

PARALLEL ALGORITHMS FOR DISTINGUISHING

NONDETERMINISTIC FINITE

STATE MACHINES

by

Mustafa Ali

A Thesis Presented to the Faculty of the

American University of Sharjah

College of Engineering

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in

Computer Engineering

Sharjah, United Arab Emirates

February 2015

© 2015 Mustafa Ali. All rights reserved.

Approval Signatures

We, the undersigned, approve the Master’s Thesis of Mustafa Ali

Thesis Title: Parallel Algorithms for Distinguishing Nondeterministic Finite State Machines

Signature Date of Signature
 (dd/mm/yyyy)

___________________________ _______________

Dr. Gerassimos Barlas
Professor, Department of Computer Science and Engineering

Thesis Advisor

___________________________ _______________

Dr. Khaled El-Fakih
Associate Professor, Department of Computer Science and Engineering

Thesis Co-Advisor

Dr. Assim Sagahyroon
Head, Department of Computer Science and Engineering

Thesis Committee Member

Dr. Dmitry Efimov
Assistant Professor, Department of Mathematical Sciences

Thesis Committee Member

Dr. Assim Sagahyroon

Head, Department of Computer Science and Engineering

Dr. Mohamed El-Tarhuni
Associate Dean, College of Engineering

Dr. Leland Blank
Dean, College of Engineering

Dr. Khaled Assaleh
Interim Vice Provost for Research & Graduate Studies

Acknowledgments

I would like to express my utmost gratitude to my thesis advisor, Dr. Gerassimos

Barlas, and co-advisor, Dr. Khaled El-Fakih, for their guidance and invaluable

suggestions at every step throughout the thesis. I would also like to thank them for

sharing their knowledge and being patient with me.

I am thankful to the Department of Computer Engineering and the American

University of Sharjah for offering me Graduate Teaching Assistantship, which

allowed me to pursue my graduate studies.

In the end, I would like to thank my parents, brothers, and my fiancé Tahera, for

their love, encouragement, and sacrifices. Without their support I wouldn’t have been

able to carry out my work.

5

Abstract

Many methods are used for the development of experiments and conformance tests

based on the specification given in the form Finite State Machines (FSMs). In FSM-

based testing, we have an FSM or a black-box Implementation Under Test (IUT)

about which we lack some information, and we want to deduce this information by

conducting experiments on the IUT. An experiment consists of applying input

sequences, observing corresponding output responses, and drawing conclusions

about the IUT. An experiment is adaptive if at each step of the experiment the next

input is selected which is based on the previously observed outputs. A distinguishing

experiment determines the initial state of the FSM. In this thesis, we consider two

implementations of an existing sequential algorithm for deriving the minimal length

of an adaptive distinguishing experiment for a nondeterministic FSM. We show that

the execution time for both of these implementations grows exponentially as the size

or the number of transitions of the FSM increases. Accordingly, in order to obtain a

solution in a reasonable time, we develop four parallel implementations of the

considered sequential algorithms, namely, a multi-core implementation on Central

Processing Unit, two Graphical Processing Unit (GPU) implementations based on the

platforms like CUDA and Thrust, respectively, and an implementation on a Network

of Workstations (NoWs). Comprehensive experiments are conducted to assess and

compare the performance and the speedup of the developed implementations. Based

on the results obtained from these experiments, the parallel implementation on a

NoW provides the best performance and speedup, followed by the CUDA, then the

Thrust, followed by the multi-core CPU implementation.

Search Terms: Conformance Testing, Adaptive Distinguishing Experiments,

Parallel Algorithms for Distinguishing Experiments.

6

Table of Contents

Abstract ... 5

List of Figures ... 8

List of Tables .. 10

List of Abbreviations .. 11

Chapter 1: Introduction ... 12

Chapter 2: Related Work and Literature Review .. 16

2.1 Related Work ... 16

2.2 Graphical Processing Units ... 17

2.2.1 Compute Unified Device Architecture .. 19

2.2.2 Thrust ... 23

2.3 Message Passing Interface .. 23

2.4 Divisible Load Theory .. 24

Chapter 3: Determining the Minimal Length of Adaptive Distinguishing Experiments

for Nondeterministic FSMs... 27

3.1 Preliminaries.. 27

3.2 Two Algorithms for Determining the Minimal Length of Adaptive

Distinguishing Experiments for Complete Observable Nondeterministic FSMs ... 31

3.2.1 Algorithm A (For Determining the Minimal Length of an Adaptive

Distinguishing Experiment) .. 32

3.2.2 Algorithm B (For Determining the Minimal Length of an Adaptive

Distinguishing Experiment) .. 36

3.3 An Example Comparing Algorithms A and B .. 38

Chapter 4: Parallel Algorithms for Determining the Minimal Length of Adaptive

Distinguishing Experiments for Nondeterministic FSMs ... 41

4.1 Multi-Threaded Implementation for Algorithm A (MTA) 42

4.2 Parallel Algorithm for B .. 44

4.2.1 Multi-Threaded Implementation for Parallel Algorithm B (MTB) 46

4.2.2 GPU Implementations for Parallel Algorithm B (CUDAB and ThrustB) 48

4.2.3 Multiple-Node Implementation of Parallel Algorithm B (MNB) 50

Chapter 5: Experimental Evaluation ... 55

7

5.1 Execution Time versus Number of Transitions of Sequential Algorithms A and

B .. 57

5.2 Execution Time versus Number of Transitions of Sequential Algorithm A

Against MTA ... 58

5.3 Execution Time versus Number of Transitions of Sequential Algorithm B

Against MTB .. 60

5.4 Execution Time versus Number of Transitions for Sequential Algorithms

Against Other Parallel Implementations ... 62

5.5 Execution Time versus Number of Transitions for Multi-Threaded

Implementations Against Other Parallel Implementations 66

5.6 Achieved Speedup with Respect to Algorithm A ... 68

5.7 Achieved Speedup with Respect to Algorithm B .. 71

5.8 Achieved Speedup versus Number of Transitions with Respect to Algorithm A

 ... 74

5.9 Achieved Speedup versus Number of Transitions with Respect to Algorithm B

 ... 75

5.10 Summary of All Obtained Results .. 77

Chapter 6: Conclusion... 82

References ... 84

Appendix A ... 90

Vita .. 94

8

List of Figures

Figure 1. Hardware Resources for the Fermi GPU ... 21

Figure 2. CUDA Programming Model ... 21

Figure 3. A Test Case P Over Alphabets I = {a, b} and O = {0, 1} 29

Figure 4. Considered FSM S with Three Initial States ... 30

Figure 5. The Intersection S P .. 30

Figure 6. Considered FSM S ... 34

Figure 7. Considered FSM S2 ... 37

Figure 8. Algorithm A versus Algorithm B for Small and Medium FSMs 57

Figure 9. Algorithm A versus Algorithm B for Big FSMs ... 57

Figure 10. Algorithm A versus MTA for Small and Medium FSMs 58

Figure 11. Algorithm A versus MTA for Big FSMs ... 58

Figure 12. Speedup for MTA w.r.t. (Sequential) Algorithm A for Small and Medium

FSMs ... 59

Figure 13. Speedup for MT A w.r.t. (Sequential) Algorithm A for Big FSMs 59

Figure 14. Sequential Algorithm B versus MTB for Small and Medium FSMs 60

Figure 15. Sequential Algorithm B versus MTB for Big FSMs 61

Figure 16. Speedup for MTB w.r.t. (Sequential) Algorithm B for Small and Medium

FSMs ... 61

Figure 17. Speedup for MTB w.r.t. Sequential Algorithm B for Big FSMs 62

Figure 18. Sequential Algorithms versus Other Parallel Implementations for Small

and Medium FSMs .. 63

Figure 19. Sequential Algorithms versus Other Parallel Implementations for Big

FSMs ... 63

Figure 20. Speedup for Other Parallel Implementations w.r.t (Sequential) Algorithm

A for Small and Medium FSMs .. 64

Figure 21. Speedup for Other Parallel Implementations w.r.t (Sequential) Algorithm

A for Big FSMs ... 64

Figure 22. Speedup for Other Parallel Implementations w.r.t (Sequential) Algorithm

B for Small and Medium FSMs .. 65

9

Figure 23. Speedup for Other Parallel Implementations w.r.t (Sequential) Algorithm

B for Big FSMs ... 66

Figure 24. Multi-Threaded Implementations versus Other Parallel Implementations

for Small and Medium FSMs .. 67

Figure 25. Multi-Threaded Implementations versus Other Parallel Implementations

for Big FSMs... 67

Figure 26. Achieved Speedup w.r.t. Algorithm A (States = 100) 68

Figure 27. Achieved Speedup w.r.t. Algorithm A (states = 150) 69

Figure 28. Achieved Speedup w.r.t. Algorithm A (states = 200) 69

Figure 29. Achieved Speedup w.r.t. Algorithm A (states = 250) 70

Figure 30. Achieved Speedup w.r.t. Algorithm B (States = 100) 72

Figure 31. Achieved Speedup w.r.t. Algorithm B (states = 150) 72

Figure 32. Achieved Speedup w.r.t. Algorithm B (states = 200) 73

Figure 33. Achieved Speedup w.r.t. Algorithm B (states = 250) 73

Figure 34. Speedup versus Number of Transitions w.r.t. Algorithm A for the

Considered Size-I FSMs ... 74

Figure 35. Speedup versus Number of Transitions w.r.t. Algorithm A for the

Considered Size-II FSMs .. 75

Figure 36. Speedup versus Number of Transitions w.r.t. Algorithm B for the

Considered Size-I FSMs ... 76

Figure 37. Speedup versus Number of Transitions w.r.t. Algorithm B for the

Considered Size-II FSMs .. 76

Figure 38. Execution Time versus the Number of FSM Transitions, for All the

Considered Nodes ... 91

Figure 39. Communication Time versus Message Size, for Two Network Nodes 92

10

List of Tables

Table 1. Recent NVidia GPUs and their configurations ... 19

Table 2. Tabular Representation for the Considered FSM S in Figure 6. 34

Table 3. Tabular Representation for the Considered FSM S2 in Figure 7 38

Table 4. Combinations of Generated FSMs .. 55

Table 5. System Configuration & Platform Details .. 55

Table 6. Summary of Execution Time (Minutes) for All the Conducted Experiments

... 77

Table 7. Summary of Execution Time (Minutes) for Small FSMs 78

Table 8. Summary of Execution Time (Minutes) for Medium FSMs 78

Table 9. Summary of Execution Time (Minutes) for Big FSM 78

Table 10. Speedup w.r.t (Sequential) Algorithm A for All the Conducted

Experiments .. 79

Table 11. Speedup w.r.t (Sequential) Algorithm A for Small FSMs 79

Table 12. Speedup w.r.t (Sequential) Algorithm A for Medium FSMs 79

Table 13. Speedup w.r.t (Sequential) Algorithm A for Big FSMs 80

Table 14. Speedup w.r.t (Sequential) Algorithm B for All the Conducted

Experiments .. 80

Table 15. Speedup w.r.t (Sequential) Algorithm B for Small FSMs 80

Table 16. Speedup w.r.t (Sequential) Algorithm B for Medium FSMs 81

Table 17. Speedup w.r.t (Sequential) Algorithm B for Big FSMs 81

Table 18. Considered Nodes (N) in the NoW ... 90

Table 19. Computation Speed (p) for All the Considered Nodes 91

Table 20. Values Calculated for the e Parameter for All the Considered Nodes 92

Table 21. Communication Parameters .. 92

11

List of Abbreviations

A Sequential algorithm which derives I/O-successors iteratively

B Sequential algorithm which derives all the I/O-successors in advance

FSM Finite State Machine

NFSM Nondeterministic Finite State Machine

IUT Implementation Under Testing

GPU Graphical Processing Unit

CUDA Compute Unified Device Architecture

Thrust Software tool for programming on GPU

CPU Central Processing Unit

MTA Multi-Threaded Implementation for Algorithm A

MTB Multi-Threaded Implementation for Algorithm B

CUDAB GPU Implementation for using software tool CUDA, for Algorithm B

ThrustB GPU Implementation for using software tool Thrust, for Algorithm B

MNB Multiple-Node Implementation for Algorithm B

FORTRAN Formula Translator

SIMD Single Instruction Multiple Data

DLT Divisible Load Theory

DRAM Dynamic Random Access Memory

SRAM Static Random Access Memory

MPI Message Passing Interface

MPP Massively Parallel Processing

STL Standard Template Library

SM Streaming Multiprocessors

NoWs Network of Workstations

N Number of Nodes in Network of Workstations

M Total number of pairs of different states of a given FSM

RAM Random Access Memory

MB Mega Byte

http://www.cudahandbook.com/uploads/Chapter_8._Streaming_Multiprocessors.pdf

12

Chapter 1: Introduction

The advancements in computer technology have enabled systems to get larger so

that they are capable of fulfilling more complicated tasks. As a result, these systems

are also becoming less reliable and more vulnerable [1]. Consequently, software

testing has become an integral part of system and software development; however,

for complex systems, testing is known to be a formidable task [1]. This motivates the

study of testing Finite State Machines (FSMs) to ensure the correct functioning of

systems and to discover aspects of their behavior. An FSM is a state transition system

that has a finite number of inputs, outputs, states, and a finite number of transitions,

each labeled by an input/output pair. FSMs are widely used in various application

domains such as telecommunication, communication protocols and other reactive

systems. FSMs are the underlying models for formal description techniques, such as

statecharts [58], Specification Description Language (SDL) [58], and Unified

Modelling Language (UML) specification [58].

An FSM is deterministic if, for some input at some state, there is exactly one

outgoing transition of the state under that input. Nondeterminism in the specification

is also not unusual. An FSM is non-deterministic if, for some input at some state,

there are more than one outgoing transition of the state under that input.

Many methods are known for the development of experiments and conformance

tests based on the specifications given in the form of an FSM [1-7]. In FSM-based

testing, we have a machine or a black-box Implementation Under Test (IUT) about

which we lack some information, and we want to deduce this information by

conducting experiments on this FSM. An experiment on an FSM consists of applying

input sequences to the machine, observing corresponding output responses, and

drawing conclusions about the machine under test. An experiment is a preset if all

the input sequences are known before starting the experiment, and adaptive if at each

step of the experiment the next input is selected based on the previously observed

outputs [4] [8]. Distinguishing experiments are used when deriving FSM based tests

with guaranteed fault coverage and those experiments are elaborated for different

types of FSMs. An FSM is said to be initialized if it has one initial state; otherwise, it

13

is said to be weakly-initialized or non-initialized. An FSM is observable if at each state

the machine has at most one transition under a given input/output pair.

A distinguishing experiment is defined as an experiment which determines the

initial state of the FSM, i.e. a state of the FSM before the start of the experiment.

Such experiments are widely used when checking the correspondence between

transitions of an IUT and those of the specification FSM [34]. If a distinguishing

sequence for a finite state machine exists, then one can determine the length k of that

sequence.

Nowadays, nondeterministic systems are attracting lots of attention in the field of

protocol analysis and testing. Adaptive experiments with nondeterministic FSMs are

discussed in [11-15]. Petrenko and Yevtushenko in [13] came up with an idea of a

test case which described an adaptive experiment as an initialized FSM with an

acyclic transition diagram such that at each non-deadlock state only one input was

defined with all possible outputs. This definition of a test case enables defining

distinguishing test cases which are based on the properties of the intersection of a

transition system under experiment and a given test case. The examples of how a

distinguishing test case can be derived for two states of Nondeterministic Finite State

Machines (NFSMs) are shown in [13-15]. In particular, Alur in [11] showed that the

length of the shortest adaptive distinguishing test case that distinguishes two states of

an observable nondeterministic FSM with n states is at most n(n - 1)/2.

In this thesis, we consider adaptive distinguishing experiments for a pair of states

of complete observable nondeterministic FSMs. Lee and Yannakakis [6] proposed an

approach for deriving an adaptive distinguishing sequence of a deterministic FSM

that is based on refining a partition of the set of states based on different outputs. The

work in [6] was extended in [34] dealing with nondeterministic FSMs. In particular,

in [34] necessary and sufficient conditions for having adaptive distinguishing test

cases are established and a sequential algorithm for deriving a distinguishing

adaptive test case with minimal length is proposed.

In this thesis, we consider the sequential algorithm presented in [34] for

determining the minimal length of an adaptive distinguishing experiment for

nondeterministic FSMs. As the sequential algorithm in [34] works for any number of

14

pairs. We modify it, such that it works for a pair of states and develop two sequential

algorithms for determining the minimal length of adaptive distinguishing

experiments for a pair of states for complete observable nondeterministic FSM. Also,

our experiments show that the execution time of these sequential algorithms

increases drastically as the considered FSMs increase in size (i.e., the number of

transitions of a machine). Therefore, to obtain the solution (i.e., the length of the

distinguishing sequence) in a reasonable time, we develop many parallel

algorithms/implementations of the two considered sequential algorithms. Parallel

execution typically requires the partitioning of the computation and/or data. The two

generic approaches for this problem are function decomposition and data

decomposition. In the latter, the problem data are partitioned into disjoined sets and

processed separately.

