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Abstract 

 

Many methods are used for the development of experiments and conformance tests 

based on the specification given in the form Finite State Machines (FSMs). In FSM-

based testing, we have an FSM or a black-box Implementation Under Test (IUT) 

about which we lack some information, and we want to deduce this information by 

conducting experiments on the IUT. An experiment consists of applying input 

sequences, observing corresponding output responses, and drawing conclusions 

about the IUT. An experiment is adaptive if at each step of the experiment the next 

input is selected which is based on the previously observed outputs. A distinguishing 

experiment determines the initial state of the FSM. In this thesis, we consider two 

implementations of an existing sequential algorithm for deriving the minimal length 

of an adaptive distinguishing experiment for a nondeterministic FSM.  We show that 

the execution time for both of these implementations grows exponentially as the size 

or the number of transitions of the FSM increases. Accordingly, in order to obtain a 

solution in a reasonable time, we develop four parallel implementations of the 

considered sequential algorithms, namely, a multi-core implementation on Central 

Processing Unit, two Graphical Processing Unit (GPU) implementations based on the 

platforms like CUDA and Thrust, respectively, and an implementation on a Network 

of Workstations (NoWs). Comprehensive experiments are conducted to assess and 

compare the performance and the speedup of the developed implementations. Based 

on the results obtained from these experiments, the parallel implementation on a 

NoW provides the best performance and speedup, followed by the CUDA, then the 

Thrust, followed by the multi-core CPU implementation. 

 

Search Terms: Conformance Testing, Adaptive Distinguishing Experiments, 

Parallel Algorithms for Distinguishing Experiments. 
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Chapter 1: Introduction 

The advancements in computer technology have enabled systems to get larger so 

that they are capable of fulfilling more complicated tasks. As a result, these systems 

are also becoming less reliable and more vulnerable [1]. Consequently, software 

testing has become an integral part of system and software development; however, 

for complex systems, testing is known to be a formidable task [1]. This motivates the 

study of testing Finite State Machines (FSMs) to ensure the correct functioning of 

systems and to discover aspects of their behavior. An FSM is a state transition system 

that has a finite number of inputs, outputs, states, and a finite number of transitions, 

each labeled by an input/output pair. FSMs are widely used in various application 

domains such as telecommunication, communication protocols and other reactive 

systems. FSMs are the underlying models for formal description techniques, such as 

statecharts [58], Specification Description Language (SDL) [58], and Unified 

Modelling Language (UML) specification [58]. 

An FSM is deterministic if, for some input at some state, there is exactly one 

outgoing transition of the state under that input. Nondeterminism in the specification 

is also not unusual. An FSM is non-deterministic if, for some input at some state, 

there are more than one outgoing transition of the state under that input.  

Many methods are known for the development of experiments and conformance 

tests based on the specifications given in the form of an FSM [1-7]. In FSM-based 

testing, we have a machine or a black-box Implementation Under Test (IUT) about 

which we lack some information, and we want to deduce this information by 

conducting experiments on this FSM. An experiment on an FSM consists of applying 

input sequences to the machine, observing corresponding output responses, and 

drawing conclusions about the machine under test. An experiment is a preset if all 

the input sequences are known before starting the experiment, and adaptive if at each 

step of the experiment the next input is selected based on the previously observed 

outputs [4] [8]. Distinguishing experiments are used when deriving FSM based tests 

with guaranteed fault coverage and those experiments are elaborated for different 

types of FSMs. An FSM is said to be initialized if it has one initial state; otherwise, it 
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is said to be weakly-initialized or non-initialized. An FSM is observable if at each state 

the machine has at most one transition under a given input/output pair. 

A distinguishing experiment is defined as an experiment which determines the 

initial state of the FSM, i.e. a state of the FSM before the start of the experiment. 

Such experiments are widely used when checking the correspondence between 

transitions of an IUT and those of the specification FSM [34]. If a distinguishing 

sequence for a finite state machine exists, then one can determine the length k of that 

sequence. 

Nowadays, nondeterministic systems are attracting lots of attention in the field of 

protocol analysis and testing. Adaptive experiments with nondeterministic FSMs are 

discussed in [11-15].  Petrenko and Yevtushenko in [13] came up with an idea of a 

test case which described an adaptive experiment as an initialized FSM with an 

acyclic transition diagram such that at each non-deadlock state only one input was 

defined with all possible outputs. This definition of a test case enables defining 

distinguishing test cases which are based on the properties of the intersection of a 

transition system under experiment and a given test case. The examples of how a 

distinguishing test case can be derived for two states of Nondeterministic Finite State 

Machines (NFSMs) are shown in [13-15]. In particular, Alur in [11] showed that the 

length of the shortest adaptive distinguishing test case that distinguishes two states of 

an observable nondeterministic FSM with n states is at most n(n - 1)/2.   

