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Abstract 
 

Gait Recognition is one of the latest and most attractive biometric techniques 

currently under research, due to its potential application in identification of 

individuals at a distance, unobtrusively and even using low resolution images. In this 

thesis a comprehensive study of the gait problem is presented, covering gait databases 

and the different approaches used for preprocessing, feature extraction and 

classification. The objective is to achieve a robust technique that performs well, 

independently of the input data and the many covariates that affect this behavioral 

biometric technique. Firstly, gait data is processed using three gait representation 

methods as the features sources; Accumulated Prediction Image (API) and two novel 

gait representations namely; Accumulated Flow Image (AFI) and Edge-Masked 

Active Energy Image (EMAEI). Secondly, each of these methods is tested using three 

matching schemes; Image Projection with Linear Discriminant Functions (LDF), 

Multilinear Principal Component Analysis (MPCA) with K Nearest Neighbor (KNN) 

classifier and the third method: MPCA+ Linear Discriminant Analysis (MPCALDA) 

with KNN classifier. Gait samples are fed into the MPCA and MPCALDA algorithms 

using a novel tensor-based form of the above-mentioned gait representations. We end-

up having nine recognition modules which are analyzed individually using four 

different experimental setups and compared to the results reported in six of the most 

recent papers that used the same database and the same experimental setups. Finally, 

decisions from the nine recognizers are fused using decision-level (majority voting) 

scheme. A comparison between unweighted and weighted voting schemes for final 

decision is also shown. The experimental results show clearly that the proposed 

approach outperforms the state-of-the-art gait approaches used in the literature, and 

reports the highest recognition rates known to the date of writing this report. As a 

result of the comprehensive study and extensive experiments, we conclude that 

model-free gait approaches, particularly spatio-temporal and energy-based methods, 

are the best choice in a gait recognition system used for human identification. We also 

note that single classifiers may not be reliable and robust to deal with gait recognition, 

and a fusion scheme that combines the power of each of the base classifiers is needed. 

Search Terms: Gait Recognition, Human Identification, Gait Tensors, Multilinear 

Subspace Learning (MSL), Decision-Level Fusion 



 

6 

 

 

Table of Contents 

Abstract..........................................................................................................................5 

List of Figures ................................................................................................................ 8 

List of Tables ............................................................................................................... 10 

Abbreviations ............................................................................................................... 11 

Chapter 1: Introduction ............................................................................................ 14 

1.1 Motivations and Challenges .......................................................................... 14 

1.2 Contribution .................................................................................................. 15 

1.3 Background ................................................................................................... 16 

1.3.1 Biometrics .............................................................................................. 16 

1.3.2 Gait Recognition .................................................................................... 17 

1.3.3 Gait Databases ....................................................................................... 18 

1.3.4 Tensor-based Data Representation ........................................................ 19 

1.4 Literature Review .......................................................................................... 21 

1.4.1 Gait Databases ....................................................................................... 21 

1.4.2 Gait Approaches..................................................................................... 25 

1.4.3 Fusion Schemes ..................................................................................... 30 

1.4.4 Tensor-based Data Representation ........................................................ 32 

1.5 Research Methodology .................................................................................. 34 

1.6 Thesis Outline ............................................................................................... 36 

Chapter 2: Gait Preprocessing Techniques ............................................................. 37 

2.1 Gait Sequences and Cycles ........................................................................... 38 

2.1.1 CASIA B Dataset ................................................................................... 38 

2.1.2 Database breakdown .............................................................................. 38 

2.1.3 Gait Cycles ............................................................................................. 39 

2.1.4 Design Baselines .................................................................................... 40 

2.2 Accumulated Prediction Image (API) ........................................................... 41 

2.2.1 Description of the API method .............................................................. 41 

2.2.2 Optimization of the API representation ................................................. 42 

2.3 Accumulated Flow Image (AFI) ................................................................... 43 

2.3.1 Optical Flow........................................................................................... 43 

2.3.2 Description of the AFI method .............................................................. 45 



 

7 

 

 

2.3.3 Optimization of the AFI representation ................................................. 46 

2.4 Gait Energy Image (GEI) .............................................................................. 47 

2.4.1 Description of the GEI method .............................................................. 47 

2.5 Masked Active Energy Image (MAEI) ......................................................... 48 

2.5.1 Active Energy Image (AEI) ................................................................... 48 

2.5.2 Description of the MAEI method .......................................................... 48 

Chapter 3: Feature Extraction and Dimensionality Reduction ............................. 51 

3.1 Image Projection + 1D DCT ......................................................................... 51 

3.2 Multi-linear Principal Component Analysis (MPCA) .................................. 52 

3.2.1 Description of the MPCA algorithm ...................................................... 53 

3.2.2 Tackling the iterative solution issues ..................................................... 54 

3.2.3 MPCA plus Linear Discriminant Analysis (MPCALDA) ..................... 55 

3.2.4 Data arrangement in tensorial form ....................................................... 55 

Chapter 4: Classification and Fusion Methods ....................................................... 57 

4.1 Linear Discriminant Functions (LDF)........................................................... 57 

4.2 1 Nearest Neighbor Classifier ....................................................................... 58 

4.3 Voting Schemes for Decision-Level Fusion ................................................. 58 

4.3.1 Unweighted Voting (UWV) ................................................................... 58 

4.3.2 Weighted Voting (WV).......................................................................... 59 

Chapter 5: Experiments, Results and Analysis ....................................................... 60 

5.1 Final Proposed Scheme ................................................................................. 60 

5.2 Testing Methodology .................................................................................... 61 

5.3 Experimental Setups ...................................................................................... 62 

5.4 Results and Analysis ..................................................................................... 64 

5.4.1 Results using experimental Setup 1 ....................................................... 64 

5.4.2 Results using experimental Setup 2 ....................................................... 68 

5.4.3 Results using experimental Setup 3 ....................................................... 69 

5.4.4 Results using experimental Setup 4 ....................................................... 71 

Chapter 6: Conclusions and Future Works ............................................................ 74 

References .................................................................................................................... 76 

Vita…………………………………………………………………………………...85 

 



 

8 

 

 

 List of Figures  

Figure 1: A typical gait cycle [5] ................................................................................  18 

Figure 2: Illustration of 3
rd

 order tensor and its vectors; (a) tensor object, (b) its 1-

mode vectors, (c) the 2-mode vectors and (d) the 3-mode vectors  ............  20 

Figure 3: Sample from CMU MoBo Data Set with 6 different viewpoints [26] ........  22 

Figure 4: Sample from Maryland Data Set [26] .........................................................  22 

Figure 5: Sample from Southampton Data Set [26] ...................................................  23 

Figure 6: Samples of the CASIA Dataset A [26] .......................................................  23 

Figure 7: Samples of the NIST/USF Dataset; a) left view walking on concrete b) 

right view on concrete c) left view on grass, and d) right view on grass. 

[11] ..............................................................................................................  24 

Figure 8: Three samples of CASIA B Dataset, (a) normal condition, (b) carrying 

bag, and (c) wearing coat  ...........................................................................  24 

Figure 9: Samples of the AUS Database: (a) Male in gulf costume (b) Female in 

gulf costume (c) Female in casual costume (d) Male in casual costume  ...  25 

Figure 10: A typical block diagram of Gait Recognition System  ...............................  35 

Figure 11: (a), (b) and (c) The first three silhouettes for subject 1, normal sequence 

1, and their corresponding Convex Images, (d), (e) and (f) respectively  ..  40 

Figure 12: (a) Positive API, (b) Negative API  ............................................................  42 

Figure 13: (a) Positive prediction with threshold factor of 1, (b) Positive prediction 

with threshold factor of 7, (c) Negative prediction with threshold factor 

of 1, (d) Negative prediction with threshold factor of 7 .............................  43 

Figure 14: (a) Positive AFI, (b) Negative AFI  ............................................................  46 

Figure 15: (a) GEI of subject 1 under normal condition, (b) GEI of subject 1 with 

bag, (c) GEI of subject 1 with coat, (d) AEI of subject 1 under normal 

condition, (e) AEI of subject 1 with bag, (f) AEI of subject 1 with coat, 

images (g, h, i) are the corresponding MAEIs to images (d, e, f) using 

Zero Masking, images (j, k, l) are the corresponding MAEIs to images 

(d,e,f) using Edge Masking  ........................................................................  50 

Figure 16: Image Horizontal Projection Method for feature extraction. The 

flowchart shown is for the two cases of API and AFI. EMAEI requires 

only one branch, for a single image  ...........................................................  51 

Figure 17: Block Diagram of the proposed gait Recognition System  .........................  60 

Figure 18: Recognition Rates (%) of the experiments groups Ts11 (nm1, nm2 & 

nm3), Ts12 (bg1 & bg2) and Ts13 (cl1 & cl2) ............................................  65 

Figure 19: Recognition Rates (%) of the experiments groups Ts11 (nm1, nm2 & 

nm3), Ts12 (bg1 & bg2) and Ts13 (cl1 & cl2), using different methods 

of fusion. Ts11*, Ts12* and Ts13* are the experimental results for 

fusion schemes F1*-F6* .............................................................................  67 



 

9 

 

 

Figure 20: Recognition Rates (%) of the experiments groups Ts21 (nm1, nm2), Ts22 

(cl1 & cl2) and Ts23 (cl1 & cl2) .................................................................  68 

Figure 21: Recognition Rates (%) of the experiments groups Ts31 (nm6), Ts32 

(bg1), Ts33 (bg2), Ts34 (cl1) and Ts35 (cl2) .............................................  70 

Figure 22: Recognition Rates (%) of the experiments groups Ts41 (nm4), Ts42 

(nm5), Ts43 (nm6), Ts44 (bg2) and Ts45 (cl2) ..........................................  71 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

10 

 

 

List of Tables 

Table 1: Summary of major databases used in gait analysis and experiments  .......  21 

Table 2: List of Major Gait Approaches  .................................................................  27 

Table 3: Comparison of major MSL methods  ........................................................  34 

Table 4: Recognition Rates (%) of experiments using Setup 1 [13] ........................  65 

Table 5: Weights given to base recognition modules  .............................................  66 

Table 6: Recognition Rates (%) of fusion techniques, using Setup 1 ......................  67 

Table 7: Recognition Rates (%) of experiments using Setup 2 [14, 34, 66] ............  68 

Table 8: Recognition Rates (%) of fusion techniques, using Setup 2 [14, 34, 66]  .  69 

Table 9: Recognition Rates (%) of experiments using Setup 3 [16] ........................  70 

Table 10: Recognition Rates (%) of fusion techniques, using Setup 3 [16]  .............  70 

Table 11: Recognition Rates (%) of experiments using Setup 4 [15]  .......................  71 

Table 12: Recognition Rates (%) of fusion techniques, using Setup 4 [15]  .............  72 

Table 13: Recognition Rates (%) from fusion of R1, R2 and R9, using Setup 1 

[13]  ............................................................................................................  73 

Table 14: Recognition Rates (%) from fusion of R1, R2 and R9 using Setup 2 [14, 

34, 66] ........................................................................................................  73 

Table 15: Recognition Rates (%) from fusion of R1, R2 and R9 using Setup 3 [16] 

 ...................................................................................................................  73 

Table 16: Recognition Rates (%) from fusion R1, R2 and R9 using Setup 4 [15] .....  73 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

11 

 

 

Abbreviations 

 

AEI Active Energy Image 

AFI Accumulated Flow Image 

AFT Accumulated Flow Tensor 

API Accumulated Prediction Image 

APT Accumulated Prediction Tensor 

BTA Baysiean Tensor Analysis 

CASIA Chinese Academy of Science and Institute of Automation 

CCD Charged Coupled Device 

CDA Canonical Discriminant Analysis 

CGI Chrono Gait Image 

CMU Carnegie Mellon University 

CSA Concurrent Subspace Analysis 

DATER Discriminant Analysis with Tensor Representation 

DARPA Defense Advanced Research Projects Agency 

DCT Discrete Cosine Transform 

DTW Dynamic Time Warping 

EMAEI Edge-Masked Active Energy Image 

EMAET Edge-Masked Active Energy Tensor 

EMP Elementary Multilinear Projection 

FAR False Accept Rate 

FIR Finite Impulse Response 

FPT Full Projection Truncation 

FRR False Reject Rate 

GEI Gait Energy Image 

GFI Gait Flow Image 

GHI Gait History Image 

GLRAM Generalized Low-Rank Approximation of Matrices 

GPCA Generalized Principal Component Analysis 

GPPE Gait Pal and Pal Entropy 

GSP Gait Structural Profile 



 

12 

 

 

GTDA General Tensor Discriminant Analysis 

HMM Hidden Markov Model 

HUMABO Human Monitoring and Authentication using Biodynamic Indicators 

ITA Incremental Tensor Analysis 

KNN K-Nearest Neighbor 

LDA Linear Discriminant Analysis 

LDF Linear Discriminant Functions 

MAEI Masked Active Energy Image 

MoBo Motion of Body 

MPCA Multilinear Principal Component Analysis 

MPCALDA MPCA with Linear Discriminant Analysis 

MSL Multilinear Subspace Learning 

NIST National Institute of Standards and Technology 

NMPCA Non-negative MPCA 

PMS Procrustes Mean Shape 

PCA Principal Component Analysis 

PSA Procrustes Shape Analysis 

RMPCA Robust MPCA 

SAD Sum of Absolute Difference 

SEI Shifted Energy Image 

SVM Support Vector Machines 

2DLDA Two-Dimensional Linear Discriminant Analysis 

2DLPP Two-Dimensional Locality Preserving Projection 

2DPCA Two-Dimensional Principal Component Analysis 

TROD Tensor Rank-One Decomposition 

TR1DA Tensor Rank-One Discriminant Analysis 

TTP Tensor-to-Tensor Projection 

TVP Tensor-to-Vector Projection 

UCSD University of California, San Diego 

UMLDA Uncorrelated Multilinear LDA 

UMPCA Uncorrelated MPCA 

USF University of South Florida 



 

13 

 

 

UWV Unweighted Voting 

VVP Vector-to-Vector Projection 

WV Weighted Voting 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

14 

 

 

Chapter 1: Introduction 

Gait is defined as “the coordinated and cyclic combination of movements that 

result in human locomotion” [1]. As such, and based on these repeated patterns, it can 

be used to identify people. The use of gait traits in biometrics is increasingly 

attracting researchers’ and scientists’ interest. This is mainly due to its potential in 

identification of individuals at a distance. Since 1994 (marked by the work of Niyogi 

and Adelson [2]) until this moment in time, many approaches were introduced trying 

to analyze, understand and extract gait features, and hoping to overcome the many 

challenges that impact gait recognition, and to improve the overall systems’ 

performance. The major challenging factors would be; walking style and speed, time 

span, walking surface, viewpoint and clothing. Gait analysis methods might be 

classified into Model-Free and Model-Based; referring to the approach of dealing 

with the body statics and/or dynamics. One important decision to make before testing 

any gait recognition algorithm is the selection of the database. The database should be 

suitable to the application of study, and will be used to train, test and evaluate the 

system. Approaches that aim to design a system for surveillance human monitoring, 

for example, may use image sequences captured outdoor, and considering different 

conditions, in order to test against real life scenarios. Different approaches can be 

compared using different databases. The ultimate goal of any gait recognition system 

is to achieve high recognition rates and being robust under all conditions. 