Data decomposition, also known as the data-parallel design approach, is widely

applicable in a large number of domains, including numerical computations,

biomedical informatics, and multimedia. In this thesis, we apply a data

decomposition or data partitioning approach for the various parallel implementations

of the adapted sequential algorithms. These parallel implementations include

implementation on a multi-core CPU via multiple threads, implementation on parallel

platforms like Graphical Processing Units (GPUs), and implementation on a Network

of Workstations (NoWs). These parallel implementations are implemented using

different software tools and platforms such as Qt Threads [55], CUDA/Thrust [35],

and MPI (Message Passing Interface), a standard for portable message-passing [41].

To summarize the results, after conducting comprehensive experiments, we find

that parallel implementation on a NoW gives the best performance amongst parallel

implementations, and the speedup obtained is much more significant than in

sequential algorithms. The parallel implementation on the GPU using the software

platform CUDA gives the second best performance, and the parallel implementation

on a multi-core CPU along with parallel implementation on a GPU using the

software platform Thrust gives the third best performance.

The organization of this thesis is as follows. Chapter 2 includes related work on

adaptive distinguishing experiments and preset distinguishing experiments for

15

deterministic/nondeterministic FSMs. It also includes a brief literature review on

parallel platforms used in this thesis. Chapter 3 includes preliminaries, definition of a

distinguishing test case, and algorithms to determine the minimal length of an

adaptive distinguishing experiment for complete observable nondeterministic FSMs.

Chapter 4 discusses parallel algorithms/implementations to determine the minimal

length of an adaptive distinguishing experiment for complete observable

nondeterministic FSMs. In Chapter 5 we discuss the experimental evaluation of the

conducted experiments and Chapter 6 concludes this thesis.

16

Chapter 2: Related Work and Literature Review

2.1 Related Work

Research on preset and adaptive distinguishing experiments for deterministic

FSMs started with the fundamental paper on “Gedanken experiments” by Moore [8].

Surveys and more information on FSM-based experiments with some related

algorithms can be found in [4-6, 16]. Particularly, Gill [4] and Lee and Yannakakis

[6] presented methods for deriving preset and adaptive distinguishing experiments

for deterministic FSMs with corresponding evaluations of the complexity of these

experiments.

Preset distinguishing experiments for nondeterministic FSMs are presented in

[11, 12, 23-27]. In particular, Spitsyna in [23] presents a method for deriving a

sequence that separates two initialized nondeterministic FSMs. An input sequence is

a separating sequence of two FSMs if the sets of output sequences produced by the

NFSMs to the input sequence do not intersect [28]. A tight upper bound on the

shortest preset separating sequence is shown to be of the order
2

2n
where n is the

number of states of a complete nondeterministic observable FSM [23]. Hwang in

[26] examined the non-equivalence relation between two states of a complete FSM,

invalidated the upper bound in [23] and determined that the upper bound on the

length of a sequence distinguishing two states of a non-observable FSM with n states

is n2 – 2. An FSM is said to be complete, if at every state of the machine there is an

outgoing transition under each input. A complete FSM is reduced if at each two

different states, the FSM does not have the same behavior. Kushik and Yevtushenko

in [27] demonstrated that there is a special class of FSMs which contain n states and

(n – 1) inputs, whose shortest sequence can be given by the length 12 n – 1 (i.e., its

length is exponential with respect to the number of FSM states). Related problems

were also studied by Zhang and Cheung when deriving transfer and distinguishing

trees for observable nondeterministic FSMs with probabilistic and weighted

transitions [29].

Adaptive experiments for nondeterministic FSMs are considered in [11-15]. In

particular, Petrenko and Yevtushenko in [13] describe the notion of a test case for an

adaptive experiment as an initialized observable FSM with an acyclic transition

17

diagram such that at each non-deadlock state only one input is defined with all

possible outputs. In [13 - 15] the process for deriving a distinguishing test case for

two states of a nondeterministic observable FSM is presented, provided that such a

distinguishing test case exists. Alur in [11] showed the length of a shortest adaptive

distinguishing test case that distinguishes two states of an observable

nondeterministic FSMs with n states is at most 2/)1(nn . Petrenko and

Yevtushenko in [15] considered a set of adaptive test cases which contained three

parts: a preamble for reaching an appropriate state, a traversal input/output sequence,

and a state identifier. In such cases, the length of an identifier can be optimized when

distinguishing not two but several states with the same distinguishing test case. In

addition to this, from [9, 10, 12] a distinguishing sequence derived for a non-

initialized FSM can also be adaptive. Gromov in [30] and El-Fakih [31] presented

adaptive experiments for timed nondeterministic observable FSMs, and some work

on adaptive experiments for extended and communicating FSMs is reported in [25,

32, 33]. In [34], adaptive distinguishing experiments for non-initialized, possibly

non-observable nondeterministic FSMs are considered. Lee and Yannakakis [6] also

proposed an approach for deriving an adaptive distinguishing sequence for a

deterministic FSM that is based on refining a partition of the set of states based on

different outputs.

In this thesis we study adaptive distinguishing experiments for nondeterministic

FSMs. We develop many parallel implementations of the sequential algorithm

present in [34]. Our main objective is to reduce the execution time of deriving an

experiment, as execution time increases drastically as the size of the FSM increases

(i.e., the number of transitions of a machine). We applied a geometric decomposition

pattern for parallelizing the sequential algorithm. We tested our parallel

implementations on three hardware platforms (multicore CPU PC, GPU, and

CPU/GPU cluster) and four software platforms (Qt threads, CUDA, Thrust and

MPI+CUDA). A brief literature review of GPUs, GPU software platforms (i.e.

CUDA and Thrust), and the MPI standard is provided in the next section.

2.2 Graphical Processing Units (GPUs)

The Graphical Processing Unit (GPU) is a chip that contains a large number of

parallel microprocessors. It was originally designed to accelerate 2D or 3D graphic

18

processing, in order to reduce the workload of the CPU. However, recent GPUs are

composed of a large number of computing cores which are able to perform

operations in parallel, and are connected to high-speed memory (DDR5) with very

wide buses (256bit or larger). This architecture features enables the chips to process

large amounts of data in a fraction of the time traditional single or multi-core CPUs

can.

The development of GPU hardware began from a single core and fixed function

hardware [35] pipeline application towards a combination of highly parallel

programmable cores which can be used for general purpose computation and

scientific computation. GPU technology has always progressed by adding more

programmability and parallelism to a GPU core architecture that is constantly

evolving towards a general purpose more CPU-like core.

In 2001, NVIDIA released GeForce 3 [35]. This was the first GPU with a

programmable pipeline and the ability to program previously non-programmable

parts of the pipeline. In the following years, fully programmable graphic cards were

introduced and the first wave of GPU computing started with the introduction of

DirectX9, which too added the advantage of programmability in the GPU hardware.

In 2006, NVIDIA introduced the GeForce 8 series [35]. This was a great

evolution in the history of GPUs because it contained massive parallel processors.

The GPU introduced in 2009 as NVIDIA’s Fermi architecture featured a true

memory cache hierarchy, concurrent kernel execution, better double precision

performance, combined memory address space and dual warp schedulers [35]. Since

then, rapid progress in the development of GPUs has occurred. Table 1 describes

some of the recent NVidia GPUs and their configurations [36] [54], where Cores

represents individual cores (computing unit) contained in a GPU card and each cores

is capable of executing a thread, Streaming Multi-processor (SM) is a collection of

cores, and Cores/SM represents the number of cores present in a SM.

The evolution of the GPU has brought enormous advantages for high speed

computing. GPUs are not only being used for graphical processing but also for

numerical computations. This motivated us to implement an algorithm for

determining the minimal length of an adaptive distinguishing experiment for

19

nondeterministic FSMs on a GPU so that we can reduce the execution time for the

algorithm and attain significant speedup as compared to the same algorithm running

on a single core machine. Normally, execution on a GPU can be carried out using

various platforms such as OpenCL [56], CUDA [56], Thrust [56], etc. All of these

are software platforms that enable us to program complex problems on GPUs. In this

thesis we use CUDA and Thrust to implement an algorithm for determining the

minimal length of an adaptive distinguishing experiment for non-deterministic FSMs

on a GPU. Further details for CUDA and Thrust are mentioned in the sections below.

Table 1. Recent NVidia GPUs and their configurations

Card Cores Cores/SM SM Compute Capability

GTX 980 2048 128 16 5.2

GTX 970 1664 128 13 5.2

GTX 960 1024 128 8 5.2

GTX TITAN Z 5760 480 12 3.5

GTX TITAN Black 2880 240 12 3.5

GTX Titan 2688 192 14 3.5

GTX 780 2304 192 12 3.5

GTX 770 1536 192 8 3.0

GTX 760 1152 192 6 3.0

GTX 690 3072 192 16 3.0

2.2.1 Compute Unified Device Architecture (CUDA)

At the end of 2006, NVIDIA introduced CUDA™ [32], a general purpose

parallel computing platform and programming model that made it possible to execute

parallel computation on GPUs. Many complex computational problems could be

solved in a more efficient and faster way compared to a traditional single core CPU.

CUDA is a parallel platform that allows and supports high level programming

languages, application programming interfaces, or directive-based approaches, such

as C [32], FORTRAN [32], DirectCompute [32], and OpenACC [32]. CUDA was

developed keeping several design goals in mind such as:

 CUDA provides a small set of extensions to standard programming

languages, like C, which enables a straightforward implementation of parallel

algorithms. Programmers experienced with C/C++ can simply focus on

20

parallelization of the algorithms rather than spending time on their

implementation.

 CUDA was developed to support heterogeneous computation where

applications and algorithms use both the CPU and GPU. Serial portions of

applications and algorithms run on the CPU, whereas parallel portions are

unloaded to the GPU. This enables CUDA to be applied to many research

domains such as molecular dynamics [57], quantum chemistry [57], and

bioinformatics [57]. As the CPU and GPU are counted as separated devices,

they have their own memory spaces. This allows simultaneous computation

on the CPU and GPU without contention for memory resources.

CUDA architectures are organized into multiprocessors, each multiprocessor

having a number of cores. With the evolution of the technology, current architectures

from NVidia include more multiprocessors per die, and/or more cores, registers or

shared memory per multiprocessor. For example, the CUDA-enabled GPU, Fermi,

has twice the number of cores and increases the clock frequency as compared to the

previous generation, the GT200. This one also doubles the number of

multiprocessors and 32-bit register within each multiprocessor as compared to the

G80.

The processor for the G80 follows the Single Instruction Multiple Data (SIMD)

parallel architecture, and it is equipped with 128 cores. These cores are organized

into 16 multiprocessors, each consisting of 8192 registers, a 16 KB shared memory,

which is very close to the registers in speed (both 32 bits wide), and a few kilobytes

of constant and texture memory caches. Each multiprocessor is capable of running a

variable number of threads, though the local resources are divided amongst them.

Since the G80 is SIMD, in a given cycle, each core in a multiprocessor will execute

the same instruction but with different data depending on its thread ID.

Communication between the multiprocessors can take place through the global

memory. These basic features were shared by every hardware generation until the

Fermi architecture was fabricated. Figure 1 shows the hardware resources for the

Fermi GPU.

21

Figure 1. Hardware Resources for the Fermi GPU

The advantage of the CUDA programming model is that it guides the

programmer to exploit fine-grained parallelism as required by massively parallel

GPUs. In the CUDA programming model, the CPU host and GPU device maintain

their own Dynamic Random Access Memory (DRAM) and address, denoted as host

memory and global memory. However, multiprocessors have on-chip memory,

which can be of two types: registers and shared memory, as depicted in Figure 2.

Figure 2. CUDA Programming Model

In the CUDA programming model, a program is decomposed into blocks which

are running in parallel. A block is a group of threads which are being mapped to run

on a single multiprocessor, where they can share Static Random Access Memory

22

(SRAM). Threads in the blocks are concurrently assigned to a single multiprocessor,

and they divide the multiprocessor’s resources equally amongst themselves.

The programming model also consists of warps. A warp consists of 32 threads

that can physically run concurrently on all of the multiprocessors. Due to memory

access limitations, warp size is less than the total number of cores. The programming

model allows the programmer to determine the number of threads to be executed, but

in case the number of threads exceeds the warp size, they are time-shared on the

actual hardware resources.

In order to run the code on a GPU, the CUDA programming model calls for the

creation of a kernel. A kernel is a function compiled according to the instructions of

the device, which are downloaded and executed by all the threads on the GPU.

Threads running on the different processors of the multiprocessors, sharing the same

executable and global address space, may differ in the execution path, as the

conditional execution of different operations on each multiprocessor can be achieved

based on a unique thread ID. Threads also work independently on different data

according to the SIMD model. Threads are organized into a grid as a set of thread

blocks. A grid is defined as a collection of all the blocks in a single execution, which

is explicitly defined by the developer and is assigned to a multiprocessor. When a

kernel is invoked, it defines the sizes and dimensions of the thread blocks in the grid

to be created. These sizes and dimensions must be carefully defined because they

affect the performance of the GPU.

A thread block consists of a group of threads which are executed on a single

multiprocessor. Threads in a block can communicate together by sharing data

through the SM's shared memory. They can be synchronized together using the

__syncthreads() primitive. Synchronization is mainly done for the coordination of the

memory accesses. Each thread in a block has its own thread ID, which is the number

of the thread within a 1D, 2D or 3D array of arbitrary size. Threads from the different

blocks in the same grid cannot communicate, though threads belonging to the same

block must all share registers and shared memory on a given multiprocessor. In order

to maximize the execution efficiency, a programmer should wisely solve the tradeoff

between parallelism and thread resources.

23

2.2.2 Thrust

Thrust is a C++ template library for CUDA that follows the Standard Template

Library (STL) conventions. Thrust allows a programmer to implement high

performance parallel applications with minimal programming effort through a high-

level interface that is fully interoperable with CUDA C.

Thrust provides a rich collection of data parallel primitives such as scan, sort, and

reduce, which can be composed together to implement complex algorithms with

concise, readable source code. By describing a computation in terms of these high

level abstractions the programmer provides Thrust with the freedom to select the

most efficient implementation automatically. As a result, Thrust can be utilized in the

rapid prototyping of CUDA applications, where programmer productivity matters

most, as well as in production, where robustness and absolute performance are

crucial.

2.3 Message Passing Interface (MPI)

MPI stands for Message Passing Interface, a portable message-passing standard

that enables the development of parallel applications and libraries [37-40]. MPI

specifies the names, calling sequences, and results of the subroutines or functions to

be called from FORTRAN, C or C++ programs. Commercial and free, public domain

implementations such as OpenMPI, MPICH, and pyMPI (MPI implementation in

Python) are available. These implementations run on both tightly-coupled, Massively

Parallel Machines (MPPs), and on Networks of Workstations (NoWs) [41].

MPI is used to specify the communication among a set of processes forming a

concurrent program. The message passing paradigm is attractive because of its wide

portability and scalability. It is compatible with both distributed-memory and shared-

memory multiprocessors, and combinations of these elements. In MPI, the processes

executed in parallel have separate memory address spaces. Communication between

the processes takes place when part of the memory content of one process is copied

into the memory content of another process. This operation is cooperative and occurs

only when the first process executes a “send” operation and the second process

executes a “receive” operation. In MPI, workload partitioning and mapping of tasks

24

are accomplished by the programmer. Programmers are responsible for management

of the tasks computed by each process.

MPI consists of many communication models such as point-to-point, collective,

one-sided, and parallel I/O operations. Point-to-point operations such as the

“MPI_Send”/“MPI_Recv” pair facilitate communications between processes.

Collective operations such as “MPI_Bcast” ease communications involving more

than two processes. Regular MPI send/receive communication uses a two-sided

model. This means that matching operations by sender and receiver is required. In the

new versions of MPI, one-sided communications are also possible. One-sided

communication decouples data transfer from synchronization and allows remote

memory access. Three communication calls are provided: “MPI_Put” (remote write),

“MPI_Get” (remote read), and “MPI_Accumulate” (remote update). Parallel I/O

provides access to external devices exploiting data types and communicators [39].

2.4 Divisible Load Theory (DLT)

In recent times, the interest in network-based computing has grown significantly.

Network-based computing consists of workstations or computers which are linked

together through a communication network, forming a large, loosely coupled

distributed computing system. This allows the use of shared resources and offers a

user at any single node to exploit the considerable power of the complete network or

a subset of it by partitioning and transferring its own processing load to the other

processors in the network.

The two major approaches for designing parallel algorithms are function

parallelism and data parallelism. Divisible Load Theory (DLT) is an application of

data parallelism, in which data or load can be split and assigned to many processors.

But the manner in which partitions can be created depends on the divisibility

property of the data or load. A divisible load is the one that can be arbitrarily

decomposed into smaller parts that do not have any interdependencies, i.e., they can

be processed independently of each other. There are situations where a non-divisible

(i.e., non-partition able) load “quantum” [42] exists, which have been addressed in

[43]. The partitioning can occur at the beginning, or can be done dynamically when

the computation is in progress and the computational requirements become clearer.