In this thesis, we consider adaptive distinguishing experiments for a pair of states 

of complete observable nondeterministic FSMs. Lee and Yannakakis [6] proposed an 

approach for deriving an adaptive distinguishing sequence of a deterministic FSM 

that is based on refining a partition of the set of states based on different outputs. The 

work in [6] was extended in [34] dealing with nondeterministic FSMs. In particular, 

in [34] necessary and sufficient conditions for having adaptive distinguishing test 

cases are established and a sequential algorithm for deriving a distinguishing 

adaptive test case with minimal length is proposed. 

In this thesis, we consider the sequential  algorithm presented in [34] for 

determining the minimal length of an adaptive distinguishing experiment for 

nondeterministic FSMs. As the sequential algorithm in [34] works for any number of 
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pairs. We modify it, such that it works for a pair of states and develop two sequential 

algorithms for determining the minimal length of adaptive distinguishing 

experiments for a pair of states for complete observable nondeterministic FSM. Also, 

our experiments show that the execution time of these sequential algorithms 

increases drastically as the considered FSMs increase in size (i.e., the number of 

transitions of a machine). Therefore, to obtain the solution (i.e., the length of the 

distinguishing sequence) in a reasonable time, we develop many parallel 

algorithms/implementations of the two considered sequential algorithms. Parallel 

execution typically requires the partitioning of the computation and/or data. The two 

generic approaches for this problem are function decomposition and data 

decomposition. In the latter, the problem data are partitioned into disjoined sets and 

processed separately.  

Data decomposition, also known as the data-parallel design approach, is widely 

applicable in a large number of domains, including numerical computations, 

biomedical informatics, and multimedia. In this thesis, we apply a data 

decomposition or data partitioning approach for the various parallel implementations 

of the adapted sequential algorithms. These parallel implementations include 

implementation on a multi-core CPU via multiple threads, implementation on parallel 

platforms like Graphical Processing Units (GPUs), and implementation on a Network 

of Workstations (NoWs). These parallel implementations are implemented using 

different software tools and platforms such as Qt Threads [55], CUDA/Thrust [35], 

and MPI (Message Passing Interface), a standard for portable message-passing [41].  

To summarize the results, after conducting comprehensive experiments, we find 

that parallel implementation on a NoW gives the best performance amongst parallel 

implementations, and the speedup obtained is much more significant than in 

sequential algorithms. The parallel implementation on the GPU using the software 

platform CUDA gives the second best performance, and the parallel implementation 

on a multi-core CPU along with parallel implementation on a GPU using the 

software platform Thrust gives the third best performance.  

The organization of this thesis is as follows. Chapter 2 includes related work on 

adaptive distinguishing experiments and preset distinguishing experiments for 
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deterministic/nondeterministic FSMs. It also includes a brief literature review on 

parallel platforms used in this thesis. Chapter 3 includes preliminaries, definition of a 

distinguishing test case, and algorithms to determine the minimal length of an 

adaptive distinguishing experiment for complete observable nondeterministic FSMs. 

Chapter 4 discusses parallel algorithms/implementations to determine the minimal 

length of an adaptive distinguishing experiment for complete observable 

nondeterministic FSMs. In Chapter 5 we discuss the experimental evaluation of the 

conducted experiments and Chapter 6 concludes this thesis.    
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Chapter 2: Related Work and Literature Review 

2.1 Related Work 

Research on preset and adaptive distinguishing experiments for deterministic 

FSMs started with the fundamental paper on “Gedanken experiments” by Moore [8]. 

Surveys and more information on FSM-based experiments with some related 

algorithms can be found in [4-6, 16]. Particularly, Gill [4] and Lee and Yannakakis 

[6] presented methods for deriving preset and adaptive distinguishing experiments 

for deterministic FSMs with corresponding evaluations of the complexity of these 

experiments. 

Preset distinguishing experiments for nondeterministic FSMs are presented in 

[11, 12, 23-27]. In particular, Spitsyna in [23] presents a method for deriving a 

sequence that separates two initialized nondeterministic FSMs. An input sequence is 

a separating sequence of two FSMs if the sets of output sequences produced by the 

NFSMs to the input sequence do not intersect [28]. A tight upper bound on the 

shortest preset separating sequence is shown to be of the order 
2

2n
where n is the 

number of states of a complete nondeterministic observable FSM [23]. Hwang in 

[26] examined the non-equivalence relation between two states of a complete FSM, 

invalidated the upper bound in [23] and determined that the upper bound on the 

length of a sequence distinguishing two states of a non-observable FSM with n states 

is n2  – 2. An FSM is said to be complete, if at every state of the machine there is an 

outgoing transition under each input. A complete FSM is reduced if at each two 

different states, the FSM does not have the same behavior. Kushik and Yevtushenko 

in [27] demonstrated that there is a special class of FSMs which contain n states and 

(n – 1) inputs, whose shortest sequence can be given by the length 12 n  – 1 (i.e., its 

length is exponential with respect to the number of FSM states). Related problems 

were also studied by Zhang and Cheung when deriving transfer and distinguishing 

trees for observable nondeterministic FSMs with probabilistic and weighted 

transitions [29]. 

