

FPGA-BASED PARALLEL HARDWARE ARCHITECTURE FOR REAL-TIME

OBJECT CLASSIFICATION

by

Murad Mohammad Qasaimeh

A Thesis Presented to the Faculty of the

American University of Sharjah

College of Engineering

in Partial Fulfilment

of the Requirements

for the Degree of

Master of Science in

Computer Engineering

Sharjah, United Arab Emirates

June 2014

© 2014 Murad M. Qasaimeh. All rights reserved.

Approval Signatures

We, the undersigned, approve the Master’s Thesis of Murad Mohammad Qasaimeh.

Thesis Title: FPGA-based Parallel Hardware Architecture for Real-Time Object Classification.

Signature Date of Signature

___________________________ _______________
Dr. Tamer Shanableh
Associate Professor, Department of Computer Science and Engineering
Thesis Advisor

___________________________ _______________
Dr. Assim Sagahyroon
Professor, Department of Computer Science and Engineering
Thesis Co-Advisor

___________________________ _______________
Dr.Tarik Ozkul
Associate Professor, Department of Computer Science and Engineering
Thesis Committee Member

___________________________ _______________
Dr. Khaled Assaleh
Professor, Department of Electrical Engineering
Thesis Committee Member

___________________________ _______________
Dr. Assim Sagahyroon
Head, Department of Computer Science and Engineering

___________________________ _______________
Dr. Hany El-Kadi
Associate Dean, College of Engineering

___________________________ _______________
Dr. Leland Blank
Interim Dean, College of Engineering

___________________________ _______________
Dr. Khaled Assaleh
Director of Graduate Studies

To my lovely family

for their endless love and support

5

Abstract

Object detection is one of the most important tasks in computer vision. It has

multiple applications in many different fields such as face detection, video surveillance

and traffic sign recognition. Most of these applications are associated with real-time

performance constraints. However, the current implementations of object detection

algorithms are computationally intensive and far from real-time performance. The

problem is further aggravated in an embedded systems environment where most of

these applications are deployed. The high computational complexity makes

implementing an embedded object detection system with real-time performance a

challenging task. Consequently, there is a strong need for dedicated hardware

architectures capable of delivering high detection accuracy within an acceptable

processing time given the available hardware resources. The presented work

investigates the feasibility of implementing an object detection system on a Field

Programmable Gate Array (FPGA) platform as a candidate solution for achieving real-

time performance in embedded applications. A parallel hardware architecture that

accelerates the execution of three algorithms is proposed. The algorithms are: Scale

Invariant Feature Transform (SIFT) feature extraction, Bag of Features (BoF) and

Support Vector Machine (SVM). The proposed architecture exploits different forms of

parallelism inherent in the aforementioned algorithms to reach real-time constraints. A

prototype of the proposed architecture is implemented on an FPGA platform and

evaluated using two benchmark datasets. On average, the speedup achieved was ×55.06

times when compared with the feature extraction algorithm implemented in pure

software. The speedup achieved in the classification algorithm was ×6.64 times. The

difference in classification accuracy between our architecture and the software

implementation was less than 3%. In comparison to existing hardware solutions, our

proposed hardware architecture can detect an additional 380 SFIT features in real-time.

Additionally, the hardware resources utilized by our architecture are less than those

required by existing solutions.

Search Terms: Field Programmable Gate Array (FPGA), Scale Invariant Feature

Transform (SIFT), Support Vector Machine (SVM), Object Recognition, Object

Detection.

6

Table of Contents

Abstract .. 5

List of Figures .. 9

List of Tables ... 12

Chapter 1: Introduction .. 14

1.1 Overview ... 14

1.2 Problem Statement .. 16

1.3 Thesis Contribution ... 17

1.4 Thesis Outline ... 17

Chapter 2: Background .. 19

2.1 Scale Invariant Feature Transform (SIFT) ... 19

2.1.1 Gaussian Scale Space Generation .. 20

2.1.2 Local Extrema Detection ... 21

2.1.3 Keypoint Detection .. 21

2.1.4 Orientation Assignment ... 22

2.1.5 Descriptor Generation .. 22

2.2 Bag of Features Model .. 23

2.2.1 Building the Vocabulary .. 23

2.2.2 Term Generation .. 24

2.3 Support Vector Machine (SVM) ... 25

2.4 Field Programmable Gate Array (FPGA) ... 27

Chapter 3: Literature Review ... 29

3.1 Hardware Implementations of Features Extraction algorithm 29

3.2 Hardware Implementation of Classification Algorithm 32

7

Chapter 4: Software Implementation ... 35

4.1 Feature Extraction Algorithm: .. 35

4.2 Classification Algorithms: .. 35

Chapter 5: Proposed Hardware Implementation .. 40

5.1 SIFT Module Implementation ... 40

5.1.1 Implementation of GSS Module .. 41

5.1.2 Implementation of the Keypoint Detection Module 47

5.1.3 Implementation of Gradient Magnitude and Orientation Module 48

5.1.4 Dominant Orientation Generation Module .. 50

5.1.5 Descriptor Generation Module .. 52

5.2 Bag of Feature Hardware Implementation .. 57

5.3 Support Vector Machine Hardware Implementation 58

5.4 FPGA Implementation .. 61

5.4.1 I/O System Based on Microblaze .. 61

Chapter 6: Experimental Results ... 64

6.1 Modules’ Accuracy ... 64

6.1.1 Gaussian Scale Space Generation Module Accuracy 65

6.1.2 Keypoint Detection Module Accuracy .. 65

6.1.3 Gradient Magnitude and Orientation Module Accuracy 66

6.1.4 Rotation Module Accuracy .. 66

6.1.5 Gaussian Weight Generation Module Accuracy.................................... 66

6.1.6 SIFT Descriptor Generation Module Accuracy 66

6.2 Classification Rate Evaluation .. 67

6.2.1 Experiment 1: Caltech256.. 67

6.2.2 Experiment 2: KUL Belgium Traffic Sign .. 69

6.2.3 SVM Kernel Parameter Selection .. 70

6.2.4 Fraction Part Bit Width and Accuracy ... 71

8

6.3 Processing Time .. 72

6.3.1 SIFT Module Processing Time .. 72

6.3.2 BoF Module Processing Time ... 75

6.3.3 SVM Module Processing Time .. 75

6.4 Hardware Simulation Results: ... 76

6.5 Hardware Utilization ... 81

6.6 Comparison with related works... 85

Chapter 7: Conclusion and Future Work ... 88

References: ... 89

9

List of Figures

Figure 1: Object Detection Applications ... 14

Figure 2: SIFT Feature Extraction Algorithm's Steps ... 19

Figure 3: Gaussian Scale Space Pyramid... 20

Figure 4: Keypoint's 3×3 neighbours ... 21

Figure 5: Dominant Orientation's Histogram ... 22

Figure 6: The first 2×2 blocks in SIFT descriptor ... 22

Figure 7: The process of Bag of Feature modelling .. 23

Figure 8: BoF modelling for three class images with code size equal......................... 24

Figure 9: FPGA internal Architecture.. 27

Figure 10: Five classes from Caltech-256 dataset ... 35

Figure 11: The Process of Training Stage.. 36

Figure 12: Testing phase's Steps .. 36

Figure 13: Comparison between six classification algorithms using the Caltech-256

dataset .. 37

Figure 14: Comparison based on precision, recall and F1-measure 38

Figure 15: Classification time of six classifiers using the Caltech-256 dataset. 38

Figure 16: Training time of six different classifiers using the Caltech-256 dataset. ... 39

Figure 17: The Overall Architecture of the Proposed SIFT hardware 40

Figure 18: GSS's First Octave Module .. 42

Figure 19: 1-D Gaussian Filter Block .. 43

Figure 20: 1-D Gaussian Filters Values ... 43

Figure 21: Block 12 in 1-D Gaussian Filter Block .. 44

Figure 22: Block 11 in 1-D Gaussian Filter Block .. 44

Figure 23: Block 10 in 1-D Gaussian Filter Block .. 44

Figure 24: Block 9 in 1-D Gaussian Filter Block .. 44

Figure 25: Block 8 in 1-D Gaussian Filter Block .. 45

Figure 26: Block 7 in 1-D Gaussian Filter Block .. 45

Figure 27: Block 6 in 1-D Gaussian Filter Block .. 45

Figure 28: Block 5 in 1-D Gaussian Filter Block .. 45

Figure 29: Block 4 in 1-D Gaussian Filter Block .. 45

file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977150
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977151
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977152
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977153
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977154
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977155
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977156
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977157
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977158
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977159
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977160
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977161
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977162
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977162
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977163
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977164
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977165
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977166
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977167
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977168
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977169
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977170
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977171
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977172
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977173
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977174
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977175
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977176
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977177
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977178

10

Figure 30: Block 3 in 1-D Gaussian Filter Block .. 46

Figure 31: Block 2 in 1-D Gaussian Filter Block .. 46

Figure 32: Block 1 in 1-D Gaussian Filter Block .. 46

Figure 33: Block 0 in 1-D Gaussian Filter Block .. 46

Figure 34: Keypoint Detection Module Architecture .. 47

Figure 35: Gradient Magnitude and Orientation Module Architecture 48

Figure 36: Dominant Orientation Generation Module ... 50

Figure 37: Architecture of Dominant Orientation Generation Module 51

Figure 38: SIFT Descriptor Module Architecture ... 52

Figure 39: Rotation Module Architecture .. 53

Figure 40: SIFT descriptor Module Architecture .. 55

Figure 41: Histogram Memory Implementation .. 56

Figure 42: Bag of Feature Module ... 57

Figure 43: RBF Kernel Function Architecture .. 58

Figure 44: The Overall Architecture for SVM .. 60

Figure 45: Block Diagram of the FPGA Prototype System ... 61

Figure 46: FSL Connections between MicroBlaze and our Architecture 62

Figure 47: ML505 Evaluation Board ... 63

Figure 48: Modules' Accuracy Calculation Technique .. 64

Figure 49: Filtering difference between software and GSS module 65

Figure 50: Example images from subset 1 -Caltech-256 dataset 67

Figure 51: Example image from Subset 2 -Caltech-256 dataset 67

Figure 52: Hardware and Software Average Confusion Matrix 68

Figure 53: Hardware and Software Confusion Matrix ... 69

Figure 54: Example images from the KUL Belgium Traffic Sign Dataset 69

Figure 55: Determining the value of RBF sigma using the Caltech-256 dataset 70

Figure 56: Determining the value of SVM RBF sigma using the KUL dataset 70

Figure 57: Bit width vs. hardware utilization .. 71

Figure 58: Bit width in the proposed hardware implementation vs. error 71

Figure 59: SIFT's Module Processing Time .. 73

Figure 60: Processing Time for extracting SIFT features from multiple frames 74

Figure 61: Keypoint Detection Module Simulation Result ... 77

Figure 62: Gradient Generation Module Simulation Result .. 78

file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977179
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977180
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977181
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977182
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977183
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977184
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977185
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977186
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977187
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977188
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977189
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977190
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977191
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977192
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977193
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977194
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977195
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977196
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977197
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977198
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977199
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977200
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977201
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977202
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977203
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977204
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977205
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977206
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977207
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977209
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977211

11

Figure 63: Dominant Orientation HW Module Simulation Results 78

Figure 64: Dominant Orientation Module Simulation Result 2................................... 79

Figure 65: Dominant Orientation Module Simulation Result 3................................... 79

Figure 66: SIFT Descriptor Module Simulation Result ... 79

Figure 67: SVM Engine Simulation Result 1 .. 80

Figure 68: SVM Engine Simulation Result 2 .. 80

Figure 69: SVM HW Module Simulation Result .. 81

file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977212
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977213
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977214
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977215
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977216
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977217
file:///C:/Users/Murad/Desktop/Murad%20Thesis%20Draft_1.6%20%2022_5_2014.docx%23_Toc389977218

12

List of Tables

Table 1: Gaussian filter’s scales for the first octave .. 20

Table 2: SIFT System's paramters, performance and hardware requirements 32

Table 3: SVM systems Parameters and performance results 34

Table 4: First octave filters scales and mask sizes ... 41

Table 5 Gradient Generation block (Data Format) ... 49

Table 6: Rotation Module Data Format ... 53

Table 7: Triliniear Interpolation Module Data Format .. 55

Table 8: FSL Bus Signals .. 62

Table 9: Classification accuracy for ten subsets from Caltech-256 68

Table 10: Speed up of SIFT's Module using the proposed hardware 74

Table 11: SIFT processing time results for a range of images 75

Table 12: Software implementation results compared to our SVM architecture 76

Table 13: Utilized Hardware for the Gaussian Scale Space Module 81

Table 14: Utilized Hardware for the Keypoint Detection Module 82

Table 15: Utilized Hardware for the Gradient Magnitude and Orientation Module ... 82

Table 16: Utilized Hardware for the Dominant Orientation Module 82

Table 17: Utilized Hardware for the SIFT Descriptor Module.................................... 83

Table 18: Utilized Hardware for the SIFT Module ... 83

Table 19: Utilized Hardware for the Bag of Feature Module 83

Table 20: Utilized Hardware for the Support Vector Engine 84

Table 21: Utilized Hardware for the Support Vector Machine Module 84

Table 22: Utilized Hardware for the Object Detection Architecture 84

Table 23: Comparing proposed SIFT results with existing soultions 86

Table 24: Comparing proposed SVM Results with existing soultions 87

Table 25: Rotation module results ... 95

Table 26: SIFT generator Module results vs. Software Implementation 96

Table 27: Decoder 36 bins: (10°/ bin) angles .. 97

13

List of Abbreviations

BoF Bag of Features

CLBs Configurable Logic Blocks

DoG Difference of Gaussian

DSP Digital Signal Processing

FPGA Field Programmable Gate Array

FSL Fast Simplex Link

GPU Graphic Processing Unit

LUT Lookup Table

ML Machine Learning

SDK Xilinx Software Development Kit

SIFT Scale Invariant Feature Transform

SVM Support Vector Machine

XPS Xilinx Platform Studio

14

Figure 1: Object Detection Applications

Car Face

Robot

Bottle Stop Sign

HC Interaction HC Interaction

Robot

Chapter 1: Introduction

1.1 Overview

Object detection is the process of finding and identifying objects of a certain class,

such as faces, cars, and buildings, in an image or a video frame. This task involves

classifying the input image according to its visual content into a general class of similar

objects. For example, the object detection system checks the input image if it contains

a car or not. Over the few last decades, many approaches have been implemented to

solve the object detection problem.

Object detection has many applications in different areas. In industry, it is used in

quality control and inspection tasks to identify defective objects in production lines.

Detection systems in automotive and driver assistance systems can be used to help the

drivers to detect traffic signs and adjacent cars [1]. In surveillance and authentication

systems, object detection is used to identify the face of suspicious people by using fixed

cameras mounted in streets or at airports [2]. It is also used in autonomous robots,

intelligent traffic systems, and computer human interactions, to name a few. Figure 1

shows some of object detection applications.

The state-of-the-art object detection algorithms for feature extraction and

classification are often computationally expensive. Furthermore, these algorithms deal

with a large amount of data that makes it impossible to reach real-time performance

using software implementation only. Therefore, there is a strong need to propose a

dedicated hardware architecture that performs the complex object detection algorithms

in an efficient way in order to reach the real-time performance.

15

Feature-based object detection is the most common object detection method in

computer vision. It typically uses one of the feature extraction algorithms to extract the

image’s important content. It also uses one of the classification algorithms to build a

classifier that can catalogue new unlabelled images into one of the trained categories.

Many features extraction algorithms have been suggested for use in the last decade.

Each algorithm tried to improve the distinctiveness and robustness against possible

image transformations. Canny and Sobel’s edge detectors [3], Harris and features from

accelerated segment test (FAST) corner detectors [4, 5] are local feature extraction

algorithms that can be used in object recognition systems. However, the features

extracted by these algorithms are highly sensitive to image transformation such as scale,

rotate, translate, and shear.

The Scale-invariant feature transform (SIFT) algorithm proposed by Lowe [6, 7] is

considered as one of the most robust image features extraction algorithms. The SIFT

features are invariant to change in image scale, rotation, illumination, 3D camera

viewpoint, and noise. It has been reliably employed in many applications in computer

vision. In this work, we used the SIFT algorithm for feature extraction. For

classification, we used multiclass support vector machine (SVM) algorithm.

To have a sense of the computational complexity needed by the feature extraction

and classification algorithms in the object detection system, the SIFT algorithm was

implemented on a PC with an Intel® i5 1.66 GHz processor with 8 GB RAM [8]. The

authors indicated that it takes around 1.1 seconds to extract 514 features from an image

of 320×240 pixels (the software codes are written by Hess [9]). This does not include

the time required in the classification step that depends on the dataset size and number

of classes. In [10], the authors used a Pentium 4 CPU 3.2 GHz PC to implement a

recognition system with a video-based database size of 100 images (320×240 pixels).

The recognition time was around 6 seconds, this being far from the desired real-time

performance, specifically 30 frames per seconds (around 33 ms).

To reach real-time performance, some attempts were made to simplify these

algorithms in order to reduce the computational complexity, but it was at the expense

of recognition accuracy [11]. Others tried to parallelize the algorithm execution using

multicore CPUs [12], or Graphic processing units (GPUs), or a field programmable gate

array (FPGA) [8, 11, 13, 14].

16

By using one of these accelerators, more than one task can be executed in parallel so

that the overall recognition time is reduced. However, the multi-core CPU and GPU

implementations require excessive hardware resources all while consuming too much

power thereby making them unsuitable for embedded systems. Nevertheless, Field-

Programmable Gate Array (FPGA) integrated circuits provide a promising solution to

implementing real-time object recognition systems using low resources and a power

budget.

The FPGA implementation can execute the algorithm’s operations in parallel by

designing a circuit dedicated to each operation. The distributed memory blocks in the

FPGA can be used as cache that can be accessed in parallel. Therefore, FPGA

embedded platforms may exhibit high performance in executing image processing

algorithms.

In this research work, we explore the possibility of achieving real-time performance

for object recognition system using FPGA embedded platforms. The algorithms used

in the object recognition are SIFT and Bag of Features for feature extraction and

modelling, and SVM for classification. These are state-of art algorithms that have

achieve high recognition accuracy but are still computationally intensive.

1.2 Problem Statement

Current state-of-the-art object detection algorithms have high computational

complexity and require large memory resources. Therefore, the implementation of these

algorithms in embedded systems has a very low frame rate which is far from the real-

time performance. In real-time systems, it is desired to process 30 video frames per

second. The resources and computational power restrictions inherited in the embedded

platforms make implementing these algorithms in real-time a challenging task that

needs to be addressed. Therefore, there is a need for customized parallel hardware

architecture to accelerate the object detection algorithms within the computational

resource available inside the embedded systems. FPGA provides a promising solution

to solve this problem by designing parallel hardware architecture able to perform the

feature extraction and classification algorithms in an efficient way in order to reach real

or near real-time performance.

17

1.3 Thesis Contribution

The main contribution of this research work can be summarized as follows:

 Implement an FPGA-based hardware architecture to detect objects within real-

time constraints. More specifically, the target is to process 30 video frames per

second.

 Accelerate the computationally intensive feature extraction algorithm (SIFT) by

exploiting the parallelism in the algorithm.

 Develop a new technique to build the DoG pyramid in the SIFT algorithm by

using multiplierless multiple constant multiplication with common expression

elimination algorithm to reduce the Hardware utilization.