25

This framework of computing is best suited for applications which allow the

partitioning of the processing load into smaller fractions or segments so that they can

be processed independently.

DLT is applied when a single large load arrives at one of the nodes in the

network. The processor or node partitions the load into more than one fraction, keeps

one fraction for itself for processing, and sends the rest to other nodes in the network

for processing. DLT is a powerful tool that provides polynomial time complexity

[42] solutions to partitioning and scheduling problems.

An important issue is how to optimally partition the load between the processors

so that computation is completed in the shortest possible time. There are two key

limiting factors when applying the DLT approach for the optimal partitioning of the

load or data: (1) the cost model employed, and (2) the number of load originating

nodes (i.e., number of data sources) [42]. Most of the literature studies for DLT make

use of linear cost models [44]; however, there are a few studies in which we consider

start-up costs and other latencies [45, 46] while partitioning the data. Drozdowski

and Wolniewicz in [46] used piecewise-affine models to account for the different

speeds of a typical machine’s memory hierarchy. Hung and Robertazzi in [47] made

progress in the area by using quadratic and power-of-x computational cost models for

multi and single-level trees, respectively, and predicted a superlinear speedup for

nonlinear complexities [42]. According to [48], load or data partitioning becomes

much more complicated when computational cost does not depend upon the data

size. Although the applicability of DLT is not completely ruled out, it is something

that would have to be examined on a case-by-case basis.

Most of the literature studied for DLT has also employed a single load origination

node [42], with a few exceptions mentioned in [49-51]. The authors in [49] studied

two scheduling strategies that partition the graphs representing the network joining

sources (i.e., load origination loads) and sinks (i.e., workers) into disjoint subgraphs.

However, there is a limitation for the proposed strategies that each of the sources

carries a queue of individual loads. This hinders their application in the case of

parallel filesystems or in cases where the sources share a load.

26

The same limitations are also applied to work presented in [51]. The authors in

[51] suggests three resource-aware scheduling schemes that implicitly use multiple

installments to process the loads which are present at the sources. The size of the

installments is determined by the buffer space available to the workers at any given

time.

In the next chapter, we discuss preliminaries, definitions of a distinguishing test

case, and algorithms for determining the minimal length of an adaptive

distinguishing experiment for a nondeterministic FSM.

27

Chapter 3: Determining the Minimal Length of Adaptive Distinguishing

Experiments for Nondeterministic FSMs

This chapter includes preliminaries and definitions, mostly taken from [34],

which can be used in the context of deriving/determining minimal length of an

adaptive distinguishing experiment for a complete observable nondeterministic FSM.

The chapter also includes two algorithms for determining the minimal length of an

adaptive distinguishing experiment for a pair of initial states of a complete

observable nondeterministic FSM.

3.1 Preliminaries

A finite state machine (FSM), or simply a machine, is a 4-tuple S = (S, I, O, hS),

where S is a finite nonempty set of states; I and O are finite input and output

alphabets; and hS S I O S is a (behavior) transition relation. An FSM is

nondeterministic if, for some pair (s, i) S I, there can exist several pairs (o, s)

O S such that (s, i, o, s) hS. If the FSM has the designated initial state then the

FSM is an initialized FSM, written (S, I, O, hS, s0). An FSM S is complete if for each

pair (s, i) S I there exists (o, s) O S such that (s, i, o, s) hS. An FSM S is

observable if for each two transitions (s, i, o, s1), (s, i, o, s2) hS it holds that s1 = s2.

An FSM S is single-input if at each state there is at most one defined input at the

state, i.e., for each two transitions (s, i1, o1, s1), (s, i2, o2, s2) hS it holds that i1 = i2,

and S is output-complete if, for each pair (s, i) S I such that the input i is defined

at state s, there exists a transition from s with i for every output in O. An initialized

FSM S is acyclic if the FSM transition diagram has no cycles. An initialized FSM S

is (initially) connected if each state is reachable from the initial state.

A trace of S at state s is a sequence of input/output pairs of sequential transitions

starting from state s. The set of all traces of S at state s, including the empty trace, is

denoted Tr(S/s). Let Tr(S/S), S S, denote the union of Tr(S/s) over all states s

S . For state s and a sequence (IO)* of input-output pairs, the -successor of state

s is the set of all states that are reached from s by . If is not a trace at state s, then

the - successor of state s is the empty set. For an observable FSM S, the -successor

28

of s has at most one item. Given a nonempty subset S of states of the FSM S, the -

successor of S is the union of the -successors over all s S .

To characterize the common behavior of two weakly initialized machines, the

operation of the intersection of initialized FSMs is extended as follows [34]. Given

two complete FSMs S and P with the sets S and P of initial states, the intersection

S P is the connected FSM Q such that states of Q are pairs (b, c) of sets of states of

FSMs S and P. The initial state of Q is (S, P), and hQ is the smallest set and is

derived using the following rule: given state (b, c), b S and c P, and an

input/output pair i/o, the FSM Q has a transition ((b, c), i, o, (b, c)) if there exist

states s b and p c with an outgoing transition labeled by the pair i/o, and b and c

are i/o–successors of subsets b and c. By definition, the FSM S P is observable

even for non-observable FSMs S and P.

As an example of the FSM intersection, consider FSMs P (Figure 3) and S

(Figure 4). FSM P is an initialized FSM while S has three initial states marked in

bold. The intersection S P is shown in Figure 5. As usual, the intersection of two

weakly initialized FSMs describes the common behavior of component FSMs, and in

addition, it also provides some information about the structure of their transition sets.

For example, a state of the intersection provides information about which states of

the corresponding machines are reachable from the initial states under a

corresponding trace.

In this thesis, we consider adaptive experiments with complete nondeterministic

observable FSMs with an initial pair of states. An experiment can be described using

an initialized single-input output-complete FSM with an acyclic transition graph that

is usually referred to as a test case [34, 52].

Test Case:

Given an input alphabet I and an output alphabet O, a test case is an initially

connected single-input output-complete observable initialized FSM

P =),,,,(0phOIP p with the acyclic transition graph. A state of P that has no

outgoing transitions is a deadlock state. Based on this definition, at each intermediate

29

state only a single input is defined with all outputs. A test case over alphabets I and

O defines an adaptive experiment with any FSM S over the same alphabets.

 In general, given a test case P, the length of the test case P is determined as the

length of the longest trace from the initial state to a deadlock state of P and it

specifies the length of the longest input sequence that can be applied to an FSM S

during the experiment. As usual, for testing, one is interested in deriving a test case

(experiment) with minimal length.

A test case P is a distinguishing test case for FSM S = (S, I, O, hS, S) if (1) for

each deadlock state (b, c) of the intersection S P, b is a singleton, and (2) for each

transition ((b, c), i, o, (b, c)) of the intersection S P the subset b does not have two

different states which have the same i/o–successor, i.e.,

s1, s2 b ((s1, i, o , s) hS (s2, i, o , s) hS s1 = s2).

In other words, a distinguishing test case can also be defined as: a test case P,

over input and output alphabets I and O, is a distinguishing test case for the FSM S if

every trace from the initial state to a deadlock state of P is a trace at most at one state

of the set S. If there exists a distinguishing test case for the FSM S, then the set S is a

distinguishing set, or the FSM is distinguishable, and the test case P is a

distinguishing test case for the FSM. Otherwise, the FSM has no distinguishing set.

A test case P over alphabets I = {a, b} and O = {0, 1} is shown in Figure 3.

Figure 3. A Test Case P Over Alphabets I = {a, b} and O = {0, 1}

30

1

3

2

4

b/0

b/0

a/0 a/0

a/0
b/1

b/1
a/1

a/1

a/1

Figure 4. Considered FSM S with Three Initial States

Figure 5. The Intersection S P

An example of a distinguishing test case is the weakly initialized FSM S

presented in Figure 4 and the test case P presented in Figure. 3 By direct inspection,

one can notice that each deadlock state of the intersection S P (Figure 5) is labeled

by a pair of singletons and each two different states of any subset b, such that (b, c)

labels an intermediate state of the intersection, do not have the same i/o-successor.

Thus, the set {1, 2, 3} is a distinguishing set and the test case in Figure 3 is a

distinguishing test case for the FSM S. For example, if the output 1 is produced to the

input b at the initial state of the FSM S, then the FSM reaches state 2 after the

experiment and we certainly know that the initial state before the experiment was 2.

31

A test case TC (I, O) over alphabets I and O defines an adaptive experiment with

any FSM S over the same alphabets. As an example, consider the test case P in

Figure 3. An adaptive experiment with an FSM S over alphabets I = {a, b} and O =

{0, 1} is conducted using P as follows. At the first step the input b is applied to S, as

this input is the only input defined at the initial state of P. If the output of the FSM

S to this input is 1, then the experiment is over, since we reach the deadlock state p3

of P. If the FSM S produces the output 0 to input b, then the experiment is not over,

since the test case P enters the intermediate state p2 where the single input a is

defined. As this input does not take the test case to a deadlock state, the next input

which is also a is applied. If the output to a is 0, then the next input is b; otherwise,

the next input is a. For this example, the length of the longest trace of the test case is

three, i.e., at most three inputs are applied during this adaptive experiment.

Given a complete observable FSM S = (S, I, O, hS), in order to derive a

distinguishing test case with minimal length, the notion of k-distinguishing sets of

states is usually introduced [52]. A subset g S is 0-distinguishing if g is a singleton.

Let all (k – 1)-distinguishing sets, k > 0, be already defined. A subset g S is a k-

distinguishing set if (1) g is (k - 1)-distinguishing, or (2) there exists an input i I,

such that for each o O, the i-o-successor of g is either empty or is a (k – 1)

distinguishing set. In addition, the i-o-successors of two different states of g must not

coincide. Given an observable complete FSM S, the set g S of states is k-

distinguishing, k > 0, if and only if there exists a distinguishing adaptive experiment

of length k for the set g. If S is k-distinguishing, k > 0, but is not (k – 1)-

distinguishing then k is the minimal length of a corresponding adaptive experiment.

3.2 Two Algorithms for Determining the Minimal Length of Adaptive

Distinguishing Experiments for Complete Observable Nondeterministic FSMs

In this section, we describe two algorithms for determining the minimal length of

adaptive distinguishing experiments for a complete observable nondeterministic

FSM. The first algorithm is named Algorithm A, and the second is an alteration of A,

named as Algorithm B. Algorithm A is taken from [34], and has been adapted for

finding minimal length of adaptive experiments for a pair of initial states. Algorithm

A derives the I/O-successors iteratively for each subset of states in the FSM S and

32

checks for the distinguishing sequence in the corresponding iteration. However,

Algorithm B derives the I/O-successors for all the subsets of states in the FSM S in

advance, and then it proceeds to check the distinguishing sequence for a given initial

pair. In the following sections, we describe Algorithms A and B in detail and we

provide an example for each.

3.2.1 Algorithm A (For Determining the Minimal Length of an Adaptive

Distinguishing Experiment)

Distinguishability is defined as an experiment which allows one to determine the

unknown current (initial) state of the machine under study. For a given FSM S

= (S, I, O, hS), the algorithm mentioned below can be used for deriving the minimal

length for an adaptive distinguishing test case for a distinguishing set for an initial

pair of states g in S S. In case the set g is not distinguishing, then the states

contained in set S cannot be distinguished by an adaptive experiment. The main idea

of the procedure below is to iteratively derive subsets of states that are distinguished

by adaptively applying an input sequence of the length j 1, 2… k. The states of a

test case under construction are labeled by subsets of S states.

In this section we describe an algorithm given in [34, 52] for determining the

minimal length for an adaptive distinguishing experiment for complete observable

nondeterministic FSMs. The algorithm given in [34] works for any number of pairs

of initial states and as in this thesis, we target adaptive experiments for a pair of

initial states. Thus, we re-write the algorithm given in [34] as Algorithm A given

below:

Algorithm A

Description: Determining the minimal length of an adaptive distinguishing

experiment for a pair of states of an FSM S

Input: Complete observable nondeterministic FSM S = (S, I, O, hS) with

initial pair of states of S

Output: Minimal length k of a distinguishing sequence for the given initial

pair of FSM S or a message “there is no adaptive distinguishing sequence for

the pair”.

33

Derive the set Q of all pairs of the set S of FSM S // Q represents pairs not

distinguished

Step-1: //Set the values of variables k, P & R as follows:

k = 1: // length of the sequence

Let the set P be empty; // represents pairs of Q that are already distinguished

Let the set R be empty;

Step-2:

Step-2.1:

For each pair, call it current in the set Q, do:

Step-2.2:

For each input Ii :

Step-2.3: Derive the set of all i-o-successors of the current pair

Step-2.4: If the set of i-o-successors has a singleton then continue

Step-2.5: If the set of i-o-successors of current is empty

{

If current is not initial,

Add current pair to P and break

Else

Return k and End Algorithm A (Exit)

}

Step-2.6: If the set of i-o-successors is in R

{

If current is not initial,

Add current pair to P and break

Else

Return k and End Algorithm A (Exit)

}

End-For

End-For

34

Step-3:

If P = R then End Algorithm A and return message “there is no adaptive

distinguishing sequence for the pair”

Q = Q \ P

k = k + 1

Let set R = P

Step-4: Go-to Step-2

Example 1: As an application example of Algorithm A, consider the FSM S in

Figure 6 with four states, inputs {a, b} and outputs {0, 1}. Applying Algorithm A,

we proceed as follows: At Step 1, Q = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}. Let

initial = (1, 3). Also, we have k = 1; P = Ø; R = Ø.

 Figure 6. Considered FSM S

Table 2. Tabular Representation for the Considered FSM S in Figure 6.

Input\ State 1 2 3 4

a 2 / 1

3 / 0

2 / 0 2 / 0

4 / 1

3 / 1

b 1 / 0 2 / 1 3 / 0 2 / 1

At Step 2.1, let current = (1, 2) of Q. At Step 2.2, select input ‘a’. At Step 2.3,

derive the set of all i/o-successors of current. As the a-0-successors (1, 2) = {(2, 3)}

and the a-1-successors (1, 2) = Ø, the a-successors (1, 2) = {(2, 3)}. At Step 2.4, the

35

set of a-successors (1, 2) is not a singleton, so proceed to Step 2.5. At Step 2.5, the

set of a-successors (1, 2) is not empty, so proceed to Step 2.6. At Step 2.6, as the set

of a-successors (1, 2) is not in R, then we go back to Step 2.2, select input ‘b’ and

repeat Steps 2.3 to 2.6; derive the set of all i/o-successors of current where the b-0-

successors (1, 2) = Ø and the b-1-successors (1, 2) = Ø; thus the b-successors (1, 2) =

Ø. Since the set of b-successors (1, 2) is not a singleton, but the set of b-successors

(1, 2) is empty and current is not initial; therefore add (1, 2) to P to obtain P = {(1,

2)}. Repeat Step 2 for the remaining subsets of states {(1, 3), (1, 4), (2, 3), (2, 4), (3,

4)} in the FSM S as follows. Let current = (1, 3) of Q, the set of a-successors (1, 3) =

{(2, 3), (2, 4)}, and the b-successors (1, 3) = {(1, 3)}. As the set of all i/o-successors

of current is not a singleton, not empty, and it is not present in the set R, thus we

repeat Step 2 for the remaining subsets {(1, 4), (2, 3), (2, 4), (3, 4)} as follows. Let

current = (1, 4) of Q, the set of a-successors (1, 4) = {(2, 3)}, and the b-successors (1,

4) = Ø. As the set of b-successors (1, 4) is not a singleton, but is empty, and current

is not initial, add (1, 4) to P to obtain P = {(1, 2), (1, 4)}. We repeat Step 2 for

remaining subsets {(2, 3), (2, 4), (3, 4)}. Let current = (2, 3) of Q, the set of a-

successors (2, 3) = {(2, 2)}, and the b-successors (2, 3) = Ø. As the set of b-

successors (2, 3) is not a singleton, but is empty, and current is not initial, add (2, 3)

to P to obtain P = {(1, 2), (1, 4), (2, 3)}. We repeat Step 2 for remaining subsets {(2,

4), (3, 4)}. Let current = (2, 4) of Q, the set of a-successors (2, 4) = Ø. As the set of

a-successors (2, 4) is not a singleton, but is empty and current is not initial, add (2, 4)

to P to obtain P = {(1, 2), (1, 4), (2, 3), (2, 4)}. Repeat Step 2 for remaining subsets

{(3, 4)}. Let current = (3, 4) of Q, the set of a-successors (3, 4) = {(3, 4)}, and the b-

successors (3, 4) = Ø. As the set of b-successors (3, 4) is not a singleton, but is

empty, and current is not initial, add (3, 4) to P to obtain P = {(1, 2), (1, 4), (2, 3),

(2, 4), (3, 4)}. Since there are no further subsets remaining in the FSM S, we proceed

to Step 3.

At Step 3, since P = {(1, 2), (1, 4), (2, 3), (2, 4), (3, 4)} is not equal to

Q = {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (1, 4)}, we separate subsets of the states which

have already been distinguished in Step 2 by subtracting Q from P such that we

obtain Q = Q\P = {(1, 3)}. Also, we add 1 to the length k such that k = 2. Add all the

distinguished subsets from P to R (R = P = {(1, 2), (1, 4), (2, 3), (2, 4), (3, 4)}).