1.1 Motivations and Challenges 

Due to the potential of gait and its promising applications, extensive 

researches continue to highlight and examine the main problems and challenges that 

hinder the commercialization of these systems. Although high recognition rates were 

achieved in most of those studies, it was resulted from limited number of subjects, 

limited covariates and highly controlled environments. In reality, conditions are much 

more challenging, a matter that necessitates the development of a gait recognition 

system that is immune to noise and security attacks, and almost independent of those 

different covariates. The application of gait in biometrics requires specific focus on 
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some covariates like the view angle, clothing, footwear, time span and carrying 

conditions. 

Therefore, this study aims to go a step further on the path to achieve a robust 

gait recognition system that is acceptable and workable worldwide; for different 

cultures, dress codes, walking styles and conditions. We examine thoroughly the 

different gait approaches and databases used in the literature and their performance 

and applicability. 

1.2 Contribution 

The main contributions in our work include: 

a. A comprehensive and extensive study of the gait problem introducing 

literature review, tests and analysis of the major and state-of-the-art reported 

techniques. This should provide a good reference and basis for many similar 

studies in the future. Our study has affirmed the assumption that model-free, 

especially spatio-temporal (accumulated error) and energy-based, methods are 

more effective gait methods. Besides, we conclude that decision-level fusion 

from multiple gait recognition methods performs much better than each of the 

single methods involved.  

b. Exhaustive experiments on, and optimization of, the Accumulated Prediction 

Image (API) method from [3], section (2.2). 

c. Proposing two novel gait representations; the Accumulated Flow Image (AFI) 

and Edge-Masked Active Energy Image (EMAEI), found in sections (2.3) and 

(2.5) respectively. 

d. Further implementation and testing of tensor-based feature extraction methods 

for gait recognition. The first implementation of these methods on the gait 

problem was by Haiping et al. [4] using the Multilinear Principal Component 

Analysis (MPCA) method. However, we have implemented the method for the 

first time on the CASIA B dataset (described in 2.1.1), introducing novel 

tensorial gait representations that proved to be competitive. 

e. Testing the outcome of fusion on the overall performance of gait recognition 

systems, especially decision-level fusion. 
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f. Achieving the highest recognition rates in the categories, as to the date of 

writing this report, by comparing our results to several recently-published 

papers. 

1.3 Background 

1.3.1 Biometrics 

Biometrics is the science and techniques that deal with the automatic 

measurement of physiological or behavioral characteristics of humans for the purpose 

of identification or verification. 

Compared to other identification credentials like passwords or cards, the latter 

can be forgotten, lost or stolen. While biometric data is inherent in humans and is, 

hence, more secure. For data to be considered biometric, it has to be unique among 

individuals, universal, permanent, collectable (measurable), acceptable and accurate. 

Examples of physical biometric include fingerprint, palm print, iris scan, 

retina scan, face scan, hand geometry, vein pattern, ear shape and body odor. 

Behavioral biometric include speaker, signature dynamics, keystroke dynamics, gait 

and Human-Computer Interaction. 

The difference between identification and verification is that in the first, one 

person’s template is compared to all others in the database to identify him/her. It is 

therefore known as 1:N process. In verification, the person claims his/her identity, 

before the system verifies it by comparing it to the stored template. This mode is 

known as 1:1 process. 

Biometrics, however, is not perfect. Therefore, there is some performance 

metrics used to evaluate the system. The most important parameters are the False 

Accept Rate (FAR) and the False Reject Rate (FRR). FAR may occur when more than 

one person have similar biometric data. It can be reduced by increasing the threshold 

level. However this would also increase the FRR. This latter means a valid person is 

rejected, and this is due to bad correlation between the enrollment and verification 

templates. It can be solved by re-enrollment and by controlling the environment. 

There will always be trade-off between FAR and FRR. 
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1.3.2 Gait Recognition 

Automatic recognition by gait is attractive compared to other biometric 

techniques. Its major potential as a biometric technique is in identification of humans 

at a distance [5]. It can be applied to subjects unobtrusively and even without their 

cooperation or awareness. Compared to face recognition, for example, which is also 

useful in surveillance applications, the latter almost fails for outdoor recognition over 

a distance. Here, gait does not require high resolution images. Different approaches 

were presented and using different databases. Identification rates have exceeded 90% 

under similar conditions for the training and the testing databases [6]. When taken 

outdoor, other challenges come into consideration, primarily the changing 

environment, the change in walking style/speed and illumination. Performance 

analysis against the different covariates is the topic of most of the research work 

nowadays. 

In [1], Little and Boyd defined gait as “the coordinated and cyclic 

combination of movements that result in human locomotion”. The keywords in this 

definition; coordinated, cyclic and locomotion are what distinguish gait from other 

forms of movements. And these movements should produce unique spatio-temporal 

patterns that may be used to identify people in a biometric system. 

It was shown in different fields (such as psychology, biomechanics and 

medicine) that gait signature is unique and can be used to identify people. As we 

know, the most important condition to consider data in a recognition system, 

biometric, is uniqueness. Literature in biomechanics and medicine show that every 

person performs a unique and repeatable pattern in walking. This pattern is usually 

measured over one full stride. Figure 1 shows a typical gait (or walking) cycle. 

Johansson proved with experiments in [7] that human is able to identify a 

person via a moving light dots pattern. When these dots were static, it was not easy to 

recognize a human pattern. However, this proves the human perception of gait. 

Murray et al. [8] showed that movement of the upper part (thorax and pelvic) 

of the body is subject to variance. Therefore, it is the lower part (limb, hip, thigh and 

heel) which is primarily used in gait analysis. 
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Figure 1: A typical gait cycle [5] 

Factors that might affect gait or the perception of gait include; skeletal 

dimensions [9], terrain/surface [10, 11], injury [8], footwear [11, 12], muscle 

development [1], fatigue [1], viewpoint [11], training (athletic or military) [1], time 

[11], culture [1], carrying condition [13-16] and clothing [13-16]  

Among the few studies that examined the robustness issue of gait, major 

contribution was by Davrondzhon Gafurov, as in [17] and with his team in [18]. They 

studied the scenarios of both passive (unknowledgeable) imposter, and active 

(knowledgeable) imposter. While it was assumed that gait is robust to most spoof 

attacks, the study in [17] proved that imposters who know the gender of some persons 

in the database may cause a threat. Also the study in [18] proved that knowing the 

person of the closest gait in the database might be risky. Therefore, the issue should 

be addressed and considered in the design process. A possible example of counter-

measure can be implementing fusion techniques. 

Gait robustness was also the topic for some studies, like [19] and [20]. In [19], 

Lee et al. used dimensionality reduction techniques to extract the spatio-temporal 

features of gait.  

1.3.3 Gait Databases 

Just like any other pattern recognition system, gait analysis requires the use of 

pre-acquired samples of data for training and testing. In the case of gait, these samples 

are video sequences of different subjects, walking. For robustness purpose, it is 
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necessary to have these data unique and practical. This can be accomplished by 

capturing as many subjects as possible in multiple sequences; from the two genders, 

under different conditions and over different time periods. When such database is 

used, we anticipate having more accurate evaluation of the system and more 

generalized results. 

1.3.4 Tensor-based Data Representation  

Tensors are multi-dimensional objects, or n-mode objects, where n is the 

number of indices in the tensor representation. The fact that all images and video 

sequences used in biometric techniques, such as face recognition and gait recognition, 

use tensors as their data, makes it intuitive to try to extract features from the data in its 

native tensorial form instead of reshaping it into a vector form, or even matrix form. 

Face templates (grayscale images), for instance, are 2-mode tensors. Whereas 

grayscale video sequences used in gait recognition are 3-mode tensors: the two spatial 

dimensions and the temporal dimension. When adding the number of samples 

(subjects), the problem becomes of 4-mode tensors. 

On the other hand, it is also common in such biometric applications to have 

high dimensional feature space. And in pattern recognition, this may lead to the so-

called curse of dimensionality, especially when dealing with small number of 

samples. It becomes useful in similar conditions to implement the dimensionality 

reduction techniques prior to feature extraction and classification, so as to map high-

dimensional space into a lower-dimensional space while trying to keep the correlated 

data, and reduce redundancy. And if dimensionality reduction techniques are to be 

used with multi-mode objects, it becomes intuitive to keep them in their tensorial 

representation. This is compared to reshaping data into vector form, as is the case in 

linear techniques like PCA and LDA, which leads to changing the original data 

structure. Using tensors means dealing with multi-mode data in its native form, and 

thus hoping to produce more discriminative and correlated features. 

1.3.4.1 Basic Multilinear Algebra 

An Nth-order tensor can be represented as ����	∈ ���×��×…×�
, where N is the 

number of indices (modes), and each In represents the n-th mode of ����. Figure 2 
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shows an example tensorial representation of a tensor object ���� and its vectorial 

components. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2: Illustration of 3
rd

 order tensor and its vectors; (a) tensor object, (b) its first-mode 

vectors, (c) the second-mode vectors and (d) the third-mode vectors. 

 

The n-mode vectors above are the In dimensional vectors obtained by varying 

its index (same mode) while keeping the other indices fixed. This way, it is possible 

to unfold the tensor into a single-order vector. 

1.3.4.2 Multilinear Projections 

Multilinear projections deal with mapping tensors into lower dimensional 

subspaces. In general, there are 3 types of multilinear projections, based on the shape 

of input and output:  

1. Vector-To-Vector Projection (VVP): this is similar to the conventional linear 

projection as used in PCA and LDA. It means to map a vector x (of dimension 

I) into another vector y (of dimension P), using projection matrix U (of 

dimension I x P, where � ≪ 
). Or  � = ��� 

Therefore, when the input to VVP is tensor, it should be vectorized first before 

projection. 

2. Tensor-to-Vector Projection (TVP): 

This method is equivalent to multiple projections from a tensor into a scalar, 

or an approach called Elementary Multilinear Projection (EMP), which in 

other words means that converting a tensor ���� into a vector y of dimension P is 

accomplished using P EMPs. The detailed description of the EMP is out of the 

scope of this study. 

3. Tensor-to-Tensor Projection (TTP):  

It means to project an Nth-order tensor ���� (of n-mode dimensions I1, I2… IN) 

into another tensor ���� at a lower tensorial space (of n-mode dimensions P1, 

P2… PN) using N projection matrices, �� ∈ ���×�� 	. It is accomplished in N 
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steps by mapping the n-mode vector every time or in one step using 1-mode 

projection matrix that would project each 1-mode vector into a lower 

dimensional vector. This is the method implemented in the MPCA algorithm, 

as we shall see in section (3.2) 

1.4 Literature Review 

1.4.1 Gait Databases 

Table 1 summarizes the databases used in the recent studies on gait 

recognition sorted by date. And here are briefs of the major ones: 

In UCSD database [21-23], six subjects were imaged in the University of 

California, San Diego. Every subject was required to walk in a circular path that 

passes through the field of view of the camera before a fixed background. Seven 

image sequences were taken for each subject, thus a total of 42 sequences overall.  

Table 1: Summary of major databases used in gait analysis and experiments 

Database Size Scene/Background Covariates 

Subjects Sequences 

UCSD, 1998 6 42 Wall Background Time (minutes) 

CMU MoBo, 

2001 

25 600 Indoor, Treadmill View angle, Walking 

Speed, Surface Incline, 

Carrying Conditions 

Maryland, 2001 25 100 Outdoor, ground, 30m 

away 

View angle, Time 

55 222 Outdoor, top-mounted View angle, Time 

MIT, 2001 24 194 Indoor, floor Time (3 months) 

Southampton, 

2001 

(New SOTON) 

28 112 Indoor floor  

(green background) 

Time, footwear 

CASIA A, 2001 20 240 Outdoor, three views 

(0
o
, 45

o
, 90

o
) 

View angle 

NIST/USF, or  

Gait Challenge, 

2002 

122 1870 Outdoor View angle, Surface, 

Shoe, Carrying Condition, 

Time (6 months). 

CASIA B, 2005 124 13640 Indoor, multi-view  

 

View angle, Clothing, 

Carrying Condition 

CASIA C, 2005 153 612 Outdoor, Infra-red (night) Walking conditions 

HUMABO, 2007 75 

51 

- 

- 

Indoor, several times, 

stereoscopic cameras 

View angle 

ACTIBIO, 2007 28 - Indoor, increasing 

complexity 

View angle, walking style 

AUS, 2009 103 1030 Indoor, 0
o
 view, right-to-

left and left-to-right 

Clothing 
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Motion of Body (or MoBo) database [21, 24-27] was collected in the labs of 

Carnegie Mellon University (CMU). It contains 600 image sequences from 25 

subjects (23 males, 2 females). Each subject was imaged using 6 x 3CCD cameras 

simultaneously, recording at 30 fps, and repeated with four different types of walking; 

slow walk, fast walk, inclined walk and slow walk holding a ball. Figure 3 shows 

samples of this database. 

 

 
Figure 3: Sample from CMU MoBo Dataset with 6 different viewpoints [26] 

 

Maryland database [21, 24-26] contains two datasets of people walking 

outdoor. In the first dataset, the camera was mounted horizontally against the subject. 

In the second dataset (as seen in figure 4) two orthogonal surveillance cameras were 

mounted on top of the building. 55 subjects (46 males, 9 females) were imaged 

walking in a T-pattern with four different poses: frontal, right, left and back. This 

database is good to test for actual surveillance examples. Figure 4 shows samples of 

this database. 

 

 
Figure 4: Sample from Maryland Data Set [26] 
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MIT database [26] consists of 194 sequences, resulted from imaging 24 

subjects twice or four times, perpendicular to a single camera view. Each subject was 

asked to repeat the walking twice, in two 3-month separated sessions. 

Southampton database [22, 26] consists of 112 video sequences resulted from 

imaging 28 subjects, with four sequences each. People were asked to walk on a track 

perpendicular to the camera view, and against a green background, resulting in clean 

silhouettes. Figure 5 shows samples of this database. 

 

 
Figure 5: Sample from Southampton Data Set [26] 

 

CASIA Dataset A [28, 29] was developed by the Chinese Academy of Science 

and Institute of Automation. It consists of 20 subjects; each was imaged in 12 

sequences. These are 4 sequences in each of the three directions; 0
o
, 45

o
 and 90

o
. This 

Dataset includes 19139 images. Figure 6 shows three samples. 

 

 

 

 

 
 

Figure 6: Samples of the CASIA Dataset A [28] 

 

One of the largest gait databases is the NIST/USF, or Gait Challenge database. 

