𝑥2 +
1
6

𝛽𝑥3 +
1

24
𝑥4 +

1
120

𝑥5 + L−1�𝑒−𝑥𝑢2(𝑥)�, (1.145) 

where 𝛼, 𝛽, & 𝛾 are constants and  
 
 𝛼 = 𝑢′(0),    𝛽 = 𝑢′′′(0),      𝛾 = 𝑢(5)(0). (1.146) 

Substituting the decomposition series (1.3) for 𝑢(𝑥) and the series of polynomials (1.5) for the 
nonlinear term 𝑢2(𝑥) into (1.145) gives 
 
 

� 𝑢𝑛(𝑥)
∞

𝑛=0

= 1 + 𝛼𝑥 +
1
2

𝑥2 +
1
6

𝛽𝑥3 +
1

24
𝑥4 +

1
120

𝑥5 + 𝐿−1 �𝑒−𝑥 � 𝐴𝑛(𝑥)
∞

𝑛=0

�, 
 

 

(1.147) 

where the 𝐴𝑛′𝑠 are the Adomian polynomials. Consequently, the components of 𝑢(𝑥) can be 
elegantly determined by using the recursive relation 
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 𝑢0(𝑥) = 1, 

𝑢1(𝑥) = 𝛼𝑥 +
1
2

𝑥2 +
1
6

𝛽𝑥3 +
1

24
𝑥4 +

1
120

𝑥5 + 𝐿−1(𝑒−𝑥𝐴0), 

𝑢𝑛+1(𝑥) = 𝐿−1(𝑒−𝑥𝐴𝑛),               𝑛 ≥ 1. 

 

 

 

(1.148) 

To determine the components recurrently, we can use the scheme in (1.13). Using these 
polynomials into (1.148), the first few components can be determined recursively by 
 𝑢0(𝑥) = 1, 

 𝑢1(𝑥) = 𝛼𝑥 +
1
2

𝑥2 +
1
6

𝛽𝑥3 +
1

24
𝑥4 +

1
120

𝑥5 + 𝐿−1(𝑒−𝑥𝐴0) 

= −1 + (𝛼 + 1)𝑥 + �
1
6

𝛽 +
1
6� 𝑥3 + �

1
120

𝛾 +
1

120� 𝑥5 + 𝑒−𝑥. 

 

 

 

(1.149) 

Consequently, the solution in a series form is given by 
 
 𝑢(𝑥) = (𝛼 + 1)𝑥 + �

1
6

𝛽 +
1
6� 𝑥3 + �

1
120

𝛾 +
1

120� 𝑥5 + 𝑒−𝑥. (1.150) 

We expand 𝑒−𝑥 to obtain the approximation of 𝑢(𝑥) as 
 
 𝑢(𝑥) = 1 + 𝛼𝑥 +

1
2

𝑥2 +
1
6

𝛽𝑥3 +
1

24
𝑥4 +

1
120

𝛾𝑥5 + ⋯. (1.151) 

Now we use the boundary conditions at 𝑥 = 1 on this 2-term approximant in order to determine 
the values of the constants α, β and γ. We get  
 
 
 𝛼 = 1.006979226,    𝛽 = 0.9319015233,      𝛾 = 1.718281828. (1.152) 

Consequently, the series solution becomes 
 
 𝑢(𝑥) = 1 + 1.006979226𝑥 +

1
2

𝑥2 + 0.1553169206𝑥3 +
1

24
𝑥4

+ 0.01431901523𝑥5 + ⋯. 

 

(1.153) 

 
Table 1.7 depicts the numerical results obtained by ADM using only two iterations. The error 
seems this time to be uniformly distributed on the interval [0, 1]. 
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𝒙 ADM EXACT ABSOLUTE 
ERROR 

𝟏. 𝟏 1 1 0.0 
𝟏. 𝟏 1.105857550 1.105170918 6.9 × 10−4 
𝟏. 𝟐 1.222709629 1.221402758 1.3 × 10−3 
𝟏. 𝟑 1.351659620 1.349858808 1.8 × 10−3 
𝟏. 𝟒 1.493945267 1.491824698 2.1 × 10−3 
𝟏. 𝟓 1.650955864 1.648721271 2.2 × 10−3 
𝟏. 𝟔 1.824249438 1.822118800 2.1 × 10−3 
𝟏. 𝟕 2.015569926 2.013752707 1.8 × 10−3 
𝟏. 𝟖 2.226864366 2.225540928 1.3 × 10−3 
𝟏. 𝟗 2.460300073 2.459603111 7.0 × 10−4 
𝟏. 𝟏 2.718281829 2.718281828 1.0 × 10−9 

 
Table 1.7  Absolute errors for Example 1.9 using two iterations of the ADM. 

 
 

1.4.5 Singular Boundary Value Problems 
 

In this section, we will consider differential equations which possess a singularity. To 
start, consider the singular boundary value problem of order 𝑛 +  1 given by 
 
 𝑢𝑛+1 +

𝑚
𝑥

𝑢𝑛 + 𝑁𝑢 = 𝑔(𝑥), (1.154) 

subject to the boundary conditions 
 
 𝑢(0) = 𝑎0, 𝑢′(0) = 𝑎1, … , 𝑢(𝑛−1)(0) = 𝑎𝑛−1, 𝑢(𝑏) = 𝑐, (1.155) 

where 𝑁 is a nonlinear differential operator of order less than 𝑛, 𝑔(𝑥) is a given function and 
𝑎0, 𝑎1, … , 𝑎𝑛−1, 𝑏, 𝑐 are constants. Consider the following operator 𝐿, defined as below, 
 
 

𝐿(. ) = 𝑥−1 𝑑𝑛

𝑑𝑥𝑛 𝑥𝑛+1−𝑚 𝑑
𝑑𝑥

𝑥𝑚−𝑛(. ), 
(1.156) 

where 𝑚 ≤ 𝑛. Thus, in operator form, Eq. (1.135) becomes 
 
 𝐿𝑢 = 𝑔(𝑥) − 𝑁𝑢. (1.157) 

We propose the inverse operator  𝐿−1, as defined below 
 
 

𝐿−1(. ) = 𝑥𝑛−𝑚 � 𝑥𝑚−𝑛−1 � � … � 𝑥(. )𝑑𝑥 … 𝑑𝑥.
𝑥

0

𝑥

0

𝑥

0

𝑥

0
 

(1.158) 

 
 
 
Applying the inverse operator 𝐿−1 to both sides of equation (1.157), we have 



  44 
 

 
 𝑢(𝑥) = Φ(𝑥) + 𝐿−1𝑔(𝑥) − 𝐿−1𝑁𝑢, (1.159) 

where  𝐿Φ(𝑥) = 0. By Adomian decomposition method applied to Eq. (1.159), we have the 
following resulting equation: 
 
 

� 𝑢𝑛

∞

𝑛=0

= Φ(𝑥) + 𝐿−1𝑔(𝑥) − 𝐿−1 � 𝐴𝑛

∞

𝑛=0

, 
(1.160) 

 

where the 𝐴𝑛′𝑠  are the Adomian polynomials that can be evaluated for different forms of 
nonlinearity. Matching both sides, via application of the ADM, gives the recursive relation 
 
 
 𝑢0 = Φ(𝑥) + 𝐿−1𝑔(𝑥), 

𝑢1 = −𝐿−1𝐴0, 

𝑢2 = −𝐿−1𝐴1, 

𝑢3 = −𝐿−1𝐴2, 

⋮ 

 

 

 

 

(1.161) 

There are various research papers dealing with differential equations that possess singularities. 
The way to tackle such problems is to construct a tailored integral operator that overcomes the 
singular point. The choice of integral operator differs depending on the type of singularity. 
 
In the following, several examples will be discussed for the illustration of the above iterative 
schemes for problems with similar singularity. 
 
 
Example 1.10   Consider the inhomogeneous Bessel equation 
 
 𝑢′′ +

1
𝑥

𝑢′ + 𝑢 = 4 − 9𝑥 + 𝑥2 − 𝑥3, (1.162) 

complimented with the boundary conditions 
 
 𝑢(0) = 0 and 𝑢(1) = 0. (1.163) 

 
Equation (1.162) has a singular point at 𝑥 = 0 and the differential operator 𝐿, as stated above 
employs the first two derivatives in the form 
 
 

𝐿 = 𝑥−1 𝑑
𝑑𝑥 �𝑥

𝑑
𝑑𝑥�. 

(1.164) 

 
In view of (1.163), the inverse operator 𝐿−1we shall consider is the twofold integral operator 
defined by 
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𝐿−1(. ) = � 𝑥−1 � 𝑥(. )𝑑𝑥𝑑𝑥

𝑥

0

𝑥

1
 

(1.165) 

Applying 𝐿−1 defined in (1.165), to the first two terms 𝑢′′ + 1
𝑥

𝑢′ of Eq. (1.162), will lead to the 
following: 
 

𝐿−1 �𝑢′′ +
1
𝑥

𝑢′� = � 𝑥−1 � 𝑥 �𝑢′′ +
1
𝑥

𝑢′� 𝑑𝑥𝑑𝑥
𝑥

0

𝑥

1

= � 𝑥−1 �𝑥𝑢′ − � 𝑢′
𝑥

0
𝑑𝑥 + � 𝑢′

𝑥

0
𝑑𝑥� 𝑑𝑥

𝑥

1
 

      = � 𝑢′
𝑥

1
𝑑𝑥 = 𝑢(𝑥) − 𝑢(1).       

 

 

 

 

(1.166) 

Operating with 𝐿−1 on both sides of (1.162) and applying the decomposition method, it then 
follows that 
 

� 𝑢𝑛

∞

𝑛=0

= 𝐿−1(4 − 9𝑥 + 𝑥2 − 𝑥3) − 𝐿−1 � 𝑢𝑛

∞

𝑛=0

, 
 

(1.167) 

or 
 

� 𝑢𝑛

∞

𝑛=0

= −
9

400
+ 𝑥2 − 𝑥3 +

𝑥4

16
−

𝑥5

25
𝑥7 − 𝐿−1 � 𝑢𝑛.

∞

𝑛=0

 
 

(1.168) 

The various terms 𝑢𝑛(𝑥) of the solution 𝑢(𝑥) can be easily determined by using the recursive 
relation 
 

𝑢0(𝑥) = −
9

400
+ 𝑥2 − 𝑥3 +

𝑥4

16
−

𝑥5

25
𝑥7, 

𝑢1(𝑥) = −𝐿−1𝑢0 =
3139

176400
+

9𝑥2

1600
−

𝑥4

16
+

𝑥5

25
−

𝑥6

576
+

𝑥7

1225
, 

𝑢2(𝑥) = −𝐿−1𝑢1 =
314039

81285120
−

3139𝑥2

176400
−

9𝑥4

25600
+

𝑥5

25
−

𝑥6

576
+

𝑥7

1225
 

+
𝑥8

36864
−

𝑥9

99225
, 

 

 

 

 

 

 

(1.169) 

and so forth. Based on these calculations, the solution in a series form is given by 
 
 

𝑢(𝑥) =
−1955

2322432
+

70643
70560

𝑥2 − 𝑥3 −
9𝑥4

25600
+

𝑥8

36864
−

𝑥9

99225
. 

 

(1.170) 

 
The exact solution for this problem is  
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 𝑢(𝑥) = 𝑥2 − 𝑥3. (1.171) 

 
 

𝒙 ADM EXACT ABSOLUTE 
ERROR 

𝟏. 𝟏 −0.00084 0.000 8.4 × 10−4 
𝟏. 𝟏 0.008170 0.009 8.3 × 10−4 
𝟏. 𝟐 0.03120 0.032 8.0 × 10−4 
𝟏. 𝟑 0.06226 0.063 7.4 × 10−4 
𝟏. 𝟒 0.09534 0.960 6.6 × 10−4 
𝟏. 𝟓 0.12443 0.125 5.7 × 10−4 
𝟏. 𝟔 0.14354 0.144 4.6 × 10−4 
𝟏. 𝟕 0.14665 0.147 3.5 × 10−4 
𝟏. 𝟖 0.12777 0.128 2.3 × 10−4 
𝟏. 𝟗 0.08089 0.081 1.1 × 10−4 
𝟏. 𝟏 0.00000 0.000 0.00 

 
Table 1.8  Absolute errors for Example 1.10 using ADM with three iterations. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.4  Exact solution for Example 1.10 compared with the approximate solution using 
ADM. 
 
In order to verify numerically whether the proposed approach (ADM) leads to accurate solutions, 
we used the Computer Algebra System MAPLE to evaluate the decomposition series solutions 
using 3-terms approximation. The numerical results show that a good approximation is achieved 
using only few terms of the iterative scheme. 

 
Moreover, comparison between the exact solution and the approximate solution 𝑢(𝑥) obtained 
using the decomposition method with three iterations is summarized in Table 1.8 and Figure 1.4. 

        Exact                          ADM 



  
 

47 
 

The numerical experiments show that the absolute error is small using only few terms and thus 
the proposed approach is highly accurate. 
 
 
Example 1.11    Consider the nonlinear BVP 
 
 𝑢′′′ −

2
𝑥

𝑢′′ − 𝑢 − 𝑢2 = 𝑔(𝑥), (1.172) 

where 
 𝑔(𝑥) = 7𝑥2𝑒𝑥 + 6𝑥𝑒𝑥 − 6𝑒𝑥 − 𝑥6𝑒2𝑥 , (1.173) 

and complimented with the boundary conditions 
 
 𝑢(0) = 𝑢′(0) = 0,   𝑢(1) = 𝑒. (1.174) 

Solution: 
We define the new integral operator 𝐿 as follows: 
 
 

𝐿[. ] = 𝑥−1 𝑑2

𝑑𝑥2 𝑥5 𝑑
𝑑𝑥

𝑥−4[. ], 
(1.175) 

and thus its inverse operator, 𝐿−1, is given by 
   
 

𝐿−1[. ] = 𝑥4 � 𝑥−5 � � 𝑥[. ]
𝑥

0
 𝑑𝑥 𝑑𝑥

𝑥

0

𝑥

1
𝑑𝑥. 

(1.176) 

Applying 𝐿−1 to the first two terms 𝑢′′′ − 2
𝑥

𝑢′′of Eq. (1.172) we find 
 
 

𝐿−1 �𝑢′′′ −
2
𝑥

𝑢′′� = 𝑥4 � 𝑥−5 � � 𝑥 �𝑢′′′ −
2
𝑥

𝑢′′�
𝑥

0
𝑑𝑥 𝑑𝑥

𝑥

0

𝑥

1
𝑑𝑥,                                   

                 = 𝑥4 � 𝑥−5 �� � 𝑥𝑢′′′𝑑𝑥𝑑𝑥 − � � 2𝑢′′
𝑥

0

𝑥

0

𝑥

0
𝑑𝑥 𝑑𝑥

𝑥

0
�

𝑥

1
𝑑𝑥,     

                             = 𝑥4 � 𝑥−5[𝑥𝑢′ − 4𝑢]
𝑥

1
𝑑𝑥 = 𝑥4[𝑥−4𝑢(𝑥) − 𝑢(1)] = 𝑢(𝑥) − 𝑥4𝑒. 

 

 

 

 

(1.177) 

Operating with 𝐿−1on (1.172), it then follows that 
 
 𝑢(𝑥) = 𝑥4𝑒 − 𝐿−1𝑢 − 𝐿−1𝑢2 + 𝐿−1𝑔(𝑥), (1.178) 

Using the Adomian decomposition strategy to equation (1.159), gives 
 
 

� 𝑢𝑛

∞

𝑛=0

= 𝑥4𝑒 − 𝐿−1 �� 𝑢𝑛

∞

𝑛=0

� − 𝐿−1 �� 𝐴𝑛

∞

𝑛=0

� + 𝐿−1(7𝑥2𝑒𝑥 + 6𝑥𝑒𝑥 − 6𝑒𝑥 − 𝑥6𝑒2𝑥). 
 

(1.179) 
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The Adomian polynomials 𝐴𝑛′𝑠  for 𝑢2  have been derived and used before. Following the 
decomposition method we get from the recursive relation the following three terms: 
 
 𝑢0 = 𝑥4𝑒, 

𝑢1 = 𝑥3 +
1
2

𝑥5 + 0.15𝑥6 + 0.0215𝑥7 + 0.0095𝑥11 − 1.6810𝑥4, 

𝑢2 =
1

60
𝑥6 + 0.0082𝑥7 + 0.0022𝑥8 + 0.0004𝑥9 + 0.0101𝑥10 − 0.0375𝑥4. 

 

 

 

(1.180) 

Based on these calculations, the solution in a series form is given by 
 
 

𝑢(𝑥) = 𝑥3 + 0.9997𝑥4 +
𝑥5

2
+ 0.1666𝑥6 + 0.0297𝑥7 + 0.0095𝑥11

+ 0.0022𝑥8 + 0.0004𝑥9 + 0.0101𝑥10. 

 

(1.181) 

 
The closed form solution for this problem is given by 
 
 𝑢(𝑥) = 𝑥3𝑒𝑥. (1.182) 

The numerical results obtained by ADM are given in Table 1.9 and Figure 1.5 .It is important to 
mention that the ADM starts diverging, as is clear from Figure 1.5, for values of 𝑥 > 1. 
 
 

 𝒙 ADM EXACT ABSOLUTE 
ERROR 

𝟏. 𝟏 −0.00084 0.0 8.4 × 10−4 
𝟏. 𝟏 0.008170 0.009 8.3 × 10−4 
𝟏. 𝟐 0.03120 0.032 8.0 × 10−4 
𝟏. 𝟑 0.06226 0.063 7.4 × 10−4 
𝟏. 𝟒 0.09534 0.960 6.6 × 10−4 
𝟏. 𝟓 0.12443 0.125 5.7 × 10−4 
𝟏. 𝟔 0.14354 0.144 4.6 × 10−4 
𝟏. 𝟕 0.14665 0.147 3.5 × 10−4 
𝟏. 𝟖 0.12777 0.128 2.3 × 10−4 
𝟏. 𝟗 0.08089 0.081 1.1 × 10−4 
𝟏. 𝟏 0.0 0.0 0.0 

 
Table 1.9   Absolute errors obtained for Example 1.11 using ADM with three iterations. 
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Figure 1.5  Comparison of the exact solution for Example 1.11 with ADM’s approximate 
solution. 
 
 

1.4.6  Boundary Value Problems over an Infinite Domain 
 
 In this section, we apply Adomian decomposition method to a boundary value problem on 
an infinite domain. Padé approximations are crucial for such problems and will be manipulated 
to handle the condition at infinity.   
 
 
Example 1.12  Consider the nonlinear boundary value problem 
 
 𝑢′′′(𝑥) +

1
2

𝑢(𝑥)𝑢′(𝑥) = 0, (1.183) 

subject to the boundary conditions 
 
 𝑢(0) = 0, 𝑢′(0) = 1,          𝑢′(∞) = 0,   (1.184) 

where   0 < 𝑥 < ∞. 
 
Solution: 
Since it is necessary to have three initial conditions to apply the ADM, we set 𝑢′′′(0) = 𝛼. The 
value of  𝛼  can then be found using the condition at infinity. To start, we write (1.183) in 
operator form as 

          Exact                   ADOMIAN  
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 𝐿𝑢 = −
1
2

𝑢𝑢′, (1.185) 

where 𝐿 is a third order differential operator, and hence its inverse 𝐿−1 is defined by 
 
 

𝐿−1(. ) = � � � (. )𝑑𝑥
𝑥

0
𝑑𝑥

𝑥

0
𝑑𝑥

𝑥

0
. 

(1.186) 

Applying 𝐿−1 to both sides of (1.185) and using the initial conditions we obtain 
 
 𝑢(𝑥) = 𝑥 +

1
2

𝛼𝑥2 −
1
2

𝐿−1[𝑢𝑢′′]. (1.187) 

Using the decomposition series 𝑢(𝑥) and the polynomial representation for 𝑢𝑢′′, we have 
 
 

� 𝑢(𝑥) =
∞

𝑛=0

𝑥 +
1
2

𝛼𝑥2 −
1
2

𝐿−1 �� 𝐴𝑛

∞

𝑛=0

�, 
 

(1.188) 

where the 𝐴𝑛′𝑠 are the Adomian polynomials that represent the nonlinear terms 𝑢𝑢′′. This leads 
to the recursive relation 

 𝑢0 = 𝑥 

𝑢1 =
1
2

𝛼𝑥2 −
1
2

𝐿−1𝐴0 

𝑢𝑛+1 = −
1
2

𝐿−1𝐴𝑛,         𝑛 ≥ 1. 

 

 

 

(1.189) 

Next we calculate the first few terms of the Adomian polynomials. 

 𝐴0 = 𝑢0𝑢0
′′, 

𝐴1 = 𝑢0𝑢1
′′ + 𝑢0′′𝑢1, 

𝐴2 = 𝑢0𝑢2
′′ + 𝑢1′′𝑢1 + 𝑢0′′𝑢2, 

𝐴3 = 𝑢0𝑢3
′′ + 𝑢1′′𝑢2 + 𝑢1𝑢2

′′ + 𝑢0′′𝑢3, 

…. 

 

 

 

(1.190) 

Applying the decomposition algorithm to equation (1.189), yields the following iterates  
 
 𝑢0 = 𝑥, 

𝑢1 =
1
2

𝛼𝑥2 −
1
2

𝐿−1𝐴0, 

𝑢2 = −
1
2

𝐿−1𝐴1, 
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𝑢3 = −
1
2

𝐿−1𝐴2, 

…. 

 

(1.191) 

This in turn gives 
 
 𝑢0 = 𝑥, 

𝑢1 =
1
2

𝛼𝑥2 −
𝑥4

24
, 

𝑢2 = −
1

24
𝛼𝑥4 +

𝑥6

240
, 

𝑢3 = − 1
120

𝛼𝑥5 − 1
144

𝛼𝑥6 + 1
7

�− 7𝛼
720

− 1
180

� 𝑥7 − 1
3360

𝑥8 − 1
24192

𝑥9, 

…. 

 

 

 

 

 

(1.192) 

Hence we obtain the following solution: 
 
 𝑢0 = 𝑥, 

𝑢1 =
1
2

𝛼𝑥2 −
𝑥4

24
, 

𝑢2 = −
1

24
𝛼𝑥4 +

𝑥6

240
, 

𝑢3 = − 1
120

𝛼𝑥5 − 1
144

𝛼𝑥6 + 1
7

�− 7𝛼
720

− 1
180

� 𝑥7 − 1
3360

𝑥8 − 1
24192

𝑥9, 

⋮ 

 

 

 

 

 

(1.193) 

Now, in order to find the value of 𝛼 we use the condition 
 
 lim

α→∞
𝑢′(α) = 0, (1.194) 

which is obtained from the boundary condition at infinity, namely, 𝑢′(∞) = 0.  We apply Padé 

approximation on the derivative of the solution, that is on 𝑢′. This will convert the series into a 

rational function and thus it will become possibly to evaluate the limit at infinity, unlike the 

failure to evaluate it in case we have infinite series expressed in powers of 𝑥. After applying the 

[2,2] Padé approximant, the boundary condition gives 

 
lim

𝛼→∞

3 �4 + 3α𝑥 + �−𝛼2 + 1
3� 𝑥2�

12 − 3𝛼𝑥 + 𝑥2 = −3𝛼2 + 1.           
 

(1.195) 
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Solving the equation −3α2 + 1 = 0, we get that α = 0.5773502692. If we apply the [3,3] Padé 
approximant, we get this equation 

 
−

1
5

184 + 525α2

5α2 + 12
= 0, 

(1.196) 

so we get α = 0. 5920102959.  For [4,4] Padé approximant, we get that α = 0.5163977795. 
The [𝑛, 𝑛] Padé approximants seem to converge. 

Generally speaking, boundary conditions at infinity pose a problem when applying the various 
numerical solution methods. So in order to tackle this problem and avoid such a difficulty, Padé 
approximations with the ADM present a potential and effective answer to the condition at 
infinity. 

 

1.4.7 Systems of Differential Equations 
 
             Now, we will demonstrate how one can apply the ADM for systems. Let us consider the 
following system of ordinary differential equations: 
 
 𝑦1

′ = 𝑓1(𝑥, 𝑦1, 𝑦2, … . , 𝑦𝑛) + 𝑔1, 

𝑦2
′ = 𝑓2(𝑥, 𝑦1, 𝑦2, … . , 𝑦𝑛) + 𝑔2, 

⋮ 

𝑦𝑛
′ = 𝑓𝑛(𝑥, 𝑦1, 𝑦2, … . , 𝑦𝑛) + 𝑔𝑛, 

 

 

 

(1.197) 

where 𝑓1, 𝑓2, … , 𝑓𝑛  are nonlinear functions, 𝑔1, 𝑔2, … . , 𝑔𝑛  are known functions, and we are 
seeking the solution 𝑦1, 𝑦2, … , 𝑦𝑛 satisfying (1.197). 
Rewrite (1.197) in operator form by using the 𝑛th equation as: 
 
 𝐿𝑦𝑛 = 𝑁𝑛(𝑥, 𝑦1, 𝑦2, … . , 𝑦𝑘) + 𝑔𝑛,                  𝑛 = 1,2, … . , 𝑚. (1.198) 

where 𝐿 = 𝑑
𝑑𝑥

 is the linear operator and 𝑁𝑛(𝑥, 𝑦1, 𝑦2, … . , 𝑦𝑘) = 𝑓𝑛(𝑥, 𝑦1, 𝑦2, … . , 𝑦𝑘) represent the 

nonlinear operators. Appling the inverse operator of 𝐿 (namely, 𝐿−1[. ] = ∫ [. ] 𝑑𝑡𝑡
0 ) gives 

 
 𝑦𝑛 = 𝑦𝑛(0) + 𝐿−1𝑁𝑛(𝑥, 𝑦1, 𝑦2, … . , 𝑦𝑘) + 𝐿−1𝑔𝑛. (1.199) 

The Adomian technique consists of approximating the solution of (1.178) as an infinite series 
 
 

𝑦𝑛 = � 𝑦𝑛,𝑘

∞

𝑘=0

,                  𝑛 = 1,2, … , 𝑚, 
 

(1.200) 

and decomposing the nonlinear operator 𝑁𝑛 as 
 



  
 

53 
 

 
𝑁𝑛(𝑥, 𝑦1, 𝑦2, … . , 𝑦𝑘) = � 𝐴𝑛,𝑘,

∞

𝑘=0

                     𝑛 = 1,2, . . , 𝑚, 
 

(1.201) 

where 𝐴𝑛,𝑘 are called Adomian polynomials of 𝑦0, 𝑦1, … . , 𝑦𝑘. Substituting (1.200) and (1.201) 
into (1.199) we get: 
 

� 𝑦𝑛,𝑘  
∞

𝑘=0

= 𝑦𝑛(0) + 𝐿−1 � 𝐴𝑛,𝑘

∞

𝑘=0

+ 𝐿−1𝑔𝑛. 
 

(1.202) 

The various terms 𝑦𝑛,𝑘 of the solution 𝑦𝑛 can be easily determined by using the recursive relation 
 
 𝑦𝑛,0 = 𝑦𝑛(0) + 𝐿−1𝑔𝑛, 

𝑦𝑛,𝑘+1 = 𝐿−1𝐴𝑛,𝑘 ( 𝑦0, 𝑦1, … . , 𝑦𝑘),                 𝑛 = 1,2, … , 𝑘 = 0,1,2, ….  

 

(1.203) 

 

Two examples are solved next to show the applicability of the method for systems of ODEs. 
 
 
Example 1.13   Consider the following system of ODEs, with initial values 𝑦1(0) = 1, 
𝑦2(0)  =  0, and  𝑦3(0)  =  2. 
 𝑦′1 = 𝑦3 − 𝑐𝑜𝑠(𝑥), 

𝑦′2 = 𝑦3 − 𝑒𝑥, 

𝑦′3 = 𝑦1 − 𝑦2. 

 

 

(1.204) 

Solution: 
Applying the inverse operator 𝐿−1 = ∫ (. )𝑑𝑥𝑥

0  to both sides of (1.204) we get 
 
 𝑦1 = 1 − 𝐿−1 cos(𝑥) + 𝐿−1𝑦3, 

𝑦2 = −𝐿−1𝑒𝑥 + 𝐿−1𝑦3, 

𝑦3 = 2 + 𝐿−1(𝑦1 − 𝑦2). 

 

 

(1.205) 

 
 
 
The Adomian decomposition method gives 
 
   𝑦1,0 = 1 − sin(𝑥),               𝑦 1,𝑘+1 = 𝐿−1𝑦3,𝑘,                         

𝑦2,0 = 1 − 𝑒𝑥,                     𝑦 2,𝑘+1 = 𝐿−1𝑦3,𝑘,                                                

𝑦3,0 = 2,                               𝑦 3,𝑘+1 = 𝐿−1�𝑦1,𝑘 − 𝑦2,𝑘�,       𝑘 = 0,1,2, ….     

 

 

(1.206) 

After finding the first few terms we get the exact solutions: 
 



  54 
 

 𝑦1 =  𝑒𝑥,      𝑦2  =  𝑠𝑖𝑛(𝑥),    𝑦 3 =  𝑒𝑥 +  𝑐𝑜𝑠(𝑥). (1.207) 

 
 
Example 1.14   Consider the following nonlinear system of ordinary differential equation, with 
the initial conditions 𝑢1(0) = 1, 𝑢2(0)  =  1 , and 𝑢3(0) =  0  and with exact solutions 𝑢1(𝑥) =
𝑒2𝑥 , 𝑢2(𝑥) = 𝑒𝑥 and 𝑢3(𝑥) = 𝑥𝑒𝑥 . 
 
 𝑢′1 = 2𝑢2

2, 

𝑢′
2 = 𝑒−𝑥𝑢1, 

𝑢′
3 = 𝑢2 + 𝑢3. 

 

 

(1.208) 

Solution: 
Using the inverse operator 𝐿−1 = ∫ [. ] 𝑑𝑥 𝑥

0 we get: 
 
 𝑢1 = 1 + 2𝐿−1𝑢2

2, 

 𝑢2 = 1 + 𝐿−1𝑒−𝑥𝑢1, 

𝑢3 = 𝐿−1(𝑢2 + 𝑢3). 

 

 

(1.209) 

Using the scheme (1.13) to compute the Adomian polynomials, the decomposition procedure 
would be as follows: 
 
 𝑦1,0 = 1,                     𝑦 1,𝑘+1 = 2𝐿−1𝐴2,𝑘,                         

𝑦2,0 = 1,                     𝑦 2,𝑘+1 = 𝐿−1𝑒−𝑥𝑢1,𝑘,                                                

𝑦3,0 = 0,                     𝑦 3,𝑘+1 = 𝐿−1�𝑦2,𝑘 − 𝑦3,𝑘�,       𝑘 = 0,1,2, …. 

 

 

(1.210) 

 

1.4.8 ADM and Domain Decomposition 
 
 We have seen earlier, from the various numerical experiments that we have conducted, 
one key setback of the ADM. The error worsens as we move away from the specified initial 
condition, that is, the convergence is local and is highly accurate mainly in a neighborhood of the 
initial point and deteriorates as we move far away from it, that is, as the applicable domain 
increases. In this section, we will overcome this setback by applying a domain decomposition 
technique that will improve the error for large values of the independent variable.  
 
 The main thrust of the DD is to decompose the domain of the problem into a union of 
disjoint subintervals in such a way that the error is uniformly distributed. The spirit of the DD is 
to decompose one large global problem into many smaller subdomain problems. The 



  
 

55 
 

computational domain is initially partitioned into a number  𝑀 of non-overlapping subdomains  
𝑋𝑖 = [𝑥𝑖 , 𝑥𝑖+1], 𝑖 = 0,1, … , 𝑀 − 1  with overlap at the mesh point 𝑥𝑖+1  between neighboring 
regions 𝑋𝑖   and  𝑋𝑖+1. The ADM, which converges fast locally near the left endpoint 𝑥 = 0, is 
applied at first in a small neighborhood of thickness 𝛿 about the origin. Then, from the resulting 
numerical solution on the first subinterval, an initial condition is estimated at 𝑥 = 𝛿 , that 
approximates the value of the true solution at 𝑥 = 𝛿, then the ADM is applied again on the 
second subdomain.   
 
 Therefore the ADM is applied on the first subdomain and the values on inter-domain 
right endpoint boundary are calculated, that is the original problem is solved by computing sub-
problems in parallel. In comparison with the standard ADM approach, non-overlapping domain 
decomposition approach is more efficient especially if a highly accurate numerical solution with 
uniform error distribution is required. 
  
 To explain the DD more precisely, assume we have a BVP on [0,1]  subject to the 
boundary conditions  𝑦(0) = 𝑎, 𝑦(1) = 𝑏 . First, we solve the problem directly by the ADM 
over the interval [0,1], then obtain the first value of 𝑥 from resulting numerical solution, say 
𝑥 = 𝛿1,  that satisfies the condition  
 

|𝑦𝑛1(𝛿1) − 𝑦𝑛1−1(𝛿1)| < 𝑇𝑜𝑙, 
 
where 𝑇𝑜𝑙 is an assigned tolerance and 𝑛1 denotes the number of ADM terms that are needed to 
satisfy the later condition. Set 𝑌1 = 𝑦𝑛1(𝑥) on [𝛿0, 𝛿1], where  𝛿0 = 0. The next step is to apply 
the ADM again on the same problem on the domain [𝛿1, 1] subject to the boundary conditions  
 

𝑦(𝛿1) = 𝑌1(𝛿1),        𝑦(1) = 𝑏, 

where 𝑌1(𝛿1) is the numerical approximation obtain by the first application of the ADM. From 
this we get the value of  𝛿2 and hence the solution on [𝛿1, 𝛿2].  The procedure is repeated in a 
similar fashion till we get the approximate solution on [𝛿𝑛, 1].  
 
Example 1.15  We will apply the domain decomposition (DD) combined with the ADM on 
Example 1.6 which is given by: 
  
 𝑢′ + 𝑢2 = 1,                  𝑢(0) = 0. (1.211) 

Solution:  
To solve our example, we will subdivide the domain into two sub-domains, [0, 0.5] and the 
second is [0.5, 1]. Applying the ADM on [0, 0.5]  first, then from equation (1.118) we can get an 
estimate of the value of the solution at 𝑥 =  0.5, in particular, we get the following value: 
 
 𝑢(0.5) =

18631
40320

. (1.212) 
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This value is now used as the initial condition when applying the ADM on the sub-interval 
[0.5, 1].  Applying the inverse operator 𝐿−1and using this initial condition gives 
  

𝑢 = 𝑢(0.5) + 𝑥 − 0.5 − 𝐿−1(𝑢2). 

 

(1.213) 

By ADM, we can represent the nonlinear term 𝑢2 by an infinite series of Adomian polynomials 
𝐴𝑛 and the term 𝑢(𝑥) by decomposition series. We have 
 
 

� 𝑢𝑛(𝑥)
∞

𝑛=0

= −
1529

40320
+ 𝑥 − 𝐿−1 �� 𝐴𝑛

∞

𝑛=0

�. 
 

(1.214) 

Upon matching both sides of the latter equation, and after computing the Adomian polynomials 
𝐴𝑛  for 𝑢2, we get the following recursive relation: 
 
 

𝑢0     =   −
1529

40320
+ 𝑥, 

𝑢𝑛+1 =  − 𝐿−1𝐴𝑛,         𝑛 ≥ 0. 

 

 

(1.215) 

Upon solving we get the first few iterates: 
 
 𝑢0 = −0.0379216270 + 𝑥, 

𝑢1 = −𝐿−1(𝐴0)

= 0.03290528481 − 0.001438049794𝑥 + 0.03792162700𝑥2

− 0.3333333𝑥3, 

𝑢2 = −𝐿−1(𝐴1)

= 0.004165858722 + 0.002495643874𝑥 − 0.03295981800𝑥2

+ 0.001917399726𝑥3 − 0.02528108467𝑥4

+ 0.1333333333𝑥5, 

𝑢3 = −𝐿−1(𝐴2)

= 0.0004964057573 − 0.0002254266030𝑥

− 0.004047560127𝑥2 − 0.002913307842𝑥3

+ 0.01927200482𝑥4 − 0.001390114801𝑥5

+ 0.01221919092𝑥6 − 0.04603174602𝑥7. 

 

 

 

 

 

 

 

 

 

 

 

 

(1.216) 

Based on these calculations, the solution in a series form is given by 
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 𝑢(𝑥) = −0.00035407771 + 1.000832167𝑥 + 0.00091424887𝑥2

− 0.3343292414𝑥3 − 0.00600907985𝑥4 + 0.1319432185 𝑥5

+ 0.01221919092𝑥6 − 0.04603174602𝑥7 + ⋯. 

 

(1.217) 

 
In Table 1.10 we give a comparison between the solution obtained solely by the ADM and the 
second using DD. It is obvious that for larger values of 𝑥,  the approximate solution starts 
improving after applying the DD. For smaller values of 𝑥, both yield similar results since the 
ADM converges fast locally and hence such a DD improvement is not necessary. 
 

𝒙 ADM EXACT Error 
using ADM and DD 

Error  
using ADM 

𝟏. 𝟏 0.0 0.0 0.0 0.0 
𝟏. 𝟏 0.100334672 0.100334672 1.0 × 10−10 1.0 × 10−10 
𝟏. 𝟐 0.202710036 0.202710024 1.1 × 10−8 1.1 × 10−8 
𝟏. 𝟑 0.309335803 0.309336250 4.5 × 10−7 4.5 × 10−7 
𝟏. 𝟒 0.422787088 0.422793219 6.1 × 10−6 6.1 × 10−6 
𝟏. 𝟓 0.546254960 0.546302490 3.9 × 10−5 4.8 × 10−5 
𝟏. 𝟔 0.683878766 0.684136808 2.8 × 10−5 2.6 × 10−4 
𝟏. 𝟕 0.841187184 0.842288381 1.3 × 10−5 1.1 × 10−3 
𝟏. 𝟖 1.025675296 1.029638557 6.9 × 10−6 4.0 × 10−3 
𝟏. 𝟗 1.247544849 1.260158218 4.4 × 10−4 1.3 × 10−2 
𝟏. 𝟏 1.520634921 1.557407725 2.4 × 10−3 3.8 × 10−2 
𝟏. 𝟑 2.866033456 3.602102448 5.1 × 10−2 0.73607 
𝟏. 𝟓 4.559598214 14.10141995 0.20634 9.54182 
𝟏. 𝟕 7.445335506 −7.696602139 0.64497 15.1419 
𝟐. 𝟏 15.84126984 −2.185039863 2.617691 18.0263 

 
Table 1.10 Comparison of the absolute errors obtained by ADM and those by DD for Example 
1.6 of subsection (1.4.3) using four iterations for both methods. 
 
1.5 Partial Differential Equations 

 

In this previous section, we applied the Adomian Decomposition Method to linear and 
nonlinear ordinary differential equations (ODEs). Now, we will show how the method can be 
implemented to partial differential equations (PDEs) as well.  
 
1.5.1 Linear PDEs 
 

First, we will employ the ADM for solving linear partial differential equations. Consider 
the general linear partial differential equation written in operator form: 
 
 𝐿𝑥𝑢 + 𝐿𝑡𝑢 + 𝑅𝑢 = 𝑔, (1.218) 
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where 𝐿𝑥 is the highest order differential in 𝑥, 𝐿𝑡 is the highest order differential in 𝑢, 𝑅 is the 
remainder of the differential operator consisting of lower derivatives, and 𝑔 is an inhomogeneous 
term. 
 
Applying the inverse operator 𝐿𝑥

−1 to the equation (1.218) yields 
 
 𝑢 = Φ(0) − 𝐿𝑥

−1𝐿𝑡𝑢 − 𝐿𝑥
−1𝑅𝑢 + 𝐿𝑥

−1𝑔, (1.219) 

where 
 

Φ(𝑥) =

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ 𝑢(0, 𝑡) , 𝑖𝑓 𝐿 =

𝜕
𝜕𝑥

𝑢(0, 𝑡) + 𝑥𝑢𝑥(0, 𝑡) , 𝑖𝑓 𝐿 =
𝜕2

𝜕𝑥2

𝑢(0, 𝑡) + 𝑥𝑢𝑥(0, 𝑡) +
𝑥2

2! 𝑢𝑥𝑥(0, 𝑡)

𝑢(0, 𝑡) + 𝑥𝑢𝑥(0, 𝑡) +
𝑥2

2! 𝑢𝑥𝑥(0, 𝑡) +
𝑥3

3! 𝑢𝑥𝑥𝑥(0, 𝑡)

⋮

𝑢(0, 𝑡) + 𝑥𝑢𝑥(0, 𝑡) +
𝑥2

2! 𝑢𝑥𝑥(0, 𝑡) +
𝑥3

3! 𝑢𝑥𝑥𝑥(0, 𝑡) + +
𝑥𝑛

𝑛! 𝑢𝑥𝑥𝑥…𝑛(𝑡𝑖𝑚𝑒𝑠)…𝑥(0, 𝑡)

⋮

, 𝑖𝑓 𝐿 =
𝜕3

𝜕𝑥3

, 𝑖𝑓 𝐿 =
𝜕4

𝜕𝑥4

⋮

, 𝑖𝑓 𝐿 =
𝜕𝑛+1

𝜕𝑥𝑛+1

⋮

 

 

 

 

 

 

(1.220) 

 
The Adomian decomposition method suggests that the linear terms 𝑢(𝑥, 𝑡) be decomposed by an 
infinite series of components of the form 
 

𝑢(𝑥, 𝑡) = � 𝑢𝑛(𝑥, 𝑡),
∞

𝑛=0

 
 

(1.221) 

where 𝑢𝑛(𝑥, 𝑡) is the components of 𝑢(𝑥, 𝑡) that will be elegantly determined in a recursive 
manner. Substituting (1.221) into (1.219) gives 
 
 

� 𝑢𝑛(𝑥, 𝑡)
∞

𝑛=0

= Φ(0) − 𝐿𝑥
−1𝐿𝑡 �� 𝑢𝑛(𝑥, 𝑡)

∞

𝑛=0

� − 𝐿𝑥
−1𝑅 �� 𝑢𝑛(𝑥, 𝑡)

∞

𝑛=0

� + 𝐿𝑥
−1𝑔. 

 

(1.222) 

Following the decomposition analysis strategy, equation (1.222) is transformed into a set of 
recursive relations given by 
 
 𝑢0(𝑥, 𝑡) = Φ(0) +  𝐿𝑥

−1𝑔, 

𝑢𝑛+1(𝑥, 𝑡) = −𝐿𝑥
−1�𝐿𝑡𝑢𝑛(𝑥, 𝑡)� − 𝐿𝑥

−1𝑅𝑢𝑛(𝑥, 𝑡), 𝑛 ≥ 0. 

 

(1.223) 

 
This latter algorithm will be later used on a number of test examples to show the efficiency and 
applicability of the technique. 
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1.5.2 Non-Linear PDEs 
 

We will generalize the ideas of the previous subsection to general nonlinear partial 
differential equation of the form. To start the ADM, we need to rewrite the PDE in operator form 
as:  
 𝐿𝑥𝑢 + 𝐿𝑡𝑢 + 𝑅𝑢 + 𝐹(𝑢) = 𝑔, (1.224) 

 
where 𝐿𝑥 is the highest order differential in 𝑥, 𝐿𝑡  is the highest order differential in 𝑢, 𝑅 is the 
remainder of differential operator consisting of lower order derivatives,  𝐹(𝑢)  is an analytic 
nonlinear term, and 𝑔 is the specified inhomogeneous term. 
Applying the inverse operator 𝐿𝑥

−1, the equation (1.224) becomes 
 
 𝑢 = Φ(0) − 𝐿𝑥

−1𝐿𝑡𝑢 − 𝐿𝑥
−1𝑅𝑢 − 𝐿𝑥

−1𝐹(𝑢) + 𝐿𝑥
−1𝑔, (1.225) 

where 
 

Φ(𝑥) =

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ 𝑢(0, 𝑡) , 𝑖𝑓 𝐿 =

𝜕
𝜕𝑥

𝑢(0, 𝑡) + 𝑥𝑢𝑥(0, 𝑡) , 𝑖𝑓 𝐿 =
𝜕2

𝜕𝑥2

𝑢(0, 𝑡) + 𝑥𝑢𝑥(0, 𝑡) +
𝑥2

2! 𝑢𝑥𝑥(0, 𝑡)

𝑢(0, 𝑡) + 𝑥𝑢𝑥(0, 𝑡) +
𝑥2

2! 𝑢𝑥𝑥(0, 𝑡) +
𝑥3

3! 𝑢𝑥𝑥𝑥(0, 𝑡)

⋮

𝑢(0, 𝑡) + 𝑥𝑢𝑥(0, 𝑡) +
𝑥2

2! 𝑢𝑥𝑥(0, 𝑡) +
𝑥3

3! 𝑢𝑥𝑥𝑥(0, 𝑡) + +
𝑥𝑛

𝑛! 𝑢𝑥𝑥𝑥…𝑛(𝑡𝑖𝑚𝑒𝑠)…𝑥(0, 𝑡)

⋮

, 𝑖𝑓 𝐿 =
𝜕3

𝜕𝑥3

, 𝑖𝑓 𝐿 =
𝜕4

𝜕𝑥4

⋮

, 𝑖𝑓 𝐿 =
𝜕𝑛+1

𝜕𝑥𝑛+1

⋮

 

 

 

 

 

 

(1.226) 

 
 
The method admits the decomposition of 𝑢(𝑥, 𝑡) into an infinite series of terms expressed as: 
 
 

𝑢(𝑥, 𝑡) = � 𝑢𝑛(𝑥, 𝑡)
∞

𝑛=0

 
 

(1.227) 

and the nonlinear term 𝐹(𝑢) is to be equated to an infinite series of polynomials 
 
 

𝐹�𝑢(𝑥, 𝑡)� = � 𝐴𝑛

∞

𝑛=0

, 
(1.228) 

 

where 𝐴𝑛 are the Adomian polynomials that represent the nonlinear term 𝐹�𝑢(𝑥, 𝑡)�. Inserting 
(1.226) and (1.227) into (1.225) yields 
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� 𝑢𝑛(𝑥, 𝑡)

∞

𝑛=0

= Φ(0) − 𝐿𝑥
−1𝐿𝑡 �� 𝑢𝑛(𝑥, 𝑡)

∞

𝑛=0

� − 𝐿𝑥
−1𝑅 �� 𝑢𝑛(𝑥, 𝑡)

∞

𝑛=0

�

− 𝐿𝑥
−1 �� 𝐴𝑛

∞

𝑛=0

� + 𝐿𝑥
−1𝑔. 

 

 

 

(1.229) 

The various terms 𝑢𝑛(𝑥, 𝑡) of the solution 𝑢(𝑥, 𝑡) can be easily determined by using the recursive 
relation  
 
 𝑢0 =  Φ(0) + 𝐿𝑥

−1𝑔, 

𝑢𝑛+1 = −𝐿𝑥
−1𝐿𝑡𝑢𝑛(𝑥, 𝑡) − 𝐿𝑥

−1𝑅𝑢𝑛(𝑥, 𝑡) − 𝐿𝑥
−1𝐴𝑛. 

 

(1.230) 

Consequently, the first few terms of the solution are given by 

           𝑢0 =  Φ(0) + 𝐿𝑥
−1𝑔 

𝑢1 = −𝐿𝑥
−1𝐿𝑡𝑢0(𝑥, 𝑡) − 𝐿𝑥

−1𝑅𝑢0(𝑥, 𝑡) − 𝐿𝑥
−1𝐴0, 

𝑢2 = −𝐿𝑥
−1𝐿𝑡𝑢1(𝑥, 𝑡) − 𝐿𝑥

−1𝑅𝑢1(𝑥, 𝑡) − 𝐿𝑥
−1𝐴1, 

𝑢3 = −𝐿𝑥
−1𝐿𝑡𝑢2(𝑥, 𝑡) − 𝐿𝑥

−1𝑅𝑢2(𝑥, 𝑡) − 𝐿𝑥
−1𝐴2. 

 

 

 

(1.231) 

Examples will be given next sections to illustrate this algorithm. 
 
 

1.5.3 Initial Value Problems 
 

In this current unit, we will implement the strategy behind the ADM algorithm described 
previously apply to some examples in which the linear and nonlinear partial differential 
equations are subjected only to initial conditions.   
  
 
Example 1.16  Consider the initial value problem of nonlinear partial differential equation 
 
 𝑢𝑥𝑥 +

1
4

𝑢𝑡
2 = 𝑢(𝑥, 𝑡),      𝑢(0, 𝑡) = 1 + 𝑡2,  𝑢𝑥(0, 𝑡) = 1. (1.232) 

 

Solution:  
We first rewrite equation (1.232) in an operator form as 
 𝐿𝑥𝑢 = 𝑢 −

1
4

𝑢𝑡
2, (1.233) 

where 𝐿𝑥 is a second order partial differential operator. Operating with 𝐿𝑥
−1  on both sides of the 

PDE and using the initial conditions gives 
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 𝑢 = 1 + 𝑡2 + 𝑥 + 𝐿𝑥
−1 𝑢 −

1
4

𝐿𝑥
−1𝑢𝑡

2, (1.234) 

so that  
 

� 𝑢𝑛(𝑥, 𝑡)
∞

𝑛=0

= 1 + 𝑡2 + 𝑥 + 𝐿𝑥
−1  �� 𝑢𝑛(𝑥, 𝑡)

∞

𝑛=0

� −
1
4

𝐿𝑥
−1 �� 𝐴𝑛

∞

𝑛=0

�. 
 

(1.235) 

 

Equations (1.234) and (1.235) imply that the various iterates are given by 
 
 𝑢0(𝑥, 𝑡) = 1 + 𝑡2 + 𝑥, 

𝑢𝑛+1(𝑥, 𝑡) = 𝐿𝑥
−1𝑢𝑛(𝑥, 𝑡) −

1
4

𝐿𝑥
−1𝐴𝑛, 𝑛 ≥ 0, 

 

(1.236) 

where the 𝐴𝑛 are the Adomian polynomials. The first few polynomials for the nonlinear 
quadratic term 𝑢𝑡

2 are given by  
 
 𝐴0 = 𝑢0𝑡

2, 

𝐴1 = 2𝑢0𝑡𝑢1𝑡 , 

𝐴2 = 2𝑢0𝑡𝑢2𝑡 + 𝑢1𝑡
2. 

 

 

(1.237) 

Consequently, the first three terms of the solution 𝑢(𝑥, 𝑡) are given by 
 
 𝑢0(𝑥, 𝑡) = 1 + 𝑡2 + 𝑥, 

𝑢1(𝑥, 𝑡) = 𝐿𝑥
−1𝑢0(𝑥, 𝑡) −

1
4

𝐿𝑥
−1𝐴0 = 𝐿𝑥

−1(1 + 𝑥) =
𝑥2

2!
+

𝑥3

3!
, 

𝑢2(𝑥, 𝑡) = 𝐿𝑥
−1𝑢1(𝑥, 𝑡) −

1
4

𝐿𝑥
−1𝐴1 = 𝐿𝑥

−1 �
𝑥2

2!
+

𝑥3

3!
� =

𝑥4

4!
+

𝑥5

5!
. 

 

 

 

 

(1.238) 

Thus, the infinite solution in a series form is given by 
 
 

𝑢(𝑥, 𝑡) = 𝑡2 + �1 +
𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
+

𝑥5

5!
+ ⋯ �. 

(1.239) 

 

Note that infinite series is the McLaurin series expansion of 𝑒𝑥. Indeed, the latter equation leads 
to the exact solution of our IVP which is given by  
 
 𝑢(𝑥, 𝑡) = 𝑡2 + 𝑒𝑥. (1.240) 
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𝒙 𝒕 = 𝟏. 𝟏 𝒕 = 𝟏. 𝟐 𝒕 = 𝟏. 𝟑 
𝟏. 𝟏 0.0 0.0 0.0 
𝟏. 𝟐 9.1 × 10−8 9.1 × 10−8 9.1 × 10−8 
𝟏. 𝟒 6.0 × 10−6 6.0 × 10−6 6.0 × 10−6 
𝟏. 𝟔 7.1 × 10−5 7.1 × 10−5 7.1 × 10−5 
𝟏. 𝟖 4.1 × 10−4 4.1 × 10−4 4.1 × 10−4 
𝟏. 𝟏 1.6 × 10−3 1.6 × 10−3 1.6 × 10−3 

 
Table 1.11  Absolute error obtained using ADM with three iterations. 

 
 
The numerical results are depicted in Table 1.11. The absolute error is very small for small 
values of 𝑥 and 𝑡, however the error starts worsening for larger values. Thus, more iterates are 
obviously needed to improve the error.  
 
 
Example 1.17   Consider the following nonlinear initial value problem: 
 
 𝑢𝑡 +

1
36

𝑥𝑢2
𝑥𝑥 = 𝑥3,       𝑢(𝑥, 0) = 0.  (1.241) 

Solution: 
According to the scheme applied to the PDE in Equation (1.241), we have  
 
 𝑢(𝑥, 𝑡) = 𝑥3𝑡 −

1
36

𝐿𝑡
−1(𝑥𝑢2

𝑥𝑥). (1.242) 

Using the decomposition assumptions for the linear and the nonlinear terms we find 
 
 

� 𝑢𝑛(𝑥, 𝑡)
∞

𝑛=0

= 𝑥3𝑡 −
1

36
𝐿𝑡

−1 �� 𝐴𝑛

∞

𝑛=0

�, 
 

(1.243) 

where 𝐴𝑛 are the Adomian polynomials that represent the nonlinear term 𝑥𝑢2
𝑥𝑥. 