36

At Step 4, since the solution is not found (i.e., length has not been determined

yet), we go back to Step 2. Repeating Step 2, we proceed as follows: at Step 2.1, let

current = (1, 3) of Q. At Step 2.2, select input ‘a’. Since the set of all i/o-successors

of current has a-successors (1, 3) = {(2, 3), (2, 4)}, and a-successors (1, 3) is not a

singleton, and it is not empty, but a-successors (1, 3) is present in the set R and

current is initial, return k = 2 (the minimal length of the distinguishing sequence) and

End Algorithm A.

3.2.2 Algorithm B (For Determining the Minimal Length of an Adaptive

Distinguishing Experiment)

We modify Algorithm A so that instead of deriving i/o-successors for subsets of

states iteratively as done in Steps 2.1 to 2.6 of Algorithm A, first we derive

i/o-successors for all the subsets in advance. After the derivation of i/o-successors for

all the subsets, we proceed to determine the minimal length of the distinguishing

sequence by applying an adaptive input sequence of the length j 1, 2… k. The

reason for this variation is (1) to make derivation of i/o-successors independent from

finding the solution, and (2) to check whether this independent derivation of i/o-

successors can affect (i.e., either increase or decrease) the performance (i.e., the

execution time) of Algorithm B to find the solution. The modified procedure is

expressed in Algorithm B as given below:

Algorithm B

Description: Determining the minimal length of an adaptive distinguishing

experiment for a pair of states of an FSM S

Input: Complete observable nondeterministic FSM S = (S, I, O, hS) with

initial pair of states of S

Output: Minimal length k of a distinguishing sequence for the given initial

pair of FSM S or a message “there is no adaptive distinguishing sequence for

the pair”.

Derive the set Q of all pairs of the set S of FSM S // Q represents pairs not

distinguished

Apply Step-1 of Algorithm A // Initialization of variables

37

Step-1.1:

For each pair, call it current in the set Q, do:

Step-1.2:

For each input Ii :

Derive the set of all i-o-successors of current pair

End-For

End-For

Step-2:

Step- 2.1:

For each pair, call it current in the set Q, do:

Step- 2.2:

For each input Ii :

Apply Step-2.4 of Algorithm A

Apply Step-2.5 of Algorithm A

Apply Step-2.6 of Algorithm A

End-For

End-For

Apply Step-3 & Step-4 of Algorithm A

Example 2: As an application example of Algorithm B, consider the FSM S2 in

Figure 7 with four states, inputs {a, b}, and outputs {0, 1}. Applying Algorithm B

proceeds as follows: Apply Step 1 from Algorithm B, Q = {(0, 1), (0, 2), (0, 3), (1,

2), (1, 3), (2, 3)}. Let initial = (0, 2). Also we have k = 1; P = Ø; R = Ø. Then we

proceed to the next step, i.e., derivation of i/o-successors for all the subsets of states.

Figure 7. Considered FSM S2

38

Table 3. Tabular Representation for the Considered FSM S2 in Figure 7

Input\ State 0 1 2 3

a 3 / 0

0 / 1

1 / 1

3 / 0

0 / 0

2 / 0

2 / 1

1 / 1

b 2 / 1 0 / 0 3 / 0 1 / 0

At Step 1.1, set current = (0, 1) of Q. At Step 1.2, select input ‘a’. Derive the set

of all i/o-successors of current. As the a-0-successors = {(3, 3)} and a-1-successors =

Ø, the a-successors (0, 1) = {(3, 3)}. Then we go back to Step 1.2 and select input

‘b’. Derive the set of all i/o-successors of current where the b-0-successors = Ø and

b-1-successors = Ø; thus the b-successors (0, 1) = Ø. The set of i/o-successor (0, 1)

= {(3, 3)}. By repeating Step 1.1 for the remaining subsets of states {(0, 2), (0, 3), (1,

2), (1, 3), (2, 3)} in the FSM S we obtain the following: i/o-successors (0, 2) = {(0,

3)}, i/o-successors (0, 3) = {(2, 3)}, i/o-successors (1, 2) = {(0, 3), (0, 3)},

i/o-successors (1, 3) = {(2, 3), (0, 1), (0, 2), (1, 1), (1, 2), (0, 1)}, and i/o-successors

(2, 3) = {(0, 2), (1, 3)}. The derivation of i/o-successors for all the subsets (i.e., pairs)

of the states in FSM S is completed, and we proceed to Step 2.

 At Step 2.1, set current = (0, 1) of Q. At Step 2.2, select input ‘a’. At Step 2.4,

the set of a-successors (0, 1) is a singleton, so we go back to Step 2.2 and select input

‘b’. As the set of b-successors (0, 1) is not a singleton, and is empty and current is

not initial, add (0, 1) to P to obtain P = {(0, 1)}. We repeat Step 2 for the remaining

subsets of states {(0, 2), (0, 3), (1, 2), (1, 3), (2, 3)} in the FSM S as follows. Let

current = (0, 2) of Q. As the set of a-successors (0, 2) is not a singleton, is not empty

and is not present in the set R, we continue with the set of b-successors (0, 2). As the

set of b-successors (0, 2) is not a singleton, is empty and current is initial, we return

k = 1 (the minimal length of the distinguishing sequence) and End Algorithm B.

3.3 An Example Comparing Algorithms A and B

In this section, we compare the performance of both the sequential algorithms A

and B. We demonstrate this through a simple example (i.e., Example 3) in which we

re-apply Algorithm A on FSM S2 in Figure 7. We compare both examples (i.e., 2 and

39

3) and evaluate which algorithm (either A or B) gives the better performance in

determining the minimal length of the distinguishing sequence.

Example 3: By applying Step 1 of Algorithm A on FSM S2, we proceed as

follows: Let Q = {(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)}. Let initial = (0, 2). Also

we have k = 1; P = Ø; R = Ø.

Recalling Step 2 from Algorithm A and by applying Steps 2.1 to 2.6, we proceed

as follows. Let current = (0, 1) of Q, the set of a-successors (0, 1) = {(3, 3)}, and the

b-successors (0, 1) = Ø. As the set of b-successors (0, 1) is not a singleton, but is

empty and current is not initial, add (0, 1) to P to obtain P = {(0, 1)}. Repeat Step 2

for remaining subsets {(0, 2), (0, 3), (1, 2), (1, 3), (2, 3)} as follows. Let current = (0,

2) of Q, the a-successors (0, 2) = {(2, 3)}, and the b-successors (0, 2) = Ø. As the set

of b-successors (0, 2) is not a singleton, but is empty and current is initial, return k =

1 (the minimal length of the distinguishing sequence) and End Algorithm A.

After applying Algorithm B in Example 2 and Algorithm A in Example 3 for

FSM S2 in Figure 7, we observe that the Algorithm A performs better than Algorithm

B. Algorithm A performs better because it derives the I/O-successors for each subset

(i.e., pair) of states in FSM S iteratively (i.e., this process might not derive all the

I/O-successors) and then in the corresponding iteration it proceeds to check the

solution (i.e., the length of the distinguishing sequence). However, by contrast,

Algorithm B derives I/O-successors for all the subsets (i.e., pairs) of states in the

FSM in advance. Once the derivation of I/O-successors is completed, only then it

proceeds to check the solution (i.e., the length of the distinguishing sequence).

In Example 2 above, Algorithm B derives thirteen I/O-successors for all the

subsets (i.e., pairs) of states in the FSM S2, thus iterating through all the transitions in

FSM S2. Once the derivation of I/O-successors is completed, it proceeds to find the

length of the distinguishing sequence for the given initial pair. However, on the other

hand, Algorithm A in Example 3 only requires two iterations to find the solution.

Algorithm A derives the I/O-successors for two subsets (i.e., pairs) of states in the

FSM S2 and finds the distinguishing sequence in the second iteration, thus iterating

through the minimum number of transitions required to find the solution. As a result,

Algorithm B takes more time as it iterates through all the transitions to find the

40

solution, whereas Algorithm A finds the solution by iterating through the minimum

number of transitions, resulting in better performance as compared to Algorithm B.

However, in other cases as well, in which the length of the distinguishing sequence is

greater than one (i.e. k = ,3,2 and so on), the performance of Algorithm A should

remain better as it iterates through the minimum number of transitions to find the

solution, but in such cases where the length of the distinguishing is greater than one

and we derive all the I/O-successors to obtain a solution, Algorithm B will give better

performance than Algorithm A. Algorithms A and B will take the same amount of

time to derive the I/O-successors, but Algorithm B will not iterate through transitions

again to check the solution, resulting in better performance as compared to Algorithm

A. Another added advantage of Algorithm B is that we develop independent

derivation of I/O-successors, which in turn helps us to easily parallelize the process

of I/O-successor derivation through a data decomposition/partitioning approach.

In the next chapter, we discuss the parallel algorithms for Algorithms A and B.

41

Chapter 4: Parallel Algorithms for Determining the Minimal Length of

Adaptive Distinguishing Experiments for Nondeterministic FSMs

In this chapter, we discuss and describe parallel derivatives of the sequential

algorithms A and B presented in Chapter 3. We present two algorithms: a parallel

algorithm for A and a parallel algorithm for B. We present four different

implementations of the Parallel Algorithm B, based on the different software and

hardware platforms used. The software and hardware platforms used influence how

the data is partitioned (i.e., distributed) for parallel execution and how the partial

results (i.e., results obtained from the distributed computation) are handled.

The four implementations are as follows:

 MTB: targets execution on a multicore CPU via multiple threads

 CUDAB: targets execution on a GPU using the software platform CUDA.

 ThrustB: targets execution on a GPU using the software platform Thrust.

 MNB: targets execution on a Network of Workstations.

As Algorithm A derives the I/O-successors iteratively and checks for the solution

in the corresponding iteration, this requires an inter-process and inter-thread

communication in NoWs and in GPUs respectively. As inter-process and inter-thread

communication is not possible in the current design of Algorithm A, the parallel

algorithm for A has a single implementation on multi-core CPUs via multiple threads

and from here on, it will be denoted as MTA. As described above, MTB, CUDAB,

ThrustB, and MNB are the parallel implementations of Algorithm B given in the

previous chapter for deriving and determining the minimal length of an adaptive

distinguishing experiment for non-deterministic FSMs and MTA is the parallel

implementation of Algorithm A. The purpose behind the development of the parallel

algorithms is to reduce the execution time as observed in the sequential algorithms

and obtain the solution (i.e., the length of the distinguishing sequence) in a

reasonable time.

In the parallel algorithms we represent each subset (i.e., pair) of states of a given

FSM by a unique integer value. For this purpose we present a function that maps all

the pairs of states of FSM S to an integer representation.

42

Let jiF , be the function, such that jiF , → ℕ, which maps each subset (i.e.,

pair ji,) in FSM S to a unique integer value and is given by:

jiji

jzjiF
i

z

,

1,
1

1 (1)

4.1 Multi-Threaded Implementation for Algorithm A (MTA)

In this section, we describe and discuss a parallel derivative of the (sequential)

Algorithm A through its implementation on a multi-core CPU via multiple threads. In

this algorithm, we divide the data (i.e., subsets (pairs) of states) by creating

individual tasks and assigning each subset to the individual task. These individual

tasks are then executed in parallel depending upon the number of threads available in

the multi-core CPU and are scheduled by the scheduler of the CPU. This

algorithm/implementation is specifically designed for execution on a multicore CPU

via multiple threads.

Multi-Threaded implementation for Algorithm A (MTA):

Description: A parallel (multi-threaded) variation of Algorithm A for

determining the minimal length of an adaptive distinguishing experiment for a

pair of states of an FSM S

Input: Complete observable nondeterministic FSM S = (S, I, O, hS) with

initial pair of states of S.

Output: Minimal length k of a distinguishing sequence for the given initial

pair of FSM S or a message “there is no adaptive distinguishing sequence for

the pair”.

Step-1:

Derive the set Q consisting of all pairs jiji , , of the set S of FSM S. //

set Q represents pairs not distinguished yet.

Let Q′ be the ordered set that contains integer values representing the state of

pairs ji, of the set Q, such that:

Q′ = jiF , jiSjSi ,,

k = 1; // length of the sequence

43

Let the set P be empty; // represents pairs of Q′ that are already distinguished

Let the set R be empty;

Let M be the number of pairs of different states of S, calculate the total

number of pairs of different states in S and assign it to M.

Step-2:

For each pair call it current in the set Q′, do:

 Create task vT (where v 1….. M) and assign current pair to each task vT .

// vT is an independent running task and does not relate to a process or a

thread.

End-For

Do in Parallel

For each Task vT call it current task, do the following:

For each input Ii :

Derive the set of all i-o-successors of the pair in current task

If the set of i-o-successors has a singleton then continue

If the set of i-o-successors of current is empty

{

If the pair in the current task is not initial,

Add the pair to P and break

Else

Return k (Stop all the asynchronous running tasks)

and End Algorithm MTA (Exit)

}

If the set of i-o-successors is in R

{

If the pair in the current task is not initial,

Add the pair to P and break

Else

Return k (Stop all the asynchronous running tasks)

and End Algorithm MTA (Exit)

}

End-For

44

End-For

End Parallel Execution

Step-3:

If P = R then End Parallel Algorithm MTA and return message “there is no

adaptive distinguishing sequence for the pair”

Q′ = Q′ \ P

 k = k + 1

Let set R = P

Step-4:

Go-to Step-2

4.2 Parallel Algorithm for B

In this section, we discuss and describe a generic parallel derivative of the

(sequential) Algorithm B. This parallel algorithm is specifically designed for

execution in parallel via different data partitioning approaches.

Parallel Algorithm B

Description: A parallel algorithm of Algorithm B for determining the minimal

length of an adaptive distinguishing experiment for a pair of states of an FSM S

Input: Complete observable nondeterministic FSM S = (S, I, O, hS) with

initial pair of states of S.

Output: Minimal length k of a distinguishing sequence for the given initial

pair of FSM S or a message “there is no adaptive distinguishing sequence for

the pair”.

Step-1:

Derive the set Q consisting of all pairs jiji , of the set S of FSM S. //

set Q represents pairs not distinguished yet.

Let Q′ be the ordered set that contains integer values representing the state of

pairs ji, of set Q, such that:

Q′ = jiF , jiSjSi ,,

k = 1; // length of the sequence

Let the set P be empty; // represents pairs of Q′ that are already distinguished

45

Let the set R be empty;

Let M be the number of pairs of different states of S, calculate the total

number of pairs of different states in S and assign it to M.

Step-1.1: // Divide the data depending upon the data partitioning scheme

Divide:

Divide set Q′ into disjoint subsets of ordered sets:

Step-1.2:

Do in Parallel:

For each subset of Q′ do the following:

For each pair, call it current in the subset of Q′, do:

Derive the set of all i-o-successors of current pair

End-For

End-For

End Parallel

Step-1.3:

Join: // Join partial subsets created in Step 1.1 in the set Q′.

Step-2:

For each pair, call it current in set Q′, do:

For each input Ii :

If the set of i-o-successors has a singleton then continue

If the set of i-o-successors of current is empty

{

If current is not initial,

Add current pair to P and break

Else

Return k and End Parallel Algorithm B (Exit)

}

If the set of i-o-successors is in R

{

If current is not initial,

Add current to P and break

46

Else

Return k and End Parallel Algorithm B (Exit)

}

End-For

End-For

Step-3:

If P = R then End Parallel Algorithm B and return message “there is no

adaptive distinguishing sequence for the pair”

Q′ = Q′ \ P

 k = k + 1

Let set R = P

Step-4:

Go-to Step-2

4.2.1 Multi-Threaded Implementation for Parallel Algorithm B (MTB)

Below, we present a multi-threaded implementation of Parallel Algorithm B. In

this implementation, we partition the data (i.e., subsets (pairs) of states) over a multi-

core CPU via multiple threads. This parallel implementation is specifically designed

for execution on a multi-core CPU via multiple threads as shown below.

Multi-Threaded Implementation (MTB)

Description: A multi-threaded implementation of Parallel Algorithm B for

determining the minimal length of an adaptive distinguishing experiment for a

pair of states of an FSM S

Input: Complete observable nondeterministic FSM S = (S, I, O, hS) with

initial pair of states of S, number of threads x.

Output: Minimal length k of a distinguishing sequence for the given initial

pair of FSM S or a message “there is no adaptive distinguishing sequence for

the pair”.