 Develop a new method to implement multi-port memory in a SIFT descriptor.

 Design new architecture for computing the dominant key point orientation in

the SIFT algorithm.

 Accelerate the support vector machine classifier by using concurrent data-path

units to compute different parts of the kernel.

 Build extendable SVM classifier hardware architecture to implement one-

against-all multiclass SVM algorithm.

 Analysis of the computational load of each step in the object detection system

and to estimate the parallelism gain required to reach the real-time performance.

1.4 Thesis Outline

This thesis is outlined as follows:

Chapter 1 includes a brief description of embedded object detection systems and their

performance limitations. It also includes the problem statement and thesis contribution.

Chapter 2 presents the theoretical background required for this thesis. It explains SIFT

feature extraction algorithm, bag of features modelling, and the support vector machine

algorithm. It also discusses FPGAs technology and its suitability to implement image

processing algorithms.

In Chapter 3, we explore the literature that is relevant to our problem. We review the

related work in accelerating the feature extracting algorithms and classification

18

algorithm using FPGAs. We also summarize the results achieved so far and the

limitations in each implementation.

In Chapter 4, we present the software implementation of SIFT, BoF, and SVM

algorithms using Matlab. We also compare the classification accuracy of a number of

well-known classifiers.

In Chapter 5, we describe our hardware architecture for SIFT, BoF, and SVM

algorithms in details. We describe the internal architecture of each module and discuss

how it works. The FPGA implementation of our prototype is also presented. The

Microblaze based embedded system used for our architecture is explained

In Chapter 6, the experimental results are summarized. The accuracy of each module

is compared to the accuracy of its software implementation. The hardware utilization

and processing time are measured and reported. A comparison with previous solutions

is also presented.

In Chapter 7, we conclude the work of this thesis and suggest future work.

19

Figure 2: SIFT Feature Extraction Algorithm's Steps

128 Feature Vector

Source image (640x480) pixel

Compute the Gaussian
Scale Space

Compute the Difference
of Gaussian Scale Space

For each pixel in DoG
image, check if it is a

stable keypoint or not

For each Keypoint,
compute the gradient

magnitude and
orientation

Histogram the Gradient
values to build a 128

SIFT feature vector

Chapter 2: Background

This chapter presents some background for the research presented in this thesis.

Section 2.1 reviews the scale invariant feature extraction algorithm, SIFT, used in our

work. In Section 2.2, we discuss the concept of the bag of feature modeling. Section

2.3 presents the theory of the support vector machine (SVM) classification algorithm.

Lastly, Section 2.4 introduces the field programmable gate array (FPGA) technology,

and its efficiency in image-processing algorithms.

2.1 Scale Invariant Feature Transform (SIFT)

SIFT is an algorithm used to extract and describe local features in images. It was

proposed by Lowe [6] in 2004 and was patented in the U.S. to University of British

Columbia (UBC). The features extracted by the SIFT algorithm are invariant to change

in scale, image rotation, different illumination, change in camera viewpoint, or addition

of noise. It is considered as one of the most robust feature detection and description

algorithm in computer vision. Therefore, SIFT is one of the most trusted and widely

used feature extraction algorithm in the field. SIFT algorithm takes N × N pixels image

as input and produces a set of distinctive features that represent the image content.

The SIFT algorithm process can be divided into two main stages: keypoint detection,

and keypoint description. In the first stage, the image is scanned to search for distinctive

and repeatable points called Keypoints. This stage consists of three sub-tasks: Gaussian

scale space generation, local extrema detection, and keypoint detection. The second

stage generates the keypoint descriptors that are divided into two sub-tasks: dominant

orientation assignment and descriptor generation. SIFT’s steps are shown in the Figure

2 and further details are available in [6].

20

Figure 3: Gaussian Scale Space Pyramid [6]

2.1.1 Gaussian scale space generation. In the first step, the input image I(x, y) is

convolved with a series of Gaussian filters G(x, y, σi) to build a Gaussian scale space

as defined by equations (1-2). Where σi is the Gaussian filter scale, L(x, y, σi) is the

Gaussian filtered image and i is a scale index. The * in equation (1) is 2-D convolution

operation in x and y, and S is the number of scaled images to be generated, and G(x, y,

σ) is the Gaussian Kernel.

 𝐿(𝑥, 𝑦, 𝜎𝑖) = 𝐺(𝑥, 𝑦, 𝜎𝑖) ∗ 𝐼(𝑥, 𝑦) (1)

 𝐺(𝑥, 𝑦, 𝜎) =
1

2𝜋𝜎2
 𝑒

−(
𝑥2+𝑦2

2𝜎2) (2)

for i=0, 1 … S+2

Table 1 summarizes the Gaussian filter’s standard deviations for the first octave of

Gaussian scale space. In this work, we used six scales (σ0 , k.σ0 , k2. σ0, k3. σ0, k4. σ0,

k5. σ0), where σ0=1.6, and k= √2
3 .

The first set of the S+2 Gaussian filtered images is called the first octave of the

Gaussian scale space. The second octave is derived by down-sampling the Ls image in

the first octave into half size and repeating the same operations that were applied to the

first octave. After computing the Gaussian filtered images, the next step is to build the

difference of Gaussian scale space (DoG) by subtracting each two consecutive images

in the same octave, as defined in equation (3).

 𝐷(𝑥, 𝑦, 𝜎) = 𝐿(𝑥, 𝑦, 𝐾𝜎) − 𝐿(𝑥, 𝑦, 𝜎) (3)

Figure 3 shows the process to construct the DoG pyramid from the input image. In

this figure there are two octaves, each one has a group of five Gaussian filter images

and four DoG images.

 Table 1: Gaussian filter’s scales for the first octave

Filter
Number

Filter
Scale

Filter scale
value

1 σ 1.6
2 k1σ √2

3 1
1.6

3 k2σ √2
3 2

1.6
4 k3σ √2

3 3
1.6

5 k4σ √2
3 4

1.6
6 k5σ √2

3 5
1.6

21

Figure 4: Keypoint's 3×3 neighbours [6]

2.1.2 Local extrema detection. In this step, the DoG image is scanned to find the

candidate key points. Each pixel in the D(x, y, σ) image at location (x, y) is compared

with its 3×3 neighbours in the same scale and the adjacent scales. If the pixel is local

maxima or local minima out of the total 26 neighbouring pixels, it will be considered

as a candidate keypoint. This operation is performed for every pixel in the DoG images

and what results is a list of keypoint candidates. Figure 4 shows the keypoint’s 3×3

neighbours.

2.1.3 Keypoint detection. The goal of this step is to eliminate the candidate key

points that have low contrast or poorly localized along edges. To detect a low contrast

keypoint, the value of the pixel is compared with a predefined threshold. If the value

is less than the threshold, the keypoint will be rejected.

To find the poorly localized peak, the keypoint is tested using the inequality defined

in equation (4). Where H is the Hessian matrix computed as defined in (5), and Tr (H)

is the trace of H, Det(H) is the determinant of H, and r is a constant value. The ∆s are

computed as given in equations (6, 7, and 8). In this work, we used the threshold value

equal to 3, and constant value for r equal to 10, which eliminates keypoints that have a

ratio between the principal curvatures greater than 10.

Tr(H)2

𝐷𝑒𝑡(𝐻)
<

(𝑟 + 1)2

𝑟
 (4)

H = [
∆xx ∆xy
∆xy ∆yy

] (5)

∆xx = D(x + 1, y) + D(x − 1, y) − 2𝐷(𝑥, 𝑦)
(6)

∆yy = D(x, y + 1) + D(x, y − 1) − 2𝐷(𝑥, 𝑦) (7)

∆xy = (D(x + 1, y + 1) − D(x − 1, y + 1) −
 D(x + 1, y − 1) + D(x − 1, y − 1))/4

(8)

22

Figure 6: the first 2x2 blocks in SIFT descriptor [6]

2.1.4 Orientation assignment. The gradient magnitude and orientation are

computed for all pixels around the stable keypoints. The gradient is computed in both

the horizontal and vertical direction as defined in equations (9) and (10).The gradient

magnitude and gradient orientation are computed from (∆x)and (∆y) as given in

equations (11) and (12).

∆x = L(x + 1, y) − L(x − 1, y)/2 (9)

∆y = L(𝑥, y + 1) − L(x, y − 1)/2 (10)

m(x, y) = √∆x2 + ∆y2 (11)

θ(x, y) = tan−1(
∆y

∆x
) (12)

2.1.5 Descriptor generation. To compute the SIFT descriptor, there are two main

tasks: dominant orientation computation and descriptor generation. The dominant

orientation is computed by building the gradient orientation histogram around the

keypoint. The gradient orientations in the region are mapped into one of 36 bins, where

each bin represents 10 degrees. In the end, the bin with the largest value or count

represents the dominant orientation, as shown in Figure 5.

 After computing a dominant orientation, the coordinates of the pixels around a

keypoint are rotated relative to the dominant orientation. A SIFT descriptor is computed

by dividing the region around the keypoint into 4x4 squares and building the gradient

histogram over 8 bins, where each bin covers 45 degree. The gradient magnitudes are

weighted by Gaussian filter before building the histogram. Lastly, the 16 histograms

with 8 bins are each represented in the SIFT descriptor. The SIFT descriptor has 4x4x8

values. Figure 6 shows the first 2x2 blocks out of the 4x4 blocks around a keypoint.

Figure 5: Dominant Orientation's Histogram [6]

23

Figure 7: The process of Bag of Feature modelling

2.2 Bag of Features Model

Bag of feature modelling (BoF) is one of the most popular representation methods

used to simplify the representation of an image content. The idea is to quantize each of

the extracted keypoints into one of the visual words (points in the feature space), and

then to represent each image by a histogram of the visual words. Representing images

using the BoF model has many benefits such as, simplifying the image representation

and representing the images in an unified input format that is required for classification

algorithms.

The process starts by clustering the SIFT descriptors in their feature space (128-

dimensional space) in large numbers of clusters by using the K-means clustering

algorithm. The centroids of these clusters then become the BoF visual words. The visual

words represent a particular local pattern shared by the keypoints in that cluster. The

next step is to assign each SFIT descriptor into its nearest cluster center. The normalized

histogram of the quantized features is the BoF model representation of that image.

Figure 7 shows the process of BoF modelling.

The BoF image representation procedure consists of two steps:

2.2.1 Building the vocabulary. In this step, SIFT descriptors are clustered using the

k-means algorithm in order to find the best k clusters. The process of the k-means

clustering an algorithm starts by choosing a set of centroid positions. Next, one must

measure the distance between features and the centroid positions using one of the

common distance measuring equations, such as Manhattan, Euclidean, or Mahalanobis.

24

Figure 8: BoF modelling for three class images with code size equal 4

After the assignment, the centroids are shifted to the average location of all the

keypoints assigned to them, and the assignments are redone. This procedure repeats

until the assignments stop changing. The result will be k centroids representing our BoF

visual words.

The number of the clusters (codebook size or k) depends on the type of the input

data. If we choose it to be too small then each the bag of words vector will not represent

all the keypoints extracted from its related image. If it was too large then there is

quantization over fitting because of insufficient samples of the keypoints extracted from

the training image.

2.2.2 Term generation. The goal of this step is to build a term vector, where the

term’s weight represents the frequency of word occurrence in the image. The computed

weight for term n in the term vector w, denoted by wn is defined using equation (13).

 𝑤𝑛 = ∑ ∑
1

2𝑖−1

𝑀𝑖

𝑗=1

𝑁

𝑖=1

 𝑑𝑖𝑠𝑡(𝑗, 𝑛) (13)

where:

- Mi: is the number of features in the image.

- dist(j,n): measures the distance between feature j and term n.

- N: Number of neighbours used in the soft weighting strategy; this is used when

the features are close to two terms and almost the same distance apart.

The output of the bag of features model is a term vectors that represent the image.

Figure 8 shows the whole process for three class images with a code size equal to four

(k=4).

25

2.3 Support Vector Machine (SVM)

The literature shows that many classification algorithms have been developed. These

include naïve Bayes classifier [15], k-nearest neighbours [16], Adaboost, and decision

trees. Each of these algorithms has a good classification rate. However, the support

vector machine (SVM) classifier shows the highest classification rates and outperforms

other algorithms in many computer vision applications.

SVM is a machine-learning algorithm proposed by Vapnik in 1990s. The algorithm’s

idea is to find the decision hyperplane that defines decision boundaries between

different classes. Given a set of training examples, each one is labelled to one of two

categories, D= {(x, y)| x→ data sample, y→ class label}. The SVM algorithm finds the

optimal hyperplane that splits the training data into two categories. Any new examples

can be classified based on the location relative to that hyperplane.

SVMs utilize a technique called kernel trick that represents the data in a higher

dimensional space than the original feature space. This mapping makes it easier to find

a separation hyperplane in non-linearly separable data. The most common kernels are

Linear, Polynomial, Radial Basis Function (RBF), and Sigmoid kernels:

 Linear: 𝐾(𝑥, 𝑧) = 𝑥 ∙ 𝑧 (14)

 Polynomial: 𝐾(𝑥, 𝑧) = ((𝑥 ∙ 𝑧) + 1)
𝑑

 , 𝑑 > 0 (15)

 RBF: 𝐾(𝑥, 𝑧) = exp (−∥ 𝑥 − 𝑧 ∥2/(2𝜎2) (16)

 Sigmoid: 𝐾(𝑥, 𝑧) = tanh (𝐾(𝑥 ∙ 𝑧) + 𝛷) (17)

SVM was originally designed as a binary classification algorithm, but it is possible

to extend it to multiclass classification. The most common methods of multi-class SVM

are one against all and the pairwise classifiers method:

- One-against-all method: for n classes, we need n binary SVMs, so that in the ith

classifier the objective is to separate class (i) from the rest of the classes. The ith

classifier is trained with all of the examples in the ith class with positive labels, and

all other with negative labels.

- Pairwise classification method: for n classes, we need n(n-1)/2 binary SVM

classifiers. There is one classifier for each pair of classes. Each classifier gives the

input vector {0} if input is class (i1) or {1} if input is class (i2). The class with the

most votes will be assigned to the input vector.

26

The goal of the training step in SVM is to find a separation hyperplane that provides

a maximum margin between two different classes. For example, given l training sample

{xi, yi}, i=1….l, where xi ∈ Rn, and a class label y= {-1, 1}. The goal is to find a

hyperplane in Rn expressed in the equation that separates the data into two classes:

 𝐰 ∙ x + b = 0 (18)

Where w is a vector orthogonal to the hyperplane, and b is a constant. To find the

hyperplane that maximizes the distance to the closest data points (also known as

Support Vectors), the following Quadratic Programming Problem (QP) is solved:

Minimize: W(α) = − ∑ αi + (
1

2
) ∑ ∑ yi ∙ yj ∙ αi ∙ αj(xi ∙ xj)l

j=1
l
i=1

l
i=1 (19)

Subject to: ∑ 𝑦𝑖 · 𝛼𝑖 = 0 0 ≤ 𝛼𝑖 ≤ 𝐶𝑙
𝑖=1

(20)

Where 𝛼 is the vector of l Lagrange multipliers to be determined, and C is a constant.

In this work, the training phase of the SVM is implemented in the MATLAB

environment using the LibSVM library. Upon system training, the 𝛼 and y vectors

computed in Matlab, are stored and used in the testing phase implemented in hardware

as described in Chapter 5.

In this work, we used the nonlinear SVM with the Gaussian kernel (RBF) decision

function:

 d(x) = ∑ αi ∙ yi ∙ e−γ∥x−xi∥2

SV

i=1

+ b = 0 (21)

Where SV is the support vectors, 𝛾 equal to 1/2𝜎2 and b is bias constant. In this

work, we implement the decision function in hardware. First, we find the optimal value

for 𝛾, then using the LibSVM library training code, the αi and yi vectors are extracted.

The αi and yi vectors are used in hardware to compute the final class.

27

Figure 9: FPGA internal Architecture

Programmable Interconnection

Embedded Multiplier block

I/O block

2.4 Field Programmable Gate Array (FPGA)

The Field-Programmable Gate Array (FPGA) is a semiconductor device designed to

be configured after manufacturing. It consists of a matrix of configurable logic blocks

(CLBs) of different types, including general logic, memory, and multiplier blocks,

surrounded by a programmable routing fabric that connects the CLBs, as shown in

Figure 9. The array is surrounded by input/output blocks to connect the chip to the

outside world.

When the FPGA is programmed to implement customized digital circuits, each of

the CLBs is configured to perform a simple unique logic function. The CLBs implement

the logic function by using a lookup table-based mapping technique. The routing fabric

is used to connect the CLBs together in order to build the complete digital circuit. The

IO blocks make the connections from FPGA’s logic matrix to the outside.

FPGAs have shown high performance in image processing applications. Although

FPGAs have low operational frequency compared to a Graphic Processing Unit (GPU)

and a general-purpose Central Processing Unit (CPU), they do have high performance

in image processing applications for couple of reasons. First, FPGAs can efficiently

expose high parallelism in image processing algorithms at many different levels, like

bit and instruction levels. Second, they have a large number of internal memory banks

that can be accessed in parallel which makes it suitable for processing algorithms like

image processing. Third, most of operations in image processing algorithms are 8 bits

operations [17, 18] that can be implemented efficiently in FPGAs. All of these factors

make the FPGA a promising solution to implement high performance embedded image

processing algorithms.

28

Image processing algorithms have high inherent parallelism, and the data width of

its operations is usually less than 16 bits. FPGA can execute these operations in parallel

by designing a dedicated circuit for each operation and then by executing them

concurrently. The distributed memory blocks in the form of the RAM blocks can be

used as temporary storage bank that can be accessed in parallel. These features make it

possible to implement a parallel hardware architecture for image processing

applications with real-time performance.

 In this work, we used the Verilog hardware description language to design our

hardware architecture. We used a soft-core CPU called Microblaze to stream the data

into the hardware architecture and control the dataflow. The Xilinx XUPV5 LX110T

evaluation platform equipped with the Virtex-5 FPGA is used in this work. We also

used Xilinx ISE Design Suite, Xilinx Platform Studio (XPS), and Xilinx Software

Development Kit (SDK) platforms to design and implement the architecture.

29

Chapter 3: Literature Review

This chapter surveys recent published research in the field of accelerating object

detection algorithms using hardware implementation on FPGA and GPU platforms. In

Section 3.1, we summarize the existing solutions intended to accelerate the SIFT feature

extraction algorithm using hardware implementation. Section 3.2 presents the work

done to implement the SVM classifier using hardware architecture.

3.1 Hardware Implementations of Features Extraction algorithm

Since Lowe [6] proposed the SIFT algorithm in 2004, it has been one of the most

complete and robust feature extraction algorithm in computer vision. However, it has a

high computational complexity and memory requirements. These limitations make

reaching real-time performance using a pure software implementation very difficult.

To solve this problem, a number of simplified versions of the SIFT algorithm have

been proposed, such as the SURF [19] and the fast SIFT [20] algorithms. These

algorithms tried to reduce the computational complexity of the SIFT algorithm by

sacrificing the accuracy of the extracted features. Some of these solutions reached near

real-time performance, but the quality of accuracy features was not good enough for

many real-life applications.

Others tried to accelerate the SIFT algorithm using a GPU platform. The authors in

[21] proposed a heterogeneous dataflow scheme to accelerate the SIFT algorithm using

a GPU in a mobile device. They achieved a speedup of ×4-7 over an optimized CPU

version and a ×6.4 speedup over other GPU implementations. In [22], a GPU-based

SIFT implementation for image matching was proposed. These implementations might

have reached near real-time frame rate performance, but they require an excessive

amount of hardware resources and they consume too much power compared to other

hardware platforms. This makes the GPU implementations of the SIFT algorithm not

suitable for portable embedded systems with limited power.