Equations (1.243) and (1.13) imply that the various iterates are given by: 
 
 𝑢0(𝑥, 𝑡) = 𝑥3𝑡, 

𝑢1(𝑥, 𝑡) = −
1
3

𝑥3𝑡3, 

𝑢2(𝑥, 𝑡) =
2

15
𝑥3𝑡5, 

⋯  

 

 

 

 

 

(1.244) 
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Upon summing these iterates we get 
 𝑢(𝑥, 𝑡) = 𝑥3 �𝑡 −

1
3

𝑡3 +
2

15
𝑡5 + ⋯ �. (1.245) 

If we proceed with iterating, we will notice that the term in brackets turns out to be the McLaurin 
series expansion of the tanh 𝑡. Actually, this way we obtain the latter equation we get the closed 
form solution of the problem which is  
 
 𝑢(𝑥, 𝑡) = 𝑥3 tanh 𝑡.  (1.246) 

 
         𝒕 𝒙 = 𝟏. 𝟏 𝒙 = 𝟏. 𝟐 𝒙 = 𝟏. 𝟑 

𝟏. 𝟏 0.0 0.0 0.0 
𝟏. 𝟏 5.4 × 10−12 4.3 × 10−11 1.5 × 10−10 
𝟏. 𝟑 1.1 × 10−8 9.1 × 10−8 3.1 × 10−7 
𝟏. 𝟓 3.8 × 10−7 3.1 × 10−6 1.0 × 10−5 
𝟏. 𝟕 3.7 × 10−6 3.0 × 10−5 1.0 × 10−4 
𝟏. 𝟗 1.9 × 10−5 1.6 × 10−4 5.2 × 10−3 

 
Table 1.12 Absolute error obtained using ADM with three iterations. 

 
 
 

1.5.4 Boundary Value Problems 
 

In this section, we will tackle BVPs and in particular we will apply the ADM to the two 
dimensional Laplace’s equation with specified boundary conditions. 
 
 
Consider the following Laplace’s equation of the form  
 
 𝑢𝑥𝑥 + 𝑢𝑡𝑡 = 0,        0 < 𝑥 < 𝑎, 0 < 𝑡 < 𝑏, (1.247) 

Subject to the boundary conditions 
         
   𝑢(0, 𝑡) = 0,                     𝑢(𝑎, 𝑡) = 𝑓(𝑡), 

  𝑢(𝑥, 0) = 0,                   𝑢(𝑥, 𝑏) = 0, 

 

(1.248) 

 
where 𝑢 = 𝑢(𝑥, 𝑡) is the solution of Laplace’s equation. We can write the equation (1.247) in 
operator form as  
 
 𝐿𝑡𝑢(𝑥, 𝑡) = −𝐿𝑥𝑢(𝑥, 𝑡),  (1.249) 

where  
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𝐿𝑥 =

𝜕2

𝜕𝑥2 ,    𝐿𝑡 =
𝜕2

𝜕𝑡2 , 
(1.250) 

and hence 𝐿𝑥
−1and 𝐿𝑡

−1 are the inverse operators defined by 
 
 

𝐿𝑥
−1(. ) = � � (. )𝑑𝑥

𝑥

0
𝑑𝑥,

𝑥

0
 

𝐿𝑡
−1(. ) = � � (. )𝑑𝑡

𝑡

0
𝑑𝑡.

𝑡

0
 

 

 

 

(1.251) 

Applying the inverse operator 𝐿𝑡
−1 to the operator form of our problem (1.13), and using the 

proper boundary conditions and assuming that 𝑔(𝑥) = 𝑢𝑡(𝑥, 0), we find that  
 
 𝑢(𝑥, 𝑡) = 𝑡𝑔(𝑥) − 𝐿𝑡

−1𝐿𝑥𝑢(𝑥, 𝑡). (1.252) 

The decomposition method assumes a series solution given by 
 
 

𝑢(𝑥, 𝑡) = � 𝑢𝑛(𝑥, 𝑡).
∞

𝑛=0

 
(1.253) 

Substituting (1.253) into both sides of (1.252) gives  
 
 

� 𝑢𝑛(𝑥, 𝑡)
∞

𝑛=0

= 𝑡𝑔(𝑥) − 𝐿𝑡
−1𝐿𝑥 �� 𝑢𝑛(𝑥, 𝑡)

∞

𝑛=0

�.  
 

(1.254) 

 
 
 
This gives the recursive relation 
 
 𝑢0(𝑥, 𝑡) = 𝑡𝑔(𝑥), 

𝑢𝑛+1(𝑥, 𝑡) = −𝐿𝑡
−1𝐿𝑥𝑢𝑛(𝑥, 𝑡),             𝑛 ≥ 0.  

 

(1.255) 

Thus, 
 
 𝑢0(𝑥, 𝑡) = 𝑡𝑔(𝑥), 

𝑢1(𝑥, 𝑡) = −𝐿𝑡
−1𝐿𝑥𝑢0(𝑥, 𝑡) = −

1
3!

𝑡3𝑔′′(𝑥), 

𝑢2(𝑥, 𝑡) = −𝐿𝑡
−1𝐿𝑥𝑢1(𝑥, 𝑡) =

1
5!

𝑡5𝑔(4)(𝑥), 

⋯. 

 

 

 

 

(1.256) 
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So the solution is given by 
  
 𝑢(𝑥, 𝑡) = 𝑡𝑔(𝑥) −

1
3!

𝑡3𝑔′′(𝑥) +
1
5!

𝑡5𝑔(4)(𝑥) − ⋯. (1.257) 

 
We should find 𝑔(𝑥) in order to complete the solution 𝑢(𝑥, 𝑡). We can find it using the boundary 
condition 𝑢(𝑎, 𝑡) = 𝑓(𝑡).  After substituting 𝑥  by 𝑎,  using the Taylor expansion for 𝑓(𝑡),  and 
comparing the coefficients in both sides we can determine 𝑔(𝑥). 
 
In the following we apply the decomposition procedure described above to some particular 
boundary value problems. 
 
 Example 1.18   Consider the boundary value problem  
 
 𝑢𝑥𝑥 + 𝑢𝑡𝑡 = 0,        0 < 𝑥, 𝑡 < 𝜋, 

𝑢(0, 𝑡) = 0,   𝑢(𝜋, 𝑡) = sinh 𝜋  𝑠𝑖𝑛 𝑡, 

𝑢(𝑥, 0) = 0,   𝑢(𝑥, 𝜋) = 0.  

 

 

(1.258) 

Solution:    
We first rewrite (1.258) in an operator form as 
 
 𝐿𝑡𝑢(𝑥, 𝑡) = −𝐿𝑥𝑢(𝑥, 𝑡). (1.259) 

Applying the inverse operator 𝐿𝑡
−1  to the operator form of (1.259), and using the proper 

boundary conditions, we find 
 
 𝑢(𝑥, 𝑡) = 𝑡𝑔(𝑥) − 𝐿𝑡

−1𝐿𝑥𝑢(𝑥, 𝑡), (1.260) 

where 
 𝑔(𝑥) = 𝑢𝑡(𝑥, 0).  (1.261) 

Using the decomposition series  
 

𝑢(𝑥, 𝑡) = � 𝑢𝑛(𝑥, 𝑡)
∞

𝑛=0

 
 

(1.262) 

into both sides of (1.260) gives 
 
 

� 𝑢𝑛(𝑥, 𝑡)
∞

𝑛=0

= 𝑡𝑔(𝑥) − 𝐿𝑡
−1 �𝐿𝑥 �� 𝑢𝑛(𝑥, 𝑡)

∞

𝑛=0

��. 
 

(1.263) 

Decomposition analysis admits the use of the recursive relation 
 
 𝑢0(𝑥, 𝑡) = 𝑡𝑔(𝑥),  
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𝑢𝑛+1(𝑥, 𝑡) = −𝐿𝑡
−1𝐿𝑥𝑢𝑛(𝑥, 𝑡),   𝑛 ≥ 0. (1.264) 

This leads to 
  
 𝑢0(𝑥, 𝑡) = 𝑡𝑔(𝑥), 

𝑢1(𝑥, 𝑡) = −𝐿𝑡
−1𝐿𝑥𝑢0(𝑥, 𝑡) = −

1
3!

𝑡3𝑔′′(𝑥), 

𝑢2(𝑥, 𝑡) = −𝐿𝑡
−1𝐿𝑥𝑢1(𝑥, 𝑡) =

1
5!

𝑡5𝑔(4)(𝑥), 

𝑢3(𝑥, 𝑡) = −𝐿𝑡
−1𝐿𝑥𝑢2(𝑥, 𝑡) = −

1
7!

𝑡7𝑔(6)(𝑥), 

⋯. 

 

 

 

 

 

(1.265) 

In view of (1.265), we can write 
 
 𝑢(𝑥, 𝑡) = 𝑡𝑔(𝑥) −

1
3!

𝑡3𝑔′′(𝑥) +
1
5!

𝑡5𝑔(4)(𝑥) −
1
7!

𝑡7𝑔(6)(𝑥) + ⋯.  (1.266) 

To find the function 𝑔(𝑥), we have to use the boundary condition 𝑢(𝜋, 𝑡) = sinh𝜋 sin𝑡; using 
also the Taylor expansion of sin 𝑡 we get  
 
 𝑡𝑔(𝜋) −

1
3!

𝑡3𝑔′′(𝜋) +
1
5!

𝑡5𝑔(4)(𝜋) −
1
7!

𝑡7𝑔(6)(𝜋) + ⋯

= sinh𝜋 �𝑡 −
1
3!

𝑡3 +
1
5!

𝑡5 −
1
7!

𝑡7 + ⋯ �.  

 

 

(1.267) 

Equating the coefficients of like terms on both sides gives 
 
 𝑔(𝜋) = 𝑔′′(𝜋) = 𝑔(4)(𝜋) = 𝑔(6)(𝜋) = ⋯ = sinh𝜋 (1.268) 

 
Thus,  
 𝑔(𝑥) =  sinh𝑥.  (1.269) 

Consequently, the solution in a series form is given by 
 
 𝑢(𝑥, 𝑡) = sinh 𝑥 �𝑡 −

1
3!

𝑡3 +
1
5!

𝑡5 −
1
7!

𝑡7 + ⋯ �. (1.270) 

This obviously leads to the exact solution which is given by 
  
 𝑢(𝑥, 𝑡) = sinh 𝑥 sin 𝑡. (1.271) 
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1.5.5 Systems of Equations 
 
 We will now consider the numerical solution of systems of nonlinear partial differential 
equations and examine them using the decomposition method. 
 
 
 
Consider the following system: 
 
 𝑢𝑡 + 𝑣𝑥 + 𝑁1(𝑢, 𝑣) = 𝑔1, 

𝑣𝑡 + 𝑢𝑥 + 𝑁2(𝑢, 𝑣) = 𝑔2, 

 

(1.272) 

with initial conditions 
 𝑢(𝑥, 0) = 𝑓1(𝑥), 

𝑣(𝑥, 0) = 𝑓2(𝑥).  

 

(1.273) 

We rewrite a system (1.272) in operator form as 
 

 𝐿𝑡𝑢 + 𝐿𝑥𝑣 + 𝑁1(𝑢, 𝑣) = 𝑔1, 

𝐿𝑡𝑣 + 𝐿𝑥𝑢 + 𝑁2(𝑢, 𝑣) = 𝑔2, 

(1.274) 

where 𝐿𝑡  and 𝐿𝑥 are considered, without loss of generality, first order partial differential 
operators, 𝑁1 and 𝑁2 are nonlinear operators, and 𝑔1 and 𝑔2 are source terms. 
 
Applying the inverse operator  𝐿𝑡

−1 to the system (1.274) and using the initial conditions (1.273) 
yields 
 
 𝑢(𝑥, 𝑡) = 𝑓1(𝑥) − 𝐿𝑡

−1𝐿𝑥𝑣 − 𝐿𝑡
−1𝑁1(𝑢, 𝑣) + 𝐿𝑡

−1𝑔1, 

𝑣(𝑥, 𝑡) = 𝑓2(𝑥) − 𝐿𝑡
−1𝐿𝑥𝑢 − 𝐿𝑡

−1𝑁2(𝑢, 𝑣) + 𝐿𝑡
−1𝑔2. 

 

(1.275) 

The linear terms 𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡) can be represented by the decomposition series 
 
 

𝑢(𝑥, 𝑡) = � 𝑢𝑛(𝑥, 𝑡)
∞

𝑛=0

, 

𝑣(𝑥, 𝑡) = � 𝑣𝑛(𝑥, 𝑡),
∞

𝑛=0

 

 

 

 

(1.276) 

and the nonlinear terms 𝑁1(𝑢, 𝑣)and 𝑁2(𝑢, 𝑣) by an infinite series of polynomials 
 
 

𝑁1(𝑢, 𝑣) = � 𝐴𝑛(𝑥, 𝑡)
∞

𝑛=0

, 
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𝑁2(𝑢, 𝑣) = � 𝐵𝑛(𝑥, 𝑡)
∞

𝑛=0

,  
 

(1.277) 

 

where 𝐴𝑛 and 𝐵𝑛 are the Adomian polynomials. Substituting (1.276) and (1.277) into (1.275) 
gives  
  
 

� 𝑢𝑛(𝑥, 𝑡)
∞

𝑛=0

= 𝑓1(𝑥) − 𝐿𝑡
−1𝐿𝑥 �� 𝑣𝑛(𝑥, 𝑡)

∞

𝑛=0

� − 𝐿𝑡
−1 �� 𝐴𝑛(𝑥, 𝑡)

∞

𝑛=0

� + 𝐿𝑡
−1𝑔1, 

� 𝑣𝑛(𝑥, 𝑡)
∞

𝑛=0

= 𝑓2(𝑥) − 𝐿𝑡
−1𝐿𝑥 �� 𝑢𝑛(𝑥, 𝑡)

∞

𝑛=0

� − 𝐿𝑡
−1 �� 𝐵𝑛(𝑥, 𝑡)

∞

𝑛=0

� + 𝐿𝑡
−1

+ 𝐿𝑡
−1𝑔2. 

 

 

 

 

(1.278) 

This results in the recursive relation 
 
 𝑢0(𝑥, 𝑡)     =   𝑓1(𝑥)𝐿𝑡

−1𝑔1, 

𝑢𝑛+1(𝑥, 𝑡) = −𝐿𝑡
−1𝐿𝑥𝑣𝑛(𝑥, 𝑡) − 𝐿𝑡

−1𝐴𝑛(𝑥, 𝑡),      𝑛 ≥ 0. 

and 

𝑣0(𝑥, 𝑡)     =  𝑓2(𝑥)𝐿𝑡
−1𝑔1, 

                        𝑣𝑛+1(𝑥, 𝑡) = −𝐿𝑡
−1𝐿𝑥𝑢𝑛(𝑥, 𝑡) − 𝐿𝑡

−1𝐵𝑛(𝑥, 𝑡),       𝑛 ≥ 0.  

 

 

 

 

 

(1.279) 

Next, we will consider particular examples. 
 
 
 
Example 1.19  Use Adomian decomposition method to solve the nonlinear system: 
 
 𝑢𝑡 + 𝑣𝑢𝑥 + 𝑢 = 1, 

𝑣𝑡 + 𝑢𝑣𝑥 − 𝑣 = 1,  

  

(1.280) 

with initial conditions 
 
 𝑢(𝑥, 0) = 𝑒𝑥,     𝑣(𝑥, 0) = 𝑒−𝑥. (1.281) 

Solution:    
Applying the inverse operator  𝐿𝑡

−1 to the system (1.280) and using the initial conditions (1.281) 
yields 
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 𝑢(𝑥, 𝑡) = 𝑒𝑥 + 𝑡 − 𝐿𝑡
−1(𝑣𝑢𝑥 + 𝑢), 

𝑣(𝑥, 𝑡) = 𝑒−𝑥 + 𝑡 + 𝐿𝑡
−1(𝑢𝑣𝑥 + 𝑣).  

(1.282) 

 

 
The linear terms 𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡) can be represented by the decomposition series 
 
 

𝑢(𝑥, 𝑡) = � 𝑢𝑛(𝑥, 𝑡)
∞

𝑛=0

, 

𝑣(𝑥, 𝑡) = � 𝑣𝑛(𝑥, 𝑡)
∞

𝑛=0

, 

 

 

 

(1.283) 

and the nonlinear terms 𝑣𝑢𝑥and 𝑢𝑣𝑥 by an infinite series of polynomials 
 
 

𝑁1(𝑢, 𝑣) = � 𝐴𝑛(𝑥, 𝑡),
∞

𝑛=0

 

𝑁2(𝑢, 𝑣) = � 𝐵𝑛(𝑥, 𝑡),
∞

𝑛=0

 

 

 

 

(1.284) 

where 𝐴𝑛 and 𝐵𝑛 are Adomian polynomials. Substituting (1.283) and (1.284) into (1.282) gives  
  
 

� 𝑢𝑛(𝑥, 𝑡)
∞

𝑛=0

= 𝑒𝑥 + 𝑡 − 𝐿𝑡
−1 �� 𝐴𝑛(𝑥, 𝑡)

∞

𝑛=0

+ � 𝑢𝑛(𝑥, 𝑡)
∞

𝑛=0

�, 

� 𝑣𝑛(𝑥, 𝑡)
∞

𝑛=0

= 𝑒−𝑥 + 𝑡 + 𝐿𝑡
−1 �� 𝐵𝑛(𝑥, 𝑡)

∞

𝑛=0

+ � 𝑣𝑛(𝑥, 𝑡)
∞

𝑛=0

�. 

 

 

 

(1.285) 

 
 
 
The decomposition method defines the recursive relations in the form 
 
 𝑢0(𝑥, 𝑡) = 𝑒𝑥 + 𝑡, 

𝑢𝑛+1(𝑥, 𝑡) = −𝐿𝑡
−1�𝐴𝑛 + 𝑢𝑛(𝑥, 𝑡)�,    𝑛 ≥ 0, 

and 

𝑣0(𝑥, 𝑡) = 𝑒−𝑥 + 𝑡, 

𝑣𝑛+1(𝑥, 𝑡) = 𝐿𝑡
−1�𝐵𝑛 + 𝑢𝑛(𝑥, 𝑡)�,    𝑛 ≥ 0. 

 

 

 

 

 

(1.286) 

We can use the derived Adomian polynomials (1.13) into (1.286) to get the pairs of components. 



  70 
 

1.6 Delay Differential Equations 

 

In this section, we will present the solution of linear and nonlinear delay differential 
equations using Adomian decomposition method (ADM). 

Consider the delay differential equation written in general form 

 𝐿𝑢(𝑥) = 𝑓 �𝑥, 𝑢(𝑥), 𝑢�𝑔(𝑥)�� ,   0 ≤ 𝑥 ≤ 1, (1.287) 

with initial conditions 

 𝑢𝑖(0) = 𝑎𝑖 ,     for   𝑖 = 0,1,2, … , 𝑛 − 1, (1.288) 

where 𝐿 is 𝑛 order operator defined by  

 
𝐿(. ) =

𝑑𝑛(. )
𝑑𝑥𝑛 . 

(1.289) 

As a consequence, the inverse operator 𝐿−1 is regarded an 𝑛-fold integration operator defined by  

 
𝐿−1(. ) = � � � …

𝑥

0
� (. )

𝑥

0
𝑑𝑥𝑑𝑥𝑑𝑥 … 𝑑𝑥

𝑥

0
 

𝑥

0
, (𝑛 times). 

(1.290) 

Applying the 𝐿−1 to both sides of (1.287) gives 

 𝑢(𝑥) = Φ0 + 𝐿−1𝑓 �𝑥, 𝑢(𝑥), 𝑢�𝑔(𝑥)��, (1.291) 

where 
 

Φ0 =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ 𝑢(0),                                                                                                      𝑖𝑓 𝐿 =

𝑑
𝑑𝑥

      

𝑢(0) + 𝑥𝑢′(0),                                                                                     𝑖𝑓 𝐿 =
𝑑2

𝑑𝑥2     

𝑢(0) + 𝑥𝑢′(0) +
𝑥2

2!
𝑢′′(0),                                                            

𝑢(0) + 𝑥𝑢′(0) +
𝑥2

2!
𝑢′′(0) +

𝑥3

3!
𝑢′′′(0),                                         

⋮

𝑢(0) + 𝑥𝑢′(0) +
𝑥2

2!
𝑢′′(0) +

𝑥3

3!
𝑢′′′(0) + ⋯ . +

𝑥𝑛−1

(𝑛 − 1)!
𝑢(𝑛−1)(0)      

𝑖𝑓 𝐿 =
𝑑3

𝑑𝑥3     

𝑖𝑓 𝐿 =
𝑑4

𝑑𝑥4     
⋮

𝑖𝑓 𝐿 =
𝑑𝑛

𝑑𝑥𝑛

  

 
 
 
 
 
 
 
 
 
(1.292) 

 
 
The decomposition technique consists of decomposing the solution into a sum of an infinite 
number of terms defined by the decomposition series 
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𝑢(𝑥) = � 𝑢𝑛(𝑥)

∞

𝑛=0

,  
(1.293) 

while the nonlinear term 𝑓 �𝑥, 𝑢(𝑥), 𝑢�𝑔(𝑥)��  is to be expressed by an infinite series of 
polynomials as 
 
 

𝑓 �𝑥, 𝑢(𝑥), 𝑢�𝑔(𝑥)�� = � 𝐴𝑛

∞

𝑛=0

, 
(1.294) 

 
where the 𝐴𝑛′s  are the Adomian polynomials. Substituting (1.293) and (1.294) into (1.291) 
yields 
 

� 𝑢𝑛

∞

𝑛=0

= Φ0 + 𝐿−1 �� 𝐴𝑛

∞

𝑛=0

�. 
 

(1.295) 

The various components 𝑢𝑛 of the solution y can be easily determined by using the recursive 
relation 
 𝑢0 = Φ0, 

𝑢𝑛+1 = 𝐿−1 �� 𝐴𝑛

∞

𝑛=0

�  ,    𝑛 ≥ 0.  

(1.296) 

 

 
Having determined the components 𝑢𝑛 , 𝑛 ≥ 0 , the solution 𝑢  in a series form follows 
immediately. As stated before, the series may be summed to provide the solution in closed form. 
 
 
In the following, a number of examples will be discussed for illustration. 
 
 
Example 1.20   Consider the linear differential delay equation of the first order 

 𝑢′(𝑥) =
1
2

𝑒
𝑥
2 𝑢 �

𝑥
2

� +
1
2

𝑢(𝑥),             0 ≤ 𝑥 ≤ 1,        𝑢(0) = 1.   

(1.297) 

The exact solution is 𝑢(𝑥) = 𝑒𝑥. 

Solution: 
In an operator form, Eq. (1.297) can be written as 

 
𝑢(𝑥) = 1 + 𝐿−1 �

1
2

𝑒
𝑥
2𝑢 �

𝑥
2

� +
1
2

𝑢(𝑥)�, 
(1.298) 

where 𝐿−1(. ) = ∫ [. ]𝑑𝑥 .𝑥
0   
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The decomposition method suggests that the solution 𝑢(𝑥) be expressed by the decomposition 
series 

 
𝑢(𝑥) = � 𝑢𝑛(𝑥)

∞

𝑛=0

. 
(1.299) 

Inserting (1.299) into (1.298) yields 

 
� 𝑢𝑛(𝑥)

∞

𝑛=0

= 1 + 𝐿−1 �
1
2

𝑒𝑥
2� � 𝑢𝑛 �

𝑥
2

�
∞

𝑛=0

+
1
2

� 𝑢𝑛(𝑥)
∞

𝑛=0

�. 
(1.300) 

This leads to the recursive relation 

 𝑢0(𝑥) = 1, 

𝑢𝑛+1(𝑥) = 𝐿−1 �
1
2

𝑒𝑥
2� 𝑢𝑛 �

𝑥
2

� +
1
2

𝑢𝑛(𝑥)�. 

 

 

(1.301) 

Consequently, the first few components of the solution are given by 

 𝑢0(𝑥) = 1, 

𝑢1(𝑥) = 𝐿−1 �
1
2

𝑒𝑥
2� 𝑢0 �

𝑥
2

� +
1
2

𝑢0(𝑥)� = −1 + 𝑒
𝑥
2 +

1
2

𝑥, 

⋮  

 

(1.302) 

 

If we take four terms of the series, we get the absolute error given in Table 1.13. Note that the 
error deteriorates as we move away from the initial point 𝑥 = 0. In order to improve the accuracy 
and overcome this setback; we will subdivide the domain into three subintervals [0,1] =
[0,0.1]⋃[0.1,0.2]⋃[0.2,0.3]⋃[0.3,1]  using Domain Decomposition method (DDM) that 
discussed earlier in Section 1.4.8. 

Applying the ADM on [0, 0.1]  first, then we can get an estimate of the value of the solution at 
𝑥 =  0.1. In particular, we get the following value: 

 𝑢(0.1) = 1.10517090608515.  (1.303) 

This value is now used as the initial condition when applying the ADM on the sub-interval 
[0.1, 0.2]. Then, again applying the ADM on [0.1, 0.2] and therefore we can get an estimate of 
the value of the solution at 𝑥 =  0.2, we get the following value: 

 𝑢(0.2) = 1.22140268244442 (1.304) 

Same as before, this value is now used as the initial condition when applying the ADM on the 
sub-interval [0.2, 1]. Applying the inverse operator 𝐿−1and using this initial condition gives 
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 𝑢 = 𝑢(0.2) + 𝐿−1 �
1
2

𝑒
𝑥
2 𝑢 �

𝑥
2

� +
1
2

𝑢(𝑥)�. (1.305) 

By ADM, we can represent the term 𝑢(𝑥) by decomposition series. We have 
 
 

� 𝑢𝑛(𝑥)
∞

𝑛=0

= 1.22140268244442 + 𝐿−1 �
1
2

𝑒
𝑥
2  � 𝑢𝑛 �

𝑥
2

�
∞

𝑛=0

+
1
2

� 𝑢𝑛(𝑥)
∞

𝑛=0

�  
 

(1.306) 

Upon matching both sides of the latter equation, we get the following recursive relation: 
 
 𝑢0     =   1.22140268244442, 

𝑢𝑛+1 =   𝐿−1 �
1
2

𝑒
𝑥
2 𝑢𝑛 �

𝑥
2

� +
1
2

𝑢𝑛(𝑥)� ,      𝑛 ≥ 0. 

 

 

(1.307) 

Taking four terms of the series, we get the absolute error as given in Table 1.13. The table shows 
a comparison between ADM and DDM approaches and clearly the accuracy improves when we 
decompose the domain.   
 
 
 

𝒙 ADM DDM 
𝟏. 𝟏 1.2 × 10−8 1.2 × 10−8 
𝟏. 𝟐 3.9 × 10−7 7.6 × 10−8 
𝟏. 𝟑 3.1 × 10−6 2.9 × 10−6 
𝟏. 𝟒 1.3 × 10−5 2.6 × 10−6 
𝟏. 𝟓 4.2 × 10−5 1.9 × 10−6 
𝟏. 𝟔 1.1 × 10−4 4.2 × 10−6 
𝟏. 𝟕 2.4 × 10−4 1.5 × 10−5 
𝟏. 𝟖 4.8 × 10−4 4.6 × 10−5 
𝟏. 𝟗 8.9 × 10−4 1.2 × 10−4 

 

Table 1.13 Comparison between ADM and DDM for the same number of terms. 

 

𝒙 𝒉 = 𝟏. 𝟏𝟏𝟏[13] 𝒉 = 𝟏. 𝟏𝟏𝟏[14] ADM[12] 
𝟏. 𝟐 1.37 × 10−11 3.10 × 10−15 0.0 
𝟏. 𝟒 3.27 × 10−11 7.54 × 10−15 2.23 × 10−16 
𝟏. 𝟔 5.86 × 10−11 1.39 × 10−14 2.22 × 10−16 
𝟏. 𝟖 9.54 × 10−11 2.13 × 10−14 1.33 × 10−15 
𝟏. 𝟏 1.43 × 10−10 3.19 × 10−14 4.88 × 10−15 

 

Table 1.14 Comparison between ADM [12] using 13 terms and other methods [13,14]. 
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Example 1.21   Consider the nonlinear differential delay equation of the third order 

 𝑢′′′(𝑥) = −1 + 2𝑢2 �
𝑥
2

� ,             0 ≤ 𝑥 ≤ 1,         (1.308) 

with initial conditions 

 𝑢(0) = 0, 𝑢′(0) = 1, 𝑢′′(0) = 0. (1.309) 

The exact solution is 𝑢(𝑥) = sin(𝑥). 

Solution: 
Using the ADM, we represent the linear term as the decomposition series of components and 
equating the nonlinear term  𝑢2 by the series of Adomian polynomials 𝐴𝑛. Then, we get the 
following recurrence relations 
 
 

𝑢0(𝑥) = 𝑥 −
𝑥3

6
, 

𝑢𝑛+1(𝑥) = 2𝐿−1(𝐴𝑛), 𝑛 ≥ 0, 

 

(1.310) 

where 𝐿−1(. ) = ∫ ∫ ∫ (. )𝑥
0 𝑑𝑥𝑑𝑥𝑑𝑥𝑥

0  𝑥
0 . 

The Adomian polynomials  𝐴𝑛 for  𝑢2 have been derived and used before. Following the first 
few components of the solution, we get 
 

𝑢0(𝑥) = 𝑥 −
𝑥3

6
, 

𝑢1(𝑥) = 2𝐿−1(𝐴0) = 2𝐿−1 �𝑢0
2 �

𝑥
2

��   = 2𝐿−1

⎝

⎛�
𝑥
2

� −
�𝑥

2�
3

6
⎠

⎞

=
1

129024
𝑥9 −

1
1440

𝑥7 +
1

48
𝑥5, 

𝑢2(𝑥) = 2𝐿−1(𝐴1) = 2𝐿−1 �2𝑢0 �
𝑥
2

� 𝑢1 �
𝑥
2

��. 

⋮  

 

 

 

 

 

 

 

(1.311) 

Then, the solution in series form is given by 
 
 𝑢(𝑥) = 𝑢0(𝑥) + 𝑢1(𝑥) + 𝑢2(𝑥) + ⋯.  

 

 

 

(1.312) 
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𝒙 ADM Exact 
𝟏. 𝟏 0.0 0.0 
𝟏. 𝟐 0.19866933079506122 0.19866933079506122 
𝟏. 𝟒 0.3894183423086505 0.3894183423086505 
𝟏. 𝟔 0.56464224733950355 0.56464224733950355 
𝟏. 𝟖 0.7173560908995227 0.7173560908995228 
𝟏. 𝟏 0.84147109848078966 0.84147109848078965 

 

Table 1.15  Comparison between the exact solution and approximation solution (ADM).  

 

 

1.7 Integral Equations 

 

In this section, we will tackle integral equations and demonstrate how they can be 
handled pretty efficiently using the ADM. We will consider both Fredholm and Volterra integral 
equations. As anticipated, in the case of a nonlinear integral equation, the linear term 𝑢(𝑥) is 
represented by an infinite sum of components, but the nonlinear terms such as  
𝑢2,  𝑢5,  cos 𝑢 , 𝑒𝑢, 𝑒𝑡𝑐  that arise in the equation should be expressed in terms of Adomian 
polynomial 𝐴𝑛 .While for linear integral equation, the linear term 𝑢(𝑥)  is represented by an 
infinite sum of components. 

 
To start with, recall that an integral equation is an equation in which the unknown function 𝑢(𝑥) 
appears under an integral sign. A standard integral equation in 𝑢(𝑥) is of the form: 

  
 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 � 𝐾(𝑥, 𝑡)𝐹�𝑢(𝑡)�𝑑𝑡
ℎ(𝑥)

𝑔(𝑥)
,  

 

(1.313) 

where 𝐹�𝑢(𝑥)� is a nonlinear function of 𝑢(𝑥), 𝑔(𝑥) and ℎ(𝑥) are the limits of the integral, λ is 
a constant parameter, and 𝐾(𝑥, 𝑡) is a function of two variables 𝑥 and 𝑡 called the kernel or the 
nucleus of the integral equation. We have to mention that the limits of integration 𝑔(𝑥) and ℎ(𝑥) 
can be variables, constants, or mixed.  
 
By the decomposition method, assume the series solution for the unknown function 𝑢(𝑥) to be in 
the form 



  76 
 

 
𝑢(𝑥) = � 𝑢𝑛(𝑥, 𝑡),

∞

𝑛=0

  
(1.314) 

while writing 𝐹(𝑢(𝑥)) in terms of Adomian polynomials as 
 
 

𝐹(𝑢(𝑥))  = � 𝐴𝑛(𝑥, 𝑡).
∞

𝑛=0

 
(1.315) 

From (1.314) and (1.315), we get 
 
 

� 𝑢𝑛(𝑥, 𝑡)
∞

𝑛=0

= 𝑓(𝑥) + 𝜆 � 𝐾(𝑥, 𝑡) �� 𝐴𝑛

∞

𝑛=0

� 𝑑𝑡.
ℎ(𝑥)

𝑔(𝑥)
 

(1.316) 

Assuming the nonlinear function is 𝐹(𝑢(𝑥)) , therefore by using (1.13), the Adomian 
polynomials 𝐴𝑛 can be easily determined. Applying the decomposition method for the equation 
(1.316), the terms are given by the iterative scheme 
 
 𝑢0 = 𝑓(𝑥), 

𝑢𝑛+1 = 𝜆 � 𝐾(𝑥, 𝑡)𝐴𝑛𝑑𝑡,           𝑛 ≥ 0,
ℎ(𝑥)

𝑔(𝑥)
  

 

 

(1.317) 

or equivalently, 
 
 

𝑢0 = 𝑓(𝑥),                                                            𝑢1 = 𝜆 � 𝐾(𝑥, 𝑡)𝐴0𝑑𝑡
ℎ(𝑥)

𝑔(𝑥)
, 

𝑢2 = 𝜆 � 𝐾(𝑥, 𝑡)𝐴1𝑑𝑡
ℎ(𝑥)

𝑔(𝑥)
,                                 𝑢3 = 𝜆 � 𝐾(𝑥, 𝑡)𝐴2𝑑𝑡

ℎ(𝑥)

𝑔(𝑥)
,  

 
 
 
(1.318) 

 
and so on. 
 
From (1.318), it is clear that the terms 𝑢0, 𝑢1, 𝑢2, … are totally determined.        
 
 
Example 1.22   We will apply ADM to solve the Fredholm integral equation 
 

𝑢(𝑥) = 2 + cos 𝑥 + � 𝑡
𝜋

0
𝑢(𝑡)𝑑𝑡.  

(1.319) 

Solution: 
Using the Adomian decomposition method we find 
 

� 𝑢𝑛(𝑥)
∞

𝑛=0

= 2 + cos 𝑥 + � 𝑡
𝜋

0
� 𝑢𝑛(𝑡)

∞

𝑛=0

𝑑𝑡. 
 

(1.320) 

The Adomian decomposition method admits the use of the recurrence relation: 
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 𝑢0(𝑥) = 2 + cos 𝑥, 

𝑢1(𝑥) = � 𝑡
𝜋

0
𝑢0(𝑡)𝑑𝑡 = −2 + 𝜋2, 

𝑢2(𝑥) = � 𝑡
𝜋

0
𝑢1(𝑡)𝑑𝑡 = −𝜋2 +

1
2

𝜋4. 

 

 

 

 

(1.321) 

Using (1.321) gives the series solution 
 𝑢(𝑥) = cos 𝑥 +

1
2

𝜋4 + ⋯. (1.322) 

The exact solution is given by  
 
 𝑢(𝑥) = cos 𝑥. (1.323) 

 
Example 1.23   We will now use the Adomian decomposition method to solve the following 
nonlinear Volterra integral equation: 
 
 

𝑢(𝑥) = 𝑥 + � 𝑢2(𝑡)𝑑𝑡.
𝑥

0
 

(1.324) 

Solution: 
Substituting the series (1.295) and the Adomian polynomials (1.296) into the left side and the 
right side of (1.305) respectively gives 
 
 

� 𝑢𝑛(𝑥)
∞

𝑛=0

= 𝑥 + � � 𝐴𝑛(𝑡)
∞

𝑛=0

𝑑𝑡,
𝑥

0
  

 

(1.325) 

where the 𝐴𝑛′𝑠 are the Adomian polynomials for 𝑢2(𝑥) as shown previously. Using the 
ADM  strategy, we set 
 
 𝑢0 = 𝑥, 

𝑢𝑛+1 = � 𝐴𝑛𝑑𝑡
𝑥

0
,       𝑛 = 0,1,2, …. 

 

 

(1.326) 

This gives 
 𝑢0 = 𝑥, 

𝑢1 = � 𝐴0𝑑𝑡
𝑥

0
= � 𝑢0

2
𝑥

0
(𝑡)𝑑𝑡 =

1
3

𝑥3, 
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𝑢2 = � 𝐴1𝑑𝑡
𝑥

0
= � 2𝑢0

𝑥

0
(𝑡)𝑢1(𝑡)𝑑𝑡 =

2
15

𝑥5, 

⋮  

 

(1.327) 

Using (1.327) yields the series solution 
 
 𝑢(𝑥) = 𝑥 +

1
3

𝑥3 +
2

15
𝑥5 + ⋯.  (1.328) 

This is basically the McLaurin series expansion of the exact solution of the integral equation 
which is given by 
 
 𝑢(𝑥) = tan 𝑥.  (1.329) 

 

 

1.8 Integro-Differential Equations 

 

 Finally, in this last section we will handle integro-differential equations. Recall that an 
integro-differential equation is an equation that contains 𝑢(𝑛)(𝑥), which is the 𝑛th derivative of 
𝑢(𝑥),  and an unknown function 𝑢(𝑥) that appears under an integral sign. A standard integro-
differential equation is of the form: 
 
 

𝑢(𝑛)(𝑥) = 𝑓(𝑥) + 𝜆 � 𝐾(𝑥, 𝑡)𝐹�𝑢(𝑡)�𝑑𝑡
ℎ(𝑥)

𝑔(𝑥)
,  

(1.330) 

where 𝐹�𝑢(𝑥)�is a nonlinear function of 𝑢(𝑥), 𝑔(𝑥) and ℎ(𝑥) are the limits of the integral , λ is 
a constant parameter, 𝐾(𝑥, 𝑡) is a function of two variables 𝑥  and 𝑡  called the kernel or the 
nucleus of the equation. We have to mention that the limits of integration 𝑔(𝑥) and ℎ(𝑥) can be 
variables, constants, or mixed. 
 
Without loss of generality, we may assume and consider a second order integro-differential 
equation given by 
 
 

𝑢′′(𝑥) = 𝑓(𝑥) + 𝜆 � 𝐾(𝑥, 𝑡)𝐹�𝑢(𝑡)�𝑑𝑡
ℎ(𝑥)

𝑔(𝑥)
,               𝑢(0) = 𝑎,    𝑢′(0) = 𝑏. 

(1.331) 

Integrating both sides of equation (1.331) twice from 0 to 𝑥 and then using the initial conditions 
𝑢(0) =  𝑎, 𝑢′(0)  = 𝑏 gives 
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𝑢(𝑥) = 𝑎 + 𝑏𝑥 + 𝐿−1(𝑓(𝑥)) + 𝜆𝐿−1 �� 𝐾(𝑥, 𝑡)𝐹�𝑢(𝑡)�𝑑𝑡

ℎ(𝑥)

𝑔(𝑥)
�, 

 

(1.332) 

where 𝐿−1 = ∫ ∫ (. )𝑑𝑥 𝑑𝑥 .𝑥
0

𝑥
0  Then use the decomposition series 

 
 

𝑢(𝑥) = � 𝑢𝑛(𝑥)
∞

𝑛=0

 
 

(1.333) 

and the Adomian polynomials for the nonlinear term 

 
𝐹�𝑢(𝑡)� = � 𝐴𝑛

∞

𝑛=0

  
 

(1.334) 

into both sides of (1.332) to obtain 

 
� 𝑢𝑛(𝑥)

∞

𝑛=0

= 𝑎 + 𝑏𝑥 + 𝐿−1(𝑓(𝑥)) + 𝜆𝐿−1 �� 𝐾(𝑥, 𝑡) �� 𝐴𝑛

∞

𝑛=0

� 𝑑𝑡
ℎ(𝑥)

𝑔(𝑥)
�. 

 

(1.335) 

This in turn is equivalent to 

 𝑢0 + 𝑢1 + 𝑢2 + ⋯ = 𝑎 + 𝑏𝑥 + 𝐿−1�𝑓(𝑥)� 

+𝜆𝐿−1 �� 𝐾(𝑥, 𝑡)𝐴0𝑑𝑡
ℎ(𝑥)

𝑔(𝑥)
� 𝜆𝐿−1 �� 𝐾(𝑥, 𝑡)𝐴1𝑑𝑡

ℎ(𝑥)

𝑔(𝑥)
� 

+𝜆𝐿−1 �� 𝐾(𝑥, 𝑡)𝐴2𝑑𝑡
ℎ(𝑥)

𝑔(𝑥)
� + ⋯.  

 
 
 
 
(1.336) 

 

Here the 𝐴𝑛′𝑠 are the Adomian polynomials and upon utilizing the scheme (1.13) we can find 
these polynomials easily. To determine the terms 𝑢0(𝑥), 𝑢1(𝑥),  𝑢2(𝑥), … of the solution 𝑢(𝑥), 
we construct and set the recurrence relation 
 
 𝑢0 = 𝑎 + 𝑏𝑥 + 𝐿−1(𝑓(𝑥)), 

𝑢𝑛+1 = 𝜆𝐿−1 �� 𝐾(𝑥, 𝑡)𝐴𝑛𝑑𝑡
ℎ(𝑥)

𝑔(𝑥)
� ,     𝑛 ≥ 0. 

 

(1.337) 

The terms 𝑢0(𝑥), 𝑢1(𝑥), 𝑢2(𝑥), … are completely determined. The series solution converges to 
the exact solution if such a solution exists. 
 
Example 1.24   Use the Adomian method to solve the Volterra integro-differential equation 
 
 

𝑢′(𝑥) = 1 − � 𝑢2(𝑡)𝑑𝑡,   
𝑥

0
  𝑢(0) = 0. 

 

(1.338) 

 



  80 
 

Solution: 
Applying the one-fold integral operator 𝐿−1 defined by 
 
 

𝐿−1(. ) = � (. )𝑑𝑥.
𝑥

0
  

(1.339) 

to both sides of (1.339), and using the initial condition we obtain 
 
 

𝑢(𝑥) = 𝑥 − 𝐿−1 �� 𝑢2(𝑡)𝑑𝑡   
𝑥

0
�.  

(1.340) 

Using the decomposition series (1.333), Adomian polynomials (1.334), and using the recurrence 
relation (1.337) we obtain 
 𝑢0(𝑥) = 𝑥 

𝑢1(𝑥) = −𝐿−1 �� 𝐴0(𝑡)𝑑𝑡   
𝑥

0
� = −

1
12

𝑥4 

𝑢2(𝑥) = −𝐿−1 �� 𝐴1(𝑡)𝑑𝑡   
𝑥

0
� =

1
252

𝑥8 

⋮ 

 

 

 

 

(1.341) 

This gives the solution in a series form 
 
 𝑢(𝑥) = 𝑥 −

1
12

𝑥4 +
1

252
𝑥8 − ⋯.  (1.342) 

 
Example 1.25   Using Adomian method we will solve the Volterra integro-differential equation 
 
 

𝑢′′′(𝑥) = −1 + 𝑥 − � (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡,   
𝑥

0
  𝑢(0) = 1,    𝑢′(0) = −1,    𝑢′′(0) = 1. 

 

(1.343) 

Solution: 
Applying the three-fold integral operator 𝐿−1 defined by 
 
 

𝐿−1(. ) = � � � (. )
𝑥

0

𝑥

0
𝑑𝑥𝑑𝑥𝑑𝑥,

𝑥

0
 

(1.344) 

to both sides of (1.324), and using the initial conditions we obtain 
 
 

𝑢(𝑥) = 1 − 𝑥 +
1
2!

𝑥2 −
1
3!

𝑥3 +
1
4!

𝑥4 − 𝐿−1 �� (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡   
𝑥

0
�.  

(1.345) 

Using the decomposition series (1.333), and the recurrence relation (1.337) we obtain 
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 𝑢0(𝑥) = 1 − 𝑥 +
1
2!

𝑥2 −
1
3!

𝑥3 +
1
4!

𝑥4, 

𝑢1(𝑥) = −𝐿−1 �� (𝑥 − 𝑡)𝑢0(𝑡)𝑑𝑡   
𝑥

0
� = −

1
5!

𝑥5 +
1
6!

𝑥6 −
1
7!

𝑥7 +
1
8!

𝑥8 −
1
9!

𝑥9. 

 

 

 

 

(1.346) 

Note that the decomposition solution given above, namely 𝑢 =  𝑢0 + 𝑢1 + ⋯  is clearly the 
McLaurin series expansion of the true solution which is given by 
 
 𝑢(𝑥) = 𝑒−𝑥.  (1.347) 

 
An important conclusion can made here. The Adomian Decomposition method has many 

advantages and disadvantages. The main advantage of ADM is that it can be applied directly for 
all types of differential and integral equations, homogeneous or inhomogeneous. Another 
important advantage is that it is capable of reducing the size of computational work while still 
maintaining high accuracy of the numerical solution. The effectiveness and the usefulness of the 
method are demonstrated by finding exact solutions to the models that will be investigated. 
However, one major deficiency is that the ADM requires finding and evaluating the Adomian 
polynomials for the nonlinear terms, and this is costly as it needs extensive calculations. The 
error in ADM is not uniform across the interval. Further, the convergence is accurate locally, 
mainly in a neighborhood of the boundary point(s). 

 
More specifically, the ADM yields a series solution which has to be truncated  

for practical applications. Furthermore, the rate and region of convergence are likely deficiencies 
and limitations. Though in certain situations the series converges very rapidly in a very small 
region or neighborhood of the boundary points, it has very slow convergence rate in the wider 
and/or outer region, where he truncated series solution is an inaccurate solution in that region, 
which will greatly restrict the application area of the method. 
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CHAPTER 2: THE VARIATIONAL ITERATION METHOD  

2.1 Method Description  

 

The variation iteration method (VIM), first introduced by J. H. He, is a scheme that in 
many instances gives rapidly convergent successive approximations of the exact solution if such 
a solution exists. If convergence is assured, the obtained approximations by this technique are of 
high accuracy level even if some iterations are used. 

Consider the nonlinear differential equation 

  
𝐿𝑢 + 𝑁𝑢 = 𝑔(𝑥),                  

 

 
(2.1) 
 

where 𝐿 and 𝑁 are linear and nonlinear operators respectively, and 𝑔(𝑥) is analytical function. 
We can construct a correction functional according to the variational iteration method for Eq. 
(2.1) in the form  

 
𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) + � 𝜆

𝑥

0

(𝑠)�𝐿𝑢𝑛(𝑠) + 𝑁𝑢�𝑛(𝑠) − 𝑔(𝑠)�𝑑𝑠, 𝑛 ≥ 0,                

 

 
(2.2) 
 

where λ is a general Lagrange multiplier, which can be identified optimally via the variational 
theory, 𝑢𝑛  is the 𝑛th  approximate solution and 𝑢�𝑛 is a restricted variation, which means 
𝛿𝑢�𝑛 =  0. 
 
It is clear that the main steps of the He’s variational iteration method is to determine the 
Lagrange multiplier  λ(𝑠) . Integration by parts is usually used to determine λ(𝑠) . More 
specifically, we can use 
 

� λ(𝑠) 𝑢′𝑛(𝑠)𝑑𝑠 =   λ(𝑠)𝑢𝑛(𝑠) − � λ′ (𝑠)𝑢𝑛(𝑠)𝑑𝑠,                                

 � λ(𝑠) 𝑢′′𝑛(𝑠)𝑑𝑠 =   λ(𝑠)𝑢′𝑛(𝑠) − λ′(𝑠)𝑢𝑛(𝑠) + � λ′′(𝑠) 𝑢𝑛(𝑠)𝑑𝑠,        (2.3) 

 
and so forth. The Successive approximations 𝑢𝑛+1(𝑥)  of the solution 𝑢(𝑥)  will be readily 
obtained upon using selective function 𝑢0(𝑥). However, for fast convergence, the function 𝑢0(𝑥) 
should be selected by using the initial conditions as follows: 
 
 𝑢0(𝑥) = 𝑢(0),                                                      for the first order 𝑢′𝑛,  

𝑢0(𝑥) = 𝑢(0) + 𝑥𝑢′(0),                                      for the second order 𝑢′′𝑛, 
𝑢0(𝑥) = 𝑢(0) + 𝑥𝑢′(0) + 1

2!
𝑥2𝑢′′(0),                 for the third order 𝑢′′′𝑛. 

 
 
(2.4) 
 

Consequently, the solution is given by 
 𝑢 = lim

n∞
𝑢𝑛.                              (2.5) 
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2.2 Derivation of Iteration Schemes: 

 

In this section, we derive some useful iteration formulas for certain classes of first order 
and higher order differential equations and determine the Lagrange multiplier  λ(𝑠) for each class 
as well. 

Summary of Iteration Formulas: First, we give the following summary for some useful 
iteration formulas that correspond to certain classes of differential equations: 

 

 
(𝚰)   � 

𝑢′+ 𝑓(𝑢, 𝑢′) = 0:

𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) − � [𝑢′𝑛(𝑠) + 𝑓(𝑢𝑛, 𝑢′𝑛)]𝑑𝑠.
𝑥

0

 

 

 
(2.6) 

 

 

 
(𝚰𝚰)  � 

𝑢′+ 𝛼𝑢 + 𝑓(𝑢, 𝑢′) = 0:

𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) − � 𝑒𝛼(𝑠−𝑥)[𝑢′𝑛(𝑠) + 𝛼𝑢𝑛(𝑠) + 𝑓(𝑢𝑛, 𝑢′𝑛)]𝑑𝑠.
𝑥

0

 

 

 
(2.7) 

 

 

 
(𝚰𝚰𝚰)  � 

                         𝑢′′+ 𝑓(𝑢, 𝑢′, 𝑢′′) = 0:

𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) + � (𝑠 − 𝑥)[𝑢′′𝑛(𝑠) + 𝑓(𝑢𝑛, 𝑢′𝑛, 𝑢′′𝑛)]𝑑𝑠.
𝑥

0

 

 

 
(2.8) 

 

 

 
(𝚰𝐕)  � 

𝑢′′+ 𝛽2𝑢 + 𝑓(𝑢, 𝑢′, 𝑢′′) = 0:

𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) +
1
𝛽

� sin 𝛽(𝑠 − 𝑥) [𝑢′′𝑛(𝑠) + 𝛽2𝑢𝑛(𝑠) + 𝑓(𝑢𝑛, 𝑢′𝑛, 𝑢′′𝑛)]𝑑𝑠.
𝑥

0

 

  

(2.9) 

 

 
(𝐕)  � 

𝑢′′− 𝛼2𝑢 + 𝑓(𝑢, 𝑢′, 𝑢′′) = 0:

𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) +
1

2𝛼
� �𝑒𝛼(𝑠−𝑥) − 𝑒𝛼(𝑥−𝑠)�[𝑢′′𝑛 − 𝛼2𝑢𝑛(𝑠) + 𝑓(𝑢𝑛, 𝑢′𝑛, 𝑢′′𝑛)]𝑑𝑠.

𝑥

0

 
(2.10) 

 

 
(𝐕𝚰)  � 

                              𝑢′′′+ 𝑓(𝑢, 𝑢′, 𝑢′′, 𝑢′′′) = 0:

𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) −
1
2

� (𝑠 − 𝑥)2[𝑢′′′𝑛(𝑠) + 𝑓(𝑢𝑛, 𝑢′𝑛, 𝑢′′𝑛, 𝑢′′′𝑛)]𝑑𝑠.
𝑥

0

 

 

 
(2.11) 
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(𝐕𝚰𝚰)  � 

                         𝑢(4) + 𝑓�𝑢, 𝑢′, 𝑢′′, 𝑢′′′, 𝑢(4)� = 0:

𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) +
1
6

� (𝑠 − 𝑥)3 �𝑢𝑛
(4)(𝑠) + 𝑓�𝑢𝑛, 𝑢′𝑛, 𝑢′′𝑛, 𝑢′′′𝑛, 𝑢𝑛

(4)�� 𝑑𝑠.
𝑥

0

 

 

 
(2.12) 

 

 

 
(𝐕𝚰𝚰𝚰)  � 

𝑢(𝑛) + 𝑓�𝑢, 𝑢′, 𝑢′′, 𝑢′′′, … , 𝑢(𝑛)� = 0:

𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) + (−1)𝑛 �
1

(𝑛 − 1)!
(𝑠 − 𝑥)𝑛−1�𝑢𝑛

(𝑛)(𝑠) + 𝑓�𝑢𝑛, 𝑢′𝑛, 𝑢′′𝑛, 𝑢′′′𝑛, … , 𝑢𝑛
(𝑛)��𝑑𝑠.

𝑥

0

 
 

(1.13) 

 

Derivations of Iteration Formulas: Next, we will show the derivation of the above formulas; 
other formulas can be proved in an analogous fashion. 

 

(𝚰)   Consider the first order equation ordinary differential equation of the form 

 𝑢′+ 𝑓(𝑢, 𝑢′) = 0,          𝑢(0) = 𝑎.  (2.14) 
 

Proof:  The VIM employs the correction functional 

 
𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) + � 𝜆

𝑥

0

(𝑠)�(𝑢𝑛)𝑠 + 𝑓𝑛� (𝑢, 𝑢′)�𝑑𝑠, 𝑛 ≥ 0,               

 

 
(2.15) 

where  𝑓𝑛 is a restricted variation, �𝛿𝑓𝑛 =  0�. 

To find the value of  𝜆(𝑠), we start by taking the variation with respect to  𝑢𝑛(𝑥), which yields 
 

 𝛿𝑢𝑛+1

𝛿𝑢𝑛
= 1 +

𝛿
𝛿𝑢𝑛

�� 𝜆
𝑥

0

(𝑠)�(𝑢𝑛)𝑠 + 𝑓𝑛� (𝑢, 𝑢′)�𝑑𝑠�,              

 

 
(2.16) 

or equivalently, 
 

𝛿𝑢𝑛+1 = 𝛿𝑢𝑛 + 𝛿 �� 𝜆
𝑥

0

(𝑠)�(𝑢𝑛)𝑠 + 𝑓𝑛� (𝑢, 𝑢′)�𝑑𝑠�.                   

 

 
(2.17) 

Applying the variation to Eq. (2.176) gives 

 
𝛿𝑢𝑛+1 = 𝛿𝑢𝑛 + 𝛿 �� 𝜆

𝑥

0

(𝑠)(𝑢𝑛)𝑠𝑑𝑠�.                  