This large database was collected as part of the Gait Challenge Project [11] that was 

funded by the DARPA (Defense Advanced Research Projects Agency) Human 

Identification at a Distance (HumanID) Program. It consists of 1,870 video sequences 

from 122 subjects, and covers five different covariates; view point, footwear, walking 

surface, carrying condition and time between sequences. The database has been one of 

the mostly used in gait recognition experiments, as in [24, 25, 27, 30-33]. Figure 7 

shows four samples. 
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Figure 7: Samples of the NIST/USF Dataset; a) left view walking on concrete b) right view on 

concrete c) left view on grass, and d) right view on grass. [11] 

 

 CASIA Dataset B is a large multi-view dataset that includes 124 subjects, each 

was imaged in 11 different views and three different conditions; view point, clothing 

(coat) and carrying condition (bag). This resulted in 13640 image sequences. Figure 8 

shows three samples of this dataset. This dataset is being extensively used in gait 

experiments as in [13-16, 34-40]. 

 

(a) (b) (c) 

Figure 8: Three samples of CASIA B Dataset, (a) normal condition, (b) carrying bag, and (c) wearing 

coat 

Another dataset by CASIA is Dataset C [13]. It consists of 153 subjects, each 

was imaged in 4 sequences under four different walking conditions; slow walking, 

normal walking, fast walking and normal walking with a bag. These sequences were 

captured at night time using infra-red camera.  

HUMABO (Human Monitoring and Authentication using Biodynamic 

Indicators and Behavioral Analysis) Database [41, 42] is a proprietary database of gait 

sequences captured indoor, on a fixed path. Subjects were asked to walk normally 

several times on the same path, and their fronto-parallel walk captured using 
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stereoscopic cameras. The database is composed of two sessions with 6-month gap; 

the first one consists of 75 subjects, and the second session consists of 51 subjects. 

ACTIBIO [41] is another proprietary indoor database developed also in two 

sessions with 2-month gap, and 28 subjects in each. The subjects were asked to walk 

several times with increasing complexity. 

In 2009, video sequences from different subjects were collected at the 

American University of Sharjah (AUS). Undergraduate students aged 18-22 were 

asked to walk normally for about 10m, being 10m away from a video camera. Each 

subject had to walk from right to left and backwards for an average of five times. The 

dataset was mainly collected to study the effect of the gulf costume on gait 

recognition. 20 males and 33 females in local Gulf costume, as well as 39 males and 

11 females in casual costume have participated. AUS Database was used successfully 

in [3]. Figure 9 shows four samples of the AUS database. 

 

  
(a) (b) 

  
(c) (d) 

Figure 9: Samples of the AUS Database: (a) Male in gulf costume (b) Female in gulf costume (c) 

Female in casual costume (d) Male in casual costume. 

 

1.4.2 Gait Approaches 

One of the earliest approaches for automatic gait recognition is dated back to 

1994, and introduced by Niyogi and Adelson [2] who used spatiotemporal (XYT) 

patterns of gait. Later, Sarkar et al. [11] have developed a large database for gait as 

well as new techniques, based mainly on silhouette extracting. Their work was part of 

the DARPA HumanID at a Distance Program. 



 

26 

 

 

The survey in [43] has categorized gait approaches based on the technology 

used into; Machine Vision-Based, Floor Sensor-Based and Wearable Sensor-Based. 

However, most of other researchers, as in [24, 41, 44], categorized these approaches 

into: Model-Free (or Feature-Based [41]) and Model-Based. The model-free 

approaches mostly utilize the spatial or spatiotemporal characteristics of the subject, 

or silhouette shape, and later motion of this shape. And they deal with extracting 

statistical features from the gait image sequence. Model-based methods use the static 

and/or dynamic features of human body, like stride length, stride speed and cadence 

[45] to create model of the human body. In spite of being more reliable and immune 

to noise, model-based methods have high computational complexity which make 

them less desirable compared to model-free methods. Table 2 sorts the major 

approaches chronologically. And here is a summary of them: 

1.4.2.1 Model-Based Approaches 

Instead of measuring the shape (and probably the motion) of the body’s 

silhouette, these methods create models and/or structures for the body, based on the 

different parts’ movements (torso, leg, stride and cadence-frequency). 

Lee and Grimson [46] modeled the human body into seven regions, and 

represented each region by an ellipse. Then features of each region are extracted. 

Cunado et al. [47] used models of the legs, as they proved harmonics of the legs 

motion. This model was used, then, for recognition. Yoo et al. [48] modeled the 

body’s regions into sticks. And Yam et al. [49] used the pendulum-like movement of 

the legs as a model. Dockstader et al. [50] used a model of thick lines connected with 

points for different parts of the body and benefited from the pendulum motion of the 

lower part for feature extraction. Bobick et al. [51] and BenAbdelkader et al. [52] 

have adopted the structural model of stride parameters to extract gait features. 

Joint Trajectory Patterns method models the joint angles’ movements and uses 

them as the gait signature. Tanawongsuwan et al. [53] and Wang et al. [45] applied 

this method to structure different joints trajectories in the upper as well as the lower 

parts of the body, including the torso, thighs, legs and feet. 

Zhang et al. [27] used a blend of model and structure to describe statics and 

dynamics of the gait in five-link biped model. Features were extracted from the upper 
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and lower body parts, described by Fourier Analysis and classified by HMM. They 

used the NIST/USF and MoBo databases for testing, 

Fortuny-Guasch et al. [54] extended the application of radar transceivers for 

the automatic target recognition, which is in this case based on the human gait. Their 

approach is evolved from the fact that every person emits a unique Doppler frequency 

during motion. Their system consists of three transceivers that act simultaneously to 

map the Doppler signals from the body. First, the body was modeled into parts, and 

then frequency contribution of each part was determined leading to a radar model of 

the human body (Doppler Signature). 

 

Table 2: List of Major Gait Approaches  

Year Approach Database(s) 

1998 Shape of Motion [23] UCSD 

2001 Joint-angle Trajectories [53] Local with sensor 

2002 Key Frames [26] MoBo, Southampton, UMD 

& MIT  

2003 Statistical Relationships [30] NIST-USF 

Eigenspace Transformation [56, 57] CASIA A 

Symmetry Analysis in Silhouettes [22] UCSD 

2004 Five-link biped model [27] USF, MoBo 

Average Silhouette [55, 31] NIST-USF 

2005 Self-Similarity [21] UCSD, MoBo, UMD 

Gait Period & Silhouette Similarity [11] NIST-USF 

2006 Gait Energy Image (GEI) [31, 33] USF 

2007 Shape Variation-Based Frieze Pattern [19] MoBo, USF 

Motion Silhouette Contour Templates (MSCTs) and Static 

Silhouette Templates (SSTs) [62] 

SOTON, USF 

2008 Fisher Discriminant Analysis [58] CASIA A 

2009 Accumulated Prediction (Difference) [3] AUS 

2010 Soft Biometrics [41] HUMABIO, ACTIBIO 

Motion Contour Image (MCI) [29] CASIA A 

Active Energy Image (AEI) [13] CASIA B, C 

2011 Gait Flow Image (GFI) [63] USF 

Multimodal Face-Gait Fusion [64] Human Actions 

View Transformation Model (VTM) [37] CASIA B 

2012 Procrustes Shape Analysis (PSA) and Elliptic Fourier 

Descriptors (EFD) [65] 

MoBo, USF 

Shifted Energy Image (SEI) and Gait Structural Profile 

(GSP) [14] 

CASIA B, MoBo, 

ACTIBIO 

Chrono-Gait Image (CGI) [16] USF, CASIA B, SOTON 

Metric Learning [38] CASIA B 

2013 Finite Impulse Response (FIR) for motion of legs. [40] CASIA B 

Gait Pal and Pal Entropy (GPPE) Image [66] CASIA A, B, C 

Feature Subset Selection [34] CASIA B 

Interval Valued Features [15] CASIA B 

Discriminative Set matching [36] CASIA B 

Procrustes Mean Shape (PMS) [39] CASIA B, SOTON 

2014 Time-sliced Averaged Motion History Image (TAMHI) 

[67] 

CASIA B, OU-ISIR, MoBo 
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1.4.2.2 Model-Free Approaches 

Spatio-Temporal Analysis method studies 3D (XYT) representation of gait 

images, including gray-scale images, optical-flow images and binary silhouette 

images. Among the earliest who adopted this method were Niyogi and Adelson [2], 

considering first XT dimension, and then extending it to XYT. In this method, 

patterns of the head and legs were of interest, being represented by five-stick models, 

before features were extracted. 

Little and Boyd introduced in [23] the Optical Flow (Shape of Motion) 

concept. It deals with the distribution of flow in images, represented by the shape of 

motion. Phase features were extracted and used to evaluate the system. The Nearest 

Neighbor method was used for classification.  

Sarkar et al. [11] used the Gait Period and Silhouette Similarity to segment the 

subject of interest from its background. The resulted object is called Silhouette, and is 

been used to study gait in many papers that followed. They conducted 12 experiments 

of increasing difficulties using NIST/USF Dataset. They developed the Baseline 

Algorithm which extracts the silhouettes features using temporal correlation, 

computes the gait period to know the spatial-temporal correlation and computes 

similarity between subsequences by normalization, using the median for similarity 

measure. The study concluded that time span and surface type have the largest impact 

on gait quality and analysis, viewpoint and carrying conditions have medium impact 

and footwear has a small impact.  

Quasi Gait Recognition is achieved by measuring skeletal dimensions as in the 

work of Bhanu and Han [9]. Researches continue in this direction to prove that 

skeletal dimensions of human beings really control and affect their gait style.  

Collins et al. [26] compared the key frames in a silhouette sequence with the 

training frame. Features were extracted using normalized correlation. Experiments 

used the MoBo, UMD, Southampton and MIT datasets. Classification was done via 

Nearest Neighbor method. 

Vega and Sarker [30] implemented statistical relationships to image features 

using motion model. NIST/USF database was used to evaluate the results.  

Kale et al. [24] considered feature vectors for the width of the outer contour of 

the silhouette. They used MoBo, UMD and NIST/USF databases for evaluation and 

Hidden Markov Models for classification. Sundaresan et al. [25] did a similar work, 
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yet considering the feature vector of the whole silhouette. They used the USF for 

experiments.  

BenAbdelkader et al. [21] implemented self-similarity between silhouettes to 

extract features similar to the way used in eigenfaces for face recognition, and the 

Principal Component Analysis (PCA). Classification is done using KNN classifier. In 

this method database of UCSD was used, and extended to MoBo and UMD databases. 

The method is sensitive to noise and light. 

The Average Silhouette method appears in the research papers of Liu et al. 

[55] and Han et al. [31]. It is claimed to be the simplest method of silhouette feature 

extraction, by averaging silhouettes of the same subject. It omits some of the detailed 

features, based on selecting common features. This would simplify the algorithm, 

however reduce the overall performance. 

Murase and Sakai [56] used eigenvalue decomposition for feature extraction 

of gaits in eigenspace. Huang et al. [57] combined eigenspace Transformation to 

Canonical Space Transformation. Wang et al. [28] also implemented eigensapce 

Transformation to get gait features. They used CASIA A dataset for their 

experiments, implementing KNN classifier (Exemplar Method). 

In [19] Lee et al. capture gait information over time and extract features from 

rows and columns of normalized frame difference images. In their method, called 

Shape Variation-Based Frieze Pattern, they tested the algorithm on MoBo and 

NIST/USF databases. 

Su et al. [58] used the Kernel Fisher Discriminant Analysis classification 

method for the recognition of the gait features. Features were obtained from the 

periodic sequence width images, capturing both static and dynamic features. They 

used CASIA A dataset for training and testing. 

Shanableh et al. [3] have applied the Prediction Error computation technique, 

used in digital video coding, to the gait problem. Each frame was subtracted from the 

previous as well as the next one, resulting in accumulated prediction image. The 

operation was repeated for even frames and odd frames separately, resulting in two 

Accumulated Prediction (AP) Images per subject. These images were, then, used to 

extract features by Radon Transformation. Experiments were done on the AUS 

database, using Polynomial Network for classification. 
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Moustakas et al. [41] used soft biometric features taken from geometric gait 

features of the body height and stride. These features were determined using Radon 

Transforms and Gait Energy Image techniques. The soft biometric features were, 

then, fused, and probabilistic methods were used for extraction. For evaluation 

purpose, they used HUMABIO and ACTIBIO databases. The research resulted in 

enhanced CMS (for identification) and FAR-FRR (for verification) curves. 

Han et al. [31, 33] used Gait Energy Image (GEI) that explains dynamics and 

statics of body features using image sequences. They used NIST/USF database for 

evaluation. 

Other Methods include:  

• Measuring Area of Silhouettes as in [59].  

• Symmetry Analysis in Silhouettes: Hayfron-Acquah et al. [22] produced 

symmetry maps for humans using Sobel operators. They proved to be 

insensitive to noise. The UCSD dataset was used for experiments with a k-

nearest neighbor classifier (k=1). 

• Shutler et al. [60] used moments of silhouettes. 

• Bhanu et al. [32] approach used kinematic as well as stationary features, 

with the help of a 3D model of the silhouettes, and utilizing the shape and 

structure of the silhouettes, testing with NIST/USF database. 

• Liu and Zheng [61] introduced the Gait History Image (GHI) approach. 

• Huang et al. [14] used feature-level fusion of Shifted Energy Image (SEI) 

and Gait Structural Profile (GSP) in their experiments.  

1.4.3 Fusion Schemes 

Recent researches in biometrics have shown that single-method (or single-

modality) biometric systems can be susceptible to noise, sensors’ sensitivity and 

redundancy of features [68, 69]. This is particularly an issue in behavioral techniques, 

such as gait. Therefore, the typical solution would be using multimodal biometric 

techniques, or fusing information from multiple sensors, feature extractors or 

classifiers. In other words, fusion at feature-level, score-level or decision-level. 

Fusion may also take place at the sensor level (before feature extraction). An example 

of this is the fusion of 2D and 3D faces using two different sensors. Fusion techniques 
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bring to biometrics advantages like higher recognition rates, overcoming the issue of 

small sample size or training data, higher immunity to noise and spoof attacks and 

smaller FAR/FRR figures. The advantages of fusion techniques make this approach 

attractive in biometrics, in spite of presenting higher storage requirements, processing 

time and computational complexity. 

1.4.3.1 Feature-Level Fusion 

Feature-Level Fusion may combine data from different sensors, so as to utilize 

the benefits of each type of sensors and mitigate the sensor’s reliability issue. This 

method is usually known as multi-modal and can be seen in [70] where features from 

gait and foot pressure are concatenated. Also, face and gait features were fused by 

Chellapa et al. [71], Hossain et al. [64] and Liu and Sarkar [20].  

Alternatively, the same data source can be used to produce different features 

using different processing techniques as in [72] for the fusion of static and dynamic 

gait features. This usually results into a higher dimension data, which can be, then, fed 

into a dimensionality reduction module. 

1.4.3.2 Score-Level Fusion 

The score is an indication of how close each feature is from the training level. 