Other solutions tried to accelerate the SIFT algorithm by fully utilizing the

computing power of available multi-core processors. The results showed that the

performance achieved by a multi-core CPU is almost the same as the implementation

on GPUs.

30

Other attempts have been made to accelerate the SIFT algorithm using FPGA

hardware architectures. In [8], a parallel hardware architecture for SIFT features

extraction was proposed. The extracted features are used in the simultaneous

localization and mapping (SLAM) problem. The architecture was a stand-alone

architecture where it was able to read the input image directly from CMOS sensor. It

also provides the results for on-chip applications or is accessible via an Ethernet

connection. Furthermore, it provides some flexibility to customize the feature

descriptors based on the application. The system architecture is composed of three

hardware blocks that run in parallel (DoG, OriMag, and KP). The DoG block receives

a stream of pixels from CMOS sensor and performs a Gaussian filter and difference of

Gaussian operations. The results are then sent to both the OriMag and Kp blocks. The

Kp block detects the stable keypoints, while the OriMag computes the gradient

magnitude and orientation. The NIOS II processor generates the descriptor for each

keypoint generated by the KP block based on the gradient magnitude and orientation

produced by the OriMag block. The system was able to detect features from 320×240

pixel images at a rate of up to 30 frames per second. However, the system did not

generate the SIFT descriptor in real-time because it was implemented in the soft core

processor NIOS II. In this implementation, it took around 11.7 ms to generate one SIFT

descriptor which is far from the real-time performance.

Other FPGA-based SIFT acceleration architecture [14] was proposed to resolve the

power consumption and hardware resource usage problems. The proposed method

divides the input image into a number of regions of interests (ROI) and processes each

one individually as opposed to the whole image as the original algorithm. Moreover,

the architecture used the implementation of two 1-D Gaussian filters instead of one 2-

D Gaussian filters in order to reuse intermediate results efficiently. Moreover, to

increase the overall throughput the architecture used a pipelining of three stages: ROI

reading, Gaussian filtering, and key-point extraction. The Gaussian filtering module

consists of 60 parallel systolic-array architecture used to distribute the workload. The

keypoint extraction module consists of three keypoints extraction cores. The

implementation can generate the SIFT descriptor vectors for images of size 640×480

pixels at a rate of 56 frames per second. However, the author claims that ROI-method

will have a low accuracy degradation. Also, there are no details about the descriptor

vector generation stage.

31

The SIFT algorithm was optimized by [11] to obtain a high-speed feature detector

with a low hardware resource usage. The optimized algorithm uses only four scales

with two octaves in the DoG stage. It also reduces the dimension of the SIFT feature

descriptor from 128 values into 72 values. The system consists of two modules: the

SIFT feature detection hardware core module and the SIFT feature generation software

module. It has three pipelined stages: Read Data, Gaussian Smooth, and Feature

Detect/GradOrien components that all operate in parallel. The parallel structure of

Gaussian smooth component consists of seven smooth units in order to process 7x12

pixels arrived at from the Read Data component. The Feature Detect component has a

high parallel structure, where it was able to complete 28 pairs of comparison within one

clock cycle. The architecture was able to detect the SIFT features of an image of

640x480 pixels within 31 milliseconds. However, this optimising largely reduce the

accuracy of the SIFT descriptor.

Zhong et al. [23] implemented the FPGA/DSP design for a SIFT feature extraction.

The SIFT feature detection stage is implemented using FPGA with a parallel

architecture to reduce the overall detection time, while the feature description stage is

implemented using a high-performance fixed-point DSP chip. The system contains two

parallel copies of the OriMag module and the stable keypoint detection module. The

first copy is dedicated to octave 0, while the second copy is shared by octave 1 and

octave 2. These modules communicate with the DSP processor through a high-

performance processor interface (HPINF) module by sending the stable keypoints to

generate the features description vectors. The Gaussian filter module used two 1-D

kernels to replace the traditional 2D convolution in order to reduce the resource

utilization. Their system performs the SIFT features detection at a speed of 100

frames/sec on images of size 320×256 pixels, and it takes about 80 µsec per feature in

the description stage. However, this system depends on a DSP processor to generate

the feature descriptors. In addition, it works with small image resolutions to be able to

store the whole image in the chip.

The authors in [13] implemented a parallel hardware architecture with a three-stage

pipeline SIFT accelerator. The architecture consists of two hardware components, one

for key point detection, and the other for feature descriptor generation. They make the

first component act as a main processor that reads the source image and detects the

keypoints. For each stable keypoint, it invokes the second component (coprocessor) to

32

start the feature descriptor generation process. Moreover, they propose a buffer scheme

that reduces memory requirements by 50%. The module was able to detect the SIFT

features within 3.4 ms for images of VGA resolution (640×480 pixels). The overall

SIFT processing time, including the feature descriptor generation, is kept within 33ms

when the number of feature points to be extracted is fewer than 890.

The authors in [24] build the SIFT accelerator to extract features from images of size

(320 × 240) pixels. The accelerator reads the input image pixels stream, and then feeds

it into two 1D Gaussian filters. In such an implementation, the intermediate values are

stored using a buffering line technique. The results of the DoG operations are sent to

gradient orientation and magnitude generation blocks. It is also sent to the keypoint

detection and the stability checking blocks. The system is implemented in the Altera

Cyclone III FPGA and achieved 30 frames per second, however, the hardware

utilization for this architecture was high. Table 2 summarizes the SIFT accelerators’

parameters, performance and hardware utilization of the implementations discussed in

the literature.

Table 2: SIFT System's paramters, performance and hardware requirements

3.2 Hardware Implementation of Classification Algorithm

This section surveys the research work intended to accelerate the SVM algorithm

using the FPGA hardware implementations. For each architecture, the kernel

computation hardware implementations and other hardware modules are explained. The

architectures’ performance results and limitations are also discussed.

 [14] [11] [8] [23] [13] [24]

Resolution 640 × 480 640×48

0

320 ×240 320×256 640×480 320 × 240

Frame rate(fps) 56 32 30 100 30 30

Op-Freq(MHz) 50 100 50 106 100 100

FPGA Cyclone

II

Virtex-5 Stratix II Virtex-4 - Cyclone

III # of LUTs 32,592 35,889 43,366 18,195 13,200 43,563

of registers 23,247 19,529 19,100 11,821 - 14,730

of DSP blocks 258 97 64 56 - 45

Memory (Mbits) 0.67 - - 2.7 5.729 2.81

33

In [25], an FPGA-based nonlinear SVM architecture is implemented. The

architecture exploited the potential parallelism in the matrix-vector computations. The

support vectors are stored in the FPGA’s internal memory and the test images are

streamed from the external RAM. The support vectors and new instances are connected

to a parallel processing unit called the classifier hypertile. The hypertile computes the

kernel operations based on the input Support Vector SV and the input feature vector.

The results are then added in parallel using an adder tree. The result of the decision

function is streamed out of the system in order to be used in the next stage. The

implementation results present a speed up factor of 2-3 compared to the CPU

implementation and 7 times compared to a GPU implementation. However, the work

includes only the two-class SVM algorithm implementation.

The authors in [26] implemented a parallel array architecture for the SVM-based

object detection system. The architecture is based on an array of processing elements

that compute the SVM feed-forward phase for an input image. The system consists of

three main regions: the memory region that is comprised of a chain of memory units

where the training data is stored. The vector processing region that is responsible for

the vector processing, and the scalar region that processes the results produced from the

vector operation. It also has the FSM control unit to synchronize the array operations.

The system is implemented using the Virtex-5 FPGA and is evaluated using three

applications: face detection, pedestrian, and car side-view detection. The result shows

a high detection accuracy (76-78 percent) and frame rate (40-122fps) for these

applications.

The FPGA simulation of nonlinear SVMs is addressed by [27] using a Graphical

simulator and system generator. The training phase is performed offline in a computer

by Matlab, and the extracted parameters are used in implementing the decision function

in the hardware. The system used CORDIC blocks to implement the exponential

functions in the Gaussian kernels. Parallel adders and multipliers are used to find the

(αi×yi) values in the decision function. A dataset of handwritten digits of three different

classes (1, 4, and 8) are used for training and testing the proposed SVM architecture. A

total of 800 samples are used from each class, where 600 samples have been used for

training and 200 samples for testing. Each sample is a feature vector of 24 dimensions.

They used the Xilinx Virtex4-xc4vsx35 device for implementing the design. The

simulation results showed that the classification error rate was around 1.33%. The time

34

to complete the testing phase was equal to 0.27 ms at a 151.286 MHz operational

frequency.

The authors in [28] implemented an FPGA coprocessor architecture for SVM

classifiers. This architecture is based on clusters of vector processing elements (VPEs)

operating in a SIMD mode, with each cluster serviced by a separate off-chip bank of

DDR2 memory. They used clusters of processing elements operating in single-

instruction multiple data mode to take advantage of large amounts of data parallelism

in the SVM algorithm. To increase the parallelism they reduced the precision in SVM

kernel arithmetic. The system was built using an off-the-shelf PCI-based FPGA card

with a Xilinx Virtex 5 FPGA and 1GB DDR2 memory. The results show that the speed

up in the training stage reached around 9 billion multiply-accumulates per second and

at a classification of 14 GMACs.

The authors in [10, 29] implemented a hand gesture recognition system by

extracting the SIFT features from the input images and using multiclass SVM classifiers

to recognize the hand gestures. They used 100 training images with 320×240 pixels

resolution to represent four hand gestures in different conditions. By increasing the

training images for the same class they increased the robustness of the clustering and

SVM classifier model. The results achieved using a Pentium 4 CPU 3.2 GHz PC took

about 6.994 seconds to recognize one hand gesture image with high classification

accuracy above 90%. However, 6 seconds is considered far away from the real-time

performance, in addition to that, the input image resolution is also low. Table 3

summarizes the SVM systems parameters and its performance results.

Table 3: SVM systems Parameters and performance results

 [25] [27] [26] [28] [29]

Operating frequency 250MHz 202.840 MHz 100 MHz 141 MHz 6.994sec

FPGA Stratix III Virtex4 Virtex-5 Virtex 5 PC

of LUTs ~50% 9,141 57,296 37,549 -

of registers ~50% 11,589 23,220 37,067 -

of DSP blocks ~50% 81 83 128 -

Classification accuracy 98.96% 98.67% 78% - 96.23%

35

Figure 10: Five Classes from Caltech-256 Dataset

Chapter 4: Software Implementation

In this chapter, the software implementation of the object detection’s algorithms is

discussed. Section 4.1 presents the software implementation of the SIFT algorithm. In

Section 4.2, performance comparison between six of the most popular classification

algorithms in terms of classification accuracy and processing time is presented.

4.1 Feature Extraction Algorithm

To extract the SIFT features from a set of images, we used a VLFeat library which

is a MATLAB/C implementation of the SIFT detector and descriptor written by [30].

The tool reads the images and extracts the SIFT keypoints locations and SIFT

descriptors.

4.2 Classification Algorithms

Selecting the best classification algorithm for our problem was an important step.

The goal of this experiment was to find out which classifier achieved higher accuracy

within an accepted processing time. This section presents and compares six

classification algorithms. The algorithms tested are: K-nearest-neighbour (KNN),

Naïve Bayes, Decision Tree, Adaboost, linear support vector machine (SVM), and Non-

linear SVM.

For this experiment, we used Caltech-256 [31] benchmark dataset. It is an image

dataset created at the California Institute of technology in 2007, a successor to Caltech-

101. It is a set of 256 categories containing a total of 30607 images. In this work, we

used five classes: airplane, human face, motorbike, hours, and watch. Figure 10 shows

example images from each category.

36

Figure 11: The Process of Training Stage

Figure 12: Testing phase's Steps

The experiment consists of three stages: data preparation, classifiers training,

classifiers testing and performance evolution. In the first step, we read the training

images and represent them as BoF histograms. To do this, the SIFT features are

extracted from the images using SIFT Matlab code. Then, the k-means clustering

algorithm is used to find the BoF codewords (cluster centre). In this experiment, we

used 500 codewords. For each image, the SIFT features are quantized to the nearest

cluster centre, and based on a number of features in each centre the BoF histogram is

built.

In the training step, the images’ histograms are used to train the classifiers. We used

different sizes for the training set; we used a dataset of size 50, 100, 200, 300, 400, and

500 to see the effect of changing the training size on the classification accuracy. The

overall processes are shown in Figure 11.

 In this testing step, we used 100 images from each class summing up to 500 images

in total. We represent these images as BoF histograms and apply them to each classifier.

Then, the classification accuracy of each classifier is reported. The testing process is

shown in Figure 12.

Airplanes Human Faces Watches

37

81.60

82.80

84.00

85.92

88.32
89.20

80.48 80.16 80.16

79.44

81.04 81.28

77.44

85.12

87.84

89.68 89.60 89.28

78.64

83.84

86.88

88.08
88.00

89.12

82.16

84.64

88.16

90.12
91.12 91.28

73.44 73.04

78.24

79.76
78.80

81.12

72.00

77.00

82.00

87.00

92.00

10 30 50 70 90 100

A
cc

ur
ac

y

Training Size

KNN

NaiveBayes

AdaBoost

Linear-SVM

Non-Linear SVM

Decision Tree

Figure 13: Comparison between six classification algorithms using the Caltech-256 dataset

For evaluation purposes, we used precision, recall, True Negative Rate (TNR), and

accuracy as performance metrics. The precision is defined as the fraction of retrieved

instances that are relevant. The recall is the fraction of relevant instances that are

retrieved. The TNR measures the proportion of negatives that are correctly identified.

The accuracy is the proportion of true results. Equations (22-25) summarize the

precision, recall, TNR, and accuracy, respectively.

 Precision class A= TPclass A / (TPclass A + FP class A) (22)

 Recall class A = TP class A / (TP class A +FN class A) (23)

 TNR class A = TN class A / (FP class A +TN class A) (24)

 Accuracy class A = (TP class A + TN class A)/ (P + N) (25)

To find out which classification algorithm has the best accuracy, we build the

learning curve for each classifier. The learning curve shows how the classifier

performance is affected by increasing the size of the training set. By training the

classifiers on a dataset of size (50, 100, 200, 300, 400, and 500) and measuring its

accuracy we obtained the results as seen in Figure 13. We can see that the RBF-SVM

classifier outperforms other classifiers on all training sizes. In terms of accuracy, the

RFB SVM is followed by the Adaboost algorithms, which is then followed by the linear

SVM. The naive Bayes and decision tree classifiers have poor classification rates.

38

73.39 73.78 73.00

54.29 55.42 53.20

73.35 73.61 73.0973.26 74.09
72.44

78.86 78.97 78.76

52.85 52.58 53.13

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

F-Measure Precision Recall

KNN

Naïve Bayes

AdaBoost

Linear SVM

NonLinear SVM

Decision Tree

Figure 14: Comparison based on precision, recall and F1-measure

31

67

114

159

215

252

5
6 6 8 10

26

2 2 3
4 4 5

7

36

65

98

126

155

19

60

115 150

203

244

3
3 3

3 3 30

50

100

150

200

250

300

10 100 200 300 400 500

Pr
oc

es
si

ng
 T

im
e

(m
s)

Test Size

Processing Time vs. Test size

KNN

Naïve Bayes

AdaBoost

Linear SVM

NonLinear SVM

Decision Tree

Figure 15: Classification processing time of six different classifiers using the Caltech-256 dataset.

 A comparison based on the average precision, average recall and F1-measure is

shown in Figure 14. The RBF SVM achieved the highest Precision, Recall, and F1-

measurement over the other classifiers. High recall means that the algorithm returned

most of the relevant results, while high precision means that the algorithm returned

substantially more relevant than irrelevant results. The F1-measure is an accuracy

measure based on a weighted average of the precision and recall. Where an F1 score

reaches its best value at 1 and worst score at 0.

For a comparison between the algorithms based on the processing time, we executed

the algorithms on a PC with Intel Core i5 with 8 GB RAM. We used the trained

classifiers to classify datasets of sizes equal to 10, 100, 200, 300, 400, and 500. Figure

15 shows that the KNN classifier has the highest processing time followed by the RBF-

SVM classifier.

39

74
91

112

153
167

194

12 9 9 8 14 11
3 3 3 3 3

87

20
32

49
68

86

108

31
50

84

110

131

169

0

50

100

150

200

250

1 2 3 4 5 6

Pr
oc

es
si

ng
 T

im
e

(m
s)

Training Size

Processing Time vs. Training size

KNN

NaiveBayes

AdaBoost

Linear SVM

Non-linear SVM

Figure 16: Training processing time of six different classifiers using the Caltech-256 dataset.

To see how the processing time is effected by increasing the training set size, we

measured the processing time on datasets of sizes of 50,100,200,300,400 and 500. The

results are shown in Figure 16. Again, the KNN classifier has the highest processing

time followed by the RBF SVM classifier.

In conclusion, the RBF SVM classification algorithm has the highest classification

accuracy. However its processing time is also high. In this work, we used the RBF SVM

classifier whilst accelerating its operations in FPGA to reach real-time performance as

introduced in the next chapter.

40

Figure 17: The Overall Architecture of the Proposed SIFT hardware

Parallel
Gaussian

Filter
Module

DoG
Buffer

Extrema
Detector

Extrema
Detector

Extrema
Detector

Stability
Checker

Stability
Checker

Stability
Checker

FIFO

Selector
Gradient

Generator
CORDIC

Gradient
Buffer

Dominant
Orientation

FIFO

Histogran
Element

Gaussian Scale Space Generation Module Keypoint Detection Module

Gradient Generation Module Descriptor Generation Module

Source
Loader

Buffer

Input 1pixel/cycle

SIFT descriptor vector 128

Chapter 5: Proposed Hardware Implementation

This chapter presents the proposed hardware architecture for our image recognition

system. The chapter is divided into three sections. Section 5.1 describes the optimized

hardware architecture for SIFT algorithm. In Section 5.2, we present the hardware

architecture for BoF module. In Section 5.3, we presents the parallel hardware

implementation of the SVM algorithm.

5.1 SIFT Module Implementation

The overall architecture of the proposed SIFT hardware is shown in Figure 17. It

consists of four main modules, namely, Gaussian scale space generation (GSS),

keypoint detection (KPD), gradient magnitude and orientation generation (GMO), and

keypoint description module (KDS). The first two modules represent the SIFT feature

detector, while the last two modules represent the SIFT feature descriptor.

The primary task of GSS module is to build the difference of the Gaussian scale

space module. The input to this module is a stream of pixels from the source image with

one pixel occurring every clock cycle. The output of GSS module is sent to the KPD

module and GMO module at the same time. The KPD module computes the stable

keypoints and stores them in a FIFO buffer, while the GMO computes the gradient

magnitude and orientation. The KDS module reads one keypoint from the FIFO at a

time and computes the SIFT descriptor based on the gradient values in the region

around the keypoint.

41

5.1.1 Implementation of GSS module. The GSS module computes the Gaussian

filtered images and the difference of Gaussian pyramid (DoG) from the source image.

First, it convolves the input image with a series of Gaussian filters to build the first

octave. Then, it reduces the image size in half and repeats the same operations in order

to compute the second octave’s images. The final step is to compute the DoG images

by subtracting each two adjacent Gaussian filtered images in the same octave.