 

 
(2.18) 

Integrating the integral in Eq. (2.18) by parts we have  
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� 𝜆

𝑥

0

(𝑠)(𝑢𝑛)𝑠(𝑠)𝑑𝑠 = [𝜆(𝑥)(𝑢𝑛)(𝑥) − 𝜆(0)(𝑢𝑛)(0)] 

− � 𝜆′

𝑥

0

(𝑠)𝑢𝑛(𝑠)𝑑𝑠.                         

 

 
 
 

(2.19) 

Replacing the integral in Eq. (2.19) by its value in Eq. (2.18) we obtain 

 
𝛿𝑢𝑛+1 = 𝛿𝑢𝑛 + 𝛿[𝜆(𝑥)(𝑢𝑛)(𝑥)] − 𝛿 �� 𝜆′

𝑥

0

(𝑠)𝑢𝑛(𝑠)𝑑𝑠� = 0.   
 

(2.20) 

By Simplifying Eq. (2.20) we get  

 
𝛿𝑢𝑛+1 = [1 + 𝜆(𝑥)]𝛿𝑢𝑛 − 𝛿 �� 𝜆′

𝑥

0

(𝑠)𝑢𝑛(𝑠)𝑑𝑠� = 0.                 

 

 
(2.21) 

The last equation is satisfied if the following ‘stationary conditions’ are satisfied: 

𝜆′(𝑠) = 0, 

 1 + 𝜆(𝑠)|𝑠=𝑥 = 0. (2.22) 
 

By solving (2.22) for  𝜆(𝑠)  we have  𝜆(𝑠) = −1.  
Substituting this value of  𝜆(𝑠) into Eq. (2.15) gives the corresponding iterative scheme. 
 

𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) − �[(𝑢𝑛)𝑠 + 𝑓𝑛(𝑢, 𝑢′)]
𝑥

0

𝑑𝑠, 
 
(2.23) 

 
Thus, in general, the differential equation of the form 𝑢′(𝑥) + 𝑓(𝑢, 𝑢′) = 0   has this iteration 
formula  

 
𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) − � [𝑢′𝑛(𝑠) + 𝑓(𝑢𝑛, 𝑢′𝑛)]𝑑𝑠

𝑥

0
. 

 
(2.24) 

 

 

(𝚰𝚰)  Consider the first order equation ordinary differential equation of the form 

 𝑢′+ 𝛼𝑢 + 𝑓(𝑢, 𝑢′) = 0,         𝑢(0) = 𝑎,  
 

 
(2.25) 

 
where 𝛼 is a constant. 

Proof: The (VIM) admits the construction of the correction functional for equation (2.25) given 
by  
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𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) + � 𝜆

𝑥

0

(𝑠)�(𝑢𝑛)𝑠 + 𝛼𝑢𝑛(𝑥) + 𝑓𝑛� (𝑢, 𝑢′)�𝑑𝑠,    𝑛 ≥ 0,                

 

 
(2.26) 

where  𝑓𝑛�   is a restricted variation  �𝛿𝑓𝑛 =  0�. 

To find the optimal value of 𝜆(𝑠), we proceed as follows. Take the variation with respect to 
𝑢𝑛(𝑥); this leads to  

 
𝛿𝑢𝑛+1 = 𝛿𝑢𝑛 + 𝛿 �� 𝜆

𝑥

0

(𝑠)�(𝑢𝑛)𝑠 + 𝛼𝑢𝑛(𝑠) + 𝑓𝑛� (𝑢, 𝑢′)�𝑑𝑠�. 

 

 
(2.27) 

Applying the variation to the integrand yields  

 
𝛿𝑢𝑛+1 = 𝛿𝑢𝑛 + 𝛿 �� 𝜆

𝑥

0

(𝑠)(𝑢𝑛)𝑠 + 𝛼 � 𝜆(𝑠)𝑢𝑛(𝑠)
𝑥

0
𝑑𝑠�. 

 
(2.28) 

Integrating the later integral by parts we get 

 
� 𝜆

𝑥

0

(𝑠)(𝑢𝑛)𝑠𝑑𝑠 = [𝜆(𝑥)(𝑢𝑛)(𝑥) − 𝜆(0)(𝑢𝑛)(0)] − � 𝜆′
𝑥

0

(𝑠)𝑢𝑛(𝑠)𝑑𝑠.                      

 

 
(2.29) 

Replacing the integral in (2.28) by its equivalent in (2.29) then operating the variation we have 

 
𝛿𝑢𝑛+1 = 𝛿𝑢𝑛(𝑥) + 𝜆(𝑥)𝛿𝑢𝑛(𝑥) − 𝛿 �� 𝜆′

𝑥

0

(𝑠)𝑢𝑛(𝑠)𝑑𝑠�

+ 𝛿 �𝛼 � 𝜆
𝑥

0

(𝑠)𝑢𝑛(𝑠)𝑑𝑠�. 

 

 
 
 
 

(2.30) 

After simplifying, the last equation can be written as   

 
𝛿𝑢𝑛+1 = [1 + 𝜆(𝑥)]𝛿𝑢𝑛(𝑥) − 𝛿 �� 𝜆′

𝑥

0

(𝑠)𝑢𝑛(𝑠)𝑑𝑠�    + 𝛿 �𝛼 � 𝜆
𝑥

0

(𝑠)𝑢𝑛(𝑠)𝑑𝑠�. 

 

 
 
 

(2.31) 
Hence, we obtain the stationary conditions 

 𝜆′(𝑠) −  𝛼𝜆(𝑠) = 0, 

1 + 𝜆(𝑠)|𝑠=𝑥 = 0. 

 

 
(2.32) 

Solving (2.30) for  𝜆(𝑠)  yields 𝜆(𝑠) = −𝑒𝛼(𝑠−𝑥).  

Then according to (2.32), we have the following VIM iteration formulation: 
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𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) − � 𝑒𝛼(𝑠−𝑥)

𝑥

0

[(𝑢𝑛)𝑠 + 𝛼𝑢𝑛(𝑠) + 𝑓𝑛(𝑢, 𝑢′)]𝑑𝑠, 
 

(2.33) 

where  𝑛 ≥ 0 . 

Therefore, in general, the differential equation of the form  𝑢′+ 𝛼𝑢 + 𝑓(𝑢, 𝑢′) = 0  has this 
iteration formula  

 
𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) − � 𝑒𝛼(𝑠−𝑥)

𝑥

0

[(𝑢𝑛)𝑠 + 𝛼𝑢𝑛(𝑠) + 𝑓(𝑢𝑛, 𝑢′𝑛)]𝑑𝑠. 
 

(2.34) 

 

(𝚰𝚰𝚰)  Consider the second order equation ordinary differential equation of the form 

 𝑢′′ + 𝑓(𝑢, 𝑢′, 𝑢′′) = 0,          𝑢(0) = 𝑎, 𝑢′(0) = 𝑏. 
 

(2.35) 

Proof:  The VIM employs the correction functional 

 
𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) + � 𝜆

𝑥

0

(𝑠)�(𝑢𝑛)𝑠𝑠 + 𝑓𝑛� (𝑢, 𝑢′, 𝑢′′)�𝑑𝑠, 𝑛 ≥ 0.               

 

 
(2.36) 

where  𝑓𝑛 is a restricted variation, �𝛿𝑓𝑛 =  0�. 

To find the value of 𝜆(𝑠), start with taking the variation with respect to 𝑢𝑛(𝑥). This yields 
 

 𝛿𝑢𝑛+1

𝛿𝑢𝑛
= 1 +

𝛿
𝛿𝑢𝑛

�� 𝜆
𝑥

0

(𝑠)�(𝑢𝑛)𝑠𝑠 + 𝑓𝑛� (𝑢, 𝑢′, 𝑢′′)�𝑑𝑠�,           
 
(2.37) 

 
    

or equivalently 
 

𝛿𝑢𝑛+1 = 𝛿𝑢𝑛 + 𝛿 �� 𝜆
𝑥

0

(𝑠)�(𝑢𝑛)𝑠𝑠 + 𝑓𝑛� (𝑢, 𝑢′, 𝑢′′)�𝑑𝑠�.                   

 
 

 
 
(2.38) 

 

Applying the variation to Eq. (2.38) gives 

 
𝛿𝑢𝑛+1 = 𝛿𝑢𝑛 + 𝛿 �� 𝜆

𝑥

0

(𝑠)(𝑢𝑛)𝑠𝑠𝑑𝑠�.                 

 

 
(2.39) 

Integrating the integral in Eq. (2.39) by parts we have  
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� 𝜆
𝑥

0

(𝑠)(𝑢𝑛)𝑠𝑠(𝑠)𝑑𝑠 = [𝜆(𝑥)(𝑢𝑛)𝑠(𝑥) − 𝜆(0)(𝑢𝑛)𝑠(0)] 

 
−[𝜆′(𝑥)(𝑢𝑛)(𝑥) − 𝜆′(0)(𝑢𝑛)(0)] + � 𝜆′′

𝑥

0

(𝑠)𝑢𝑛(𝑠)𝑑𝑠.              
 
(2.40) 

Substituting the integral in Eq.(2.39) by the value of the integral (2.40) we obtain 

 
𝛿𝑢𝑛+1 = 𝛿𝑢𝑛 + 𝛿[𝜆(𝑥)(𝑢𝑛)𝑠(𝑥)] − 𝛿[𝜆′(𝑥)(𝑢𝑛)(𝑥)] + 𝛿 �� 𝜆′′

𝑥

0

(𝑠)𝑢𝑛(𝑠)𝑑𝑠� = 0.   
 

      (2.41) 

 

      By simplifying Eq. (2.41) we get  

 
𝛿𝑢𝑛+1 = [1 − 𝜆′(𝑥)]𝛿𝑢𝑛 + 𝛿[𝜆(𝑥)(𝑢𝑛)𝑠(𝑥)] + 𝛿 �� 𝜆′′

𝑥

0

(𝑠)𝑢𝑛(𝑠)𝑑𝑠� = 0.    
 
(2.42) 

 

So, the following stationary conditions are obtained 

𝜆′′(𝑠) = 0, 

1 − 𝜆′(𝑠)|𝑠=𝑥 = 0, 

 𝜆(𝑠)|𝑠=𝑥 = 0. 
 

(2.43) 
 

By solving (2.41) for  𝜆(𝑠) we have  𝜆(𝑠) = (s − 𝑥).   

Thus, in general, the differential equation of the form  𝑢′′(𝑥) + 𝑓(𝑢, 𝑢′, 𝑢′′) = 0   has this 
iteration formula:  

 
𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) + � (s − 𝑥)

𝑥

0
[(𝑢𝑛)𝑠𝑠 + 𝑓(𝑢𝑛, 𝑢′𝑛, 𝑢′′𝑛)]𝑑𝑠. 

 
 

 
(2.44) 

 

(𝚰𝐕)  Consider the second order equation ordinary differential equation of the form 

 𝑢′′+ 𝛽2𝑢 + 𝑓(𝑢, 𝑢′, 𝑢′′) = 0,                 𝑢(0) = 𝑎,    𝑢′(0) = 𝑏. 
 

(2.45) 
 

Proof:  The VIM employs the correction functional 

 
𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) + � 𝜆

𝑥

0

(𝑠)�(𝑢𝑛)𝑠𝑠 + 𝛽2𝑢𝑛(𝑠) + 𝑓𝑛� (𝑢, 𝑢′, 𝑢′′)�𝑑𝑠, 𝑛 ≥ 0 
 
(2.46) 

 
where   𝑓𝑛  is a restricted variation, �𝛿𝑓𝑛 =  0�. 

To find the value of   𝜆(𝑠), start with taking the variation with respect to  𝑢𝑛(𝑥) yields 
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 𝛿𝑢𝑛+1

𝛿𝑢𝑛
= 1 +

𝛿
𝛿𝑢𝑛

�� 𝜆
𝑥

0

(𝑠)�(𝑢𝑛)𝑠𝑠 + 𝛽2𝑢𝑛(𝑠) + 𝑓𝑛� (𝑢, 𝑢′, 𝑢′′)�𝑑𝑠�,     
 
(2.47) 

which is the same as 
 
 𝑢′′+ 𝑓(𝑢, 𝑢′, 𝑢′′) = 0,          𝑢(0) = 𝑎, 𝑢′(0) = 𝑏. 

 
(2.48) 

Applying the variation to Eq. (2.48) gives 

 
𝛿𝑢𝑛+1 = 𝛿𝑢𝑛 + 𝛿 �� 𝜆

𝑥

0

(𝑠)(𝑢𝑛)𝑠𝑠 + � 𝛽2𝜆(𝑠)𝑢𝑛(𝑠)
𝑥

0
𝑑𝑠�.      

 
(2.49) 

Integrating the integral in Eq. (2.47) by parts we have  

� 𝜆
𝑥

0

(𝑠)(𝑢𝑛)𝑠𝑠(𝑠)𝑑𝑠 = [𝜆(𝑥)(𝑢𝑛)𝑠(𝑥) − 𝜆(0)(𝑢𝑛)𝑠(0)] 

 
−[𝜆′(𝑥)(𝑢𝑛)(𝑥) − 𝜆′(0)(𝑢𝑛)(0)] + � 𝜆′′

𝑥

0

(𝑠)𝑢𝑛(𝑠)𝑑𝑠.                         
 
(2.50) 

Substituting the integral in Eq. (2.49) by the value of the integral (2.50) we obtain 

 
𝛿𝑢𝑛+1 = 𝛿𝑢𝑛 + 𝛿[𝜆(𝑥)(𝑢𝑛)𝑠(𝑥)] − 𝛿[𝜆′(𝑥)(𝑢𝑛)(𝑥)] + 𝛿 �� 𝜆′′

𝑥

0

(𝑠)𝑢𝑛(𝑠)𝑑𝑠�

+ 𝛿 �� 𝛽2𝜆(𝑠)𝑢𝑛(𝑠)
𝑥

0
𝑑𝑠� = 0.     

 
 
 
 
(2.51) 

By simplifying Eq. (2.51) we get  

 
𝛿𝑢𝑛+1 = [1 − 𝜆′(𝑥)]𝛿𝑢𝑛 + 𝛿[𝜆(𝑥)(𝑢𝑛)𝑠(𝑥)] + 𝛿 �� 𝜆′′

𝑥

0

(𝑠)𝑢𝑛(𝑠)𝑑𝑠�

+ 𝛿 �� 𝛽2𝜆(𝑠)𝑢𝑛(𝑠)
𝑥

0
𝑑𝑠� = 0.                 

 

 
 
 
 
(2.52) 

So, the following stationary conditions are obtained 

𝜆′′(𝑠) + 𝛽2𝜆(𝑠) = 0, 

1 − 𝜆′(𝑠)|𝑠=𝑥 = 0, 

 𝜆(𝑠)|𝑠=𝑥 = 0. 
 

(2.53) 

By solving (2.53) for 𝜆(𝑠) we have 𝜆(𝑠) = 1
β

sin(𝛽(𝑠 − 𝑥))   
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In general, the differential equation of the form 𝑢′′+ 𝛽2𝑢 + 𝑓(𝑢, 𝑢′, 𝑢′′) = 0 has this iteration 
formula  

 
𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) +

1
β

� sin(𝛽(𝑠 − 𝑥))
𝑥

0
[(𝑢𝑛)𝑠𝑠 + 𝛽2𝑢𝑛 + 𝑓(𝑢𝑛, 𝑢′𝑛, 𝑢′′𝑛)]𝑑𝑠. 

 

 
(2.54) 
 

(𝐕)   Consider the second order equation ordinary differential equation of the form 

 𝑢′′− 𝛼2𝑢 + 𝑓(𝑢, 𝑢′, 𝑢′′) = 0,       𝑢(0) = 𝑎, 𝑢′(0) = 𝑏. 
 

(2.55) 

Proof:   The VIM employs the correction functional 

 
𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) + � 𝜆

𝑥

0

(𝑠)�(𝑢𝑛)𝑠𝑠 − 𝛼2𝑢𝑛 + 𝑓𝑛� (𝑢, 𝑢′, 𝑢′′)�𝑑𝑠,

𝑛 ≥ 0,               
 

 
 
(2.56) 

where 𝑓𝑛  is a restricted variation, �𝛿𝑓𝑛 =  0�. 

To find the value of 𝜆(𝑠), start with taking the variation with respect to 𝑢𝑛(𝑥)yields 
 

 𝛿𝑢𝑛+1

𝛿𝑢𝑛
= 1 +

𝛿
𝛿𝑢𝑛

�� 𝜆
𝑥

0

(𝑠)�(𝑢𝑛)𝑠𝑠 − 𝛼2𝑢𝑛𝑓𝑛� (𝑢, 𝑢′, 𝑢′′)�𝑑𝑠�,              
 
 
(2.57) 

 
which is the same as 
 

𝛿𝑢𝑛+1 = 𝛿𝑢𝑛 + 𝛿 �� 𝜆
𝑥

0

(𝑠)�(𝑢𝑛)𝑠𝑠 − 𝛼2 + 𝑓𝑛� (𝑢, 𝑢′, 𝑢′′)�𝑑𝑠�.       
 
(2.58) 

Applying the variation to Eq. (2.56) gives 

 
𝛿𝑢𝑛+1 = 𝛿𝑢𝑛 + 𝛿 �� 𝜆

𝑥

0

(𝑠)(𝑢𝑛)𝑠𝑠𝑑𝑠� − 𝛿 �� 𝜆
𝑥

0

(𝑠)𝛼2𝑢𝑛𝑑𝑠�.              

 

 
(2.59) 

 

Integrating the integral in Eq. (2.59) by parts we have  

� 𝜆
𝑥

0

(𝑠)(𝑢𝑛)𝑠𝑠(𝑠)𝑑𝑠 = [𝜆(𝑥)(𝑢𝑛)𝑠(𝑥) − 𝜆(0)(𝑢𝑛)𝑠(0)] 

 
−[𝜆′(𝑥)(𝑢𝑛)(𝑥) − 𝜆′(0)(𝑢𝑛)(0)] + � 𝜆′′

𝑥

0

(𝑠)𝑢𝑛(𝑠)𝑑𝑠.                          

 

 
(2.60) 

Substituting the integral in Eq. (2.59) by the value of the integral (2.60) we obtain 
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𝛿𝑢𝑛+1 = 𝛿𝑢𝑛 + 𝛿[𝜆(𝑥)(𝑢𝑛)𝑠(𝑥)] − 𝛿[𝜆′(𝑥)(𝑢𝑛)(𝑥)] + 𝛿 �� 𝜆′′

𝑥

0

(𝑠)𝑢𝑛(𝑠)𝑑𝑠�

− 𝛿 �� 𝜆
𝑥

0

(𝑠)𝛼2𝑢𝑛𝑑𝑠� = 0.  

 
 
 
(2.61) 

By simplifying Eq. (2.61) we get  

 
𝛿𝑢𝑛+1 = [1 − 𝜆′(𝑥)]𝛿𝑢𝑛 + 𝛿[𝜆(𝑥)(𝑢𝑛)𝑠(𝑥)] + 𝛿 �� 𝜆′′

𝑥

0

(𝑠)𝑢𝑛(𝑠)𝑑𝑠�

− 𝛿 �� 𝜆
𝑥

0

(𝑠)𝛼2𝑢𝑛(𝑠)𝑑𝑠� = 0.                 

 

 
 
 
 
 
(2.62) 

So, the following stationary conditions are obtained 

𝜆′′(𝑠) − 𝛼2𝜆(𝑠) = 0, 

1 − 𝜆′(𝑠)|𝑠=𝑥 = 0, 

 𝜆(𝑠)|𝑠=𝑥 = 0. 
 

(2.63) 

By solving (2.63) for  𝜆(𝑠) we have 𝜆(𝑠) = 1
2𝛼

�𝑒𝛼(𝑠−𝑥) −  𝑒𝛼(𝑥−𝑠)�.  

Thus, in general, the differential equation of the form 𝑢′′− 𝛼2𝑢 + 𝑓(𝑢, 𝑢′, 𝑢′′) = 0 has this 
iteration formula  

 𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥)

+ �
1

2α
�𝑒𝛼(𝑠−𝑥) −  𝑒𝛼(𝑥−𝑠)� 

𝑥

0
[(𝑢𝑛)𝑠𝑠 − 𝛼2𝑢𝑛

+ 𝑓(𝑢𝑛𝑢′𝑛, 𝑢′′𝑛)] 𝑑𝑠. 
 
 
 

 
 
 
(2.64) 

(𝐕𝚰)   Consider the third order equation ordinary differential equation of the form 

 𝑢′′′(𝑥) + 𝑓(𝑢, 𝑢′, 𝑢′′, 𝑢′′′) = 0,     𝑢(0) = 𝑎,   𝑢′(0) = 𝑏,   𝑢′′(0) = 𝑐. 
 

(2.65) 

Proof:   The VIM employs the correction functional  

 
𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) + � 𝜆

𝑥

0

(𝑠)�(𝑢𝑛)𝑠𝑠𝑠 + 𝑓𝑛(𝑢, 𝑢′, 𝑢′′, 𝑢′′′)�𝑑𝑠, 𝑛 ≥ 0,                

 

 
(2.66) 

where  𝑓𝑛  is a restricted variation  �𝛿𝑓𝑛 =  0�. 

To find the value of  𝜆(𝑠), start with taking the variation with respect to  𝑢𝑛(𝑥) yields 
 



  92 
 

 𝛿𝑢𝑛+1

𝛿𝑢𝑛
= 1 +

𝛿
𝛿𝑢𝑛

�� 𝜆
𝑥

0

(𝑠)�(𝑢𝑛)𝑠𝑠𝑠 + 𝑓𝑛(𝑢, 𝑢′, 𝑢′′, 𝑢′′′)�𝑑𝑠�, 

 

 
(2.67) 

which is the same as 
 

𝛿𝑢𝑛+1 = 𝛿𝑢𝑛 + 𝛿 �� 𝜆
𝑥

0

(𝑠)�(𝑢𝑛)𝑠𝑠𝑠 + 𝑓𝑛(𝑢, 𝑢′, 𝑢′′, 𝑢′′′)�𝑑𝑠�. 

 

 
(2.68) 

Applying the variation to Eq. (2.68) gives 

 
𝛿𝑢𝑛+1 = 𝛿𝑢𝑛 + 𝛿 �� 𝜆

𝑥

0

(𝑠)(𝑢𝑛)𝑠𝑠𝑠𝑑𝑠�. 
 
(2.69) 

Integrating the integral in Eq. (2.69) by parts we have  

� 𝜆
𝑥

0

(𝑠)(𝑢𝑛)𝑠𝑠𝑠(𝑠)𝑑𝑠 = [𝜆(𝑥)(𝑢𝑛)𝑠𝑠(𝑥) − 𝜆(0)(𝑢𝑛)𝑠𝑠(0)] − [𝜆′(𝑥)(𝑢𝑛)𝑠(𝑥) − 𝜆′(0)(𝑢𝑛)𝑠(0)] 

 
+[𝜆′′(𝑥)(𝑢𝑛)(𝑥) − 𝜆′′(0)(𝑢𝑛)(0)] − � 𝜆′′′

𝑥

0

(𝑠)𝑢𝑛(𝑠)𝑑𝑠.                      

 

 
(2.70) 

 

Substituting the integral in Eq.(2.69) by the value of the integral (2.70) we obtain 

 𝛿𝑢𝑛+1 = 𝛿𝑢𝑛 + 𝛿[𝜆(𝑥)(𝑢𝑛)𝑠𝑠(𝑥)] − 𝛿[𝜆′(𝑥)(𝑢𝑛)𝑠(𝑥)] + 𝛿[𝜆′′(𝑥)(𝑢𝑛)(𝑥)]

− 𝛿 �� 𝜆′′′
𝑥

0

(𝑠)𝑢𝑛(𝑠)𝑑𝑠� = 0.         

 

 
 
(2.71) 

By Simplifying Eq. (2.71) we get  

 𝛿𝑢𝑛+1 = [1 + 𝜆′′(𝑥)]𝛿𝑢𝑛 − 𝛿[𝜆′(𝑥)(𝑢𝑛)𝑠(𝑥)] + 𝛿[𝜆(𝑥)(𝑢𝑛)𝑠𝑠(𝑥)]

− 𝛿 �� 𝜆′′′
𝑥

0

(𝑠)𝑢𝑛(𝑠)𝑑𝑠� = 0.         

 

 
 
(2.72) 

So, the following stationary conditions are obtained 

𝜆′′′(𝑠) = 0, 

1 + 𝜆′′(𝑠)|𝑠=𝑥 = 0, 

𝜆′(𝑠)|𝑠=𝑥 = 0, 

 𝜆(𝑠)|𝑠=𝑥 = 0. 
 

(2.73) 
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By solving (2.73) for  𝜆(𝑠)  we have  𝜆(𝑠) = − 1
2

(s − 𝑥)2. 

In general, the differential equation of the form 𝑢′′′(𝑥) + 𝑓(𝑢, 𝑢′, 𝑢′′, 𝑢′′′) = 0 has this iteration 
formula  

 
𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) + � −

1
2

(s − 𝑥)2 
𝑥

0
[(𝑢𝑛)𝑠𝑠𝑠 + 𝑓(𝑢𝑛𝑢′𝑛, 𝑢′′𝑛, 𝑢′′′𝑛)]𝑑𝑠. 

(2.74) 

 

(𝐕𝚰𝚰)   Consider the fourth order equation ordinary differential equation of the form 

 𝑢′′′′(𝑥) + 𝑓(𝑢, 𝑢′, 𝑢′′, 𝑢′′′, 𝑢′′′′) = 0,

𝑢(0) = 𝑎, 𝑢′(0) = 𝑏, 𝑢′′(0) = 𝑐, 𝑢′′′(0) = 𝑑.  

 
(2.75) 

 
Proof:  The VIM employs the correction functional  

 
𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) + � 𝜆

𝑥

0

(𝑠)�(𝑢𝑛)𝑠𝑠𝑠𝑠 + 𝑓𝑛(𝑢, 𝑢′, 𝑢′′, 𝑢′′′, 𝑢′′′′)�𝑑𝑠,

𝑛 ≥ 0.                
 

 
(2.76) 

To find  𝜆(𝑠) we can follow the same steps in (VΙ), we get  

 𝜆(𝑠) =
1
6

(s − 𝑥)3. 
 

 
(2.77) 

 
and the correction functional for equation (2.77) is thus given by 

 

 
𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) + �

1
6

(s − 𝑥)3
𝑥

0
[(𝑢𝑛)𝑠𝑠𝑠𝑠 + 𝑓(𝑢𝑛𝑢′𝑛, 𝑢′′𝑛, 𝑢′′′𝑛, 𝑢′′′′𝑛)]𝑑𝑠, 

 
 
(2.78) 

𝑛 ≥ 0. 

In general, using similar steps as before, the differential equation of the form  

 𝑢(𝑛)(𝑥) + 𝑓(𝑢, 𝑢′, 𝑢′′, … , 𝑢(𝑛)) = 0, 
 
 

(2.79) 

where 𝑓�𝑢, 𝑢′, 𝑢′′, … , 𝑢(𝑛)� is the linear or nonlinear term, gives the correction functional of the 
form  

 
𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) + � 𝜆

𝑥

0

(𝑠)�(𝑢𝑛)𝑠𝑠𝑠….𝑠 + 𝑓𝑛(𝑢𝑛, 𝑢′𝑛, 𝑢′′𝑛, … , 𝑢𝑛
(𝑛))�𝑑𝑠, 𝑛 ≥ 0 

 
(2.80) 

with 𝜆(𝑠) = (−1)𝑛 1
(𝑛−1)!

(𝑠 − 𝑥)𝑛. Hence the correction functional for equation (2.80) is given 

by 
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 𝑢𝑛+1(𝑥) = 

𝑢𝑛(𝑥) + (−1)𝑛 �
1

(𝑛 − 1)!
(𝑠 − 𝑥)𝑛

𝑥

0

�(𝑢𝑛)𝑠𝑠𝑠….𝑠 + 𝑓�𝑢𝑛, 𝑢′𝑛𝑢′′𝑛, … . , 𝑢𝑛
(𝑛)�� 𝑑𝑠, 

 
 
 
(2.81) 

𝑛 ≥ 0.                
 
 

 

2.3 Implementation of the Method 
 

 
The variational iteration method (VIM) handles nonlinear problems and linear problems 

in a parallel manner. Unlike Adomian decomposition method, the variational iteration method 
does not need specific treatment for the nonlinear operator. There is no need for Adomian 
polynomials. As stated before, the main step in the variational iteration method is to determine 
the Lagrange multiplier λ(𝑠).  In this section, we will apply the VIM for certain classes of 
nonlinear ordinary differential equations and show the resulting iterative formula. Numerical 
results will be given in later sections.   

In what follows we summarize the Lagrange multipliers as derived in section 2.2, and the 
selective zeroth approximations: 

𝑢′+ 𝑓(𝑢, 𝑢′) = 0,                         𝜆(𝑠) = −1,                        𝑢0(𝑥) = 𝑢(0),  
𝑢′′+ 𝑓(𝑢, 𝑢′, 𝑢′′) = 0,                 𝜆(𝑠) = 𝑠 − 𝑥,                     𝑢0(𝑥) = 𝑢(0) + 𝑥𝑢′(0),  

𝑢′′′+ 𝑓(𝑢, 𝑢′, 𝑢′′, 𝑢′′′) = 0, 𝜆(𝑠) = −
1
2!

(𝑠 − 𝑥)2,       𝑢0(𝑥) = 𝑢(0) + 𝑥𝑢′(0) +
1
2!

𝑥2𝑢′′(0),  

⋮ 
 

 (2.82) 
 

Consequently, the solution is given by  
 
 𝑢 = lim

n∞
𝑢𝑛.                              

 

(2.83) 
 

The VIM will be illustrated by studying the following examples. 

Example 2.1  Consider the second order nonlinear ordinary differential equation 

 𝑢′′(𝑥) + 𝑢2(𝑥) = 0,              𝑢(0) = 𝑎, 𝑢′(0) = 𝑏.        (2.84) 
 

 
Following the discussion presented above we find that  𝜆 = (𝑠 − 𝑥) . Therefore, the iteration 
formula is given by 
 
 

𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) + � (𝑠 − 𝑥)[(𝑢𝑛(𝑠))𝑠𝑠 + 𝑢𝑛
2(𝑠)]

𝑥

0
𝑑𝑠. 

 

 
(2.85) 
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Using the Taylor expansion and the specified initial conditions, we can choose  𝑢0(𝑥) = 𝑢(0) +
𝑢′(0)𝑥 = 𝑎 + 𝑏𝑥. Using  𝑢0(𝑥) = 𝑎 + 𝑏𝑥 we have  

          𝑢0(𝑥) = 𝑎 + 𝑏𝑥,  

          𝑢1(𝑥) = 𝑎 + 𝑏𝑥 + � (𝑠 − 𝑥) ��𝑢0(𝑠)�
𝑠𝑠

+ 𝑢0
2(𝑠)�

𝑥

0
𝑑𝑠, 

 
𝑢2(𝑥) = 𝑢1(𝑥) + � (𝑠 − 𝑥) ��𝑢1(𝑠)�

𝑠𝑠
+ 𝑢1

2(𝑠)�
𝑥

0
𝑑𝑠. 

(2.86) 

 

Consequently, the solution can be obtained from 

 

 𝑢 = lim
n∞

𝑢𝑛. 
 

(2.87) 
 

 

Example 2.2  Consider the third order nonlinear ordinary differential equation 

 𝑢′′′(𝑥) + 𝑢2(𝑥) = 0,              𝑢′′(0) = 𝑐, 𝑢′(0) = 𝑏, 𝑢(0) = 𝑎.     
 

(2.88) 
 

 
Following the discussion presented above we find that  𝜆 = − 1

2
(s − 𝑥)2  . Therefore, the 

iteration formula is given by 
 
 

𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) − �
1
2

(s − 𝑥)2[(𝑢𝑛(𝑠))𝑠𝑠𝑠 + 𝑢𝑛
2(𝑠)]

𝑥

0
𝑑𝑠. 

 

 
(2.89) 

Using the Taylor expansion, we can choose  𝑢0(𝑥) = 𝑢(0) + 𝑢′′(0)𝑥 + 𝑢′′(0)
2

𝑥2 = 𝑎 + 𝑏𝑥 + 𝑐
2

𝑥2 

from the given initial conditions. Using  𝑢0(𝑥) = 𝑎 + 𝑏𝑥 + 𝑐
2

𝑥2  we have  

           𝑢0(𝑥) = 𝑎 + 𝑏𝑥 +
𝑐
2

𝑥2, 

           𝑢1(𝑥) = 𝑎 + 𝑏𝑥 +
𝑐
2

𝑥2 − �
1
2

(s − 𝑥)2 ��𝑢0(𝑠)�
𝑠𝑠𝑠

+ 𝑢0
2(𝑠)�

𝑥

0
𝑑𝑠, 

 𝑢2(𝑥) = 𝑢1(𝑥) − ∫ 1
2

(s − 𝑥)2 ��𝑢1(𝑠)�
𝑠𝑠𝑠

+ 𝑢1
2(𝑠)�𝑥

0 𝑑𝑠. (2.90) 

Consequently, the solution can be obtained from 

 

 𝑢 = lim
n∞

𝑢𝑛. (2.91) 
 

Example 2.3  Consider the first order nonlinear ordinary differential equation 
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 𝑢′(𝑥) + 𝛼𝑢(𝑥) + 𝑢3(𝑥) = 0,    𝑢(0) = 𝑎, 
 

(2.92) 
 

where 𝛼 is a constant. 

Following the discussion presented above we find that  𝜆 = −𝑒𝛼(𝑠−𝑥) . Therefore, the iteration 
formula is given by 
 
 

𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) − � 𝑒𝛼(𝑠−𝑥)[(𝑢𝑛(𝑠))𝑠 + 𝛼𝑢𝑛(𝑥) + 𝑢𝑛
3(𝑠)]

𝑥

0
𝑑𝑠. 

 

 
(2.93) 

By Taylor expansion, we can choose 𝑢0(𝑥) = 𝑢(0) = 𝑎 from the given initial condition. Using 
𝑢0(𝑥) = 𝑎, we have  

        𝑢0(𝑥) = 𝑎, 

          𝑢1(𝑥) = 𝑎 − � 𝑒𝛼(𝑠−𝑥) ��𝑢0(𝑠)�
𝑠

+ 𝛼𝑢0(𝑥) + 𝑢0
3(𝑠)�

𝑥

0
𝑑𝑠, 

 
𝑢2(𝑥) = 𝑢1(𝑥) − � 𝑒𝛼(𝑠−𝑥) ��𝑢1(𝑠)�

𝑠
+ 𝛼𝑢1(𝑥) + 𝑢1

3(𝑠)�
𝑥

0
𝑑𝑠. 

 

(2.94) 

Consequently, the solution can be obtained from 

 

 𝑢 = lim
n∞

𝑢𝑛. 
 
 

(2.95) 

Example 2.4 Consider the first order nonlinear partial differential equation 

 𝜕
𝜕𝑥

𝑢(𝑥, 𝑡) +
𝜕
𝜕𝑡

𝑢(𝑥, 𝑡) = 𝑢2(𝑥, 𝑡),    𝑢(0, 𝑡) = 𝑎. 
 
(2.96) 

 
Following the discussion presented above we find that  𝜆 = −1. Therefore, the iteration formula 
is given by 
 
 

𝑢𝑛+1(𝑥, 𝑡) = 𝑢𝑛(𝑥, 𝑡) − � �
𝜕

𝜕𝑠
𝑢𝑛(𝑠, 𝑡) +

𝜕
𝜕𝑡

𝑢𝑛(𝑠, 𝑡) − 𝑢𝑛
2(𝑠, 𝑡)  �

𝑥

0
𝑑𝑠. 

 
(2.97) 

 
Using the Taylor expansion, we can choose 𝑢0(𝑥, 𝑡) = 𝑢(0, 𝑡) = 𝑎 from the given condition. 
Using 𝑢0(𝑥, 𝑡) = 𝑎, we have  

           𝑢0(𝑥, 𝑡) = 𝑎, 

           𝑢1(𝑥, 𝑡) = 𝑎 − � �
𝜕

𝜕𝑠
𝑢0(𝑠, 𝑡) +

𝜕
𝜕𝑡

𝑢0(𝑠, 𝑡) − 𝑢0
2(𝑠, 𝑡)�

𝑥

0
𝑑𝑠, 

 
𝑢2(𝑥, 𝑡) = 𝑢1(𝑥, 𝑡) − � �

𝜕
𝜕𝑠

𝑢1(𝑠, 𝑡) +
𝜕
𝜕𝑡

𝑢1(𝑠, 𝑡) − 𝑢1
2(𝑠, 𝑡)�

𝑥

0
𝑑𝑠. 

 
(2.98) 
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Consequently, the solution can be obtained from 

 

 𝑢 = lim
n∞

𝑢𝑛. 
 
 

(2.99) 

 

Example 2.5  Consider the second order partial differential equation 

 𝜕2

𝜕𝑥2 𝑢(𝑥, 𝑡) +
𝜕
𝜕𝑡

𝑢(𝑥, 𝑡) = 0,    𝑢(0, 𝑡) = 𝑎, 𝑢′(0, 𝑡) = 𝑏. 
 

 
(2.100) 

Following the discussion presented above we find that  𝜆 = s − 𝑥.  Therefore, the iteration 
formula is given by 
 
 

𝑢𝑛+1(𝑥, 𝑡) = 𝑢𝑛(𝑥, 𝑡) + � (𝑠 − 𝑥) �
𝜕2

𝜕𝑠2 𝑢𝑛(𝑠, 𝑡) +
𝜕
𝜕𝑡

𝑢𝑛(𝑠, 𝑡)  �
𝑥

0
𝑑𝑠. 

 

 
(2.101) 

Using the Taylor expansion, we can choose  𝑢0(𝑥, 𝑡) = 𝑎 + 𝑏𝑥 from the given initial conditions. 
Using  𝑢0(𝑥, 𝑡) = 𝑎 + 𝑏𝑥, we have  

𝑢0(𝑥, 𝑡) = 𝑎 + 𝑏𝑥 

𝑢1(𝑥, 𝑡) = 𝑎 + 𝑏𝑥 + � (𝑠 − 𝑥) �
𝜕2

𝜕𝑠2 𝑢0(𝑠, 𝑡) +
𝜕
𝜕𝑡

𝑢0(𝑠, 𝑡)�
𝑥

0
𝑑𝑠 

𝑢2(𝑥, 𝑡) = 𝑢1(𝑥) + � (𝑠 − 𝑥) �
𝜕2

𝜕𝑠2 𝑢1(𝑠, 𝑡) +
𝜕
𝜕𝑡

𝑢1(𝑠, 𝑡)�
𝑥

0
𝑑𝑠 

⋮  (2.102) 

Consequently, the solution can be obtained from 

 𝑢 = lim
n∞

𝑢𝑛. (2.103) 
 

 

2.4 Convergence of the Method 

 

The variational iteration formula creates a recurrence sequence {𝑢𝑛(𝑥)} ∞
𝑛=1. Obviously, 

the limit of the sequence will be the solution 𝑢(𝑥), (2.5) if the sequence is convergent. In this 
section, we will discuss the convergence of the variational iteration method. 
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Theorem 2.1  The sequence {𝑢𝑛(𝑥)} ∞
𝑛=1defined by (2.85) with  𝑢0(𝑥) = 𝑎 + 𝑏𝑥 (𝑎, 𝑏  are real 

constant) converges to the solution, 𝑢(𝑥), of problem (2.84) provided that  𝑢  and the iterates   
𝑢𝑛′𝑠  are bounded.  

Proof:  
By subtracting 𝑢(𝑥) from both sides of (2.85), the equation can be rewritten as 

 
𝑢𝑛+1(𝑥) − 𝑢(𝑥) = 𝑢𝑛(𝑥) − 𝑢(𝑥) + � 𝜆(𝑠)

𝑥

0
[(𝑢𝑛 − 𝑢)𝑠𝑠 + 𝑢𝑠𝑠 + 𝑢2

𝑛(𝑠)]𝑑𝑠, 
 
(2.104) 

 
where  𝜆 = 𝑠 − 𝑥 . Since 𝑢(𝑥) is the exact solution of (2.84) then the term  𝑢𝑠𝑠 in the integrand 
can be replaced by  −𝑢2(𝑠).  By letting 

𝐸𝑛(𝑥) = 𝑢𝑛(𝑥) − 𝑢(𝑥), equation (2.104) becomes 

 
𝐸𝑛+1(𝑥) = 𝐸𝑛(𝑥) + � 𝜆(𝑠)

𝑥

0
��𝐸𝑛(𝑠)�

𝑠𝑠
− 𝑢2(𝑠) + 𝑢2

𝑛(𝑠)� 𝑑𝑠. 
 
(2.105) 

 
Integrating the first term in the integrand twice by parts we have 
 

𝐸𝑛+1(𝑥) = 𝐸𝑛(𝑥) + 𝜆(𝑥)(𝐸𝑛)𝑠(𝑥) − 𝜆′(𝑥)𝐸𝑛(𝑥) + � 𝜆′′(𝑠)
𝑥

0
𝐸𝑛(𝑠)𝑑𝑠 

+ � 𝜆(𝑠)
𝑥

0
[−𝑢2(𝑠) + 𝑢2

𝑛(𝑠)]𝑑𝑠. 

 

 
 
 
(2.106) 

Upon using the three stationary conditions (2.43) into the equation (2.106) we obtain 
 

𝐸𝑛+1(𝑥) = � 𝜆(𝑠)
𝑥

0
[−𝑢2(𝑠) + 𝑢2

𝑛(𝑠)]𝑑𝑠. 

 

 
(2.107) 

Operating with the  𝐿2-norm on both sides of the last equation we get 
 

‖𝐸𝑛+1(𝑥)‖𝐿2 ≤ � 𝜆(𝑠)
𝑥

0
‖−𝑢2(𝑠) + 𝑢2

𝑛(𝑠)‖𝐿2𝑑𝑠 

≤ ‖𝜆(𝑠)‖∞ � ‖−𝑢2(𝑠) + 𝑢2
𝑛(𝑠)‖𝐿2

𝑥

0
𝑑𝑠, 

 
 
 
(2.108) 

 

where ‖𝜆(𝑠)‖∞ = max𝑠∈[0,𝑇]|𝜆(𝑠)| .  Clearly,  𝜆(𝑠)  is bounded since 

 
 ‖𝜆(𝑠)‖∞ = ‖𝑠 − 𝑥‖∞ ≤ ‖𝑠‖∞ + ‖𝑥‖∞ = 2𝑇. 

 

(2.109) 

Applying the Mean Value Theorem to the integrand in (2.109), therefore equation (2.109) 
becomes 

‖𝐸𝑛+1(𝑥)‖𝐿2 ≤ ‖𝜆(𝑠)‖∞ � 2‖𝑢�(𝑠)‖𝐿2‖𝑢𝑛(𝑠) − 𝑢(𝑠)‖𝐿2

𝑥

0
𝑑𝑠 
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≤ 2‖𝜆(𝑠)‖∞ � ‖𝑢�(𝑠)‖𝐿2‖𝐸𝑛(𝑠)‖𝐿2

𝑥

0
𝑑𝑠. 

 
(2.110) 
 

Let 

𝐿 = max𝑠∈[0,𝑇]|𝜆(𝑠)|  and   𝑃 = max𝑠∈[0,𝑇]|𝑢�(𝑠)|. 

Then, from inequality (2.110) we get 
 

‖𝐸𝑛+1(𝑥)‖𝐿2 ≤ 2𝐿𝑃 � ‖𝐸𝑛(𝑠)‖𝐿2

𝑥

0
𝑑𝑠. 

(2.111) 
 

By induction and by letting  𝑀 = 2𝐿𝑃, we get 

‖𝐸1(𝑥)‖𝐿2 ≤ 𝑀 � ‖𝐸0(𝑠)‖𝐿2

𝑥

0
𝑑𝑠 ≤ 𝑀‖𝐸0(𝑠)‖∞ � 𝑑𝑠

𝑥

0
= 𝑀‖𝐸0(𝑠)‖∞ 𝑥, 

‖𝐸2(𝑥)‖𝐿2 ≤ 𝑀 � ‖𝐸1(𝑠)‖𝐿2

𝑥

0
𝑑𝑠 ≤ 𝑀2‖𝐸0(𝑠)‖∞ � 𝑠 𝑑𝑠

𝑥

0
= 𝑀2‖𝐸0(𝑠)‖∞

𝑥2

2
, 

… 

‖𝐸𝑛+1(𝑥)‖𝐿2 ≤ 𝑀𝑛 � ‖𝐸𝑛(𝑠)‖𝐿2

𝑥

0
𝑑𝑠 ≤ 𝑀𝑛+1‖𝐸0(𝑥)‖∞ �

𝑠𝑛

𝑛!
𝑑𝑠

𝑥

0
= 𝑀𝑛+1‖𝐸0(𝑥)‖∞

𝑥𝑛+1

(𝑛 + 1)!
 , 

  (2.112) 
 

where ‖𝐸0(𝑥)‖∞ =   max𝑥∈[0,𝑇]|𝐸0(𝑥)|.  

We have 

 ‖𝐸0(𝑥)‖∞ = ‖𝑢0(𝑥) − 𝑢(𝑥)‖∞ = ‖𝑎 + 𝑏𝑥 − 𝑢(𝑥)‖∞ 
≤ ‖𝑎‖∞ + ‖𝑏𝑥‖∞ + ‖𝑢(𝑥)‖∞ = |𝑎| + |𝑏𝐿| + max

𝑥∈[0,𝑇]
|𝑢(𝑥)|.  

 

 
 
(2.113) 

 

Where  𝐿 = max𝑥∈[0,𝑇]|𝑥|.  Since  𝑢(𝑥)  is the exact solution of equation (2.84) then it belongs to 
𝐶2[0, 𝑇]. Therefore, it is bounded and consequently  𝐸0(𝑥) is bounded as well. Let  𝑐 =
max𝑥∈[0,𝑇]|𝑢(𝑥)|. Then we have from (2.112) and (2.113): 

 
‖𝐸𝑛+1(𝑥)‖𝐿2 ≤ 𝑀𝑛+1(|𝑎| + |𝑏|𝐿 + 𝑐)

𝑥𝑛+1

(𝑛 + 1)!
, 

 

(2.114) 
 

As   𝑛 → ∞. Therefore, the sequence �𝑀𝑛+1(|𝑎| + |𝑏|𝐿 + 𝑐) 𝑥𝑛+1

(𝑛+1)!
�  converges uniformly to 0 

and thus from (2.114) it follows that ‖𝐸𝑛+1(𝑥)‖𝐿2 → 0, which means 𝑢𝑛(𝑥) converges uniformly 
to  𝑢(𝑥). 
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Theorem 2.2   The sequences {𝑢𝑛(𝑥)} ∞
𝑛=1 defined by (2.89) with  𝑢0(𝑥) = 𝑎 + 𝑏𝑥 +

𝑐𝑥2 (𝑎, 𝑏, 𝑐  are real constants) converges to the solution  𝑢(𝑥), of the problem (2.88), provided 
that 𝑢  and the iterates  𝑢𝑛′𝑠 are bounded.  

Proof: 
By subtracting 𝑢(𝑥) from both sides of  (2.88), the equation (2.88) can be rewritten as 

 
𝑢𝑛+1(𝑥) − 𝑢(𝑥) = 𝑢𝑛(𝑥) − 𝑢(𝑥) + � 𝜆(𝑠)

𝑥

0
[(𝑢𝑛 − 𝑢)𝑠𝑠𝑠 + 𝑢𝑠𝑠𝑠 + 𝑢2

𝑛(𝑠)]𝑑𝑠, 
 
(2.115) 

where  𝜆 = − 1
2

(s − 𝑥)2. Since 𝑢(𝑥) is the exact solution of (2.89) then the term 𝑢𝑠𝑠𝑠  in the 
integrand can be replaced by −𝑢2(𝑠).  By letting  𝐸𝑛(𝑥) = 𝑢𝑛(𝑥) − 𝑢(𝑥), equation (2.115) 
becomes 

 
𝐸𝑛+1(𝑥) = 𝐸𝑛(𝑥) + � 𝜆(𝑠)

𝑥

0
��𝐸𝑛(𝑠)�

𝑠𝑠𝑠
− 𝑢2(𝑠) + 𝑢2

𝑛(𝑠)� 𝑑𝑠. 

 

 
(2.116) 

 
Integrating the first term in the integrand three times by parts we have 

 𝐸𝑛+1(𝑥) = 𝐸𝑛(𝑥) + 𝜆(𝑥)(𝐸𝑛)𝑠𝑠(𝑥) − 𝜆′(𝑥)(𝐸𝑛)𝑠(𝑥) + 𝜆′′(𝑥)𝐸𝑛(𝑥)

− � 𝜆′′′(𝑠)
𝑥

0
𝐸𝑛(𝑠)𝑑𝑠 + � 𝜆(𝑠)

𝑥

0
[−𝑢2(𝑠) + 𝑢2

𝑛(𝑠)]𝑑𝑠. 

 

(2.117) 
 

Upon using the four stationary conditions (2.73) into the equation (2.117) we obtain 

 
𝐸𝑛+1(𝑥) = � 𝜆(𝑠)

𝑥

0
[−𝑢2(𝑠) + 𝑢2

𝑛(𝑠)]𝑑𝑠.  

 

(2.118) 

Operating with the 𝐿2-norm on both sides of the last equation we get 

 ‖𝐸𝑛+1(𝑥)‖𝐿2 ≤ � 𝜆(𝑠)
𝑥

0
‖−𝑢2(𝑠) + 𝑢2

𝑛(𝑠)‖𝐿2𝑑𝑠 

≤ ‖𝜆(𝑠)‖∞ � ‖−𝑢2(𝑠) + 𝑢2
𝑛(𝑠)‖𝐿2

𝑥

0
𝑑𝑠.  

 

 
 
 
(2.119) 

 

where  ‖𝜆(𝑠)‖∞ = max𝑠∈[0,𝑇]|𝜆(𝑠)| .Clearly, 𝜆(𝑠) is bounded since 

 

 ‖𝜆(𝑠)‖∞ = ‖𝑠 − 𝑥‖∞ ≤ ‖𝑠‖∞ + ‖𝑥‖∞ = 2𝑇.  
 

(2.120) 
 

Applying the Mean Value Theorem to the integrand in (2.120), therefore equation (2.120) 
becomes 

 ‖𝐸𝑛+1(𝑥)‖𝐿2 ≤ ‖𝜆(𝑠)‖∞ � 2‖𝑢�(𝑠)‖𝐿2‖𝑢𝑛(𝑠) − 𝑢(𝑠)‖𝐿2

𝑥

0
𝑑𝑠 

≤ 2‖𝜆(𝑠)‖∞ � ‖𝑢�(𝑠)‖𝐿2‖𝐸𝑛(𝑠)‖𝐿2

𝑥

0
𝑑𝑠. 

 
 
 
(2.121) 
 

Let 

𝐿 = max𝑠∈[0,𝑇]|𝜆(𝑠)| and 𝑃 = max𝑠∈[0,𝑇]|𝑢�(𝑠)|. Then, from inequality (2.121) we get 
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 ‖𝐸𝑛+1(𝑥)‖𝐿2 ≤ 2𝐿𝑃 � ‖𝐸𝑛(𝑠)‖𝐿2

𝑥

0
𝑑𝑠.  

(2.122) 
 

By mathematical induction and letting  𝑀 = 2𝐿𝑃 , we conclude that 

 ‖𝐸1(𝑥)‖𝐿2 ≤ 𝑀 � ‖𝐸0(𝑠)‖𝐿2

𝑥

0
𝑑𝑠 ≤ 𝑀‖𝐸0(𝑠)‖∞ � 𝑑𝑠

𝑥

0
= 𝑀‖𝐸0(𝑠)‖∞ 𝑥, 

‖𝐸2(𝑥)‖𝐿2 ≤ 𝑀 � ‖𝐸1(𝑠)‖𝐿2

𝑥

0
𝑑𝑠 ≤ 𝑀2‖𝐸0(𝑠)‖∞ � 𝑠 𝑑𝑠

𝑥

0
= 𝑀2‖𝐸0(𝑠)‖∞

𝑥2

2
, 

 … 

‖𝐸𝑛+1(𝑥)‖𝐿2 ≤ 𝑀𝑛 � ‖𝐸𝑛(𝑠)‖𝐿2

𝑥

0
𝑑𝑠 ≤ 𝑀𝑛+1‖𝐸0(𝑥)‖∞ �

𝑠𝑛

𝑛!
𝑑𝑠

𝑥

0
 

= 𝑀𝑛+1‖𝐸0(𝑥)‖∞
𝑥𝑛+1

(𝑛 + 1)!
,  

 

 
 
 
 
 
 
 
 
 
(2.123) 

where  ‖𝐸0(𝑥)‖∞ =   max𝑥∈[0,𝑇]|𝐸0(𝑥)|. 

We have that 

  ‖𝐸0(𝑥)‖∞ = ‖𝑢0(𝑥) − 𝑢(𝑥)‖∞ = ‖𝑎 + 𝑏𝑥 + 𝑐𝑥2 − 𝑢(𝑥)‖∞ 
≤ ‖𝑎‖∞ + ‖𝑏𝑥‖∞ + ‖𝑐𝑥2‖∞ + ‖𝑢(𝑥)‖∞ = |𝑎| + |𝑏𝐿| + |𝑐𝐿2| + max

𝑥∈[0,𝑇]
|𝑢(𝑥)|, 

  
 

 
(2.124) 

where 𝐿 = max𝑥∈[0,𝑇]|𝑥|  and  𝐿2 = max𝑥∈[0,𝑇]|𝑥2|  . Since  𝑢(𝑥)  is the exact solution of 
equation (2.88), then this implies that it belongs to 𝐶2[0, 𝑇]  and so it is bounded and hence 
𝐸0(𝑥)  is bounded by the latter inequality. Let 𝑑 = max𝑥∈[0,𝑇]|𝑢(𝑥)|.  

Then we have from (2.123) and (2.124) 

 
‖𝐸𝑛+1(𝑥)‖𝐿2 ≤ 𝑀𝑛+1(|𝑎| + |𝑏𝐿| + |𝑐𝐿2| + 𝑑)

𝑥𝑛+1

(𝑛 + 1)!
,  

 

 
(2.125) 

 

as 𝑛 → ∞. Therefore, the sequence �𝑀𝑛+1(|𝑎| + |𝑏𝐿| + |𝑐𝐿2| + 𝑑) 𝑥𝑛+1

(𝑛+1)!
� converges uniformly 

to 0 and from (2.125) it follows that  ‖𝐸𝑛+1(𝑥)‖𝐿2 → 0  and hence  𝑢𝑛(𝑥)  converges uniformly 
to  𝑢(𝑥). 