Scores usually need to be normalized before fusion is possible. Scores may be then 

combined using the sum, max, min or product rules. Zhang et al. [39] have used 

fusion at score-level of features extracted using Procrustes Shape Analysis algorithm. 

Scores were normalized using tanh technique.  

1.4.3.3 Decision-Level Fusion 

In decision fusion, the final decision is based on the combination of decisions 

from multiple classifiers, or recognition modules. One advantage of decision fusion is 

that it picks the correct decisions made by single classifiers and combines them 

producing a more accurate over-all decision. It provides a robust performance against 

challenges that each classifier has to deal with. Decision-level fusion becomes more 

attractive and useful when training samples are insufficient. There are different 

techniques for decision-level fusion such as; majority voting [73], Bayesian Decision 

Theory [74], Neural Networks [75] and the Dempster-Shafer theory of evidence [76, 

77]. Majority voting, however, seems to be simpler and easier to implement. 
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1.4.4 Tensor-based Data Representation 

As seen in section (1.3.4), Multilinear Subspace Learning (MSL) (or 

Multilinear Projection) is the method of choice for dimensionality reduction of high-

order tensorial data. In this section, we shall go through a brief review of the major 

contributions in this field. 

Generally, MSL algorithms fall into one of two classes: 

1. Unsupervised Multilinear Subspace Learning, which does not require labels 

for the training samples. Major methods in this class are multilinear extensions 

of the classical linear PCA algorithm. 

2. Supervised Multilinear Subspace Learning, which uses the classes of the 

training samples. Major methods in this class are multilinear extensions of the 

classical linear LDA algorithm.  

1.4.4.1 Unsupervised Multilinear Subspace Learning Methods 

1. Unsupervised MSL through TTP 

A two-dimensional PCA (2DPCA) [78] has treated images as matrices rather 

than vectors. Dimensionality reduction is achieved by projecting images to 

lower dimensional matrices using 2-mode TTP (N=2). Generalized Low-Rank 

Approximation of Matrices (GLRAM) [79] is a more generalized 2
nd

-order 

MSL method, compared to 2DPCA. It performs two linear transformations (1-

mode and 2-mode), projecting the input image into a low-dimensional matrix. 

Later the Concurrent Subspace Analysis (CSA) [80] was applied on GLRAM 

to generalize projections for higher-order tensors (N>2). The Generalized PCA 

(GPCA) proposed in [81] is similar to the GLRAM approach, except in that it 

centers the data before projection (similar to PCA), which makes it more 

suitable for recognition applications. However, it only works on matrices.  

A more generalized variation of GPCA is the Multilinear PCA 

(MPCA) proposed in [4]. It also addresses the issues of initialization, 

convergence and the determination of the subspace dimensionality. Since then, 

some variations of the MPCA algorithm have been reported in literature. 

Baysiean Tensor Analysis (BTA) in [82], which introduced graphical models 

of tensors, and is considered a probabilistic extension of MPCA. Robust 

MPCA (RMPCA) in [83] which performs the iterative solution based on 
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Lagrange multipliers. Non-negative MPCA (NMPCA) [84] preserves the non-

negativity of the original tensors.  

Another method, Incremental Tensor Analysis (ITA) in [85], is 

considered an incremental version of CSA. It works on summarizing high-

order tensors, and updates them incrementally. 

2. Unsupervised MSL through TVP 

There is no much work under this category. One method was introduced in 

[86] as the Tensor Rank-One Decomposition (TROD). This algorithm projects 

images (2
nd

-order tensors) into low-dimensional vectors by performing least-

square error, without centering of data. Uncorrelated MPCA (UMPCA) in [87] 

is a multilinear extension of PCA in that it extracts uncorrelated features by 

maximizing variance within tensors by means of successive iterative steps of 

TVP. 

1.4.4.2 Supervised Multilinear Subspace Learning Methods 

1. Supervised MSL through TTP 

Two-dimensional LDA (2DLDA) was introduced in [88] to project images 

into low-dimensional matrices, yet using matrix-based discrimination criterion 

as the scatter ratio. Later, a higher-order extension of 2DLDA was introduced 

in [89] as the Disriminant Analysis with Tensor Representation (DATER), 

which uses tensor-based scatter ratio. Both 2DLDA and DATER do not 

converge over iterations. The General Tensor Discriminant Analysis (GTDA) 

algorithm was proposed in [90] as a variation of DATER that maximizes the 

tensor-based scatter difference by adding some tuning parameters. Compared 

to 2DLDA and DATER, GTDA converges well. 

2. Supervised MSL through TVP 

The Tensor Rank-One Discriminant Analysis (TR1DA), appears in [91], was 

derived from the TROD algorithm, yet with general application to higher-

order tensors. Thus, it projects tensors into low-dimensional vectors, by 

maximizing the scatter difference.  

Similar to the UPMCA algorithm in unsupervised MSL, an 

Uncorrelated Multilinear Discriminant Analysis (UMLDA) introduced in [92] 
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aims to extract uncorrelated discriminative features from tensors by using TVP 

to maximize the scatter ratio criterion. The solution is, thus, of sequential 

iterative nature. The method also adds aggregation scheme for better 

generalization. 

Table 3 summarizes the major Multilinear Subspace Learning (MSL) methods as 

introduced earlier: 

Table 3: Comparison of major MSL methods 

Unsupervised MSL 

TTP TVP 

LSE Minimization Variation Maximization LSE Minimization Variation 

Maximization N=2 N>2 N=2 N>2 N=2 

GLRAM CSA 2DPCA 

GPCA 

MPCA TROD UMPCA 

 ITA  BTA 

RMPCA 

NMPCA 

  

Supervised MSL 

TTP TVP 

Scatter Ratio Maximization Scatter Difference 

Maximization 

Scatter Ratio 

Maximization 

Scatter Difference 

Maximization N=2 N>2 

2DLDA DATER GTDA UMLDA TR1DA 

1.5 Research Methodology 

Human gait recognition can be typically implemented using the system of 

Figure 10 which includes: 

a. Data Acquisition: In our case, it is the collection of video sequences of 

walking humans in different conditions, captured by video camera(s). 

b. Pre-processing: Using image processing techniques to enhance the frame 

images or highlight the subject of interest. The techniques are like 

segmentation and filtering. In our case, we used the Accumulated Prediction, 

Accumulated Flow and Gait Energy to process and prepare for extraction the 

gait video sequences. 
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c. Feature Extraction: Typical methods to construct the feature vectors/tensors of 

the pre-processed data. In our work, we used image projection and MPCA 

algorithms.  

d. Training (Mapping): which creates a mapping model of the extracted data and 

label them. 

e. Classification: The process which assigns a pattern (class) corresponding to 

every feature vector (category) using the learned models and the features. In 

our model, we used the simple Linear Discriminant Functions (LDF) and K-

Nearest Neighbor (KNN) classifiers 

 
Figure 10: A typical block diagram of Gait Recognition System 

 

Since our major objective of this study is to design a robust and covariates-

independent gait recognition system, we need to carry-out different tasks and 

experiments. These tasks are generally divided between examining previous work, 

designing and evaluating new algorithms. The following are the main tasks planned 

and executed towards the fulfillment of the thesis: 

a. Conducting a thorough study of the previous work done on the topic, and 

examining the different approaches suggested and/or tested. 

b. Testing three different gait databases, including CASIA A, CASIA B and the 

locally-collected AUS database. Finally, we decided to use CASIA B dataset 

for the rest of the work. This dataset studies the covariates of view point, 
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clothing and carrying condition (as described in section 2.1.1). All video 

sequences were converted to still images and arranged in folders before using 

them in the succeeding experiments. 

c. Carrying out numerous experiments on the Accumulated Prediction Image 

(API) method for optimization purpose. Different feature extraction and 

classification techniques were used in the evaluation experiments. 

d. Developing new methods, later known as Accumulated Flow Image (AFI) and 

Edge-Masked Active Energy Image (EMAEI). These were used along with 

API as feature sources in our final model. 

e. Testing and evaluating different feature extraction methods. Later, we have 

picked the MPCA, and its MPCALDA variation, as effective tensor-based 

methods, in addition to the linear image projection technique. 

f. We didn’t set a target to develop new classification methods. We only used the 

available tools. 

g. The option of using fusion techniques in order to improve the overall system’s 

performance and accuracy. Later, decision-level fusion schemes were chosen 

for the final setup. Unweighted and weighted schemes were tested and 

compared. 

1.6 Thesis Outline 

The rest of this report is organized as follows: Chapter 2 introduces the main 

pre-processing techniques used for gait representation including API, AFI and 

EMAEI. Chapter 3 explains the methods used for feature extraction and 

dimensionality reduction including image projection and MPCA algorithm. Chapter 4 

demonstrates the base classifiers as well as fusion techniques implemented for the 

final decisions. And we present our experimental results with analysis in Chapter 5. 

The thesis ends with conclusions and recommended future work in Chapter 6.  
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Chapter 2: Gait Preprocessing Techniques 

In this chapter, we explain in more details the database used in our research, 

CASIA B; its collection, structure, size and arrangement of its data. We also look at 

some of the major gait preprocessing techniques used in literature, and the 

modifications and/or optimizations implemented to those as part of our analysis.  

Initially, our analysis focused on the Accumulated Prediction Image (API) 

representation, and this was mainly due to the promising results achieved in [3]. The 

representation performed well in producing representative and distinctive features. 

The method is explained in more details in section 2.2. Tens of different experiments 

have targeted to enhance the representation power of the method, and to test or 

develop different feature extraction and classifiers aiming for the highest recognition 

rates possible. As research work progressed, other state-of-the-art gait representations 

were tested. And aided with an extensive literature review, we conclude that spatio-

temporal (accumulated error) and energy-based methods are more robust and have 

been used to report most of the highest average recognition rates, as in [13-16, 34], 

compared to other methods. One main advantage of using silhouettes is that it offers 

huge amount of data in a single template, which, on the other hand, can be also 

regarded as additional computational cost, a matter that necessitates preprocessing of 

such data. Hence, our subsequent analysis has solely focused on accumulated error 

and energy-based methods, mainly Gait Energy Image (GEI), Accumulated Flow 

Image (AFI) and Active Energy Image (AEI). This is of course in addition to the API 

gait representation method. As detailed later in this chapter, we will look at the 

differences between GEI and AEI. After quick experiments on both methods, we have 

dropped GEI from our study. Although improvements may be expected, and in spite 

of the fact that GEI, or its modified versions, has become one of the most accepted 

and used energy-based gait representation in the literature, as in [35-38, 93-95], we 

had the intuition that AEI may be more promising in our analysis as it better captures 

dynamic features. As for API and AFI, our plan was to exhaust each of the two 

methods as to the best achievable individual recognition rates, by varying their 

different parameters, and testing them against different feature extraction techniques. 

Optimization of API and AFI is further discussed in sections 2.2 and 2.3 respectively. 
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2.1 Gait Sequences and Cycles 

2.1.1 CASIA B Dataset 

We have picked the CASIA database, particularly dataset B, for the sake of 

our experiments and analysis. This dataset consists of 124 subjects, each subject 

walked 10 times resulting in 10 video sequences; 6 sequences in normal condition, 2 

sequences carrying different shapes and sizes of bags, and 2 sequences wearing 

different types of coats. With 11 cameras distributed at 11 different view angles, 

ranging between 18
o
 and 180

o
, we end up with a total of 13,640 video sequences. As 

we only focused on testing for the carrying condition and clothing, we have used 

sequences corresponding to only one view angle, which is 90
o
 or lateral view. This 

means we have actually tested 1240 sequences. The main reasons for choosing this 

database are therefore: 

a. It is still currently the largest gait database collected and used in the literature, 

which means it can be split into different groups for different verification tests, 

seeking better generalization of the designed method. 

b.  It comprises subjects of both genders and different ages, which again makes 

the experiments closer to realistic scenarios. 

c. It tests not only for the change in carrying condition and clothing, but also for 

the change in the view angle. Although our methodology is designed to fix the 

view angle, we expect that future works should extend to test all other view 

angles as a robustness test. 

d. It was widely used to report the highest recognition rates with the state-of-the-

art gait recognition methods, as in [13-16, 34], which would, then, give us the 

chance to fairly compare our method’s performance. 

2.1.2 Database breakdown 

To start with, we had to convert all video sequences to still images (or frames) 

and arrange them in folders. Each video sequence was converted to bmp images in a 

25fps conversion scheme. We dropped the blank frames and we only kept those 

frames in which the full subject is visible, resulting in an average of 60 frames per 

sequence, and yielding at least a total of 75,000 images. These images were, then, 

arranged in folders; 1 main folder per condition, or ‘normal’, ‘bag’ and ‘coat’. Inside 
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each of these folder images were distributed in sub-folders corresponding to the 

subjects’ numbers, and then the sequences’ numbers. 

2.1.3 Gait Cycles 

As seen in Figure 1 (section 1.3.2), one gait cycle is measured between two 

successive heal strikes. For example, the walking duration from the right heal strike to 

the next right heal strike. But this can generally be any full repeated walking pattern. 

One gait sequence should span over one or more gait cycles. Usually, the more cycles 

we have in a sequence the more patterns can be extracted. Most of the reported gait 

recognition methods have considered the gait cycle, or half-cycle, as one gait sample. 

Therefore, they developed algorithms to detect those cycles. One of the most widely 

adopted methods in gait cycle detection (or gait period detection) is developed in [11]. 

It is based on the summation of the foreground pixels in each silhouette (or the bottom 

half of the silhouette) in the sequence. This number is minimum when legs overlap 

and maximum when they are at full stride. Followed with distance computations, gait 

cycles can be estimated.  

We have developed a new algorithm for gait cycle detection based on a 

different criterion, which is Convex Image (Figure 11). Convex Image (or value) for 

each gait image was generated. The silhouette corresponding to the full stride 

produces the largest convexity value. Similarly, when the two legs overlap, this 

produces the smallest convexity value. Our method is simpler compared to the one in 

[11]. After an experimental comparison between the use of the number of foreground 

pixels and the convex value, our method proves to be more accurate in detecting 

cycles. In other words, the convex image property is more effective than the 

measurement of the distance between the two legs or the total number of pixels within 

that same area. 

However, and after using this technique in our initial experiments, it scored 

less compared to the case when we input the whole gait sequence as one sample. This 

means we have actually omitted this module from the recognition system as deemed 

unnecessary. In fact, we thought later that feeding the whole sequence as one sample 

may help in extracting more features intrinsic in the multi-cycle’s image. Besides, the 

proposed gait cycle detection methods work effectively only for the lateral-view 
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silhouettes, and hence cannot be generalized to test against different view angles in 

the future. 

 

 

 

(a) 

 

 

(b) 

 

 

(c) 

 

 

(d) 

 

 

(e) 

 

 

(f) 

Figure 11: (a), (b) and (c) The first three silhouettes for subject 1, normal sequence 1, and their 

corresponding Convex Images, (d), (e) and (f) respectively. 