There are two approaches in literature to generating the Gaussian pyramid; each one

has its advantages and disadvantages. First, using a cascade filtering approach [8] where

the Gaussian filtered images are computed from the input image by recursive

convolution. This method reduces the number of multipliers required in each Gaussian

filters, which in turn reduces the hardware resources. However, this method needs a

large amount of memory to save the intermediate results. The second approach [32]

generates the Gaussian filtered images using Gaussian filters with large kernel sizes.

There is no need for memory to save the intermediate results but the number of

multipliers in this method is large.

In our implementation, we modified the second approach to take advantage of a low

memory requirement. We reduced the number of multipliers by using multiplierless

multiple constant multiplication (MCM) with common subexpression elimination

algorithm. Moreover, we used the separability property of the Gaussian filter to reduce

hardware, by separating each Gaussian filter into two smaller 1D vertical and horizontal

filters.

Table 4 summarizes the Gaussian filter scales for the first octave and the filter mask

size. The mask size is often taken as five times the standard deviation of each Gaussian

filter. In this work, we used three octaves with six scales in each octave.

 Table 4: First octave filters scales and mask sizes

Filter # Standard Deviation Standard Deviation Mask size
1 σ 1.6 9×9
2 k1σ √2

3 1
1.6 11×11

3 k2σ √2
3 2

1.6 13×13

4 k3σ √2
3 3

1.6 15×15

5 k4σ √2
3 4

1.6 21×21

6 k5σ √2
3 5

1.6 25×25

42

Figure 18: GSS's First Octave Module

640

640

640

640

640

2
5

Vertical
1D Gaussian

Filters

S0

S1

S2

S3

S4

S5

25

25

25

25

25

25

Horizontal
1D Gaussian

Filters

Sca le0

Sca le1

Sca le2

Sca le3

Sca le4

Sca le5

Data_in 8

8

8

8

8

8

8

20

20 20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

The high level architecture for the 1st octave in GSS module is shown in Figure 18.

The architecture consists of buffer lines to store the input pixels and two 1-D Gaussian

filter blocks. The buffer lines consists of 25 FIFO buffer lines (the largest mask size).

Each buffer line consists of 640 (image width) elements with each one being 8 bits; this

is because the input image is represented in greyscale (0-255).

The octave architecture has two states: initialization and a computing state. In the

initialization state, the input pixels is shifted into the buffer line one value to the right

every clock cycle, as shown in Figure 18. After 640 clock cycles, the first buffer line

becomes full. In the next clock cycle the first line output become the second line input.

The shifting operation is done to reach the first window in the left most of the source

image of size 25×25. After 24× (640) +1 clock cycles the initialization state ends and

the computing state start.

In the computing state, the first block (vertical 1D Gaussian filter) reads the left most

at 25 pixels from the buffer lines and it computes the first pixel of each Gaussian filter

images. In this case, it will generate six pixels from six Gaussian filtered images every

clock cycle. The computed result is represented using fixed point format with 9 bits for

the integer part, and 11 bits for the fraction part.

The results from the first block are buffered in 6 buffer lines with 25 elements each.

After saving 25 valid values in the buffers, the second block (horizontal 1-D Gaussian

filter) reads each 25 value and computes the corresponding 1-D horizontal filtered

pixels. The result is represented using 20 bit fixed point format with 9 bits for the integer

part and 11 bits for the fraction part. In the next clock cycle, the new pixel shifted into

the buffer lines and the second window was computed. This operation was repeated

until the whole source image shifted into the GSS module.

43

Figure 19: 1-D Gaussian Filter Block

Figure 20: 1D Gaussian Filters Values

Bl
oc

k 1
2

Bl
oc

k 1
1

Bl
oc

k 1
0

Bl
oc

k 9

Bl
oc

k 8

Bl
oc

k 7

Bl
oc

k 6

Bl
oc

k 5

Bl
oc

k 4

Bl
oc

k 3

Bl
oc

k 2

Bl
oc

k 1

Bl
oc

k 0

+

+

+

+

+

+

Scale0

Scale1

Scale2

Scale3

Scale4

Scale5

Data_in (25)

+ + + + + +++++++

The architecture used to implement the vertical and horizontal 1-D Gaussian filter

block is shown in Figure 19. In this architecture, we used the symmetrical property of

Gaussian filters to reduce the hardware utilization by adding the pixels before

multiplying them with the corresponding filter constant. The architecture contains 13

blocks to compute the multiplication of each pixel with 6 different constants from 6

different Gaussian filters. Figure 20 shows the constants of each Gaussian filters.

Block 0 computes the multiplication of pixel 12 from 25 pixels with the six constants

from six filters {0.249, 0.198, 0.157, 0.125, 0.099, and 0.08}. The block 1 computes

the multiplication of (pixel 11+ pixel13) from 25 pixels with the six constants from six

filters {0.205, 0.175, 0.145, 0.119, 0.096, and 0.078} and so on. Each block generates

six values y1, y2…, y6. The summation of y1’s generated from blocks 0-12 equal to

the final 1-D Gaussian filter pixel.

 The filter’s masks are extended to 25 values by appending zeros. The mask’s

constants are generated using Matlab. Next, a multiplierless multiple constant

multiplication with a common subexpression elimination algorithm is used to optimize

the architecture of each block.

44

The idea of using the multiplierless multiple constant multiplication algorithm [33]

with common subexpression elimination is to represent the multiplication operation as

a number of shifts, additions, and subtractions operations. The common subexpression

elimination is to try to extract common parts among the constants in order to minimize

the number of additions in finding the final result.

To find the common subexpression between the coefficients, first we represent

coefficients using the canonical sign digit (CSD) representation. In the CSD code of a

number, each bit is set to 0, 1, or –1. Then search for the common pattern is carried

within the matrix. These patterns represent the common Subexpression.

Figures 21-33 show the internal tree organization for blocks 0 to 12. Each block

generates six outputs y1, y2…, y6. If the figure doesn’t show any y-value this means it

is equal to zero. The red (dark) squares represent the common sub expressions.

In block 10, the input X is the summation of (pixel_2+ pixel_22) from 25 buffers

represented as 9 bits. The block’s output y1= (pixel_2+ pixel_22) ×0.011 and y2=

(pixel_2+ pixel_22) ×0.005. The input X is stored in the least significant 9 bits of a 20

bit output meaning we divide the input by (211 =2048). For y1, we shift the input five

times to the right (X×32) and three times to the right (X ×8). The addition of (X+ X ×8)

equals to (X ×9). The final step is to compute (X ×32 - X ×9) which equals (X × 23).

As a result, y1= X × (23 / 211) = X× (23/2048) = X × 0.0112. The same idea applies to

the other numbers.

Figure 22: Block 11 in 1-
D Gaussian Filter Block

Figure 21: Block 12 in 1-D
Gaussian Filter Block

Figure 24: Block 9 in 1-D
Gaussian Filter Block

Figure 23: Block 10 in 1-D
Gaussian Filter Block

45

Figure 25: Block 8 in 1-D
Gaussian Filter Block

Figure 26: Block 7 in 1-D
Gaussian Filter Block

Figure 27: Block 6 in 1-D
Gaussian Filter Block

Figure 28: Block 5 in 1-D
Gaussian Filter Block

Figure 29: Block 4 in 1-D
Gaussian Filter Block

46

Figure 30: Block 3 in 1-D
Gaussian Filter Block

Figure 31: Block 2 in 1-D
Gaussian Filter Block

Figure 32: Block 1 in 1-D
Gaussian Filter Block

Figure 33: Block 0 in 1-D
Gaussian Filter Block

47

Figure 34: Keypoint Detection Module Architecture

KP
Detection

32

KP
Detection

32

KP
Detection

32

DoG4

DoG5

DoG3

DoG2

DoG1 0 1 2

3 4 5

6 7 8

5.1.2 Implementation of the Keypoint Detection Module. The key point detection

(KPD) module receives its input from the DoG module. The input is a stream of

Gaussian filtered images one pixel every clock cycle. The module shifts and stores the

pixels into a buffer lines and then detects keypoints by analyzing the DoG images. The

module’s output is the key point for the x and y positions.

In this module, we parallelized the process of checking for candidate key points by

using three KP detector blocks working together. Each block analyzes three DoG

images and checks if the current pixel in the second image is a candidate keypoint, as

shown in Figure 34. The module has two states: initialization and a checking state. In

the initialization, the module shifts the input pixels into the buffer lines. After

(2×image_width+3) clock cycles, the buffer lines content becomes valid.

In the checking states, each keypoint detector block compares the pixel in the center

of the second window with its eight surrounding neighbours in the same DoG image,

and the nine surrounding neighbours in upper DoG image, and the nine surrounding

neighbours in lower DoG image. If the current pixel is the maximum or the minimum

out of the 27 values, then the pixel is a candidate keypoint.

Once the feature candidates have been located, we should eliminate the low contrast

and strong edge response points. To eliminate the low contrast key points, we compare

the absolute value DoG image pixel to a constant value. In our implementation, we used

a constant threshold equal to three. The strong edge response points can be detected by

computing the principle curvature across the edge and in the perpendicular direction

using the Hessian matrix.

48

Figure 35: Gradient Magnitude and Orientation Module Architecture

Z -(N-1)

Z -1

Z -(N-1)

Z -2

+

+
atan2

CORDIC

X

Y

X

X sqrt

CORDIC
X+

G(x,y-1)

G(x,y+1)

G(x+1,y)

G(x-1,y)

-

+

-

+

Dx

Dy

D
y

2
D

x
2

 (x,y)

m(x,y)

G(x,y)

5.1.3 Implementation of Gradient Magnitude and Orientation Module. The

gradient orientation and magnitude generation module is the third module in our

architecture. It is used to compute gradient values from the Gaussian filtered images.

The module’s input come from the Gaussian scale space module as a stream of pixels,

while the output is the gradient magnitude and orientation values.

The module works in two states, initialization and computing stages. In the first

stage, the module shifts the input pixels into buffering lines. The buffering lines are

connected to three pixel buffer elements as shown in Figure 35. After the

(2×image_width+3) cycles, the values at G(x, y+1), G(x, y-1), G(x+1, y), and G(x-1,

y) become valid and contain the pixel at position (x, y+1), (x, y-1), (x+1, y), and (x-1,

y), respectively, as shown in Figure 35.

The outputs of the buffer lines are connected to two subtractors in order to compute

the difference ∆x and ∆y. Two multipliers are used to compute the (∆x)2 and(∆y)2, and

then one is added to compute the summation(∆x)2 + (∆y)2. The square root and tan

inverse functions are computed using Xilinx IP cores CORDIC blocks. The input is the

atan2 module (∆x) and (∆y), while the output is the phase angle, as given by equation

(26). The gradient magnitude is computed using the square root of (∆x)2 + (∆y)2 as

given by equation (27).

 𝑚(𝑥, 𝑦) = √(𝐺(𝑥 + 1, 𝑦) − 𝐺(𝑥 − 1, 𝑦))
2

+ (𝐺(𝑥, 𝑦 + 1) − 𝐺(𝑥, 𝑦 − 1))2
2

 (26)

 𝜃(𝑥, 𝑦) = tan−1(
𝐺(𝑥, 𝑦 + 1) − 𝐺(𝑥, 𝑦 − 1)

𝐺(𝑥 + 1, 𝑦) − 𝐺(𝑥 − 1, 𝑦)
) (27)

49

In this implementation, the square root, and the atan2 functions are computed using

two CORDIC Xilinx IP cores. First, the atan2 IP core computes the tan inverse by

rotating the input vector (X, Y) using the CORDIC algorithm until the Y component

becomes zero. The output is the phase angle that is equal to atan2(Y/X). Second, the

square root of the IP core takes the (∆x)2 + (∆y)2 as an input and generates the correct

square root value using the CORDIC algorithm.

To make these IP cores work correctly, we modify the input and output data format

to match with the IP core inputs and outputs. The Input format for the atan2 IP core is

a fixed-point number with a 2 bits integer and 14 bits fraction (2.14) for X_atan2 and

Y_atan2. The output is an angle with the format 3.13 and range from (-3.14 to 3.14).

The input of the sqrt IP core is an unsigned integer with 20 bits width with a 9.11 fixed-

point number, and the output is an unsigned integer with a 20 bit width. Table 5

summarizes the input and output data format. The gradient orientation (𝜃) represented

in fixed-point numbers with 3 bits for integer part and 13 bits for fraction part. The

gradient magnitude (m) represented in fixed-point numbers with 9 bits for the integer

part and 11 bits for the fraction part.

In the atan2 IP, we used the optional coarse rotation module to extend the range of

CORDIC from the first quadrant (+Pi/4 to - Pi/4 Radians) to the full circle. We also

used the parallel architectural configuration with single-cycle data throughput instead

of the word serial architectural configuration for small area configuration.

In this implementation, the output becomes valid after (2×image_width+3) clock

cycles from presenting the input to the module. We used a valid output signal to indicate

when the output becomes valid. The gradient magnitude and orientation generated by

this module goes to the dominant orientation generation module.

Table 5 Gradient Generation block (Data Format)

Port Data Type Bit length Format
𝜃 Output 16 3.13
m Output 20 9.11
G Input 20 9.11

X_atan2 Wire 16 2.14
Y_atan2 Wire 16 2.14
X_sqrt Wire 20 20.0

50

Figure 36: Dominant Orientation Generation Module

640
M
U
X

640
M
U
X

640
M
U
X

640
M
U
X

640
M
U
X

640
M
U
X

640
M
U
X

640
M
U
X

Dominant
Orientation

Module

17

17

17

17

17

17

17

17

M
U
X

M
U
X

Descriptor
Module

Dominant
Orientation

KP FIFO
Loop ba ck

Loop ba ck

KP_in

KP_valid

Gradient_M

Gradient_O

Enable

SIFT_ Vector

5.1.4 Dominant Orientation Generation Module. The dominant orientation

generation module computes the principle orientation for each stable keypoint. The

module’s inputs are the key point’s position generated by the KP detection module, and

the gradient magnitude and orientation come from the GMO module. The dominant

orientation module reads one keypoint at a time and computes the principle orientation

from (17×17) pixels around the keypoint. The module also extracts the gradient

magnitude and orientation values in the region around the key point and sends them to

the keypoint descriptor module. Figure 36 shows the module’s inputs, outputs, and its

internal structure.

The enable signal in the domination orientation module comes from the Gradient

magnitude and orientation generation module. The module shifts the gradient

magnitude and orientation values into a FIFO buffer lines as shown in Figure 36. When

a keypoint is detected, the KP detection module pushes and stores it to a FIFO buffer.

The dominant orientation module reads the keypoint and starts the search phase. This

phase includes waiting until reaching the valid window around the keypoint. This

process is carried out by comparing the current window index with the last key point

index. When both values become the same this means that the current window is the

valid window.

When the DOM module finds the valid window, it sends a disabling signal to the

DoG module to stop reading from the source image. The module then starts the loop

back process by switching the line of the buffer’s input from the new value source to

the first value in line buffer. Using this technique, the state of the module will return to

the original state after 640 clock cycles.

51

Figure 37: Architecture of Dominant Orientation Generation Module

Decoder_0

0

1

2

..

..

33

34

35

Gaussian Weight 0

Op -8

X

MaxMg -8

Og

Valid

En

Decoder_1

Decoder_2

Decoder_34

Decoder_35

Op -7

Op -6

Op 7

Op 8

...

Gaussian Weight 35

Gaussian Weight 1

Gaussian Weight 2

Histogram

Switching
Circuit

...

Gaussian Weight 34

X

X

X

X

Mg -7

Mg -6

Mg 7

Mg 8

The dominant orientation generation module reads 17 new gradient magnitude

values, and 17 new gradient orientation values occur every clock cycle. The data's index

in our implementation is (-8, 8), which is the relative location to the keypoint position.

Each gradient orientation value is connected to a 10 degree decoder module as shown

in Figure 37. The task of the decoder is to find the correct bin out of the 36 bins. The

input angle is compared with a lookup table to find the right bin. Table 27 in appendix

B summarizes the angle range for each bin in the 10 degree decoder module. Each

gradient magnitude is multiplied with the corresponding Gaussian weight using 17

multipliers. The output is connected to a switching circuit that updates the correct

histogram’s values.

The switching circuit builds a gradient histogram by using the gradient orientation

of each pixel as an address to the histogram memory, and the gradient magnitude as

new data to be added to the memory location. At the rising edge of the clock, the

memory block will update its value by adding the current value to the newly applied

input.

After 17 clock cycles, the histogram will include data from the whole window. The

max block finds the bin with the largest value in the histogram and writes it to the

output. When the DOM module finishes the current keypoint, it will read the next

keypoint and repeat the whole process again. If there is no new keypoint, it will keep

shifting the data into the block until a new keypoint is detected.

52

Figure 38: SIFT Descriptor Module Architecture

Rotation
Module

Trilinear
Interpolation

Module

SIFT Feature Generation Module

Gaussian Weight
Generation Module

Normalization
Module

X

Y

Op

Og

Xr

Yr

Or

Wg

Mg
SIFT

Vector

5.1.5 Descriptor Generation Module. The process of generating the SIFT

descriptor involves four tasks: coordinate rotation, Gaussian weight generation,

trilinear interpolation, and normalization. The first three tasks are repeated N times,

where N is the number of pixels in the window around the keypoint. After N iterations,

the normalization step is performed to obtain the 128 elements SIFT descriptor vector.

The block diagram of the SIFT descriptor module is shown in Figure 38. It consists

of four main blocks: rotation module, Gaussian weight generation module, trilinear

interpolation module and normalization blocks. The module’s inputs are the pixel

coordinates (X, Y), the gradient orientation (Op), the gradient magnitude (Mg), and the

keypoint dominant orientation (Og). The module’s output is the SIFT vector with 128

elements.

The rotation module generates the rotated coordinate (Xr, Yr) and rotated orientation

(Or) from the pixel coordinates (X, Y) and the gradient orientation (Op). The Gaussian

weight generation module takes the Xr, Yr as an input and generates the appropriate

Gaussian weight (Wg) using a lookup table technique. The trilinear interpolation

module distributes the result of multiplying the gradient magnitude with the Gaussian

weight (mg x wg) into 8 bins in its histogram bins based on the rotated coordinate (Xr,

Yr) and the rotated orientation (Or). The normalization is used to normalize the output

vector as defined in the SIFT algorithm.

53

Figure 39: Rotation Module Architecture

SIN

COS

Orientation

Generation

Coordinate Rotation
Module

X

Y

SBP

Og

Op

Or

Xr

Yr

5.1.5.1 Rotation module. The rotation module rotates the gradients within the region

around the keypoint relative to the principle orientation. The module takes the pixel’s

gradient orientation (Op) and dominant orientation (Og) as an inputs, and generates the

rotated coordinates (Xr, Yr) and the rotated pixel gradient orientation (Or) as shown in

Figure 39.

The rotation module consists of four main blocks: coordinate rotation, Sine, Cosine,

and orientation rotation blocks. The rotated coordinates Xr and Yr are computed based

on equations (28-29), where SBP is a constant equaling to 3 times the keypoint scale

(SPB= 9.6), and NBO is number of orientation bins (NBO=8). The division operations

in equation (1-2) are converted to multiplication to reduce the hardware utilization.