 

Theorem 2.3 The sequences  {𝑢𝑛(𝑥)} ∞
𝑛=1  defined by (2.93) with  𝑢0(𝑥) = 𝑎 (𝑎   is a real 

constant) converges to the solution ,𝑢(𝑥), of the problem (2.92), provided that  𝑢  and the iterates 
𝑢𝑛′𝑠 are bounded.  

Proof: 
By subtracting 𝑢(𝑥) from both sides of (2.93), the equation (2.93) can be rewritten as 
 

 𝑢𝑛+1(𝑥) − 𝑢(𝑥) = 𝑢𝑛(𝑥) − 𝑢(𝑥)

+ � 𝜆(𝑠)
𝑥

0
��𝑢𝑛(𝑠) − 𝑢(𝑠)�

𝑠
+ 𝑢𝑠 + 𝛼𝑢𝑛(𝑠) + 𝑢3

𝑛(𝑠)� 𝑑𝑠,  

 
 
(2.126) 
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where  𝜆 = −𝑒𝛼(𝑠−𝑥).  Since  𝑢(𝑥) is the exact solution of (2.92), then the term 𝑢𝑠  in the 
integrand can replaced by  [−𝛼𝑢(𝑠) − 𝑢3(𝑠)].  By letting    𝐸𝑛(𝑥) = 𝑢𝑛(𝑥) − 𝑢(𝑥), equation 
(2.126) becomes 

 
𝐸𝑛+1(𝑥) = 𝐸𝑛(𝑥) + � 𝜆(𝑠)

𝑥

0
��𝐸𝑛(𝑠)�

𝑠
− 𝑢3(𝑠) − 𝛼𝑢(𝑠) + 𝛼𝑢𝑛(𝑠) + 𝑢3

𝑛(𝑠)� 𝑑𝑠.  

 

 
(2.127) 

Integrating the first term in the integrand once by parts we have 

 
𝐸𝑛+1(𝑥) = 𝐸𝑛(𝑥) + 𝜆(𝑥)(𝐸𝑛)(𝑥) − � 𝜆′(𝑠)

𝑥

0
𝐸𝑛(𝑠)𝑑𝑠 

+ � 𝜆(𝑠)
𝑥

0
[𝑢3

𝑛(𝑠) − 𝑢3(𝑠)]𝑑𝑠 + 𝛼 � 𝜆(𝑠)
𝑥

0
𝐸𝑛(𝑠)𝑑𝑠.  

 

 
 
 
(2.128) 

 

Upon using the two stationary conditions (2.32) into the equation (2.128) we obtain 

 
𝐸𝑛+1(𝑥) = � 𝜆(𝑠)

𝑥

0
[𝑢3

𝑛(𝑠) − 𝑢3(𝑠)]𝑑𝑠.  

 

 
(2.129) 

 
Operating with the 𝐿2-norm on both sides of the last equation we get 

 ‖𝐸𝑛+1(𝑥)‖𝐿2 ≤ � 𝜆(𝑠)
𝑥

0
‖𝑢3

𝑛(𝑠) − 𝑢3(𝑠)‖𝐿2𝑑𝑠 

≤ ‖𝜆(𝑠)‖∞ � ‖𝑢3
𝑛(𝑠) − 𝑢3(𝑠)‖𝐿2

𝑥

0
𝑑𝑠,  

 

 
 
 
(2.130) 

 

where  ‖𝜆(𝑠)‖∞ = max𝑠∈[0,𝑇]|𝜆(𝑠)|.  Clearly, 𝜆(𝑠) is bounded since 

 

 ‖𝜆(𝑠)‖∞ = �−𝑒𝛼(𝑠−𝑥)�
∞

≤ ‖𝑒𝛼𝑠‖∞ + ‖𝑒−𝛼𝑥‖∞ = 𝑒𝛼𝑇 + 1.  

 

(2.131) 
 

Applying the Mean Value Theorem to the integrand in (2.130), then equation  (2.130) becomes 

 ‖𝐸𝑛+1(𝑥)‖𝐿2 ≤ ‖𝜆(𝑠)‖∞ � 2‖𝑢�(𝑠)‖𝐿2‖𝑢𝑛(𝑠) − 𝑢(𝑠)‖𝐿2

𝑥

0
𝑑𝑠 

≤ 2‖𝜆(𝑠)‖∞ � ‖𝑢�(𝑠)‖𝐿2‖𝐸𝑛(𝑠)‖𝐿2

𝑥

0
𝑑𝑠.  

 

 
 
 
(2.132) 

 

Let 

 𝐿 = max𝑠∈[0,𝑇]|𝜆(𝑠)| and 𝑃 = max𝑠∈[0,𝑇]|𝑢�(𝑠)|.  
 

(2.133) 
 

Then, from inequality (2.132) we get 

 ‖𝐸𝑛+1(𝑥)‖𝐿2 ≤ 2𝐿𝑃 � ‖𝐸𝑛(𝑠)‖𝐿2

𝑥

0
𝑑𝑠.  

 

(2.134) 
 

By induction and upon letting  𝑀 = 2𝐿𝑃, we get 
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 ‖𝐸1(𝑥)‖𝐿2 ≤ 𝑀 � ‖𝐸0(𝑠)‖𝐿2

𝑥

0
𝑑𝑠 ≤ 𝑀‖𝐸0(𝑠)‖∞ � 𝑑𝑠

𝑥

0
= 𝑀‖𝐸0(𝑠)‖∞ 𝑥, 

‖𝐸2(𝑥)‖𝐿2 ≤ 𝑀 � ‖𝐸1(𝑠)‖𝐿2

𝑥

0
𝑑𝑠 ≤ 𝑀2‖𝐸0(𝑠)‖∞ � 𝑠 𝑑𝑠

𝑥

0
= 𝑀2‖𝐸0(𝑠)‖∞

𝑥2

2
, 

… 

‖𝐸𝑛+1(𝑥)‖𝐿2 ≤ 𝑀𝑛 � ‖𝐸𝑛(𝑠)‖𝐿2

𝑥

0
𝑑𝑠 ≤ 𝑀𝑛+1‖𝐸0(𝑥)‖∞ �

𝑠𝑛

𝑛!
𝑑𝑠

𝑥

0
 

=  𝑀𝑛+1‖𝐸0(𝑥)‖∞
𝑥𝑛+1

(𝑛 + 1)!
 , 

 

 
 
 
 
 
 
 
 
 
(2.135) 

 
where  ‖𝐸0(𝑥)‖∞ =   max𝑥∈[0,𝑇]|𝐸0(𝑥)|. 

We have 

 ‖𝐸0(𝑥)‖∞ = ‖𝑢0(𝑥) − 𝑢(𝑥)‖∞ = ‖𝑎 − 𝑢(𝑥)‖∞ 
≤ ‖𝑎‖∞ + ‖𝑢(𝑥)‖∞ = |𝑎| + max

𝑥∈[0,𝑇]
|𝑢(𝑥)|.  

 
 

 
(2.136) 

 

Since  𝑢(𝑥) is the exact solution of equation (2.92) then it belongs to  𝐶2[0, 𝑇]hence it is 
bounded. This means that  𝐸0(𝑥)  is also bounded. Let  𝑐 = max𝑥∈[0,𝑇]|𝑢(𝑥)|. Then we have 
from (2.135) and (2.136): 

 
‖𝐸𝑛+1(𝑥)‖𝐿2 ≤ 𝑀𝑛+1(|𝑎| + 𝑐)

𝑥𝑛+1

(𝑛 + 1)!
,  

 

 
(2.137) 

 

as 𝑛 → ∞. Therefore, the sequence �𝑀𝑛+1(|𝑎| + 𝑐) 𝑥𝑛+1

(𝑛+1)!
� converges uniformly to 0 and from 

(2.136) it follows that ‖𝐸𝑛+1(𝑥)‖𝐿2 → 0  and hence  𝑢𝑛(𝑥) converges uniformly to  𝑢(𝑥). 

 

Theorem 2.4  Let  𝑢𝑛(𝑥, 𝑡) be the sequences {𝑢𝑛(𝑥, 𝑡)} ∞
𝑛=1 defined by (2.97) with  𝑢0(𝑥, 𝑡) =

𝑎 (𝑎  is a real constant). If  𝐸𝑛(𝑥, 𝑡) = 𝑢𝑛(𝑥, 𝑡) − 𝑢(𝑥, 𝑡) and  � 𝜕
𝜕𝑡

𝐸𝑛(𝑥, 𝑡)�
𝐿2

≤ ‖𝐸𝑛(𝑥, 𝑡)‖𝐿2 

then the sequences  {𝑢𝑛(𝑥, 𝑡)} ∞
𝑛=1  converges to the solution  𝑢(𝑥, 𝑡)  ∈ (𝐶(𝑅))𝑛, (𝑥, 𝑡) ∈ 𝑅 =

[0, 𝑇] × [0, 𝐿], of the problem (2.96). 

Proof: 
By subtracting  𝑢(𝑥, 𝑡) from both sides of (2.97), the equation (2.97) can be rewritten as 
 
 𝑢𝑛+1(𝑥, 𝑡) − 𝑢(𝑥, 𝑡)

= 𝑢𝑛(𝑥, 𝑡) − 𝑢(𝑥, 𝑡)

+ � 𝜆(𝑠) �
𝜕

𝜕𝑠
�𝑢𝑛(𝑠, 𝑡) − 𝑢(𝑠, 𝑡)� +

𝜕
𝜕𝑠

𝑢(𝑠, 𝑡)  +
𝜕
𝜕𝑡

𝑢𝑛(𝑠, 𝑡)
𝑥

0

− 𝑢𝑛
2(𝑠, 𝑡)  � 𝑑𝑠,  

 

 
 
 
(2.138) 
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where 𝜆 = −1 . Since 𝑢(𝑥, 𝑡)  is the exact solution of (2.96) then the term  𝜕
𝜕𝑠

𝑢(𝑠, 𝑡) in the 

integrand can be written as �− 𝜕
𝜕𝑡

𝑢(𝑠, 𝑡) + 𝑢2(𝑠, 𝑡)� and by letting  𝐸𝑛(𝑥, 𝑡) = 𝑢𝑛(𝑥, 𝑡) − 𝑢(𝑥, 𝑡), 
equation (2.138) becomes 
 

 𝐸𝑛+1(𝑥, 𝑡) = 𝐸𝑛(𝑥, 𝑡)

+ � 𝜆(𝑠)
𝑥

0
�

𝜕
𝜕𝑠

�  𝐸𝑛(𝑠, 𝑡)�−
𝜕
𝜕𝑡

𝑢(𝑠, 𝑡) + 𝑢2(𝑠, 𝑡) +
𝜕
𝜕𝑡

𝑢𝑛(𝑠, 𝑡)

− 𝑢𝑛
2(𝑠, 𝑡) � 𝑑𝑠. 

 

 
 
 
(2.139) 

 

Integrating the first term in the integrand once by parts we have 

 
𝐸𝑛+1(𝑥, 𝑡) = 𝐸𝑛(𝑥, 𝑡) + 𝜆(𝑥)(𝐸𝑛)(𝑥, 𝑡) − � 𝜆′(𝑠)

𝑥

0
𝐸𝑛(𝑠, 𝑡)𝑑𝑠 

+ � 𝜆(𝑠)
𝑥

0
[𝑢2

𝑛(𝑠, 𝑡) − 𝑢2(𝑠, 𝑡)]𝑑𝑠 + � 𝜆(𝑠)
𝑥

0

𝜕
𝜕𝑡

�  𝐸𝑛(𝑠, 𝑡)�𝑑𝑠. 

 

 
 
 
(2.140) 

 

 
Upon using the two stationary conditions (2.22) into the equation (2.140) we obtain 

 
𝐸𝑛+1(𝑥, 𝑡) = − � [𝑢2

𝑛(𝑠, 𝑡) − 𝑢2(𝑠, 𝑡)]
𝑥

0
− �

𝜕
𝜕𝑡

�  𝐸𝑛(𝑠, 𝑡)�𝑑𝑠.
𝑥

0
 

 
(2.141) 

 
Operating with the 𝐿2-norm on both sides of the last equation we get 

 ‖𝐸𝑛+1(𝑥, 𝑡)‖𝐿2 ≤ − � ‖𝑢2
𝑛(𝑠, 𝑡) − 𝑢2(𝑠, 𝑡)‖𝐿2

𝑥

0
𝑑𝑠 − � �

𝜕
𝜕𝑡

�  𝐸𝑛(𝑠, 𝑡)��
𝐿2

𝑑𝑠
𝑥

0
 

≤ ‖−1‖∞ �� ‖𝑢2
𝑛(𝑠, 𝑡) − 𝑢2(𝑠, 𝑡)‖𝐿2

𝑥

0
𝑑𝑠 + � �

𝜕
𝜕𝑡

�  𝐸𝑛(𝑠, 𝑡)��
𝐿2

𝑑𝑠
𝑥

0
�, 

 

 
 
 
(2.142) 

 

Where  ‖−1‖∞ = max𝑠∈[0,𝑇],𝑡∈[0,𝐿]|−1| .  Clearly,  𝜆(𝑠)  is bounded since 

 ‖𝜆(𝑠)‖∞ = ‖−1‖∞ ≤ 1 (2.143) 
 

and  

 �
𝜕
𝜕𝑡

𝐸𝑛(𝑥, 𝑡)�
𝐿2

≤ ‖𝐸𝑛(𝑥, 𝑡)‖𝐿2 .  
 
(2.144) 

 
From (2.141), (2.143) and (2.144) we get  

 ‖𝐸𝑛+1(𝑥, 𝑡)‖𝐿2 ≤ � ‖𝑢2
𝑛(𝑠, 𝑡) − 𝑢2(𝑠, 𝑡)‖𝐿2

𝑥

0
𝑑𝑠 + � ‖𝐸𝑛(𝑠, 𝑡)‖𝐿2𝑑𝑠

𝑥

0
  

 

 
(2.145) 

 

Applying the Mean Value Theorem to the first integrand in (2.145).Therefore the equation 
(2.145) becomes 

 ‖𝐸𝑛+1(𝑥, 𝑡)‖𝐿2 ≤ � 2‖𝑢�(𝑠, 𝑡)‖𝐿2‖𝑢𝑛(𝑠, 𝑡) − 𝑢(𝑠, 𝑡)‖𝐿2

𝑥

0
𝑑𝑠 
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≤ 2 � ‖𝑢�(𝑠, 𝑡)‖𝐿2‖𝐸𝑛(𝑠, 𝑡)‖𝐿2

𝑥

0
𝑑𝑠.  

 

 
(2.146) 

 
Let   𝑃 = max𝑠∈[0,𝑇]|𝑢�(𝑠, 𝑡)|.  

Then, substituting the inequality (2.146) into (2.145) we get 

 ‖𝐸𝑛+1(𝑥, 𝑡)‖𝐿2 ≤ 2𝑃 � ‖𝐸𝑛(𝑠, 𝑡)‖𝐿2

𝑥

0
𝑑𝑠 + � ‖𝐸𝑛(𝑠, 𝑡)‖𝐿2𝑑𝑠

𝑥

0
 

= (1 + 2𝑃) � ‖𝐸𝑛(𝑠, 𝑡)‖𝐿2𝑑𝑠
𝑥

0
.  

 

 
 
 
(2.147) 

Then by induction and letting  𝑀 = 1 + 2𝑃 , we get 

 ‖𝐸1(𝑥, 𝑡)‖𝐿2 ≤ 𝑀 � ‖𝐸0(𝑠, 𝑡)‖𝐿2

𝑥

0
𝑑𝑠 ≤ 𝑀‖𝐸0(𝑠, 𝑡)‖∞ � 𝑑𝑠

𝑥

0
= 𝑀‖𝐸0(𝑠, 𝑡)‖∞ 𝑥, 

‖𝐸2(𝑥, 𝑡)‖𝐿2 ≤ 𝑀 � ‖𝐸1(𝑠, 𝑡)‖𝐿2

𝑥

0
𝑑𝑠 ≤ 𝑀2‖𝐸0(𝑠, 𝑡)‖∞ � 𝑠 𝑑𝑠

𝑥

0

= 𝑀2‖𝐸0(𝑠, 𝑡)‖∞
𝑥2

2
, 

 … 

‖𝐸𝑛+1(𝑥, 𝑡)‖𝐿2 ≤ 𝑀𝑛 � ‖𝐸𝑛(𝑠, 𝑡)‖𝐿2

𝑥

0
𝑑𝑠 ≤ 𝑀𝑛+1‖𝐸0(𝑥, 𝑡)‖∞ �

𝑠𝑛

𝑛!
𝑑𝑠

𝑥

0
 

=  ‖𝐸0(𝑥, 𝑡)‖∞
(𝑀𝑥)𝑛+1

(𝑛 + 1)!
,  

 

 
 
 
 
 
 
 
 
 
 
(2.148) 

where  ‖𝐸0(𝑥, 𝑡)‖∞ =   max𝑥∈[0,𝑇],𝑡∈[0,𝐿]|𝐸0(𝑥, 𝑡)|. 

We have  

 ‖𝐸0(𝑥, 𝑡)‖∞ = ‖𝑢0(𝑥, 𝑡) − 𝑢(𝑥, 𝑡)‖∞ = ‖𝑎 − 𝑢(𝑥, 𝑡)‖∞ 
≤ ‖𝑎‖∞ + ‖𝑢(𝑥, 𝑡)‖∞ = |𝑎| + max

𝑥∈[0,𝑇],𝑡∈[0,𝐿]
|𝑢(𝑥, 𝑡)|. 

 

 
(2.149) 

 

Since 𝑢(𝑥, 𝑡)  is the exact solution of equation (2.96) then it belongs to  𝐶2[0, 𝑇]hence it is 
bounded. Let 𝑐 = max𝑥∈[0,𝑇],𝑡∈[0,𝐿]|𝑢(𝑥, 𝑡)|. Then we have from (2.148) and (2.149): 

 
‖𝐸𝑛+1(𝑥, 𝑡)‖𝐿2 ≤ 𝑀𝑛+1(|𝑎| + 𝑐)

𝑥𝑛+1

(𝑛 + 1)!
. 

 

 
(2.150) 

 

As 𝑛 → ∞. Therefore the sequence  �𝑀𝑛+1(|𝑎| + 𝑐) 𝑥𝑛+1

(𝑛+1)!
� converges uniformly to 0 and from 

(2.150) it follows that ‖𝐸𝑛+1(𝑥, 𝑡)‖𝐿2 → 0 and hence  𝑢𝑛(𝑥, 𝑡) converges uniformly to  𝑢(𝑥, 𝑡). 

 

Theorem 2.5    Let 𝑢𝑛(𝑥, 𝑡) be the sequences  {𝑢𝑛(𝑥, 𝑡)} ∞
𝑛=1defined by (2.101) with  𝑢0(𝑥, 𝑡) =

𝑎 + 𝑏𝑥(𝑎, 𝑏  are real constants). If 𝐸𝑛(𝑥, 𝑡) = 𝑢𝑛(𝑥, 𝑡) − 𝑢(𝑥, 𝑡)  and � 𝜕
𝜕𝑡

𝐸𝑛(𝑥, 𝑡)�
𝐿2

≤
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‖𝐸𝑛(𝑥, 𝑡)‖𝐿2  then the sequences {𝑢𝑛(𝑥, 𝑡)} ∞
𝑛=1 converges to the solution  𝑢(𝑥, 𝑡)  ∈

(𝐶(𝑅))𝑛, (𝑥, 𝑡) ∈ 𝑅 = [0, 𝑇] × [0, 𝐿], of the problem (2.100). 

Proof:  
By subtracting 𝑢(𝑥, 𝑡) from both sides of (2.101), the equation (2.101) can be rewritten as 
 
 𝑢𝑛+1(𝑥, 𝑡) − 𝑢(𝑥, 𝑡)  

= 𝑢𝑛(𝑥, 𝑡) − 𝑢(𝑥, 𝑡)

+ � 𝜆(𝑠) �
𝜕2

𝜕𝑠2 �𝑢𝑛(𝑠, 𝑡) − 𝑢(𝑠, 𝑡)� +
𝜕

𝜕𝑠
𝑢(𝑠, 𝑡)  

𝑥

0

+
𝜕
𝜕𝑡

𝑢𝑛(𝑠, 𝑡)  � 𝑑𝑠, 

 

 
 
 
 
 
(2.151) 

where  𝜆 = 𝑠 − 𝑥 . Since 𝑢(𝑥, 𝑡) is the exact solution of (2.100) then the term  𝜕
𝜕𝑠

𝑢(𝑠, 𝑡)  in the 

integrand can be written as �− 𝜕
𝜕𝑡

𝑢(𝑠, 𝑡)�, and by letting   𝐸𝑛(𝑥, 𝑡) = 𝑢𝑛(𝑥, 𝑡) − 𝑢(𝑥, 𝑡), equation 
(2.151) becomes 

 
𝐸𝑛+1(𝑥, 𝑡) = 𝐸𝑛(𝑥, 𝑡) + � 𝜆(𝑠)

𝑥

0
�

𝜕2

𝜕𝑠2 �  𝐸𝑛(𝑠, 𝑡)� −
𝜕
𝜕𝑡

𝑢(𝑠, 𝑡) +
𝜕
𝜕𝑡

𝑢𝑛(𝑠, 𝑡) � 𝑑𝑠. 

 

 
(2.152) 

 

Integrating the first term in the integrand once by parts we have 

 𝐸𝑛+1(𝑥, 𝑡) = 𝐸𝑛(𝑥, 𝑡) + 𝜆(𝑥)
𝜕

𝜕𝑠
(𝐸𝑛)(𝑥, 𝑡) − 𝜆′(𝑥)(𝐸𝑛)(𝑥, 𝑡)

+ � 𝜆′′(𝑠)
𝑥

0
𝐸𝑛(𝑠, 𝑡)𝑑𝑠 

+ � 𝜆(𝑠)
𝑥

0

𝜕
𝜕𝑡

�  𝐸𝑛(𝑠, 𝑡)�𝑑𝑠. 

 

 
 
 
 
 
(2.153) 

 

Upon using the three stationary conditions (2.43) into the equation (2.153) we obtain 

 
𝐸𝑛+1(𝑥, 𝑡) = � (𝑠 − 𝑥)

𝜕
𝜕𝑡

�  𝐸𝑛(𝑠, 𝑡)�𝑑𝑠.
𝑥

0
  

 

 
(2.154) 

 
Operating with the 𝐿2-norm on both sides of the last equation we get 

 ‖𝐸𝑛+1(𝑥, 𝑡)‖𝐿2 ≤ ‖𝑠 − 𝑥‖∞ + � �
𝜕
𝜕𝑡

�  𝐸𝑛(𝑠, 𝑡)��
𝐿2

𝑑𝑠,
𝑥

0
 

 

 
(2.155) 

 
where ‖−1‖∞ = max𝑠∈[0,𝑇],𝑡∈[0,𝐿]|−1|.  Clearly, 𝜆(𝑠) is bounded since 

 

 ‖𝜆(𝑠)‖∞ = ‖𝑠 − 𝑥‖∞ ≤ ‖𝑠‖∞ + ‖𝑥‖∞ = 2𝑇, (2.156) 
 

and  

 �
𝜕
𝜕𝑡

𝐸𝑛(𝑥, 𝑡)�
𝐿2

≤ ‖𝐸𝑛(𝑥, 𝑡)‖𝐿2 .  
 
(2.157) 
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From (2.156) and (2.157) we get  

 ‖𝐸𝑛+1(𝑥, 𝑡)‖𝐿2 ≤ 2𝑇 � ‖𝐸𝑛(𝑠, 𝑡)‖𝐿2𝑑𝑠.
𝑥

0
  

 
(2.158) 

Then by induction and letting  𝑀 = 2𝑇 , we get 

 ‖𝐸1(𝑥, 𝑡)‖𝐿2 ≤ 𝑀 � ‖𝐸0(𝑠, 𝑡)‖𝐿2

𝑥

0
𝑑𝑠 ≤ 𝑀‖𝐸0(𝑠, 𝑡)‖∞ � 𝑑𝑠

𝑥

0
= 𝑀‖𝐸0(𝑠, 𝑡)‖∞ 𝑥, 

‖𝐸2(𝑥, 𝑡)‖𝐿2 ≤ 𝑀 � ‖𝐸1(𝑠, 𝑡)‖𝐿2

𝑥

0
𝑑𝑠 ≤ 𝑀2‖𝐸0(𝑠, 𝑡)‖∞ � 𝑠 𝑑𝑠

𝑥

0

= 𝑀2‖𝐸0(𝑠, 𝑡)‖∞
𝑥2

2
, 

 … 

‖𝐸𝑛+1(𝑥, 𝑡)‖𝐿2 ≤ 𝑀 � ‖𝐸𝑛(𝑠, 𝑡)‖𝐿2

𝑥

0
𝑑𝑠 ≤ 𝑀𝑛‖𝐸0(𝑥, 𝑡)‖∞ �

𝑠𝑛

𝑛!
𝑑𝑠

𝑥

0
 

=  ‖𝐸0(𝑥, 𝑡)‖∞
(𝑀𝑥)𝑛+1

(𝑛 + 1)!
, 

 

 
 
 
 
 
 
 
 
 
 
 
(2.159) 

where ‖𝐸0(𝑥, 𝑡)‖∞ =   max𝑥∈[0,𝑇],𝑡∈[0,𝐿]|𝐸0(𝑥, 𝑡)|. 

We have  

 ‖𝐸0(𝑥, 𝑡)‖∞ = ‖𝑢0(𝑥, 𝑡) − 𝑢(𝑥, 𝑡)‖∞ = ‖𝑎 + 𝑏𝑥 − 𝑢(𝑥, 𝑡)‖∞ 
≤ ‖𝑎‖∞ + ‖𝑏𝑥‖∞ + ‖𝑢(𝑥, 𝑡)‖∞ = |𝑎| + |𝑏𝑁| + max

𝑥∈[0,𝑇],𝑡∈[0,𝐿]
|𝑢(𝑥, 𝑡)|. 

 

 
(2.160) 

 

where  𝑁 = max𝑥∈[0,𝑇],𝑡∈[0,𝐿]|(𝑥, 𝑡)|. Since 𝑢(𝑥, 𝑡) is the exact solution of equation (2.100) then 
it belongs to 𝐶2[0, 𝑇]  hence it is bounded. Let  𝑐 = max𝑥∈[0,𝑇],𝑡∈[0,𝐿]|𝑢(𝑥, 𝑡)|. Then we have 
from (2.159) and (2.160): 

 
‖𝐸𝑛+1(𝑥, 𝑡)‖𝐿2 ≤ 𝑀𝑛+1(|𝑎| + |𝑏|𝑁 + 𝑐)

𝑥𝑛+1

(𝑛 + 1)!
.  

 

 
(2.161) 

 

As 𝑛 → ∞, the sequence �𝑀𝑛+1(|𝑎| + |𝑏𝑁| + 𝑐) 𝑥𝑛+1

(𝑛+1)!
�  converges uniformly to 0 and from 

(2.161) it follows that  ‖𝐸𝑛+1(𝑥, 𝑡)‖𝐿2 → 0  and hence  𝑢𝑛(𝑥, 𝑡) converges uniformly to  𝑢(𝑥, 𝑡). 

 
 

2.5 Ordinary Differential Equations   

2.5.1 Initial Value Problems 
 

In this section, we will apply the VIM method, as presented before, to some examples 
involving linear and nonlinear IVPs. 
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Example 2.6  Consider the following first order nonlinear ordinary differential equation subject 
to an initial condition: 
 
 𝑢′(𝑥) − 𝑢2(𝑥) = 1, 𝑢(0) = 0.  (2.162) 

 
Solution: 
Following the discussion presented above, we find that  𝜆(𝑠) = −1. Therefore, the iteration 
formula is given by 
 
 

𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) − � [(𝑢𝑛(𝑠))𝑠 − 𝑢𝑛
2(𝑠) − 1]

𝑥

0
𝑑𝑠.  

 

(2.163) 
 

 
We can choose  𝑢0(𝑥) = 𝑢(0) = 0 and this choice is appropriate based on the given condition. 
Using 𝑢0(𝑥) = 0 we have  

 𝑢0(𝑥) = 0, 

𝑢1(𝑥) = 0 − � ��𝑢0(𝑠)�
𝑠

− 𝑢0
2(𝑠) − 1�

𝑥

0
𝑑𝑠 = 𝑥, 

𝑢2(𝑥) = 𝑥 − � ��𝑢1(𝑠)�
𝑠

− 𝑢1
2(𝑠) − 1�

𝑥

0
𝑑𝑠 = 𝑥 +

𝑥3

3
, 

𝑢3(𝑥) = 𝑥 +
𝑥3

3
− � ��𝑢2(𝑠)�

𝑠
− 𝑢2

2(𝑠) − 1�
𝑥

0
𝑑𝑠 = 𝑥 +

𝑥3

3
+

2
15

𝑥5 +
1

63
𝑥7, 

𝑢4(𝑥) = 𝑥 +
1
3

𝑥3 +
2

15
𝑥5 +

17
315

𝑥7 +
1

59535
𝑥15 +

4
12285

𝑥13 +
134

51975
𝑥11

+
38

2835
𝑥9, 

… 

𝑢𝑛(𝑥) =  𝑥 +
𝑥3

3
+

2
15

𝑥5 +
1

63
𝑥7 + ⋯. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
(2.164) 

 

The VIM admits the use of 

 𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛(𝑥). 
 

(2.165) 
 

Note that the infinite series solution obtained by the VIM is basically the McLaurin series 
expansion of the exact solution of the problem which is given by  

 𝑢(𝑥) = tan 𝑥.  
 

(2.166) 
 

Table 2.1 shows the resulting absolute error obtained by comparing the VIM, with three 
iterations and four iterations, with the exact solution which is  tan(𝑥). The method yields highly 
accurate numerical solution using few iterates particularly for values of 𝑥 in the vicinity of 0. 
However, it is important to mention that the error is not uniformly distributed over the entire 
domain and slowly deteriorates as we increase the values of  𝑥, that is, for larger values that are 
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further away from the origin. Later, we will suggest a domain decomposition that will somewhat 
overcome this setback. Figure 2.1 also depicts the numerical results.  

𝒙 EXACT |𝒕𝒂𝒏(𝒙) − 𝒖𝟑(𝒙)| |𝒕𝒂𝒏(𝒙) − 𝒖𝟒(𝒙)| 
𝟏 0.0 0.0 0.0 

𝟏. 𝟏 0.100334672 3.9 × 10−9 1.0 × 10−10 
𝟏. 𝟐 0.202710036 5.0 × 10−7 4.3 × 10−9 
𝟏. 𝟑 0.309336250 8.8 × 10−6 1.8 × 10−7 
𝟏. 𝟒 0.422793219 6.9 × 10−5 2.5 × 10−6 
𝟏. 𝟓 0.546302490 3.5 × 10−4 2.0 × 10−6 
𝟏. 𝟔 0.684136808 1.3 × 10−3 1.1 × 10−5 
𝟏. 𝟕 0.842288380 4.2 × 10−3 5.1 × 10−4 
𝟏. 𝟖 1.029638557 1.2 × 10−2 1.9 × 10−3 
𝟏. 𝟗 1.260158218 3.1 × 10−2 6.5 × 10−3 
𝟏. 𝟏 1.557407725 7.5 × 10−2 2.0 × 10−2 

 

Table 2.1   Error obtained using VIM with three and four iterations. 

 

          

 

 

 

 

 

 

 

Figure 2.1 Comparison between exact and VIM solutions with two, three and four iterations. 

 
Example 2.7  Consider the following first order nonlinear ordinary differential equation subject 
to an initial condition: 
 
 𝑢′(𝑥) + 𝑢2(𝑥) = 0, 𝑢(0) = 1.  

 
(2.167) 

Solution: 
Following the discussion presented above, we find that  𝜆(𝑠) = −1. Therefore, the iteration 
formula is given by 
 

        EXACT               𝒖𝟐(𝒙)             𝒖𝟑(𝒙)               𝒖𝟒(𝒙) 
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𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) − � [(𝑢𝑛(𝑠))𝑠 + 𝑢𝑛

2(𝑠)]
𝑥

0
𝑑𝑠. 

 
(2.168) 

 
We can choose  𝑢0(𝑥) = 𝑢(0) = 1 and this choice is appropriate based on the given condition. 
Using  𝑢0(𝑥) = 1 we have  

 𝑢0(𝑥) = 1, 

𝑢1(𝑥) = 1 − � [(𝑢𝑛(𝑠))𝑠 + 𝑢𝑛
2(𝑠)]

𝑥

0
𝑑𝑠 = 1 − 𝑥, 

𝑢2(𝑥) = 𝑥 − � [(𝑢𝑛(𝑠))𝑠 + 𝑢𝑛
2(𝑠)]

𝑥

0
𝑑𝑠 = 1 − 𝑥 + 𝑥2 −

𝑥3

3
, 

… 

𝑢𝑛(𝑥) =  1 − 𝑥 + 𝑥2 −
𝑥3

3
+ ⋯. 

 

 
 
 
 
 
 
 
(2.169) 

 

The VIM admits the use of 

 𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛(𝑥).  (2.170) 
 

Note that the infinite series solution obtained by the VIM is basically the McLaurin series 
expansion of the exact solution of the problem which is given by  

 𝑢(𝑥) =
1

(1 + 𝑥). 

  

 
(2.171) 

 
In order to accelerate the convergent rate, we can differentiate both sides of equation (2.167) 
with respect to  𝑥, so we get 
 𝑢′′ + 2𝑢𝑢′ = 0.  

 
(2.172) 

 
From equation (2.167) we can find that  
 
 𝑢′ = −𝑢2,     𝑢(0) = 1, 𝑢′(0) = −1. (2.173) 

 
Substituting (2.173) into (2.172) we get  
 
 𝑢′′ − 2𝑢3 = 0,      𝑢(0) = 1, 𝑢′(0) = −1. 

 
(2.174) 

 
Using VIM to solve Eq.(2.174), therefore, the iteration formula is given by 
 
 

𝑢𝑛+1 = 𝑢𝑛 + � (𝑠 − 𝑥)[(𝑢𝑛)𝑠𝑠(𝑠) − 𝑢3
𝑛(𝑠)]

𝑥

0
𝑑𝑠. 

 

 
(2.175) 

 
We can choose  𝑢0(𝑥) = 𝑢(0) + 𝑢′(0)𝑥 = 1 − 𝑥,  using the first two terms of McLaurin series 
and the given initial conditions 
 
 𝑢0(𝑥) = 1 − 𝑥,  

 
 



  
 

111 
 

𝑢1(𝑥) = 1 − 𝑥 + � (𝑠 − 𝑥) ��𝑢0(𝑠)�
𝑠𝑠

− 2𝑢3
0(𝑠)�

𝑥

0
𝑑𝑠

= 1 − 𝑥 +
𝑥2

2
−

𝑥3

2
+

𝑥4

4
−

𝑥5

20
, 

𝑢2(𝑥) = 1 − 𝑥 +
𝑥2

2
−

𝑥3

2
+

𝑥4

4
−

𝑥5

20
+ � (𝑠 − 𝑥) ��𝑢1(𝑠)�

𝑠𝑠
− 2𝑢3

1(𝑠)�
𝑥

0
𝑑𝑠, 

⋮ 

 
 
 
 
(2.176) 

 

 

Table 2.2 shows the resulting absolute error obtained by comparing the VIM, before and after 
differentiating using only two iterations, with the exact solution which is 1

(1+𝑥)
. The method 

yields highly accurate numerical solution after differentiating the first order equation (2.167) into 
the second order equation (2.174).  

 

𝒙 1st  order 2nd order 
𝟏 0.0 0.0 

𝟏. 𝟏 5.1 × 10−3 3.7 × 10−3 
𝟏. 𝟐 2.0 × 10−2 1.1 × 10−2 
𝟏. 𝟑 4.5 × 10−2 1.7 × 10−2 
𝟏. 𝟒 8.0 × 10−2 2.2 × 10−2 
𝟏. 𝟓 1.2 × 10−1 2.6 × 10−2 
𝟏. 𝟔 1.8 × 10−1 3.0 × 10−2 
𝟏. 𝟕 2.4 × 10−1 3.6 × 10−2 
𝟏. 𝟖 3.1 × 10−1 4.7 × 10−2 
𝟏. 𝟗 3.8 × 10−1 6.1 × 10−2 
𝟏. 𝟏 4.6 × 10−1 8.0 × 10−2 

 

Table 2.2   Comparison between the error obtained using the 1st and 2nd order equation for 
Example 2.7 by VIM using two iterations. 

 

Example 2.8 Consider the second order homogenous ordinary differential equation 
 
 𝑢′′ + 𝑢 = 0,          𝑢′(0) = 1,    𝑢(0) = 1.  

 
(2.177) 

 
Solution: 
From (2.43) we find that  𝜆 = 𝑠 − 𝑥. Therefore, the iteration formula is given by 

 
𝑢𝑛+1 = 𝑢𝑛 + � (𝑠 − 𝑥)[(𝑢𝑛)𝑠𝑠(𝑠) + 𝑢𝑛(𝑠)]

𝑥

0
𝑑𝑠. 

 

 
(2.178) 

 
We can choose 𝑢0(𝑥) = 1 + 𝑥  by using the first two terms of McLaurin series and from the 
given initial conditions. Using 𝑢0(𝑥) = 1 + 𝑥 we have  
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 𝑢0(𝑥) = 1 + 𝑥, 

𝑢1(𝑥) = 1 + 𝑥 + � (𝑠 − 𝑥) ��𝑢0(𝑠)�
𝑠𝑠

+ 𝑢0(𝑠)�
𝑥

0
𝑑𝑠 = 1 + 𝑥 −

𝑥2

2!
−

𝑥3

3!
, 

𝑢2(𝑥) = 1 + 𝑥 −
𝑥2

2!
−

𝑥3

3!
+ � (𝑠 − 𝑥) ��𝑢1(𝑠)�

𝑠𝑠
+ 𝑢1(𝑠)�

𝑥

0
𝑑𝑠

= 1 + 𝑥 −
𝑥2

2!
−

𝑥3

3!
+

𝑥4

4!
+

𝑥5

5!
, 

⋮ 

𝑢𝑛(𝑥) =  �1 −
1
2!

𝑥2 +
1
4!

𝑥4 −
1
6!

𝑥6 + ⋯ � + �𝑥 −
1
3!

𝑥3 +
1
5!

𝑥5 −
1
7!

𝑥7 + ⋯ �. 

 
 
 
 
 
 
 
 
 
 
(2.179) 

 
The VIM admits the use of 

 𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛(𝑥). 
 

(2.180) 

The VIM solution in series form is basically the McLaurin series expansion of the exact solution 
to this IVP which is given by  

 𝑢(𝑥) = cos 𝑥 + sin 𝑥. 
 

(2.181) 

The numerical results are summarized in Table 2.3 and illustrated in Figure 2.2. Similar,  to our 
analysis as in Example 2.6; the error is very small in the vicinity of  0 and worsens away from it. 
Only two iterations were necessary to obtain accurate results. The error can be improved by 
taking more terms but this is at the expense of CPU time. 

        

                

 

 

 

 

 

Table 2.3   Error obtained using VIM with two iterations. 

 

𝒙 EXACT VIM 
𝟏 1.0 0.0 

𝟏. 𝟏 1.094837582 1.0 × 10−9 
𝟏. 𝟐 1.178735909 9.2 × 10−8 
𝟏. 𝟑 1.250856696 1.1 × 10−6 
𝟏. 𝟒 1.310479336 6.0 × 10−6 
𝟏. 𝟓 1.357008100 2.3 × 10−5 
𝟏. 𝟔 1.389978088 7.0 × 10−5 
𝟏. 𝟕 1.409059874 1.8 × 10−4 
𝟏. 𝟖 1.414062800 4.0 × 10−4 
𝟏. 𝟗 1.404936878 8.2 × 10−4 
𝟏. 𝟏 1.094837582 1.6 × 10−3 
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Figure 2.2  Comparison of the exact solution with VIM using two iterations. 

 

 

Example 2.9  We will now apply the variational iteration method to solve the following third 
order linear homogeneous IVP: 
 𝑢′′′ + 𝑢′ = 0,      𝑢(0) = 1,   𝑢′(0) = 0,   𝑢′′(0) = 1. (2.182) 
 
Solution:  
From (2.73) we find that 𝜆 = − 1

2
(𝑠 − 𝑥)2. Therefore, the iteration formula is given by 

 
𝑢𝑛+1 = 𝑢𝑛 − �

1
2

(𝑠 − 𝑥)2[(𝑢𝑛)𝑠𝑠𝑠(𝑠) + (𝑢𝑛)𝑠(𝑠)]
𝑥

0
𝑑𝑠.  

 
(2.183) 
 

We can choose 𝑢0(𝑥) = 1 + 𝑥2

2
  from the given condition. Using 𝑢0(𝑥) = 1 + 𝑥2

2
 we have  

 
𝑢0(𝑥) = 1 +

𝑥2

2
, 

𝑢1(𝑥) = 1 +
𝑥2

2
+ � (𝑠 − 𝑥) ��𝑢0(𝑠)�

𝑠𝑠𝑠
+ 𝑢′0(𝑠)�

𝑥

0
𝑑𝑠 = 1 +

𝑥2

2!
+

𝑥4

4!
, 

𝑢2(𝑥) = 1 + 𝑥 −
𝑥2

2!
−

𝑥3

3!
− � (𝑠 − 𝑥) ��𝑢1(𝑠)�

𝑠𝑠
+ 𝑢1(𝑠)�

𝑥

0
𝑑𝑠

= 1 +
𝑥2

2!
+

𝑥4

4!
+

𝑥6

6!
, 

⋮ 

𝑢𝑛(𝑥) =  �1 +
1
2!

𝑥2 +
1
4!

𝑥4 +
1
6!

𝑥6 + ⋯ �. 
 

 
 
 
 
 
 
 
 
 
 
 
(2.184) 

 

             EXACT                  VIM 
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The latter VIM solution in series form is basically the McLaurin series expansion of the exact 
solution to this IVP which is given by  

 𝑢(𝑥) = cosh 𝑥. (2.185) 
 

The numerical results are shown in Table 2.4 and Figure 2.3. We have similar observations as 
those in the previous two examples.  

 

                

 

 

 

 

 

 

 

Table 2.4  Error obtained using VIM with two iterations. 

 

 

Figure 2.3  Comparison between the exact and VIM solution using two iterations. 

 
  

 

 

𝒙 EXACT VIM 
𝟏 1.0 0.0 

𝟏. 𝟏 1.005004168 0.0 
𝟏. 𝟐 1.020066756 0.0 
𝟏. 𝟑 1.045338514 2.0 × 10−9 
𝟏. 𝟒 1.081072372 1.6 × 10−8 
𝟏. 𝟓 1.127625965 9.7 × 10−8 
𝟏. 𝟔 1.185465218 4.1 × 10−7 
𝟏. 𝟕 1.255169006 1.4 × 10−6 
𝟏. 𝟖 1.337434946 4.2 × 10−6 
𝟏. 𝟗 1.433086385 1.1 × 10−5 
𝟏. 𝟏 1.005004168 2.5 × 10−5 

             EXACT                  VIM 
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2.5.2 Boundary Value Problems 
 

In this section, we apply the variational iteration method for solving boundary value 
problems. 

Consider a general differential equation given in operator form as: 

 𝐿𝑢 + 𝑁𝑢 = 𝑔(𝑥),  
 

(2.186) 
 

where  𝐿  and 𝑁  are linear and nonlinear operators, respectively, and 𝑔(𝑥)  is an analytical 
function. According to VIM, we need to construct a correctional functional as follows: 
 

𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) + � 𝜆
𝑥

0

(𝑠)�𝐿𝑢𝑛(𝑠) + 𝑁𝑢�𝑛(𝑠) − 𝑔(𝑠)�𝑑𝑠, 𝑛 ≥ 0,           

 

 
(2.187) 

 

where λ(s) is a general Lagrange multiplier, which can be identified optimally via the variational 
theory, 𝑢𝑛  is the 𝑛th  approximate solution and 𝑢�𝑛  is a restricted variation, which means 
𝛿𝑢�𝑛 =  0. In the following, we will present some examples to illustrate the power of the method 
in solving certain classes of boundary value problems. 
 

Example 2.10    We will apply the variational iteration method to solve the second order linear 
differential equation 

 𝑢′′ + 𝑢 + 𝑥 = 0,         0 < 𝑥 < 1,  
 

(2.188) 
 

subject to the boundary conditions 

 𝑢(0) = 𝑢(1) = 0. 
 

(2.189) 
 

Solution: 
From (2.53) we find that 𝜆 = sin(𝑠 − 𝑥). Therefore, the iteration formula is given by 

 
𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) + � sin(𝑠 − 𝑥)

𝑥

0

(𝑢′′𝑛(𝑠) + 𝑢𝑛(𝑠) + 𝑠) 𝑑𝑠.    

 

 
(2.190) 

 

We can choose 𝑢0(𝑥) = 0 + 𝐴𝑥  that can be justified by substituting the given condition in the 
first two terms of the McLaurin series expansion. Here 𝐴 is the value of 𝑢′(0) which will ne 
given in the problem, however it will be easily found by applying the second boundary 
condition, namely 𝑢(1) = 0. Upon using 𝑢0(𝑥) = 0 + 𝐴𝑥 we have  

 𝑢0(𝑥) = 𝐴𝑥, 

𝑢1(𝑥) = 𝐴𝑥 + � sin(𝑠 − 𝑥) ��𝑢0(𝑠)�
𝑠𝑠

+ 𝑢0(𝑠) + 𝑠�
𝑥

0
𝑑𝑠 = 𝐴 sin 𝑥 + sin 𝑥 − 𝑥. 

 

 
 
(2.191) 

 
By imposing the second boundary conditions given in (2.189), this yields the value of 𝐴 =

1
sin 1

− 1, and so we have 𝑢1 = sin 𝑥
sin 1

− 𝑥. 
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Example 2.11  The VIM will be used to solve the fifth order nonlinear boundary value problem 

 𝑢(5) − 𝑒−𝑥𝑢2 = 0,     0 < 𝑥 < 1,        
 

(2.192) 
 

with the boundary conditions 

 𝑢(0) = 𝑢′(0) = 𝑢′′(0) = 1,     𝑢(1) = 𝑢′(1) = 𝑒. 
 

(2.193) 
 

Solution: 

From (2.81), we find that 𝜆 = (−1)5 1
4!

(𝑠 − 𝑥)4.  Therefore, the iteration formula is given by 

 
𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) − �

1
4!

(𝑠 − 𝑥)4

𝑥

0

�𝑢(5)
𝑛(𝑠) − 𝑒−𝑥𝑢𝑛

2� 𝑑𝑠.  
 
(2.194) 

 
As explained earlier, using the boundary conditions and McLaurin series expansion, one can 
select the start function to be  𝑢0(𝑥) = 1 + 𝑥 + 1

2
𝑥2 + 𝐴

3!
𝑥3 + 𝐵

4!
𝑥4 .   Note that 𝐴, 𝐵  are the 

values of 𝑢′′′(0) and 𝑢(4)(0), respectively which will be determined later from the resulting 
solution and the other unemployed boundary conditions.  

Using 𝑢0(𝑥) = 1 + 𝑥 + 1
2

𝑥2 + 𝐴
3!

𝑥3 + 𝐵
4!

𝑥4 , we have  

 𝑢0(𝑥) = 1 + 𝑥 +
1
2

𝑥2 +
𝐴
3!

𝑥3 +
𝐵
4!

𝑥4, 

𝑢1(𝑥) = 1 + 𝑥 +
1
2

𝑥2 +
𝐴
3!

𝑥3 +
𝐵
4!

𝑥4 − �
1
4!

(𝑠 − 𝑥)4 ��𝑢0(𝑠)�
𝑠𝑠𝑠𝑠𝑠

− 𝑒−𝑥𝑢0
2�

𝑥

0
𝑑𝑠. 

  

 
 
 
(2.195) 

By imposing the second set of boundary conditions (2.193), namely 𝑢(1) = 𝑢′(1) = 𝑒,  yields  
 

 𝐴 = 0.8582214341 and   𝐵 = 2.044641409. 
 

(2.196) 
 

The exact solution for this problem is given by  
 
 𝑢(𝑥) = 𝑒𝑥.  

 
(2.197) 

 
Table 2.5 and Figure 2.4 show the numerical solution that resulted from the VIM using only one 
iteration. The error is relatively very small which can be improved by adding more iterates. Note 
further that the absolute error is almost uniformly distributed within the domain.  
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Table 2.5  Error obtained from VIM using one iterate. 

 

 

Figure 2.4  Comparison of the exact solution with VIM using the first  iteration. 

 

Example 2.12 The thin film flow of a third grade fluid down that includes a plane of inclination  
𝛼 ≠ 0, is governed by the following nonlinear boundary value problem 

 𝑑2𝑢
𝑑𝑦2 +

6(𝛽2 + 𝛽3)
𝜇 �

𝑑𝑢
𝑑𝑦�

2 𝑑2𝑢
𝑑𝑦2 +

𝜌𝑔𝑠𝑖𝑛 𝛼
𝜇

= 0, 

 

 
(2.198) 

 

with the boundary conditions  

 𝑢(0) = 0,
𝑑𝑢
𝑑𝑦

= 0   𝑎𝑡 𝑦 = 𝛿.  

 

(2.199) 
 

Introduce the following parameters 

 
𝑦 = 𝛿𝑦∗, 𝑢 =

𝛿2𝜌𝑔𝑠𝑖𝑛 𝛼
𝜇

𝑢∗, 
 
 

𝒙 EXACT ABSOLUTE ERROR 
𝟏 1.0 0.0 

𝟏. 𝟏 1.105170918 7.1 × 10−5 
𝟏. 𝟐 1.221402758 2.8 × 10−6 
𝟏. 𝟑 1.349858808 1.6 × 10−4 
𝟏. 𝟒 1.491824698 5.2 × 10−4 
𝟏. 𝟓 1.648721271 8.2 × 10−4 
𝟏. 𝟔 1.822118800 8.2 × 10−4 
𝟏. 𝟕 2.013752707 9.5 × 10−4 
𝟏. 𝟖 2.225540928 6.2 × 10−4 
𝟏. 𝟗 2.459603111 1.9 × 10−4 
𝟏. 𝟏 1.105170918 8.2 × 10−6 

             EXACT                  VIM 
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𝛽∗ =
6𝛿2𝜌2𝑔2𝑠𝑖𝑛 2𝛼

𝜇3 (𝛽2 + 𝛽3). 

 

 
(2.200) 

 
 The exact solution for 𝛽 = 0 is given by  

 𝑢(𝑦) = −
1
2

[(𝑦 − 1)2 − 1]. 
 

(2.201) 
 

Solution: 
Using the parameters (2.200) we get 
 

𝑑𝑢
𝑑𝑦

=
𝑑𝑢
𝑑𝑦∗

𝑑𝑦∗

𝑑𝑦
=

𝑑𝑢
𝑑𝑦∗

1
𝛿

=
𝑑 �𝛿2𝜌𝑔𝑠𝑖𝑛 𝛼

𝜇 𝑢∗�

𝑑𝑦∗
1
𝛿

=
𝛿𝜌𝑔𝑠𝑖𝑛 𝛼

𝜇
𝑑𝑢∗

𝑑𝑦∗ 

 
 

 
(2.202) 

 

and 
 

𝑑2𝑢
𝑑𝑦2 =

𝑑 �𝑑𝑢
𝑑𝑦�

𝑑𝑦
=

𝛿𝜌𝑔𝑠𝑖𝑛 𝛼
𝜇

𝑑2𝑢∗

𝑑𝑦∗2
𝑑𝑦∗

𝑑𝑦
=

𝜌𝑔𝑠𝑖𝑛 𝛼
𝜇

𝑑2𝑢∗

𝑑𝑦∗2.  

 

 
(2.203) 

 

Substituting (2.202) and (2.203) into equation (2.198), we get  

 𝜌𝑔𝑠𝑖𝑛 𝛼
𝜇

𝑑2𝑢∗

𝑑𝑦∗2 + �
6(𝛽2 + 𝛽3)

𝜇
𝛿2𝜌2𝑔2𝑠𝑖𝑛 2𝛼

𝜇2 �
𝑑𝑢∗

𝑑𝑦∗�
2

� +
𝜌𝑔𝑠𝑖𝑛 𝛼

𝜇
= 0, 

𝜌𝑔𝑠𝑖𝑛 𝛼
𝜇

𝑑2𝑢∗

𝑑𝑦∗2 +
6(𝛽2 + 𝛽3)

𝜇4 𝛿2𝜌3𝑔3𝑠𝑖𝑛 3𝛼 �
𝑑𝑢∗

𝑑𝑦∗�
2 𝑑2𝑢∗

𝑑𝑦∗2 +
𝜌𝑔𝑠𝑖𝑛 𝛼

𝜇
= 0, 

𝑑2𝑢∗

𝑑𝑦∗2 + 6(𝛽2 + 𝛽3)
𝛿2𝜌2𝑔2𝑠𝑖𝑛 2𝛼

𝜇3 �
𝑑𝑢∗

𝑑𝑦∗�
2 𝑑2𝑢∗

𝑑𝑦∗2 + 1 = 0. 

 

 
 
 
 
 
 
(2.204) 

 

Using the parameters (2.200) we get  

 𝑑2𝑢∗

𝑑𝑦∗2 + 6𝛽∗ �
𝑑𝑢∗

𝑑𝑦∗�
2 𝑑2𝑢∗

𝑑𝑦∗2 + 1 = 0, 

 

 
(2.205) 

 

with the boundary conditions  

 𝑢(0) = 0,
𝑑𝑢
𝑑𝑦

= 0   𝑎𝑡 𝑦 = 1. 