Apply Step-1 of Parallel Algorithm B

Modifying Step-1.1, Step-1.2 & Step-1.3 of Parallel Algorithm B as below:

Step-1.1: // Dividing set Q′ on multi-core CPU via multiple threads

47

Divide:

Divide the set Q′ into disjoint subsets of ordered sets;

xQQ 1 (where x is number of threads)

Let yG be the function, such that yG → ℕ, which calculates the index

for the first item, (i.e., pair of states of S) of the ordered set xQ , and is

given by:

11)1(

11
)(

yifyH

yif
yG (2)

where xy ,2,1

Let yH be the function, such that yH → ℕ, which calculates the index

for the last item (i.e., pair of states of S) of the ordered set xQ , and is

given by:

xyif

xyif

yif

Q

x

Q
yG

x

Q

yH

1

1

1)()((3)

where xy ,2,1 and Q is the size of set Q′

Step-1.2:

Do in Parallel

For each subset vQ (where v 1….. x) do the following:

Let vm be the first item (i.e., pair of states of S) of the ordered set Q′v

then:

 vGmv

Let vn be the last item (i.e., pair of states of S) of the ordered set Q′v

then:

 vHnv

Let current = vm ;

48

While (vncurrent) do:

Derive the set of all i-o-successors of current pair

current++;

End-while

End-for

End Parallel

Step-1.3:

Join: // Join partial subsets created in Step 1.1 in the set Q′.

Apply Step-2, Step-3 & Step-4 of Parallel Algorithm B

4.2.2 GPU Implementations for Parallel Algorithm B (CUDAB and ThrustB)

In this section, we present two implementations for Parallel Algorithm B on a

GPU. In these implementations, we partition the data (i.e., subsets (pairs) of states)

over the GPU cores depending upon the computing capability of the GPU device.

The execution on the GPU can be carried out by using either of two software

platforms: CUDA or Thrust.

GPU Implementation for execution on CUDA (CUDAB)

Description: An implementation of Parallel Algorithm B on a GPU using CUDA

for determining the minimal length of an adaptive distinguishing experiment for

a pair of states of an FSM S

Input: Complete observable nondeterministic FSM S = (S, I, O, hS) with

initial pair of states of S.

Output: Minimal length k of a distinguishing sequence for the given initial

pair of FSM S or a message “there is no adaptive distinguishing sequence for

the pair”.

Apply Step-1 of Parallel Algorithm B

Modify Step-1.1, 1.2 & Step-1.3 of Parallel Algorithm B as below:

Step-1.1: // Dividing set Q′ on the GPU by following kernel configurations:

49

Divide:

Divide set Q′ into disjoint subsets of ordered sets, such that the number of

disjoint subset equals the number of pairs M, and each disjoint subset

contains a single pair ji, :

MQQ 1 (where M is the number of pairs)

Create threads t on the GPU such that the number of threads equals the

number of disjoint subsets.

Assign each subset VQ to a corresponding thread Vt (where MV 1).

Step-1.2:

Do in parallel

For each subset VQ (where MV 1), do the following on the GPU:

Derive the set of all i-o-successors of the pair ji, in the subset VQ

End-for

End Parallel

Step-1.3:

Join: // Join partial subsets created in Step 1.1 in the set Q′.

Apply Step-2, Step-3 & Step-4 of Parallel Algorithm B

GPU Implementation for execution on Thrust (ThrustB)

Description: An implementation of Parallel Algorithm B on a GPU using Thrust

for determining the minimal length of an adaptive distinguishing experiment for

a pair of states of an FSM S

Input: Complete observable nondeterministic FSM S = (S, I, O, hS) with

initial pair of states of S.

Output: Minimal length k of a distinguishing sequence for the given initial

pair of FSM S or a message “there is no adaptive distinguishing sequence for

the pair”.

Apply Step-1 of Parallel Algorithm B

Modify Step-1.1, Step-1.2 & Step-1.3 of Parallel Algorithm B as below:

50

Step-1.1: // Dividing set Q′ on the GPU through Functor using the following

steps:

Divide:

Divide set Q′ into disjoint subsets of ordered sets, such that the number

of disjoint subsets equals the number of pairs M and each disjoint subset

contains a single pair ji, :

MQQ 1 (where M is the number of pairs)

Step-1.2:

Create a Functor and assign all the disjoint subsets to the functor which

performs the following operations:

Start Functor:

Assign each subset VQ to a corresponding thread Vt (where MV 1).

Do in parallel

For each subset VQ (where MV 1), do the following on the GPU:

Derive the set of all i-o-successors of the pair ji, in the subset VQ

End-for

End Parallel

End Functor

Step-1.3:

Join: // Join partial subsets created in Step 1.1 in the set Q′.

Apply Step-2, Step-3 & Step-4 of Parallel Algorithm B

4.2.3 Multiple-Node Implementation of Parallel Algorithm B (MNB)

In this section, we present an implementation of Parallel Algorithm B on a NoW

via multiple nodes. In this implementation, we partition the data (i.e., subsets (pairs)

of states) over multiple nodes (N) in the NoW. We consider node computation

capability, communication speed amongst the nodes, communication overhead, and

constant overhead associated with the computation at the node. In order to partition

the data optimally, we formulate a model which uses Divisible Load Theory (DLT),

described in detail in Chapter 2. In order to attain optimum execution time, we take

51

into consideration that all the nodes must finish on time. The formulation of the

model is shown below:

In the data partitioning model we make the following assumptions:

1. All the nodes read the machine description (N-port setup).

2. The master node collects the partial results and solves the problem by

finding the length of the distinguishing sequence.

The following are notations which are used in the formulation.

 bd: constant communication overhead during distribution (sec)

 ld: (inverse) communication speed during distribution (sec/byte)

 bc: constant communication overhead during result collection (sec)

 lc: (inverse) communication speed during result collection (sec/byte)

 pi: (inverse) computation speed of node Pi (sec/transition)

 ei: constant overhead associated with the computation at node Pi (sec)

 parti: part of load assigned to node Pi

 B: size of machine description in bytes

 T: number of transitions

 O: size of I/O successors table (bytes)

 N: number of nodes

 ti
distr: Distribution time for the node i

 ti
comp: Computation time for the node i

 ti
coll: Collection time for the node i

The formulation for the model is presented below:

∀ node i ∈ [1, N − 1] compute:

ti
distr = ld · B + bd (4)

ti
comp = parti · pi · T + ei (5)

ti
coll = lc parti · O + bc (6)

For the master node we have t0
coll = 0.

To minimize the overall execution time, all the nodes must finish at the same

time. Thus we have:

 i
coll

i
comp

i
distrcompdistr ttttt 00

52

 ciciiidddd bpartleTppartbBleTppartbBl ... 000

 ciciii bOpartleTpparteTppart .000

)(000 OlTppartbeeTppart ciici

OlTp

bee

OlTp

Tp
partpart

ci

ci

ci

i

 00

0 (7)

From the normalization equation we can calculate part0:

1

0

1
N

i
ipart

1

0

0
1

1

0
0 11

N

i ci

ci
N

i ci OlTp

bee

OlTp

Tp
part

1

1

0

1

1

0

0

1

1

N

i
ci

N

i
ci

ci

OlTp

Tp

OlTp

ebe

part (8)

From the model above, ipart (where i = 0, 1, 2… N-1) represents computation

load for a particular node; in particular, part0 represents the load for the master node,

and ipart represents the percentage for the number of subsets (pairs) of the states

that each node should compute for deriving I/O-successors. Appendix A provides

more information about how the model parameters can be derived.

After computing the load for each node, ipart can be applied as an input to the

implementation, so that each node can be assigned with the number of subsets (pairs)

of states for the derivation of I/O-successors.

We consider two types of nodes in the NoW: sequential nodes and nodes

containing GPUs. To identify the type of each node, we apply node type as an input

parameter in the implementation.

This implementation is well suited for execution on a NoW via multiple-node

execution, and is shown below.

53

Multiple-Node Implementation (MNB)

Description: An implementation of Parallel Algorithm B on a NoW via

multiple-nodes for determining the minimal length of an adaptive distinguishing

experiment for a pair of states of an FSM S

Input: Complete observable nondeterministic FSM S = (S, I, O, hS) with

initial pair of states of S, ipart (the computation load for each node N), type of

node (i.e. either Sequential or GPU), number of nodes N.

Output: Minimal length k of a distinguishing sequence for the given initial

pair of FSM S or a message “there is no adaptive distinguishing sequence for

the pair”.

Apply Step-1 of Parallel Algorithm B

Modify Step-1.1, Step-1.2 & Step-1.3 of Parallel Algorithm B as shown below:

Step-1.1: // Dividing set Q′ on the NoW via multiple nodes on the Master Node

Divide:

Divide the set Q′ into disjoint subsets of ordered sets;

10

NQQ (where N is number of nodes)

Let yU be the function, such that yU → ℕ, which calculates the index

for the first item, (i.e., pair of states of S) of the ordered set 1

NQ , and is

given by:

01)1(

01
)(

yifyW

yif
yU (9)

where 12,1,0 Ny

Let yW be the function, such that yW → ℕ, which calculates the

index for the last item (i.e., pair of states of S) of the ordered set 1

NQ , and

is given by:

1

11

0

1)()(

Nyif

Nyif

yif

M

partMroundyU

partMround

yW y

y

 (10)

54

where 12,1,0 Ny and M is the number of pairs of states S

For each v N in [0, N – 1], do the following:

Let vm be the first item (i.e., pair of states of S) of the ordered set Q′

then:

 vUmv

Let vn be the last item (i.e., pair of states of S) of the ordered set Q′v

then:

 vVnv

End-for

Step-1.2:

Do in Parallel

For each subset vQ (where v 0...N-1), do on multiple nodes the

following:

If the node is a Sequential Node

 Apply Step-2 of Algorithm B on subset vQ

Else if the node is a GPU Node

 Apply Step-1.1, Step-1.2 & Step-1.3 of CUDAB on subset vQ

End-for

End Parallel Execution

Step-1.3:

Join: // Join partial subsets created in Step 1.1 at the Master Node in the set

Q′.

Apply Step-2, Step-3 & Step-4 of Parallel Algorithm B

In the next chapter, we present the results of the experimental evaluation of the

sequential algorithms presented in Chapter 3 and parallel algorithms presented in this

chapter. For each algorithm, we record the execution time that it takes to determine

the minimal length for a distinguishing sequence. Based on the recorded execution

time for each algorithm, we perform related analyses as described in detail in Chapter

5.

55

Chapter 5: Experimental Evaluation

In this chapter, we present the results of the sequential and parallel

implementations of algorithms described in Chapters 3 and 4. We conducted many

experiments by generating different FSMs by a generator used in [53] with all the

possible combinations shown in Table 4. For each combination we generated five

FSMs and for each generated FSM we considered five different initial pairs.

Therefore in total we experimented with 2000 machines (i.e., 80 combinations, 5

FSMs for each combination, and 5 different initial pairs for each FSM). For each

experiment, we run sequential and parallel algorithms and determine the minimal

length of an adaptive experiment. We compare (a) the time taken by each algorithm

to reach a solution, (b) the speedup (defined as how much faster the parallel

algorithm is in comparison to the sequential algorithms).

Table 4. Combinations of Generated FSMs

Inputs Outputs States Determinism Range

4 4 100 50 50-60

6 6 150 60 60-70

8 8 200 70 70-80

10 10 250 80 80-90

 12

The system configuration and platform details of the test beds on which the

experiments were conducted are shown in Table 5.

Table 5. System Configuration & Platform Details

 Dune Kingpenguin Dune2

CPU
Core(TM) 2 Quad CPU
Q8200 @ 2.33 GHz

Intel(R) Xeon(R) CPU
E5-2640 @ 2.50GHz

Intel(R) Core(TM) i7-
4820K CPU @ 3.70GHz

CPU Cores 4 12 4

Threads/Core 1 2 2

RAM 4 GB 64 GB 32 GB

GPU Quadro 5000 - GeForce GTX 770

GPU Cores 352 - 1536

GPU RAM 2559 MBytes - 2048 MBytes

Compute Capability 2.0 - 3.0

Number of GPUs 1 - 2

The software environment is the same for all the test beds in Table 5 and is

mentioned below:

56

 Operating System: Kubuntu 14.04 (64 bit)

 Environment (IDE): Qt Creator 3.0.1

 Qt Version: Qt 5.2.1

 Compiler: GCC 4.8.2, 64 bit

 QMake version 3.0

 CUDA Driver Version / Runtime Version 6.5 / 6.5

Sequential algorithms A and B with corresponding parallel implementations

MTA, MTB, CUDAB, and ThrustB are tested on Dune as shown in Table 5. However,

the parallel implementation MNB is tested on the NoW. For this purpose, we consider

three machines as shown in Table 5, which are inter-connected and correspond to

multiple nodes in the network. For the execution of MNB, we consider three CPU

nodes and three GPU nodes which are listed below:

CPU Nodes:

 Dune

 Kingpenguin

 Dune2

GPU Nodes:

 Dune

 Dune2

Dune2 is considered as two GPU nodes because it consists of multiple (i.e., two)

GPUs in its hardware specifications, and these GPUs are capable of independent

concurrent executions.

In the sections below we compare the proposed algorithms and their

implementations to determine which one gives the best performance under different

circumstances. Special consideration is given to how the number of transitions (i.e.,

the size) and non-determinism of the FSM affects the overall execution time. For this

purpose, we considered FSMs in three categories based on their sizes (i.e., number of

transitions) which are as follows:

 Small FSMs: number of transitions ranges from 100,000 to 1 million.

 Medium FSMs: number of transitions ranges from 1 million to 1.5 million.

 Big FSMs: number of transitions ranges from 1.5 million to 5 million.

57

5.1 Execution Time versus Number of Transitions of Sequential Algorithms A

and B

In this section, we compare the execution times of the two sequential algorithms

(A and B) and determine which one gives the best performance as the number of

transitions increases. Figures 8 and 9 depict the results for all the experiments

conducted for sequential algorithms.

Figure 8. Algorithm A versus Algorithm B for Small and Medium FSMs

Figure 9. Algorithm A versus Algorithm B for Big FSMs

According to the results depicted in Figures 8 and 9, the similarity between both

sequential algorithms is that the execution time increases exponentially with an

increasing number of transitions. However, the performance of Algorithm A is better

than Algorithm B. We also observe that in special cases where the length of the

 0.100

 0.300

 0.900

 2.700

 8.100

 24.300

 72.900

0
.1

0

0
.5

0

0
.9

0

1
.3

0Ex
e

cu
ti

o
n

 T
im

e
 (

m
in

s)
 in

 L
o

g 1
0

Number of Transitions (Millions)

A B

 3.50

 10.50

 31.50

 94.50

 283.50

 850.50

1
.5

2
.5

3
.5

4
.5

5
.5Ex

e
cu

ti
o

n
 T

im
e

 (
m

in
s)

 in
 L

o
g 1

0

Number of Transitions (Millions)

A B

58

distinguishing sequence is one (i.e. the distinct points in the Figure 9) the execution

time of Algorithm A is significantly better than Algorithm B.

5.2 Execution Time versus Number of Transitions of Sequential Algorithm A

Against MTA

In this section, we compare the execution times of (sequential) Algorithm A with

the multi-threaded implementation of Parallel Algorithm A. The purpose of this

comparison is to analyze the difference in execution time between them and quantify

the speedup that can be achieved. The results are summarized in Figures 10 and 11.

Figure 10. Algorithm A versus MTA for Small and Medium FSMs

Figure 11. Algorithm A versus MTA for Big FSMs

 0.100

 0.300

 0.900

 2.700

 8.100

 24.300

 72.900

0
.1

0

0
.5

0

0
.9

0

1
.3

0

Ex
e

cu
ti

o
n

 T
im

e
 (

m
in

s)
 in

 L
o

g 1
0

Number of Transitions (Millions)

A MTᴬ (Threads = 2) MTᴬ (Threads = 4)

 4.50

 13.50

 40.50

 121.50

 364.50

1
.5

0

2
.5

0

3
.5

0

4
.5

0

Ex
e

cu
ti

o
n

 T
im

e
 (

m
in

s)
 in

 L
o

g 1
0

Number of Transitions (Millions)

A MTᴬ (Threads = 2) MTᴬ (Threads = 4)

59

According to the results depicted in Figures 10 and 11, both algorithms exhibited

an exponential increase in execution time with number of transitions. However, the

speedup obtained is less favorable than MTB as mentioned later in Section 5.3.

Figure 12. Speedup for MTA w.r.t. (Sequential) Algorithm A for Small and

Medium FSMs

Figure 13. Speedup for MT A w.r.t. (Sequential) Algorithm A for Big FSMs

Figures 12 and 13 illustrate a wide variation in the speedup. In the cases where

the speedup for MTA did not even scale above one, the length of the distinguishing

0.00

1.00

2.00

3.00

4.00

0
.1

0

0
.5

0

0
.9

0

1
.3

0

Sp
e

e
d

u
p

Number of Transitions (Millions)

Speedup MTᴬ(Threads = 2) Speedup MTᴬ (Threads = 4)

0.00

1.00

2.00

3.00

4.00

1
.5

0

2
.5

0

3
.5

0

4
.5

0

Sp
e

e
d

u
p

Number of Transitions (Millions)

Speedup MTᴬ(Threads = 2) Speedup MTᴬ (Threads = 4)

60

sequence is one and the sequential algorithm gives the better performance as

compared to MTA.

The variation in speedup is due to the varying length of the distinguishing

sequence and I/O-successors derived. Since the (sequential) Algorithm A derives

I/O-successors iteratively for each subset of states and then proceeds to check the

solution, there is a possibility that it finds the solution before iterating through all the

subsets and transitions in the FSM, especially when the solution (i.e., the length of

the distinguishing sequence) is one. Therefore when the length of the distinguishing

sequence is one, MTA is much more costly in terms of execution time than

(sequential) Algorithm A.