Xr = (cos (Og) × X + sin (Og) × Y)/SBP (28)
Yr = (−sin (Og) × X + cos (Og) × Y)/SBP (29)

Or = NBO × (Og − Op)/(2π) (30)

The Sine and Cosine components in equations (28-29) are computed using the Xilinx

LogiCORE™ IP CORDIC core. The input angle is expressed as a fixed-point 2’s

complement number with format (3.13) and it has a range from –π to π. The outputs

(Sine, Cosine) are expressed as a pair of fixed-point 2’s complement numbers with

format (2.14) with range from -1 to 1. Table 6 summarizes the module port’s bit width

and data format.

The orientation rotation block consists of one comparator, one subtractor, and one

adder. First, the gradient orientation (Op) is subtracted from the (Og). If the result is

less than zero, a (π=3.1416= 16'b0110010010001000) is added to the result to get the

positive equivalent of the result with range (0-2π). Finally the output is multiplied by a

constant (1/2π) to generate the rotated angle (Or), as given by equation (30).

 Table 6: Rotation Module Data Format

 Data Type Data width Data Format
X Input 16 5.11
Y Input 16 5.11
Op Input 16 3.13
Og Input 16 3.13
Xr Output 16 5.11
Yr Output 16 5.11
Or Output 16 4.12
Clk Input 1 1

54

5.1.5.2 Gaussian weight generation module. The Gaussian weight generation

module takes the rotated coordinates of Xr and Yr as input and generates the proper

Gaussian weight value. The module consists of a 16 element lookup table (LUTs), and

one multiplier. The lookup table stores the 1-D Gaussian filter coefficients. The final

output (Wg) is determined by multiplying the two values obtained from the lookup table

based on Xr, and Yr. The output is represented in fixed point 2’s complement with 8

bits for the integer part and 11 for the fractional part.

5.1.5.3 Trilinear interpolation. The Trilinear interpolation module distributes the

result of multiplying Wg×Mg into eight adjacent bins in the SIFT descriptor histogram.

The module’s inputs are the rotated coordinate Xr, Yr, and Or, the gradient magnitude

(Mg), and the Gaussian weight (Wg). The output is eight values with its corresponding

eight address that represent the trilinear interpolation result as shown in equations 31-

38.

For each new input, eight elements out of the 128 elements in the SIFT histogram

will be updated. The address for these elements is (x1, y1, z1), (x1, y1, z2),…, (x2, y2,

z2) as shown in equations 31-38. The (x1, y1, z1) represents the left most bin, and (x2,

y2, z2) represents the right most bin. The (W) value represents the (Wg×Mg).

Equations 31-38 show how the value is distributed into eight adjacent bins.

h(x1, y1, z1) = h(x1, y1, z1) + w × (1 −
x − x1

bx
)(1 −

y − y1

by
)(1 −

z − z1

bz
) (31)

h(x1, y1, z2) = h(x1, y1, z2) + w × (1 −
x − x1

bx
) (1 −

y − y1

by
) (

z − z1

bz
) (32)

h(x1, y2, z1) = h(x1, y2, z1) + w × (1 −
x − x1

bx
) (

y − y1

by
) (1 −

z − z1

bz
) (33)

h(x1, y2, z2) = h(x1, y2, z2) + w × (1 −
x − x1

bx
) (

y − y1

by
) (

z − z1

bz
) (34)

h(x2, y1, z1) = h(x2, y1, z1) + w × (
x − x1

bx
) (1 −

y − y1

by
) (1 −

z − z1

bz
) (35)

h(x2, y1, z2) = h(x2, y1, z2) + w × (
x − x1

bx
) (1 −

y − y1

by
) (

z − z1

bz
) (36)

h(x2, y2, z1) = h(x2, y2, z1) + w × (
x − x1

bx
) (

y − y1

by
) (1 −

z − z1

bz
) (37)

ℎ(𝑥2, 𝑦2, 𝑧2) = ℎ(𝑥2, 𝑦2, 𝑧2) + 𝑤 × (
𝑥 − 𝑥1

𝑏𝑥
) (

𝑦 − 𝑦1

𝑏𝑦
) (

𝑧 − 𝑧1

𝑏𝑧
) (38)

55

Figure 40: SIFT descriptor Module Architecture

In0

Add0

0-15+

In1

Add1

0-15+

In2

Add2

0-15+

In3

Add3

0-15+

In4

Add4

0-15+

In5

Add5

0-15+

In6

Add6

0-15+

In7

Add7

0-15+

Address
Generation

Block

Data
Multiplexing

block

In0
In1
In2
In3
In4
In5
In6
In7

Add0
Add1
Add2
Add3
Add4
Add5
Add6
Add7

Address_out

Data_out

Read_en

SIN

COS

Orientation

Generation

Coordinate Rotation
Module

X

Y

SBP

Og

Op

Or

Xr

Yr GWGM
Wg

Trilinear
Interpolation

Module

Mg

Table 7 summarizes the data format for the trilinear interpolation module inputs and

outputs. Figure 40 shows the overall architecture for the SIFT descriptor generation

module. After NxN clock cycles, the values in the buffers represent the SIFT 128

elements. A total of 128 clock cycles are required to read the SIFT vector and send it

to the next module, namely the Bag of Feature (BoF) module. When the Read_en signal

is active, the Data_out data bus equals to the buffer value defined by the Address_out

signal.

Table 7: Triliniear Interpolation Module Data Format

Value Data Type Data width Format (Integer.Fraction)
Mg Input 20 9.11
Wg Input 20 9.11
Xr Input 16 5.11
Yr Input 16 5.11
Or Input 16 2.14

In 0-7 Output 20 9.11
Add0-7 Output 16 3.13

56

Figure 41: Histogram Memory Implementation

5.1.5.4 Histogram memory implementation. Implementing multi-ported memories

in FPGA is a challenging task, because the FPGA block RAMs include in the fabric

typically have only two ports. In the Trilinear interpolation module, we had to update

the eight data element every clock cycle. Therefore, the memory in the SIFT descriptor

module should have an eight data input with eight address lines. In our architecture, we

want to implement a histogram memory so that it should provide multi-ports for input

and output.

To solve this problem, we reordered the SIFT’s 128 values into 8 block RAMs with

16 elements each, where the elements in each block won’t be accessed at the same time.

Therefore, we can implement each block with one FPGA BRAM. The top 8 blocks in

the first line in Figure 41 represent the normal distribution of SIFT vector element in

memory, while the lower set represents our implementation.

In the upper set, the grey elements (0,2,8,10,32,34,40,42,64,66,72,74,96,98,104,104)

will never be accessed at the same time. Therefore, we reordered these elements and

put them in one block memory as shown in the lower set. The same process was applied

to the other seven memory blocks.

This memory unit is interfaced with the trilinear interpolation module. The output

from the trilinear interpolation module is eight address lines, eight data elements.

Before updating the elements, we had to translate the input address to match our

implementation. Therefore, we designed a circuit (address converter) that converts the

input address into two parts. The first part represents the block number (0-7) and the

second part represents the address inside the block (0- 15).

57

Figure 42: Bag of Feature Module

FIFO

FIFO

FIFO

FIFO

FIFO

-

-

-

-

-

-

......

0

1

2

3

M
A

X

0

1

2

3

N-1

N-2

N-3

SIFT[i] 20

N-1

N-2

5.2 Bag of Feature Hardware Implementation

The bag of feature module is used to represent the image as a one vector of SIFT

features. It converts the image from a set of SIFT descriptors (k×128) into a vector of

size (N). The first step is to cluster the SIFT descriptors into N clusters using K-mean

clustering algorithms. The second step is to quantize each SIFT descriptor into the

nearest cluster center.

In our implementation, the SIFT features are extracted from a number of images

from each class. These descriptors are used to find the best (N) cluster centres that

minimize the sum of the squared Euclidean distance between the points and their

nearest cluster centre. We used Matlab code to implement the k-means clustering

algorithm. Then, the cluster centres are loaded to the bag of feature module in the

hardware using (N) FIFO buffers with a length of 128 elements.

When the enable signal is activated, every clock cycle then one element of the SIFT

descriptor (SIFT[i]) is shifted inside the module. Using N subtractors, this value is

subtracted from the proper cluster centre’s element. The results are accumulated using

N accumulators.

After 128 clock cycles the max block searches the N accumulators to find the

minimum value. The minimum value means that the distance between the input SIFT

vector and that cluster centre is the minimum. The final step is to increment the

histogram element by one. Figure 42 shows the BoF hardware architecture.

58

Figure 43: RBF Kernel Function Architecture

-1/(2σ^2)

A
ccu

m
u

la
to

r

X- e^(x)X

X

SV

F

5.3 Support Vector Machine Hardware Implementation

In this section, the proposed hardware architecture for SVM classifier is presented.

The architecture implements the one-against-all multi-class SVM classifier with RBF

kernel. The architecture exploits the parallelism in computing the RBF kernel in the

decision function to reach real-time performance. We implement the decision function

in SVM classifier, while we use off-line training phase using software running on a PC.

The input to the SVM classifier module is an image represented as a vector generated

by the BoF module. The output is the class label after the classification process is

completed. In this implementation, the training phase of SVM is off-line. The LibSVM

Matlab code is used to solve the dual Lagrange problem in the SVM training phase.

The output of the training phase is a set of support vectors that build the boundary

hyperplane and the set of weights (α). The extracted parameters are used to implement

the testing phase of the SVM on the hardware.

In the SVM testing phase, the new data vector (x) is classified according to the

decision function in equation (39). Where k (.,.) is the kernel function, Nsv is the

number of support vectors generated in the training phase, 𝛼𝑖 is weights for each SV

and b is a bias constant. While xi and yi represent the SV and the SV’s class label. yi=

{-1,1}.

The architecture for the kernel function is shown in Figure 43. In this module, the

input image and the SV values are shifted into the module one value every clock cycle.

The output represents the Kernel value defined by equation (40).

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝑦𝑖 × 𝛼𝑖 × 𝑘(𝑥𝑖, 𝑥) + 𝑏)

𝑁𝑠𝑣

𝑖=1

 (39)

𝐾(𝑥, 𝑧) = exp (−∥ 𝑥 − 𝑧 ∥2/(2𝜎2) (40)

59

The RBF kernel module consists of one subtractor, two multipliers, one accumulator

and one module to compute the exponential function. To compute the norm value in

the kernel function∥ 𝑥 − 𝑧 ∥2, we simplify the computation by using equation (42)

instead of equation (41).

In this case we don’t have to compute the square root. We can compute the

summation of (𝑥𝑖 − 𝑧𝑖)2, then multiply it by itself using one multiplier.

In the kernel module, a new value from the X and SV is shifted into the module each

clock cycle; the subtractor computes the difference and the multiplier computes the

square value of the difference. After the n clock cycle, the value of ∥ 𝑥 − 𝑧 ∥2 becomes

valid and the exponential block computes the exponential value and sends it to the

output port where n is the length of SV and X.

The accumulator size in the kernel function was chosen based on equation (43),

which depends on the data width (20 bits) and the size of the input (c). In our case (c)

equal to the SV and X length (c=500).

After n clock cycle, the output of the accumulator is multiplied by (−1/(2𝜎2)). For

implementation of exponential function, we represent the exponential function as a

summation of hyperbolic sine and hyperbolic cos of the x, as given in equation (44).

The Xilinx IP Core CORDIC block is used to produce the sinh and cosh of the input.

The input range for CORDIC block is from -pi/4 to pi/4.

The data format for SVs and the input X is 20 bits with 1 bit for the integer part and

19 bits for the fractional part. The output of the second multiplier represented as 20 bits

with 3 bits for the integer and 17 bits for the fractional part. The exponential module’s

output was 20 bits with 2 bits for the integer and 18 bits for the fraction.

∥ 𝑥 − 𝑧 ∥= √(𝑥1 − 𝑧1)2 + (𝑥2 − 𝑧2)2 + ⋯ + (𝑥𝑛 − 𝑧𝑛)2 (41)
∥ 𝑥 − 𝑧 ∥2= (𝑥1 − 𝑧1)2 + (𝑥2 − 𝑧2)2 + ⋯ + (𝑥𝑛 − 𝑧𝑛)2 (42)

Accumulator bit width = log2(𝑐 × (220 − 1)) (43)

exp(𝑥) = 𝑆𝑖𝑛ℎ(𝑥) + 𝐶𝑜𝑠ℎ(𝑥) (44)

60

Figure 44: The Overall Architecture for SVM

-1/(2σ^2)

A
ccu

m
u

lato
r

X- e^(x)X

X

SV0

F0

-1/(2σ^2)

A
ccu

m
u

lato
r

X- e^(x)X

X

SV1

F1

-1/(2σ^2)

A
ccu

m
u

lato
r

X- e^(x)X

X

SV18

F18

...

X

X

X

+

A
ccu

m
u

lato
r

a18.y18

a1.y1

a0.y0

>
Class

+

b

C
lass 1

C
lass 2

C
lass N

...

Sw
itch

in
g C

ircu
it

...

ai. yi

Class N

Class 1

Class 2

-1/(2σ^2)

A
ccu

m
u

lato
r

X- e^(x)X

X

SV19

F19
X

a19.y19

...

The overall architecture for SVM module is depicted in Figure 44. We used FIFOs

buffer lines to store the SVs and 𝑦𝑖 × 𝛼𝑖 values. The value of these buffers comes

from the training phase carried out on the PC. In this architecture, we used 20 modules

to compute the kernels function between the input vector X and 20 SVs.

When a new input vector enters the SVM module, the hardware architecture

computes the SVM decision function and this is based on the sign of the highest bit in

the last accumulator the class label will be assigned, as shown in Figure 44.

In the SVM architecture, the processing time required to classify one image is computed

by equation (45):

For example, for a 5 class problem with the SV dimension equal to 100 and 400 SVs

we will need to 20×100×5 = 10000 clock cycles to find the class of the input image.

Time = 𝑓𝑙𝑜𝑜𝑟 (
𝑁_𝑆𝑉

20
) × SV_dimension × #Classes × (

1

opertional frequency
) (45)

61

Figure 45: Block Diagram of the FPGA Prototype System

Compact Flash
Interface

Descriptor
Generation

Module

Gradient
Generation

Module

Keypoint
Detection
Module

Gaussian
Scale Space

Module

BoF
Module

SVM
Classifier

DVI Interface

PLB bus

UART
Interface

Control Unit

FSL bus FSL bus

5.4 FPGA Implementation

In this chapter, we developed a prototype of our architecture on the FPGA. We used

ML505 evaluation platform which is equipped with Virtex 5 LX110T FPGA. It also

has an external SRAM with a capacity of 8 MB, DVI output and compact flash card

reader, which makes it suitable for our implementation. The overall system consists of

the SIFT processor core, BoF module, SVM classifier core and MicroBlaze soft-core

processor. Our prototype is interfaced with the Microblaze processor via two FSL bus

systems for I/O purposes. The overall system is illustrated in Figure 45.

5.4.1 I/O System Based on Microblaze. Microblaze processor handles tasks such

as data transferring between I/O peripherals and hardware modules, as well as

controlling the data flow. Initially, the input image frames is stored in the compact flash

card (acting as the image acquisition source). The Microblaze loads the frame to the

external SRAM before the SIFT extraction phase. Microblaze reads one pixel data from

the SRAM. After that the processor will read one pixel at a time and send it to the SIFT

core via Fast-Simples-Link (FSL) bus interface. When the final hardware module’s

valid signal becomes high, the microblaze processor will read the results and store them

in a predifiened array in the SRAM.

62

Figure 46: FSL Connections between MicroBlaze and our Architecture

FSL_M_Data

FSL_M_Control

FSL_M_write

FSL_M_Full

FSL_S_Data

FSL_S_Control

FSL_S_read

FSL_S_Exist

FSL_M_Data

FSL_M_Control

FSL_M_write

FSL_M_Full

FSL_S_Data

FSL_S_Control

FSL_S_read

FSL_S_Exist

Object Detection System

FIFO

DataReadExist Control

Data write FullControl

FIFO

DataReadExist Control

Data write FullControl

FSL_CLK

FSL_Rst

FSL_CLK

FSL_Rst

32

3232

32

In our implementation, we used Fast Simplex Link (FSL) connections to interface

our customized hardware architecture with the MicroBlaze processor. Figure 46 shows

in details how our architecture is connected into the MicroBlaze FSL interfaces For the

FSL0 connection, the MicroBlaze is a Master on the FSL bus and our architecture is

the Slave. Thus, the MicroBlaze controls the data flow on the FSL0 bus. For the FSL1

bus, it is vice versa, our architecture is the Master and the MicroBlaze is the Slave.

Each FSL bus has the following signals: FSL_Clk, FSL_rst, FSL_M_Data,

FSL_M_Control, FSL_M_Write and FSL_M_Full in the master side and FSL_S_Data,

FSL_S_Control, FSL_S_Read and FSL_S_Exist in the slave side. These signals make

the FSL unidirectional point-to-point communication bus. Table 8 summarizes the

different FSL bus signals.

Table 8: FSL Bus Signals

Signal Name I/O width Description
FSL_Clk I 1 Input clock to the FSL bus
FSL_rst I 1 External system reset
FSL_M_Data I 32 Data input to the master side
FSL_M_Control I 1 Single bit control
FSL_M_Write I 1 Controls the write enable signal
FSL_M_Full O 1 Indicates that the FIFO is full
FSL_S_Data O 32 Data output bus Slave side
FSL_S_Control O 1 Single bit control
FSL_S_Read I 1 Controls the read acknowledge signal
FSL_S_Exist O 1 Indicates that FIFO contains valid data

FSL0 FSL1

63

Figure 47: ML505 Evaluation Board [53]

In the Microblaze C code, we used the non-blocking read and write FSL functions

(nputfsl (input, input_slot_id) and ngetfsl (value, output_slot_id)) to send and receive

data to/from the FSL bus FIFO. We also used the (fsl_isinvalid () and fsl_iserror())

functions to check the errors and invalid flags after each operation.

The customized hardware architecture is implemented using Verilog hardware

description language. We used Xilinx ISE environment, XPS and SDK to edit,

implement and verify the functionality of the design. The whole system is prototyped

using the ML505 evaluation platform. Figure 47 shows the ML505 evolution platform.

64

Figure 48: Modules' Accuracy Calculation Technique

Results

Line Buffer

MATLAB®
 Generated Data

Gaussian scale
space module

Keypoint
Detection

Gradient
Generation

Descriptor
Generation

Compare

Input image
Output files

S-Result

Chapter 6: Experimental Results

In this chapter, we present the experimental results for the object detection

architecture proposed in Chapter 5. The performance can be measured in terms of three

metrics: classification accuracy, speed up compared to a CPU implementation, and

hardware utilization. There is a trade-off between these metrics where higher accuracy

requires more hardware resources and processing time. In this work, the priority was to

achieve higher accuracy within real-time constraints which is processing 30 frames per

second with an image resolution of (640×480).

6.1 Modules’ Accuracy

In the hardware implementation, we used fixed point numbers, while the SIFT

software used floating point numbers. This can lead to losing some accuracy when

implementing the algorithms in hardware. To assess the accuracy achieved by our

implementation, the error is approximated based on equation (46):

The percentage error is computed by subtracting the software value from the value

generated by the proposed hardware, then divided by the software value and multiplied

by 100.

Figure 48 shows how we compute the error between the software’s results and the

hardware results. Matlab code generates the result of each module and saves it in files.

The output of the modules is also saved to files. The errors are computed by comparing

the contents of these files. In the next subsection, the accuracy of each hardware module

in the proposed architecture is presented.