 

(2.206) 
 

By integrating both sides of the Equation (2.205) and letting 𝑢 = 𝑢∗, we get 

 𝑑𝑢
𝑑𝑦

+ 2𝛽 �
𝑑𝑢
𝑑𝑦�

3

+ 𝑦 = 𝐶, 

 

(2.207) 
 

where 𝐶 is a constant. Using the second condition of (2.206) in Equation (2.207) we get that 
𝐶 = 1. Hence, the system (2.207) can be written as  
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 𝑑𝑢
𝑑𝑦

+ 2𝛽 �
𝑑𝑢
𝑑𝑦�

3

+ 𝑦 − 1 = 0,    𝑢(0) = 0.  

 

 
(2.208) 

 

Now, apply the VIM on Equation (2.208) and note that from (2.22), we have that 𝜆 = −1. 
Therefore, the iteration formula is given by 

 
𝑢𝑛+1(𝑦) = 𝑢𝑛(𝑦) − � �

𝑑𝑢𝑛

𝑑𝑠
+ 2𝛽 �

𝑑𝑢𝑛

𝑑𝑠 �
3

+ 𝑠 − 1�

𝑦

0

𝑑𝑠.   

 

 
(2.209) 

 

We can choose 𝑢0(𝑥) = 0 from the given initial condition. Using 𝑢0(𝑥) = 0 we have  

 𝑢0(𝑥) = 0, 

𝑢1(𝑦) = 𝑢0(𝑦) − � �
𝑑𝑢0

𝑑𝑠
+ 2𝛽 �

𝑑𝑢0

𝑑𝑠 �
3

+ 𝑠 − 1�

𝑦

0

𝑑𝑠 = −
1
2

[(𝑦 − 1)2 − 1],  

𝑢2(𝑦) = 𝑢1(𝑦) − � �
𝑑𝑢1

𝑑𝑠
+ 2𝛽 �

𝑑𝑢1

𝑑𝑠 �
3

+ 𝑠 − 1�

𝑦

0

𝑑𝑠

= −
1
2

[(𝑦 − 1)2 − 1] +
𝛽
2

[(𝑦 − 1)4 − 1], 

𝑢3(𝑦) = 𝑢2(𝑦) − � �
𝑑𝑢2

𝑑𝑠
+ 2𝛽 �

𝑑𝑢2

𝑑𝑠 �
3

+ 𝑠 − 1�

𝑦

0

𝑑𝑠

= −
1
2

[(𝑦 − 1)2 − 1] +
𝛽
2

[(𝑦 − 1)4 − 1] − 2𝛽2[(𝑦 − 1)6 − 1]

+ 3𝛽3[(𝑦 − 1)8 − 1] −
8𝛽4

5
[(𝑦 − 1)10 − 1], 

⋮ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(2.210) 

 
 

It is clear that by setting 𝛽 = 0 in the scheme (2.210), we recover the exact solution for the case 
of Newtonian fluid. Hence, the first approximation of the nonlinear system solved by the VIM 
gives the exact solution of this linear equation. Therefore, we can say that the VIM can be  
 

 

2.5.3 Singular Boundary Value Problems 

In this section, we will apply the variational iteration method for the numerical solution 
of the following class of singular boundary value problems of the form  
 
 𝑢′′ +

𝛼
𝑥

𝑢′ = 𝑓(𝑥, 𝑢),  
 

 
(2.211) 

 
with boundary conditions 
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 𝑢(0) = 𝐴(𝑜𝑟 𝑢′(0) = 𝐵),      𝑢(1) = 𝐶 (𝑜𝑟 𝑢′(1) = 𝐷).      

 
(2.212) 

 
 

The VIM employs the correction functional 

 
𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) + � 𝜆

𝑥

0

(𝑠) �(𝑢𝑛)𝑠𝑠 +
𝛼
𝑠

(𝑢𝑛)𝑠 − 𝑓𝑛� (𝑢, 𝑢′, 𝑢′′)� 𝑑𝑠, 𝑛 ≥ 0,               

 

 
(2.213) 

 

where  𝑓𝑛 is a restricted variation, �𝛿𝑓𝑛 =  0�. 

 
To find the value of  𝜆(𝑠), start with taking the variation with respect to 𝑢𝑛(𝑥),  which yields 
 

 𝛿𝑢𝑛+1

𝛿𝑢𝑛
= 1 +

𝛿
𝛿𝑢𝑛

�� 𝜆
𝑥

0

(𝑠) �(𝑢𝑛)𝑠𝑠 +
𝛼
𝑠

(𝑢𝑛)𝑠 − 𝑓𝑛� (𝑢, 𝑢′, 𝑢′′)� 𝑑𝑠�,              

 

 
(2.214) 

 

which is equivalent to  
 

𝛿𝑢𝑛+1 = 𝛿𝑢𝑛 + 𝛿 �� 𝜆
𝑥

0

(𝑠) �(𝑢𝑛)𝑠𝑠 +
𝛼
𝑠

(𝑢𝑛)𝑠 − 𝑓𝑛� (𝑢, 𝑢′, 𝑢′′)� 𝑑𝑠�.                   

 

 
(2.215) 

 

Applying the variation to Eq. (2.215) gives 

 
𝛿𝑢𝑛+1 = 𝛿𝑢𝑛 + 𝛿 �� 𝜆

𝑥

0

(𝑠) �(𝑢𝑛)𝑠𝑠 +
𝛼
𝑠

(𝑢𝑛)𝑠� 𝑑𝑠�.                  

 

 
(2.216) 

 

Evaluating the integral in Eq. (2.216) by parts we have  

 
� 𝜆

𝑥

0

(𝑠)(𝑢𝑛)𝑠𝑠(𝑠)𝑑𝑠 = [𝜆(𝑥)(𝑢𝑛)𝑠(𝑥) − 𝜆(0)(𝑢𝑛)𝑠(0)] 

−[𝜆′(𝑥)(𝑢𝑛)(𝑥) − 𝜆′(0)(𝑢𝑛)(0)] + � 𝜆′′
𝑥

0

(𝑠)𝑢𝑛(𝑠)𝑑𝑠                          

 

 
 
 
(2.217) 

 

and  

 
� 𝜆

𝑥

0

(𝑠)
𝛼
𝑠

(𝑢𝑛)𝑠(𝑠)𝑑𝑠 =
𝛼
𝑥

𝜆(𝑥)𝑢𝑛(𝑥) − �
𝛼
𝑠

𝑥

0

𝜆′(𝑠)𝑢𝑛(𝑠)𝑑𝑠 + �
𝛼
𝑠2 𝜆(𝑠)𝑢𝑛(𝑠)𝑑𝑠.

𝑥

0

 

 

 
(2.218) 

 

Substituting the integral into Eq.(2.216) by the value of the integral (2.218) we obtain 
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 𝛿𝑢𝑛+1 = 𝛿𝑢𝑛 + 𝛿[𝜆(𝑥)(𝑢𝑛)𝑠(𝑥)] − 𝛿[𝜆′(𝑥)(𝑢𝑛)𝑠(𝑥)] + 𝛿 �
𝛼
𝑥

𝜆(𝑥)𝑢𝑛(𝑥)�

+ 𝛿 �� 𝜆′′
𝑥

0

(𝑠)𝑢𝑛(𝑠)𝑑𝑠� − 𝛿 ��
𝛼
𝑠

𝑥

0

𝜆′(𝑠)(𝑠)𝑢𝑛(𝑠)𝑑𝑠�

+ 𝛿 ��
𝛼
𝑠2 𝜆(𝑠)𝑢𝑛(𝑠)𝑑𝑠

𝑥

0

� = 0.            

 

 
 
 
 
 
 
(2.219) 

 

By simplifying Eq. (2.219) we get  

 
𝛿𝑢𝑛+1 = �1 − 𝜆′(𝑥) +

𝛼
𝑥

𝜆(𝑥)� 𝛿𝑢𝑛 + 𝛿[𝜆(𝑥)(𝑢𝑛)𝑠(𝑥)] + 𝛿 �� 𝜆′′
𝑥

0

(𝑠)𝑢𝑛(𝑠)𝑑𝑠�

− 𝛿 �� �
𝛼
𝑠

𝜆′(𝑠) −
𝛼
𝑠2 𝜆(𝑠)�

𝑥

0

(𝑠)𝑑𝑠� = 0.                 

 

 
 
 
 
(2.220) 

 

So, the following stationary conditions are obtained 

 
𝜆′′(𝑠) − �

𝛼
𝑠

𝜆′(𝑠) −
𝛼
𝑠2 𝜆(𝑠)� = 0, 

1 − 𝜆′(𝑠)|𝑠=𝑥 = 0, 

𝜆(𝑠)|𝑠=𝑥 = 0.  

 
 
 
(2.221) 

 

By solving (2.221) for 𝜆(𝑠) we have  

 

Case 1:  For 𝛼 = 0 

 𝜆(𝑠) = (s − 𝑥). 

Case 2:  For 𝛼 = 1, it becomes a cylindrical problem 

 𝜆(𝑠) = 𝑠in �
𝑠
𝑥

�.  

 

(2.223) 
 

Case 3:  For 𝛼 = 2, it becomes a spherical problem 

 𝜆(𝑠) =
𝑠(s − 𝑥)

𝑥
. 

(2.224) 
 

Case 4:  For general case  𝛼 ≥ 2, 

 
𝜆(𝑠) =

𝑠(sα−1 − 𝑥𝛼−1)
(α − 1)𝑥𝛼−1 . 

(2.225) 

 

Example 2.13     Consider the linear singular boundary value problem 
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𝑢′′ +

1
𝑥

𝑢′ + 𝑢 +
5
4

−
𝑥2

16
= 0,  

 

(2.226) 

with boundary conditions 

 𝑢′(0) = 0,      𝑢(1) =
17
16

.   
(2.227) 

The exact solution is 𝑢(𝑥) = 1 + 𝑥2

16
. 

Solution: 
Since 𝛼 = 1, and according to (2.222) the iteration formula is given by 

 
𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) + � sin �

𝑠
𝑥

�  
𝑥

0

�(𝑢𝑛)𝑠𝑠(𝑠) +
1
𝑠

(𝑢𝑛)𝑠(𝑠) + 𝑢𝑛 +
5
4

−
𝑠2

16�  𝑑𝑠.  
 
(2.228) 

 
 

We can choose  𝑢0(𝑥) = 𝑢(0) + 𝑢′(0)𝑥 = 𝑢(0) = 𝐴, by using Taylor’s expansion and the given 
conditions, taking into consideration that the value of 𝐴 will be determined later using the 
boundary condition at  𝑥 = 1. Using 𝑢0(𝑥) = 𝐴 we have  

 𝑢0(𝑥) = 𝐴, 

𝑢1(𝑥) = 𝐴𝑥 + � 𝑠 ln �
𝑠
𝑥

� �(𝑢0)𝑠𝑠(𝑠) +
1
𝑠

(𝑢0)𝑠(𝑠) + 𝑢0 +
5
4

−
𝑠2

16�
𝑥

0
𝑑𝑠

= 𝐴 −
1
4

𝐴𝑥2 +
5

16
𝑥2 +

1
256

𝑥4. 
 

 
 
 
 
(2.229) 

By imposing the second boundary condition in (2.227)  yields  𝐴 = 0.9947916667.  Thus we 
have 

 𝑢1 = 0.9947916667 + 0.0638020833𝑥2 + 0.003906250000𝑥4. 
 

(2.230) 
 

The error resulting from the VIM using one iteration is listed in Table 2.6. The error is uniformly 
distributed and can be improved by taking more iterates. This result shows the fast convergence 
of the VIM for this case. Figure 2.5 shows the numerical and exact solutions and they are almost 
compatible from the first iterate.     
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Table 2.6   Error obtained using VIM with one iteration. 

 
Figure 2.5 The exact solution versus the VIM solution using one iteration. 

 

Example 2.14    Consider the linear singular boundary value problem 

 𝑢′′ +
2
𝑥

𝑢′ + 𝑢5 = 0,  
(2.231) 

with boundary conditions 

 
𝑢′(0) = 0,      𝑢(1) =

√3
2

. 
 
(2.232) 

The exact solution is 𝑢(𝑥) = 1

�1+𝑥2
3

. 

Solution: 
Since  𝛼 = 2, and according to (2.224) the iteration formula is given by 

𝒙 EXACT ERROR 
𝟏 1.0 5.2 × 10−3 

𝟏. 𝟏 1.000625000 5.2 × 10−3 
𝟏. 𝟐 1.002500000 5.2 × 10−3 
𝟏. 𝟑 1.005625000 5.1 × 10−3 
𝟏. 𝟒 1.010000000 4.9 × 10−3 
𝟏. 𝟓 1.015625000 4.6 × 10−3 
𝟏. 𝟔 1.022500000 4.2 × 10−3 
𝟏. 𝟕 1.030625000 3.6 × 10−3 
𝟏. 𝟖 1.040000000 2.7 × 10−3 
𝟏. 𝟗 1.050625000 1.6 × 10−3 
𝟏. 𝟏 1.000625000 0.0 

             EXACT                  VIM 
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𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) + �

𝑠(𝑠 − 𝑥)
𝑥

𝑥

0

�(𝑢𝑛)𝑠𝑠(𝑠) +
2
𝑠

(𝑢𝑛)𝑠(𝑠) + 𝑢5
𝑛� 𝑑𝑠.   

 

 
(2.233) 

We can choose 𝑢0(𝑥) = 𝐴  from the given conditions. Using 𝑢0(𝑥) = 𝐴 we have  

 𝑢0(𝑥) = 𝐴, 

𝑢1(𝑥) = 𝐴 + �
𝑠(𝑠 − 𝑥)

𝑥
�(𝑢0)𝑠𝑠(𝑠) +

2
𝑠

(𝑢0)𝑠(𝑠) + 𝑢5
0�

𝑥

0
𝑑𝑠

= 𝐴 −
1
6

𝐴5𝑥2, 

𝑢2(𝑥) = 𝐴𝑥 −
1
6

𝐴5𝑥2 + �
𝑠(𝑠 − 𝑥)

𝑥
�(𝑢1)𝑠𝑠(𝑠) +

2
𝑠

(𝑢1)𝑠(𝑠) + 𝑢5
1�

𝑥

0
𝑑𝑠. 

 

 
 
 
 
 
 
 
 
 
(2.234) 

 

By imposing the second boundary condition in (2.232) that is specified at 𝑥 = 1 yields 𝐴 =
0.9936779905.  Thus, we have 

 𝑢2 = 0.9936779905 − 0.1614645186𝑥2 + 0.03935498878𝑥4

− 0.006090345429𝑥6 + 0.0005772848378𝑥8

− 0.00003069950679𝑥10 + 7.034948337 ∙ 10−7𝑥12. 
 

(2.235) 
 

The numerical results using two iterates of the VIM are given in Table 2.7 and illustrated in 
Figure 2.6. Obviously, the error is acceptable since we used only two steps of the method.  

 

 

 

 

 

 

 
      

Table 2.7  Error obtained using variational method with two iterations. 

 

𝒙 EXACT ABSOLUTE ERROR 
𝟏 1.0 6.3 × 10−3 

𝟏. 𝟏 0.9983374885 6.3 × 10−3 
𝟏. 𝟐 0.9933992682 6.1 × 10−3 
𝟏. 𝟑 0.9853292777 5.9 × 10−3 
𝟏. 𝟒 0.9743547036 5.5 × 10−3 
𝟏. 𝟓 0.9607689226 5.1 × 10−3 
𝟏. 𝟔 0.9449111829 4.5 × 10−3 
𝟏. 𝟕 0.9271455412 3.8 × 10−3 
𝟏. 𝟖 0.9078412994 2.9 × 10−3 
𝟏. 𝟗 0.8873565094 1.6 × 10−3 
𝟏. 𝟏 0.8660254041 0 
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Figure 2.6 Comparison between the exact solution and second iterate of VIM. 

 
2.5.4  System of Equations 
 

In this section, we apply the variational iteration method (VIM) to solve a system of 
differential equations of first order. Since we can convert every ordinary differential equations of 
higher order into a system of differential equations of the first order, so this method can be used 
for solving higher systems as well. The method will be illustrated by discussing some examples. 
 
Consider a system of ordinary differential equations of the first order with initial conditions of 
the form: 
  
 𝑢′1 = 𝑓1(𝑥, 𝑢1, 𝑢2, … , 𝑢𝑛),     𝑢1(𝑥0) = 𝑢1, 

𝑢′2 = 𝑓2(𝑥, 𝑢1, 𝑢2, … , 𝑢𝑛),     𝑢2(𝑥0) = 𝑢2, 
        ⋮ 

𝑢′𝑛 = 𝑓𝑛(𝑥, 𝑢1, 𝑢2, … , 𝑢𝑛),     𝑢𝑛(𝑥0) = 𝑢𝑛, 
 

 
 
 
(2.236) 

where each equation represents the first derivative of one of the unknown functions that depend 
on the independent variable  𝑥, and  𝑛 unknown functions  𝑓1, 𝑓2, … , 𝑓𝑛. 
 
Every ordinary differential equation of order 𝑛  can be written as a system of 𝑛  ordinary 
differential equation of order one.  For example, consider an equation of the form 
  
 𝑢(𝑛) = 𝑓�𝑥, 𝑢, 𝑢′, 𝑢′′, … , 𝑢(𝑛−1)�, 

 
(2.237) 

 
 
with initial conditions  𝑢(𝑥0) = 𝑎, 𝑢′(𝑥0) = 𝑏, 𝑢′′(𝑥0) = 𝑐, … , 𝑢(𝑛−1)(𝑥0) = 𝑑. 
 

             EXACT                 VIM 
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Let  𝑢(𝑥) = 𝑢1(𝑥),  𝑢′(𝑥) = 𝑢2(𝑥), … , 𝑢(𝑛−1)(𝑥) = 𝑢𝑛(𝑥).  Thus, we can rewrite Eq.(2.236) as 
follows: 
 𝑢′1 = 𝑢2(𝑥),     𝑢1(𝑥0) = 𝑢(𝑥0), 

𝑢′2 = 𝑢3(𝑥),     𝑢2(𝑥0) = 𝑢′(𝑥0), 
⋮ 
𝑢′𝑛 = 𝑓𝑛(𝑥, 𝑢1, 𝑢2, … , 𝑢𝑛),     𝑢𝑛(𝑥0) = 𝑢(𝑛−1)(𝑥0),  

 

 
 
 
(2.238) 

 
 
where the system (2.238) is a system of differential equations of the first order. 
 
 
 
Example 2.15    We will use the variational iteration method to solve the system of non-
homogeneous differential equations: 
 
 𝑢′1 = 𝑢3 − cos 𝑥 ,    𝑢1(0) = 1, 

𝑢′2 = 𝑢3 − 𝑒𝑥,          𝑢2(0) = 0, 
𝑢′3 = 𝑢1 − 𝑢2,          𝑢3(0) = 2.  

 

 
 
(2.239) 

 
 
 
Solution: 
From (2.22) we find that 𝜆1(𝑠) = 𝜆2(𝑠) = 𝜆3(𝑠) = −1. Therefore, the iteration formula is given 
by 

 
𝑢1𝑛+1 = 𝑢1𝑛 − �� �𝑢′

1𝑛 − 𝑢3𝑛 + cos 𝑠�𝑑𝑠
𝑥

0
�, 

𝑢2𝑛+1 = 𝑢2𝑛 − �� �𝑢′
2𝑛 − 𝑢3𝑛 + 𝑒𝑠�𝑑𝑠

𝑥

0
�, 

𝑢3𝑛+1 = 𝑢3𝑛 − �� �𝑢′
3𝑛 − 𝑢1𝑛 + 𝑢2𝑛�𝑑𝑠

𝑥

0
�. 

  

 
 
 
 
 
(2.240) 

 

We can choose 𝑢10(𝑥) = 1, 𝑢20(𝑥) = 0, 𝑢30(𝑥) = 2, from the given conditions. Using 𝑢10(𝑥) =
1, 𝑢20(𝑥) = 0, 𝑢30(𝑥) = 2 we have  

 𝑢11(𝑥) = 1 + 2𝑥 − sin 𝑥,  
𝑢21(𝑥) = 1 + 2𝑥 − 𝑒𝑥 , 
𝑢31(𝑥) = 2 + 𝑥, 

𝑢12(𝑥) = 1 + 2𝑥 − sin 𝑥 +
1
2

𝑥2,  

𝑢22(𝑥) = 1 + 2𝑥 − 𝑒𝑥 +
1
2

𝑥2, 
𝑢32(𝑥) = cos 𝑥 + 𝑒𝑥. 

 

 
 
 
 
 
 
 
 
(2.241) 

If we do more iterates, we will get infinite series solutions which are namely either the exact 
solution or the McLaurin expansion of the exact solutions that will converge to it. It is worth 
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noting that noise terms might errors as we do more iterates but eventually they will disappear as 
we pass to the limit. The iterates will converge to the exact solutions which are given by  
 
 𝑢1(𝑥) = 𝑒𝑥, 

𝑢2(𝑥) = sin 𝑥, 
𝑢3(𝑥) = 𝑒𝑥 + cos 𝑥. 

 
 
(2.242) 

 
Example 2.16     We now use the VIM to solve the following Euler–Lagrange equation of order 
three: 
  

𝑢′′′ +
1

𝑥2 𝑢′ −
1

𝑥3 𝑢 = 0,  
 

 
(2.243) 

 

with the initial conditions 
 
 𝑢(1) = 1, 𝑢′(1) = 2,      𝑢′′(1) = 3. (2.244) 

 
 
Solution: 
Let 𝑢1(𝑥) = 𝑢(𝑥),  𝑢2(𝑥) = 𝑢′(𝑥), 𝑢3(𝑥) = 𝑢′′(𝑥).  Thus, upon converting Eq.(2.243) into 
system of three differential equations of order one, we have 
 
 𝑢′1 = 𝑢2,                                 𝑢1(1) = 1, 

𝑢′2 = 𝑢3,                                 𝑢2(1) = 2, 

𝑢′3 = −
1

𝑥2 𝑢2 +
1

𝑥3 𝑢1, 𝑢3(1) = 3.     
 

 
 
 
(2.245) 

 
 
From (2.22) we find that 𝜆1(𝑠) = 𝜆2(𝑠) = 𝜆3(𝑠) = −1. Therefore, the iteration formula is given 
by 

 
𝑢1𝑛+1 = 𝑢1𝑛 − �� �𝑢′

1𝑛 − 𝑢2𝑛�𝑑𝑠
𝑥

1
�, 

𝑢2𝑛+1 = 𝑢2𝑛 − �� �𝑢′
2𝑛 − 𝑢3𝑛�𝑑𝑠

𝑥

1
�, 

𝑢3𝑛+1 = 𝑢3𝑛 − �� �𝑢′
3𝑛 +

1
𝑠2 𝑢2𝑛 −

1
𝑠3 𝑢1𝑛� 𝑑𝑠

𝑥

1
�. 

 

 
 
 
 
 
(2.246) 

We can choose 𝑢10(𝑥) = 1, 𝑢20(𝑥) = 2, 𝑢30(𝑥) = 3, from the given conditions. Using 𝑢10(𝑥) =
1, 𝑢20(𝑥) = 2, 𝑢30(𝑥) = 3, we have  

 𝑢11(𝑥) = −1 + 2𝑥,  
𝑢21(𝑥) = −1 + 3𝑥, 

𝑢31(𝑥) =
3
2

+
2
𝑥

−
1

2𝑥2. 
 

 
 
 
(2.247) 

 
The higher iterates can be found in a similar fashion. 
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2.5.5   Domain Decomposition Method 
 

In this section, we will use the domain decomposition approach to compliment the VIM, 
which will help to overcome the deterioration of the error for larger values of the independent 
variable. The VIM produces accurate error but locally, but the error worsens as we move away 
from the initial point. The domain decomposition will improve the accuracy for larger values and 
can make the error uniform across the domain. In order to implement this method, we subdivide 
our computational domain, as a union of sub-domains, and then solve the BVP or IVP on each of 
these sub-domains separately. The initial condition on the 𝑛th sub-domain can be obtain and 
approximates from the VIM solution obtained on the (𝑛 − 1)th sub-domain. We will do an 
example to show the efficiency of the proposed method. 
 
Example 2.17  We will apply the domain decomposition (DD) combined with the VIM on 
Example (2.6) which is given by: 
 
 𝑢′(𝑥) − 𝑢2(𝑥) = 1,          𝑢(0) = 0.  

 
(2.248) 

 
 
Solution:  
To solve our example, and illustrate the DD approach, it suffices to subdivide the domain into 
two sub-domains, [0, 0.5] and the second is [0.5, 1]. Applying the VIM on [0, 0.5]  first, then 
from equation (2.164) we can get the solution in series form and thus use it to estimate the value 
of the solution at 𝑥 =  0.5, in particular, we get the following value: 
 
 𝑢(0.5) = 0.5459573413.  

 
(2.249) 

 
This value is now used as the initial condition when applying the VIM on the sub-interval 
[0.5, 1].  From (2.22) we find that  𝜆 = −1. Therefore, the iteration formula is given by 
 
 

𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) − � [(𝑢𝑛(𝑠))𝑠 − 𝑢𝑛
2(𝑠) − 1]

𝑥

0.5
𝑑𝑠. 

  
 

 
(2.250) 

 

We now choose 𝑢0(𝑥) = 𝑢(0.5) = 0.5459573413. Using this value we get the following 
iterates:  

 𝑢0(𝑥) = 0.5459573413, 

𝑢1(𝑥) = 0.5459573413 − � ��𝑢0(𝑠)�
𝑠

− 𝑢0
2(𝑠) − 1�

𝑥

0.5
𝑑𝑠 = 

−0.1030773677 + 1.298069418𝑥, 

𝑢2(𝑥) = −0.1030773677 + 1.298069418𝑥 − � ��𝑢1(𝑠)�
𝑠

− 𝑢1
2(𝑠) − 1�

𝑥

0
𝑑𝑠

= 0.0038875885 + 1.010624944𝑥 − 0.1338015787𝑥2

+ 0.5616614046𝑥3, 
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𝑢3(𝑥) = 0.5462824390 + 1.298424503𝑥 − � ��𝑢2(𝑠)�
𝑠

− 𝑢2
2(𝑠) − 1�

𝑥

0
𝑑𝑠

= −0.000556306464 + 1.000015113𝑥 + 0.0039288939𝑥2

+ 0.3401074828𝑥3 − 0.06651985228𝑥4 + 0.2306321827𝑥5

− 0.02505039421𝑥6 + 0.04506621906 𝑥7. 
 

 
 
(2.251) 

 

The infinite series solution will clearly converge to the exact solution which is given by  

 𝑢(𝑥) = tan 𝑥. 
  

(2.252) 
 

In Table 2.8 we compare the solution arising from VIM alone with that using VIM and DD 
combined. Clearly the accuracy will improve for larger values of 𝑥 when we modify the VIM via 
using DD. Though the accuracy is slightly improved but that is because we subdivided the 
domain only into two subintervals. One has to subdivide the domain in a larger number of sub-
domains in order to achieve uniform convergence. 

 

𝒙 EXACT Error  
using VIM 

Error 
using VIM and DD 

𝟏 0.0 0.0 0.0 
𝟏. 𝟏 0.100334672 3.9 × 10−9 3.9 × 10−9 
𝟏. 𝟐 0.202710036 5.0 × 10−7 5.0 × 10−7 
𝟏. 𝟑 0.309336250 8.8 × 10−6 8.8 × 10−6 
𝟏. 𝟒 0.422793219 6.9 × 10−5 6.9 × 10−5 
𝟏. 𝟓 0.546302490 3.5 × 10−4 3.5 × 10−4 
𝟏. 𝟔 0.684136808 1.3 × 10−3 4.0 × 10−4 
𝟏. 𝟕 0.842288380 4.2 × 10−3 7.0 × 10−4 
𝟏. 𝟖 1.029638557 1.2 × 10−2 2.3 × 10−3 
𝟏. 𝟗 1.260158218 3.1 × 10−2 8.8 × 10−3 
𝟏. 𝟏 1.557407725 7.5 × 10−2 3.0 × 10−2 

 

Table 2.8   Comparison of the absolute errors obtained by VIM and those by DD and VIM using 
four iterations for both methods. 
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2.6 Partial Differential Equations 

 

2.6.1 Initial Value Problems 
 

In this section, we will apply the VIM method as presented before to some examples 
involving linear and nonlinear PDEs. 

Example 2.18 We use the variational iteration method to solve the following homogeneous 
partial differential equation 
 
 𝑢𝑥 − 𝑢𝑡 = 0,     𝑢(0, 𝑡) = 𝑡,    𝑢(𝑥, 0) = 𝑥. (2.253) 

 
Solution: 
From (2.22) we find that 𝜆 = −1. Therefore, the iteration formula is given by 

 
𝑢𝑛+1(𝑥, 𝑡) = 𝑢𝑛(𝑥, 𝑡) − � �

𝜕𝑢𝑛(𝑠, 𝑡)
𝜕𝑠

−
𝜕𝑢𝑛(𝑠, 𝑡)

𝜕𝑡 �
𝑥

0
𝑑𝑠. 

 

(2.254) 
 

We can choose 𝑢0(𝑥, 𝑡) = 𝑢(0, 𝑡) = 𝑡 from the specified conditions. Using 𝑢0(𝑥, 𝑡) = 𝑡 we have  

 𝑢0(𝑥, 𝑡) = 𝑡, 

𝑢1(𝑥, 𝑡) = 𝑡 − � �
𝜕𝑢0(𝑠, 𝑡)

𝜕𝑠
−

𝜕𝑢0(𝑠, 𝑡)
𝜕𝑡 �

𝑥

0
𝑑𝑠 = 𝑡 + 𝑥, 

𝑢2(𝑥, 𝑡) = 𝑡 + 𝑥 − � �
𝜕𝑢1(𝑠, 𝑡)

𝜕𝑠
−

𝜕𝑢1(𝑠, 𝑡)
𝜕𝑡 �

𝑥

0
𝑑 = 𝑡 + 𝑥, 

⋮ 
𝑢𝑛(𝑥, 𝑡) = 𝑡 + 𝑥. 

 

 
 
 
 
 
 
(2.255) 

This gives the exact solution which is given by 

 𝑢(𝑥, 𝑡) = 𝑥 + 𝑡.  (2.256) 
 

 
Example 2.19  Use the variational iteration method to solve nonhomogeneous partial 
differential equation 
 𝑢𝑥 + 𝑢𝑡 = 𝑥 + 𝑡,     𝑢(0, 𝑡) = 0,    𝑢(𝑥, 0) = 0.  (2.257) 
 
Solution: 
From (2.22) we find that 𝜆 = −1. Therefore, the iteration formula is given by 

 
𝑢𝑛+1(𝑥, 𝑡) = 𝑢𝑛(𝑥, 𝑡) − � �

𝜕𝑢𝑛(𝑠, 𝑡)
𝜕𝑠

+
𝜕𝑢𝑛(𝑠, 𝑡)

𝜕𝑡
− 𝑠 − 𝑡�

𝑥

0
𝑑𝑠. 

 
(2.258) 

 
We can choose 𝑢0(𝑥, 𝑡) = 𝑢(0, 𝑡) = 0 from the given conditions. Using 𝑢0(𝑥, 𝑡) = 0 we have  
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 𝑢0(𝑥, 𝑡) = 0, 

𝑢1(𝑥, 𝑡) = 0 − � �
𝜕𝑢0(𝑠, 𝑡)

𝜕𝑠
+

𝜕𝑢0(𝑠, 𝑡)
𝜕𝑡

− 𝑠 − 𝑡�
𝑥

0
𝑑𝑠 =

1
2

𝑥2 + 𝑥𝑡, 

𝑢2(𝑥, 𝑡) =
1
2

𝑥2 + 𝑥𝑡 − � �
𝜕𝑢1(𝑠, 𝑡)

𝜕𝑠
+

𝜕𝑢1(𝑠, 𝑡)
𝜕𝑡

− 𝑠 − 𝑡�
𝑥

0
𝑑𝑠 = 𝑥𝑡, 

⋮ 
𝑢𝑛(𝑥, 𝑡) = 𝑥𝑡. 

  
 

 
 
 
 
 
 
(2.259) 

Note that in the first iterate 𝑢1(𝑥, 𝑡) we got the term 1
2

𝑥2 which we refer to as noise term. This 
term will disappear or cancels as we take higher iterates. In the limit, the iterates converge to the 
exact solution which is given by 

 𝑢(𝑥, 𝑡) = 𝑥𝑡.  
 

(2.260) 

 

 

2.6.2  Boundary Value Problems 
 

We will now apply the VIM method as presented before to some examples involving 
linear and nonlinear PDEs which are complimented with boundary conditions. 

 

Example 2.20  Use the variational iteration method to solve the boundary value problem 

 𝑢𝑥𝑥 + 𝑢𝑡𝑡 = 0,       0 < 𝑥, 𝑡 < 𝜋, 
 

(2.261) 

with the boundary conditions 

 𝑢(0, 𝑡) = 0,     𝑢(𝜋, 𝑡) = sinh 𝜋 sin 𝑡 
𝑢(𝑥, 0) = 0,      𝑢(𝑥, 𝜋) = 0. 

 

 
(2.262) 

Solution: 
From (2.43) we find that  𝜆 = 𝑠 − 𝑥. Therefore, the iteration formula is given by 

 
𝑢𝑛+1(𝑥, 𝑡) = 𝑢𝑛(𝑥, 𝑡) + � (𝑠 − 𝑥) �

𝜕2𝑢𝑛(𝑠, 𝑡)
𝜕𝑠2 +

𝜕2𝑢𝑛(𝑠, 𝑡)
𝜕𝑡2 �

𝑥

0
𝑑𝑠. 

 
(2.263) 

 
From the boundary conditions we can see that the solution contains sin t with a function that 
depends on 𝑥.   So, we can choose 𝑢0(𝑥, 𝑡) = (0 + 𝑥) sin 𝑡  from the given condition. Using 
𝑢0(𝑥, 𝑡) = 𝑥 sin 𝑡 we have  
 
 𝑢0(𝑥, 𝑡) = 𝑥 sin 𝑡,  
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𝑢1(𝑥, 𝑡) = 𝑥 sin 𝑡 + � (𝑠 − 𝑥) �
𝜕2𝑢0(𝑠, 𝑡)

𝜕𝑠2 +
𝜕2𝑢0(𝑠, 𝑡)

𝜕𝑡2 �
𝑥

0
𝑑𝑠 

= 𝑥 sin 𝑡 +
1
3!

𝑥3 sin 𝑡, 
 

𝑢2(𝑥, 𝑡) = 𝑥 sin 𝑡 +
1
3!

𝑥3 sin 𝑡 + � (𝑠 − 𝑥) �
𝜕2𝑢0(𝑠, 𝑡)

𝜕𝑠2 +
𝜕2𝑢0(𝑠, 𝑡)

𝜕𝑡2 �
𝑥

0
𝑑𝑠

= 𝑥 sin 𝑡 +
1
3!

𝑥3 sin 𝑡 +
1
5!

𝑥5 sin 𝑡, 
 

⋮ 

𝑢𝑛(𝑥, 𝑡) = sin 𝑡 �𝑥 +
1
3!

𝑥3 +
1
5!

𝑥5 + ⋯ �. 
  

 
 
 
 
 
 
 
 
 
 
(2.264) 

 

Clearly the iterates will converge to the exact solution which is given by 

 𝑢(𝑥, 𝑡) = sin 𝑡 sinh 𝑥. 
 

(2.265) 

 

Example 2.21     We use the variational iteration method to solve the boundary value problem 

 𝑢𝑥𝑥 + 𝑢𝑡𝑡 = 0,       0 < 𝑥, 𝑡 < 𝜋 
 

(2.266) 

with the boundary conditions 

 𝑢(0, 𝑡) = 0,     𝑢(𝜋, 𝑡) = 0, 
𝑢(𝑥, 0) = cos 𝑥 ,      𝑢(𝑥, 𝜋) = cosh 𝜋 cos 𝑥. 

 

 
(2.267) 

Solution: 
From (2.43) we find that 𝜆 = 𝑠 − 𝑡. Therefore, the iteration formula is given by 

 
𝑢𝑛+1(𝑥, 𝑡) = 𝑢𝑛(𝑥, 𝑡) + � (𝑠 − 𝑡) �

𝜕2𝑢𝑛(𝑥, 𝑠)
𝜕𝑠2 +

𝜕2𝑢𝑛(𝑥, 𝑠)
𝜕𝑡2 �

𝑡

0
𝑑𝑠. 

 

 
(2.268) 

 
From the boundary conditions we can see that the solution includes cos 𝑥 with a function that 
depends on 𝑡. So, we can choose 𝑢0(𝑥, 𝑡) = �1 + 𝑡2

2
� cos 𝑥 from the given condition. Using 

𝑢0(𝑥, 𝑡) = cos 𝑥 + 𝑡2

2
cos 𝑥, we have  

 
 

𝑢0(𝑥, 𝑡) = cos 𝑥 +
𝑡2

2
cos 𝑥, 

𝑢1(𝑥, 𝑡) = cos 𝑥 +
𝑡2

2
cos 𝑥 + � (𝑠 − 𝑡) �

𝜕2𝑢0(𝑥, 𝑠)
𝜕𝑠2 +

𝜕2𝑢0(𝑥, 𝑠)
𝜕𝑥2 �

𝑡

0
𝑑𝑠 

= cos 𝑥 +
𝑡2

2
cos 𝑥 +

𝑡4

4!
cos 𝑥 +

𝑡6

6!
cos 𝑥, 
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𝑢2(𝑥, 𝑡) = cos 𝑥 +
𝑡2

2
cos 𝑥 +

𝑡4

4!
cos 𝑥 +

𝑡6

6!
cos 𝑥

+ � (𝑠 − 𝑡) �
𝜕2𝑢0(𝑡, 𝑠)

𝜕𝑠2 +
𝜕2𝑢0(𝑡, 𝑠)

𝜕𝑥2 �
𝑡

0
𝑑𝑠

= cos 𝑥 +
𝑡2

2
cos 𝑥 +

𝑡4

4!
cos 𝑥 +

𝑡6

6!
cos 𝑥 +

1
8!

𝑡8 cos 𝑥

+
1

10!
𝑡10 cos 𝑥, 

 
⋮ 

𝑢𝑛(𝑥, 𝑡) = cos 𝑥 �1 +
1
2!

𝑡2 +
1
4!

𝑡4 +
1
6!

𝑡6 +
1
8!

𝑡8 +
1

10!
𝑡10 … �. 

  
 

 
 
 
 
 
 
 
 
 
 
(2.269) 

This gives the exact solution by 

 𝑢(𝑥, 𝑡) = cos 𝑥 cosh 𝑡. (2.270) 
 
 

2.6.3 System of Equations 

We will apply the variational iteration method to solve systems of partial differential 
equations. The method will be illustrated by discussing some examples. 

 
Consider a system of differential equations written in an operator form as 
 
 𝐿𝑡𝑢 + 𝑅1(𝑢, 𝑣, 𝑤) + 𝑁1(𝑢, 𝑣, 𝑤) = 𝑔1, 

𝐿𝑡𝑢 + 𝑅2(𝑢, 𝑣, 𝑤) + 𝑁2(𝑢, 𝑣, 𝑤) = 𝑔2, 
𝐿𝑡𝑢 + 𝑅3(𝑢, 𝑣, 𝑤) + 𝑁3(𝑢, 𝑣, 𝑤) = 𝑔3, 

  

 
 
(2.271) 
 

with initial conditions 
 𝑢(𝑥, 0) = 𝑓1(𝑥), 

𝑣(𝑥, 0) = 𝑓2(𝑥), 
𝑤(𝑥, 0) = 𝑓3(𝑥),  

 

 
 
(2.272) 

 
 
where 𝐿𝑡  is a first order partial differential operator, 𝑅1, 𝑅2  and   𝑅3  are linear operators, 
𝑁1, 𝑁2 and  𝑁3  are nonlinear operators and 𝑔1, 𝑔2 and  𝑔3 are source terms. 
The VIM employs the correction functional as follows: 

 𝑢𝑛+1(𝑥, 𝑡) = 𝑢𝑛(𝑥, 𝑡)

+ � 𝜆1

𝑡

0
(𝐿𝑢𝑛(𝑥, 𝑠) + 𝑅1(𝑢�𝑛, 𝑣�𝑛, 𝑤�𝑛) + 𝑁1(𝑢�𝑛, 𝑣�𝑛, 𝑤�𝑛) − 𝑔1(𝑠))𝑑𝑠, 

𝑣𝑛+1(𝑥, 𝑡) = 𝑣𝑛(𝑥, 𝑡) + � 𝜆2

𝑡

0
(𝐿𝑣𝑛(𝑥, 𝑠) + 𝑅2(𝑢�𝑛, 𝑣�𝑛, 𝑤�𝑛) + 𝑁2(𝑢�𝑛, 𝑣�𝑛, 𝑤�𝑛) − 𝑔2(𝑠))𝑑𝑠, 
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𝑤𝑛+1(𝑥, 𝑡) = 𝑤𝑛(𝑥, 𝑡)

+ � 𝜆3

𝑡

0
(𝐿𝑤𝑛(𝑥, 𝑠) + 𝑅3(𝑢�𝑛, 𝑣�𝑛, 𝑤�𝑛) + 𝑁3(𝑢�𝑛, 𝑣�𝑛, 𝑤�𝑛) − 𝑔3(𝑠))𝑑𝑠, 

 

(2.273) 
 

where  𝜆1, 𝜆2, 𝜆3are Lagrange’s multipliers,  𝑢�𝑛, 𝑣�𝑛, 𝑤�𝑛  as restricted variations  (𝛿𝑢�𝑛 = 𝛿𝑣�𝑛 =
𝛿𝑤�𝑛 = 0). 
The solutions are given by 

 𝑢(𝑥, 𝑡) = lim
𝑛→∞

𝑢𝑛(𝑥, 𝑡) , 
𝑣(𝑥, 𝑡) = lim

𝑛→∞
𝑣𝑛(𝑥, 𝑡), 

𝑤(𝑥, 𝑡) = lim
𝑛→∞

𝑤𝑛(𝑥, 𝑡). 
 

 
 
 
(2.274) 

 
Example 2.22    We use the variational iteration method to solve the inhomogeneous nonlinear 
system 

 𝑢𝑡 + 𝑣𝑢𝑥 + 𝑢 = 1, 
𝑢𝑡 − 𝑢𝑣𝑥 − 𝑣 = 1, 

 

 
(2.275) 

 
with initial conditions 

 𝑢(𝑥, 0) = 𝑒𝑥,   𝑣(𝑥, 0) = 𝑒−𝑥. 
 

(2.276) 

Solution: 
From (2.22) we find that  𝜆1 = 𝜆2 = −1. Therefore, the iteration formula is given by 

 
𝑢𝑛+1(𝑥, 𝑡) = 𝑢𝑛(𝑥, 𝑡) − � �

𝜕𝑢𝑛(𝑥, 𝑠)
𝜕𝑠

+ 𝑣𝑛(𝑥, 𝑠)
𝜕𝑢𝑛(𝑥, 𝑠)

𝜕𝑥
+ 𝑢𝑛(𝑥, 𝑠) − 1�

𝑡

0
𝑑𝑠, 

𝑣𝑛+1(𝑥, 𝑡) = 𝑣𝑛(𝑥, 𝑡) − � �
𝜕𝑣𝑛(𝑥, 𝑠)

𝜕𝑠
− 𝑢𝑛(𝑥, 𝑠)

𝜕𝑣𝑛(𝑥, 𝑠)
𝜕𝑥

− 𝑣𝑛(𝑥, 𝑠) − 1�
𝑡

0
𝑑𝑠. 

 
 
 
(2.277) 

We can choose 𝑢0(𝑥, 𝑡) = 𝑒𝑥 and 𝑣0(𝑥, 𝑡) = 𝑒−𝑥 from the given condition. Using 𝑢0(𝑥, 𝑡) = 𝑒𝑥 
and 𝑣0(𝑥, 𝑡) = 𝑒−𝑥 we have 
  
 𝑢0(𝑥, 𝑡) = 𝑒𝑥 ,                        𝑣0(𝑥, 𝑡) = 𝑒−𝑥    

𝑢1(𝑥, 𝑡) = 𝑒𝑥 − � �
𝜕𝑢0(𝑥, 𝑠)

𝜕𝑠
+ 𝑣0(𝑥, 𝑠)

𝜕𝑢0(𝑥, 𝑠)
𝜕𝑥

+ 𝑢0(𝑥, 𝑠) − 1�
𝑡

0
𝑑𝑠

= 𝑒𝑥 − 𝑡𝑒𝑥 = 𝑒𝑥(1 − 𝑡), 

𝑣1(𝑥, 𝑡) = 𝑒−𝑥 − � �
𝜕𝑣0(𝑥, 𝑠)

𝜕𝑠
− 𝑢0(𝑥, 𝑠)

𝜕𝑣0(𝑥, 𝑠)
𝜕𝑥

− 𝑣0(𝑥, 𝑠) − 1�
𝑡

0
= 𝑒−𝑥 + 𝑡𝑒−𝑥 = 𝑒−𝑥(1 + 𝑡), 

 
⋮ 
 

 
 
 
 
 
 
 
 
(2.278) 

 

 
Upon taking more iterates we will easily observe that the series solutions are converging to the 
exact solutions given by 
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 𝑢(𝑥, 𝑡) = 𝑒𝑥−𝑡 , 
𝑣(𝑥, 𝑡) = 𝑒−𝑥+𝑡 . 

 

 
(2.279) 

 
Example 2.23     The variational iteration method is now applied to solve the nonlinear system 

 𝑢𝑡 − 𝑣𝑥𝑤𝑦 = 1, 
𝑢𝑡 − 𝑤𝑥𝑣𝑦 = 5, 
𝑢𝑡 − 𝑢𝑥𝑣𝑦 = 5,  

 

 
 
(2.280) 

 

with initial conditions 

 𝑢(𝑥, 𝑦, 0) = 𝑥 + 2𝑦,   𝑣(𝑥, 𝑦, 0) = 𝑥 − 2𝑦,     𝑤(𝑥, 𝑦, 0) = −𝑥 + 2𝑦. 
 

(2.281) 
 

 
Solution: 
From (2.22) we find that 𝜆1 = 𝜆2 = 𝜆3 = −1. Therefore, the iteration formula is given by 

 𝑢𝑛+1(𝑥, 𝑦, 𝑡) = 𝑢𝑛(𝑥, 𝑦, 𝑡)

− � �
𝜕𝑢𝑛(𝑥, 𝑦, 𝑠)

𝜕𝑠
−

𝜕𝑣𝑛(𝑥, 𝑦, 𝑠)
𝜕𝑥

𝜕𝑤𝑛(𝑥, 𝑦, 𝑠)
𝜕𝑦

− 1�
𝑡

0
𝑑𝑠, 

𝑣𝑛+1(𝑥, 𝑦, 𝑡) = 𝑣𝑛(𝑥, 𝑦, 𝑡)

− � �
𝜕𝑣𝑛(𝑥, 𝑦, 𝑠)

𝜕𝑠
−

𝜕𝑤𝑛(𝑥, 𝑦, 𝑠)
𝜕𝑥

𝜕𝑢𝑛(𝑥, 𝑦, 𝑠)
𝜕𝑦

− 5�
𝑡

0
𝑑𝑠, 

𝑤𝑛+1(𝑥, 𝑦, 𝑡) = 𝑤𝑛(𝑥, 𝑦, 𝑡)

− � �
𝜕𝑤𝑛(𝑥, 𝑦, 𝑠)

𝜕𝑠
−

𝜕𝑢𝑛(𝑥, 𝑦, 𝑠)
𝜕𝑥

𝜕𝑣𝑛(𝑥, 𝑦, 𝑠)
𝜕𝑦

− 5�
𝑡

0
𝑑𝑠. 

 

 
 
 
 
 
 
 
 
(2.282) 

 

 
 
We can choose 𝑢0(𝑥, 𝑦, 𝑡) = 𝑥 + 2𝑦, 𝑣0(𝑥, 𝑦, 𝑡) = 𝑥 − 2𝑦 and 𝑤0(𝑥, 𝑦, 𝑡) = −𝑥 + 2𝑦 from the 
given conditions. Using these choices we get the higher iterates:  
  
 

 𝑢0(𝑥, 𝑡) = 𝑥 + 2𝑦 ,                        𝑣0(𝑥, 𝑡) = 𝑥 − 2𝑦,           𝑤0(𝑥, 𝑦, 𝑡) = −𝑥 + 2𝑦,   

    

𝑢1(𝑥, 𝑡) = 𝑥 + 2𝑦 − � �
𝜕𝑢0(𝑥, 𝑦, 𝑠)

𝜕𝑠
−

𝜕𝑣0(𝑥, 𝑦, 𝑠)
𝜕𝑥

𝜕𝑤0(𝑥, 𝑦, 𝑠)
𝜕𝑦

− 1�
𝑡

0

= 𝑥 + 2𝑦 + 3𝑡, 

𝑣1(𝑥, 𝑡) = 𝑥 − 2𝑦 − � �
𝜕𝑣0(𝑥, 𝑦, 𝑠)

𝜕𝑠
−

𝜕𝑤0(𝑥, 𝑦, 𝑠)
𝜕𝑥

𝜕𝑢0(𝑥, 𝑦, 𝑠)
𝜕𝑦

− 5�
𝑡

0
𝑑𝑠

= 𝑥 − 2𝑦 + 3𝑡, 
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𝑤1(𝑥, 𝑦, 𝑡) = −𝑥 + 2𝑦 − � �
𝜕𝑤0(𝑥, 𝑦, 𝑠)

𝜕𝑠
−

𝜕𝑢0(𝑥, 𝑦, 𝑠)
𝜕𝑥

𝜕𝑣0(𝑥, 𝑦, 𝑠)
𝜕𝑦

− 5�
𝑡

0
𝑑𝑠

= −𝑥 + 2𝑦 + 3𝑡 

⋮ 

 
 
(2.283) 

 

These iterate will converge to the exact solutions given by 

 𝑢(𝑥, 𝑡) = 𝑥 + 2𝑦 + 3𝑡, 
𝑣(𝑥, 𝑡) = 𝑥 − 2𝑦 + 3𝑡, 

𝑤(𝑥, 𝑡) = −𝑥 + 2𝑦 + 3𝑡. 

 
 
(2.284) 

 

 

2.7 Integro-Differential Equations 

 

 In this section, we will handle integro-differential equations. Recall that an integro-
differential equation is an equation that contains 𝑢(𝑖)(𝑥), which is the 𝑖th derivative of 𝑢(𝑥),  and 
an unknown function 𝑢(𝑥) that appears under an integral sign. A standard integro-differential 
equation is of the form: 
 

𝑢(𝑖)(𝑥) = 𝑓(𝑥) + � 𝐾(𝑥, 𝑡)𝐹�𝑢(𝑡)�𝑑𝑡
ℎ(𝑥)

𝑔(𝑥)
, 

 

 
(2.285) 

 

where  𝐹�𝑢(𝑥)�is a nonlinear function of 𝑢(𝑥), 𝑔(𝑥) and  ℎ(𝑥) are the limits of the integral, 
𝐾(𝑥, 𝑡)  is a function of two variables  𝑥 and  𝑡 called the kernel or the nucleus of the equation. 
We have to mention that the limits of integration  𝑔(𝑥) and  ℎ(𝑥) can be variables, constants, or 
mixed. 
 
The correction functional for the nonlinear integro-differential equation (2.285) is 
 
 

𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) + � 𝜆(𝑠) �𝑢𝑛
(𝑖)(𝑠) − 𝑓(𝑠) − � 𝐾(𝑠, 𝑡)𝐹�𝑢𝑛(𝑡)�𝑑𝑡

ℎ(𝑠)

𝑔(𝑠)
� 𝑑𝑠,

𝑥

0
 

 
(2.286) 

 
where 𝜆  is Lagrange’s multiplier, 𝑢�𝑛  as restricted variation ( 𝛿𝑢�𝑛 = 0).  The zeroth 
approximation 𝑢𝑛 can be any selective function and we showed before how to find it. 
 
 
Example 2.23    We use the variational iteration method to solve the nonlinear  Volterra  
integro-differential equation 
 

𝑢′(𝑥) = 1 + 𝑒𝑥 − 2𝑥𝑒𝑥 − 𝑒2𝑥 + � 𝑒𝑥−𝑡𝑢2(𝑡)𝑑𝑡,
𝑥

0
                  𝑢(0) = 2. 

 

 
(2.287) 

 
Solution: 
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From (2.22) we find that 𝜆 = −1. Therefore, the iteration formula is given by 

 
𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) − � �𝑢′

𝑛(𝑠) − 1 − 𝑒𝑠 + 2𝑠𝑒𝑠 + 𝑒2𝑠 − � 𝑒𝑠−𝑟𝑢𝑛
2(𝑟)𝑑𝑟 

𝑠

0
�

𝑥

0

𝑑𝑠.   

 

 
 
(2.288) 

 
We can choose 𝑢0(𝑥) = 2  from the given initial condition. Using this value we have 

 𝑢0(𝑥) = 2, 

𝑢1(𝑥) = 2 − � �𝑢′
0(𝑠) − 1 − 𝑒𝑠 + 2𝑠𝑒𝑠 + 𝑒2𝑠 − � 𝑒𝑠−𝑟𝑢0

2(𝑟)𝑑𝑟 
𝑠

0
�

𝑥

0

𝑑𝑠

= 2 + 𝑥 +
1
2

𝑥2 −
1
2

𝑥3 −
3
8

𝑥4 −
19

120
𝑥5, 

𝑢2(𝑥) = 2 + 𝑥 +
1
2

𝑥2 −
1
2

𝑥3 −
3
8

𝑥4 −
19

120
𝑥5

− � �𝑢′
1(𝑠) − 1 − 𝑒𝑠 + 2𝑠𝑒𝑠 + 𝑒2𝑠 − � 𝑒𝑠−𝑟𝑢1

2(𝑟)𝑑𝑟 
𝑠

0
�

𝑥

0

𝑑𝑠

= 2 + 𝑥 +
1
2

𝑥2 +
1
3!

𝑥3 +
1
4!

𝑥4 −
1
8

𝑥5. 
 

 
 
 
 
 
 
 
 
 
 
 
(2.289) 

Clearly the series solution is the Taylor’s series expansion of the exact solution which is given 
by 

  
 𝑢(𝑥) = 1 + 𝑒𝑥.  