2.1.4 Design Baselines 

a. In our experiments, we have considered all the subjects available in the 

database, i.e. 124 subjects. This is contrary to some papers in literature where 

they actually dropped a few subjects for having incomplete or low-resolution 

silhouettes. In [15, 96], for example, only 120 subjects are used. In [66], only 

98 subjects were used. One of our goals was also to test the system’s 

robustness against such flaw factors. 

b.  Resolution: The resolution of the extracted frames is 240x320 pixels. The raw 

silhouettes available in the database were of resolution 240x240 pixels. In API 

and AFI methods, we work on the original frames. These were cropped to 

168x320 to remove the areas of no motion and, thus, reduce the noise 

generated in the background. These resolutions were used in the recognizer 

implementing image projection and LDF. When implementing the 

multidimensional (tensor-based) algorithms, the resolutions were reduced to 

80x42 pixels. As for the EMAEI method, we have used the original resolution 



 

41 

 

 

of 240x240 in the first recognizer (Projection + LDF), and reduced it to 64x64 

in the MPCA and MPCALDA methods. It is noticed that the image resolution 

has insignificant impact to the final recognition rate. Y. Dupuis et al. have also 

shown in [34] that the final recognition rate is almost independent of the 

silhouettes’ resolution. We have picked 64x64 resolutions as it produced 

recognition rates close to those resulted from using the original resolution 

(240x240), while still clearly better than those resulted from using the 

resolution 32x32 or lower. Therefore, this selection of resolution should have 

negligible impact to the end result. Besides, it gives us the chance to test the 

system against lower-resolution images, which is actually one main advantage 

of gait recognition system.  

c. As said in section (2.1.3), we have dropped the gait cycle detection stage from 

our system, which again should improve the computational power. 

Additionally, we noticed that breaking the sequence into cycles does not help 

much in our selected gait representation methods, as they are all accumulating 

methods and are expected to accumulate all frames, extract the representative 

features and detect the patterns in the overall accumulated image, where cycles 

are actually intrinsically represented. 

2.2 Accumulated Prediction Image (API) 

2.2.1 Description of the API method  

The construction of this image (or images) is derived from the prediction error 

computation technique used in digital video coding. Each frame is subtracted from its 

immediate previous (past) frame, a process known as forward prediction. This 

subtraction results in a Prediction Error Image. A threshold is, then, applied to the 

image so as to filter out those pixels that are non-motion related. Next section details 

on the process of optimization of the threshold value selection. The resulted 

prediction error images after thresholding are, then, accumulated resulting in the 

Accumulated Prediction Image (API). For further filtration of the non-motion (or 

noise) pixels, a decision should be made whether to use forward prediction or 

backward prediction (difference between each frame and the immediate future frame). 

This decision is based on the minimization of the Sum of Absolute Difference (SAD) 
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between the forward prediction error image and the backward prediction error image. 

The image that minimizes this SAD value is taken towards the final construction of 

the API. Besides, and for the sake of better representation, we have split the process 

into two parts, positive API (using even-numbered frames) and negative API (using 

odd-numbered frames). As such, each video sequence ends up with two APIs (Figure 

12) that can be used for feature extraction. Note that we have maintained the spatial 

information in the two images, a matter that shall be of added value in feature 

extraction. 

 

 

(a) 

 

(b) 

Figure 12: (a) Positive API, (b) Negative API 

API method was successfully implemented in [3] to report as high recognition 

rates as 100% on a locally-collected gait database. It was noticed that this gait 

representation, followed with the feature extraction technique explained in section 

(3.1), have contributed in extracting highly linearly-separable features that were, then, 

fed into a linear classifier, in a relatively simple approach and of low computational 

cost. 

2.2.2 Optimization of the API representation 

As seen in 2.2.1, this method is dependent on thresholding. Therefore, it was 

intuitive to think of optimizing the threshold value that is responsible for the quality 

of the output gait image. The tested and optimized parameters are: 

a. Thresholding factor: In principle, this can be any digit between 1 and 255. 

Obviously, however, we want to avoid high values that would result in 

waiving some representative features. At the same time, we wish to remove 

the intrinsic noise (or non-motion values). At initial run of the codes we have 

noticed that 10 should be the maximum value to test for. Beyond this, we start 

losing big portion of the image, and thus, producing considerably lower 
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recognition rates. This can be understood if we know that the intensity values 

from 1 to 10 represent almost 98% of the image. Therefore, the parameter was 

varied between 1 and 10, with a step value of 1, and tested accordingly. The 

final optimum value was 7. Figure 13 below shows sample prediction images 

resulted from the first two frames in the first normal walking sequence, and 

using threshold values of 1 and 7. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 13: (a) Positive prediction with threshold factor of 1, (b) Positive prediction with threshold 

factor of 7, (c) Negative prediction with threshold factor of 1, (d) Negative prediction with threshold 

factor of 7 

 

b. The averaging factor: This parameter is merely an additional control (fine 

tuning) factor that may contribute in a more optimized filtration. The value 

was varied between 0.1 and 1.0 with a step value of 0.1. Eventually, 100% of 

the average value (that is value of 1) is considered in our calculations, as 

proving to produce the best results. 

2.3 Accumulated Flow Image (AFI) 

2.3.1 Optical Flow 

Optical flow corresponds to the movement of pixels in a sequence of images 

[97], or in other words the rate of change of motion (velocity) of intensity patterns. 

Such information is useful in the gait problem. It can be used in objects’ segmentation 

and motion detection and would produce spatial arrangement that should provide a 

pool of features for object classification. In literature, there are different methods for 
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the computation of optical flow, including methods of differentiation, correlation, 

feature-based methods and hierarchical approaches. Differentiation methods are, 

although classical, still the popular ones. These include global differentiation 

techniques such as Horn and Schunk, and local differentiation techniques such as 

Lucas and Kanade.  

In AFI representation, images are constructed using the Horn and Schunk 

differential method [98]. Therefore, we would introduce herein its main equations, 

constraints and assumptions, while the derivation remains out of the scope of this 

study. 

First assumption made in the calculation of optical flow is that the image 

brightness, reflectivity and illumination are constant while moving in a short time 

interval ∆t, from t1 to t2. Let I(x,y,t) be the image intensity at point (x,y) and time t. 

Since I is constant at a fixed point, that is  

 

 �
�� = 0 
(1) 

By chain rule, we get: 

 �
�� ���� + �
�� ���� + �
�� = 0 
(2) 

Let: 

 � = ���� 	���	 = ����  
 

Where u and v are the two components of the flow vector v, which we are after in the 

computation of the optical flow. Equation (2) can be rewritten, then, as: 

 
!� + 
" + 
# = 0 (3) 

Equation (3) becomes the first constraint in Horn and Schunk method. The second 

constraint is the smoothness constraint. The idea is that the optical flow should vary 

smoothly everywhere over the entire image. This can be derived by minimizing the 

square of the magnitude of the optical flow vector v: 

 $%& = '����(
& + '����(

& + '� ��(
& + '� ��(

&
 

(4) 

This equation represents the difference between the flow vector and its neighbors. 

Adding this to equation (3), or the constraint equation, enables us to solve for u and v. 
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After a method of derivation explained in [98], we get two equations to iteratively 

update for the values of u and v: 

 ��)* = �+� − 
!-
!�+� + 
" ̅� + 
#/0& + 
!& + 
"&  
(5) 

  �)* =  ̅� − 
"-
!�+� + 
" ̅� + 
#/0& + 
!& + 
"&  
(6) 

where; ��)* and  �)* are the new optical flow components at iteration n+1, �+� and 

 ̅� are the averages of the optical flow vector components in a small neighborhood, 

and at previous iteration n. 
! and 
" are the spatial gradients. 
# is the temporal 

gradient, and 0& is a weighing factor 

2.3.2 Description of the AFI method  

The construction of the AFIs is based around equations (5) and (6) being an 

iterative method. As such, the parameters that govern its behavior are: number of 

iterations, the smoothness factor α and initial values of u and v. In our experiments we 

assume initial values of 0 for each of u and v components. This leaves us with two 

parameters to control only. More details on this selection process are found in next 

section.  

The computation of the optical flow between every two consecutive frames 

produces a Flow Error Image. Similar to our work in API (section 2.2.1) we 

accumulate these error images towards the construction of the final AFI. In this case, 

however, we have to deal with two sets of variables every time, u and v. Recalling 

that we actually split the process in two parts, positive image and negative image, 

means we’ll have 4 images after every run of the experiment. After the initial 

experiments, we found that the horizontal component (u) produces higher quality 

images, yielding higher recognition rates. Therefore, in all our subsequent analysis we 

have only considered the u-based AFIs. Every mention of AFI herein, in this paper, 

would implicitly assume using the u component only. Figure 14 shows sample AFIs 

constructed from the first sequence of subject 1 in the normal conditions. 
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(a) 

 

(b) 

Figure 14: (a) Positive AFI, (b) Negative AFI 

 

Our work on optical flow was inspired by an earlier adoption of this technique 

by Lam et al. [63], and then by Wang et al. [96]. Their method, called Gait Flow 

Image (GFI), although uses the same principle of optical flow, is different in the 

following attributes: 

• GFI is based on silhouettes, unlike our method, AFI, that operates directly on 

the original images, and then automatically thresholding. By working on the 

images we anticipate to better preserve their properties. 

• GFI required the computation of the gait periods (cycles), whereas AFI 

accumulates all the frames in only two images and as we shall see later in 

feature extraction, features from these two images are interleaved, leaving 

only one sample vector per subject. In other words, every full sequence 

corresponds to only one sample. This is expected to increase the 

computational efficiency, without compromising features quality, as cycles are 

still embedded in the AFIs. 

• In GFI, Silhouettes are normalized to fixed size before being aligned centrally 

around their horizontal centroids. In AFI, we maintain the original spatial 

information, producing strip of images that should be a good interpretation of 

the subject’s motion. 

2.3.3 Optimization of the AFI representation 

Referring to the previous section, we know that the number of iterations and 

the smoothness factor are the most important parameters in defining the quality of the 

output image. As such, these two parameters have been varied and method tested 

accordingly. Initial values of the optical flow vectors, u and v, are kept at default 0. 
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a. Number of iterations: These were varied between 1 and 100 but only at 

randomly selected values; 1, 5, 10, 20, 32, 64 and 100. Results were best at 64, 

and so it was fixed for all succeeding experiments. 

b. Smoothness factor: This value is responsible for the quality of the output gait 

image and how representative it is for motion patterns. The higher the value, 

the smoother the image. However, at some relatively high values, smoothness 

leads to fewer representative features. At initial random selection of values, it 

was noticed that values above 20 should be avoided. The parameter was, thus, 

varied between 1 and 20 with a step value of 5. The value corresponding to the 

optimum result was 5, and so it was fixed for the succeeding experiments. 

2.4 Gait Energy Image (GEI) 

2.4.1 Description of the GEI method  

This method does not associate to our final model. However we explain it here 

briefly for the following reasons: 

a. It was one of the earliest methods to introduce the concept of accumulating 

silhouettes in the production of energy images that represent the body’s statics 

and dynamics. In other words, an appearance-based method. 

b. Its significance and being, or variations of the original method, widely adopted 

in various gait research papers. 

c. To compare it with another method, namely Active Energy Image (AEI) that 

represents the basis to our next method, Edge-Masked Active Energy Image 

(EMAEI).  

The method, introduced in [93], simply accumulates the summation between 

each consecutive preprocessed, normalized to a fixed size and aligned around 

horizontal centroid, silhouettes and then average them by the total number of frames 

in the cycle, or: 

 12�, �4 = 1678#2�, �4
9
#:*

 

(7) 

Where, Bt(x,y) is the preprocessed silhouette image at time t, and N is the number of 

frames in a complete cycle of the gait sequence. 
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This process produces one single image for the full gait cycle contributing to a 

lower computational complexity and storage space. Sample GEI images, of the first 

subject in the three datasets, are shown in Figure 15. 

2.5 Masked Active Energy Image (MAEI)  

2.5.1 Active Energy Image (AEI) 

Recall that the GEI method produces a single gait sample image per cycle, in 

which the intensity at a single point is a representation of the frequency of that 

particular part of the body. We notice however that GEI accumulates both dynamic 

and static features of the moving body, which makes it appearance-based and 

sensitive to the change in clothing and carrying conditions. Zhang et al. have 

introduced in [13] the AEI gait representation that better highlights the dynamic 

features of the subject and eliminates those related to the static parts, especially the 

bag and the coat in our case. 

This was achieved by simply accumulating the differences (instead of 

summation as in GEI) between every two consecutive frames and averaging them by 

the number of frames N, or: 

 ;2�, �4 = 167<#2�, �4
9=*
#:>

 

(8) 

Where Dt(x,y) is the difference between frames given as: 

 <#2�, �4 = ? @#2!,"4, � = 0‖@#2�, �4 − @#=*2�, �4‖, � > 0 
(9) 

Where ft(x,y) is the tth silhouette. 

  

Example AEI images are shown in Figure 15 and compared to GEI for the same 

subject (Subject 1) taken from the same dataset. 

2.5.2 Description of the MAEI method 

An observation of the AEI images, for CASIA B dataset, could tell us that the 

mid portion of the images seem to have the least dynamic features. AEI’s major 

contribution was actually the minimization of the static traits linked with the bags and 

coats in the sequences. It was intuitive to think about tracing those areas of less 
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contribution to the final features and masking them out, and expecting this to improve 

the final recognition rate when testing for the bag and coat sequences. Therefore, we 

have opted to test a naive model that would impose the mask manually during the 

formation of the AEI yielding, eventually, a masked AEI or MAEI. Obviously this 

method is based on observation of particular datasets. However, and for the sake of 

our study, this was sufficient. If the intuition is right, a more efficient system can be 

developed as part of the future work, so as it would automatically trace the least 

significant features and mask them out, being independent of the datasets. This can be 

accomplished using filtering, wrapping or decision tree approaches. A good example 

of feature subset selection techniques was presented in [34]. 

We have tested two strategies of masking: 

a. Zero Masking: which simply replaces-by-zero all values that lie between two 

predetermined lines that sandwich the least significant features (or least 

intense pixels). The two lines were chosen at rows 30 and 155. Knowing that 

all AEI images are of fixed normalized size 240x180 pixels, means this fixed 

selection should generalize well as a primary mask. Example MAEI images 

using Zero Masking are shown in Figure 15, images g, h and i. 

b. Edge Masking: Instead of cancelling all pixels between our reference lines, we 

have applied the edge detection technique. Our intention was to further 

minimize the contribution of the static features related to the bags and coats, 

while still maintain some discrimination power in them. Edge detection, using 

‘Sobel’ edge operator, is applied to every difference image, before images are 

accumulated. This method performed better compared to the Zero Masking. 