𝐸𝑟𝑟𝑜𝑟(%) =
|𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒 𝑣𝑎𝑙𝑢𝑒 − 𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 𝑣𝑎𝑙𝑢𝑒|

𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒 𝑣𝑎𝑙𝑢𝑒
 𝑥 100 % (46)

65

Figure 49: Filtering difference between Software Implementation and GSS Module

Software Results

Hardware Results

Scale0 Scale1 Scale2 Scale3 Scale4 Scale5

6.1.1 Gaussian Scale Space Generation Module Accuracy. In the GSS hardware

module, the input image’s pixels are represented using 8 bits integer numbers while the

pixels of Gaussian filtered images are represented as 9:11 fixed point numbers, with 9

bits for the integer part and 11 bits for the fractional part. To compute the error we used

the human face image shown in Figure 49. Using Matlab code, the Gaussian filtered

images in the first octave are computed and saved. These images are shown in the upper

set of Figure 49. The results of the GSS hardware module are saved and converted from

hex to fixed point numbers. These images are shown in the lower set of Figure 49.

For each pixel in the image, the average errors in the first octave for its six scales are

reported using this human face image. The errors in scale0, scale1, scale2, scale3,

scale4 and scale5 were 1.760 %, 2.040 %, 2.930 %, 3.870 %, 4.310 % and 5.670 %,

respectively.

6.1.2 Keypoint Detection Module Accuracy. The keypoint detection module’s

accuracy is measured by comparing the number of detected keypoints in both software

and hardware modules. In our implementation, the number of keypoints in hardware

was the same as that in the software implementation. Hence, there was no over-

detection or under-detection in the keypoint detection module. Our implementation

achieved an accuracy equals to 99.93%. The accuracy is computed by dividing number

of true matches over the total number of keypoints. The true matches are the keypoints

with distance less than 5 pixels from the original location detected in software.

66

6.1.3 Gradient Magnitude and Orientation Module Accuracy. The gradient

magnitude values are represented using 20 bits fixed point numbers with 9:11 integer

and fraction bits. The gradient orientation value represented by 16 bits with 3:13 integer

and fraction bits. The accuracy of the proposed hardware implementation was

computed by comparing the software generated values against the hardware generated

values.

The error in gradient magnitude results was equal to 3.65% and in gradient

orientation results it was equal to 1.527%. These errors can be reduced by increasing

the width of fraction bits. However, these errors are acceptable because it does not

affect the quality of the extracted SIFT features.

6.1.4 Rotation Module Accuracy. To measure the rotation module accuracy, we

generate the rotated coordinates and orientations (Xr, Yr, and Or) using Matlab. Table

25 in appendix B shows the first 100 results obtained for one keypoint. It shows the

errors in Xr, Yr, and Or. The average errors for one keypoint in Xr, Yr and Or were

0.257%, 0.257% and 0.252% respectively.

6.1.5 Gaussian Weight Generation Module Accuracy. The Gaussian weight

generation module represents the Gaussian weight using 20 bits in a (9:11) format. The

error between the values of the software and the proposed hardware is approximately

4.3%.

6.1.6 SIFT Descriptor Generation Module Accuracy. For the SIFT feature

generation module, the SIFT element is represented by fixed point numbers with 20

bits in (9:11) format. Table 26 in Appendix B shows one SIFT features extracted from

the human face image using software and hardware implementations.

The SIFT feature generated by the software consists of 128 values distributed as

8×4×4 and is shown in the left side of Table 26. The SIFT feature generated by the

hardware is shown in the right side of Table 26. The error between the values is

computed and is equal to 3.36%.

67

Figure 51: Example image from Subset 2 -Caltech-256 dataset

Figure 50: Example images from subset 1 -Caltech-256 dataset

blimp

bowling-pin

boxing-glove

brain

bulldozer

Horses

Face

Motorbike

Watch

Airplane

6.2 Classification Rate Evaluation

In order to assess the classification rate of the proposed hardware implementation,

we used two popular image classification datasets: Caltech-256 dataset [31] and KUL

Belgium Traffic Sign Classification dataset [34]. These datasets contain a challenging

set of object categories. Each category contains a set of images with large variation.

These datasets were used to measure the classification rate.

6.2.1 Experiment 1: Caltech-256. In the first experiment, we used ten different

subsets from the Caltech-256 dataset. Each subset consists of five different classes.

Figures 50 and 51 show examples from the first and the second subset. The classes were

faces, airplanes, horses, motorbikes, and watches. Appendix D shows some examples

from each subset.

 The training phase of the SVM was carried out using the LibSVM Matlab code. The

extracted parameters (α, SV and y) were used in the proposed hardware architecture as

an input. For training, we used 100 images, 20 images per class, and for testing we used

another 100 images, 20 images from each class.

68

 Table 9 summarizes the classification accuracy in software and hardware

implementations for each subset. The highest accuracy achieved was (87%) in subset 7

and the lowest accuracy was (66%) in subset 10. Other subsets have an accuracy

between these values.

Table 9: Classification accuracy for ten subsets from Caltech-256

Set # Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set10

Software
Accuracy 85% 69% 73% 79% 75% 74% 87% 72% 67% 70%

Hardware
Accuracy 84% 69% 71% 77% 72% 70% 87% 71% 66% 69%

For the LibSVM software implementation, the average classification rate for ten

subsets was (75.1%) with a standard deviation of (6.7). While our hardware

implementation achieved an average classification rate of (73.6%) with a standard

deviation of (6.9). The difference in the classification accuracy is due to the fact that

the LibSVM software implementation uses floating point numbers while our proposed

system uses fixed point numbers which could reduce the accuracy.

Figure 52 shows the average confusion matrix using the ten subsets. We computed

the average confusion matrix by averaging the values for all classes combined. The

average confusion matrix represents the average accuracy for classifiers obtained

through ten different subsets. The experiment is implemented using both software and

hardware. The diagonal elements represent the correctly classified images, while other

elements represent the misclassified images.

Software Result Hardware Result

Figure 52: Hardware and Software Average Confusion Matrix

69

Figure 53: Example images from the KUL Belgium Traffic Sign Dataset

6.2.2 Experiment 2: KUL Belgium Traffic Sign. In the second experiment, we

used five classes from the KUL Belgium Traffic Sign Classification dataset; some

examples from each class are shown in Figure 53. In the SVM training phase we used

100 images, 20 images from each class. In the testing phase we used different 100

images, again, 20 images from each class.

For the LibSVM software implementation, the classification rate was (80%), while

our hardware implementation achieved a classification rate equal to (78%). Figure 54

shows the confusion matrices. Again, the difference in the classification is due to the

fact that the LibSVM software implementation uses floating point numbers while our

proposed system uses fixed point numbers which could reduce the accuracy.

Figure 54: Hardware and Software Confusion Matrix

Software Results Hardware Results

70

Figure 55: Determining the value of SVM RBF sigma using the Caltech-256 dataset

Figure 56: Determining the value of SVM RBF sigma using the KUL dataset

6.2.3 SVM Kernel Parameter Selection. In the SVM implementation, we used the

RBF kernel function which is given in equation (47). Choosing the appropriate value

for C and gamma in RBF kernel is important to achieve a high classification rate. Low

C makes the decision surface smooth, while a high C aims at classifying all training

examples correctly. The gamma parameter defines how far the influence of a single

training example reaches, with low values meaning ‘far’ and high values meaning

‘close’.

To find the appropriate values for C and gamma, we compute classification accuracy

as a function of sigma. Where gamma (γ) =1/2𝜎2.

For the first experiment using the Caltech-256 dataset, the best accuracy was 85%.

This is achieved with sigma value of 0.075 as shown in Figure 55.

When the same experiment is repeated using the KUL Belgium Traffic Sign dataset,

the best accuracy achieved is (80%) with a sigma of 0.06 as shown in Figure 56.

𝐾(𝑥, 𝑧) = exp (−∥ 𝑥 − 𝑧 ∥2/(2𝜎2) (47)

71

1.94

0.97

0.68
0.58

0.5 0.45 0.44 0.44

0

0.5

1

1.5

2

2.5

8 9 10 11 12 13 14 15

Er
ro

r
(%

)

Fraction Bit Width

Error

Figure 58: Bit width in the proposed hardware implementation vs. error

3,049 3,114 3,113 3,174
3,415 3329 3,375 3,482

4,907

6,129
6,434

6,977 7,050 7253
7,584 7,602

6,357

7,615
7,920

8,273
8,670 8661

9,140 9,213

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

8 9 10 11 12 13 14 15

FP
G

A
 R

es
ou

rc
e

U
ti

liz
at

io
n

Fraction Bits width

Slices reg

LUT

FF

Figure 57: Bit width vs. hardware utilization

6.2.4 Fraction Part Bit Width and Accuracy. To assess the effect of increasing the

bit width of the fraction part of the data on the accuracy and hardware utilization, the

DoG pixels are represented by bit widths ranging from 8 to 15. Figure 57 shows how

the hardware resources increase linearly with the bit width. On the other hand, Figure

58 shows that the error decreases with a sharp slope between 8 and 11 bits and then

improvement becomes negligible.

These results shows that the resource utilized by the proposed hardware module is

directly proportionate to the pixel width. To reduce the FPGA resource utilization

without significantly scarifying the accuracy, we found that the optimal pixel width is

11 bits. Therefore, the output pixels in the GSS module are represented with 20 bits.

Where 11 bits for fractional part and 9 bits for integer part.

72

6.3 Processing Time

The processing time for each module in our architecture is estimated based on the

number of clock cycles required to complete each task and the operational frequency

for that module. The processing time is estimated based on equation (48).

In the next section, we will measure the processing time for the three modules in

our architecture: the SIFT module, the BoF module, and the SVM module.

6.3.1 SIFT Module Processing Time. The maximum operating frequency of the

proposed design is 60.369MHz, which is provided by the synthesis report. For the

independent block modules, the maximum frequencies are as follows:

a. 110.373MHz for the Gaussian scale space module.

b. 84.338MHz for the keypoint detection module.

c. 90.651MHz for the orientation assignment module.

d. 130.293MHz for the descriptor generation module.

e. 121.393MHz for the SVM classifier module.

For the SIFT feature extraction module, it takes 640×480 clock cycles to scan the

input image and detect the keypoints. For each keypoint, it takes (640+17×17+128)

clock cycles to generate the SIFT descriptor so that the processing time for the SIFT

feature extraction and description module is estimated as shown in equations (49) and

(50).

SIFT’s processing time for one frame (640x480) pixel:

Where #KP represents number of SIFT descriptor detected in the input image.

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑇𝑖𝑚𝑒(sec) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑠 𝑡𝑜 𝑓𝑖𝑛𝑖𝑠ℎ 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝐻𝑧)
 (48)

Processing Time = Keypoint Detection Time + Descriptor Generation Time (49)

Processing Time(sec) =
(640 × 480 + (640 + 17 × 17 + 128) × # KP)

Operationl frequency (Hz)
 (50)

73

At the operation frequency of 50MHz, the processing time of SIFT detector for a

VGA frame (640× 480) is about 640×480 /50 MHz = 6.144 ms. The SIFT descriptor’s

processing time is proportional to the number of detected keypoints. In our architecture,

it takes (640+17×17+128) clock cycles to generate one descriptor.

 To compute the maximum number of keypoints that can be extracted from each

frame, we computed the maximum number of keypoints that could be extracted within

33ms as given by equation (51). This is so because for real-time performance we had

to achieve 30 frames per second.

The maximum number of keypoints in each frame is 1270 keypoints per frames.

Therefore, our architecture allows a VGA size image with about 0.4134 % Keypoints

to be processed at a speed of 30 frames per second.

To compare the performance of our architecture with the PC-based performance, we

begin by computing the SIFT descriptors for one frame using Matlab. We then compare

the processing time with our proposed hardware architecture. Figure 59 shows the

comparison graph of processing times for the four modules in the SIFT architecture.

Figure 59: SIFT's Module Processing Time

530.00

373.00
420.00

994.00

6.14 6.14 6.14 23.65

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

GSS Generation Keypoint Detection Gradient M&O
Generation

Keypoint
Description

Ti
m

e
(m

s)

Processing Time

Software

Hardware

33ms =
(640 × 480 + (640 + 17 × 17 + 128) × # KP)

50 𝑀𝐻𝑧
 (51)

74

Figure 60: Processing Time for extracting SIFT features from multiple frames

0

5000

10000

15000

20000

25000

1 2 3 4 5 6

P
ro

ce
ss

in
g

ti
m

e
(m

s)

Number of Images

Software

0

20

40

60

80

100

120

1 2 3 4 5 6

P
ro

ce
ss

in
g

ti
m

e
(m

s)

Number of Images

Hardware

Table 10 summarizes the processing time for both the software and hardware

implementations. It also shows the speedup achieved by each module. The Gaussian

scale space module achieved the highest speedup of 86.26, while the keypoint

description module achieved the lowest speed up at 42.03. On average the speedup

achieved by our architectural hardware is ×55.06 times.

Table 10: Speed up of SIFT's Module Processing Time using the proposed hardware

To compare the performance between our architecture and the software

implementation using multiple frames, we measured the processing time for extracting

the SIFT features for a range of images from 1 to 6. Figure 60 shows the time required

to extract the SIFT features. The processing time in the software implementation

increases sharply when number of images increases. In the hardware implementation,

the increase in processing time is not as sharp as in the software implementation.

 Software Time(ms) Hardware Time (ms) Speedup
GSS Generation 530.00 6.14 86.26
Keypoint Detection 373.00 6.14 60.71
Gradient M&O Generation 420.00 6.14 68.36
Keypoint Description 994.00 23.65 42.03
Total 2317.00 42.08 55.06

75

Table 11 shows the processing time results for the software implementation

compared to our architecture. It shows the total number of keypoints in each case. We

can see that our architecture made a drastic improvement in computing the SIFT

features especially when we dealing with multiple frames.

Table 11: Number of keypoints and SIFT processing time results for a range of images

Number of images 1 2 3 4 5 6
Number of Keypoints 971 1323 1789 3370 3864 4977
Software Time (ms) 3711.0 5602.0 7710.0 13580.0 15961.0 20697.0
Hardware Time (ms) 26.67 34.11 53.96 79.39 97.83 111.36

It is clear that the software implementation does not scale up. Whereas in the

proposed hardware solution real-time processing is achieved.

6.3.2 BoF Module Processing Time. The BoF module builds the image histogram

while the SIFT features are being generated. The processing time for the BoF module

is not computed from the overall processing time in our architecture as it is performed

in parallel and does not add any extra processing time.

6.3.3 SVM Module Processing Time. The processing time of the SVM classifier is

linearly dependent on the number of support vectors and the dimensionality of the

feature vectors. As the number of support vectors increases, the processing time

increases. Likewise, if the number of features in the input vector increases the

processing time increases linearly.

In our SVM architecture, the processing time required to classify one image equals

to 𝑓𝑙𝑜𝑜𝑟 (
𝑁_𝑆𝑉

20
) × SV_Dimentions × #Classes × (

1

Maximum opertional frequency
).

As an example using the Caltech-256 dataset, we used five classes with each class

having 20 images for training. Each image is represented as a vector with 500 elements

so that the time required to classify one image is equal to 𝑓𝑙𝑜𝑜𝑟 (
100

20
) × 500 × 5 ×

(
1

50 𝑀𝐻𝑧
) = 2.5 × 10−4𝑠𝑒𝑐.

76

To compare the processing time between the software and our proposed architecture,

we classified 100 test images into one of the five classes. Table 12 summarizes the

confusion matrices, the classification accuracy, and the processing time.

Using Matlab running on an Intel i5 processor with 8 GB RAM, it took 166 ms to

classify 100 images, while in our implementation it took only 25 ms to classify these

same 100 images. The classification accuracy in our implementation is 3% less than the

software implementation.

Table 12: Software implementation results compared to our SVM architecture

Class1 Class2 Class3 Class4 Class5

Class1 Class2 Class3 Class4 Class5

Class1 10 0 0 3 7 10 0 1 1 8

Class2 0 20 0 0 0 0 20 0 0 0

Class3 1 0 17 0 2 1 0 15 0 4

Class4 0 0 0 20 0 0 0 0 17 3

Class5 0 0 2 0 18 0 0 0 0 20

Platform Intel Core i5 Virtex 5 LX110T

Classification
rate

85 % 82 %

Processing

time
166 ms 25 ms

6.4 Simulation Results:

To debug and verify the design of each module in our proposed architecture, we used

the Xilinx ISim simulator. The ISim is a simulation tool integrated into the Xilinx ISE

that allows its designers to perform functional and timing simulations for their designs.

In this section, the behaviour of the Gaussian scale space generation module, the

keypoint detection module the gradient generation module, the SIFT feature generation

module and the SVM module are verified. The source images are read and converted

into Hex format and saved to external files using Matlab. In the test bench, an external

file is read and in each clock cycle, one pixel is fed into the hardware module. When

the valid signal is activated, the test bench starts reading the results generated from the

module and saves it back as a text file which is tested after the simulation is finished.

77

Figure 61: Gaussian Scale Space Module Simulation Result

Figure 62: Keypoint Detection Module Simulation Result

Figure 61 shows the simulation result of Gaussian scale space module. The module

has three input ports: Data_in, clk, and enable signal, as well as, six output ports: DoG1,

DoG2, DoG3, DoG4, DoG5, and valid. The test bench reads the source image from the

external file and at the rising edge of clock, a new pixel is entered into the Gaussian

scale module. When the valid signal becomes high (1), the output of DoG is valid.

In this simulation, we used a clock with a 20 ns clock period. As shown in the figure,

at (307,720) ns, the valid signal becomes high and the first pixel in the DoG1, DoG2,

DoG3, D0G4, and DoG5 images is (0xFF6DB), (0xFF566), (0xFEBD5), (0x00492)

and (0xFEE11), respectively. When the valid signal becomes valid, the test bench starts

saving the output in an external file. After the simulation is finished, input and output

external files are compared for validation.

The simulation results of the keypoint detection module is shown in Figure 62. The

module has seven input ports: clk, enable, DoG1, DoG2, DoG3, DoG4, and DoG5. The

module also has two output ports: KP_out and valid_out. The DoG1, DoG2, DoG3,

DoG4, DoG5 data come from the DoG module, and the enable signal connected to the

valid signal in DoG module. When the keypoint detection module finds a stable

keypoint, the valid signal becomes high and the KP_out displays the keypoint position.

The first 16 bits of KP_out contains the key point’s X-position and last 16 bits contains

the key point’s Y-position, as shown in Figure 62 at (1,442,300) ns.

78

Figure 63: Gradient Generation Module Simulation Result

Figure 64: Dominant Orientation HW Module Simulation Results

The simulation results of the gradient generation module is shown in Figure 63. This

module has three input ports: clk, enable, and Data_in, as well as, three output ports:

valid, G_mag, and G_ori. The Data_in is the third image of the first octave in the DoG

module, and the enable is connected to the valid signal in the DoG module.

As shown in Figure 63, at (26,020) ns, the valid is high. The first valid gradient

magnitude is (0x000D9) and the gradient orientation (0xF277). We used a fixed-point

number with 3 bits for the integer and 13 bits for the fraction so that we could represent

the gradient orientation. Therefore, the (0xF277) equals to (-0.4230). For gradient

magnitude we used 9 bits for the integer and the 11 bits for fraction. Therefore, the

(0x000D9) equals to (0.1060).

The simulation result of dominant orientation module is shown in Figure 64. The

module has five input ports: keypoint location, gradient magnitude, gradient

orientation, clk and enable. It also has two output ports: dominant orientation and

disable DoG module signal.