 
(2.290) 
 

Example 2.24    The variational iteration method will be used to solve the nonlinear  Fredholm   
integro-differential equation 
 

𝑢′(𝑥) = cos 𝑥 −
𝜋

48
𝑥 +

1
24

� 𝑥𝑢2(𝑡)𝑑𝑡,
𝜋

0
   𝑢(0) = 0.  

 

 
(2.291) 

 
Solution: 
From (2.22) we find that  𝜆 = −1. Therefore, the iteration formula is given by 

 
𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) − � �𝑢′

𝑛(𝑠) − cos 𝑠 +
𝜋

48
𝑠 −

1
24

� 𝑠𝑢𝑛
2(𝑟)𝑑𝑟 

𝜋

0
�

𝑥

0

𝑑𝑠.   

 

 
(2.292) 

 

We can choose  𝑢0(𝑥) = 0  from the given initial condition. Using 𝑢0(𝑥) = 0 we have  

 𝑢0(𝑥) = 0, 

𝑢1(𝑥) = 0 − � �𝑢′
0(𝑠) − 𝑐𝑜𝑠 𝑠 +

𝜋
48

𝑠 −
1

24
� 𝑠𝑢0

2(𝑟)𝑑𝑟 
𝜋

0
�

𝑥

0

𝑑𝑠

= 𝑠𝑖𝑛 𝑥 − 0.03272𝑥2, 
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𝑢2(𝑥) = 𝑠𝑖𝑛 𝑥 − 0.03272𝑥2 − � �𝑢′
1(𝑠) − 𝑐𝑜𝑠 𝑠 +

𝜋
48

𝑠 −
1

24
� 𝑠𝑢1

2(𝑟)𝑑𝑟 
𝜋

0
�

𝑥

0

𝑑𝑠

= 𝑠𝑖𝑛 𝑥 − 0.00664𝑥2, 

𝑢3(𝑥) = 𝑠𝑖𝑛 𝑥 − 0.00664𝑥2 − � �𝑢′
2(𝑠) − 𝑐𝑜𝑠 𝑠 +

𝜋
48

𝑠 −
1

24
� 𝑠𝑢2

2(𝑟)𝑑𝑟 
𝜋

0
�

𝑥

0

𝑑𝑠

= 𝑠𝑖𝑛 𝑥 − 0.001567𝑥2.  
 

 
 
 
 
 
(2.293) 

 

Consequently, the solution is given by 

 lim
𝑛→∞

𝑢𝑛(𝑥).  (2.294) 
 

There are some noise term appearing in the iterates and in the limit they will converge to zero 
and hence we obtain the exact solution which is clearly  
 
 𝑢(𝑥) = sin 𝑥. 

 
(2.295) 

 

2.8 Integral Equations 
 

2.8.1 Volterra Integral Equations 
 

In this section, we apply the variational iteration method for Volterra type of Integral 
equations. We can solve the Volterra integral equations in two ways: the first one is by 
converting the Volterra integral equation to an equivalent integro-differential equation by 
differentiating both sides of the equation and solve it as in section 2.7, and the second is by 
converting the Volterra integral equation to an initial value problem and then solve it easily. 

 

 

A standard Volterra integral equation in  𝑢(𝑥) is of the form: 

 𝑢(𝑥) = 𝑓(𝑥) + ∫ 𝐾(𝑥, 𝑡)𝐹�𝑢(𝑡)�𝑑𝑡,𝑥
0    (2.296) 

 
Where  𝐹�𝑢(𝑥)�  is a nonlinear function of 𝑢(𝑥),  0 and  𝑥 are the limits of the integral, and 
𝐾(𝑥, 𝑡) is a function of two variables  𝑥 and  𝑡  called the kernel or the nucleus of the integral 
equation. 
 

Example 2.25   We will solve the Volterra integral equation by using the variational iteration 
method 
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𝑢(𝑥) = 1 + 𝑥 +

1
2

𝑥2 +
1
2

� (𝑥 − 𝑡)2𝑢(𝑡)𝑑𝑡.
𝑥

0
 

(2.297) 
 

Solution: 
We can solve this problem by converting this Volterra integral equation to an integro-differntial 
equation or by converting it to an initial value problem. To do that, differentiate both sides of 
(2.297) three times with respect to 𝑥 gives the following two integro-differential equations: 
 
 

𝑢′(𝑥) = 1 + 𝑥 + � (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡,
𝑥

0
    𝑢(0) = 1, 

𝑢′′(𝑥) = 1 + � 𝑢(𝑡)𝑑𝑡,
𝑥

0
    𝑢(0) = 1,   𝑢′(0) = 1, 

 

 
 
 
(2.298) 

 

and an initial value problem given by 

 𝑢′′′(𝑥) = 𝑢(𝑥),          𝑢(0) = 1,          𝑢′(0) = 1, 𝑢′′(0) = 1.  
 

(2.299) 
 

Then we can easily solve each equation using the variational iteration method as we mentioned 
before in the previous sections. 

 

2.8.2 Fredholm Integral Equations 

Now, we will apply the variational iteration method to handle Fredholm integral 
equations. 
 
Consider the standard Fredholm integral equation given by 
 
 

𝑢(𝑥) = 𝑓(𝑥) + � 𝐾(𝑥, 𝑡)𝐹�𝑢(𝑡)�𝑑𝑡
𝑏

𝑎
, 

 

(2.300) 
 

where 𝐹�𝑢(𝑥)� is a nonlinear function of 𝑢(𝑥), 𝑎 and 𝑏 are constants and are the limits of the 
integral, λ is a constant parameter, and 𝐾(𝑥, 𝑡) is a function of two variables 𝑥 and 𝑡 called the 
kernel or the nucleus of the integral equation.  
Note that 𝐾(𝑥, 𝑡)  is separable and can be written in the form 𝐾(𝑥, 𝑡) =  𝑔(𝑥)ℎ(𝑡).  Thus, 
equation (2.300) can be written as 
 
 

𝑢(𝑥) = 𝑓(𝑥) + 𝑔(𝑥) � ℎ(𝑡)𝐹�𝑢(𝑡)�𝑑𝑡
𝑏

𝑎
. 

 

 
(2.301) 

 

To solve the Fredholm integral equations we should convert the equation to an equivalent 
integro-differential equation by differentiating both sides of the equation. In the following we 
will study the case where 𝑔(𝑥) = 𝑥𝑛. 
 
 Example 2.25   We solve the following Fredholm integral equation by using the variational 
iteration method 
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𝑢(𝑥) = 𝑒𝑥 − 𝑥 + 𝑥 � 𝑡𝑢(𝑡)𝑑𝑡.

1

0
 

 
(2.302) 

Solution: 
First, we have to convert the Fredholm integral equation to an integro-differential equation by 
differentiating both sides of the equation (2.302) with respect to 𝑥.  We have 
 
 

𝑢′(𝑥) = 𝑒𝑥 − 1 + � 𝑡𝑢(𝑡)𝑑𝑡
1

0
, 

 
(2.303 

with initial condition 𝑢(0) = 1. 
Recall that the integral at the right side represents a constant value. Now, we can easily solve this 
integro-differential equation. From (2.22) we find that 𝜆 = −1. Therefore, the iteration formula 
is given by 

 
𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) − � �𝑢′

𝑛(𝑠) − 𝑒𝑠 + 1 − � 𝑡𝑢𝑛(𝑡)𝑑𝑡
1

0
�

𝑥

0

𝑑𝑠.   

 

 
(2.304) 

We can choose 𝑢0(𝑥) = 1  from the resulting initial condition. Using 𝑢0(𝑥) = 1 we have  

 𝑢0(𝑥) = 1, 

𝑢1(𝑥) = 1 − � �𝑢′
0(𝑠) − 𝑒𝑠 + 1 − � 𝑡𝑢0(𝑡)𝑑𝑡

1

0
�

𝑥

0

𝑑𝑠 = 𝑒𝑥 −
1
2

𝑥, 

𝑢2(𝑥) = 𝑒𝑥 −
1
2

𝑥 − � �𝑢′
1(𝑠) − 𝑒𝑠 + 1 − � 𝑡𝑢1(𝑡)𝑑𝑡

1

0
�

𝑥

0

𝑑𝑠 = 𝑒𝑥 −
1
6

𝑥, 

𝑢3(𝑥) = 𝑒𝑥 −
1
6

𝑥 − � �𝑢′
2(𝑠) − 𝑒𝑠 + 1 − � 𝑡𝑢2(𝑡)𝑑𝑡

1

0
�

𝑥

0

𝑑𝑠 = 𝑒𝑥 −
1

18
𝑥, 

⋮ 
 

 
 
 
 
 
 
 
(2.305) 

 

Note that there are noise terms in the iterates which will disappear as we pass to the limit. Thus, 
The VIM admits the use of 

 𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛(𝑥) = 𝑒𝑥, 
 

(2.306) 

which is the exact solution of the problem. 
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2.9 Calculus of Variations  

 

Finally, in this last section we will handle some problems in calculus of variations. We 
will apply the VIM for solving Euler-Lagrange equations which arises in calculus of variations 
problems, more precisely when dealing with maximizing or minimizing a given functional. 

Consider the general form of the variational problem: 
 
 

𝑣[𝑢1, 𝑢2, … , 𝑢𝑛] = � 𝐹(𝑥, 𝑢1, 𝑢2, … , 𝑢𝑛, 𝑢′
1, 𝑢′

2, … , 𝑢′
𝑛)𝑑𝑥,

𝑥1

𝑥0

  

 

 
(2.307) 
 

with the boundary conditions 
 
 𝑢1(𝑥0) = 𝑎1,        𝑢2(𝑥0) = 𝑎2 ,   …,        𝑢𝑛(𝑥0) = 𝑎𝑛, 

𝑢1(𝑥1) = 𝑏1,        𝑢2(𝑥1) = 𝑏2 ,   …,        𝑢𝑛(𝑥1) = 𝑏𝑛. 
 
(2.308) 

 
We indent to maximize the functional to equation (2.306): the solution satisfies the Euler-
Lagrange equation of the form  
 𝐹𝑢𝑘 −

𝑑
𝑑𝑥

𝐹𝑢′
𝑘 = 0,      𝑘 = 1,2, … , 𝑛, 

  

 
(2.309) 

with the same boundary conditions (2.308). 
 
In the following examples, the variational iteration method for solving such kinds of problems 
will be studied. 
 
Example 2.26   We will use the variational iteration method to solve the calculus of variation 
problem 
 

min 𝑣 = �
1 + 𝑢2(𝑥)

𝑢′2(𝑥)

1

0
𝑑𝑥,  

 
(2.310) 

with the boundary conditions 
 
 𝑢(0) = 0, 𝑢(1) = 0.5. (2.311) 

 
 
 
The exact solution is given by  
 𝑢(𝑥) = sinh(0.481218250𝑥). (2.312) 
Solution: 
The function which minimizes the integral satisfies the Euler-Lagrange equation which is given 
by  
 
 𝑢′′ + 𝑢′′𝑢2 − 𝑢𝑢′2 = 0,  (2.313) 
with boundary conditions 
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 𝑢(0) = 0, 𝑢(1) = 0.5. 
 

(2.314) 
 

From (2.43) we find that 𝜆 = 𝑠 − 𝑥. Therefore, the iteration formula is given by 

 
𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) + �(𝑠 − 𝑥) �𝑢′′𝑛(𝑠) + 𝑢𝑛

2(𝑠)𝑢′′𝑛(𝑠) − 𝑢′𝑛2 (𝑠)𝑢𝑛(𝑠)�
𝑥

0

𝑑𝑠.   

  

 
(2.315) 

 

We can choose 𝑢0(𝑥) = 0 + 𝐴𝑥  from the given initial condition at 𝑥 = 0. Using 𝑢0(𝑥) = 𝐴𝑥 
we have  

 𝑢0(𝑥) = 𝐴𝑥, 

𝑢1(𝑥) = 𝐴𝑥 + �(𝑠 − 𝑥) �𝑢′′0(𝑠) + 𝑢0
2(𝑠)𝑢′′0(𝑠) − 𝑢′02(𝑠)𝑢0(𝑠)�

𝑥

0

𝑑𝑠

= 𝐴𝑥 −
1
2

𝐴3𝑥3, 

𝑢2(𝑥) = 𝐴𝑥 −
1
2

𝐴3𝑥3 + �(𝑠 − 𝑥) �𝑢′′1(𝑠) + 𝑢1
2(𝑠)𝑢′′1(𝑠) − 𝑢′1

2(𝑠)𝑢1(𝑠)�
𝑥

0

𝑑𝑠

= 𝐴𝑥 + 
1
6

𝐴3𝑥3 −
1

192
𝐴9𝑥9 −

1
40

𝐴5𝑥5 +
1

56
𝐴7𝑥7. 

 

 
 
 
 
 
 
 
 
 
(2.316) 

 

By imposing the boundary conditions in 𝑢2 at 𝑥 = 1, we get 

 𝐴 = 0.4818977464. 
 

(2.317) 
 

The error resulting from the VIM using two iterations is listed in Table 2.9. The error is 
uniformly distributed and can be improved by taking more iterates. This result shows the fast 
convergence of the VIM for this case. Figure 2.7 shows the numerical and exact solutions and 
they are almost well-matched starting from the second iterate.     
 
               

 
 
 

 

 

 

 

 

Table 2.9  Error obtained using variational method with two iterations. 

𝒙 EXACT ERROR 
𝟏 0.0 0.0 

𝟏. 𝟏 0.04813975661 6.9 × 10−5 
𝟏. 𝟐 0.09639100946 1.4 × 10−4 
𝟏. 𝟑 0.1448655131 2.1 × 10−4 
𝟏. 𝟒 0.1936755390 2.7 × 10−4 
𝟏. 𝟓 0.2429341358 3.3 × 10−4 
𝟏. 𝟔 0.2927553913 3.7 × 10−4 
𝟏. 𝟕 0.3432546960 3.7 × 10−4 
𝟏. 𝟖 0.3945490113 3.3 × 10−4 
𝟏. 𝟗 0.4467571396 2.2 × 10−4 
𝟏. 𝟏 0.5 1.0 × 10−10 
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Figure 2.7  Error obtained using variational method with two iterations. 

 
 
Example 2.27    We use the variational iteration method to solve the calculus of variation 
problem 
 
 

 𝑣[𝑢(𝑥), 𝑧(𝑥)] = � �𝑢′2(𝑥) + 𝑧′2(𝑥) + 2𝑢(𝑥)𝑧(𝑥)�
𝜋

2�

0
𝑑𝑥, 

 

 
(2.318) 

 

 
with the boundary conditions 
 𝑢(0) = 0, 𝑢 �

𝜋
2

� = 1, 

𝑧(0) = 0, 𝑧 �
𝜋
2

� = −1.  

 
 
(2.319) 

 

 
Solution: 
The Euler-Lagrange equations of this problem are given by  
 
 𝑢′′ − 𝑧 = 0, 

𝑧′′ − 𝑢 = 0,  
 
(2.320) 

 
with boundary conditions 
 𝑢(0) = 0,    𝑢 �

𝜋
2

� = 1, 

𝑧(0) = 0,      𝑧 �
𝜋
2

� = −1. 
 

 
 
(2.321) 

 

Similar to Example 2.26 we find that 𝜆1 = 𝜆2 = 𝑠 − 𝑥. Therefore, the iteration formula is given 
by 

             EXACT                  VIM 
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𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) + �(𝑠 − 𝑥)�𝑢′′𝑛(𝑠) − 𝑧𝑛(𝑠)�

𝑥

0

𝑑𝑠,   

𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) + �(𝑠 − 𝑥)�𝑧′′𝑛(𝑠) − 𝑢𝑛(𝑠)�
𝑥

0

𝑑𝑠.   

 
 
 
(2.322) 

We can choose 𝑢0(𝑥) = 0 + 𝐴𝑥 and  𝑧0(𝑥) = 0 + 𝐵𝑥  from the given conditions. Using  
𝑢0(𝑥) = 𝐴𝑥  and 𝑧0(𝑥) = 𝐵𝑥 we have  

 𝑢0(𝑥) = 𝐴𝑥,                         𝑧0(𝑥) = 𝐵𝑥, 

𝑢1(𝑥) = 𝐴𝑥 + �(𝑠 − 𝑥)�𝑢′′0(𝑠) − 𝑧0(𝑠)�
𝑥

0

𝑑𝑠 = 𝐴𝑥 +
1
6

𝐵𝑥3, 

𝑧1(𝑥) = 𝐵𝑥 + �(𝑠 − 𝑥)�𝑧′′0(𝑠) − 𝑢0(𝑠)�
𝑥

0

𝑑𝑠 = 𝐵𝑥 +
1
6

𝐴𝑥3. 

 

 
 
 
(2.323) 

 

By imposing the boundary conditions on  𝑢1, 𝑧1  at  𝑥 = 1, we have  

 𝐴 = 1.081277196,     𝐵 = 1.081277196, 
  

(2.324) 

and the series solution of the problem will be found. 
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CHAPTER 3: A GREEN’S FUNCTION-FIXED POINT ITERATIVE 
SCHEME  
 

3.1 Green’s Functions  
 

In Chapters 1 and 2, we gave a review of two well-known iterative strategies to obtain 
numerical solution for various problems. However, we noted deficiencies in both of them, 
particularly the accuracy deteriorates as the applicable domain increases and the convergence is 
local. In this chapter, we propose an alternate approach based on embedding Green’s functions 
into fixed point iterative schemes and then applying the scheme to a carefully selected integral 
operator. The prominent characteristic and the main rationale behind this novel technique are to 
surmount the deterioration of the numerical solution obtained by ADM and VIM as the domain 
grows.   

First, we will introduce Green’s functions and investigate how they may be used to derive 
a general solution to an inhomogeneous boundary value problem. The history of the Green’s 
function dates back to 1828, when George Green published article aimed at seeking solution for 
the Poisson’s equation  ∆𝑢 = 𝑓  for the electric potential  𝑢  defined inside a bounded volume 
with given boundary conditions on the surface of the volume. He introduced a function that was 
later referred to by Riemann as the “Green’s function.” We will restrict our discussion to Green’s 
functions for ordinary differential equations. 
 
 
 
3.1.1 First Order Equations 

Consider the first order equation 

 𝐿[𝑢] ≡ 𝑢′(𝑡) + 𝑝(𝑡)𝑢(𝑡) = 𝑓(𝑡),        for 𝑥 > 𝑎, (3.1) 
subject to an initial condition,  

 𝐵[𝑢] ≡ 𝑢(𝑎) = 𝛼. (3.2) 
The general solution is given by  

 𝑢 = 𝑢ℎ + 𝑢𝑝, 
 

(3.3) 

where 𝑢ℎ  is a homogeneous solution which is the solution of 𝐿[𝑢] = 0 subject to the initial 
condition (3.2) and 𝑢𝑝  is a particular solution which satisfies  𝐿[𝑢] = 𝑓(𝑡) with homogeneous 
initial condition 𝑢(𝑎) = 0. We represent the inhomogeneous solution (the particular solution) as 
an integral of the Green’s function 𝐺(𝑡|𝑠) given by 

 
𝑢 = � 𝐺(𝑡|𝑠)𝑓(𝑠)

∞

𝑎
𝑑𝑠, 

(3.4) 

where the Green function 𝐺(𝑡|𝑠) is defined as the solution to 
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 𝐿[𝐺(𝑡|𝑠)]  =  𝛿(𝑡 − 𝑠)   subject to 𝐺(𝑎|𝑠) = 0, 
 

(3.5) 

where  𝛿(𝑡 − 𝑠)   is the Dirac delta function defined as 

  𝛿(𝑡 − 𝑠) = � 0,   𝑡 ≠ 𝑠
∞,   𝑡 = 𝑠. (3.6) 

 
Another way to define the delta function is as one that satisfies the following properties: 
 
 

i. � 𝛿(𝑡 − 𝑠)𝑑𝑡 = 1,
∞

−∞

 

ii. � 𝛿(𝑡 − 𝑠)𝑓(𝑠)𝑑𝑡 = 𝑓(𝑡)
∞

−∞

, 

 
 
(3.7) 

where the integral can be taken over any interval that includes 𝑡 = 𝑠. To show that (3.3) is the 
solution, we can use the definition of Green’s function (3.5) and the properties of the Dirac delta 
function (3.7). Applying the linear operator 𝐿 to the solution 𝑢 
 
 

𝐿�𝑢ℎ + 𝑢𝑝� = 𝐿 �� 𝐺(𝑡|𝑠)𝑓(𝑠)
∞

𝑎
𝑑𝑠� 

                    = � 𝐿[𝐺(𝑡|𝑠)]𝑓(𝑠)
∞

𝑎
𝑑𝑠 

          =  � 𝛿(𝑡 − 𝑠)𝑓(𝑠)
∞

𝑎
𝑑𝑠 

           = 𝑓(𝑡). 

 
 
 
 
 
 
(3.8) 

Applying the initial condition to 𝑢 yields 

 
𝐵�𝑢ℎ + 𝑢𝑝� = 𝐵 �𝑢ℎ + � 𝐺(𝑡|𝑠)𝑓(𝑠)

∞

𝑎
𝑑𝑠� 

                    = 𝛼 + � 𝐵[𝐺(𝑡|𝑠)]𝑓(𝑠)
∞

𝑎
𝑑𝑠 

      =  𝛼 + � 0 ∙ 𝑓(𝑠)
∞

𝑎
𝑑𝑠 = 𝛼. 

 
 
 
 
(3.9) 

The Green’s function satisfies the equation 

 𝐺′(𝑡|𝑠) + 𝑝(𝑡)𝐺(𝑡|𝑠) = 𝛿(𝑡 − 𝑠). (3.10) 
 

The solution to the corresponding homogeneous equation is 

 𝑢ℎ = 𝑒− ∫ 𝑝(𝑥) 𝑑𝑥𝑡
𝑠 . (3.11) 

 

For 𝑡 ≠ 𝑠,  Green’s function is a homogeneous solution to the differential equation 𝐿[𝑢] = 0, 
However,  at 𝑡 = 𝑠  Green’s function has a singular behavior. Therefore, Green’s function is 
given by 
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𝐺(𝑡|𝑠) = �𝑐1𝑒− ∫ 𝑝(𝑥) 𝑑𝑥𝑡

𝑠 ,

𝑐2𝑒− ∫ 𝑝(𝑥) 𝑑𝑥𝑡
𝑠 ,

𝑎 < 𝑡 < 𝑠
𝑡 > 𝑠 , 

 

(3.12) 

where  𝑐1 and 𝑐2 are constants. We can find these two constants using the following properties of 
Green's function:  

 
1. The Green function satisfies the homogeneous initial condition 

 
 

 
𝑢 = � 𝐺(𝑡|𝑠)𝑓(𝑠)

∞

𝑎
𝑑𝑠, 

(3.13) 

thus, we get 𝑐1 = 0. Green’s function becomes 
 

 
𝐺(𝑡|𝑠) = �

0,
𝑐2𝑒− ∫ 𝑝(𝑥) 𝑑𝑥𝑡

𝑠 ,
𝑎 < 𝑡 < 𝑠

𝑡 > 𝑠 . 
(3.14) 

 
2. Integrating equation (3.10), we get  

  

� [𝐺′(𝑡|𝑠) + 𝑝(𝑡)𝐺(𝑡|𝑠)]𝑑𝑥
𝑠+

𝑠−
= � [𝛿(𝑡 − 𝑠)]𝑑𝑥

𝑠+

𝑠−
, 

𝐺(𝑠+|𝑠) − 𝐺(𝑠−|𝑠) + � 𝑝(𝑡)𝐺(𝑡|𝑠)
𝑠+

𝑠−
= 1, 

𝐺(𝑠+|𝑠) − 𝐺(𝑠−|𝑠) = 1. 
 

 
 
 
 
(3.15) 

Since 𝐺′(𝑡|𝑠)  has a Dirac delta function type of singularity, thus 𝐺(𝑡|𝑠) has a jump 
discontinuity at 𝑡 = 𝑠. Since at 𝑡 = 𝑠, ∫ 𝑝(𝑥) 𝑑𝑥𝑡

𝑠 = 0  it follows from (3.15) that 

 𝑐2𝑒− ∫ 𝑝(𝑥) 𝑑𝑥𝑡
𝑠 − 0 = 1, 

𝑐2 = 1. 
 
(3.16) 

 

The Green’s function becomes 

 
𝐺(𝑡|𝑠) = �

0,
𝑒− ∫ 𝑝(𝑥) 𝑑𝑥𝑡

𝑠 ,
𝑎 < 𝑡 < 𝑠

𝑡 > 𝑠 . 
(3.17) 

We can use the Heaviside function to rewrite the equation (3.17). The Heaviside function is 
defined as  

 𝐻(𝑡 − 𝑠) = �0, 𝑡 < 𝑠
1, 𝑡 ≥ 𝑠. (3.18) 

 

Thus, equation (3.17) becomes  

 𝐺(𝑡|𝑠) = 𝑒− ∫ 𝑝(𝑥) 𝑑𝑥𝑡
𝑠 𝐻(𝑡 − 𝑠).  (3.19) 
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3.1.2 Initial Value Problems for Second Order Equations 

Consider the second order equation 

 𝐿[𝑢] ≡ 𝑢′′ + 𝑝(𝑡)𝑢′ + 𝑞(𝑡)𝑢 = 𝑓(𝑡),        for 𝑎 < 𝑡 < 𝑏, (3.20) 
subject to the initial conditions,  

 𝑢(𝑎) = 𝛼, 
𝑢′(𝑎) = 𝛽. 

 
(3.21) 

The general solution is given by  

 𝑢 = 𝑢ℎ + 𝑢𝑝, 
 

(3.22) 

where 𝑢ℎ is the homogeneous solution which is the solution of 𝐿[𝑢] = 0 subject to the initial 
conditions (3.21) while 𝑢𝑝 is a particular solution which satisfies 𝐿[𝑢] = 𝑓(𝑡) with the initial 
conditions 𝑢(𝑎) = 𝑢′(𝑎) = 0. We represent the inhomogeneous solution (the particular solution) 
as an integral of the Green’s function 𝐺(𝑡|𝑠) as 

 
𝑢(𝑡) = � 𝐺(𝑡|𝑠)𝑓(𝑠)

𝑡

𝑎
𝑑𝑠. 

(3.23) 

By applying the linear operator 𝐿, we can verify that (3.22) is correct 

 
𝐿�𝑢ℎ + 𝑢𝑝� = 𝐿 �� 𝐺(𝑡|𝑠)𝑓(𝑠)

𝑡

𝑎
𝑑𝑠� 

                    = � 𝐿[𝐺(𝑡|𝑠)]𝑓(𝑠)
𝑡

𝑎
𝑑𝑠 

   =  � 𝛿(𝑡 − 𝑠)𝑓(𝑠)
𝑡

𝑎
𝑑𝑠 

        = 𝑓(𝑡), 
 

 
 
 
 
 
 
(3.24) 

so we do indeed have a solution to (3.20), namely (3.22). Let us consider the general solution of 
the inhomogeneous problem 𝑢 = 𝑐1𝑢1 + 𝑐2𝑢2, then we have  

 𝑢′ = 𝑐′1𝑢1 + 𝑐1𝑢′1 + 𝑐′2𝑢2 + 𝑐2𝑢′2. (3.25) 
Since 𝑐1and 𝑐2 are constants, thus 

 𝑐′1𝑢1 + 𝑐′2𝑢2 = 0. (3.26) 
Therefore, from (3.26), we get  

 𝑢′ = 𝑐1𝑢′1 + 𝑐2𝑢′2. (3.27) 
Substituting expressions for 𝑢 and 𝑢′ into equation (3.20), gives 

 𝑐′1𝑢′1 + 𝑐1𝑢′′1 + 𝑐′2𝑢′2 + 𝑐2𝑢′′2 + 𝑝(𝑡)(𝑐1𝑢′
1 + 𝑐2𝑢′

2) + 𝑞(𝑡)(𝑐1𝑢1 + 𝑐2𝑢2)
= 𝑓(𝑡), 

𝑐′1𝑢′1 + 𝑐′2𝑢′2 + 𝑐1(𝑢′′1 + 𝑝(𝑡)𝑢′
1 + 𝑞(𝑡)𝑢1) + 𝑐2(𝑢′′2 + 𝑝(𝑡)𝑢′

2 + 𝑞(𝑡)𝑢2)
= 𝑓(𝑡). 

 
 
(3.28) 

As we know, 𝑢1 and 𝑢2  satisfy the linear equation. Thus  
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 𝑐′1𝑢′1 + 𝑐′2𝑢′2 = 𝑓(𝑡). (3.29) 
The Green’s function satisfies the equation 

 𝐺′′(𝑡|𝑠) + 𝑝(𝑡)𝐺′(𝑡|𝑠) + 𝑞(𝑡)𝐺(𝑡|𝑠) = 𝛿(𝑡 − 𝑠), 
 

(3.30) 

where 𝐺(𝑡|𝑠) is defined as the solution to 

 𝐿[𝐺(𝑡|𝑠)]  =  𝛿(𝑡 − 𝑠)  subject to 𝐺(𝑎|𝑠) = 𝐺′(𝑎|𝑠) = 0. 
 

(3.31) 

Now, assume that 𝑢1 and 𝑢2 are two linearly independent solutions to the homogeneous equation 
𝐿[𝑢] = 0. For 𝑡 < 𝑠, 𝐺(𝑡|𝑠) is a linear combination of these solutions. Therefore, we can write 

 𝐺(𝑡|𝑠) = � 0,
𝑐1𝑢1 + 𝑐2𝑢2,

𝑡 < 𝑠
𝑡 > 𝑠.  

(3.32) 
 
The constants can be found by solving the system 
 
 

�
𝑐′

1𝑢1 + 𝑐′
2𝑢2 = 0,

𝑐′1𝑢′1 + 𝑐′2𝑢′2 = 𝑓(𝑡), 
(3.33) 

whose solution is 

 

⎩
⎪
⎨

⎪
⎧𝑐′

1 =
−𝑢2𝑓(𝑡)

𝑊(𝑡)
→ 𝑐1 = �

−𝑢2𝑓(𝑠)
𝑊(𝑠)

𝑑𝑠
𝑡

𝑎

𝑐′
2 =

𝑢1𝑓(𝑡)
𝑊(𝑡)

→ 𝑐2 = �
𝑢1𝑓(𝑠)
𝑊(𝑠)

𝑑𝑠
𝑡

𝑎

, 

 

(3.34) 

where 𝑊(𝑡) = 𝑢1𝑢′2 + 𝑢2𝑢′1  is usually referred to as the Wronskian of 𝑢1 and  𝑢2. Since the 
Wronskian is non-vanishing, only the trivial solution satisfies the homogeneous initial 
conditions. The Green’s function must be  

 
𝐺(𝑡|𝑠) = �

0,

𝑢1 �
−𝑢2(𝑠)𝑓(𝑠)

𝑊(𝑠)
𝑑𝑠

𝑡

𝑎
+ 𝑢2 �

𝑢1(𝑠)𝑓(𝑠)
𝑊(𝑠)

𝑑𝑠,
𝑡

𝑎

𝑡 < 𝑠
𝑡 > 𝑠. 

 
(3.35) 

 

Thus, The solution for 𝑢 is  

 
𝑢 = 𝑢ℎ + 𝑢1 �

−𝑢2(𝑠)𝑓(𝑠)
𝑊(𝑠)

𝑑𝑠
𝑡

𝑎
+ 𝑢2 �

𝑢1(𝑠)𝑓(𝑠)
𝑊(𝑠)

𝑑𝑠
𝑡

𝑎
. 

(3.36) 

 

simplifying Eq. (3.36) we get  

    
 

𝑢 = 𝑢ℎ + �
𝑢1(𝑠)𝑢2(𝑡) − 𝑢2(𝑠)𝑢1(𝑡)

𝑊(𝑠) 𝑓(𝑠)𝑑𝑠
𝑡

𝑎
 

= 𝑢ℎ + �
∆(𝑠, 𝑡)
𝑊(𝑠)

𝑓(𝑠)𝑑𝑠
𝑥

𝑎
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= 𝑢ℎ + � 𝐺(𝑡|𝑠)𝑓(𝑠)𝑑𝑠,
𝑡

𝑎
 

(3.37) 

 
where  ∆(𝑠,𝑡)

𝑊(𝑠)
= 𝐺(𝑡|𝑠)  is the Green’s function. Note that solution 𝑢will satisfy the initial 

conditions if  𝑢𝑝satisfies the initial conditions of the inhomogeneous problem: 
  
 𝑢(𝑎) = 𝑢′(𝑎) = 0. 

 
(3.38) 

We can also find Green’s function in another way by using the properties of Green’s function to 
determine the constants in (3.32). Green's function for Equation (3.20) has the following 
properties:  

 
1. 𝐺(𝑡|𝑠)  satisfies the homogeneous initial condition 

 
  

 𝐺(𝑎|𝑠) = 𝐺′(𝑎|𝑠) = 0. (3.39) 
 

2. 𝐺(𝑡|𝑠) is continuous, that is 
 𝐺(𝑡|𝑠)|𝑡↦𝑠− =  𝐺(𝑡|𝑠)|𝑡↦𝑠+ , (3.40) 
 

and hence, 
 𝑐1𝑢1(𝑠) + 𝑐2𝑢2(𝑠) = 𝑑1𝑢1(𝑠) + 𝑑2𝑢2(𝑠). (3.41) 

 
3. Integrating equation (3.30), we get  

 
 

� [𝐺′′(𝑡|𝑠) + 𝑝(𝑡)𝐺′(𝑡|𝑠) + 𝑞(𝑡)𝐺(𝑡|𝑠)]𝑑𝑡
𝑠+

𝑠−
= � [𝛿(𝑡 − 𝑠)]𝑑𝑡.

𝑠+

𝑠−
 

 

 
(3.42) 

Since 𝐺(𝑡|𝑠) is continuous and 𝐺′′(𝑡, 𝑠) has a Dirac delta function type of singularity, 
thus 𝐺′(𝑡|𝑠) has only a jump discontinuity. Then  

 
� 𝑝(𝑡)𝐺′(𝑡|𝑠)𝑑𝑡

𝑠+

𝑠−
= 0               and               � 𝑞(𝑡)𝐺(𝑡|𝑠)𝑑𝑡

𝑠+

𝑠−
= 0. 

 

 
(3.43) 

Therefore, 

 
� 𝐺′′(𝑡|𝑠)𝑑𝑥

𝑠+

𝑠−
= � [𝛿(𝑡 − 𝑠)]𝑑𝑥

𝑠+

𝑠−
 

              [𝐺′(𝑡|𝑠)]𝑠−𝑠+ = [𝐻(𝑡 − 𝑠)]𝑠−𝑠+ 

            𝐺′(𝑠+|𝑠) − 𝐺′(𝑠−|𝑠) = 1. 

 
 
 
(3.44) 

As a result, we can easily determine the coefficients using these properties.  
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Example 3.1      Solve the initial value problem  

 𝑢′′(𝑡) + 𝑢(𝑡) = 2 cos 𝑡,                     𝑢(0)  =  4, 𝑢′(0)  =  0.  (3.45) 
 
Solution:        
We first solve the homogeneous problem with nonhomogeneous initial conditions: 
 
 𝑢′′(𝑡) + 𝑢(𝑡) = 0,       𝑢(0) = 4,   𝑢′(0) = 0. (3.46) 
Thus,  

 𝑢ℎ = 4 cos 𝑡. (3.47) 
The Green’s function satisfies the equation 

 𝐺′′(𝑡|𝑠) + 𝐺(𝑡|𝑠) = 𝛿(𝑡 − 𝑠). 
 

(3.48) 

Next, we construct the Green’s function. We need two linearly independent solutions, 𝑢1(𝑡), 
𝑢2(𝑡), to the homogeneous differential equation satisfying  𝑢(0)  =  0 and  𝑢′ (0)  =  0. 
So, Green’s function is given by 

 𝐺(𝑡|𝑠) = �𝑎1 sin 𝑡 + 𝑏1 cos 𝑡 , 0 < 𝑡 < 𝑠
𝑎2 sin 𝑡 + 𝑏2 cos 𝑡,         𝑡 > 𝑠. 

 

(3.49) 

Applying the homogeneous initial conditions 𝐺(0|𝑠) = 𝐺′(0|𝑠) = 0, we get  

 𝐺(𝑡|𝑠) = �0,                         0 < 𝑡 < 𝑠
𝑎2 sin 𝑡 + 𝑏2 cos 𝑡 , 𝑡 > 𝑠. 

 

(3.50) 

Now 𝐺(𝑡|𝑠) is continuous, so we have 
 𝐺(𝑡|𝑠)|𝑡↦𝑠− =  𝐺(𝑡|𝑠)|𝑡↦𝑠+ , (3.51) 
 
therefore, 
 0 = 𝑎2 sin 𝑠 + 𝑏2 cos 𝑠. 

 
(3.52) 

Integrating equation (3.49), we get  
 
 

� [𝐺′′(𝑡|𝑠) + 𝐺(𝑡|𝑠)]𝑑𝑡
𝑠+

𝑠−
= � [𝛿(𝑡 − 𝑠)]𝑑𝑡

𝑠+

𝑠−
. 

 

(3.53) 

 

Since 𝐺(𝑡|𝑠)  is continuous and  𝐺′′(𝑡|𝑠)  has a Dirac delta function type of singularity, thus 
𝐺′(𝑡|𝑠) has only a jump discontinuity. Hence  

 
� 𝐺′′(𝑡|𝑠)𝑑𝑥

𝑠+

𝑠−
= � [𝛿(𝑡 − 𝑠)]𝑑𝑥

𝑠+

𝑠−
 

              [𝐺′(𝑡|𝑠)]𝑠−𝑠+ = [𝐻(𝑡 − 𝑠)]𝑠−𝑠+ 

            𝐺′(𝑠+|𝑠) − 𝐺′(𝑠−|𝑠) = 1, 

𝑎2 cos 𝑠 − 𝑏2 sin 𝑠 = 1. 
 

 
 
 
 
(3.54) 
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From (3.52) and (3.54), we get  

              𝑎2 = cos 𝑠  ,     𝑏2 = − sin 𝑠,        (3.55) 
therefore,                  

              𝐺(𝑡|𝑠) = � 0,                                 0 < 𝑡 < 𝑠
cos 𝑠 sin 𝑡 − sin 𝑠 cos 𝑡, 𝑡 > 𝑠 . (3.56) 

Then  

 
𝑢𝑝(𝑡) = � 𝐺(𝑡|𝑠)𝑓(𝑠)

𝑡

0
𝑑𝑠 

           = � (cos 𝑠 sin 𝑡 – sin 𝑠 cos 𝑡)2 cos 𝑠 𝑑𝑠
𝑡

0
 

          = 𝑡 sin 𝑡. 

 
 
 
 
(3.57) 

The general solution is given by  

 𝑢 = 𝑢ℎ + 𝑢𝑝. (3.58) 
 

From (3.56) and (3.57), we get the general solution 

 𝑢(𝑡) = 4 cos 𝑡 + 𝑡 sin 𝑡. 
 

(3.59) 

We can find the solution directly using the Wronskian. We pick 𝑢1(𝑡) = sin 𝑡  and  𝑢2(𝑡) =
𝑐𝑜𝑠 𝑡. The Wronskian is found as 
 
 𝑊(𝑡) = 𝑢1(𝑡)𝑢′2(𝑡) − 𝑢′1(𝑡)𝑢2(𝑡) = − sin2 𝑡 − cos2 𝑡 = −1. (3.60) 
   
Thus, we can write Green’s function in the form  
 

𝐺(𝑡|𝑠) = �
                             0,                        0 < 𝑡 < 𝑠

𝑢1(𝑠)𝑢2(𝑡) − 𝑢1(𝑡)𝑢2(𝑠)
𝑊(𝑡)

, 𝑡 > 𝑠 . 
 
(3.61) 

Therefore, 

 𝐺(𝑡|𝑠) = �                             0,                        0 < 𝑡 < 𝑠
−cos 𝑠 sin 𝑡 + sin 𝑠 cos 𝑡, 𝑡 > 𝑠 . 

 

 
(3.62) 

 
The particular solution is 𝑢(𝑡) = 4 cos 𝑡 + 𝑡 sin 𝑡. This is the same solution as the one we have 
found earlier using Green’s function properties. 
 
 
3.1.3 Boundary Value Problems for Second Order Equations 

Consider the second order equation 

 𝐿[𝑢] ≡ 𝑢′′(𝑡) + 𝑝(𝑡)𝑢′(𝑡) + 𝑞(𝑡)𝑢(𝑡) = 𝑓(𝑡),        for 𝑎 < 𝑡 < 𝑏, 
 

(3.63) 

subject to the boundary conditions,  
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 𝐵1[𝑢] ≡ 𝑎1𝑢(𝑎) + 𝑎2𝑢′(𝑎) = 𝛼, 
𝐵2[𝑢] ≡ 𝑏1𝑢(𝑏) + 𝑏2𝑢′(𝑏) = 𝛽. 

 

 
(3.64) 

The general solution is given by  

 𝑢 = 𝑢ℎ + 𝑢𝑝, 
 

(3.65) 

where 𝑢ℎ is the homogeneous solution which is the solution of 𝐿[𝑢] = 0 subject to the boundary 
conditions (3.64) and 𝑢𝑝 is a particular solution which satisfies 𝐿[𝑢] = 𝑓(𝑡) with the boundary 
conditions 𝐵1[𝑢] = 𝐵2[𝑢] = 0 . We represent the inhomogeneous solution (the particular 
solution) as an integral of the Green’s function 𝐺(𝑡|𝑠):  

 
𝑢𝑝 = � 𝐺(𝑡|𝑠)𝑓(𝑠)

𝑏

𝑎
𝑑𝑠, 

(3.66) 

where the Green’s function 𝐺(𝑡|𝑠) is defined as the solution to 

 𝐿[𝐺(𝑡|𝑠)]  =  𝛿(𝑡 − 𝑠)   subject to  𝐵1[𝐺(𝑡|𝑠)] = 𝐵2[𝐺(𝑡|𝑠)] = 0. (3.67) 
 

Here 𝛿(𝑡 − 𝑠)  is the Dirac delta function, which has been mentioned in Section 3.1.1. 

To show that (3.65) is the solution, we can use the definition of Green’s function (3.5) and the 
properties of the Dirac delta function (3.7). Applying the linear operator 𝐿 to the solution  

 
𝐿�𝑢ℎ + 𝑢𝑝� = 𝐿 �� 𝐺(𝑡|𝑠)𝑓(𝑠)

𝑏

𝑎
𝑑𝑠� 

                    = � 𝐿[𝐺(𝑡|𝑠)]𝑓(𝑠)
𝑏

𝑎
𝑑𝑠 

         =  � 𝛿(𝑡 − 𝑠)𝑓(𝑠)
𝑏

𝑎
𝑑𝑠 

        = 𝑓(𝑡). 

 
 
 
 
 
(3.68) 

Applying the boundary conditions 

 
𝐵1�𝑢ℎ + 𝑢𝑝� = 𝐵1 �𝑢ℎ + � 𝐺(𝑡|𝑠)𝑓(𝑠)

𝑏

𝑎
𝑑𝑠� 

                   = 𝛼 + � 𝐵1[𝐺(𝑡|𝑠)]𝑓(𝑠)
𝑏

𝑎
𝑑𝑠 

    =  𝛼 + � [0]𝑓(𝑠)
𝑏

𝑎
𝑑𝑠 

   = 𝛼, 

 
 
 
 
 
(3.69) 

and 

 
𝐵2�𝑢ℎ + 𝑢𝑝� = 𝐵2 �𝑢ℎ + � 𝐺(𝑡|𝑠)𝑓(𝑠)

𝑏

𝑎
𝑑𝑠� 

                    = 𝛽 + � 𝐵2[𝐺(𝑡|𝑠)]𝑓(𝑠)
𝑏

𝑎
𝑑𝑠 
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        =  𝛽 + � [0]𝑓(𝑠)
𝑏

𝑎
𝑑𝑠 

           = 𝛽. 

(3.70) 

The Green’s function satisfies the equation 

 𝐺′′(𝑡|𝑠) + 𝑝(𝑡)𝐺′(𝑡|𝑠) + 𝑞(𝑡)𝐺(𝑡|𝑠) = 𝛿(𝑡 − 𝑠). (3.71) 
 

Let 𝑢1  and 𝑢2  be two linearly independent solutions to 𝐿[𝑢] = 0, which is the homogeneous 
equation. For 𝑥 ≠ 𝑠, Green’s function is a homogeneous solution of the differential equation. 
Therefore, Green’s function is given by 

 𝐺(𝑡|𝑠) = �
𝑐1𝑢1 + 𝑐2𝑢2,
𝑑1𝑢1 + 𝑑2𝑢2,

𝑡 < 𝑠
𝑡 > 𝑠, (3.72) 

 
where 𝑐1, 𝑐2 , 𝑑1 and  𝑑2 are constants. We consider the properties of the Green's function: 

 
1. 𝐺(𝑡|𝑠) satisfies the homogeneous initial conditions 

 
 

 𝐵1[𝐺(𝑡|𝑠)] = 𝐵2[𝐺(𝑡|𝑠)] = 0. (3.73) 
 
 

2. 𝐺(𝑡|𝑠) is continuous, that is 
   
 𝐺(𝑡|𝑠)|𝑡↦𝑠− =  𝐺(𝑡|𝑠)|𝑡↦𝑠+ , (3.74) 
 

and hence, 
 

 𝑐1𝑢1(𝑠) + 𝑐2𝑢2(𝑠) = 𝑑1𝑢1(𝑠) + 𝑑2𝑢2(𝑠). (3.75) 
 

3. Integrating equation (3.71) gives  
 

 
� [𝐺′′(𝑡|𝑠) + 𝑝(𝑡)𝐺′(𝑡|𝑠) + 𝑞(𝑡)𝐺(𝑡|𝑠)]𝑑𝑡

𝑠+

𝑠−
= � [𝛿(𝑡 − 𝑠)]𝑑𝑡

𝑠+

𝑠−
. 

(3.76) 

 

Since 𝐺(𝑡|𝑠) is continuous and  𝐺′′(𝑡|𝑠)  has a Dirac delta function type singularity. 
Thus,  𝐺′(𝑡|𝑠) has only a jump discontinuity, then  

 
� 𝑝(𝑡)𝐺′(𝑡|𝑠)𝑑𝑡

𝑠+

𝑠−
= 0               and               � 𝑞(𝑡)𝐺(𝑡|𝑠)𝑑𝑡

𝑠+

𝑠−
= 0. 

 
(3.77) 

 

Therefore, 

 
� 𝐺′′(𝑡|𝑠)𝑑𝑥

𝑠+

𝑠−
= � [𝛿(𝑡 − 𝑠)]𝑑𝑡

𝑠+

𝑠−
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              [𝐺′(𝑡|𝑠)]𝑠−𝑠+ = [𝐻(𝑡 − 𝑠)]𝑠−𝑠+ 

              𝐺′(𝑠+|𝑠) − 𝐺′(𝑠−|𝑠) = 1. 

 
 
(3.78) 

Hence, 

 𝑑1𝑢1(𝑠) + 𝑑2𝑢2(𝑠) − 𝑐1𝑢1(𝑠) − 𝑐2𝑢2(𝑠) = 1. 
 

(3.79) 

 

Using Green’s function properties 1, 2 and 3 we can easily determine the four constants 
𝑐1, 𝑐2 , 𝑑1and 𝑑2 to find the Green’s function for the second order differential equations with the 
specified boundary conditions. 

We can find Green’s function using the Wronskian 𝑊(𝑡) of 𝑢1 and 𝑢2. Since the homogeneous 
equation with the homogeneous boundary conditions has only one trivial solution,  𝑊(𝑡) is 
nonzero on the given interval. The Green’s function has the form 

 
𝐺(𝑡|𝑠) = �𝑐1𝑢1(𝑡),

𝑐2𝑢2(𝑡),
𝑎 < 𝑡 < 𝑠
𝑠 < 𝑡 < 𝑏. (3.80) 

 

From the continuity and jump conditions for the Green’s function we get  

 𝑐1𝑢1(𝑠) − 𝑐2𝑢2(𝑠) = 0, 
𝑐1𝑢′

1(𝑠) − 𝑐2𝑢′
2 = −1. 

(3.81) 

Thus, the solution is  

 
𝑐1 =

𝑢2(𝑠)
𝑊(𝑠)

,     𝑐2 =
𝑢1(𝑠)
𝑊(𝑠)

.       
(3.82) 

Therefore, The Green’s function is 

 

𝐺(𝑡|𝑠) =

⎩
⎪
⎨

⎪
⎧𝑢2(𝑠)𝑢1(𝑡)

𝑊(𝑠)
, 𝑎 < 𝑡 < 𝑠

𝑢1(𝑠)𝑢2(𝑡)
𝑊(𝑠)

, 𝑠 < 𝑡 < 𝑏
, 

 
 
(3.83) 

where the Wronskian is given by 

 𝑊(𝑡) = 𝑢1(𝑡)𝑢′
2(𝑡) + 𝑢2(𝑡)𝑢′

1(𝑡). 
 

(3.84) 

Example 3.2 Use a Green function to solve the boundary value problem 

 𝑢′′(𝑡) = 𝑓(𝑡),                     𝑢(0) = 𝑢(2𝜋) = 0. (3.85) 
 
Solution: 
First solve the homogeneous equation that satisfies the boundary conditions 
 
 𝑢′′(𝑡) = 0,     𝑢(𝑡) = 𝑎𝑡 + 𝑏 (3.86) 
The Green function satisfies 
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 𝐺′′(𝑡|𝑠) = 𝛿(𝑡 − 𝑠),         𝐺(0|𝑠) = 𝐺(2𝜋|𝑠) = 0. (3.87) 
Thus, the Green function has the form 

 𝐺(𝑡|𝑠) = � 𝑎1𝑡 + 𝑏1, 0 < 𝑡 < 𝑠
𝑎2𝑡 + 𝑏2, 𝑠 < 𝑡 < 2𝜋. (3.88) 

 

Applying the two boundary conditions, we get that 𝑏1 = 0 and  𝑏2 = −2𝜋𝑎2.  Hence  

 𝐺(𝑡|𝑠) = �
𝑎1𝑡,             0 < 𝑡 < 𝑠

𝑎2(𝑡 − 2𝜋), 𝑠 < 𝑡 < 2𝜋. 

 

(3.89) 

Since Green’s function is continuous at 𝑡 = 𝑠, then  

 
𝑎1𝑠 = 𝑎2(𝑠 − 2𝜋)           →    𝑎1 = 𝑎2 �1 −

2𝜋
𝑠 �.   (3.90) 

From the jump condition, we have 
   [𝐺′(𝑡|𝑠)]𝑠−𝑠+ = 1,  

  𝐺′(𝑠+|𝑠) − 𝐺′(𝑠−|𝑠) = 1, 

        𝑎2 − 𝑎1 = 1. 

 
 
 
(3.91) 

From (3.90) and (3.91), we get 

 𝑎1 =
𝑠

2𝜋
− 1,        𝑎2 =

𝑠
2𝜋

. (3.92) 

Therefore, 

 

𝐺(𝑡|𝑠) = �
�

𝑠
2𝜋

− 1� 𝑡,             0 < 𝑡 < 𝑠
𝑠

2𝜋
(𝑡 − 2𝜋),          𝑠 < 𝑡 < 2𝜋

. 
 
(3.93) 

 

and 

 
𝑢(𝑡) = � 𝐺(𝑡|𝑠)𝑓(𝑠)𝑑𝑠 = � �

𝑠
2𝜋

− 1� 𝑡 𝑓(𝑠)𝑑𝑠
𝑡

0

2𝜋

0
+ �

𝑠
2𝜋

(𝑡 − 2𝜋)𝑓(𝑠)𝑑𝑠
2𝜋

𝑡
.  

 

 
(3.94) 

Green’s function (3.93) is symmetric, i.e. G(t|s) = G(s|t).  

 

Example 3.3 Construct a Green’s function for the problem 

 𝑢′′(𝑡) + 𝑢(𝑡) = 𝑓(𝑡),           𝑢(0) = 𝑢(1) = 0.        (3.95) 
Solution: 
The general solution to the homogeneous equation is  
 
 𝑢ℎ(𝑡) = 𝑎 sin 𝑡 + 𝑏 cos 𝑡. (3.96) 
Since 𝐺(𝑡|𝑠) satisfies 
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 𝐺′′(𝑡|𝑠) + 𝐺(𝑡|𝑠) = 𝛿(𝑡 − 𝑠),             𝐺(0|𝑠) = 𝐺(1|𝑠) = 0, (3.97) 
then, 

 𝐺(𝑡|𝑠) = �𝑎1 sin 𝑡 + 𝑏1 cos 𝑡 , 0 < 𝑡 < 𝑠
𝑎2 sin 𝑡 + 𝑏2 cos 𝑡, 𝑠 < 𝑡 < 1. 

 

(3.98) 

The condition  𝐺(0|𝑠)  =  0 for 0 ≤  𝑡 ≤  𝑠  implies that 𝑏1 = 0, and the condition  𝐺(1|𝑠) = 0 
for  𝑠 ≤  𝑡 ≤  1  leads to 

 𝐺(1|𝑠) = 𝑎2 sin 1 + 𝑏2 cos 1  =  0. 
 

(3.99) 

Therefore, 

 𝐺(𝑡|𝑠) = �𝑎1 sin 𝑡,                                0 < 𝑡 < 𝑠
𝑎2 sin 𝑡 − 𝑎2 tan 1 cos 𝑡, 𝑠 < 𝑡 < 1. (3.100) 

Notice that 

 𝑎2 sin 𝑡 – 𝑎2 tan 1 cos 𝑡 =
𝑎2

cos 1
(sin 𝑡 cos 𝑡 − sin 1 cos 𝑡) 

                       = −
𝑎2

cos 1
sin(1 − 𝑡). 