We notice from Figure 15 that although the Edge-Masked AEIs (or EMAEIs), 

j, k and l, show little information in the mid portion, are still non-zero, 

indicating those areas with motion difference. 
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(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 
(k) 

 
(l) 

  

Figure 15: (a) GEI of subject 1 under normal condition, (b) GEI of subject 1 with bag, (c) GEI of 

subject 1 with coat, (d) AEI of subject 1 under normal condition, (e) AEI of subject 1 with bag, (f) AEI 

of subject 1 with coat, images (g, h, i) are the corresponding MAEIs to images (d, e, f) using Zero 

Masking, images (j, k, l) are the corresponding MAEIs to images (d,e,f) using Edge Masking. 
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Chapter 3: Feature Extraction and Dimensionality Reduction 

3.1 Image Projection + 1D DCT 

It is a simple approach and we used it in combination with a linear classifier as 

we shall see later in Chapter 4. It takes the horizontal projection of each gait image, 

followed by one-dimensional Discrete Cosine Transform (DCT) to smooth and reduce 

the size of the projected values. This produces one feature vector which is truncated 

using a pre-selected cutoff value which is determined empirically. After testing the 

code through a range of cutoff values between 20 and 200, the value 100 was, then, 

the selected cutoff value used in all succeeding experiments. When applying this 

approach to the APIs and AFIs, being two images per sample, we use ½ the cutoff 

value to truncate the vector for each image. Then the two feature sub-vectors are 

interleaved to produce one combined vector of dimensionality 100. This approach is 

summarized in Figure 16. When used with the EMAEI gait image, the whole image 

produces one single feature vector of dimensionality 100. 

Positive Difference 

Image

Negative Difference 

Image

Sum the columns Sum the columns

Normalize the Sum 

Vector

Normalize the Sum 

Vector

1D-DCT 

Cutoff = N/2

1D-DCT

Cutoff = N/2

Interleaved

Feature Vector (N)

 

Figure 16: Image horizontal projection method for feature extraction. The flowchart shown is for the 

two cases of API and AFI. EMAEI requires only one branch, for a single image. 
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3.2 Multi-linear Principal Component Analysis (MPCA) 

As explained in sections 1.3.4 and 1.4.4, MPCA is an unsupervised 

Multilinear Subspace Learning (MSL) method that implements the Tensor-to-Tensor 

Projection (TTP) technique, to project high-order tensor objects into lower-

dimensional tensors. In other words, it applies dimensionality reduction directly on 

objects in their tensorial form. The main advantages and reasons to choose this 

method, as introduced in [4], amongst other MSL methods are: 

1. It is generalized to work on higher-order tensors. Thus, it introduces 

systematic procedure and provides tensor representation to tensorial objects, 

compared to other heuristic methods or those that use vector or matrix forms. 

2. It deals with some issues related to the iterative solution, like initialization, 

termination, convergence and the determination of the projection 

dimensionality. It was successfully used in [4] to produce better recognition 

results without optimization. 

3. It was implemented on gait recognition, tested on the USF database and 

compared to the HumanID algorithm introduced in [11]. It was, thus, a good 

benchmark to develop our method and compare our results. 

4. It is noteworthy here that we have also tested another MSL method that was 

proposed after the MPCA, and by the same authors, in [92]; the Uncorrelated 

Multilinear Discriminant Analysis (UMLDA). Although the method was used 

to report better average recognition rates compared to the MPCA approach, it 

is more complicated in that;  

a. It uses the Tensor-to-Vector Projection (TVP) technique that incorporates 

sequential EMP operations. 

b. It is more sensitive to the Small Sample Size scenario. And to overcome 

this problem, a regularization approach was added to the main algorithm. 

c. It incorporates an additional aggregation module to overcome the issue of 

un-optimized iterative solution, compared to the MPCA that performs 

relatively well without optimization. 

d. When tested specifically on gait sequences, it outperforms the MPCA only 

for some of the probes and cannot be expected to generalize well. 
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3.2.1 Description of the MPCA algorithm  

The objective of the MPCA algorithm is to define N multilinear projection 

matrices	{�� ∈ ���×�� , � = 1,… ,6}, each of which is to map an input tensor object 

�E ∈ ���×��×…×�
 into a lower-dimensional tensor object �E ∈ ���×��×…×�
 (where 

Pn < In for n=1, 2, …, N). 

The MPCA objective function is defined as: 

 {��, � = 1,… ,6} = �FGH��I�,I�,…,I
2J�4 (10) 

Where J� is the total tensor scatter, defined as: 

 J� = 7‖�E − �+‖K&
L
E

 

(11) 

Where M is the number of samples, and �+ is the mean tensor calculated as: 

 �+ = 1H7�E
L
E

 

(12) 

Equation 10 means that the objective of MPCA is to determine the N projections that 

maximize the total tensor scatter J� 

Below is a general pseudo-code of the MPCA algorithm: 

Input:  �E ∈ ���×��×…×�
 ,H = 1, … ,M 

Algorithm:   

1. Center the input samples,	�NE = �E −�O, where �O = *E∑ �ELE:*  is the 

sample mean. 

2. Calculate the eigen decomposition of Q� = ∑ RSE2�4	.		RSE2�4�LE:*   

3. Set �N� to consist of the eigenvectors corresponding to the most significant Pn 

eigenvalues. 

4. Calculate cumulative distribution of eigenvalues, UV� = UV�W�)UV� 

5. Determine the dimension of the projected space Pn 

6. For k=1:K (K: number of iterations) 

- For n=1:N  

Set �N� to consist of the Pn eigenvectors of Q�corresponding to 

the largest Pn eigenvalues. 
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7. Calculate the weight tensor (to be used in classification): 

X2Y*, Y&, … , Y94 = Z[ U\�2�49
�:*  

8. Calculate the projection of tensor samples: 

�E = �E ×* �N2*4� ×& �N2&4�…	×9 �N294� , H = 1,… ,M 

Output:  �E ∈ ���×��×…×�
 ,H = 1,… ,M 

Finally, the output tensor is vectorised and sorted by discriminality. The 

number of vector components kept for the analysis is determined empirically. We 

have tested values ranging between 200 and 1000, with a step value of 100. The value 

that yielded the best average classification rates using different gait inputs was 600.  

3.2.2 Tackling the iterative solution issues 

In an attempt to optimize the iterative solution, the following techniques were 

adopted in [4]: 

1. Initialization by Full Projection Truncation (FPT): This is done by starting 

iterations in each mode n by assuming Pn = In. In each mode, we get In number 

of eigenvalues. These are sorted in descending order, each two successive 

eigenvalues accumulated and then normalized by dividing by the sum of all 

eigenvalues. The resulted accumulated and normalized eigenvalues are, then, 

used to determine the projection dimensionality reduction. This was used in 

[4] and proven to yield quick convergence. 

2. Termination: is based on the objective function J" so that J"]=J"]W� < _ 

should be satisfied before termination, where _ is a user-defined small number 

threshold (e,g, 10
-6

). 

3. Determination of the tensor subspace dimensionality: using the Q-based 

method. Q is a user-defined number, determined empirically, that represents 

the number of accumulated eigenvalues (or energy) kept. If Q=97, for 

example, Pn is identified as the index corresponding to the normalized 

eigenvalue which is less than or equal to 0.97. 
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3.2.3 MPCA plus Linear Discriminant Analysis (MPCALDA) 

The purpose of computing the LDA after the MPCA output is to maximize the 

ratio of the between-class scatter matrix to the within-class scatter matrix, in an 

attempt to produce higher class discriminability and, thus, higher classification rate. 

Therefore, we have actually tested two methods; MPCA and MPCALDA. In both sets 

of experiments the data setup and classifier are the same. In the case of the LDA 

algorithm, the dimension of the feature vector is fixed to C-1, where C is the number 

of classes. In our data C=124, yielding an LDA feature vector of dimension123.  

In this case, the number of vector components kept in the analysis, and after 

experiments on different values, is 200.  

3.2.4 Data arrangement in tensorial form 

The MPCA method was applied to our pre-processed gait images explained in 

chapter 2 so as to extract the gait features. With three gait representation methods, 

namely API, AFI and EMAEI, we shall have three models for feature extraction using 

the MPCA algorithm and three more using the MPCALDA algorithm. For this 

purpose, our data need to be arranged first in tensorial form. In comparison, Haiping 

et al. [4] used the gait silhouette sequences as samples, more precisely each gait 

sample is taken as the normalized half-cycle. While in previous methods, each single 

silhouette represented a sample. In our approach, however, we used neither of the two 

representations. As we mentioned earlier in this paper, we dropped the gait cycle 

determination module in our work, since our accumulated gait images present these 

intrinsically. As such we chose the gait samples to be the accumulated images 

mentioned above. With these arranged in tensorial form and fed to the MPCA 

algorithm, we introduce a novel feature representation method called Accumulated 

Gait Tensor (AGT). Primary comparative experiments have yielded better results 

using this representation compared to using single silhouettes or cycles. However, 

further analysis on this part, and using different gait databases and experimental set-

ups, is necessary before generalizing this finding. One big advantage of the AGTs is 

reducing the dimensionality of the tensorial input dramatically while preserving 

discriminative features. Additionally, we reduce the input tensors from being three-

mode (3
rd

-order) tensors, spatial and temporal modes, into two-mode (2
nd

-order) 

tensors since the time-mode is embedded in the accumulated gait images. Below is a 
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break-up of the tensorial data representation and dimensionality for each of the three 

gait representations for more clarifications: 

3.2.4.1 API Tensorial Representation 

The API approach applies to the original frames, and these are of dimension 

240x320 pixels. In our preprocessing, we have cropped these to 168x320 pixels where 

the rest of the image has no information. Moreover, and for the sake of using them in 

the MPCA algorithm, we have reduced the resolution by 75% to 42x80 pixels. Since 

in API we have two accumulated images per subject, positive and negative, the final 

tensor dimension would be 42x80x2, which is still a 3
rd

-order tensor. However, 

compared to using the individual silhouettes, which average to approximately 60 per 

sequence, in the latter case we get a tensor dimension of 42x80x60. And using each 

gait half-cycle as sample, with average gait half-cycle of approximately 10 

silhouettes, the tensor dimension in this case is 42x80x6. The reduction of the input 

tensor dimensionality is, thus, apparent. Applying the AGT concept to our data here, 

we shall use the term Accumulated Prediction Tensors (APTs) in our experimental 

analysis later to indicate the APIs in tensorial form. 

3.2.4.2 AFI Tensorial Representation 

AFI also uses the 240x320 frames. Therefore, the produced tensors have the 

same three-mode of 42x80x2. This data is called Accumulated Flow Tensors (AFTs). 

3.2.4.3 EMAEI Tensorial Representation 

Unlike in the two previous gait representations, EMAEI uses the gait 

silhouettes, and not the frames, as inputs. These are also found in CASIA B dataset 

with the resolution 240x320. In preprocessing, all silhouettes were cropped to produce 

240x180 pixels images, in which silhouettes were centered and resized to occupy the 

full frame. This way, we ensure that all silhouettes are aligned. In preparation for 

using them in the MPCA algorithms, we have also reduced the resolution by 75% to 

60x45 pixels. And knowing that we have one image to represent each gait sequence 

means that we have actually reduced this problem into a two-mode tensor problem, or 

two-dimensional (2D) PCA. For the sake of consistency with the other two tensorial 

representations, however, we’ll call the tensor data here Edge-Masked Active Energy 

Tensors (EMAETs). 
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Chapter 4: Classification and Fusion Methods 

In our study, we have invested most of the time in improving the 

preprocessing and gait representation techniques, and testing different feature 

extraction schemes; so as to produce highly discriminative features, which shall, then, 

make the classifiers’ job easier. Experimental results (in Chapter 5) show that this 

target was achieved, and thus we used only the simple Linear Discrinimant Functions 

(LDF) and K-Nearest Neighbor (KNN, K=1) methods for classification in our model. 

We still believe, however, that testing some more advanced classifiers, such as the 

Polynomial Networks, Support Vector Machines (SVM) and Neural Networks may 

enhance the final results. This goes as part of the proposed future work. 

4.1 Linear Discriminant Functions (LDF) 

We have opted to start using this naive linear classifier, for being simple, fast 

and robust, especially if data is linearly separable. As such, it would quickly classify 

data, or at least give us feedback on its behavior. In LDF, each subject represents one 

class, yielding N classes for N subjects. All features are grouped in a feature matrix V. 

A target matrix T is constructed from the Label vector, by assigning 1’s for the person 

whose vector correspond to. Model weights can, then, be calculated by the formula:  

 

 ` = 22a�a4=*a�4 ∗ c (13) 

After finding the model weights, one set of weights for every subject; we can 

get the score S by dot product between the weights matrix W and the testing feature 

matrix Y:  

 d = e ∗ ` (14) 

Final decision can, then, be made based on the maximum score. In other 

words, the class is predicted to be the matrix index corresponding to the maximum 

score. 

 

 



 

58 

 

 

4.2 1 Nearest Neighbor Classifier 

This is another simple statistical classifier. The 1 Nearest Neighbor Classifier 

compares each data point with its closest data point in the training data and assigns it 

the same label. There are different measures for defining the distance between data 

points. Seven distance measures were tested in [4] including Euclidian, Mahalnobis, 

Angle and modified (or weighted) versions that can be more suitable to use with 

tensorial data. The distance measure we used in our classifier as have produced the 

highest results, is the Modified (or weighted) Angle Distance (MAD) given by: 

 

 �2�, f4 = − ∑ �2ℎ4. f2ℎ4hi:*j2ℎ4k∑ �2ℎ4&hi:* ∑ f2ℎ4&hi:*  
(15) 

Where H represents tensors and w(h) represents the weight tensor computed in 

the MPCA algorithm, and defined as: 

 X2Y*, Y&, … , Y94 = Z[ U\�2�49
�:*  

(16) 

Where U\�2�4 represents the pnth n-mode eigenvalue corresponding to the 

projection matrix U
(n)

. 

4.3 Voting Schemes for Decision-Level Fusion 

4.3.1 Unweighted Voting (UWV) 

This is the simplest and most straightforward voting method for decisions’ 

combination. It simply counts the number of decisions for each class and assigns the 

sample to the class that received the highest number of votes. In this case the final 

decision D is given by: 

 < = �FGmaxop 7q2<r, st4
r
*

 

(17) 

Where Cj is the target class,  

Dk is the decision of the base classifier Ck, and  
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 q = ?1, u@	<r = st0	v�ℎwFjuxw 
(18) 

   

4.3.2 Weighted Voting (WV) 

By introducing weights to the formula, we aim to give more significance to those 

base classifiers that perform better individually, an approach that should improve the 

final decision’s accuracy.  

Most of the weighted voting methods are derived from evaluating the decisions of 

all base classifiers, sort them according to their estimated accuracy (using the training 

dataset), and finally give each of them a proportional weight. Accuracy is estimated 

by validation. For this purpose, we have split the training data used in Setup 1 (Tr1) 

into two parts; 2 normal sequences for training and 1 normal sequence to test for the 

classifiers’ accuracy. There are different weighted voting methods. We test here one 

simple form of them: 

After estimating the error of each base classifier ek based on the validation 

data, we evaluate the authority value ak, which is equivalent to 1-ek. The weight wk is 

given by: 

 jr = �r∑ �VV  
(19) 

 

After assigning the weights to all base classifiers, the final decision will be 

evaluated using similar equation to 17, by only adding the weights wk: 

 

 < = �FGmaxop 7jrq2<r, st4
r
*

 

(20) 
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Chapter 5: Experiments, Results and Analysis 

5.1 Final Proposed Scheme 

Figure 17 illustrates a simplified block diagram of our proposed gait 

recognition system. A decision-level fusion scheme takes as inputs the decision labels 

from up to nine (9) different gait recognition sub-systems. The sub-systems are 

designed in such a way to utilize three (3) different gait representations (pre-

processing techniques) with three (3) different matching methods.  