The dominant orientation module reads a keypoint at location (0x011d0021). The

keypoint x-position equals to (0x011d) and the y-position equals to (0x0021). But the

current window is (Xp=0x0116) and (Yp=0x0017), so that the dominant orientation

module will wait until the current window becomes equal to the keypoint position. In

other words: Xp=key point’s x-position. & Yp=key point’s y-position.

79

Figure 65: Dominant Orientation Module Simulation Result 2

Figure 66: Dominant Orientation Module Simulation Result 3

Figure 67: SIFT Descriptor Module Simulation Result

When the current window becomes equal to the keypoint’s position, the state of the

dominant orientation module changes from (2) to (1), as shown in Figure 65. At

(864,050) ns, the state changed to (1) and the Disable_DoG signal became high (logic

1) to stop reading from the source image. State (1) lasted to 640 clock cycles. In state

(1) the buffer lines shifted to the right to compute the principle orientation from the

(17×17) window around the keypoint.

After 640 clock cycles, the principle orientation value became valid (Og =6) and the

Disable_DoG returned to (0), as shown in Figure 66.

The SIFT descriptor module simulation results are shown in Figure 67. At (8,050)

ns, the SIFT descriptor vector values became valid. The next module read the SIFT

vector enabling it to read the _en signal. The 128 values of SIFT vector is read from the

element output port.

80

Figure 68: SVM Engine Simulation Result 1

Figure 69: SVM Engine Simulation Result 2

The simulation result of SVM engine is shown in Figure 68. The input to the module

is new data (X) and the support vector (SV). Each one has 500 elements. The module

starts working when the enable signal becomes high. The Sub represents the difference

between X and SV. The accumulator accumulates the square value of the difference

between X and SV.

After 500 clock cycles, the accumulator contains the addition of the square root of

difference between X and SV. The output value in Figure 69 represents the exponential

of the accumulator value multiplied by the gamma constant, as defined by the RBF

SVM equation.

Figure 70 shows the simulation results of the SVM module. In this simulation, the

number of classes was five. And each image is represented with a feature vector

composed of 500 elements. In the initialization phase, the SVs and α×y values are

shifted into the FIFO buffer lines. The input image X is shifted into the module one

value every clock cycle. In this implementation, we used five SVM modules to

implement five one-against all multi-class SVM.

For the first image: class_out0 = 0x 019E8D3E41, class_out1= 0xFF5C3A6288

class_out0 = 0x FFDC806746, class_out1= 0xFEDD1775AD class_out0 = 0x

FFEC3FBa1C. In this case, class_out0 was positive meaning that the first image

81

Figure 70: SVM HW Module Simulation Result

belongs to class A. The class_out1 value was negative meaning the first image does

not belong to class B. The same is applied for classes C, D, and E.

6.5 Hardware Utilization

This section presents the hardware utilization for each module in the proposed

architecture. These modules are SIFT, BoF, and SVM. The main hardware resources in

the FPGA are slice registers, slice LUTs, LUT flip flop pairs, DSP blocks, and memory.

The results are reported from the synthesis reports generated by Xilinx ISE

environment.

Tables 13, 14 and 15 summarize the hardware resources used to implement the

Gaussian scale space module, keypoint detection module, gradient magnitude, and

orientation module, respectively.

Table 13: Utilized Hardware for the Gaussian Scale Space Module

Device Utilization Summary
Slice Logic Utilization Used Available Utilization
Number of Slice Registers 3,415 69,120 4%
Number of Slice LUTs 7,155 69,120 10%
Number of LUT Flip Flop pairs used 8,215
Number of Block RAM/FIFO 15 148 10%

82

Table 14: Utilized Hardware for the Keypoint Detection Module

Device Utilization Summary
Logic Utilization Used Available Utilization
Number of Slice Registers 1,900 69,120 2%
Number of Slice LUTs 4,911 69,120 7%
Number of fully used LUT-FF pairs 665
Number of Block RAM/FIFO 10 148 6%

Table 15: Utilized Hardware for the Gradient Magnitude and Orientation Module

Device Utilization Summary
Logic Utilization Used Available Utilization
Number of Slice Registers 654 69,120 0%
Number of Slice LUTs 709 69,120 1%
Number of fully used LUT-FF pairs 273 1090 25%
Number of Block RAM/FIFO 2 148 1%
Number of DSP48Es 2 64 3%

Tables 16, 17 and 18 summarize the hardware resources used to implement the

dominant orientation module, SIFT descriptor module, and the whole architecture of

the SIFT algorithm, respectively.

Table 16: Utilized Hardware for the Dominant Orientation Module

Device Utilization Summary
Logic Utilization Used Available Utilization
Number of Slice Registers 2,449 69,120 3%
Number of Slice LUTs 2,937 69,120 4%
Number of fully used LUT-FF pairs 1,226 4,160 29%
Number of Block RAM/FIFO 27 148 18%
Number of BUFG/BUFGCTRLs 1 32 3%

83

Table 17: Utilized Hardware for the SIFT Descriptor Module

Device Utilization Summary
Logic Utilization Used Available Utilization
Number of Slice Registers 410 69,120 0%
Number of Slice LUTs 2,152 69,120 3%
Number of fully used LUT-FF pairs 229 2,333 9%
Number of Block RAM/FIFO 2 148 1%
Number of DSP48Es 23 64 35%

Table 18: Utilized Hardware for the SIFT Module

Device Utilization Summary
Logic Utilization Used Available Utilization
Number of Slice Registers 7,924 69,120 11%
Number of Slice LUTs 16,138 69,120 23%
Number of LUT Flip Flop pairs used 4,097 65,284 6%
Number of Block RAM/FIFO 68 148 45%
Number of DSP48Es 53 64 82%

Table 19, 20 and 21 summarize the hardware resources used to implement the bag

of feature module, one support vector engine module, and the architecture of SVM

classification module, respectively.

Table 19: Utilized Hardware for the Bag of Feature Module

Device Utilization Summary
Logic Utilization Used Available Utilization
Number of Slice Registers 6,200 69,120 9%
Number of Slice LUTs 5,504 69,120 7%
Number of fully used LUT-FF pairs 2,900 4,402 65%
Number of Block RAM/FIFO 50 148 16%
Number of BUFG/BUFGCTRLs 2 32 6%

84

Table 20: Utilized Hardware for the Support Vector Engine

Device Utilization Summary
Slice Logic Utilization Used Available Utilization
Number of Slice Registers 117 69,129 1%
Number of Slice LUTs 211 69,129 0%
Number of BUFG/BUFGCTRLs 1 32 3%
Number of DSP48Es 2 64 3%

Table 21: Utilized Hardware for the Support Vector Machine Module

Device Utilization Summary
Logic Utilization Used Available Utilization
Number of Slice Registers 9,646 69,120 13%
Number of Slice LUTs 38,179 69,120 55%
Number of fully used LUT-FF pairs 3,984 43,841 9%
Number of Block RAM/FIFO 60 148 40%
Number of BUFG/BUFGCTRLs 1 32 3%
Number of DSP48Es 52 64 81%

Table 22 summarize the hardware resources used to implement the whole object

detection architecture. Our architecture fits in 78% of LUTs and 25% of slice registers

in Virtex-5 XC5VLX110T FPGA. It consumed 86% of Block RAM memory because

the implemented application required saving a lot of temporary results inside the FPGA

chip.

Table 22: Utilized Hardware for the Object Detection Architecture

Device Utilization Summary
Logic Utilization Used Available Utilization

Number of Slice Registers 23,770 69,120 34%

Number of Slice LUTs 59,821 69,120 86%

Number of fully used LUT-FF pairs 10,981 43,841 25%

Number of Block RAM/FIFO 128 148 86%

Number of DSP48Es 64 64 100%

85

In the SIFT module, the GSS and dominant orientation generation modules

consumed most of the hardware recourses. The GSS used 15 blocks of RAM/FIFO to

implement the buffer lines that save the input image while the orientation generation

module used 27 blocks of RAM/FIFO to save 25 lines of gradient magnitude and 25

lines of gradient orientation.

The BoF module used 50 blocks of RAM/FIFO to save the cluster centres in addition

to 60 blocks of RAN/FIFO used by SVM modules to save the SVs and α×y values.

These blocks can be removed to reduce the hardware utilization by using external

memory to save these values instead of saving them inside the chip. However, this will

increase the processing time.

6.6 Comparison with existing solutions

In this section, a comparison between our implementation and existing solutions is

presented. First, we compared our SIFT feature extraction architecture with the work

of [8, 11, 13, 14, 23, and 24]. Table 23 summarizes the performance and hardware

utilization of each implementation. We also compared the SVM architecture with [26,

27, 28, 29, and 30]. Table 24 summarizes the performance of each SVM architecture.

In our architecture, it takes 480 × 640 clock cycles to detect all keypoints in the

input image. It also takes (640+17×17+128) clock cycles to generate one descriptor.

So that, at 50MHz operational frequency, the time required to scan the input image and

detect all keypoints is 6.144 ms and 25.98 µsec to generate each SFIT descriptor. While,

in existing solutions it was around 10ms to 30 ms to detect the SIFT keypoints as shown

in Table 23. In [23], it needs 80 µ sec to generate one SIFT feature and 11.3 ms in [11].

In terms of hardware utilization, our architecture is considered a lightweight

architecture. The LUTs, registers, DSP blocks and BRAM resources for each

implementation is summarized in Table 23. Our architecture utilizes less resources than

[8, 11, 14, 23, and 24]. It also utilizes almost the same as [13] but our input image

resolution is 640×480 while that in [13] is 320×240. In terms of accuracy, we achieved

higher accuracy than [23] and [11] which is 97.5%. The work in [8, 13, 14, and 24] did

not report the SIFT descriptor accuracy.

86

Table 23: Comparing proposed SIFT results with existing soultions

The hardware resources utilized by our implementation was less than most of the

existing solutions. Our architecture consumed 16,138 LUTs and 5,729 registers which

is less than [8, 11, 14, and 24] and almost the same as [13 and 23]. However, the image

resolution in [13 and 23] is 320 ×240, while our architecture works on larger images

with a resolution of 640 ×480.

Table 24 summarizes the performance of our SVM architecture against that reported

in [26, 27, 28, and 29]. In [27], the SVM architecture achieved an accuracy of 77% with

40 frame per second speed. The architecture is tested using a dataset of faces. In [29],

the author implements a SVM classifier and assesses its performance using the MNIST

dataset [35]. They achieved a speedup of 20 compared to dual Opteron 2.2 GHz

processor CPU.

In [30] the dataset used is so simple, the images are represented with 8 bits grey scale

with a resolution of 32×32 pixels. The number of support vectors is limited to 10 per

binary classifier. Their architecture has 6 binary classifiers. The classification speed of

the system was 2ms. In [28], the authors used 3 classes of Persian handwritten digits to

assess their architecture. They achieved a very high accuracy rate and small hardware

utilization, but their input vector dimension is limited to only 24.

 [23] [11] [8] [14] [24] [13] Proposed

Device XC4VDX35 EP2S60F6 EP2C70F8 EP2C70F8 EP3C120F4 EP2S60F6 XC5VLX110T

LUT 18195 43,366 35,889 32,592 43,563 16,832 16,138

Register 11821 19,100 19529 23,247 14,730 5,729 7,924

DSP blocks 56 64 97 258 45 8 53

BRAM (kbits) 2808 1350 256 891 2810 752 576

Resolution 320 x 256 320 x 240 640 x480 640 x 480 320 x240 320x240 640 x480

Detector 10 ms 33 ms 31 ms 31 ms 30 ms - 6.144 ms

Descriptor 80 µ sec/ F. 11.7 ms /F - - - 25.9 µ sec/ F

Accuracy 96.90% 95.47% - - - - 97.535 %

87

Table 24: Comparing proposed SVM Results with existing soultions

The implementation in [28, 43] used a very simple dataset to achieve a high

accuracy. While the implementation in [27] used large hardware resources to reach the

processing of 40 frames per second. Finally in [28], the authors used only 24

dimensions for the input vector to reach the 0.27ms. Our implementation used a

challenging dataset with 500 dimensional input vectors. All other reviewed solutions

used simple datasets. Our architecture accuracy was equal to 82% within a processing

time of 0.25 ms for each input image.

In terms of hardware resources utilization, our SVM architecture consumed less

resources than [26 and 29]. It consumed only 38,179 LUTS and 9,646 Registers. Our

implementation consumed more resources than [27] because the input vector

dimensions in [27] is only 24, while in our work it is 500. Also the number of classes

in [27] is restricted to 3. The architecture in [43] consumed less resources but the

processing time is 10 times greater than our implementation.

 [26] [29] [27] [43] Proposed

Operating frequency 100 MHz 141MHz 151 MHz 30 MHz 50MHz

FPGA Virtex-5 Virtex-5 Virtex4 Cyclone II Virtex 5

of LUTs 57,296 37,549 9,141 14,064 38,179

of registers 23,220 37067 11,589 - 9,646

of DSP blocks 83 128 81 20 52

Dataset
Faces dataset

[36]
MNIST

Persian

handwritten digits

COIL

database

Caltech-

256

Number of classes - - 3 4 5

Input dimensions - - 24 1024 500

SVs 400 - 145 60 100

Classification accuracy 77% 99.11% 98.67% 96% 82%

Processing time 40 frames/sec Speedup 20x 0.27 ms 2ms 0.25ms

88

Chapter 7: Conclusion and Future Work

Object detection is an important task in computer vision. This thesis addressed the

problem of accelerating the object detection to reach real-time performance with a high

level of accuracy using a lightweight hardware architecture. In this work, an FPGA-

based parallel hardware was implemented to accelerate the computationally intensive

algorithms to achieve real-time performance in an embedded system environment. A

parallel hardware architecture which implements Scale Invariant Feature Transform

(SIFT), Bag of Features (BoF), and Multiclass Support Vector Machine (SVM) was

presented.

Experimental results show that the proposed hardware architecture can detect SIFT

features from images with a dimension of 640×480 within 6.144 ms. It can also

compute up to 1270 SIFT features in each image. The classification accuracy achieved

by the architecture on benchmark datasets for five different classes was 85% for

Caltech-256, and 78% for KUL Belgium traffic sign dataset. The difference in

classification accuracy between the proposed architecture and the software

implementation was less than 0.03 %. The speed up achieved in the feature extraction

was ×55.06 and ×6.64 in the classification algorithm when compared with a pure

software implementation. The architecture FPGA resource utilization was lightweight

compared to existing implementations. Hence, the proposed object detection

architecture can be used as an embedded system solution to detection and recognize

objects in real-time performance.

Although the results presented have demonstrated the effectiveness of our

architecture to solve performance problem in the object detection, it could be further

improved in a number of ways. First, modify the architecture to read a video stream

directly from a camera. Second, further optimization to the SVM architecture are

required to further reduce the hardware utilization and increase the number of detected

categories. Third, design a high-speed PCB with FPGA device to make the proposed

architecture available to many portable applications. Lastly, deploy the implementation

in real life sceneries and applications for further enhancement.

89

References:

[1] H. Xiaoguang, Z. Xinyan, L. Deren and L. Hui, "Traffic Sign Recognition using
scale invariant feature transform and SVM," A special joint symposium of ISPRS

Technical Commission IV & AutoCarto, 2010.

[2] V. Atienza-Vanacloig and J. Rosell-Ortega , "Feature sets for people and luggage
recognition in airport surveillance under real-time constraints," VISIGRAPP08,

pp. 662-665, 2008.

[3] J. Canny, "A Computational Approach to Edge Detection," Pattern Analysis and

Machine Intelligence, IEEE Transactions on , vol. 8, no. 6, pp. 679 - 698 , 1986 .

[4] H. Chris and S. Mike, "A combined corner and edge detector," Proceedings of

the 4th Alvey Vision Conference, p. 147–151, 1988.

[5] E. Gülch and W. Förstner, "A Fast Operator for Detection and Precise Location
of Distinct Points, Corners and Centres of Circular Features," Proc. ISPRS

intercommission conference on fast processing of photogrammetric data., pp.
281-305, 1987.

[6] D. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints,"
International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, 2004.

[7] D. Lowe, "Object recognition from local scale-invariant features," International

Conference of Computer Vision, vol. 2, pp. 1150 - 1157, 1999.

[8] V. Bonato, E. Marques and G. Constantinides, "A Parallel Hardware Architecture
for Scale and Rotation Invariant Feature Detection," IEEE Transactions on

Circuits and Systems for Video Technology , vol. 18, no. 12, pp. 1703-1712, 2008.

[9] R. Hess, "SIFT Feature Detector (Source Code)," [Online]. Available:
http://web.engr.oregonstate.edu.

[10] N. Georganas and N. Dardas, "Real-Time Hand Gesture Detection and
Recognition Using Bag-of-Features and Support Vector Machine Techniques,"
IEEE Transactions on Instrumentation and Measurement, vol. 60, no. 11, 2011.

[11] W. Feng, D. Zhao, Z. Jiang, Y. Zhu, H. Feng and L. Yao, "An Architecture of
Optimised SIFT Feature Detection for an FPGA Implementation of an Image
Matcher," in Field-Programmable Technology, 2009. FPT 2009. International

Conference on , Sydney, NSW , 2009.

[12] Q. Zhang, Y. Chen, Y. Zhang and Y. Xu, "SIFT Implementation and Optimization
for Multi-Core Systems," Intel Corporation , 2008.

90

[13] F. Huang, S. Huang, J. Ker and Y. Chen, "High-Performance SIFT Hardware
Accelerator for Real-Time Image Feature Extraction," IEEE Transactions on

Circuits and Systems for Video Technology , vol. 22, no. 3, 2012.

[14] K. Mizuno, H. Noguchi, G. He, Y. Terachi, T. Kamino, H. Kawaguchi and M.
Yoshimoto, "Fast and Low-Memory-Bandwidth Architecture of SIFT Descriptor
Generation with Scalability on Speed and Accuracy for VGA Video," in
International Conference on Field Programmable Logic and Applications,
Milano, 2010.

[15] K. Murphy, "Naive Bayes classifiers," [Online]. Available:
www.cs.ubc.ca/~murphyk/Teaching/CS340-Fall06/reading/NB.pdf.

[16] S. Delany and P. Cunningham, "k-Nearest Neighbour Classifiers," Technical

Report UCD-CSI-2007-4, Dublin: Artificial Intelligence Group, 2007.

[17] T. Saegusa, T. Maruyama and Y. Yamaguchi, "How fast is an FPGA in image
processing?," Field Programmable Logic and Applications, pp. 77 - 82, 2008.

[18] S. Sirowy and A. Forin, "Where’s the Beef? Why FPGAs Are So Fast," MSR-
TR-2008-130, Redmond, 2008.

[19] H. Bay, T. Tuytelaars and L. Van Gool, "SURF: Speeded Up Robust Features,"
Computer Vision, vol. 3951, pp. 404-417, 2006.

[20] M. Grabner, H. Grabner and H. Bischof, "Fast Approximated SIFT," Computer

Vision , vol. 3851, pp. 918-927 , 2006.

[21] B. Rister, G. Wang, M. Wu and J. R. Cavallaro, "A Fast and Efficient SIFT
Detector Using the Mobile GPU," in IEEE International Conference on

Acoustics, Speech, and Signal Processing (ICASSP), Vancouver, BC , 2013.

[22] C. Jiang, Z.Geng, X. Wei and C. Shen, "SIFT implementation based on GPU,"
International Symposium on Photoelectronic Detection and Imaging, vol.
891304, 2013.