5.3 Execution Time versus Number of Transitions of Sequential Algorithm B

Against MTB

In this section, we compare the execution times for (sequential) Algorithm B and

the multi-threaded implementation of Parallel Algorithm B. The purpose of this

comparison is to analyze the difference in execution time between them and

determine whether we attain speedup in multi-threaded implementation. Figures 14

and 15 depict the results for all the experiments conducted for sequential and parallel

multi-threaded implementation of Algorithm B.

Figure 14. Sequential Algorithm B versus MTB for Small and Medium FSMs

 0.100

 0.300

 0.900

 2.700

 8.100

 24.300

 72.900

0
.1

0

0
.5

0

0
.9

0

1
.3

0

Ex
e

cu
ti

o
n

 T
im

e
 (

m
in

s)
 in

 L
o

g 1
0

Number of Transitions (Millions)

B MTᴮ (Threads = 2) MTᴮ (Threads = 4)

61

Figure 15. Sequential Algorithm B versus MTB for Big FSMs

According to the results depicted in Figures 14 and 15, the similarity between

both algorithms is that the execution time for both of them scales exponentially with

an increasing number of transitions.

Figure 16. Speedup for MTB w.r.t. (Sequential) Algorithm B for Small and Medium

FSMs

 6.00

 18.00

 54.00

 162.00

 486.00

1
.5

0

2
.5

0

3
.5

0

4
.5

0Ex
e

cu
ti

o
n

 T
im

e
 (

m
in

s)
 in

 L
o

g 1
0

Number of Transitions (Millions)

B MTᴮ (Threads = 2) MTᴮ (Threads = 4)

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

0
.1

0

0
.5

0

0
.9

0

1
.3

0

Sp
e

e
d

u
p

Number of Transitions (Millions)

Speedup MTᴮ (Threads = 2) Speedup MTᴮ (Threads = 4)

62

Figure 17. Speedup for MTB w.r.t. Sequential Algorithm B for Big FSMs

According to the results depicted in Figures 17 and 18, we obtain nearly 2x

speedup for two threads and nearly 4x speedup for four threads as compared to

(sequential) Algorithm B.

The implementation of MTB is based on equal partitioning of the problem data

(i.e., subsets (pairs) of states are divided equally amongst the threads); therefore all

the threads share the load equally, and we obtain a stable improvement in execution

time.

5.4 Execution Time versus Number of Transitions for Sequential Algorithms

Against Other Parallel Implementations

In this section, we compare the execution time for sequential algorithms A and B

with other parallel implementations which include GPU implementations (CUDAB

and ThrustB) and multiple-node implementation (MNB) of Parallel Algorithm B. The

purpose of this comparison is to analyze the speedup for GPU implementations and

multiple-node implementation against sequential algorithms. Figures 18 and 19

depict the results for all conducted experiments for sequential algorithms, GPU

implementations, and multiple-node implementations.

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

1
.5

0

2
.5

0

3
.5

0

4
.5

0

Sp
e

e
d

u
p

Number of Transitions (Millions)

Speedup MTᴮ (Threads = 2) Speedup MTᴮ (Threads = 4)

63

Figure 18. Sequential Algorithms versus Other Parallel Implementations for

Small and Medium FSMs

Figure 19. Sequential Algorithms versus Other Parallel Implementations for Big

FSMs

According to the results depicted in Figures 18 and 19, the execution time for all

algorithms and implementations increases exponentially with the number of

transitions. The results also show that in the beginning when the number of

transitions is less (i.e. for small FSMs), the difference in execution time is not

 0.060

 0.180

 0.540

 1.620

 4.860

 14.580

 43.740

 131.220

0
.1

0

0
.5

0

0
.9

0

1
.3

0

Ex
e

cu
ti

o
n

 T
im

e
 (

m
in

s)
 in

 L
o

g 1
0

Number of Transitions (Millions)

 3.00

 9.00

 27.00

 81.00

 243.00

 729.00

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

5
.0

Ex
e

cu
ti

o
n

 T
im

e
 (

m
in

s)
 in

 L
o

g 1
0

Number of Transitions (Millions)

64

significant. However, when the number of transition increases (i.e. for medium and

big FSMs), the difference in execution time increases for all CUDAB, ThrustB, and

MNB. MNB gives the best performance throughout the experiments amongst the

considered parallel implementations. The second best is CUDAB and the third best is

ThrustB. There are distinct cases where (sequential) Algorithm A performs better

than ThrustB and CUDAB; in such cases again the length of the distinguishing

sequence is one and the (sequential) Algorithm A does not iterate through all the

subsets and transitions, giving better performance than other implementations.

Figure 20. Speedup for Other Parallel Implementations w.r.t (Sequential)

Algorithm A for Small and Medium FSMs

Figure 21. Speedup for Other Parallel Implementations w.r.t (Sequential)

Algorithm A for Big FSMs

0.00

2.00

4.00

6.00

8.00

10.00

12.00

0
.1

0

0
.5

0

0
.9

0

1
.3

0

Sp
e

e
d

u
p

Number of Transitions (Millions)

Speedup Thrustᴮ Speedup CUDAᴮ Speedup MNᴮ

0.00

2.00

4.00

6.00

8.00

10.00

12.00

1
.5

0

2
.5

0

3
.5

0

4
.5

0

Sp
e

e
d

u
p

Number of Transitions (Millions)

Speedup Thrustᴮ Speedup CUDAᴮ Speedup MNᴮ

65

Figures 20 and 21 illustrate the speedup w.r.t. to (sequential) Algorithm A. As

observed, there is a constant variation in the speedup obtained for all small to big

FSMs. Although there are cases in which MNB scales up to 10x times, CUDAB scales

up to 8x times, and ThrustB scales up to 6x times faster than the (sequential)

Algorithm A. There are also some distinct cases (i.e., in which the length of the

distinguishing sequence is one), but these implementations fail to scale above one,

and in such cases parallel implementations are more costly in terms of execution time

rather than (sequential) Algorithm A. The trend in the performance measure also

remains the same (i.e., MNB gives better performance than CUDAB and ThrustB, and

CUDAB gives better performance than ThrustB).

The cause for the constant variation in this speedup is mentioned later in Section

5.6, where we analyze speedup from a different perspective and provide the reasons

for this variation.

Figure 22. Speedup for Other Parallel Implementations w.r.t (Sequential)

Algorithm B for Small and Medium FSMs

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

0
.1

0

0
.5

0

0
.9

0

1
.3

0

Sp
e

e
d

u
p

Number of Transitions (Millions)

Speedup Thrustᴮ Speedup CUDAᴮ Speedup MNᴮ

66

Figure 23. Speedup for Other Parallel Implementations w.r.t (Sequential)

Algorithm B for Big FSMs

Figures 22 and 23 illustrate the speedup w.r.t. to (sequential) Algorithm B. For

small to medium FSMs, the speedup varies frequently. However, in distinct cases,

MNB scales up to 14x times, CUDAB scales up to 10x times, and ThrustB scales up to

8x times faster than the (sequential) Algorithm B. For big FSMs, we observe a stable

improvement in execution time. The speedup for MNB is constantly above 11x times,

and is significantly faster than CUDAB and ThrustB. The speedup for CUDAB is

nearly 5x times and gives better performance than ThrustB. The speedup for ThrustB

is around 3x times.

5.5 Execution Time versus Number of Transitions for Multi-Threaded

Implementations Against Other Parallel Implementations

In this section, we compare the execution time for multi-threaded

implementations against other parallel implementations which include CUDAB,

ThrustB and MNB. We consider four threads for multi-threaded implementations. The

purpose of this comparison is to determine the best parallel implementation amongst

them. Figures 24 and 25 summarize the results for all the parallel implementations.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

1
.5

0

2
.5

0

3
.5

0

4
.5

0

Sp
e

e
d

u
p

Number of Transitions (Millions)

Speedup Thrustᴮ Speedup CUDAᴮ Speedup MNᴮ

67

Figure 24. Multi-Threaded Implementations versus Other Parallel Implementations

for Small and Medium FSMs

Figure 25. Multi-Threaded Implementations versus Other Parallel

Implementations for Big FSMs

According to the results depicted in Figures 24 and 25, for all the

implementations, execution time increases exponentially with an increasing number

of transitions. For small FSMs, the execution time for all the parallel

implementations is almost the same. For the medium FSMs, the execution times for

 0.030

 0.090

 0.270

 0.810

 2.430

 7.290

 21.870

0
.1

0

0
.5

0

0
.9

0

1
.3

0

Ex
e

cu
ti

o
n

 T
im

e
 (

m
in

s)
 in

 L
o

g 1
0

Number of Transitions (Millions)

 3.00

 9.00

 27.00

 81.00

 243.00

1
.6

2
.1

2
.6

3
.1

3
.6

4
.1

4
.6

5
.1

Ex
e

cu
ti

o
n

 T
im

e
 (

m
in

s)
 in

 L
o

g 1
0

Number of Transitions (Millions)

68

MTA, MTB, ThrustB and CUDAB are close to each other. However, MNB performs

slightly better than all the other implementations. For big FSMs, the performance of

MNB is significantly better than all the other implementations. MTA and CUDAB

have the same performance for execution time whereas MTB and ThrustB have the

same performance for execution time. Hence, we can conclude that MNB has the best

performance throughout (i.e. ignoring the performance of MNB in the small FSMs).

However, MTB and ThrustB are costly in performance amongst the parallel

implementations.

5.6 Achieved Speedup with Respect to Algorithm A

In this section, we study the relative performance improvement for all the parallel

implementations through analyzing the speedup achieved in each experiment w.r.t.

(sequential) Algorithm A. For this study, we categorize the considered FSMs

according to the number of states. We have four main categories where the number

of states are 100, 150, 200, and 250. These categories are further subdivided based on

the number of inputs and outputs. Further, for each combination of number of states,

number of inputs and number of outputs we consider four different ranges of non-

determinism (i.e. R1 = 50 %, R2 = 60 %, R3 = 70 %, R4 = 80 %). Figures 26, 27, 28

and 29 depict the results of all conducted experiments.

Figure 26. Achieved Speedup w.r.t. Algorithm A (States = 100)

1.0

2.0

3.0

4.0

5.0

6.0

0
.0

4
5

0
.0

6
3

0
.0

8
5

0
.1

0
9

0
.0

6
7

0
.0

9
4

0
.1

2
7

0
.1

6
4

0
.0

8
8

0
.1

2
5

0
.1

6
8

0
.2

1
8

0
.1

1
1

0
.1

5
6

0
.2

1
0

0
.2

7
2

0
.1

3
2

0
.1

8
7

0
.2

5
2

0
.3

2
8

Sp
e

e
d

u
p

Number of Transitions (Millions)

Number of States = 100

MTᴬ (Threads = 2) MTᴬ (Threads = 4) Thrustᴮ CUDAᴮ MNᴮ

R
1

R
2

R
3

R
4

R
1

R
2

R
3

R
4

R
1

R
2
 R

3

R
1

R
2

R
3
 R

4

R
1

R
2

R
3

R
4

R
4

i = 4 / o = 4 i = 4 / o = 6 i = 4 / o = 8 i = 4 / o = 10 i = 4 / o = 12

69

Figure 27. Achieved Speedup w.r.t. Algorithm A (states = 150)

Figure 28. Achieved Speedup w.r.t. Algorithm A (states = 200)

1.0

3.0

5.0

7.0

9.0

11.0

0
.1

4
9

0
.2

1
2

0
.2

8
4

0
.3

6
7

0
.2

2
3

0
.3

1
7

0
.4

2
7

0
.5

5
2

0
.2

9
8

0
.4

2
2

0
.5

6
8

0
.7

3
5

0
.3

7
1

0
.5

2
6

0
.7

0
9

0
.9

1
9

0
.4

4
9

0
.6

3
2

0
.8

5
4

1
.1

0
2

Sp
e

e
d

u
p

Number of Transitions (Millions)

Number of States = 150
MTᴬ (Threads = 2) MTᴬ (Threads = 4) Thrustᴮ CUDAᴮ MNᴮ

1.0

3.0

5.0

7.0

9.0

11.0

0
.3

5
3

0
.5

0
2

0
.6

7
3

0
.8

7
3

0
.5

3
0

0
.7

4
9

1
.0

1
0

1
.3

0
8

0
.7

0
5

1
.0

0
1

1
.3

4
4

1
.7

4
1

0
.8

8
0

1
.2

5
0

1
.6

8
2

2
.1

7
6

1
.0

5
7

1
.5

0
1

2
.0

1
6

2
.6

1
3

Sp
e

e
d

u
p

Number of Transitions (Millions)

Number of States = 200

MTᴬ (Threads = 2) MTᴬ (Threads = 4) Thrustᴮ CUDAᴮ MNᴮ

i = 6 / o = 4 i = 6 / o = 6 i = 6 / o = 8 i = 6 / o = 10 i = 6 / o = 12

R
1

R
2

R
3

R
4

R
1

R
2

R
3

R
1

R
2

R
1

i = 8 / o = 4

R
2

i = 8 / o = 6

R
3

R
4

R
1

R
2

i = 8 / o = 8

R
3

R
4

R
4

R
3

R
4

i = 8 / o = 10 i = 8 / o = 12

R
1
 R

2

R
3

R
4

R
1

R
2

R
3

R
4

R
1

R
2

R
3

R
4

R
1
 R

2

R
3

R
4

R
1

R
2

R
3

R
4

70

Figure 29. Achieved Speedup w.r.t. Algorithm A (states = 250)

According to the results depicted in Figures 26 to 29, we observe that when the

number of states is 100, the speedup for ThustB, CUDAB and MNB is less than the

speedup for MTA (Threads = 4), hence giving better performance. We also noted that

the speedup for MTA (Threads = 2) and MTA (Threads = 4) varies throughout. This

variation in speedup is due to the distinct cases where the length of the distinguishing

sequence is one and there is a high probability that the sequential algorithm will find

the solution without iterating through all the subsets and transitions, resulting in less

execution time.

Similarly, there are distinct cases (i.e., in which the length of the distinguishing

sequence is one). Most of these algorithms are not able to scale above speedup of

one. In such cases, (sequential) Algorithm A performs better than the parallel

implementations. However, when FSMs get bigger (i.e. number of states = 150, 200

and 250) we observe a trend in the variations for speedup in ThustB, CUDAB and

MNB. A summary of these variations is provided below:

1.0

3.0

5.0

7.0
0

.6
9

0

0
.9

7
7

1
.3

1
6

1
.7

0
1

1
.0

3
4

1
.4

6
4

1
.9

7
0

2
.5

5
4

1
.3

7
7

1
.9

5
2

2
.6

2
8

3
.4

0
1

1
.7

1
7

2
.4

4
3

3
.2

8
5

4
.2

4
6

2
.0

6
2

2
.9

2
8

3
.9

4
2

5
.1

0
4

Sp
e

e
d

u
p

Number of Transitions (Millions)

Number of States = 250

MTᴬ (Threads = 2) MTᴬ (Threads = 4) Thrustᴮ CUDAᴮ MNᴮ

i = 10 / o = 4 i = 10 / o = 6 i = 10 / o = 8 i = 10 / o = 10 i = 10 / o = 12

R
1

R
2

R
3

R
4

R
1

R
2

R
3

R
4

R
1

R
2

R
3

R
4

R
1

R
2

R
3

R
4

R
1

R
2

R
3

R
4

71

a) As we increase the number of states, the speedup increases. This happens

because GPUs are composed of thousands of computing cores which are able

to perform operations in parallel. In order to utilize these cores efficiently, we

need to put as much workload as possible on them, because the higher the

ratio between computation and communication, the more efficient the

execution is on a GPU. In the GPU implementations, we spawn as many

threads as the number of subsets, hence when we increase the number of

states, the number of subsets increases which puts more workload on the

GPU, thus utilizing more cores and giving efficient execution. Hence, this

results in increasing the speedup.

b) In general, increasing the range of non-determinism increases the number of

transitions. Therefore, for a fixed number of states, number of inputs, and

number of outputs, if we keep increasing the range of non-determinism the

number of transitions increases, which puts more workload on GPUs, thus

utilizing them more efficiently and resulting in increased speedup.

c) For a given number of states, if we increase the number of outputs while

keeping the number of inputs unchanged, the speedup decreases. This

happens because as we increase the number of outputs, the number of I/O-

successors and number of transitions increases. Therefore, it takes more time

to find the solution, and as a result speedup decreases.

5.7 Achieved Speedup with Respect to Algorithm B

In this section, we study the relative performance improvement for all the parallel

implementations, through analyzing the speedup achieved in each experiment w.r.t.

to the (sequential) Algorithm B. For this study, we categorize FSMs in the same

order as mentioned in Section 5.6. Figures 30, 31, 32 and 33 depict the results of all

conducted experiments.