 

Figure 17: Block Diagram of the proposed Gait Recognition System 

 

System is made-up of the following components: 

Gait Representation (Pre-processing) Techniques: 

1. Accumulated Prediction Image (API) 

2. Accumulated Flow Image (AFI) 

3. Edge-Masked Active Energy Image (EMAEI) 
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Each of the above-listed gait images is used, as the feature pool, three times; 

implementing the following methods: 

1. Image Projection (Proj), followed by a linear classifier (LDF). We shall label 

this as Method 1 or (Mthd1). 

2. MPCA, followed by Nearest Neighbor classifier (1-NN). We shall label this as 

Method 2 or (Mthd2). 

3. MPCALDA, followed by Nearest Neighbor classifier (1-NN). We shall label 

this as Method 3 or (Mthd3). 

Note that inputs to both Mthd2 and Mthd3 are the tensorial gait 

representations, APT, AFT and EMAET. 

5.2 Testing Methodology 

We have carried-out approximately 300 different experiments using different 

combinations of feature extraction and classification methods including those covered 

in this report and a few others such as; 2D Discrete Cosine Transform (DCT), 

Dynamic Time Warping (DTW) and Procrustes Shape Analysis. Amongst these 

experiments we show here only the ones contributing to the final system. The next 

section lists-up the four different experimental setups used to evaluate the proposed 

method. In each setup we carry-out 11 experimental groups. Each group comprises 

number of experiments equivalent to the number of testing probes as detailed for each 

case. The groups are as follows: 

Single-level Gait Recognition:  

1. API + Mthd1, labeled Recognizer 1 or (R1) 

2. AFI + Mthd1, labeled Recognizer 2 or (R2) 

3. EMAEI + Mthd1, labeled Recognizer 3 or (R3) 

4. APT + Mthd2, labeled Recognizer 4 or (R4) 

5. AFT  + Mthd2, labeled Recognizer 5 or (R5) 

6. EMAET + Mthd2, labeled Recognizer 6 or (R6) 

7. APT + Mthd3, labeled Recognizer 7 or (R7) 

8. AFT  + Mthd3, labeled Recognizer 8 or (R8) 

9. EMAET + Mthd3, labeled Recognizer 9 or (R9) 
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Decision-Level Fusion Schemes: 

10. Three-decision Fusion Scheme as follows: 

• 3Fus123: 3-decision fusion of R1, R2 and R3. 

• 3Fus456: 3-decision fusion of R4, R5 and R6. 

• 3Fus789: 3-decision fusion of R7, R8 and R9. 

• 3Fus147: 3-decision fusion of R1, R4 and R7 

• 3Fus258: 3-decision fusion of R2, R5 and R8 

• 3Fus369: 3-decision fusion of R3, R6 and R9 

Each of these fusion experiments is repeated twice, using Unweighted 

Voting (UWV) and Weighted Voting (WV) techniques. 

11. Nine-decision Fusion (9Fus) Scheme. Similarly, this is repeated twice 

using the UWV and WV techniques.   

5.3 Experimental Setups 

As mentioned earlier, and for the sake of evaluation and analysis of our 

proposed method, we typically need two things: 

1. Gait database; suitable to the application under study. In our case, CASIA B 

database was a good choice for the reasons listed in section 2.1.1. It was 

captured indoor, which makes it suitable to our experiments that have been 

designed to test against change of carrying conditions and clothing, with the 

environment (or background) being controlled. Once results are obtained, and 

as we shall see they are promising ones, we can take the model outdoor and 

test it using different databases and sets of experiments. This is intended for 

future work. 

2. Experimental setups; which means dividing our database into training 

(gallery) data and testing (probe) data. Number of sequences in each of the 

two data groups has been varied based on similar setups taken from six (6) 

recently published papers that studied the same topic and used the same 

database. It is worth mentioning that these papers have reported the highest 

recognition rates in the literature up until the date of writing this report. Total 

number of sequences is obviously the same in all the 4 setups and these are:  
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a. Six sequences for normal-condition walking, labeled nm1, nm2, nm3, nm4, 

nm5 and nm6 

b. Two sequences for walking carrying bag, labeled bg1 and bg2. 

c. Two sequences for walking wearing coat (cloth), labeled cl1 and cl2. 

The data breakdown in each of the setups is as follows: 

a. Setup 1 [13]: 

• Training Data (Tr1): 3 normal sequences; nm1, nm2 and nm3 

• Testing Data : 3 sets for 3 experiments;  

- Ts11: 3 normal sequences; nm4, nm5 and nm6 

- Ts12: 2 bag sequences; bg1 and bg2 

- Ts13: 2 coat sequences; cl1 and cl2 

This setup was the primary one, used extensively in our experiments, 

and the results reported in [13] were our primary target. Therefore, most of 

the experiments carried out, especially on the API gait representation and 

the subsequent versions using different feature extraction and/or 

classification methods, have actually used this paper, and its setup and 

results, as reference. The paper used the Active Energy Image (AEI) 

method for gait representation, followed by two-dimensional Locality 

Preserving Projection (2DLPP) for dimensionality reduction and feature 

extraction, and finally Nearest Neighbor classifier. 

b. Setup 2 [14, 34, 66]:  

• Training Data (Tr2): 4 normal sequences; nm1, nm2, nm3 and nm4 

• Testing Data : 3 sets for 3 experiments;  

- Ts21: 2 normal sequences; nm5 and nm6 

- Ts22: 2 bag sequences; cl1 and cl2 

- Ts23: 2 coat sequences; bg1 and bg2 

The work in [14] implements feature-level fusion of two gait signatures; 

Shifted Energy Image (SEI) and Gait Structural Profile (GSP). Paper [34] 

implements the Random Forest algorithm for feature ranking, and 

produced a Masked GEI, followed by Canonical Discriminant Analysis 

(CDA). Gait Pal and Pal Entropy (GPPE) Image is used in [66] as the gait 
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representation, followed by PCA and SVM classifier. Experiments in [66] 

were carried out on 98 subjects only. 

c. Setup 3 [16]. This paper implements a temporal gait template, named 

Chrono-Gait Image (CGI), followed by PCA+LDA for feature extraction 

and 1-NN classifier. 

• Training Data (Tr3): 5 normal sequences; nm1, nm2, nm3, nm4 & nm5. 

• Testing Data : 5 sets for 5 experiments;  

- Ts31: normal sequence  nm6 

- Ts32: bag sequence bg1 

- Ts33: bag sequence bg2 

- Ts34: coat sequence cl1 

- Ts35: coat sequence cl2 

d. Setup 4 [15]. This paper uses the concept of ‘Axis of Least Inertia’ to 

produce gait features. 

• Training Data (Tr4): 3 normal sequences; nm1, nm2 and nm3 plus 1 

bag sequence bg1 and 1 coat sequence cl1. 

• Testing Data : 5 sets for 5 experiments;  

- Ts41: 1 normal sequence;  nm4 

- Ts42: 1 normal sequence; nm5 

- Ts43: 1 normal sequence; nm6 

- Ts44: 1 bag sequence; bg2 

- Ts45: 1 coat sequence; cl2 

5.4 Results and Analysis 

5.4.1 Results using experimental Setup 1 

Table 4 summarizes the recognition rates obtained from the experiments 

carried out using Training Data Tr1 and Testing Data Ts11, Ts12 and Ts13, and 

Figure 18 represents them graphically. Note that in this arrangement, sequences of 

bag and coat are unseen during training. We compare our results with those obtained 

by Zhang et al. in [13]. 
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Table 4: Recognition Rates (%) of experiments using Setup 1 [13] 

 R1 R2 R3 R4 R5 R6 R7 R8 R9 
9Fus 

(UWV) 

9Fus 

(WV) 

Zhang et 

al. [13] 

Ts11 98.66 98.39 65.59 93.55 93.28 90.59 89.25 76.61 90.32 99.19 99.19 98.40 

Ts12 87.90 84.68 41.53 75.81 82.26 52.02 68.95 53.23 44.76 96.77 95.97 91.95 

Ts13 40.32 51.21 42.74 42.34 51.21 81.05 39.92 41.94 76.61 83.87 88.31 72.19 

 

 
Figure 18: Recognition Rates (%) of the experiments groups Ts11 (nm1, nm2 & nm3), Ts12 (bg1 & 

bg2) and Ts13 (cl1 & cl2) 

 

We notice that it is possible to achieve high recognition rates when testing 

normal sequences (Ts11) even without fusion, using a simple linear classifier, as in 

R1 and R2. This would be observed in all the succeeding results of other setups, when 

testing for normal sequences, which would prove that our gait representation 

techniques, especially the API, are efficient when covariates are controlled. 

We notice also that experiments using API with Projection and LDF were 

good enough to produce very good recognition rates when testing for bag sequences 

(Ts12). They are yet not good enough compared to those reported in [13]. 9-decision 

fusion (9Fus) method, however, outperforms Zhang et al. by almost 5%. EMAEI is 

still not efficient representation for the two cases of normal and bag sequences, 

especially in R3. However, it works well in the case of coat sequences (Ts13), even 

without optimization. We notice that the two experiments using R6 (MPCA) and R9 

(MPCALDA) have scored Recognition Rates that outperform the target by 

approximately 9% and 4% respectively. 9-decision fusion has even improved this to 

score approximately 15% above target. 
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It is noteworthy here that this setup is the most onerous compared to the three 

following it. We’ll see in the next setups that additional sequences are presented 

during training. In Setup 4, we even have bag and coat sequences presented during 

training. These arrangements are expected to improve the average recognition rates of 

the base Recognizers and the overall fusion results. 

We show herein a comparison between Unweighted and Weighted fusion 

techniques at the two levels; 3-decision fusion and 9-decision fusion. In order to do 

that, we had first to estimate the base classifiers’ accuracies and assign them authority 

values, and eventually weights. For this purpose, we have split the training data used 

in Setup 1 (Tr1) into two parts; 2 normal sequences (nm1 and nm2) for training and 1 

normal sequence (nm3) to test for the classifiers’ accuracy. This gives us a general 

indication on each classifier’s relative performance. Table 5 lists the errors (ek), 

authority values (ak) and weights (wk) given to each of the nine base recognizers using 

the WV method (equation 19). These weights are used throughout the four 

experimental setups.  

Table 5: Weights given to base recognition modules 

 R1 R2 R3 R4 R5 R6 R7 R8 R9 

ek 0.081 0.057 0.629 0.081 0.089 0.105 0.177 0.210 0.032 

ak (WV) 0.919 0.944 0.371 0.919 0.911 0.895 0.823 0.790 0.968 

wk (WV) 0.122 0.125 0.049 0.122 0.121 0.119 0.109 0.105 0.128 

 

Note that the weights shall sum to 1. Now, we’ll use these weights in the 

voting scheme for fusion and we’ll compare the results obtained from the presented 

fusion techniques. After applying this to the experiments in Setup 1, we get the fusion 

Recognition Rates (%) as in Table 6 and Figure 19. Note that schemes F1-F6 combine 

recognizers of the same [feature extraction + classifier] pair, while varying gait 

representation techniques; whereas schemes F1*-F6* combine recognizers of the 

same representation techniques while varying [feature extraction + classifier] pairs. 

Based on the fusion experiments, we conclude the following: 

• In the case of 3-decision fusion; fusing decisions of different representations 

using the same [feature extraction + classifier] pair has performed better than 

fusing decisions from different classifiers. This will be picked in the 

succeeding experimental setups. 
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• The WV method has performed better than the Unweighted (UWV) method in 

most of the cases. 

Table 6: Recognition Rates (%) of fusion techniques using Setup 1 [13] 

Fusion Scheme Ts11 Ts12 Ts13 

3Fus123/ (UWV) – F1 
99.1935 87.9032 52.0161 

3Fus123 / (WV) – F2 
99.1935 89.5161 57.2581 

3Fus456 / (UWV) – F3 
96.5054 81.0484 66.9355 

3Fus456 / (WV) – F4 
97.0430 81.0484 58.4677 

3Fus789 / (UWV) – F5 
93.2796 70.1613 63.7097 

3Fus789 / (WV) – F6 
96.2366 62.9032 79.8387 

3Fus147/ (UWV) – F1* 
97.5806 85.0806 42.3387 

3Fus147 / (WV) – F2* 
97.5806 85.0806 45.9677 

3Fus258 / (UWV) – F3* 
96.7742 84.2742 56.4516 

3Fus258 / (WV) – F4* 
98.1183 89.1129 56.4516 

3Fus369 / (UWV) – F5* 
92.4731 52.0161 64.9194 

3Fus369 / (WV) – F6* 
93.0108 52.4194 57.6613 

9Fus / (UWV) – F7 
99.1935 96.7742 83.8710 

9Fus / (WV) – F8 
99.1935 95.9677 88.3065 

Zhang et al. [13] 
98.4000 91.9500 72.1900 

 

 
Figure 19: Recognition Rates (%) of the experiments groups Ts11 (nm1, nm2 & nm3), Ts12 (bg1 & 

bg2) and Ts13 (cl1 & cl2), using different methods of fusion. Ts11
*
, Ts12

*
 and Ts13

*
 are the 

experimental results for fusion schemes F1
*
-F6

*
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• In the 9-decision fusion schemes (9Fus), each of the two tested schemes 

(unweighted and weighted) has outperformed the published results. Again, the 

WV would average the best results. 