[23] S. Zhong, J. Wang and L. Yan, "A real-time embedded architecture for SIFT,"
Journal of Systems Architecture: the EUROMICRO Journal, vol. 59, no. 1, pp.
16-29 , 2013 .

[24] H. Borhanifar and V. Naeim, "High Speed Object Recognition Based on SIFT
Algorithm," International Conference on Image, Vision and Computing, 2012.

[25] M. Papadonikolakis and C.-S. Bouganis, "A Novel FPGA-based SVM
Classifier," in International Conference on Field-Programmable Technology

(FPT) , 2010.

91

[26] C. Kyrkou and T. Theocharides, "A Parallel Hardware Architecture for Real-
Time Object Detection with Support Vector Machines," IEEE Transactions on

Computers, vol. 61, 2012.

[27] D. Mahmoodi, A. Soleimani, H. Khosravi and M. Taghizadeh, "FPGA Simulation
of Linear and Nonlinear Support Vector Machine," Journal of Software

Engineering and Applications, vol. 4, pp. 320-328, 2011.

[28] S. Cadambi, I. Durdanovic, V. Jakkula and M. Sankaradass, "A Massively
Parallel FPGA-Based Coprocessor for Support Vector Machines," in Field

Programmable Custom Computing Machines, 2009. FCCM '09. 17th IEEE

Symposium, Napa, CA , 2009.

[29] N. Dardas, Q. Chen and N. D. Georganas, "Hand Gesture Recognition Using Bag-
of-Features and Multi-Class Support Vector Machine," in Haptic Audio-Visual

Environments and Games (HAVE), 2010 IEEE International Symposium on,
Phoenix, AZ , 2010.

[30] F. Vedaldi, "VLFeat: An open and portable library of computer vision
algorithms," in Proceedings of the international conference on Multimedia, 2010.

[31] G.Griffin, "Caltech-256 Object Category Dataset," Technical Report 7694,
California Institute, 2007.

[32] E. Lee, "A novel hardware design for SIFT generation with reduced mempry
requirement," Journal of Semiconductor Techonlogy and Science, vol. 13, no. 2,
2013.

[33] Y. Markus, "Multiplierless multiple constant multiplication," ACM Trans.

Algorithms, vol. 3, no. 1549-6325, p. 11, 2007.

[34] R. Timofte, "KUL Belgium traffic signs and classification benchmark datasets,"
[Online]. Available: http://www.vision.ee.ethz.ch/~timofter/. [Accessed 2014].

[35] Y.LeCun, "The MNIST database of handwritten digits," 1988. [Online].
Available: http://yann.lecun.com/exdb/mnist/. [Accessed 2014].

[36] "CBCL Face Database #1: " Jan 2010. [Online]. Available:
http://cbcl.mit.edu/software-datasets/FaceData2.html. [Accessed June 2014].

[37] A. Nikitakis, S. Papaioannou and I. Papaefstathiou, "A novel low-power
embedded object recognition system working at multi-frames per second," ACM

Transactions on Embedded Computing Systems, vol. 12, no. 1, p. 20, 2013.

[38] U. Michael Schaeferling, "Object Recognition and Pose Estimation on Embedded
Hardware: SURF-Based System Designs Accelerated by FPGA Logic,"
International Journal of Reconfigurable Computing, 2012.

92

[39] M. Zheng, Z. Song, K. Xu and H. Liu, "Parallelization and Optimization of SIFT
Feature Extraction on Cluster System," International Journal of Computer and

Information Engineering, 2012.

[40] K. Mikolajczyk and C. Schmid, "A Performance Evaluation of Local
Descriptors," IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 27, no. 10, 2005.

[41] J. Sivic and A. Zisserman, "Video Google: Efficient Visual Search of Videos," In

Toward Category-Level Object Recognition, vol. 4170, pp. 127-144, 2006.

[42] G. Csurka, C. R. Dance and L. Fan, "Visual Categorization with Bags of
Keypoints," ECCV International Workshop on Statistical Learning in Computer

Vision, 2004.

[43] J. Kim, B. Kim and S. Savarese, "Comparing Image Classification Methods: K-
Nearest-Neighbor and Support-Vector-Machines," American conference on

Applied Mathematics, pp. 133-138, 2012.

[44] C. Corinn and V. Vapnik, "Support-Vector Networks," Machine Learning, vol.
20, no. 3, pp. 273-297, 1995.

[45] M. Ciletti, Advanced Digital Design with the Verilog HDL, New Jersey: Prentice
Hall PTR, 2003.

[46] M. Ruiz-Llata, G. Guarnizo and M. Yébenes-Calvino , "FPGA Implementation
of a Support Vector Machine for Classification and Regression," Neural Networks

(IJCNN), The 2010 International Joint Conference, pp. 1-5, 2010.

[47] B.Schunck, R. Kasturi and R. Jain, "Object Recognition," in Machine Vision,
McGraw-Hill, Inc, 1995, pp. 459- 491.

[48] K. Mikolajczyk, "A performance evaluation of local descriptors," Pattern

Analysis and Machine Intelligence, IEEE Transactions on, vol. 27, no. 10, pp.
1615 - 1630, 2005.

[49] J. Qiu, Y. Lu, T. Huang and T. Ikenaga "A FPGA-Based Real-Time Hardware
Accelerator for Orientation Calculation Part in SIFT," in Intelligent Information

Hiding and Multimedia Signal Processing, Kyoto , 2009.

[50] J. Weston and C. Watkins, "Multi-class support vector machines," in Proceedings

of ESANN99, Brussels, Belgium, 1999.

[51] M. Papadonikolaki and C.Bouganis, "A Scalable FPGA Architecture for Non-
Linear SVM Training," in ICECE Technology, 2008. FPT 2008. International

Conference, Taipei , 2008.

93

[52] J. Zhang, M. Marszałek, S. Lazebnik and C. Schmid, "Local Features and Kernels
for Classification of Texture and Object Categories: A Comprehensive Study," in
Proc. IEEE Conf. Computer Vision and Pattern, New York, 2006.

[53] Xilinx, "Xilinx University Program XUPV5-LX110T Development System,"
2014. [Online]. Available: http://www.xilinx.com/univ/xupv5-lx110t.htm.
[Accessed 2014].

94

Appendix A: Verilog Modules Header

- Module Octave_1(Data_in,Scale1,Scale2,Scale3,Scale4,Scale5,Scale6,clk,valid);

- Module DoG_octave1(Data_in,DoG1,DoG2,DoG3,DoG4,DoG5,clk,valid);

- Module MBlock0(X,Y1,Y2,Y3,Y4,Y5,Y6);

- Module MBlock1(X,Y1,Y2,Y3,Y4,Y5,Y6);

- Module MBlock2(X,Y1,Y2,Y3,Y4,Y5,Y6);

- Module KP_detection (DoG1, DoG2, DoG3, DoG4, DoG5, KP_out1, KP_out2,

KP_out3, valid_out1,valid_out2,valid_out3, clk, enable);

- Module OriMag (Data_in, G_mag, G_ori, enable, clk, rst, Valid, X, Y);

- Module Domienant_Orientation(Gradient_M, Gradient_O, KP_in, KP_ready, enable,

clk, Rst, valid ,Op,Mg ,Og,X ,Y);

- Module SIFT_descriptor(X, Y, Op, Og, Mg, element, address, read_en, enable, clk);

- Module Rotation_Module(X, Y,Op,Og,Xr,Yr,Or);

- Module Gaussian_weight_Generation(Xr,Yr,Wg,clk);

- Module Trilinear_IM (Xr, Yr, Or, Mg, Wg, clk, Element, address, read_en, a0, a1, a2,

a3,a4,a5,a6,a7,r1,r2,r3,r4,r5,r6,r7,r8, enable,value);

- Module EGU(in0, in1, in2, in3, in4, in5, in6, in7, a0, a1, a2, a3, a4, a5, a6, a7, clk,

enable, element, address_out, read_en);

- Module Angle_conv(Angle_in,Angle_out);

- Module Address_block(address_in,address_out,module_out);

- Module Memory(data_out, address1, data_in1, write_enable, clk);

- Module Decoder_10_deg(Angle_in, Bin_out, clk);

- Module Gaussian_WG(X, Y, Wg, clk);

- Module SVM_module (X, clk,enable, Class_out, valid, Data_in, a_y);

- Module SVM_engine(X, SV, clk, enable, out, valid ,rst);

- Module Exp_function (phase_in,x_out ,y_out, rdy, clk, nd);

95

Appendix B

Table 25: Rotation module results

Software Results

Hardware Results

Xr Yr Or Xr Yr Or Error_Xr(%) Error_Yr(%) Error_Or(%)

-0.9654 0.676 0.6947 -0.96436 0.674805 0.69458 0.10819673 0.176821 0.0172624

-0.9473 0.5734 1.8119 -0.94629 0.572266 1.811768 0.10671778 0.197833 0.00730845

-0.9292 0.4708 2.2243 -0.92822 0.469727 2.224121 0.1051812 0.228003 0.00804326

-0.9111 0.3682 2.389 -0.91016 0.367188 2.388672 0.10358358 0.274986 0.01373483

-0.893 0.2656 2.5381 -0.89209 0.265137 2.537842 0.10192119 0.174428 0.01017309

-0.8749 0.163 2.9235 -0.87402 0.162598 2.92334 0.10019002 0.246837 0.00547824

-0.8569 0.0605 0.4647 -0.85596 0.060059 0.4646 0.1100442 0.729597 0.02160332

-0.8388 -0.0421 1.4559 -0.83789 -0.04248 1.455811 0.10841381 0.903726 0.00614418

-0.8207 -0.1447 1.7207 -0.81982 -0.14453 1.720703 0.1067115 0.116621 0.00018161

-0.8026 -0.2473 1.893 -0.80176 -0.24707 1.892822 0.10493241 0.092878 0.00938903

-0.7845 -0.3499 2.1456 -0.78369 -0.34961 2.145264 0.10307122 0.083059 0.01567525

-0.7664 -0.4525 2.6568 -0.76563 -0.45215 2.656494 0.10112213 0.077693 0.01151232

-0.7483 -0.555 3.483 -0.74756 -0.55469 3.48291 0.09907875 0.056306 0.00257949

-0.7302 -0.6576 0.2479 -0.72949 -0.65674 0.248047 0.09693406 0.13104 0.05924768

-0.7121 -0.7602 0.9119 -0.71143 -0.75928 0.911865 0.09468035 0.12137 0.00381244

-0.6941 -0.8628 1.4589 -0.69336 -0.86182 1.458984 0.10670292 0.114 0.00578347

-0.676 -0.9654 1.7756 -0.67529 -0.96436 1.775391 0.10459042 0.108197 0.01179179

-0.8628 0.6941 7.9029 -0.86182 0.692871 7.902588 0.1140002 0.17705 0.0039493

-0.8447 0.5915 0.6422 -0.84375 0.590332 0.64209 0.11246596 0.197459 0.01715295

-0.8266 0.4889 1.5761 -0.82568 0.487793 1.576172 0.11086454 0.226433 0.00456031

-0.8085 0.3863 1.9819 -0.80762 0.385254 1.981689 0.1091914 0.270798 0.01062349

-0.7904 0.2837 2.1984 -0.78955 0.283203 2.198242 0.10744164 0.175141 0.00717852

-0.7724 0.1811 2.5372 -0.77148 0.180664 2.536865 0.11854285 0.240716 0.01319429

-0.7543 0.0785 0.2886 -0.75342 0.078125 0.288574 0.11693375 0.477707 0.00893321

-0.7362 -0.024 1.5091 -0.73535 -0.02441 1.509033 0.11524552 1.72526 0.00442627

-0.7181 -0.1266 1.7818 -0.71729 -0.12695 1.781494 0.11347218 0.27893 0.01716575

-0.7 -0.2292 1.9872 -0.69922 -0.229 1.987061 0.11160714 0.085556 0.00701757

-0.6819 -0.3318 2.3135 -0.68115 -0.33154 2.313477 0.10964309 0.077466 0.00101308

-0.6638 -0.4344 2.9211 -0.66309 -0.43408 2.920898 0.10757193 0.073197 0.00690023

-0.6457 -0.537 3.6189 -0.64502 -0.53662 3.618652 0.10538466 0.07056 0.00684341

-0.6276 -0.6395 0.0839 -0.62695 -0.63867 0.08374 0.10307122 0.129496 0.19042387

-0.6096 -0.7421 0.5285 -0.60889 -0.74121 0.52832 0.11700808 0.119804 0.03399953

-0.5915 -0.8447 1.0985 -0.59082 -0.84375 1.098389 0.11490913 0.112466 0.01013456

-0.5734 -0.9473 1.5434 -0.57275 -0.94629 1.543213 0.11267767 0.106718 0.01212319

-0.7602 0.7121 3.7099 -0.75928 0.710938 3.709717 0.1213702 0.16325 0.00493822

-0.7421 0.6096 7.987 -0.74121 0.608398 7.986572 0.1198036 0.197107 0.00535538

-0.724 0.507 0.7276 -0.72314 0.505859 0.727539 0.11815867 0.224975 0.00837514

96

Table 26: SIFT generator Module results vs. Software Implementation

Software Generated SIFT vector Hardware Generated SIFT vector

0.1294 0.9186 1.5588 0.1856 0.1235 0.9053 1.5454 0.1787

1.1808 109.81 256.33 20.126 1.1694 109.78 255.86 19.92

0.0019 69.107 195.13 21.735 0.001 69.021 194.85 21.511

0 0.2296 1.8075 0.603 0 0.2241 1.7837 0.5854

0.4214 2.209 2.4242 0.088 0.4121 2.1855 2.3994 0.0835

3.9134 23.204 24.665 0.3758 3.8945 23.189 24.639 0.3618

0.6189 16.584 55.242 2.0747 0.5278 16.181 55.137 2.0356

0.2614 2.7491 2.6879 0.1054 0.1841 2.3755 2.6431 0.0967

0.3474 5.7239 6.5752 0.0381 0.3423 5.6807 6.5283 0.0371

3.3534 25.063 18.027 0.0471 3.3384 25.057 18.008 0.0454

4.7971 27.064 7.0275 0 4.4136 25.417 7.0078 0

1.1919 7.4562 0.7461 0 0.8613 5.9438 0.7256 0

0.0178 2.1195 2.4277 0.0553 0.0156 2.0981 2.4053 0.0532

8.917 58.558 12.431 0.2374 8.8569 58.604 12.403 0.2344

12.847 84.39 8.0842 0 12.757 84.328 8.0659 0

0.0157 0.3126 0.1719 0 0.0127 0.3022 0.1675 0

0.0203 0.4536 0.5079 0.1222 0.0171 0.4487 0.5029 0.1187

11.031 101.09 13.668 0.5061 10.931 101.08 13.631 0.5

11.244 114.55 11.275 0 11.135 114.36 11.245 0

0 0.0045 0.0079 0 0 0.0039 0.0078 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0.0453 0.0104 0 0 0.0449 0.0098

0 6.8117 17.924 3.1778 0 6.8223 17.963 3.1528

0 5.0237 9.1345 1.8359 0 5.0254 9.146 1.8193

0 0.0007 0.051 0.0408 0 0 0.0493 0.0391

97

Table 27: Decoder 36 bins: (10°/ bin) angles

Angle1 Angle2 Bin
Degree Radian Hex(3.13) Degree Radian Hex(3.13)

0 0 '0000' 10 0.174533 '0596' 0
10 0.174533 '0596' 20 0.349066 '0B2C' 1
20 0.349066 '0B2C' 30 0.523599 '10C1' 2
30 0.523599 '10C1' 40 0.698132 '1657' 3
40 0.698132 '1657' 50 0.872665 '1BED' 4
50 0.872665 '1BED' 60 1.047198 '2183' 5
60 1.047198 '2183' 70 1.22173 '2718' 6
70 1.22173 '2718' 80 1.396263 '2CAE' 7
80 1.396263 '2CAE' 90 1.570796 '3244' 8
90 1.570796 '3244' 100 1.745329 '37DA' 9
100 1.745329 '37DA' 110 1.919862 '3D70' 10
110 1.919862 '3D70' 120 2.094395 '4305' 11
120 2.094395 '4305' 130 2.268928 '489B' 12
130 2.268928 '489B' 140 2.443461 '4E31' 13
140 2.443461 '4E31' 150 2.617994 '53C7' 14
150 2.617994 '53C7' 160 2.792527 '595C' 15
160 2.792527 '595C' 170 2.96706 '5EF2' 16
170 2.96706 '5EF2' 180 3.141593 '6488' 17
180 3.141593 '6488' 190 3.316126 'A10E' 18
190 3.316126 'A10E' 200 3.490659 'A6A4' 19
200 3.490659 'A6A4' 210 3.665191 'AC39' 20
210 3.665191 'AC39' 220 3.839724 'B1CF' 21
220 3.839724 'B1CF' 230 4.014257 'B765' 22
230 4.014257 'B765' 240 4.18879 'BCFB' 23
240 4.18879 'BCFB' 250 4.363323 'C290' 24
250 4.363323 'C290' 260 4.537856 'C826' 25
260 4.537856 'C826' 270 4.712389 'CDBC' 26
270 4.712389 'CDBC' 280 4.886922 'D352' 27
280 4.886922 'D352' 290 5.061455 'D8E8' 28
290 5.061455 'D8E8' 300 5.235988 'DE7D' 29
300 5.235988 'DE7D' 310 5.410521 'E413' 30
310 5.410521 'E413' 320 5.585054 'E9A9' 31
320 5.585054 'E9A9' 330 5.759587 'EF3F' 32
330 5.759587 'EF3F' 340 5.934119 'F4D4' 33
340 5.934119 'F4D4' 350 6.108652 'FA6A' 34
350 6.108652 'FA6A' 360 6.2832 '0000' 35

98

Appendix C: KNN Classifier

99

- Naïve Bayes classifier

100

- Ada boost classifier:

101

- Decision Tree classifier:

102

- Linear Support vector machine (SVM):

103

- Non-linear Support vector machine (SVM):

104

pyramid

raccoon

radio-telescope

revolver-101

rotary-phone

blimp

bowling-pin

boxing-glove

brain

bulldozer

Horses

Face

Motorbike

Watch

Airplane

Appendix D: Ten 5-classes Subsets from Calthech-256

Subset #1:

 Subset #2:

 Subset #3:

105

saturn

school-bus

scorpion-101

 lawn-mower

sextant

butterfly

sneaker

soccer-ball

socks

spaghetti

speed-boat

spider

spoon

starfish-101

steering-wheel

 Subset #4:

Subset #5:

Subset #6:

106

sunflower

superman

sushi

swan

sword

telephone-box

teddy-bear

teapot

tambourine

syringe

tennis-ball

tennis-racket

tomato

top-hat

touring-bike

 Subset #7:

 Subset #8:

Subset #9:

107

backpack

baseball-glove

bear

billiards

binoculars

Subset #10:

108

Vita

Murad Mohammad Qasaimeh was born on March 28, 1988, in Irbid, Jordan. He was

educated and graduated from Irbid Secondary School, Irbid, in 2006. After that, he

attended Jordan University of Science and Technology in Irbid, Jordan, from which

he graduated in 2011 and obtained his Bachelor of Science in Computer

Engineering with an excellent rating. In Spring 2012, Mr.Qasaimeh began his Master’s

program in Computer Engineering at the American University of Sharjah. His

research interest includes real-time embedded systems, reconfigurable computing, and

computer vision systems.