72

Figure 30. Achieved Speedup w.r.t. Algorithm B (States = 100)

Figure 31. Achieved Speedup w.r.t. Algorithm B (states = 150)

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0
0

.0
4

5

0
.0

6
3

0
.0

8
5

0
.1

0
9

0
.0

6
7

0
.0

9
4

0
.1

2
7

0
.1

6
4

0
.0

8
8

0
.1

2
5

0
.1

6
8

0
.2

1
8

0
.1

1
1

0
.1

5
6

0
.2

1
0

0
.2

7
2

0
.1

3
2

0
.1

8
7

0
.2

5
2

0
.3

2
8

Sp
e

e
d

u
p

Number of Transitions (Millions)

Number of States = 100

MTᴮ (Threads = 2) MTᴮ (Threads = 4) Thrustᴮ CUDAᴮ MNᴮ

1.0

3.0

5.0

7.0

9.0

11.0

13.0

0
.1

4
9

0
.2

1
2

0
.2

8
4

0
.3

6
7

0
.2

2
3

0
.3

1
7

0
.4

2
7

0
.5

5
2

0
.2

9
8

0
.4

2
2

0
.5

6
8

0
.7

3
5

0
.3

7
1

0
.5

2
6

0
.7

0
9

0
.9

1
9

0
.4

4
9

0
.6

3
2

0
.8

5
4

1
.1

0
2

Sp
e

e
d

u
p

Number of Transitions (Millions)

Number of States = 150

MTᴮ (Threads = 2) MTᴮ (Threads = 4) Thrustᴮ CUDAᴮ MNᴮ

i = 4 / o = 4 i = 4 / o = 6 i = 4 / o = 8 i = 4 / o = 10 i = 4 / o = 12

R
1

R
2

R
3

R
4

R
1

R
2

R
3

R
4

R
1
 R

2

R
3
 R

4

R
1
 R

2
 R

3

R
4

R
1

R
2

R
3

R
4

i = 6 / o = 4 i = 6 / o = 6 i = 6 / o = 8 i = 6 / o = 10 i = 6 / o = 12

R
1

R
2

R
3
 R

4

R
1

R
2

R
3

R
4

R
1

R
2

R
3

R
4

R
1

R
2

R
3
 R

4

R
1

R
2
 R

3

R
4

73

Figure 32. Achieved Speedup w.r.t. Algorithm B (states = 200)

Figure 33. Achieved Speedup w.r.t. Algorithm B (states = 250)

According to the results depicted in Figures 30 to 33, we observe that the speedup

for MTB (Threads = 2) and MTB (Threads = 4) remains constant throughout the

conducted experiments (i.e., nearly up to 2 times and up to 4 times, respectively).

When the number of states is 100, the speedup for MTB (Threads = 4), ThustB,

1.0

3.0

5.0

7.0

9.0

11.0

13.0
0

.3
5

3

0
.5

0
2

0
.6

7
3

0
.8

7
3

0
.5

3
0

0
.7

4
9

1
.0

1
0

1
.3

0
8

0
.7

0
5

1
.0

0
1

1
.3

4
4

1
.7

4
1

0
.8

8
0

1
.2

5
0

1
.6

8
2

2
.1

7
6

1
.0

5
7

1
.5

0
1

2
.0

1
6

2
.6

1
3

Sp
e

e
d

u
p

Number of Transitions (Millions)

Number of States = 200

MTᴮ (Threads = 2) MTᴮ (Threads = 4) Thrustᴮ CUDAᴮ MNᴮ

1.0

3.0

5.0

7.0

9.0

11.0

0
.6

9
0

0
.9

7
7

1
.3

1
6

1
.7

0
1

1
.0

3
4

1
.4

6
4

1
.9

7
0

2
.5

5
4

1
.3

7
7

1
.9

5
2

2
.6

2
8

3
.4

0
1

1
.7

1
7

2
.4

4
3

3
.2

8
5

4
.2

4
6

2
.0

6
2

2
.9

2
8

3
.9

4
2

5
.1

0
4

Sp
e

e
d

u
p

Number of Transitions (Millions)

Number of States = 250

MTᴮ (Threads = 2) MTᴮ (Threads = 4) Thrustᴮ CUDAᴮ MNᴮ

i = 8 / o = 4 i = 8 / o = 6 i = 8 / o = 8 i = 8 / o = 10 i = 8 / o = 12

R
1

R

2

R
3

R
4

R
1

R
2

R
3

R
4

R
1

R
2

R
3
 R

4

R
1

R
2

R
3

R
4

R
1

R

2

R
3

R
4

i = 10 / o = 4 i = 10 / o = 6 i = 10 / o = 8 i = 10 / o = 10 i = 10 / o = 12

R
1

R
2

R
3

R
4

R
1

R
2

R
3
 R

4

R
1
 R

2

R
3

R
4

R
1
 R

2
 R

3

R
4
 R

1

R
2

R
3

R
4

74

CUDAB and MNB is almost the same. However, for bigger FSMs (i.e., number of

states = 150, 200 and 250) we observe a trend in the variations of speedup in ThustB,

CUDAB and MNB. The summary of these variations is the same as described in

Section 5.6.

5.8 Achieved Speedup versus Number of Transitions with Respect to Algorithm

A

In this section, we study the relative performance improvement by analyzing the

speedup achieved over the increasing number of transitions for parallel

implementations as compared to (sequential) Algorithm A. For this purpose, we

divide FSMs in two categories: Size-I FSMs in which the number of transitions goes

up to one million, and Size-II FSMs in which the number of transitions ranges from

one million to five million. In this section, for studying the overall performance

improvement, we did not consider each experiment individually; rather we took the

average of the speedup at regular intervals for the number of transitions. Figure 34

depicts the results of speedup in Size-I FSMs, and Figure 35 depicts the results of

speedup in Size-II FSMs.

Figure 34. Speedup versus Number of Transitions w.r.t. Algorithm A for the

Considered Size-I FSMs

 1.000

 3.000

 5.000

 0.25 0.50 0.75 1.00

Sp
e

e
d

u
p

Number of Transitions (Millions)

MTᴬ (Threads = 2) MTᴬ (Threads = 4) Thrustᴮ CUDAᴮ MNᴮ

75

Figure 35. Speedup versus Number of Transitions w.r.t. Algorithm A for the

Considered Size-II FSMs

According to the results depicted in Figures 34 and 35, speedup for MTA

(Threads = 2) and MT A (Threads = 4) in Size-I FSMs remains constant throughout

the intervals (i.e., nearly 1.5 times and nearly 3 times, respectively). However,

speedup for ThustB, CUDAB and MNB increases gradually, with intervals in Size-I

FSMs.

However in Size-II FSMs we see slight variations. Speedup for MT A (Threads =

2) increases gradually with intervals, whereas the speedup for MTA (Threads = 4),

ThustB, CUDAB and MNB remains constant throughout the intervals in Size-II FSMs.

MNB has significant gain in speedup throughout the intervals in both categories

whereas the speedup for CUDAB and MTA (Threads = 4) is close to each other in

both the categories. However, the speedup for ThustB is the lowest amongst the

parallel implementation, resulting in the worst performance amongst the parallel

implementations.

5.9 Achieved Speedup versus Number of Transitions with Respect to Algorithm

B

In this section, we study the relative performance improvement by analyzing the

speedup achieved over the increasing number of transitions for parallel

implementations as compared to (sequential) Algorithm B. For this purpose, we

 1.000

 3.000

 5.000

(1-2) (2-3) (3-5)

Sp
e

e
d

u
p

Number of Transitions (Millions)

MTᴬ (Threads = 2) MTᴬ (Threads = 4) Thrustᴮ CUDAᴮ MNᴮ

76

divide FSMs in two categories as mentioned in Section 5.8. Figure 36 depicts the

results of speedup in Size-I FSMs, and Figure 37 depicts the results of speedup in

Size-II FSMs.

Figure 36. Speedup versus Number of Transitions w.r.t. Algorithm B for the

Considered Size-I FSMs

Figure 37. Speedup versus Number of Transitions w.r.t. Algorithm B for the

Considered Size-II FSMs

According to the results depicted in Figures 36 and 37, speedup for MTB

(Threads = 2) and MTB (Threads = 4) remains constant throughout (i.e., nearly 2

times and nearly 4 times, respectively). However, speedup for ThustB, CUDAB and

 1.000

 3.000

 5.000

 7.000

 9.000

 11.000

 0.25 0.50 0.75 1.00

Sp
e

e
d

u
p

Number of Transitions (Millions)

MTᴮ (Threads = 2) MTᴮ (Threads = 4) Thrustᴮ CUDAᴮ MNᴮ

 1.000

 3.000

 5.000

 7.000

 9.000

 11.000

(1-2) (2-3) (3-5)

Sp
e

e
d

u
p

Number of Transitions (Millions)

MTᴮ (Threads = 2) MTᴮ (Threads = 4) Thrustᴮ CUDAᴮ MNᴮ

77

MNB increases, with intervals in the category of Size-I FSMs, whereas the speedup

for ThustB, CUDAB and MNB remains constant throughout the intervals in Size-II

FSMs.

MNB has a significant gain in speedup throughout the intervals in both categories.

Speedup for CUDAB is more significant than for ThustB, and speedup for ThustB is

more significant than for MTB (Threads = 4).

5.10 Summary of All Obtained Results

Below we provide a summary of the results for all conducted experiments. We

also provide summaries based on the three different categories of FSMs (small,

medium and big). For all FSMs and for each category, we rank (from best to worst)

the sequential/parallel algorithms according to (1) the execution time it takes to find

the solution and (2) the speedup achieved with respect to the sequential algorithms.

For the execution time, we rank (from best to worst) for lowest to highest execution

time. For speedup we rank (from best to worst) for highest to lowest speedup.

a) Summary of execution time (minutes) for all the conducted experiments:

Table 6. Summary of Execution Time (Minutes) for All the Conducted

Experiments

Rank
w.r.t

Execution
Time

All
Implementations

Average
Execution Time (mins)

1 MNB 5.53

2 CUDAB 11.80

3 MTA (Threads = 4) 12.12

4 ThrustB 16.84

5 MTB (Threads = 4) 17.19

6 Algorithm A 30.38

7 Algorithm B 62.27

78

b) Summary of execution time (minutes) for the considered categories of FSMs:

Table 7. Summary of Execution Time (Minutes) for Small FSMs

Rank
w.r.t

Execution Time

All
Implementations

Average
Execution Time (mins)

1 MNB 0.72

2 CUDAB 1.17

3 MTA (Threads = 4) 1.23

4 ThrustB 1.47

5 MTB (Threads = 4) 1.80

6 Algorithm A 3.29

7 Algorithm B 6.45

Table 8. Summary of Execution Time (Minutes) for Medium FSMs

Rank
w.r.t

Execution Time

All
Implementations

Average
Execution Time (mins)

1 MNB 3.44

2 MTA (Threads = 4) 6.82

3 CUDAB 7.30

4 ThrustB 9.67

5 MTB (Threads = 4) 9.97

6 Algorithm A 15.90

7 Algorithm B 37.00

Table 9. Summary of Execution Time (Minutes) for Big FSM

Rank
w.r.t

Execution Time

All
Implementations

Average
Execution Time (mins)

1 MNB 12.42

2 CUDAB 27.41

3 MTA (Threads = 4) 27.82

4 MTB (Threads = 4) 39.38

5 ThrustB 39.79

6 Algorithm A 71.94

7 Algorithm B 143.36

79

c) Summary for speedup with respect to (sequential) Algorithm A for all the

conducted experiments:

Table 10. Speedup w.r.t (Sequential) Algorithm A for All the Conducted

Experiments

Rank
w.r.t

Speedup

Parallel
Implementations

Average
Speedup

1 MNB 7.24

2 CUDAB 3.87

3 MTA (Threads = 4) 3.51

4 ThrustB 2.12

d) Summary for speedup with respect to (sequential) Algorithm A for the considered

categories of FSMs:

Table 11. Speedup w.r.t (Sequential) Algorithm A for Small FSMs

Rank
w.r.t

Speedup

Parallel
Implementations

Average
Speedup

1 MNB 4.54

2 CUDAB 2.81

3 MTA (Threads = 4) 2.67

4 ThrustB 2.23

Table 12. Speedup w.r.t (Sequential) Algorithm A for Medium FSMs

Rank
w.r.t

Speedup

Parallel
Implementations

Average
Speedup

1 MNB 4.620

2 MTA (Threads = 4) 2.330

3 CUDAB 2.178

4 ThrustB 1.645

80

Table 13. Speedup w.r.t (Sequential) Algorithm A for Big FSMs

Rank
w.r.t

Speedup

Parallel
Implementations

Average
Speedup

1 MNB 5.792

2 CUDAB 2.624

3 MTA (Threads = 4) 2.586

4 ThrustB 1.808

e) Summary for speedup with respect to (sequential) Algorithm B for all the

conducted experiments:

Table 14. Speedup w.r.t (Sequential) Algorithm B for All the Conducted

Experiments

Rank
w.r.t

Speedup

Parallel
Implementations

Average
Speedup

1 MNB 10.40

2 CUDAB 5.27

3 ThrustB 3.95

4 MTB (Threads = 4) 3.63

f) Summary for speedup with respect to (sequential) Algorithm B for the considered

categories of FSMs:

Table 15. Speedup w.r.t (Sequential) Algorithm B for Small FSMs

Rank
w.r.t

Speedup

Parallel
Implementations

Average
Speedup

1 MNB 8.91

2 CUDAB 5.51

3 ThrustB 4.38

4 MTB (Threads = 4) 3.58

81

Table 16. Speedup w.r.t (Sequential) Algorithm B for Medium FSMs

Rank
w.r.t

Speedup

Parallel
Implementations

Average
Speedup

1 MNB 10.75

2 CUDAB 5.07

3 ThrustB 3.83

4 MTB (Threads = 4) 3.71

Table 17. Speedup w.r.t (Sequential) Algorithm B for Big FSMs

Rank
w.r.t

Speedup

Parallel
Implementations

Average
Speedup

1 MNB 11.54

2 CUDAB 5.23

3 MTB (Threads = 4) 3.64

4 ThrustB 3.60

82

Chapter 6: Conclusion

FSMs are widely used in various application domains, such as

telecommunication, communication protocols and other reactive systems. In FSM-

based testing, we apply experiments on a machine or a black-box Implementation

Under Test (IUT) to deduce the required information. Experiments on FSMs consists

of applying input sequences, observing corresponding output responses and drawing

a conclusion about the machine under test. A distinguishing experiment determines

the initial state of the FSM, and such experiments are widely used when checking the

correspondence between transitions of an IUT and those of the specification FSM. In

particular, Kushik et al in [34] proposed an algorithm for deriving the minimal length

for an adaptive distinguishing experiment for any number of pairs of initial states for

a complete observable nondeterministic FSM.

In this thesis, we studied adaptive distinguishing experiments for non-

deterministic FSMs. To this end, we adapted the sequential algorithm proposed in

[34] and developed two sequential algorithms (A and B) to derive the minimal length

for an adaptive distinguishing experiment for a pair of initial states for a complete

observable nondeterministic FSM. Algorithm A derives I/O-successors iteratively

and checks for the solution (i.e., the length of the distinguishing sequence) in the

corresponding iteration, while Algorithm B derives all the I/O-successors in advance

and once the derivation is completed it proceeds to check the solution. We

implemented both the sequential algorithms (A and B) and conducted comprehensive

experiments on them. The sequential algorithms shows an exponential increase in the

execution time as the number of transitions (i.e., size of the machine) increases. We

also observed that in most cases, (sequential) Algorithm A gives the better

performance as compared to (sequential) Algorithm B. Especially in cases where the

length of the distinguishing sequence is one, we obtain significant gains in execution

time for Algorithm A. To obtain the solution (i.e. the length of the distinguishing

sequence) in a reasonable time, we implemented parallel versions of sequential

algorithms (A and B) based on different hardware and software platforms. The

parallel implementation of Algorithm B includes implementation on a multi-core

CPU via multiple threads (MTB), implementation on a GPU using tools like CUDA

and Thrust (CUDAB and ThrustB), and implementation on a NoW via multiple nodes

83

(MNB). Algorithm A has a single parallel implementation on a multi-core CPU via

multiple threads (MTA). We conducted comprehensive experiments on all the parallel

algorithms/implementations to assess their performance and to quantify the speedup

that could be obtained using parallel algorithms/implementations versus sequential

algorithms. We found that parallel implementations MNB, CUDAB, ThrustB, MTB,

and MTA scale exponentially with the number of transitions. The parallel

implementation MNB scales up to 14x times, CUDAB scales up to 10x times, and

ThrustB scales up to 8x times w.r.t to Algorithm B. The parallel implementation MNB

scales up to 10x times, CUDAB scales up to 8x times, and ThrustB scales up to 6x

times w.r.t to Algorithm A. For the multi-threaded implementation MTB, we

observed a stable speedup (i.e., nearly 2x speedup and 4x speedup for two and four

threads, respectively). However, for the multi-threaded implementation MTA we

observed a wide variation in the speedup, and this was due to the varying length of

the distinguishing sequence. As a result, the speedup obtained in MTA was less

favorable as compared to MTB. Overall, MNB gives the best performance amongst

the parallel implementations, CUDAB and MTA (Threads = 4) have the same

performance, and ThrustB and MTB (Threads = 4) have the same performance.