5.4.2 Results using experimental Setup 2 

Table 7 summarizes the recognition rates obtained for the experiments carried 

out using Training Data Tr2 and Testing Data Ts21, Ts22 and Ts23, and Figure 20 

represents them graphically. Sequences with bag and coat are still unseen during 

training. The difference here is one additional normal sequence (nm4) in the training 

data. We compare our results with those obtained by Huang et al. in [14], Dupuis et 

al. in [34] and Jeevan et al. [66] 

Table 7: Recognition Rates (%) of experiments using Setup 2 [14, 34, 66] 

 R1 R2 R3 R4 R5 R6 R7 R8 R9 
9Fus 

(UWV) 

9Fus 

(WV) 

Huang 

et al. 
[14] 

Dupuis 

et al. 
[34] 

Jeevan 

et al. 
[66]* 

Ts21 99.19 99.60 77.82 94.76 95.57 91.13 94.36 93.95 96.77 99.60 99.60 99 98.79 93.36 

Ts22 43.15 54.03 50.00 46.77 54.03 85.08 37.50 46.77 88.71 87.50 91.93 64 92.74 22.44 

Ts23 88.71 88.71 51.21 79.03 84.27 53.23 74.19 72.18 60.48 98.39 97.58 72 77.82 56.12 

*Experiments carried out on 98 subjects only 

 
 Figure 20: Recognition Rates (%) of the experiments groups Ts21 (nm1, nm2), Ts22 (cl1 & 

cl2) and Ts23 (bg1 & bg2) 

It is still noticeable that high recognition rates are possible without fusion in 

the two cases of R1 and R2, this time for both cases of normal sequences (Ts21) and 

bag sequences (Ts23) which, along with the result of 9Fus, exceed those obtained in 

the three reported papers.  
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Again, EMAEI gait representation has worked well for coat sequences (Ts22), 

especially with the MPCALDA algorithm R9. The rate in [34] still exceeds this one 

by more than 4%. But it is higher than the rate obtained in 9Fus (WV) by less than 

1%. It is worth mentioning here that Dupuis et al. have adopted a feature selection 

technique yielding some sort of masked gait images. Their method seems to have 

worked well mainly in the case of coat sequences. And we recall that our EMAEI is 

un-optimized and currently based on human observation only. Better results are 

anticipated upon optimization of this gait representation method. 

It can be easily noticed that the individual rates of the base Recognizers, 

especially for normal sequences, have averaged higher compared to those in Setup 1. 

This is expected having introduced one additional sequence in training. General 

behavior of all base methods is also similar to that in Setup 1. As for Ts23 (bag 

sequences) Experiments using API with Projection and LDF were good enough to 

outperform those reported in the target papers. 9-decision fusion method results in 

even better rate that is almost 10% higher compared to [34]. 

Table 8 shows the fusion results using Setup 2. It can be seen that 3-decision 

fusion techniques are more effective here compared to the more onerous Setup 1. We 

still use the same accuracy weights estimated in Setup 1 for simplification, although it 

is possible to add more validation sequences to optimize the weights. 

Table 8: Recognition Rates (%) of fusion techniques using Setup 2 [14, 34, 66] 

 
3Fus123 

(UWV) 

3Fus123 

(WV) 

3Fus456 

(UWV) 

3Fus456 

(WV) 

3Fus789 

(UWV) 

3Fus789 

(WV) 

9Fus 

(UWV) 

9Fus 

(WV) 

Huang 
et al. 

[14] 

Dupuis 
et al. 

[34] 

Jeevan 
et al. 

[66]* 

Ts21 99.60 99.60 97.98 97.18 98.79 98.79 99.60 99.60 99 98.79 93.36 

Ts22 57.26 60.89 64.52 62.50 69.35 89.52 87.50 91.93 64 92.74 22.44 

Ts23 90.60 91.94 82.66 85.08 79.44 78.63 98.39 97.58 72 77.82 56.12 

5.4.3 Results using experimental Setup 3 

Table 9 summarizes the recognition rates obtained for the experiments carried 

out using Training Data Tr3 and Testing Data Ts31, Ts32, Ts33, Ts34 and Ts35, and 

Figure 21 represents them graphically. Note that we have added again one more 

normal sequence (nm5) to the training data, whereas sequences with bag and coat are 

still unseen during training. We compare our results with those obtained by Wang et 

al. in [16]. 
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Table 9: Recognition Rates (%) of experiments using Setup 3 [16] 

 R1 R2 R3 R4 R5 R6 R7 R8 R9 
9Fus 

(UWV) 

9Fus 

(WV) 

Wang et al. 

[16] 

Ts31 99.19 100 78.23 96.77 97.58 93.55 96.77 98.39 98.39 100 100 100 

Ts32 89.52 87.90 52.42 79.03 82.26 55.65 79.03 82.26 68.55 99.19 97.58 68.52 

Ts33 91.94 90.32 58.06 83.07 85.48 57.26 78.23 77.42 61.29 99.19 98.39 75.00 

Ts34 41.94 54.84 50.81 41.94 50.81 87.90 38.71 46.77 92.74 90.32 90.32 49.07 

Ts35 44.35 60.48 54.84 54.84 62.10 88.71 46.77 53.23 94.36 91.94 91.94 44.44 

 

 
Figure 21: Recognition Rates (%) of the experiments groups Ts31 (nm6), Ts32 (bg1), Ts33 

(bg2), Ts34 (cl1) and Ts35 (cl2) 
 

Most of the base methods have performed extremely well. It can be noticed 

that one of these methods, R2 has outperformed the target in all the five testing 

experiments. Fusion has improved this dramatically. We can see in the case of coat 

(Ts34 and Ts35) our fusion rates are approximately 50% higher than those reported in 

[16]. Table 10 shows the fusion results using Setup 3. It can be seen that all 3-decision 

fusion techniques outperforms the target results and score well. As expected, 9-

decision fusion improves this further. 

Table 10: Recognition Rates (%) of fusion techniques using Setup 3 [16]  

 
3Fus123 

(UWV) 

3Fus123 

(WV) 

3Fus456 

(UWV) 

3Fus456 

(WV) 

3Fus789 

(UWV) 

3Fus789 

(WV) 

9Fus 

(UWV) 

9Fus 

(WV) 

Wang et al. 

[16] 

Ts31 99.19 100 98.39 98.39 100 100 100 100 100 

Ts32 90.32 91.94 82.26 85.48 83.87 83.87 99.19 97.58 68.52 

Ts33 91.94 95.16 82.26 86.29 86.29 82.26 99.19 98.39 75.00 

Ts34 60.48 60.48 71.77 62.10 73.39 90.32 90.32 90.32 49.07 

Ts35 63.71 65.32 75.81 71.77 74.19 94.35 91.94 91.94 44.44 
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5.4.4 Results using experimental Setup 4 

Table 11 summarizes the recognition rates obtained for the experiments listed 

in section 5.2, using Training Data Tr4 and Testing Data Ts41, Ts42, Ts43, Ts44 and 

Ts35, and Figure 22 represents them graphically. This is the only setup in which 

training data has samples from all three groups, normal, bag and coat. It is expected 

that this arrangement should enhance the final overall recognition rate, especially 

when testing for bag and coat sequences. We compare our results with those obtained 

by Kumar et al. in [15]. 

Table 11: Recognition Rates (%) of experiments using Setup 4 [15]  

 R1 R2 R3 R4 R5 R6 R7 R8 R9 
9Fus 

(UWV) 

9Fus 

(WV) 

Kumar et al. 

[15] 

Ts41 96.77 98.39 66.94 94.36 93.55 95.97 90.32 94.35 98.39 99.19 99.19 93.33 

Ts42 100 99.19 58.06 95.97 92.74 95.16 87.90 90.32 98.39 100 100 96.66 

Ts43 99.19 96.77 66.94 94.36 93.55 91.94 87.10 91.94 97.58 100 100 92.50 

Ts44 98.39 99.19 63.71 93.55 90.32 87.10 84.68 87.90 93.55 100 100 76.66 

Ts45 85.48 95.16 56.45 84.68 85.48 95.97 70.97 77.42 97.58 99.19 100 79.16 

 

 
Figure 22: Recognition Rates (%) of the experiments groups Ts41 (nm4), Ts42 (nm5), Ts43 

(nm6), Ts44 (bg2) and Ts45 (cl2) 

 

Exactly as expected, recognition rates have topped high due to training for the 

two variables of carrying condition (bag) and clothing (coat). Most of our base 

methods, especially R1, R2 and R9, have outperformed those in [15]. This is 

especially noticeable in the two cases of Ts44 (bg2) and Ts45 (cl2). EMAEI is 

apparently not so efficient when combined with Image Projection and LDF (R3). 

However, it performs amazingly well with MPCALDA (R9). Table 12 shows the 
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fusion results using Setup 4. 3-decision fusion techniques also perform well, and they 

all outperform the target results. Almost all of the Recognition Rates achieved by 9-

decision fusion have hit 100%. 

 

Table 12: Recognition Rates (%) of fusion techniques using Setup 4 [15] 

 
3Fus123 

(UWV) 

3Fus123 

(WV) 

3Fus456 

(UWV) 

3Fus456 

(WV) 

3Fus789 

(UWV) 

3Fus789 

(WV) 

9Fus 

(UWV) 

9Fus 

(WV) 

Kumar et al. 

[15] 

Ts41 99.19 99.19 97.58 98.39 95.97 97.58 99.19 99.19 93.33 

Ts42 99.19 99.19 97.58 97.58 96.77 98.39 100 100 96.66 

Ts43 97.58 96.77 98.39 98.39 97.58 97.58 100 100 92.50 

Ts44 99.19 99.19 96.77 97.58 96.77 97.58 100 100 76.66 

Ts45 92.74 95.97 95.97 95.97 93.55 99.19 99.19 100 79.16 

 

In general, we notice that the unweighted and weighted 9-decision voting 

schemes outperform all the recently published methods that used the state-of-the-art 

algorithms. While this is the case, it may not be always needed. In most of the tests 

presented above, two of the base methods, R1 and R2, have also individually 

exceeded the target results. To recall, these methods use the API and AFI gait 

representations respectively, using the simple image projection for feature extraction 

and linear classifier. The EMAEI gait representation, although still require 

improvement and optimization, has performed well for the coat sequences, 

particularly when combined with the MPCALDA algorithm (R9). As can be noticed, 

experimental setups gradually decrease in difficulty moving from Setup 1 to Setup 4. 

3-decision fusion techniques perform amazingly well in Setup 4. They also 

outperform the target results in Setup 3, and with less percentage for Setup 2. In Setup 

1, however, we need 9-decision fusion to achieve our targets. It should be also noted 

that the fusion results in Setups 2-4 were achieved using the weights from Setup 1. 

These might be optimized further, and results improved, by utilizing the additional 

training data for validation. 

As a final test, and based on the findings of our experiments above, we’ll 

evaluate another 3-decision fusion combination using base recognizers R1, R2 and R9 

which yielded the best average individual recognition rates in the four setups. We’ll 

also concentrate on the Weighted Voting (WV) scheme only. The method is labeled 

3Fus129. Tables 13-16 below list these final results and compare them to the 9-

decision fusion rates and the targets. We can see this 3-decision fusion method 
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outperforms almost all the target results in the four setups. Obviously, the 9-decision 

fusion enhances the rates further. 

 

Table 13: Recognition Rates (%) from fusion of R1, R2 and R9 using Setup 1 [13] 

 
3Fus129 

(WV) 

9Fus 

(WV) 
Zhang et al. [13] 

Ts11 98.93 99.19 98.40 

Ts12 86.29 95.97 91.95 

Ts13 79.84 88.31 72.19 

 

Table 14: Recognition Rates (%) from fusion of R1, R2 and R9 using Setup 2 [14, 34, 66] 

 
3Fus129 

(WV) 
9Fus 
(WV) 

Huang et al. [14] Dupuis et al. [34] Jeevan et al. [66] 

Ts21 99.60 99.60 99 98.79 93.36 

Ts22 86.69 91.93 64 92.74 22.44 

Ts23 92.73 97.58 72 77.82 56.12 

 

Table 15: Recognition Rates (%) from fusion of R1, R2 and R9 using Setup 3 [16] 

 
3Fus129 

(WV) 

9Fus 

(WV) 
Wang et al. [16] 

Ts31 100 100 100 

Ts32 91.94 97.58 68.52 

Ts33 95.97 98.39 75.00 

Ts34 90.32 90.32 49.07 

Ts35 91.94 91.94 44.44 

 

Table 16: Recognition Rates (%) from fusion R1, R2 and R9 using Setup 4 [15] 

 
3Fus129 

(WV) 

9Fus 

(WV) 
Kumar et al. [15] 

Ts41 100 99.19 93.33 

Ts42 99.19 100 96.66 

Ts43 99.19 100 92.50 

Ts44 99.19 100 76.66 

Ts45 97.58 100 79.16 
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Chapter 6: Conclusions and Future Works 

In this thesis, gait recognition was studied in details, covering the different gait 

databases and gait approaches. It is noticed that the problem has become the research 

topic in many of the recent biometrics and computer vision research papers. This is an 

indication of the attractiveness and potentiality of gait as a biometric signature. Major 

part of the research work was dedicated to overcome and solve for the many 

covariates that impact the gait quality and robustness, such as carrying conditions and 

clothing. Our study has primarily focused on these two factors. Additional tests are 

recommended in the future to study the impact of and the system’s performance 

against other variables, especially the viewing angle. In the outcome of our 

comprehensive literature review, and based on the results of the extensive 

experiments carried out, it is concluded that model-free gait approaches, and 

particularly spatio-temporal (accumulated error) and energy-based methods, can 

perform well and should be focused on for the future gait recognition research. 

Nine different gait approaches have been evaluated for individual 

performance, and when combined in fusion schemes. Three gait representation 

methods are used; Accumulated Prediction Image (API) and two novel representation 

techniques namely, Accumulated Flow Image (AFI) and Edge-Masked Active Energy 

Image (EMAEI). It was shown that the first two methods are effective in producing 

distinctive features. The EMAEI method, although requires further optimization, has 

performed well in the case of coat sequences as it removes the parts of the body that 

correspond to static features. Therefore, it contributes efficiently in the final fusion 

scheme. We recommend that the mask-creating method is automated using some 

techniques like filtering, wrapping, decision trees or similar feature selection 

techniques. 

The second step was feature extraction. Three methods have been evaluated. 

One simple image projection with 1D DCT, and two multilinear techniques namely 

MPCA and MPCALDA. This was an effective combination of simplicity and 

compatibility. The two multilinear techniques are suitable to the tensorial nature of 

the gait features, being 3-mode data. The advantage was to keep data in its raw nature. 

Each of the three gait representation images was tested with each of the feature 

extraction methods, yielding a model of nine different base recognizers. It is 
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noteworthy that we used two of the simplest classifiers, Linear Discriminant 

Functions (LDF) and 1 Nearest Neighbor classifiers for the base decisions. As part of 

future work, more advanced classifiers; such as Polynomial Networks, Support Vector 

machines (SVM) and Neural Networks might be tested. 

The last part of the thesis was dedicated to analyze the proposed method’s 

performance, taken from the results of the experiments. Major part of that was for 

testing and evaluating the different decision-level fusion techniques. Fusion has been 

adopted recently in multi-modal biometric systems, and has shown promising results 

in solving for issues like, robustness and sensors’ sensitivity. In addition, it is shown 

that fusion can combine the base classifiers’ discriminating power and boost the 

overall system’s performance. Decision-level fusion is simple and straightforward 

compared to feature-level and score-level fusion techniques. It is concluded that 

fusion is recommended in modern biometric systems, particularly the behavioral ones 

like gait. Based on a comparison between unweighted and weighted voting fusion 

schemes, it was found that, weighting can improve the performance. As for the two 

voting schemes tested in this work; Unweighted Voting (UWV) and Weighted Voting 

(WV), the WV method has shown improvements in most of the fusion tests carried 

out. Further evaluation of the fusion schemes might be carried out as part of the future 

work, and especially using different databases to ensure the method is insensitive to 

the data presented, and can generalize well. 
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