 

 
 
(3.101) 

Since the coefficient is arbitrary at this point, we can write the result as 

 −
𝑎2

cos 1
sin(1 − 𝑡) = 𝑐1 sin(1 − 𝑡). (3.102) 

 

Therefore, the Green’s function has the form 

 𝐺(𝑡|𝑠) = �
𝑎1 sin 𝑡,           0 < 𝑡 < 𝑠
𝑐1 sin(1 − 𝑡) , 𝑠 < 𝑡 < 1. (3.103) 

 

The continuity at 𝑡 = 𝑠, implies 

 
𝑎1 sin 𝑠 = 𝑐1 sin(1 − 𝑠)           →    𝑎1 = 𝑐1

sin(1 − 𝑠)
sin 𝑠 

. 
(3.104) 

 
From the jump condition, we have 
   [𝐺′(𝑡|𝑠)]𝑠−𝑠+ = 1,  

  𝐺′(𝑠+|𝑠) − 𝐺′(𝑠−|𝑠) = 1, 

 −𝑐1 cos(1 − 𝑠) − 𝑎1 cos 𝑠 = 1 

−𝑐1 cos(1 − 𝑠) − 𝑐1
sin(1 − 𝑠)

sin 𝑠 
cos 𝑠 = 1 

−𝑐1 sin(𝑠 + 1 − 𝑠)=1 

𝑐1 = −
1

sin 1
, 𝑎1 = −

sin(1 − 𝑠)
sin 1 sin 𝑠 

.  

 
 
 
 
 
 
 
 
 
 
(3.105) 
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Hence,  

 

𝐺(𝑡|𝑠) = �
−

sin 𝑡 sin(1 − 𝑠)
sin 1 sin 𝑠 

, 0 < 𝑡 < 𝑠

−
sin(1 − 𝑡)

sin 1
, 𝑠 < 𝑡 < 1

. 

 
 
(3.106) 

 
 
 
3.1.4 Sturm –Liouville Problems 

Consider the following problem 

 𝐿[𝑢] ≡ (𝑝(𝑡)𝑢′)′ + 𝑞(𝑡)𝑢(𝑡) = 𝑓(𝑡), 
 

(3.107) 

 

subject to the boundary conditions 

         𝐵1[𝑢] = 𝑎1𝑢(𝑎) + 𝑏1𝑢′(𝑎) = 0,        
𝐵2[𝑢] = 𝑎2𝑢(𝑏) + 𝑏2𝑢′(𝑏) = 0. 

 

 
(3.108) 

The Green’s function 𝐺(𝑡|𝑠) is defined as the solution to  

 𝐿[𝐺(𝑡|𝑠)] = 𝛿(𝑡 − 𝑠)  subject to 𝐵1[𝐺] = 𝐵2[𝐺] = 0. 
 

(3.109) 

Let 𝑢1  and 𝑢2  be two linearly independent solutions to 𝐿[𝑢] = 0, which is the homogeneous 
equation. For 𝑥 ≠ 𝑠, the Green’s function is a homogeneous solution of the differential equation. 
Therefore, the Green’s function is given by 

 
𝐺(𝑡|𝑠) = �𝑐1𝑢1(𝑡), 𝑎 < 𝑡 < 𝑠

𝑐2𝑢2(𝑡), 𝑠 < 𝑡 < 𝑏. (3.110) 

Green’s function satisfies the equation 

 
𝐺′′(𝑡|𝑠) +

𝑝′(𝑡)
𝑝(𝑡)

𝐺 ′ +
𝑞(𝑡)
𝑝(𝑡)

𝐺(𝑡|𝑠) =
𝛿(𝑡 − 𝑠)

𝑝(𝑡)
. 

(3.111) 

The continuity of 𝐺(𝑡|𝑠) at 𝑡 = 𝑠 implies  

 𝐺(𝑡|𝑠)|𝑡↦𝑠− =  𝐺(𝑡|𝑠)|𝑡↦𝑠+ 

𝑐1𝑢1(𝑠) = 𝑐2𝑢2(𝑠). 

(3.112) 

 

Further, since 𝐺(𝑡|𝑠) is continuous and  𝐺′′(𝑡, 𝑠) has a Dirac delta function type of singularity, 
thus 𝐺′(𝑡|𝑠) has only a jump discontinuity. Then  

 
� 𝐺 ′′(𝑡|𝑠)𝑑𝑥

𝑠+

𝑠−
= � �

𝛿(𝑡 − 𝑠)
𝑝(𝑡) � 𝑑𝑡

𝑠+

𝑠−
, 
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            𝐺′(𝑠+|𝑠) − 𝐺′(𝑠−|𝑠) =
1

𝑝(𝑠)
, 

           𝑐2𝑢′2(𝑠) − 𝑐1𝑢′1(𝑠) =
1

𝑝(𝑠). 

 

(3.113) 

We can determine these two constants 𝑐1 and 𝑐2 by solving the following system: 
 
 𝑐1(𝑠)𝑢1(𝑠) − 𝑐2(𝑠)𝑢2(𝑠) = 0, 

𝑐1(𝑠)𝑢′1(𝑠) − 𝑐2(𝑠)𝑢′2(𝑠) = −
1

𝑝(𝑠). 

 
 
(3.114) 

We can solve (3.114) by using Kramer’s rule. Hence 
 
 

𝑐1(𝑠) =
𝑢2(𝑠)

𝑝(𝑠)𝑊(𝑠)
,    𝑐2(𝑠) =

𝑢1(𝑠)
𝑝(𝑠)𝑊(𝑠)

,  
(3.115) 

 
where W(t) is the Wronskian of  𝑢1(𝑡) and 𝑢2(𝑡). Thus, Green’s function is given  
 
 

𝐺(𝑡|𝑠) =

⎩
⎪
⎨

⎪
⎧𝑢2(𝑠)𝑢1(𝑡)

𝑝(𝑠)𝑊(𝑠)
, 𝑎 < 𝑡 < 𝑠

𝑢1(𝑠)𝑢2(𝑡)
𝑝(𝑠)𝑊(𝑠)

, 𝑠 < 𝑡 < 𝑏
.  

 
 
 
(3.116) 

 
The solution for this problem is given by  
 
 𝑢(𝑡) = 𝑢ℎ(𝑡) + 𝑢𝑝(𝑡) 

= 𝑢ℎ(𝑡) + � 𝐺(𝑡|𝑠)𝑓(𝑠)𝑑𝑠
𝑏

𝑎
. 

 

 
 
(3.117) 

Example 3.4 Use a Green’s function to solve the boundary value problem 

 𝑢′′(𝑡) = 𝑡2,     𝑢(0) = 𝑢(1) = 0. (3.118) 
 
 
 
Solution: 
The general solution to the homogeneous equation is  
 
 𝑢ℎ(𝑡) = 𝑎𝑡 + 𝑏. (3.119) 
 
The Green’s function satisfies 

 𝐺′′(𝑡|𝑠) = 𝛿(𝑡 − 𝑠),             𝐺(0|𝑠) = 𝐺(1|𝑠) = 0. (3.120) 

Thus, the Green’s function has the form 

 𝐺(𝑡|𝑠) = �𝑎1𝑡 + 𝑏1, 0 < 𝑡 < 𝑠
𝑎2𝑡 + 𝑏2, 𝑠 < 𝑡 < 1. 

 

(3.121) 
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The condition 𝐺(0|𝑠)  =  0  for 0 ≤  𝑡 ≤  𝑠  gives 𝑏1 = 0, and the condition  𝐺(1|𝑠)  =  0 
for  𝑠 ≤  𝑡 ≤  1 leads to  

 𝐺(1|𝑠) = 𝑎2 + 𝑏2  =  0. 
 

(3.122) 

Thus, 

 𝐺(𝑡|𝑠) = � 𝑎1𝑡, 0 < 𝑡 < 𝑠
𝑎2𝑡 + 𝑏2, 𝑠 < 𝑡 < 1. (3.123) 

 
Since 𝐺(𝑡|𝑠) is continuous, then  

 𝑎1𝑠 = 𝑎2𝑠 + 𝑏2. (3.124) 
 
By the jump condition, we have 
   [𝐺′′(𝑡|𝑠)]𝑠−𝑠+ = 1,  

  𝐺′′(𝑠+|𝑠) − 𝐺′′(𝑠−|𝑠) = 1, 

        𝑎2 − 𝑎1 = 1. 

 
 
 
(3.125) 

Equations  (3.124) and (3.125), give 

 𝑎1 = 𝑠 − 1,        𝑎2 = 𝑠,      𝑏2 = −𝑠, (3.126) 
and hence, 

 𝐺(𝑡|𝑠) = �(𝑠 − 1)𝑡,             0 < 𝑡 < 𝑠
(𝑡 − 1)𝑠,          𝑠 < 𝑡 < 1 . 

 

(3.127) 

Now, in order to find the particular solution, we insert the Green’s function into the integral form 
of the solution 

 
𝑢𝑝(𝑡) = � 𝐺(𝑡|𝑠)𝑓(𝑠)𝑑𝑠

1

0
= � (𝑠 − 1)𝑡(𝑠2)𝑑𝑠

𝑡

0
+ � (𝑡 − 1)𝑠(𝑠2)𝑑𝑠

1

𝑡
 

           =
1
4 �−

1
3

𝑡4 + 𝑡 − 1�. 

 
 
(3.128) 

 
 
 
3.1.5 Boundary Value Problems for Third Order Equations 

Third order BVPs arise in many scientific and engineering applications such as the 
deflection of a curved beam having a constant or varying cross-section, three-layer beam, the 
motion of rocket, thin film flow, electromagnetic waves, gravity-driven flows, the study of 
draining and coating flows, boundary layer theory, the study of stellar interiors, control and 
optimization theory and flow networks in biology.  
 

There are various theorems regarding existence of a unique solution. In particular Lu¨ and 
Cui [47] provide the existence of a solution for the following case:    
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 𝑢′′′(𝑥) − 𝑓�𝑥, 𝑢(𝑥), 𝑢′(𝑥), 𝑢′′(𝑥)� = 0,     0 ≤ 𝑥 ≤ 1, 
𝑢(1) = 0,     𝑢′(0) = 0,     𝑢′(1) = 0. 

(3.129) 
 

 

They proved that under the following assumptions: 

(H1)  𝑓(𝑥, 𝑦, 𝑧, 𝑤) ∈ [0,1] × 𝑅3 is completely continuous; 

(H2)  𝑓(𝑥, 𝑦, 𝑧, 𝑤), 𝑓𝑥(𝑥, 𝑦, 𝑧, 𝑤), 𝑓𝑦(𝑥, 𝑦, 𝑧, 𝑤), 𝑓𝑧(𝑥, 𝑦, 𝑧, 𝑤) and 𝑓𝑤(𝑥, 𝑦, 𝑧, 𝑤) are bounded; 

(H3)  𝑓(𝑥, 𝑦, 𝑧, 𝑤) > 0  on [0,1] × 𝑅3, 

where 𝑓(𝑥, 𝑦, 𝑧, 𝑤) ∈ 𝑊1[0,1]  as 𝑦 = 𝑦(𝑥) ∈ 𝑊1[0,1], 𝑧 = 𝑧(𝑥) ∈ 𝑊1[0,1], 𝑤 = 𝑤(𝑥) ∈ 𝑊1[0,1],
(0 ≤ 𝑥 ≤ 1, −∞ ≤ 𝑦, 𝑧, 𝑤 ≤ ∞).     

Problem (3.129) has a solution in 𝑊2[0,1].  For more existence theorems see Lu¨ and Cui, Feng and 
Yao, and Feng [47, 49-50] and the references therein. 

Now, consider the third order nonlinear equation 

 𝐿[𝑢] ≡ 𝑢′′′(𝑡) + 𝑝(𝑡)𝑢′′(𝑡) + 𝑞(𝑡)𝑢′(𝑡) + 𝑟(𝑡)𝑢(𝑡) = 𝑓(𝑡),       
 

(3.130) 

where  𝑎 < 𝑡 < 𝑏  and subject to the boundary conditions,  

  
𝐵1[𝑢] ≡ 𝑎1𝑢(𝑎) + 𝑎2𝑢′(𝑎) + 𝑎3𝑢′′(𝑎) = 𝛼, 
𝐵2[𝑢] ≡ 𝑏1𝑢(𝑏) + 𝑏2𝑢′(𝑏) + 𝑎3𝑢′′(𝑏) = 𝛽. 

 

 
(3.131) 

The general solution is given by  

 𝑢 = 𝑢ℎ + 𝑢𝑝, 
 

(3.132) 

where 𝑢ℎ  is a homogeneous solution subject to boundary conditions (3.131) and 𝑢𝑝  is a 
particular solution which satisfies  𝐿[𝑢] = 𝑓(𝑡)  with boundary conditions 𝐵1[𝑢] = 𝐵2[𝑢] = 0. 
We represent the inhomogeneous solution (the particular solution) as an integral of the Green’s 
function 𝐺(𝑡|𝑠)  

 
𝑢𝑝 = � 𝐺(𝑡|𝑠)𝑓(𝑠)

𝑏

𝑎
𝑑𝑠, 

 

(3.133) 

where Green’s function 𝐺(𝑡|𝑠) is defined as the solution to 

 𝐿[𝐺(𝑡|𝑠)]  =  𝛿(𝑡 − 𝑠)           subject to       𝐵1[𝐺(𝑡|𝑠)] = 𝐵2[𝐺(𝑡|𝑠)] = 0, 
 

(3.134) 

where 𝛿(𝑡 − 𝑠)  is the Dirac delta function. To show that (3.132) is the solution, we can use the 
definition of Green’s function (3.5) and the properties of Dirac delta function (3.7). Applying the 
linear operator 𝐿 to the solution  
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𝐿�𝑢ℎ + 𝑢𝑝� = 𝐿 �� 𝐺(𝑡|𝑠)𝑓(𝑠)

𝑏

𝑎
𝑑𝑠� 

                     = � 𝐿[𝐺(𝑡|𝑠)]𝑓(𝑠)
𝑏

𝑎
𝑑𝑠 

                   =  � 𝛿(𝑡 − 𝑠)𝑓(𝑠)
𝑏

𝑎
𝑑𝑠 

        = 𝑓(𝑡). 

 
 
 
 
 
 
 
(3.135) 

Applying the boundary conditions 

 
𝐵1�𝑢ℎ + 𝑢𝑝� = 𝐵1 �𝑢ℎ + � 𝐺(𝑡|𝑠)𝑓(𝑠)

𝑏

𝑎
𝑑𝑠� 

                   = 𝛼 + � 𝐵1[𝐺(𝑡|𝑠)]𝑓(𝑠)
𝑏

𝑎
𝑑𝑠 

   =  𝛼 + � 0 ∙ 𝑓(𝑠)
𝑏

𝑎
𝑑𝑠 

 = 𝛼. 

 
 
 
 
 
 
(3.136) 

and 

 
𝐵2�𝑢ℎ + 𝑢𝑝� = 𝐵2 �𝑢ℎ + � 𝐺(𝑡|𝑠)𝑓(𝑠)

𝑏

𝑎
𝑑𝑠� 

                    = 𝛽 + � 𝐵2[𝐺(𝑡|𝑠)]𝑓(𝑠)
𝑏

𝑎
𝑑𝑠 

   =  𝛽 + � 0 ∙ 𝑓(𝑠)
𝑏

𝑎
𝑑𝑠 

  = 𝛽. 
 

 
 
 
 
 
 
(3.137) 

The Green’s function satisfies the equation 

 𝐺′′′(𝑡|𝑠) + 𝑝(𝑡)𝐺′′(𝑡|𝑠) + 𝑞(𝑡)𝐺′(𝑡|𝑠) + 𝑟(𝑡)𝐺(𝑡|𝑠) = 𝛿(𝑡 − 𝑠). 
 

(3.138) 

Let 𝑢1, 𝑢2 and 𝑢3 be three linearly independent solutions to 𝐿[𝑢] = 0, which is the homogeneous 
equation. For 𝑡 ≠ 𝑠, Green’s function is a homogeneous solution to the differential equation. 
Therefore,  

 

 𝐺(𝑡|𝑠) = �
𝑐1𝑢1 + 𝑐2𝑢2 + 𝑐3𝑢3,
𝑑1𝑢1 + 𝑑2𝑢2 + 𝑑3𝑢3,

𝑎 < 𝑡 < 𝑠
𝑠 < 𝑡 < 𝑏, (3.139) 

 
where  𝑐1, 𝑐2, 𝑐3, 𝑑1, 𝑑2 and  𝑑3 are constants. The properties of Green's function are: 

 
1. 𝐺(𝑡|𝑠) satisfies the homogeneous boundary conditions 

 
 𝐵1[𝐺(𝑡|𝑠)] = 𝐵2[𝐺(𝑡|𝑠)] = 0. (3.140) 
 

2. 𝐺(𝑡|𝑠) is continuous, that is  
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 𝐺(𝑡|𝑠)|𝑡↦𝑠− =  𝐺(𝑡|𝑠)|𝑡↦𝑠+ (3.141) 

Therefore, 
 

 𝑐1𝑢1(𝑠) + 𝑐2𝑢2(𝑠) + 𝑐3𝑢3(𝑠) = 𝑑1𝑢1(𝑠) + 𝑑2𝑢2(𝑠) + 𝑑3𝑢3(𝑠). (3.142) 
 

3. 𝐺′(𝑡|𝑠) is continuous, that is, 
 

 𝐺′(𝑡|𝑠)|𝑡↦𝑠− =  𝐺′(𝑡|𝑠)|𝑡↦𝑠+. (3.143) 
 
 
Therefore, 
 

 𝑐1𝑢′
1(𝑠) + 𝑐2𝑢′

2(𝑠) + 𝑐3𝑢′3(𝑠) = 𝑑1𝑢′
1(𝑠) + 𝑑2𝑢′

2(𝑠) + 𝑑3𝑢′3(𝑠). (3.144) 
 

4. Integrating equation (3.138), implies that  
 

 
� [𝐺′′′(𝑡|𝑠) + 𝑝(𝑡)𝐺′′(𝑡|𝑠) + 𝑞(𝑡)𝐺′(𝑡|𝑠) + 𝑟(𝑡)𝐺(𝑡|𝑠)]𝑑𝑡

𝑠+

𝑠−

= � [𝛿(𝑡 − 𝑠)]𝑑𝑡.
𝑠+

𝑠−
 

(3.145) 

 
Since 𝐺(𝑡|𝑠)  and  𝐺′(𝑡|𝑠) are continuous and  𝐺′′′(𝑡|𝑠) has a Dirac delta function type of 
singularity, thus 𝐺′′(𝑡|𝑠)  has only a jump discontinuity. Note that  

� 𝑝(𝑡)𝐺′′(𝑡|𝑠)𝑑𝑡
𝑠+

𝑠−
= 0,         � 𝑞(𝑡)𝐺′(𝑡|𝑠)𝑑𝑡

𝑠+

𝑠−
= 0    and      � 𝑟(𝑡)𝐺(𝑡|𝑠)𝑑𝑡

𝑠+

𝑠−
= 0. 

Therefore, 

 
� 𝐺′′′(𝑡|𝑠)𝑑𝑥

𝑠+

𝑠−
= � [𝛿(𝑡 − 𝑠)]𝑑𝑡

𝑠+

𝑠−
 

              [𝐺′′(𝑡|𝑠)]𝑠−𝑠+ = [𝐻(𝑡 − 𝑠)]𝑠−𝑠+ 

              𝐺′′(𝑠+|𝑠) − 𝐺′′(𝑠−|𝑠) = 1 

 
 
 
 
(3.146) 

Hence, 

 𝑑1𝑢′′1(𝑠) + 𝑑2𝑢′′2(𝑠) + 𝑑3𝑢′′3(𝑠) − 𝑐1𝑢′′
1(𝑠) − 𝑐2𝑢′′

2(𝑠) − 𝑐3𝑢′′
3(𝑠) = 1. 

 
(3.147) 

   
Using Green’s function properties 1, 2, 3 and 4, we can easily determine the four constants 
𝑐1, 𝑐2 , 𝑑1  and  𝑑2 to find Green’s function for the third order differential equation. 

Example 3.5 Use a Green’s function to solve the boundary value problem 

 𝑢′′′(𝑡) + 𝑢′′(𝑡) − (𝑢′(𝑡))2 + 1 = 0,    0 < 𝑡 < 1, 
 

(3.148) 

subject to the boundary conditions 
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 𝑢(0) = 𝑢′(0) = 𝑢(1) = 0. (3.149) 
Solution: 
The general solution to the homogeneous equation is  
 
 𝑢ℎ(𝑡) = 𝑎𝑡2 + 𝑏𝑡 + 𝑐. (3.150) 
 
Green’s function satisfies 

 𝐺′′′(𝑡|𝑠) + 𝐺′′(𝑡|𝑠) − �𝐺′(𝑡|𝑠)�2 + 1 = 𝛿(𝑡 − 𝑠),   

 𝐺(0|𝑠) = 𝐺′(0|𝑠) = 𝐺(1|𝑠) = 0. 

 
(3.151) 

Thus, Green’s function has the form 

 𝐺(𝑡|𝑠) = �𝐴𝑡2 + 𝐵𝑡 + 𝐶, 0 < 𝑡 < 𝑠
𝐷𝑡2 + 𝐸𝑡 + 𝐹, 𝑠 < 𝑡 < 1

. 

 

(3.152) 

The condition  𝐺(0|𝑠)  =  0  for 0 ≤  𝑡 ≤  𝑠,  implies that  𝐶 = 0  and the condition  𝐺′(0|𝑠)  =
 0 for  0 ≤  𝑡 ≤  𝑠, implies that  𝐵 =  0. 

Finally, 𝐺(1|𝑠) = 0 for 𝑠 ≤  𝑡 ≤  0, leads to  

 𝐷 + 𝐸 + 𝐹 = 0. (3.153) 
Hence, 

 𝐺(𝑡|𝑠) = �𝐴𝑡2,                  0 < 𝑡 < 𝑠
𝐷𝑡2 + 𝐸𝑡 + 𝐹, 𝑠 < 𝑡 < 1

. 

 

(3.154) 

Since Green’s function 𝐺(𝑡|𝑠)  must be continuous at 𝑡 = 𝑠, then  

 𝐴𝑠2 = 𝐷𝑠2 + 𝐸𝑠 + 𝐹.            
 

(3.155) 

Also, 𝐺′(𝑡|𝑠) is continuous at 𝑡 = 𝑠, then  

 2𝐴𝑠 + 𝐵 = 2𝐷𝑠 + 𝐸. (3.156) 
 
From the jump condition, we have 
   [𝐺′′(𝑡|𝑠)]𝑠−𝑠+ = 1,  

  𝐺′′(𝑠+|𝑠) − 𝐺′′(𝑠−|𝑠) = 1, 

        2𝐷 − 2𝐴 = 1. 

 
 
 
(3.157) 

From (3.155), (3.156) and (3.157), we get 

 
𝐴 = −

1
2

𝑠2 + 𝑠 −
1
2

,        𝐷 = −
1
2

𝑠2 + 𝑠,      𝐸 = −𝑠,      𝐹 =
1
2

𝑠2. (3.158) 

 

Therefore, 
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𝐺(𝑡|𝑠) =

⎩
⎨

⎧�−
1
2

𝑠2 + 𝑠 −
1
2� 𝑡2,             0 < 𝑡 < 𝑠

�−
1
2

𝑠2 + 𝑠� 𝑡2 − 𝑠𝑡 +
𝑠2

2
,  𝑠 < 𝑡 < 1

. 

 
(3.159) 

 

Example 3.6 Use a Green function to solve the boundary value problem 

 𝑢′′′(𝑡) − 𝑡2𝑢′′(𝑡) = 0,    0 < 𝑡 < 1, (3.160) 
 

subject to the boundary conditions 

 𝑢(0) = 𝑢′(1) = 𝑢(1) = 0. (3.161) 
Solution: 
The general solution to the homogeneous equation is  

 𝑢ℎ(𝑡) = 𝑎𝑡2 + 𝑏𝑡 + 𝑐. (3.162) 
 
Green’s function satisfies 

 𝐺′′′(𝑡|𝑠) − 𝑡2𝐺′′(𝑡|𝑠) = 𝛿(𝑡 − 𝑠),             𝐺(0|𝑠) = 𝐺′(1|𝑠) = 𝐺(1|𝑠) = 0. (3.163) 

Thus, Green’s function has the form 

 𝐺(𝑡|𝑠) = �𝐴𝑡2 + 𝐵𝑡 + 𝐶, 0 < 𝑡 < 𝑠
𝐷𝑡2 + 𝐸𝑡 + 𝐹, 𝑠 < 𝑡 < 1

. 

 

(3.164) 

The condition  𝐺(0|𝑠)  =  0 for 0 ≤  𝑡 ≤  𝑠,  implies that  𝐶 = 0,  and the condition  𝐺′(1|𝑠)  =
 0 for 0 ≤  𝑡 ≤  𝑠, implies that  

 2𝐷𝑠 + 𝐸 =  0. 
 

(3.165) 

Finally, 𝐺(1|𝑠) = 0 for 𝑠 ≤  𝑡 ≤  0,  leads to 

 𝐷 + 𝐸 + 𝐹 = 0. (3.166) 
 

Hence, 

 𝐺(𝑡|𝑠) = �𝐴𝑡2 + 𝐵𝑡,          0 < 𝑡 < 𝑠
𝐷𝑡2 + 𝐸𝑡 + 𝐹, 𝑠 < 𝑡 < 1

. 

 

(3.167) 

Since Green’s function 𝐺(𝑡|𝑠) must be continuous at 𝑡 = 𝑠, then  

 𝐴𝑠2 + 𝐵𝑠 = 𝐷𝑠2 + 𝐸𝑠 + 𝐹.            
 

(3.168) 

Also, 𝐺′(𝑡|𝑠) is continuous at 𝑡 = 𝑠, thus  

 2𝐴𝑠 + 𝐵 = 2𝐷𝑠 + 𝐸. (3.169) 
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From the jump condition, we have 
   [𝐺′′(𝑡|𝑠)]𝑠−𝑠+ = 1,  

  𝐺′′(𝑠+|𝑠) − 𝐺′′(𝑠−|𝑠) = 1, 

        2𝐷 − 2𝐴 = 1. 

(3.170) 

From (3.168), (3.169) and (3.170), we get 

 
𝐴 =

1
2

𝑠2 − 2𝑠 + 1
2𝑠 − 1

,      𝐵 = −
𝑠(𝑠2 − 2𝑠 + 1)

2𝑠 − 1
,       𝐷 =

1
2

𝑠2

2𝑠 − 1
,     

  𝐸 = −
𝑠3

2𝑠 − 1
,      𝐹 =

1
2

𝑠2. 

 
 
(3.171) 

Therefore, 

 

𝐺(𝑡|𝑠) =

⎩
⎪
⎨

⎪
⎧�

1
2

𝑠2 − 2𝑠 + 1
2𝑠 − 1

� 𝑡2 − �
𝑠(𝑠2 − 2𝑠 + 1)

2𝑠 − 1
� 𝑡, 0 < 𝑡 < 𝑠

�
1
2

𝑠2

2𝑠 − 1
� 𝑡2 −

𝑠3

2𝑠 − 1
𝑡 +

𝑠2

2
,                    𝑠 < 𝑡 < 1

. 

 
 
(3.172) 

 
 
 
3.1.6 Properties of Green’s Functions 

 In this section, we will summarize the properties of Green’s functions as a tool for 
quickly constructing Green’s functions for boundary value problems. Here is a list of the 
properties based upon the third order BVPs. 
 
1. Differential Equation: 

 
 𝑝(𝑡)𝑢′′′(𝑡) + 𝑞(𝑡)𝑢′′(𝑡) + 𝑟(𝑡)𝑢′(𝑡) + ℎ(𝑡)𝑢(𝑡) = 𝑓(𝑡). (3.173) 
 

The Green’s function satisfies 

 𝑝(𝑡)𝐺′′′(𝑡|𝑠) + 𝑞(𝑡)𝐺′′(𝑡|𝑠) + 𝑟(𝑡)𝐺′(𝑡|𝑠) + ℎ(𝑡)𝐺(𝑡|𝑠) = 𝛿(𝑡 − 𝑠). (3.174) 

Let 𝑢1,  𝑢2  and  𝑢3  be three linearly independent solutions to 𝐿[𝑢] = 0,  which is the 
homogeneous equation. For 𝑡 ≠ 𝑠, Green’s function is a homogeneous solution of the differential 
equation. 

2. Boundary Conditions: 
 
 
 𝐵1[𝐺(𝑡|𝑠)] = 𝐵2[𝐺(𝑡|𝑠)] = 0. (3.175) 
Green’s function satisfies the homogeneous boundary conditions 
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3. Continuity of  𝐆(𝐭|𝐬): 
 
 𝐺(𝑡|𝑠)|𝑡↦𝑠− =  𝐺(𝑡|𝑠)|𝑡↦𝑠+ , (3.176) 
where 
 𝐺(𝑡|𝑠)|𝑡↦𝑠− = lim

𝑡→𝑠
𝐺(𝑡|𝑠) ,     𝑡 < 𝑠, 

𝐺(𝑡|𝑠)|𝑡↦𝑠+ = lim
𝑡→𝑠

𝐺(𝑡|𝑠) ,     𝑡 > 𝑠. 

 

 
4. Continuity of  𝐆′(𝐭|𝐬): 
  

𝐺′(𝑡|𝑠)|𝑡↦𝑠− =  𝐺′(𝑡|𝑠)|𝑡↦𝑠+ , 
(3.177) 

where 
 𝐺′(𝑡|𝑠)|𝑡↦𝑠− = lim

𝑡→𝑠
𝐺′(𝑡|𝑠) ,     𝑡 < 𝑠, 

𝐺′(𝑡|𝑠)|𝑡↦𝑠+ = lim
𝑡→𝑠

𝐺′(𝑡|𝑠) ,     𝑡 > 𝑠. 

 

 
5. Jump Discontinuity of  𝑮′′(𝒕|𝒔) at 𝒕 = 𝒔: 

 
 [𝐺′′(𝑡|𝑠)]𝑠−𝑠+ = [𝐻(𝑡 − 𝑠)]𝑠−𝑠+ , 

    𝐺′′(𝑠+|𝑠) − 𝐺′′(𝑠−|𝑠) =
1

𝑝(𝑡). 

 
(3.178) 

 

 

3.2 Picard’s iterative Method   
 

 
In this section, we will discuss Picard’s iterative method for finding approximate 

solutions of first order nonlinear ordinary differential equation of the form 
 

𝑢′ =
𝑑𝑢
𝑑𝑥

= 𝑓(𝑥, 𝑢),      
(3.179) 

 
with initial condition 
 𝑢(𝑥0) = 𝑢0. 

 
(3.180) 

We integrate both sides of the equation (3.179) over the interval  (𝑥0, 𝑥).  This gives 
 
 

𝑢(𝑥) − 𝑢(𝑥0) = � 𝑓(𝑥, 𝑢)
𝑥

𝑥0

𝑑𝑥 

                             = 𝑢0 + � 𝑓�𝑥, 𝑢(𝑥)�
𝑥

𝑥0

𝑑𝑥. 

 
 
(3.181) 
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The integral in (3.181) cannot be evaluated.  Hence the exact value cannot be obtained. So we try 
to solve this by iteration. Substituting an initial guess of  𝑢(𝑥) = 𝑢0   into the right hand side of 
(3.181), we get 
 
 

𝑢1(𝑥) = 𝑢0 + � 𝑓(𝑥, 𝑢0)
𝑥

𝑥0

𝑑𝑥, 
(3.182) 

where the corresponding  𝑢1(𝑥)  is the value of  𝑢(𝑥) and is called first approximation. To 
determine better approximation we replace 𝑢1(𝑥)  by  𝑢2(𝑥) as 
 
 

𝑢2(𝑥) = 𝑢0 + � 𝑓(𝑥, 𝑢1)
𝑥

𝑥0

𝑑𝑥. 
(3.183) 

In general, the 𝑛 + 1  approximation is given by 
 

𝑢𝑛+1(𝑥) = 𝑢0 + � 𝑓(𝑥, 𝑢𝑛)
𝑥

𝑥0

𝑑𝑥. 
(3.184) 

Therefore, we have a sequence of approximate solutions 
 
 𝑢1(𝑥), 𝑢2(𝑥), … , 𝑢𝑛+1(𝑥), …. (3.185) 
 
 

 

3.3 The Krasnonsel’skii-Mann iteration algorithm (K-M) 
 

There are several iteration techniques for approximating fixed points equations of various 
classes. Some of them are Picard iteration technique, Mann iteration technique, Krasnosel’skii 
iteration technique, and Newton iteration technique. The Picard’s iteration technique, the Mann 
iteration technique and the Krasnosel’skii iteration technique are the most used of all those 
methods. In particular, to implement our method, we need to use Krasnonsel’skii-Mann (K-M) 
iteration algorithm. 
 
The Krasnonsel’skii-Mann (K-M) iteration algorithm is aimed at solving the fixed point equation 
 
 𝑇𝑥 =  𝑥, (3.186) 

where 𝑇 is a self-mapping of closed convex subset. The K-M algorithm generates a sequence 
{𝑢𝑛} according to the recursive formula 
 
 𝑢𝑛+1 = (1 − 𝛼𝑛)𝑢𝑛 + 𝛼𝑛𝑇[𝑢𝑛], 𝑛 ≥ 0. (3.187) 
 
Obviously, for the special case 𝛼 𝑛 =  1  for each 𝑛  in the Krasnonsel’skii -Mann iterative 
scheme, the result is Picard’s iteration technique. 
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3.4 Method Description  
 

In this section, we will discuss and describe the method that we will apply to obtain 
numerical solutions for a class of third order linear and nonlinear boundary value problems. 

First, consider the general third order equation  

 𝑝(𝑡)𝑢′′′(𝑡) + 𝑞(𝑡)𝑢′′(𝑡) + 𝑟(𝑡)𝑢′(𝑡) + ℎ(𝑡)𝑢(𝑡) = 𝑓(𝑡), 𝑎 ≤ 𝑡 ≤ 𝑏,  
 

(3.188) 

with boundary conditions 

 𝐵1[𝑢] ≡ 𝑎1𝑢(𝑎) + 𝑎2𝑢′(𝑎) + 𝑎3𝑢′′(𝑎) = 𝛼, 
𝐵2[𝑢] ≡ 𝑏1𝑢(𝑏) + 𝑏2𝑢′(𝑏) + 𝑎3𝑢′′(𝑎) = 𝛽. 

 

 
(3.189) 

For the implementation of Green’s Function-Picard's fixed point iteration, we first define the 
following linear integral operator  𝑇[𝑢] 

 
𝑇[𝑢] = 𝑢ℎ + � 𝐺(𝑡|𝑠) [𝑝(𝑠)𝑢′′′(𝑠) + 𝑞(𝑠)𝑢′′(𝑠) + 𝑟(𝑠)𝑢′(𝑠) + ℎ(𝑠)𝑢(𝑠)] 𝑑𝑠.

𝑏

𝑎
 

(3.190) 

Now, adding and subtracting 𝑓(𝑡) we get  

 
𝑇[𝑢] = 𝑢ℎ + � 𝐺(𝑡|𝑠) [𝑝(𝑠)𝑢′′′(𝑠) + 𝑞(𝑡)𝑢′′(𝑠) + 𝑟(𝑠)𝑢′(𝑠) + ℎ(𝑠)𝑢(𝑠)

𝑏

𝑎

− 𝑓(𝑠)] 𝑑𝑠 + � 𝐺(𝑡|𝑠) 𝑓(𝑠)𝑑𝑠.
𝑏

𝑎
 

 
 
(3.191) 

From (3.132) and (3.133) we get  

 
𝑇[𝑢] = 𝑢ℎ + � 𝐺(𝑡|𝑠) [𝑝(𝑠)𝑢′′′(𝑠) + 𝑞(𝑠)𝑢′′(𝑠) + 𝑟(𝑠)𝑢′(𝑠) + ℎ(𝑠)𝑢(𝑠)

𝑏

𝑎
− 𝑓(𝑠)] 𝑑𝑠 + 𝑢 − 𝑢ℎ, 

𝑇[𝑢] = 𝑢 + � 𝐺(𝑡|𝑠) [𝑝(𝑠)𝑢′′′(𝑠) + 𝑞(𝑠)𝑢′′(𝑠) + 𝑟(𝑠)𝑢′(𝑠) + ℎ(𝑠)𝑢(𝑠)
𝑏

𝑎
− 𝑓(𝑠)] 𝑑𝑠. 

 
 
 
 
 
(3.192) 

 

Applying Picard's iteration for 𝑛 ≥ 0, gives 

 
𝑢𝑛+1 = 𝑢𝑛 + � 𝐺(𝑡|𝑠) [𝑝(𝑡)𝑢𝑛

′′′(𝑠) + 𝑞(𝑠)𝑢𝑛
′′(𝑠) + 𝑟(𝑠)𝑢𝑛

′(𝑠) + ℎ(𝑠)𝑢𝑛(𝑠)
𝑏

𝑎
− 𝑓(𝑠)] 𝑑𝑠, 

 
 
(3.193) 

 

which is equivalent to 
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𝑢𝑛+1 = 𝑢0 + � 𝐺(𝑡|𝑠) [𝑝(𝑠)𝑢0

′′′(𝑠) + 𝑞(𝑠)𝑢0
′′(𝑠) + 𝑟(𝑠)𝑢0

′(𝑠) + ℎ(𝑠)𝑢0(𝑠)
𝑏

𝑎
− 𝑓(𝑠′))] 𝑑𝑠

+ � 𝐺(𝑡|𝑠) [𝑝(𝑠)𝑢1
′′′(𝑠) + 𝑞(𝑠)𝑢1

′′(𝑠) + 𝑟(𝑠)𝑢1
′(𝑠)

𝑏

𝑎
+ ℎ(𝑠)𝑢1(𝑠) − 𝑓(𝑠))] 𝑑𝑠 + ⋯

+ � 𝐺(𝑡|𝑠) [𝑝(𝑡)𝑢𝑛
′′′(𝑠) + 𝑞(𝑠)𝑢𝑛

′′(𝑠) + 𝑟(𝑠)𝑢𝑛
′(𝑠)

𝑏

𝑎
+ ℎ(𝑠)𝑢𝑛(𝑠) − 𝑓(𝑠)] 𝑑𝑠. 

 

 
 
 
 
 
 
 
 
(3.194) 

 

We can choose 𝑢0  by finding the solution for 𝐿[𝑢] = 0  subject to the specified boundary 
conditions (3.189). Next, we apply Krasnoselskii–Mann iterative algorithm (K-M) for the 
approximation of fixed points given by (3.188). This implies 

 𝑢𝑛+1 = (1 − 𝛼𝑛)𝑢𝑛

+ 𝛼𝑛  �𝑢𝑛

+ � 𝐺(𝑡|𝑠) [𝑝(𝑡)𝑢𝑛
′′′(𝑠) + 𝑞(𝑠)𝑢𝑛

′′(𝑠) + 𝑟(𝑠)𝑢𝑛
′(𝑠) + ℎ(𝑠)𝑢𝑛(𝑠)

𝑏

𝑎

− 𝑓(𝑠)] 𝑑𝑠�,  

 
 
 
 
 
 
(3.195) 

   
or equivalently  

 
𝑢𝑛+1 = 𝑢𝑛 + 𝛼𝑛  �� 𝐺(𝑡|𝑠) [𝑝(𝑡)𝑢𝑛

′′′(𝑠) + 𝑞(𝑠)𝑢𝑛
′′(𝑠) + 𝑟(𝑠)𝑢𝑛

′(𝑠) + ℎ(𝑠)𝑢𝑛(𝑠)  
𝑏

𝑎
 

 

 
 
 
(3.196) 

 
 

3.5 Numerical Results 
 

In this section, we will apply this method on the class of third order nonlinear and linear 
boundary value problems and then comparing the numerical results to illustrate the efficiency of 
this method. 

 

Problem 3.1  Consider the following third order nonlinear (BVP) 

 𝑢′′′(𝑡) + 𝑢(𝑡)𝑢′′(𝑡) − 𝑢′2(𝑡) + 1 = 0,    0 ≤ 𝑡 ≤ 1, (3.197) 
 

with boundary conditions 
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 𝑢(0) = 𝑢(1) = 𝑢′(0) = 0. (3.198) 
 

This problem has no known exact solution. 

First, we find Green’s function for 𝐿[𝑢] = 𝑢′′′ subject to 𝑢(0) = 𝑢(1) = 𝑢′(0) = 0 by applying 
the properties described before. Using the Computer Algebra System Maple we find that 

 

𝐺(𝑡|𝑠) =

⎩
⎨

⎧�−
1
2

𝑠2 + 𝑠� 𝑡2 − 𝑡𝑠 +
𝑠2

2
, 0 < 𝑡 < 𝑠

�−
1
2

𝑠2 + 𝑠 −
1
2� 𝑡2, 𝑠 < 𝑡 < 1

. 

 
 
(3.199) 

 
Next we apply the method as shown in Section 3.4, where 𝑢0 is the solution of 𝐿[𝑢] ≡ 𝑢′′′ = 0  
subject to  𝑢(0) = 𝑢(1) = 𝑢′(0) = 0. Hence the iterative algorithm is 

 𝑢0 = 0, 

𝑢𝑛+1 = 𝑢𝑛 + � ��−
1
2

𝑠2 + 𝑠� 𝑡2 − 𝑡𝑠 +
𝑠2

2 � �𝑢𝑛
′′′(𝑠) + 𝑢𝑛(𝑠)𝑢𝑛

′′(𝑠)
𝑡

0

− 𝑢′𝑛
2(𝑠) + 1�𝑑𝑠

+ � ��−
1
2

𝑠2 + 𝑠 −
1
2� 𝑡2� �𝑢𝑛

′′′(𝑠) + 𝑢𝑛(𝑠)𝑢𝑛
′′(𝑠) − 𝑢′𝑛

2(𝑠)
1

𝑡
+ 1�𝑑𝑠. 

 

 
 
 
 
 
(3.200) 

Numerical results are given to illustrate the efficiency of the proposed method and are 
compared with other numerical methods that exist in the literature. It is clear that the method is 
highly accurate and reliable because it yields very accurate approximate solutions as is shown by 
Tables 3.1 (a), (b), (c), (d) and (e) and depicted in Figure 3.1 (a). The error is better when using 
Picard iterations while the suggested Krasnoselskii–Mann iteration is not implemented in this 
problem since it did not show any significant improvement. Since this problem does not have a 
known exact solution, thus we found the error by subtracting the 𝑛𝑡ℎ iteration from the 𝑛 + 1  
iteration |𝑢𝑛+1 − 𝑢𝑛|.  

  
Also, the numerical solution can be substituted in the differential equation to show that it 

satisfies the equation with high accuracy. It is worth mentioning that when we increase the 
number of iterations, the maximum error at the mesh points 𝑡 = 0.1,0.2, … ,0.9  is reduced as is 
shown in Table 3.1 (a).  Comparisons of the absolute error values between our proposed method 
and those methods in [39-41] are shown in Tables 3.1 (c) and (e). It is obvious that our method 
yields better results. 
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Table 3.1 (a)   Numerical solution for Problem 3.1 using 7 iterations of the iterative method. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 3.1 (a)  Absolute error between approximate solution for 10th and 7th iterations. 

 
 
 
 
 
 
 

𝒕 Numerical Solution Present Method: |𝒖𝟕 − 𝒖𝟔| 

𝟏. 𝟏 0 0 

𝟏. 𝟏 0.00149606946549957007926034455974 1.0 × 10−16 

𝟏. 𝟐 0.00531781872516839635122571694105 4.0 × 10−16 

𝟏. 𝟑 0.0104662029209492814015920759592 8.8 × 10−16 

𝟏. 𝟒 0.0159432809774814504168200940993 1.5 × 10−15 

𝟏. 𝟓 0.0207523246456161601691631635018 2.2 × 10−15 

𝟏. 𝟔 0.0238978611427057135484820595047 2.8 × 10−15 

𝟏. 𝟕 0.0243858478971903422282362025053 3.2 × 10−15 

𝟏. 𝟖 0.0212241768032093085434390272793 3.2 × 10−15 

𝟏. 𝟗 0.0134237040224862097880788967389 2.3 × 10−15 

𝟏. 𝟏 −2.3 × 10−32 4.7 × 10−42 

𝒖𝟕 

𝒖𝟏𝟏 
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Number of iterations Maximum Error 

𝟐 1.2 × 10−4 

𝟑 1.2 × 10−7 

𝟒 7.2 × 10−9 

𝟓 5.5 × 10−11 

𝟔 4.2 × 10−13 

𝟕 3.2 × 10−15 

𝟖 2.5 × 10−17 

𝟗 9.7 × 10−19 

𝟏𝟏 9.7 × 10−22 

𝒙 Shooting Method[41] 10th HAM for 

  𝒉 = −𝟎. 𝟗𝟗𝟗 [39] 

Present Method  

𝟎. 𝟏 0.0006723 3.96 × 10−7 4.5 × 10−23 

𝟎. 𝟑 0.0021682 3.00 × 10−11 3.9 × 10−22 

𝟎. 𝟓 0.0033009 1.19 × 10−8 9.7 × 10−22 

𝟎. 𝟕 0.0036213 6.89 × 10−8 1.4 × 10−22 

𝟎. 𝟗 0.0021849 1.02 × 10−7 1.0 × 10−22 

 

Table 3.1 (c)   Comparison with other methods, for Problem 3.1 using 10 iterations. 

 

 

Table 3.1 (b)  Maximum error of our method applied to Problem 3.1 using various iterations. 
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𝒕 5th HAM[40] 10th HAM [40] 15th HAM [40] Present Method : 𝒖𝟏𝟏 

𝟏. 𝟏 2.7 × 10−3 1.4 × 10−5 3.2 × 10−6 4.5 × 10−23 

𝟏. 𝟐 2.6 × 10−3 1.3 × 10−5 1.4 × 10−6 1.8 × 10−22 

𝟏. 𝟑 2.6 × 10−3 1.4 × 10−5 7.6 × 10−7 3.9 × 10−22 

𝟏. 𝟒 2.8 × 10−3 1.5 × 10−5 4.8 × 10−7 6.7 × 10−22 

𝟏. 𝟓 3.2 × 10−3 1.7 × 10−5 3.5 × 10−7 9.7 × 10−22 

𝟏. 𝟔 3.7 × 10−3 1.8 × 10−5 2.4 × 10−7 1.2 × 10−22 

𝟏. 𝟕 4.6 × 10−3 2.0 × 10−5 1.2 × 10−7 1.4 × 10−22 

𝟏. 𝟖 5.9 × 10−3 2.2 × 10−5 1.7 × 10−8 1.4 × 10−22 

𝟏. 𝟗 7.7 × 10−3 2.3 × 10−5 1.1 × 10−7 1.0 × 10−22 

𝒕 Numerical Solution Present Method: 

|𝒖𝟏𝟏 − 𝒖𝟗| 

𝟎. 𝟎 0 0 

𝟎. 𝟏 0.00149606946549956931554415153542419674331216281 4.5 × 10−23 

𝟎. 𝟐 0.00149606946549956931554415153542419674331216281 1.8 × 10−22 

𝟎. 𝟑 0.0104662029209492747487539290229974468662108890 3.9 × 10−22 

𝟎. 𝟒 0.0159432809774814390988468700292006259628868318 6.7 × 10−22 

𝟎. 𝟓 0.0207523246456161437085590234114926679241014935 9.7 × 10−22 

𝟎. 𝟔 0.0238978611427056923179285459540071998662169585 1.2 × 10−22 

𝟎. 𝟕 0.0243858478971903178263927431619211544095578985 1.4 × 10−22 

𝟎. 𝟖 0.0212241768032092843770770158736263620581738920 1.4 × 10−22 

𝟎. 𝟗 0.0134237040224861921260805616667454183654135393 1.0 × 10−22 

𝟏. 𝟎 6.8 × 10−47 1.4 × 10−59 

 
Table 3.1 (d)  Numerical solutions for Problem 3.1 using 10 iterations of the present method.   

Table 3.1 (e)   Comparison with the other methods for Problem 3.1 using 10 iterations. 
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Problem 3.2  Solve the third order nonlinear equation 

 𝑢′′′(𝑡) + 2𝑒−3𝑢(𝑡) = 4
(1+𝑡)3,    0 ≤ 𝑡 ≤ 1, (3.201) 

with boundary conditions 

 𝑢(0) = 𝑢′(0) = 1, 𝑢(1) = 𝑙𝑛(2). (3.202) 
 
The exact solution is given by 
 𝑢(𝑡) = ln(1 + 𝑡). 

 
(3.203) 

First, we find Green’s function for 𝐿[𝑢] = 𝑢′′′ subject to 𝑢(0) = 𝑢(1) = 𝑢′(0) = 0 by applying 
the properties described before and using Maple, we find that 

 

𝐺(𝑡|𝑠) =

⎩
⎨

⎧�−
1
2

𝑠2 + 𝑠� 𝑡2 − 𝑡𝑠 +
𝑠2

2
, 0 < 𝑡 < 𝑠

�−
1
2

𝑠2 + 𝑠 −
1
2� 𝑡2, 𝑠 < 𝑡 < 1

. 

 
(3.204) 

 
Next, we apply the method as described in Section 3.4, where  𝑢0 is the solution of 𝐿[𝑢] ≡ 𝑢′′′ =
0  subject to 𝑢(0) = 𝑢′(0) = 1, 𝑢(1) = 𝑙𝑛(2). We get the following iterative algorithm: 
 

 𝑢0 = 𝑡 + (ln(2) − 1)𝑡2, 

𝑢𝑛+1 = 𝑢𝑛 + � ��−
1
2

𝑠2 + 𝑠� 𝑡2 − 𝑡𝑠 +
𝑠2

2 � �𝑢𝑛
′′′(𝑠) + 2𝑒−3𝑢𝑛(𝑠)

𝑡

0

−
4

(1 + 𝑠)3� 𝑑𝑠

+ � ��−
1
2

𝑠2 + 𝑠 −
1
2� 𝑡2� �𝑢𝑛

′′′(𝑠) + 2𝑒−3𝑢𝑛(𝑠)
1

𝑡

−
4

(1 + 𝑠)3� 𝑑𝑠. 

 
 
 
 
 
 
 
 
 
(3.205) 

 
The comparison of the absolute error values between the method developed in this 

section and those in references [42] and [43] are shown in Table 3.2(a). The results show that our 
present method is much better and gives more accurate results using only 31 iterations.  
 

The absolute errors for our numerical solution are shown in Table 3.2 (c) and depicted in 
Figures 3.2 (a), (b) and (c). Note that the numerical result is highly accurate. The K-M iteration 
is not reported since it did not show any improvement of the error as compared with the Picard’s 
iteration. 
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Table 3.2 (a)   Comparison with other methods for Problem 3.1 using 31 
iterations. 

Number of Iterations Maximum Error 

𝟐 1.6 × 10−5 

𝟒 1.1 × 10−8 

𝟔 7.3 × 10−12 

𝟖 5.0 × 10−15 

𝟏𝟏 3.3 × 10−18 

𝟏𝟐 2.2 × 10−21 

𝟏𝟔 9.6 × 10−28 

𝟐𝟏 4.9 × 10−36 

𝟐𝟔 1.8 × 10−40 

𝟑𝟏 1.2 × 10−51 

 

Table 3.2 (b)   Maximum error of the present method for various iterations 

 

𝒕 Khan and Aziz [43] HPM and RKM [42] Present Method 

𝟏. 𝟏 0 0 0 

𝟏. 𝟏 5.6 × 10−6 3.1 × 10−7 1.4 × 10−53 

𝟏. 𝟐 9.5 × 10−6 1.6 × 10−7 1.0 × 10−52 

𝟏. 𝟑 3.2 × 10−6 1.3 × 10−7 3.3 × 10−52 

𝟏. 𝟒 1.6 × 10−5 3.7 × 10−7 6.4 × 10−52 

𝟏. 𝟓 2.9 × 10−6 4.8 × 10−7 9.4 × 10−52 

𝟏. 𝟔 2.9 × 10−5 4.5 × 10−7 1.2 × 10−51 

𝟏. 𝟕 1.3 × 10−5 3.3 × 10−7 1.3 × 10−51 

𝟏. 𝟖 5.1 × 10−6 1.8 × 10−7 1.4 × 10−51 

𝟏. 𝟗 − 6.9 × 10−7 7.3 × 10−51 

𝟏. 𝟏 0 0 4.5 × 10−78 
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Figure 3.2 (a)  Exact solution versus numerical solutions using 10 and 12 iterations 

 

 

Table 3.2 (c)   Comparison between the exact and numerical solutions using 12 iterations. 

 

 

𝒕 Exact Solution Numerical Solution Error 

𝟏. 𝟏 0 0 0 

𝟏. 𝟏 0.0953101798043248600439521232808 0.0953101798043248600440463833557 9.4 × 10−23 

𝟏. 𝟐 0.182321556793954626211718025155 0.182321556793954626212081386422 3.6 × 10−22 

𝟏. 𝟑 0.262364264467491052035495986881 0.262364264467491052036270847385 7.7 × 10−22 

𝟏. 𝟒 0.336472236621212930504593410217 0.336472236621212930505857497638 1.3 × 10−21 

𝟏. 𝟓 0.405465108108164381978013115464 0.405465108108164381979750373379 1.7 × 10−21 

𝟏. 𝟔 0.470003629245735553650937031148 0.470003629245735553653018696893 2.1 × 10−21 

𝟏. 𝟕 0.530628251062170396231543163189 0.530628251062170396233722122096 2.2 × 10−21 

𝟏. 𝟖 0.587786664902119008189731140619 0.587786664902119008191650076754 1.9 × 10−21 

𝟏. 𝟗 0.641853886172394775991035977203 0.641853886172394775992248067411 1.2 × 10−21 

𝟏. 𝟏 0.693147180559945309417232121458 0.693147180559945309417232120582 8.8 × 10−28 

𝒖𝟏𝟏       ∗ ∗ ∗ 

𝒖𝟏𝟏 

Exact  
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Problem 3.3 Consider the following third order nonlinear (BVP) 

 

 𝑢′′′(𝑡) − 𝑢′′(𝑡) = 4𝑒−2𝑡𝑢2(𝑡), (3.206) 
with boundary conditions 

 𝑢(0) = 1, 𝑢′(0) = 2, 𝑢(1) = 𝑒2. (3.207) 

The exact solution is 𝑢(𝑡) = 𝑒2𝑡 . 