84

References

[1] D. Lee and M. Yannakakis, "Principles and methods of testing finite state

machines-a survey," Proceedings of the IEEE, volume 84, issue 8, pp. 1090-

1123, 1996.

[2] G. V. Bochmann and A. Petrenko, "Protocol testing: review of methods and

relevance for software testing," Proceedings of the ACM SIGSOFT

International Symposium on Software testing and analysis, pp. 109-124,

1994.

[3] R. Dorofeeva, K. El-Fakih, S. Maag, A. R. Cavalli, and N. Yevtushenko,

"FSM-based conformance testing methods: a survey annotated with

experimental evaluation," Information and Software Technology, volume 52,

issue 12, pp. 1286-1297, 2010.

[4] A. Gill, "State-identification experiments in finite automata," Information and

Control, volume 4, issues 2-3, pp. 132-154, 1961.

[5] Z. Kohavi, Switching and finite automata theory. New York: McGraw-Hill,

1978.

[6] D. Lee and M. Yannakakis, "Testing finite-state machines: State

identification and verification," IEEE Transactions on Computers, volume

43, issue 3, pp. 306-320, 1994.

[7] A. Simao, A. Petrenko, and J. Maldonado, "Comparing finite state machine

test coverage criteria," IET Software, volume 3, issue 2, pp. 91-105, 2009.

[8] E. F. Moore, "Gedanken-experiments on sequential machines," Automata

studies, Priceton Univeristy Press, volume 34, pp. 129-153, 1956.

[9] F. Hennine, "Fault detecting experiments for sequential circuits," Proceedings

of the Fifth Annual Symposium on Switching Circuit Theory and Logical

Design, Priceton, pp. 95-110, 1964.

[10] A. Petrenko, A. Simao, and N. Yevtushenko, "Generating checking sequences

for nondeterministic finite state machines," Proceedings of the IEEE Fifth

International Conference on Software Testing, Verification and Validation

(ICST), pp. 310-319, 2012.

[11] R. Alur, C. Courcoubetis, and M. Yannakakis, "Distinguishing tests for

nondeterministic and probabilistic machines," Proceedings of the Twenty-

85

Seventh Annual ACM Symposium on Theory of Computing, pp. 363-372,

1995.

[12] R. M. Hierons, G.-V. Jourdan, H. Ural, and H. Yenigun, "Checking sequence

construction using adaptive and preset distinguishing sequences,"

Proceedings of the Seventh IEEE International Conference on Software

Engineering and Formal Methods, pp. 157-166, 2009.

[13] A. Petrenko and N. Yevtushenko, "Conformance tests as checking

experiments for partial nondeterministic FSM," Proceeding of the Formal

Approaches to Software Testing, pp. 118-133, 2005.

[14] M. Gromov, N. Evtushenko, and A. Kolomeets, "On the synthesis of adaptive

tests for nondeterministic finite state machines," Programming and Computer

Software, volume 34, issue 6, pp. 322-329, 2008.

[15] A. Petrenko and N. Yevtushenko, "Adaptive testing of deterministic

implementations specified by nondeterministic FSMs," Proceedings of the

International Conference on Testing Software and Systems, Lecture Notes in

Computer Science 7019, ed: Springer, pp. 162-178, 2011.

[16] A. Mathur, A Foundations of Software Testing. Addison Wesley, 2008.

[17] G. Agibalov and A. Oranov, "Lectures on Automata Theory," Tomsk State

University Publishers, 1984.

[18] S. Ginsburg, "On the length of the smallest uniform experiment which

distinguishes the terminal states of a machine,"Journal of the ACM (JACM),

volume 5, issue 3, pp. 266-280, 1958.

[19] T. N. Hibbard, "Least upper bounds on minimal terminal state experiments

for two classes of sequential machines,"Journal of the ACM (JACM), volume

8, issue 4, pp. 601-612, 1961.

[20] S. Sandberg, "Homing and Synchronizing Sequences," Model-Based Testing

of Reactive Systems, Lecture Notes in Computer Science 3472, ed: Springer,

pp. 5-33, 2005.

[21] B. Ravikumar and X. Xiong, "Implementing sequential and parallel programs

for the homing sequence problem," Automata Implementation, Lecture Notes

in Computer Science 1388, ed: Springer, pp. 120-131, 1997.

86

[22] B. Ravikumar and X. Xiong, "Randomized parallel algorithms for the homing

sequence problem," Proceedings of the International Conference on Parallel

Processing, volume 3, pp. 82-89, 1996.

[23] N. Spitsyna, K. El‐Fakih, and N. Yevtushenko, "Studying the separability

relation between finite state machines," Software Testing, Verification and

Reliability, volume 17, issue 4, pp. 227-241, 2007.

[24] N. Kushik, K. El-Fakih, and N. Yevtushenko, "Preset and adaptive homing

experiments for nondeterministic finite state machines," Proceedings of the

Sixteenth International Conference on Implementation and Application of

Automata, Lecture Notes in Computer Science 6807, ed: Springer, pp. 215-

224, 2011.

[25] N. Kushik, "Methods for deriving homing and distinguishing experiments for

nondeterministic FSMs," Tomsk State University: PhD thesis, 2013.

[26] I. Hwang, N. Yevtushenko, and A. Cavalli, "Tight bound on the length of

distinguishing sequences for non-observable nondeterministic Finite-State

Machines with a polynomial number of inputs and outputs," Information

Processing Letters, volume 112, issue 7, pp. 298-301, 2012.

[27] N. Kushik and N. Yevtushenko, "On the length of homing sequences for

nondeterministic finite state machines," Proceedings of the Eighteenth

International Conference on Implementation and Application of Automata,

ed: Springer, pp. 220-231, 2013.

[28] P. H. Starke, Abstract Automata. University of Minnesota, USA: North-

Holland Publishers and Company, 1972.

[29] F. Zhang and T. Cheung, "Optimal transfer trees and distinguishing trees for

testing observable nondeterministic finite-state machines," IEEE

Transactions on Software Engineering, volume 29, issue 1, pp. 1-14, 2003.

[30] M. Gromov, K. El-Fakih, N. Shabaldina, and N. Yevtushenko, "Distinguing

non-deterministic timed finite state machines," Proceedings of the Formal

Techniques for Distributed Systems, ed: Springer, pp. 137-151, 2009.

[31] K. El-Fakih, M. Gromov, N. Shabaldina, and N. Yevtushenko,

"Distinguishing experiments for timed nondeterministic finite state

machines," Acta. Cybern, volume 21, pp. 205-222, 2013.

87

[32] C. Andres, N. Yevtushenko, A. Cavalli, "Modeling and testing the European

train control system," Technical Report TechRca 14-03-2013, Telecom

Sudparis, 2013.

[33] M. Leeke and A. Jhumka, "Evaluating the use of reference run models in fault

injection analysis," Proceedings of the Fifteenth IEEE Pacific Rim

International Symposium on Dependable Computing, PRDC'09., pp. 121-124,

2009.

[34] N. Kushik, K. El-Fakih, and N. Yevtushenko, "Adaptive homing and

distinguishing experiments for nondeterministic finite state machines,"

Proceedings of the Twenty Fifth International Conference on Testing

Software and Systems, Lecture Notes in Computer Science 8254, ed:

Springer, pp. 33-48, 2013.

[35] C. McClanahan, "History and Evolution of GPU Architecture," A Survey

Paper, Georgia Institute of Technology College of Computing, Atlanta,

Georgia, USA, 2010.

[36] M. Ali and T. Ozkul, "Review of Memory/Cache Management Technologies

used on Heterogeneous Computing Systems," International Journal of

Computer and Information Technology, volume 3, issue 3, 2014.

[37] J. Dongarra, I. Foster, G. Fox, W. Gropp, K. Kennedy, L. Torczon, et al.,

Sourcebook of parallel computing volume 3003: Morgan Kaufmann

Publishers San Francisco, 2003.

[38] P. S. Pacheco, Parallel programming with MPI: Morgan Kaufmann, 1997.

[39] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel

Programming with the Message-Passing Interface, volume 1: MIT press,

1999.

[40] W. Gropp, E. Lusk, and R. Thakur, Using MPI-2: Advanced features of the

message-passing interface: MIT press, 1999.

[41] J. J. Dongarra, S. W. Otto, M. Snir, and D. Walker, "An Introduction to the

MPI standard," Communications of the ACM, 1995.

[42] G. Barlas, "An analytical approach to optimizing parallel image

registration/retrieval," IEEE Transactions on Parallel and Distributed

Systems, volume 21, issue 8, pp. 1074-1088, 2010.

88

[43] G. Barlas and B. Veeravalli, "Quantized load distribution for tree and bus-

connected processors," Parallel Computing, volume 30, issue 7, pp. 841-865,

2004.

[44] B. Veeravalli, D. Ghose, V. Mani, and T. G. Robertazzi, Scheduling Divisible

Loads in Parallel and Distributed Systems, IEEE Computer Society Press,

1996.

[45] G. D. Barlas, "Collection-aware optimum sequencing of operations and

closed-form solutions for the distribution of a divisible load on arbitrary

processor trees," IEEE Transactions on Parallel and Distributed Systems,

volume 9, issue 5, pp. 429-441, 1998.

[46] M. Drozdowski and P. Wolniewicz, "Out-of-core divisible load processing,"

IEEE Transactions on Parallel and Distributed Systems, volume 14, issue 10,

pp. 1048-1056, 2003.

[47] J. T. Hung and T. G. Robertazzi, "Scheduling nonlinear computational loads,"

IEEE Transactions on Aerospace and Electronic Systems, volume 44, issue 3,

pp. 1169-1182, 2008.

[48] A. Can, H. Shen, J. N. Turner, H. L. Tanenbaum, and B. Roysam, "Rapid

automated tracing and feature extraction from retinal fundus images using

direct exploratory algorithms," IEEE Transactions on Information

Technology in Biomedicine, volume 3, issue 2, pp. 125-138, 1999.

[49] J. Jia, B. Veeravalli, and J. Weissman, "Scheduling multisource divisible

loads on arbitrary networks," IEEE Transactions on Parallel and Distributed

Systems, volume 21, issue 4, pp. 520-531, 2010.

[50] B. Veeravalli and G. Barlas, Distributed multimedia retrieval strategies for

large scale networked systems, volume 29: ed: Springer, 2006.

[51] S. Viswanathan, B. Veeravalli, and T. G. Robertazzi, "Resource-aware

distributed scheduling strategies for large-scale computational cluster/grid

systems," IEEE Transactions on Parallel and Distributed Systems, volume

18, issue 10, pp. 1450-1461, 2007.

[52] N. Kushik, K. El-Fakih, N. Yevtushenko, and A. R. Cavalli, "On adaptive

experiments for nondeterministic finite state machines," International Journal

on Software Tools for Technology Transfer, pp. 1-14, 2014.

89

[53] N. Shabaldina, K. El-Fakih, and N. Yevtushenko, "Testing nondeterministic

finite state machines with respect to the separability relation," Testing of

Software and Communicating Systems, Lecture Notes in Computer Science,

ed: Springer, pp. 305-318, 2007.

[54] Nvidia. (2014, September) GeForce GTX-980 Hardware Specifications

[Online]. http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-980/

specifications. (Accessed: December, 2014).

[55] Qt Company Ltd. (2014, December) Qt Developers Documentation [Online].

http://doc.qt.io. (Accessed: February, 2015).

[56] Wikipedia. (2014, May) Graphical Processing Units [Online].

http://en.wikipedia.org/wiki/Graphics_processing_unit. (Accessed: May,

2014).

[57] Nvidia. (March, 2014) GPU Accelerated Applications [Online].

http://www.nvidia.com/content/tesla/pdf/gpu-apps-catalog-mar14-digital-fnl-

hr.pdf. (Accessed: February, 2015).

[58] A. Abdurazik, P. Ammann, Wei Ding, and J. Offutt, "Evaluation of three

specification-based testing criteria," Proceedings of Sixth IEEE International

Conference Engineering on Complex Computer System. pp. 179-187, 2000.

http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-980/%20specifications.
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-980/%20specifications.
http://doc.qt.io/
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://www.nvidia.com/content/tesla/pdf/gpu-apps-catalog-mar14-digital-fnl-hr.pdf
http://www.nvidia.com/content/tesla/pdf/gpu-apps-catalog-mar14-digital-fnl-hr.pdf

90

Appendix A

A.1 Nodes Considered in the NoW with Their Names and Respective Numbers

Table 18 shows, the considered nodes connected together in a NoW along with

their respective numbers in the network.

Table 18. Considered Nodes (N) in the NoW

S.no
Machine Node

Name Number

1 Kingpenguin 0

2 DUNE2-CPU 1

3 DUNE2-GPU 2

4 DUNE2-GPU 3

5 DUNE-GPU 4

6 DUNE2-CPU 5

A.2 Estimating the Computational Speed for All Nodes

In order to obtain the computation speed (p) and constant overhead associated

with the computation (e) for each node, we benchmarked the computation of the I/O

successors table on each node individually.

The process was repeated for all the generated FSMs in order to obtain the

execution time over a wide range of inputs. Figure 38 depicts the execution times

against the number of transitions. In order to obtain the p and e parameters, we

calculated the least-squares lines of the data shown in Figure 38. The p parameter

values corresponding to the line slope are shown in Table 19.

91

Figure 38. Execution Time versus the Number of FSM Transitions, for All the

Considered Nodes

Table 19. Computation Speed (p) for All the Considered Nodes

Serial

Number
Notations Values

Kingpenguin p[0] 0.00278 (sec/transition)

DUNE2-CPU p[1] 0.00194 (sec/transition)

DUNE2-GPU p[2] 0.00025 (sec/transition)

DUNE-GPU p[3] 0.00075 (sec/transition)

DUNE-CPU p[4] 0.00351 (sec/transition)

The constant overhead (e) corresponds to the intercept of the least-squares line.

The e parameter values are shown in Table 20.

0

5,000

10,000

15,000

20,000

25,000

0
.0

0

1
.0

0

2
.0

0

3
.0

0

4
.0

0

5
.0

0

Ex
e

cu
ti

o
n

 T
im

e
 (

Se
co

n
d

s)

Number of Transitions (millions)

Kingpenguin-Sequential

Dune2-Sequential

Dune2-GPU

Dune-GPU

Dune-Sequential

92

Table 20. Values Calculated for the e Parameter for All the Considered Nodes

Serial

Number
Notations Values

Kingpenguin e[0] -1057.06 (sec)

DUNE2-CPU e[1] -734.38 (sec)

DUNE2-GPU e[2] -89.52 (sec)

DUNE-GPU e[3] -282.87 (sec)

DUNE-CPU e[4] -1090.51 (sec)

A.3 Communication Speed Parameters

In order to measure the communication speed (lc) and communication latency (bc)

during result collection between the NoW nodes, we used a “ping-pong” approach:

two processes each on a different node, exchanging messages of known length in a

“Send-Receive” or “Receive-Send” sequence.

The messages ranged between 100,000 Bytes and 17 MB (i.e. the maximum size

of the I/O-successor tables used in testing), with an increment of 100,000 Bytes. The

results are shown in Figure 39. The slope and intercept of the least-squares line

correspond to the speed lc and latency bc. The actual values obtained are shown in

Table 21.

Figure 39. Communication Time versus Message Size, for Two Network Nodes

Table 21. Communication Parameters

Notations Values

lc 1.89E-10 (sec)

bc -0.000199 (sec/byte)

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

 -

 2
,0

0
0

 4
,0

0
0

 6
,0

0
0

 8
,0

0
0

 1
0

,0
0

0

 1
2

,0
0

0

 1
4

,0
0

0

 1
6

,0
0

0

 1
8

,0
0

0

C
o

m
m

u
n

ic
at

io
n

 T
im

e
 in

 S
e

co
n

d
s

Size of Data in Kilo Bytes (KB)

Communication…

93

A.4 Remaining Parameters in the NoW Model

The remaining parameters in the DLT model were derived from the problem

data:

1. Size of machine description in bytes (B): is the size of the given FSM in bytes

for the experiment.

2. Number of transitions (T): is the total number of transitions present in the

given FSM for the experiment.

3. Size of I/O successors table (O): is a size in bytes of the corresponding 2D

array. The number of rows is equal to the number of different pairs (M) of a

given FSM multiplied by the number of inputs. The number of columns is

equal to the number of outputs plus 1 of the input FSM.

94

Vita

Mustafa Ali was born on July 20, 1988, in Karachi, Pakistan. He was educated in

private schools in Pakistan and graduated from Hamdard College of Science and

Commerce in 2006.

He studied at NED (Nadirshaw Eduljee Dinshaw) University of Engineering and

Technology in Karachi, Pakistan, from which he graduated in 2010 and obtained a

Bachelor’s Degree in Computer Science & Information Technology.

Mr. Mustafa moved to the United Arab Emirates in 2012 where he joined the

Master’s program in Computer Engineering at the American University of Sharjah.

http://en.wikipedia.org/wiki/Nadirshaw_Eduljee_Dinshaw