Applying the properties described before, the operator 𝐿[𝑦] = 𝑢′′′ − 𝑢′′ on (0,1) has the following 
Green’s function  

 

𝐺(𝑡|𝑠) =

⎩
⎪
⎨

⎪
⎧𝑒𝑒𝑠𝑠 − 𝑒𝑒𝑠 − 𝑒𝑠𝑠 + 𝑒

𝑒𝑠(𝑒 − 2)
−

𝑒𝑒𝑠 − 𝑒𝑠𝑠 − 𝑒
𝑒𝑠(𝑒 − 2) 𝑡 +

𝑒𝑠𝑠 − 2𝑒𝑠 + 2
𝑒𝑠(𝑒 − 2) 𝑒𝑡 , 0 < 𝑡 < 𝑠

𝑒𝑠 + 𝑒 − 2𝑒𝑠

𝑒𝑠(𝑒 − 2)
(1 + 𝑡 − 𝑒𝑡),                                                                𝑠 < 𝑡 < 1

. 

 
 
 
(3.208) 

 

We apply Picard's fixed point iteration, where 𝑢0 is the solution of 𝑢′′′ − 𝑢′′ = 0 subject to  
𝑢(0) = 1, 𝑢′(0) = 2, 𝑢(1) = 𝑒2. 

Therefore, the iterative scheme becomes:  

 
𝑢0 =

−𝑒 − 1 + 𝑒2

𝑒 − 2
−

−2𝑒 + 1 + 𝑒2

𝑒 − 2
𝑡 +

−3 + 𝑒2

𝑒 − 2
𝑒𝑡 , 

 
 
 
 
 

 Figure 3.2 (c) Absolute errors using 10 and 12 
iterations. 
 

Figure 3.2 (b) Absolute errors using 6 and 8  
iterations. 

 

𝒖𝟔         ∘∘∘∘∘ 

𝒖𝟖         ∘∘∘∘∘ 

𝒖𝟏𝟏         ∘∘∘∘∘ 

𝒖𝟏𝟏         ∘∘∘∘∘ 
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𝑢𝑛+1 = 𝑢𝑛 + � �
𝑒𝑒𝑠𝑠 − 𝑒𝑒𝑠 − 𝑒𝑠𝑠 + 𝑒

𝑒𝑠(𝑒 − 2)
−

𝑒𝑒𝑠 − 𝑒𝑠𝑠 − 𝑒
𝑒𝑠(𝑒 − 2)

𝑡
𝑡

0

+
𝑒𝑠𝑠 − 2𝑒𝑠 + 2

𝑒𝑠(𝑒 − 2)
𝑒𝑡� �𝑢𝑛

′′′(𝑠) − 𝑢𝑛
′′(𝑠) − 4𝑒−2𝑠𝑢𝑛

2(𝑠)�𝑑𝑠

+ � �
𝑒𝑠 + 𝑒 − 2𝑒𝑠

𝑒𝑠(𝑒 − 2)
(1 + 𝑡 − 𝑒𝑡)� �𝑢𝑛

′′′(𝑠) − 𝑢𝑛
′′(𝑠)

1

𝑡

− 4𝑒−2𝑠𝑢𝑛
2(𝑠)�𝑑𝑠. 

 

 
 
 
 
 
 
 
 
(3.29) 

 

In this problem, the Krasnoselskii–Mann iteration method yields better approximate 
solutions than Picard’s iterations method. Table 3.3 (c) and Figure 3.3 (b) demonstrate that the 
matching between the approximate and exact solution is better for  𝛼 = 0.94  rather than  𝛼 = 1. 
From the numerical results in Table 3.3 (a) and Figure 3.3 (a) we notice that the method yields 
very accurate approximate solutions. The maximum errors for Mann’s iterative method using 
𝛼 = 0.94  for certain iterations are reported in Table 3.3 (b). 

 

 

      Table 3.3 (a)  Comparison between the exact and numerical solutions for Problem 3.3 using  

15 iterations. 

 

 

𝒕 Exact Solution Numerical Solution Error 

𝟏. 𝟏 1 0.99999999999999999999996390425574351 3.6 × 10−23 

𝟏. 𝟏 1.2214027581601698339210719946396742 1.2214027581601698339180452562755077 3.0 × 10−21 

𝟏. 𝟐 1.4918246976412703178248529528372223 1.4918246976412703178177098950343530 7.1 × 10−21 

𝟏. 𝟑 1.8221188003905089748753676681628645 1.8221188003905089748659999287480198 9.4 × 10−21 

𝟏. 𝟒 2.2255409284924676045795375313950768 2.2255409284924676045668849966006017 1.3 × 10−20 

𝟏. 𝟓 2.7182818284590452353602874713526625 2.7182818284590452353474856105695440 1.3 × 10−20 

𝟏. 𝟔 3.3201169227365474895307674296016443 3.3201169227365474895199355831208524 1.1 × 10−20 

𝟏. 𝟕 4.0551999668446745872241088952286203 4.0551999668446745872155208861574196 8.6 × 10−21 

𝟏. 𝟖 4.9530324243951148036542863564239643 4.9530324243951148036484576165199068 5.8 × 10−21 

𝟏. 𝟗 6.0496474644129460837310239530277253 6.0496474644129460837284305314126319 2.6 × 10−21 

𝟏. 𝟏 7.3890560989306502272304274605750078 7.3890560989306502272302433899503734 1.8 × 10−22 
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Table 3.3 (b)  Maximum error arising from Mann’s iterative  method when 𝛼 = 0.94 for various 
iterations. 

 

 

 

Number of iterations Max. Error 

𝟓 2.4 × 10−8 

𝟔 1.1 × 10−9 

𝟕 3.5 × 10−11 

𝟖 2.3 × 10−12 

𝟗 6.0 × 10−14 

𝟏𝟏 5.2 × 10−15 

𝟏𝟏 1.7 × 10−16 

𝟏𝟑 4.9 × 10−18 

𝟏𝟓 1.3 × 10−20 

Figure 3.3 (a)  Exact solution versus numerical solution using 15 iterations. 

𝒖𝟏𝟏       ∗ ∗ ∗ 

Exact  
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Table 3.3 (c)  Comparison between Picard’s and Mann’s iteration method for certain values of 𝜶. 

 

 

𝒕 
PICARD’s MANN’s 

𝜶 = 𝟏 𝜶 = 𝟏. 𝟗 𝜶 = 𝟏. 𝟗𝟐 𝜶 = 𝟏. 𝟗𝟒 

𝟏. 𝟏 2.5 × 10−25 6.9 × 10−23 3.1 × 10−24 3.6 × 10−23 

𝟏. 𝟏 1.5 × 10−17 9.0 × 10−19 2.4 × 10−20 3.0 × 10−21 

𝟏. 𝟐 5.9 × 10−17 1.5 × 10−18 3.3 × 10−20 7.1 × 10−21 

𝟏. 𝟑 1.4 × 10−16 3.8 × 10−19 1.3 × 10−20 9.4 × 10−21 

𝟏. 𝟒 2.4 × 10−16 1.6 × 10−18 7.0 × 10−20 1.3 × 10−20 

𝟏. 𝟓 3.5 × 10−16 2.6 × 10−18 8.0 × 10−20 1.3 × 10−20 

𝟏. 𝟔 4.6 × 10−16 1.4 × 10−18 2.1 × 10−20 1.1 × 10−20 

𝟏. 𝟕 5.2 × 10−16 1.8 × 10−18 8.0 × 10−20 8.6 × 10−21 

𝟏. 𝟖 5.0 × 10−16 5.6 × 10−18 1.7 × 10−19 5.8 × 10−21 

𝟏. 𝟗 3.4 × 10−16 7.2 × 10−18 2.0 × 10−19 2.6 × 10−21 

𝟏. 𝟏 6.1 × 10−23 4.1 × 10−23 7.1 × 10−22 1.8 × 10−22 

Picards (𝜶 = 𝟏)        ∘∘∘∘∘ 

Manns (𝜶 = 𝟎. 𝟗𝟗)  ∘∘∘∘∘ 

         

Figure 3.3 (b)  Mann’s iteration method with 𝛼 = 0.94 and Picard’s iterative method using 15     
iterations. 
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Problem 3.4  Consider the following third order nonlinear (BVP) 

 𝑢′′′(𝑡) = 𝑒−2𝑡𝑢3(𝑡), (3.210) 
with boundary conditions 

 𝑢(0) = 𝑢′(0) = 1, 𝑢(1) = 𝑒. (3.211) 
 

The exact solution is given by 𝑢(𝑡) = 𝑒𝑡 . 

Since the linear operator 𝐿[𝑢] = 𝑢′′′ and the interval 0 ≤ 𝑡 ≤ 1 are the same as in Problems 3.1 
and 3.2, thus Green’s function will be the same, which is 

 

𝐺(𝑡|𝑠) =

⎩
⎨

⎧ �−
1
2

𝑠2 + 𝑠� 𝑡2 − 𝑡𝑠 +
𝑠2

2
, 0 < 𝑡 < 𝑠

�−
1
2

𝑠2 + 𝑠 −
1
2� 𝑡2,               𝑠 < 𝑡 < 1

. 

 
(3.212) 

 

Applying Picard's fixed point iteration, then we have the following iterative algorithm: 

  
𝑢0 = 1 + 𝑡 + (𝑒 − 2)𝑡2, 

𝑢𝑛+1 = 𝑢𝑛 + � ��−
1
2

𝑠2 + 𝑠� 𝑡2 − 𝑡𝑠 +
𝑠2

2 � �𝑢𝑛
′′′(𝑠) − 𝑒−2𝑡𝑢𝑛

3(𝑠)�𝑑𝑠
𝑡

0

+ � ��−
1
2

𝑠2 + 𝑠 −
1
2� 𝑡2� �𝑢𝑛

′′′(𝑠) − 𝑒−2𝑡𝑢𝑛
3(𝑠)�𝑑𝑠,

1

𝑡
 

 

 
 
 
 
 
 
 
(3.213) 

where 𝑢0 is the solution of 𝑢′′′ = 0 subject to  𝑢(0) = 𝑢′(0) = 1, 𝑢(1) = 𝑒. 

 

The K-M iteration for this problem has no affect in improving the error. The numerical 
results are reported in Table 3.4 (a) and Figure 3.4 (a), which show that our method is accurate 
and efficient. The maximum errors for certain iterations are reported in Table 3.4 (b). Moreover, 
Table 3.4 (c) shows the absolute error obtained for some iterations, while Figure 3.4 (b) shows a 
comparison of the absolute error between the 13th and 15th iterations. Further accuracy may be 
achieved using more iterations. 
 

 

 

 

 

 



  
 

183 
 

 

Table 3.4 (a)   Comparison between the exact and the numerical solution for Problem 3.4 using 15 
iterations . 

 

 

 

 

 

 

 

 

 

Figure 3.4 (a)  Exact solution versus numerical solution using 15 iterations. 
 

 

 

 

 

𝒕 Exact Solutions Numerical Solutions Errors 

𝟏. 𝟏 1 1.000000000000000000000000003 3.0 × 10−27 

𝟏. 𝟏 1.10517091807564762481170782649 1.105170918075647624811706467 1.4 × 10−24 

𝟏. 𝟐 1.22140275816016983392107199464 1.221402758160169833921066580 5.4 × 10−24 

𝟏. 𝟑 1.34985880757600310398374431333 1.3498588075760031039837324340 1.2 × 10−23 

𝟏. 𝟒 1.49182469764127031782485295284 1.4918246976412703178248328408 2.0 × 10−23 

𝟏. 𝟓 1.64872127070012814684865078781 1.648721270700128146848621880 2.9 × 10−23 

𝟏. 𝟔 1.82211880039050897487536766816 1.822118800390508974875331282 3.6 × 10−23 

𝟏. 𝟕 2.01375270747047652162454938858 2.0137527074704765216245092865 4.0 × 10−23 

𝟏. 𝟖 2.22554092849246760457953753140 2.2255409284924676045795004075 3.7 × 10−21 

𝟏. 𝟗 2.45960311115694966380012656360 2.459603111156949663800102027 2.5 × 10−23 

𝟏. 𝟏 2.71828182845904523536028747135 2.718281828459045235360287471 0 

𝒖𝟏𝟏       ∗ ∗ ∗ 

Exact  
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Number of Iterations Maximum Error 

𝟓 4.3 × 10−9 

𝟕 6.7 × 10−12 

𝟗 1.0 × 10−14 

𝟏𝟏 1.6 × 10−17 

𝟏𝟑 2.6 × 10−20 

𝟏𝟓 4.0 × 10−23 

 

Table 3.4 (b)   Maximum error of the present method for various iterations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.4 (c)   Comparison of the numerical solutions using 7, 9, 11, 13 and 15 iterations.  

 

 

 

 

 

𝒕 𝒖𝟕 𝒖𝟗 𝒖𝟏𝟏 𝒖𝟏𝟑 𝒖𝟏𝟓 

𝟏. 𝟏 2.0 × 10−32 1.9 × 10−32 0 3.0 × 10−27 3.0 × 10−27 

𝟏. 𝟏 1.4 × 10−10 3.6 × 10−16 5.6 × 10−19 8.7 × 10−22 1.4 × 10−24 

𝟏. 𝟐 5.8 × 10−10 1.4 × 10−15 2.2 × 10−18 3.5 × 10−21 5.4 × 10−24 

𝟏. 𝟑 1.3 × 10−9 3.1 × 10−15 4.9 × 10−18 7.6 × 10−21 1.2 × 10−23 

𝟏. 𝟒 2.1 × 10−9 5.3 × 10−15 8.2 × 10−18 1.3 × 10−20 2.0 × 10−23 

𝟏. 𝟓 3.1 × 10−9 7.6 × 10−15 1.2 × 10−17 1.8 × 10−20 2.9 × 10−23 

𝟏. 𝟔 3.9 × 10−9 9.5 × 10−15 1.5 × 10−17 2.3 × 10−20 3.6 × 10−23 

𝟏. 𝟕 4.3 × 10−9 1.0 × 10−14 1.6 × 10−17 2.6 × 10−20 4.0 × 10−23 

𝟏. 𝟖 4.0 × 10−9 9.7 × 10−15 1.5 × 10−17 2.4 × 10−20 3.7 × 10−21 

𝟏. 𝟗 2.6 × 10−9 6.4 × 10−15 1.0 × 10−17 1.6 × 10−20 2.5 × 10−23 

𝟏. 𝟏 0 3.5 × 10−33 7.5 × 10−33 0 0 
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Problem 3.5  Consider the following third order nonlinear (BVP) 

 

 𝑢′′′(𝑡) + 𝑢2(𝑡) = 𝑒𝑡�3 + 𝑡(5 + 𝑡 + 𝑡𝑒𝑡(𝑡 − 1)2)�, (3.214) 
with boundary conditions 

 𝑢(0) = 0, 𝑢′(0) = −1, 𝑢(1) = 0, 
 

(3.215) 

whose exact solution is given by  𝑢(𝑡) = 𝑡(𝑡 − 1)𝑒𝑡 . 

 

Since the linear operator 𝐿[𝑢] = 𝑢′′′ and the interval 0 ≤ 𝑡 ≤ 1  are the same as in Problems 3.1, 
3.2 and 3.4, thus Green’s function is given by  

 

𝐺(𝑡|𝑠) =

⎩
⎨

⎧�−
1
2

𝑠2 + 𝑠� 𝑡2 − 𝑡𝑠 +
𝑠2

2
, 0 < 𝑡 < 𝑠

�−
1
2

𝑠2 + 𝑠 −
1
2� 𝑡2, 𝑠 < 𝑡 < 1

. 

 
 
 
(3.216) 

 

Applying Picard's fixed point iteration, we have the following iterative algorithm: 

 𝑢0 = 𝑡2 + 𝑡,  
 
 
 

Figure 3.4 (b)  Comparison of the absolute errors using 13 and 15 iterations. 
 

𝒖𝟏𝟏         ∘∘∘∘∘ 

𝒖𝟏𝟏         ∘∘∘∘∘ 
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𝑢𝑛+1 = 𝑢𝑛 + � ��−
1
2

𝑠2 + 𝑠� 𝑡2 − 𝑡𝑠 +
𝑠2

2 � �𝑢𝑛
′′′(𝑠) + 𝑢𝑛

2(𝑠)
𝑡

0

− 𝑒𝑠�3 + 𝑠(5 + 𝑠 + 𝑠𝑒𝑠(𝑠 − 1)2)�� 𝑑𝑠

+ � ��−
1
2

𝑠2 + 𝑠 −
1
2� 𝑡2� �𝑢𝑛

′′′(𝑠) + 𝑢𝑛
2(𝑠)

1

𝑡

− 𝑒𝑠�3 + 𝑠(5 + 𝑠 + 𝑠𝑒𝑠(𝑠 − 1)2)�� 𝑑𝑠, 

 
 
 
 
 
 
(3.317) 

 
where 𝑢0 is the solution of 𝑢′′′ = 0  subject to  𝑢(0) = 0, 𝑢′(0) = −1, 𝑢(1) = 0. 
 

The comparison of the absolute errors between our method and that of [42] is shown in 
Table 3.5 (b). The numerical results using 15 iterations are presented in Table 3.5 (a) and Figure 
3.5 (a). It is clear from both of them the high accuracy and fast convergence of the method.  In 
Table 3.5 (c), we introduce the maximum absolute error for different iterations. In addition, in 
Figure 3.5 (b) we compare the numerical results between those arising from the fifth iteration 
and the fifteenth iteration. As in Problem 3.4, the K-M iteration for this problem does not affect 
the accuracy or rate of convergence. 
 
 

 

 

 

 

 

 

 

 

 

 

 

Table 3.5 (a)   Numerical solutions and absolute errors for Problem 3.5 using 15 iterations. 

 

 

 

𝒕 Numerical Solution Error 

𝟏. 𝟏 0 0 

𝟏. 𝟏 0.09946538262680828623305370438412  5.0 × 10−33 

𝟏. 𝟐 0.19542444130562717342737151914236  2.0 × 10−32 

𝟏. 𝟑 0.28347034959096065183658630579892  4.2 × 10−32 

𝟏. 𝟒 0.35803792743390487627796470868100  7.2 × 10−32 

𝟏. 𝟓 0.41218031767503203671216269695364  1.1 × 10−31 

𝟏. 𝟔 0.43730851209372215397008824035922  1.4 × 10−31 

𝟏. 𝟕 0.42288806856880006954115537160259  1.5 × 10−31 

𝟏. 𝟖 0.35608654855879481673272600502335  1.4 × 10−21 

𝟏. 𝟗 0.22136428000412546974201139072431  9.3 × 10−32 

𝟏. 𝟏 4.0 × 10−35 2.0 × 10−35 
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Table 3.5 (c)   Maximum Error of our method for certain iterations. 

 

 

 

𝒕 HPM and RKM 

�𝑼𝟓𝟏,𝟑 − 𝒖� [42] 

HPM and RKM 

�𝑼𝟕𝟏,𝟑 − 𝒖� [42] 

Present Method 

𝒖𝟏𝟓 

𝟏. 𝟏 − − 0 

𝟏. 𝟏 1.8 × 10−6 7.8 × 10−7 5.0 × 10−33 

𝟏. 𝟐 4.9 × 10−6 2.2 × 10−6 2.0 × 10−32 

𝟏. 𝟑 8.8 × 10−6 4.1 × 10−6 4.2 × 10−32 

𝟏. 𝟒 1.3 × 10−5 6.1 × 10−6 7.2 × 10−32 

𝟏. 𝟓 1.7 × 10−5 8.0 × 10−6 1.1 × 10−31 

𝟏. 𝟔 1.9 × 10−5 9.2 × 10−6 1.4 × 10−31 

𝟏. 𝟕 2.0 × 10−5 9.6 × 10−6 1.5 × 10−31 

𝟏. 𝟖 1.7 × 10−5 8.5 × 10−6 1.4 × 10−21 

𝟏. 𝟗 1.1 × 10−5 5.5 × 10−6 9.3 × 10−32 

𝟏. 𝟏 − − 2.0 × 10−35 

Number of Iterations Maximum Error 

𝟓 1.7 × 10−11 

𝟔 1.7 × 10−13 

𝟕 1.7 × 10−15 

𝟖 1.7 × 10−17 

𝟗 1.6 × 10−19 

𝟏𝟏 1.6 × 10−21 

𝟏𝟓 1.7 × 10−31 

Table 3.5 (b)   Comparison with other numerical methods for Problem 3.5. 
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Figure 3.5 (a)  Exact solution versus numerical solutions of Problem 3.5 using 15 iterations. 

 

 

 

 

 

 

 

 

 

 

 

   

 Figure 3.5 (b)   Numerical solutions for Problem 3.5 using 5 and 15 iterations. 

 

 

Problem 3.6  Consider the following third order nonlinear  

 𝑢′′′(𝑡) − 𝑢′(𝑡) − 𝑢(𝑡)𝑢′′(𝑡) + 𝑢2(𝑡) = 2𝑡 + 𝑡2 − 𝑡𝑒𝑡−1(2𝑒𝑡−1 + 𝑡 − 1) (3.318) 
 

with boundary conditions 

 𝑢(0) = 1, 𝑢(1) = −1, 𝑢′(1) = 1, (3.319) 

𝒖𝟏𝟏         ∘∘∘∘∘ 

Exact  

 

𝒖𝟓       ∗ ∗∗ ∗ 

𝒖𝟏𝟏         ∘∘∘∘∘ 
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whose exact solution is given by  

 𝑢(𝑡) = 𝑡 + 1 − 𝑡𝑒𝑡−1. (3.320) 
 

Applying the properties described before, the operator 𝐿[𝑦] = 𝑢′′′ − 𝑢′ on (0,1), has the following 
Green’s function  

 𝐺(𝑡|𝑠)

=

⎩
⎪
⎨

⎪
⎧−(𝑒2𝑠 − 2𝑒𝑠 + 1)𝑒

𝑒𝑠(𝑒2 − 2𝑒 + 1) +
𝑒2𝑠 − 2𝑒𝑠 + 1

2𝑒𝑠(𝑒2 − 2𝑒 + 1) 𝑒𝑡 +
(𝑒2𝑠 − 2𝑒𝑠 + 1)𝑒2

2𝑒𝑠(𝑒2 − 2𝑒 + 1) 𝑒−𝑡 ,                        0 < 𝑡 < 𝑠

𝑒2𝑒𝑠 − 𝑒𝑒2𝑠 − 𝑒 + 𝑒𝑠

𝑒𝑠(𝑒2 − 2𝑒 + 1) −
𝑒2 − 𝑒2𝑠 + 2𝑒𝑠 − 2𝑒

2𝑒𝑠(𝑒2 − 2𝑒 + 1) 𝑒𝑡 −
2𝑒2𝑒𝑠 − 2𝑒𝑒2𝑠 − 𝑒2 + 𝑒2𝑠

2𝑒𝑠(𝑒2 − 2𝑒 + 1) 𝑒−𝑡, 𝑠 < 𝑡 < 1
. 

  

 
 
 
(3.321) 

 

We apply Picard's fixed point iteration. Hence, the resulting fixed point iterative scheme reads: 

 
𝑢0 =

2𝑒(𝑒−1 − 1)
2𝑒−1𝑒 − 𝑒−1 − 𝑒

−
𝑒−1 − 1

2𝑒−1𝑒 − 𝑒−1 − 𝑒
𝑒𝑡 +

𝑒 − 1
2𝑒−1𝑒 − 𝑒−1 − 𝑒

𝑒−𝑡 , 

𝑢𝑛+1 = 𝑢𝑛 + � �
−(𝑒2𝑠 − 2𝑒𝑠 + 1)𝑒

𝑒𝑠(𝑒2 − 2𝑒 + 1) +
𝑒2𝑠 − 2𝑒𝑠 + 1

2𝑒𝑠(𝑒2 − 2𝑒 + 1) 𝑒𝑡
𝑡

0

+
(𝑒2𝑠 − 2𝑒𝑠 + 1)𝑒2

2𝑒𝑠(𝑒2 − 2𝑒 + 1) 𝑒−𝑡� �𝑢𝑛
′′′(𝑠) − 𝑢𝑛

′(𝑠) − 𝑢𝑛(𝑠)𝑢𝑛
′′(𝑠)

+ 𝑢𝑛
2(𝑠) − 2𝑠 − 𝑠2 + 𝑠𝑒𝑠−1(2𝑒𝑠−1 + 𝑠 − 1)�𝑑𝑠

+ � �
𝑒2𝑒𝑠 − 𝑒𝑒2𝑠 − 𝑒 + 𝑒𝑠

𝑒𝑠(𝑒2 − 2𝑒 + 1) −
𝑒2 − 𝑒2𝑠 + 2𝑒𝑠 − 2𝑒

2𝑒𝑠(𝑒2 − 2𝑒 + 1) 𝑒𝑡
1

𝑡

−
2𝑒2𝑒𝑠 − 2𝑒𝑒2𝑠 − 𝑒2 + 𝑒2𝑠

2𝑒𝑠(𝑒2 − 2𝑒 + 1) 𝑒−𝑡 � �𝑢𝑛
′′′(𝑠) − 𝑢𝑛

′(𝑠)

− 𝑢𝑛(𝑠)𝑢𝑛
′′(𝑠) + 𝑢𝑛

2(𝑠) − 2𝑠 − 𝑠2 + 𝑠𝑒𝑠−1(2𝑒𝑠−1 + 𝑠 − 1)�𝑑𝑠, 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
(3.322) 

where  𝑢0 is the solution of  𝑢′′′ − 𝑢′′ = 0 subject to 𝑢(0) = 1, 𝑢′(0) = 2, 𝑢(1) = 𝑒2. 

 

Table 3.6 (a) and Figure 3.6 (a) show the numerical results and the errors obtained by 
using the proposed algorithm with 20 iterations. Again in this problem, the Krasnoselskii–Mann 
iteration method gives better approximate solutions than the Picard’s iterations method. Table 
3.6 (b) and Figure 3.6 (b) show that the matching of the numerical solution with the exact 
solution is better for 𝛼 = 0.93  than for 𝛼 = 1.Table 3.6 (c) shows the maximum error of the 
Mann’s iterative method when α = 0.93 for some selected iterations. Examining that Table, it is 
clear that the absolute errors values are relatively very small. Higher accuracy can be achieved 
by taking and evaluating more iterates. 
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Table 3.6 (a)   Comparison between the exact and the numerical solutions for Problem 3.6 using 20 
iterations 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 (a)  Exact solution and numerical solutions for Problem 3.6 using 20 iterations. 

 

 

𝒕 Exact Solution Numerical Solution Error 

𝟏. 𝟏 1 1.0000000000000000000000002178635023 4.2 × 10−25 

𝟏. 𝟏 1.0593430340259400888116545760354374 1.0593430340259400890306879080948485 2.2 × 10−19 

𝟏. 𝟐 1.1101342071765556817139795229968874 1.1101342071765556819868868250392407 2.7 × 10−19 

𝟏. 𝟑 1.1510244088625771455885599719807413 1.1510244088625771457947078894641595 2.1 × 10−19 

𝟏. 𝟒 1.1804753455623894269486164331069728 1.1804753455623894270416613903825568 9.3 × 10−20 

𝟏. 𝟓 1.1967346701436832881981002325044098 1.1967346701436832881956770992810634 2.4 × 10−21 

𝟏. 𝟔 1.1978079723786164195533402449113044 1.1978079723786164195036626018159413 5.0 × 10−20 

𝟏. 𝟕 1.1814272455227974937531883544775282 1.1814272455227974937013901240971390 5.2 × 10−20 

𝟏. 𝟖 1.1450153975376145130640515931047685 1.1450153975376145130336090039163179 3.0 × 10−20 

𝟏. 𝟗 1.0856463237676363841521758464982070 1.0856463237676363841436536643266162 8.5 × 10−21 

𝟏. 𝟏 1 0.99999999999999999999999903701671267 9.6 × 10−25 

𝒖𝟐𝟐         ∗ ∗∗ ∗ 

Exact  
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Table 3.6 (b)  Comparison between of Picard’s and Mann’s iteration methods. 

 

Number of Iterations Maximum Error 

𝟓 2.1 × 10−6 

𝟏𝟏 1.5 × 10−10 

𝟏𝟓 4.6 × 10−15 

  

𝟐𝟏 2.7 × 10−19 

 

Table 3.6 (c)   Maximum error of the Mann’s iterative method when 𝛼 = 0.93 for some selected 
iterations. 

 

 

 

 

 

𝒕 
PICARD’s MANN’s 

𝜶 = 𝟏 𝜶 = 𝟏. 𝟗𝟕 𝜶 = 𝟏. 𝟗𝟓 𝜶 = 𝟏. 𝟗𝟑 𝜶 = 𝟏. 𝟗 

𝟏. 𝟏 2.8 × 10−24 2.3 × 10−25 2.2 × 10−24 4.2 × 10−25 4.6 × 10−25 

𝟏. 𝟏 4.0 × 10−18 5.3 × 10−19 3.0 × 10−19 2.2 × 10−19 8.5 × 10−20 

𝟏. 𝟐 5.5 × 10−18 5.4 × 10−19 3.6 × 10−19 2.7 × 10−19 2.7 × 10−19 

𝟏. 𝟑 5.2 × 10−18 2.6 × 10−19 2.5 × 10−19 2.1 × 10−19 4.1 × 10−19 

𝟏. 𝟒 3.3 × 10−18 6.8 × 10−20 8.9 × 10−20 9.3 × 10−20 4.4 × 10−19 

𝟏. 𝟓 1.4 × 10−18 2.7 × 10−19 3.7 × 10−21 2.4 × 10−21 3.7 × 10−19 

𝟏. 𝟔 1.3 × 10−19 3.1 × 10−19 9.1 × 10−20 5.0 × 10−20 2.5 × 10−19 

𝟏. 𝟕 3.8 × 10−19 2.3 × 10−19 8.3 × 10−20 5.2 × 10−20 1.3 × 10−19 

𝟏. 𝟖 3.4 × 10−19 1.2 × 10−19 4.7 × 10−20 3.0 × 10−20 4.7 × 10−20 

𝟏. 𝟗 1.1 × 10−19 3.0 × 10−20 1.3 × 10−20 8.5 × 10−21 7.7 × 10−21 

𝟏. 𝟏 9.2 × 10−23 1.3 × 10−23 3.8 × 10−23 9.6 × 10−25 2.3 × 10−24 
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Figure 3.6 (b)  Mann’s iteration method with 𝛼 = 0.93 and Picard’s iterative method for 
Problem 3.6 using 20 iterations. 

 

Problem 3.7  Consider the following third order linear (BVP) 

 𝑢′′′(𝑡) = 𝑡𝑢 + 𝑒𝑡(−3 − 5𝑡 − 2𝑡2 + 𝑡3),    0 ≤ 𝑡 ≤ 1, (3.323) 
with boundary conditions 

 𝑢(0) = 0, 𝑢′′(0) = 0, 𝑢(1) = 0, (3.324) 
whose exact solution is given by  

 𝑢(𝑡) = 𝑡(1 − 𝑡)𝑒𝑡 . 
 

(3.325) 

We find Green’s function for  𝐿[𝑢] = 𝑢′′′  subject to 𝑢(0) = 𝑢(1) = 𝑢′′(0) = 0  by applying 
Green’s properties. Green’s function is found to be  

 

𝐺(𝑡|𝑠) = �

1
2

𝑠2 + �−
1
2

𝑠2 −
1
2� 𝑡 +

1
2

𝑡2, 0 < 𝑡 < 𝑠

�−
1
2

𝑠2 + 𝑠 −
1
2� 𝑡, 𝑠 < 𝑡 < 1

. 

 
 
(3.326) 

 

Applying Picard's fixed point iteration we have the subsequent iterative scheme: 

 𝑢0 = 0,  

Picards (𝜶 = 𝟏)        ∘∘∘∘∘ 

Manns (𝜶 = 𝟎. 𝟗𝟗)  ∘∘∘∘∘ 
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𝑢𝑛+1 = 𝑢𝑛 + � �
1
2

𝑠2 + �−
1
2

𝑠2 −
1
2� 𝑡 +

1
2

𝑡2� �𝑢𝑛
′′′(𝑠) − 𝑠𝑢𝑛

𝑡

0
− 𝑒𝑠(−3 − 5𝑠 − 2𝑠2 + 𝑠3)�𝑑𝑠

+ � �
1
2

𝑠2 − 2𝑠 + 2 + �−
1
2

𝑠2 + 2𝑠 − 2� 𝑡� �𝑢𝑛
′′′(𝑠) − 𝑠𝑢𝑛

1

𝑡
− 𝑒𝑠(−3 − 5𝑠 − 2𝑠2 + 𝑠3)�𝑑𝑠, 

 
 
 
 
 
 
(3.327) 

 

where  𝑢0 is the solution of  𝑢′′′ = 0 subject to  𝑢(0) = 0, 𝑢′′(0) = 0, 𝑢(1) = 0.  

 

Comparison of errors between our method and the numerical method presented in [44] is 
demonstrated in Table 3.7 (a), which shows that our method yields better results. Figure 3.7 (a) 
exhibits the exact and numerical solutions using 30 iterations. In addition, in Table 3.7 (b), we 
computed the maximum absolute errors for different iterates. From Table 3.7 (c), it is obvious 
that evaluating more iterates will enhance the numerical solution dramatically. It is important to 
note that the K-M iteration for this problem has no affect in improving the error. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.7 (a)   Comparison with another method for Problem 3.7 using 8 iterations. 

 

 

 

𝒕 

 Example 1 in [44] Present Method 

 𝒉 = 𝟏. 𝟏𝟏𝟏 𝒉 = 𝟏. 𝟏𝟏𝟓 

𝟏. 𝟏 0 0 0 

𝟏. 𝟏 2.99 × 10−6 7.67 × 10−7 1.7 × 10−16 

𝟏. 𝟐 5.33 × 10−6 1.37 × 10−6 3.4 × 10−16 

𝟏. 𝟑 7.97 × 10−6 1.81 × 10−6 5.1 × 10−16 

𝟏. 𝟒 7.98 × 10−6 2.08 × 10−6 6.7 × 10−16 

𝟏. 𝟓 8.28 × 10−6 2.11 × 10−6 8.0 × 10−16 

𝟏. 𝟔 7.89 × 10−6 2.11 × 10−6 8.8 × 10−16 

𝟏. 𝟕 6.91 × 10−6 1.87 × 10−6 8.8 × 10−16 

𝟏. 𝟖 5.18 × 10−6 1.46 × 10−6 7.6 × 10−16 

𝟏. 𝟗 3.15 × 10−6 1.31 × 10−7 4.8 × 10−16 

𝟏. 𝟏 0 0 0 
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Figure 3.7 (a)   Exact versus numerical solution using 30 iterations. 

 

Number of Iterations Maximum Error 

𝟓 3.0 × 10−10 

𝟏𝟏 1.8 × 10−19 

𝟏𝟓 1.2 × 10−28 

𝟐𝟏 7.4 × 10−38 

𝟐𝟓 4.7 × 10−47 

𝟑𝟏 3.0 × 10−56 

 

Table 3.7 (b)   Maximum error of the present method for certain iterations. 

 

 

 

 

 
 

𝒖𝟑𝟑         ∗ ∗∗ ∗ 

Exact  
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Table 3.7 (c)   Absolute Errors resulting from various iterations. 

 

 

Problem 3.8  Consider the following third order linear (BVP) 

 𝑢′′′(𝑡) = 𝑡𝑢(𝑡) + 𝑒𝑡(3 + 𝑡 − 61𝑡2 − 60𝑡3 − 15𝑡4 − 𝑡5 + 𝑡6) ,   − 1 ≤ 𝑡 ≤ 1, (3.328) 
 

with boundary conditions 

 
𝑢(−1) = 0, 𝑢′′(−1) =

12
𝑒

, 𝑢(1) = 0. (3.329) 

The exact solution is given by  

 𝑢(𝑡) = 𝑡(1 − 𝑡4)𝑒𝑡 . (3.330) 
 

We find Green’s function for  𝐿[𝑢] = 𝑢′′′ subject to 𝑢(0) = 𝑢(1) = 𝑢′′(0) = 0 by applying 
Green’s function’s properties. This yield  

 

𝐺(𝑡|𝑠) =

⎩
⎨

⎧�
1
4

𝑠2 +
1
2

𝑠 −
1
4� + �−

1
4

𝑠2 −
1
2

𝑠 −
1
4� 𝑡 +

1
2

𝑡2, −1 < 𝑡 < 𝑠

�−
1
4

𝑠2 +
1
2

𝑠 −
1
4� + �−

1
4

𝑠2 +
1
2

𝑠 −
1
4� 𝑡, 𝑠 < 𝑡 < 1

. 

 
 
(3.331) 

 

 

𝒕 10 iterations 15 iterations 20 iterations 25 iterations 30 iterations 

𝟏. 𝟏 0 0 0 0 0 

𝟏. 𝟏 3.6 × 10−20 2.3 × 10−29 1.4 × 10−38 9.2 × 10−48 5.8 × 10−57 

𝟏. 𝟐 7.2 × 10−20 4.6 × 10−29 2.9 × 10−38 1.8 × 10−47 1.2 × 10−56 

𝟏. 𝟑 1.1 × 10−19 6.8 × 10−29 4.3 × 10−38 2.7 × 10−47 1.7 × 10−56 

𝟏. 𝟒 1.4 × 10−19 8.9 × 10−29 5.6 × 10−38 3.6 × 10−47 2.3 × 10−56 

𝟏. 𝟓 1.7 × 10−19 1.1 × 10−28 6.7 × 10−38 4.3 × 10−47 2.7 × 10−56 

𝟏. 𝟔 1.8 × 10−19 1.2 × 10−28 7.4 × 10−38 4.7 × 10−47 3.0 × 10−56 

𝟏. 𝟕 1.8 × 10−19 1.2 × 10−28 7.4 × 10−38 4.7 × 10−4.7 3.0 × 10−56 

𝟏. 𝟖 1.6 × 10−19 1.0 × 10−28 6.4 × 10−38 4.1 × 10−47 2.6 × 10−56 

𝟏. 𝟗 1.0 × 10−19 6.4 × 10−29 4.0 × 10−38 2.6 × 10−47 1.6 × 10−56 

𝟏. 𝟏 0 4.7 × 10−35 7.2 × 10−47 0 2.6 × 10−66 
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Applying Picard's fixed point iteration, we have the subsequent iterative scheme: 

 𝑢0 = − 6
𝑒

(1 − 𝑡2),  

𝑢𝑛+1 = 𝑢𝑛 + � ��
1
4

𝑠2 +
1
2

𝑠 −
1
4� + �−

1
4

𝑠2 −
1
2

𝑠 −
1
4� 𝑡 +

1
2

𝑡2� (𝑢𝑛
′′′(𝑠)

𝑡

−1
− 𝑠𝑢𝑛(𝑠) − 𝑒𝑠(3 + 𝑠 − 61𝑠2 − 60𝑠3 − 15𝑠4 − 𝑠5 + 𝑠6) )𝑑𝑠

+ � ��−
1
4

𝑠2 +
1
2

𝑠 −
1
4� + �−

1
4

𝑠2 +
1
2

𝑠 −
1
4� 𝑡� (𝑢𝑛

′′′(𝑠)
1

𝑡
− 𝑠𝑢𝑛(𝑠) − 𝑒𝑠(3 + 𝑠 − 61𝑠2 − 60𝑠3 − 15𝑠4 − 𝑠5 + 𝑠6) )𝑑𝑠, 

 
 
 
 
 
 
 
 
(3.332) 

 
where 𝑢0 is the solution of 𝑢′′′ = 0 subject to 𝑢(−1) = 0, 𝑢′′(−1) = 12

𝑒
, 𝑢(1) = 0. 

 
 
Numerical results of this linear third-order differential equation confirm that our 

approach is more accurate than the method in [44] as observed in table 3.8 (a). Table 3.8 (b) 
shows the errors of the numerical solutions for different iterations; higher accuracy can be 
obtained by evaluating more iterates. The K–M iteration is not implemented in this problem 
since it did not show any noteworthy improvement. Moreover, the maximum errors for some 
iterates are reported in Table 3.8 (c). Figure 3.8 (a) shows the approximate solution which is 
clearly highly accurate.  
 
 

 

 

 

 

 

 

 

 

 

 

 

Table 3.8 (a)   Comparison with the method in [44] for Problem 3.8 using 8 iterations. 

 

𝒕 

 Example 2 in [44] Present Method 

 𝒉 = 𝟏. 𝟏𝟏𝟏 𝒉 = 𝟏. 𝟏𝟏𝟓 

−𝟏. 𝟏 0 0 3.0 × 10−13 

−𝟏. 𝟖 8.15 × 10−6 1.93 × 10−6 8.8 × 10−10 

−𝟏. 𝟔 1.43 × 10−5 3.30 × 10−6 1.7 × 10−9 

−𝟏. 𝟒 1.87 × 10−5 4.41 × 10−6 2.4 × 10−9 

−𝟏. 𝟐 2.10 × 10−5 4.76 × 10−6 2.9 × 10−9 

𝟏. 𝟏 2.16 × 10−5 5.18 × 10−5 3.1 × 10−9 

𝟏. 𝟐 2.06 × 10−5 4.66 × 10−5 2.9 × 10−9 

𝟏. 𝟒 1.78 × 10−5 3.03 × 10−5 2.4 × 10−9 

𝟏. 𝟔 1.29 × 10−5 1.96 × 10−6 1.7 × 10−9 

𝟏. 𝟖 6.31 × 10−6 5.96 × 10−7 8.9 × 10−10 

𝟏. 𝟏 0 0 0 
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Figure 3.8 (a)   Exact versus numerical solution using 30 iterations. 

 

Table 3.8 (b)  Absolute Errors for Problem 3.8 for various iterations. 

 

 

 

 

𝒕 10 iterations 15 iterations 20 iterations 25 iterations 30 iterations 

−𝟏. 𝟏 8.3 × 10−20 2.0 × 10−20 0 2.0 × 10−30 0 

−𝟏. 𝟖 5.6 × 10−12 1.9 × 10−17 5.7 × 10−23 1.9 × 10−28 5.9 × 10−34 

−𝟏. 𝟔 1.1 × 10−11 3.5 × 10−17 1.1 × 10−22 3.6 × 10−28 1.1 × 10−33 

−𝟏. 𝟒 1.5 × 10−11 4.9 × 10−17 1.6 × 10−22 4.9 × 10−28 1.6 × 10−33 

−𝟏. 𝟐 1.8 × 10−11 5.9 × 10−17 1.9 × 10−22 6.1 × 10−28 1.9 × 10−33 

𝟏. 𝟏 1.9 × 10−11 6.2 × 10−17 2.0 × 10−22 6.4 × 10−28 2.0 × 10−33 

𝟏. 𝟐 1.8 × 10−11 5.9 × 10−17 1.9 × 10−22 6.1 × 10−28 1.9 × 10−33 

𝟏. 𝟒 1.5 × 10−11 4.9 × 10−17 1.6 × 10−22 5.0 × 10−28 1.6 × 10−33 

𝟏. 𝟔 1.1 × 10−11 3.5 × 10−17 1.1 × 10−22 3.6 × 10−28 1.1 × 10−33 

𝟏. 𝟖 5.6 × 10−11 1.8 × 10−17 5.7 × 10−23 1.9 × 10−28 5.9 × 10−34 

𝟏. 𝟏 0 6.0 × 10−20 2.0 × 10−50 3.0 × 10−30 1.0 × 10−59 

𝒖𝟑𝟑         ∗ ∗∗ ∗ 

Exact  
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Number of Iterations Maximum Error 

𝟓 6.1 × 10−6 

𝟏𝟏 3.1 × 10−11 

𝟏𝟓 6.2 × 10−17 

𝟐𝟏 2.0 × 10−22 

𝟐𝟓 6.4 × 10−28 

𝟑𝟏 2.0 × 10−33 

 

Table 3.8 (c)   Maximum error of the present method for some iterations. 

 

 

Problem 3.9 Consider the following third order nonlinear (BVP) 

 𝑢′′′(𝑡) = −𝑒−2𝑢(𝑡)(𝑢′(𝑡) + 𝑡𝑢′′(𝑡) − 2𝑡(𝑢′(𝑡))2),    1 ≤ 𝑡 ≤ 2, (3.333) 
 

with boundary conditions 

 𝑢(1) = 0, 𝑢′(1) = −1, 𝑢(2) = ln(2). (3.334) 
 

The exact solution is given by  

 𝑢(𝑡) = ln(𝑡). (3.335) 
 

We find Green function for 𝐿[𝑢] = 𝑢′′′ subject to 𝑢(1) = 𝑢(2) = 𝑢′(1) = 0 by applying 
Green’s function’s properties. It is found to be   

 

𝐺(𝑡|𝑠) = �
𝑠2 − 2𝑠 + 2 + �−

1
2

𝑠2 + 𝑠 − 2� 𝑡 +
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2

𝑠2 − 2𝑠 + 2 + �−
1
2

𝑠2 + 2𝑠 − 2� 𝑡, 𝑠 < 𝑡 < 2
. 

 
 
(3.336) 

 

Applying Picard's fixed point iteration, then we have the iterative scheme 

 
𝑢0 = −1 − 𝑙𝑛(2) + �

3
2

+ 𝑙𝑛(2)� 𝑡 −
1
2

𝑡2,  
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𝑢𝑛+1 = 𝑢𝑛 + � �𝑠2 − 2𝑠 + 2 + �−
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1
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′′(𝑠) − 2𝑠(𝑢𝑛
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(3.337) 

where 𝑢0 is the solution of 𝑢′′′ = 0 subject to 𝑢(1) = 0, 𝑢′(1) = −1, 𝑢(2) = ln(2). 
 
The comparison of the absolute errors between our method and that in [44] is shown in 

Table 3.9 (a). The approximate solutions at the mesh points t = 1.0,1.1, … ,2.0  using 20 
iterations, as well as the exact solution are depicted in Figure 3.9 (a) from which it is evident that 
in case we choose  α = 0.77, the approximate solution agrees very well with the exact solution. 
As in Problems 3.3 and 3.6, the K-M iteration for this problem has a tangible effect in improving 
the error. Table 3.9 (b) and Figure 3.9 (b) show that the best results are achieved using 20 
iterations, when we choose 𝛼 = 0.77  in which the maximum absolute error is 1.1 × 10−17 . 
However, when  α = 1 ,  α = 0.9 , α = 8  and α = 0.7  the maximum absolute errors are 7.8 ×
10−10, 6.8 × 10−13, 2.6 × 10−15  and  2.6 × 10−15 using 20 iterations, respectively.  Table 3.9 
(c)  shows that the choice α = 0.77  gives the best accuracy.  

 
 

 

 

 

 

 

 

 

 

 

 

 

Table 3.9 (a)   Comparison with method in [44] for Problem 3.9 using 20 iterations. 

𝒕 

 Example 4 in [44] Present Method 

 𝒉 = 𝟏. 𝟏𝟏𝟏 𝒉 = 𝟏. 𝟏𝟏𝟓 

𝟏. 𝟏 0 0 2.0 × 10−36 

𝟏. 𝟏 1.54 × 10−6 4.24 × 10−7 3.5 × 10−18 

𝟏. 𝟐 2.65 × 10−6 7.15 × 10−7 9.1 × 10−18 

𝟏. 𝟑 3.30 × 10−6 8.34 × 10−7 1.1 × 10−17 

𝟏. 𝟒 3.75 × 10−6 9.83 × 10−7 6.3 × 10−18 

𝟏. 𝟓 3.81 × 10−6 1.01 × 10−6 2.2 × 10−19 

𝟏. 𝟔 3.60 × 10−6 9.23 × 10−7 3.0 × 10−18 

𝟏. 𝟕 3.15 × 10−6 8.34 × 10−7 1.2 × 10−18 

𝟏. 𝟖 2.44 × 10−6 6.55 × 10−7 2.2 × 10−18 

𝟏. 𝟗 1.31 × 10−6 3.57 × 10−7 3.5 × 10−18 

𝟐. 𝟏 0 0 9.9 × 10−26 
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Figure 3.9 (a) Exact versus numerical solution using 20 iterations. 

 

 

Table 3.9 (b)  Comparing Picard’s and Mann’s schemes for Problem 3.9 using 20 iterations. 

 

 
 

 

𝒕 
PICARD’s MANN’s 

𝜶 = 𝟏 𝜶 = 𝟏. 𝟗 𝜶 = 𝟏. 𝟖 𝜶 = 𝟏. 𝟕𝟕 𝜶 = 𝟏. 𝟕 

𝟏. 𝟏 2.0 × 10−36 1.0 × 10−36 0 2.0 × 10−36 0 

𝟏. 𝟏 2.1 × 10−10 2.5 × 10−13 1.0 × 10−15 3.5 × 10−18 5.2 × 10−16 

𝟏. 𝟐 4.1 × 10−10 4.4 × 10−13 1.8 × 10−15 9.1 × 10−18 2.6 × 10−16 

𝟏. 𝟑 5.7 × 10−10 5.8 × 10−13 2.3 × 10−15 1.1 × 10−17 1.4 × 10−15 

𝟏. 𝟒 7.0 × 10−10 6.5 × 10−13 2.3 × 10−15 6.3 × 10−18 2.6 × 10−15 

𝟏. 𝟓 7.7 × 10−10 6.8 × 10−13 2.6 × 10−15 2.2 × 10−19 2.2 × 10−15 

𝟏. 𝟔 7.8 × 10−10 6.5 × 10−13 2.5 × 10−15 3.0 × 10−18 6.6 × 10−16 

𝟏. 𝟕 7.1 × 10−10 5.7 × 10−13 2.1 × 10−15 1.2 × 10−18 1.0 × 10−15 

𝟏. 𝟖 5.7 × 10−10 4.3 × 10−13 1.6 × 10−15 2.2 × 10−18 2.0 × 10−15 

𝟏. 𝟗 3.3 × 10−19 2.4 × 10−13 9.0 × 10−16 3.5 × 10−18 1.7 × 10−15 

𝟐. 𝟏 5.0 × 10−30 9.0 × 10−30 2.3 × 10−37 9.9 × 10−26 4.5 × 10−36 

𝒖𝟐𝟐         ∗ ∗∗ ∗ 

Exact  
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Figure 3.9 (b) Mann’s with 𝛼 = 0.77 and Picard’s for Problem 3.9 using 20 iterations. 

 

Table 3.9 (c)  Errors of numerical solutions for some iterations using Mann’s with 𝛼 = 0.77. 

 

 

 

𝒕 5 iterations 10 iterations 15 iterations 20 iterations 25 iterations 

𝟏. 𝟏 10.0 × 10−37 10.0 × 10−32 1.0 × 10−36 2.0 × 10−36 2.0 × 10−45 

𝟏. 𝟏 8.6 × 10−8 6.5 × 10−12 3.7 × 10−15 3.5 × 10−18 2.3 × 10−20 

𝟏. 𝟐 2.0 × 10−7 1.0 × 10−11 1.3 × 10−15 9.1 × 10−18 4.1 × 10−20 

𝟏. 𝟑 2.9 × 10−7 6.9 × 10−12 5.7 × 10−15 1.1 × 10−17 5.1 × 10−20 

𝟏. 𝟒 3.2 × 10−7 3.1 × 10−11 4.0 × 10−15 6.3 × 10−18 5.4 × 10−20 

𝟏. 𝟓 3.2 × 10−7 4.1 × 10−11 8.2 × 10−15 2.2 × 10−19 5.6 × 10−20 

𝟏. 𝟔 2.9 × 10−7 3.2 × 10−11 2.3 × 10−14 3.0 × 10−18 5.6 × 10−20 

𝟏. 𝟕 2.6 × 10−7 8.8 × 10−12 3.3 × 10−14 1.2 × 10−18 5.2 × 10−20 

𝟏. 𝟖 2.2 × 10−7 1.4 × 10−11 3.2 × 10−14 2.2 × 10−18 4.2 × 10−20 

𝟏. 𝟗 1.5 × 10−7 2.2 × 10−11 2.0 × 10−14 3.5 × 10−18 2.4 × 10−20 

𝟐. 𝟏 5.0 × 10−28 5.8 × 10−25 1.4 × 10−25 9.9 × 10−26 5.9 × 10−34 

Picards (𝜶 = 𝟏)        ∘∘∘∘∘ 

Manns (𝜶 = 𝟎. 𝟕𝟕)  ∘∘∘∘∘ 
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CHAPTER 4: CONCLUSIONS 

4.1 Summery 

This thesis was divided into three chapters in which we surveyed two existing techniques 

and introduced a novel one to obtain numerical solutions for various types of differential 

equations, particularly for a wide class of boundary value problems. In the first chapter we 

started with the Adomian Decomposition Method (ADM) for solving ordinary differential 

equations, partial differential equations, algebraic equations, delay differential equations, integral 

equations, and integro-differential equations. This method tackles many differential equations, 

whether they are homogeneous, inhomogeneous, linear, or nonlinear, in a straightforward 

manner without any restrictive assumptions, such as linearization or perturbation. In addition, the 

(ADM) often converges to the exact solution if it exists. On the other hand, we noticed that the 

method gives highly accurate approximations only close to the initial condition but not as we 

move away from it.  

In the second chapter, we introduced the Variational Iteration Method (VIM) for solving 

ordinary differential equations, partial differential equations, calculus of variations, integral 

equations, and integro-differential equations. This method gives rapidly convergent successive 

approximations of the exact solution if such a solution exists. It also provides an approximation 

with high level of accuracy by applying few iterations only. Actually, the variational iteration 

method proved to be an effective tool to handle nonlinear equations without the use of Adomian 

polynomials. However, we noticed that for this method, as we increase the values of x, the error 

slowly deteriorates over the entire domain.  

Finally, in the third chapter, we presented a new approach for obtaining numerical 

solutions for third order linear and nonlinear boundary value problems by utilizing Green's 

functions and manipulating fixed point iterations, such as Picard's and Krasnoselskii-Mann's 

schemes. The aim of our alternative strategy is to overcome the major deficiency of both the 

ADM and VIM, particularly the local convergence of the method and the deterioration of the 

error as the domain increases. A number of examples were solved to illustrate the method and 

demonstrate its reliability and accuracy. Moreover, we compared our results with both the 

analytical and the numerical solutions obtained by other methods that exist in the literature.  
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4.2 Future Work 
  In future research, we will work on deriving the necessary conditions for the convergence 

of the iterative method as well as its rate of convergence. Also, we will try to generalize and 

apply the scheme to BVPs other than third order, such as fourth order. In the approach we used 

Picard’s and Mann’s fixed point schemes, therefore in the future work, we will explore other 

schemes such as the Ishikawa iteration and try to embed it into our method. Moreover, my 

ultimate goal is to publish all this work in an international and reputed journal.  
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