Adaptive experiments for nondeterministic FSMs are considered in [11-15]. In 

particular, Petrenko and Yevtushenko in [13] describe the notion of a test case for an 

adaptive experiment as an initialized observable FSM with an acyclic transition 
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diagram such that at each non-deadlock state only one input is defined with all 

possible outputs. In [13 - 15] the process for deriving a distinguishing test case for 

two states of a nondeterministic observable FSM is presented, provided that such a 

distinguishing test case exists. Alur in [11] showed the length of a shortest adaptive 

distinguishing test case that distinguishes two states of an observable 

nondeterministic FSMs with n states is at most 2/)1( nn . Petrenko and 

Yevtushenko in [15] considered a set of adaptive test cases which contained three 

parts: a preamble for reaching an appropriate state, a traversal input/output sequence, 

and a state identifier. In such cases, the length of an identifier can be optimized when 

distinguishing not two but several states with the same distinguishing test case. In 

addition to this, from [9, 10, 12] a distinguishing sequence derived for a non-

initialized FSM can also be adaptive. Gromov in [30] and El-Fakih [31] presented 

adaptive experiments for timed nondeterministic observable FSMs, and some work 

on adaptive experiments for extended and communicating FSMs is reported in [25, 

32, 33]. In [34], adaptive distinguishing experiments for non-initialized, possibly 

non-observable nondeterministic FSMs are considered. Lee and Yannakakis [6] also 

proposed an approach for deriving an adaptive distinguishing sequence for a 

deterministic FSM that is based on refining a partition of the set of states based on 

different outputs. 

In this thesis we study adaptive distinguishing experiments for nondeterministic 

FSMs. We develop many parallel implementations of the sequential algorithm 

present in [34]. Our main objective is to reduce the execution time of deriving an 

experiment, as execution time increases drastically as the size of the FSM increases 

(i.e., the number of transitions of a machine). We applied a geometric decomposition 

pattern for parallelizing the sequential algorithm. We tested our parallel 

implementations on three hardware platforms (multicore CPU PC, GPU, and 

CPU/GPU cluster) and four software platforms (Qt threads, CUDA, Thrust and 

MPI+CUDA). A brief literature review of GPUs, GPU software platforms (i.e. 

CUDA and Thrust), and the MPI standard is provided in the next section. 

2.2 Graphical Processing Units (GPUs)  

The Graphical Processing Unit (GPU) is a chip that contains a large number of 

parallel microprocessors. It was originally designed to accelerate 2D or 3D graphic 
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processing, in order to reduce the workload of the CPU. However, recent GPUs are 

composed of a large number of computing cores which are able to perform 

operations in parallel, and are connected to high-speed memory (DDR5) with very 

wide buses (256bit or larger). This architecture features enables the chips to process 

large amounts of data in a fraction of the time traditional single or multi-core CPUs 

can. 

The development of GPU hardware began from a single core and fixed function 

hardware [35] pipeline application towards a combination of highly parallel 

programmable cores which can be used for general purpose computation and 

scientific computation. GPU technology has always progressed by adding more 

programmability and parallelism to a GPU core architecture that is constantly 

evolving towards a general purpose more CPU-like core.  

In 2001, NVIDIA released GeForce 3 [35]. This was the first GPU with a 

programmable pipeline and the ability to program previously non-programmable 

parts of the pipeline. In the following years, fully programmable graphic cards were 

introduced and the first wave of GPU computing started with the introduction of 

DirectX9, which too added the advantage of programmability in the GPU hardware. 

In 2006, NVIDIA introduced the GeForce 8 series [35]. This was a great 

evolution in the history of GPUs because it contained massive parallel processors. 

The GPU introduced in 2009 as NVIDIA’s Fermi architecture featured a true 

memory cache hierarchy, concurrent kernel execution, better double precision 

performance, combined memory address space and dual warp schedulers [35]. Since 

then, rapid progress in the development of GPUs has occurred. Table 1 describes 

some of the recent NVidia GPUs and their configurations [36] [54], where Cores 

represents individual cores (computing unit) contained in a GPU card and each cores 

is capable of executing a thread, Streaming Multi-processor (SM) is a collection of 

cores, and Cores/SM represents the number of cores present in a SM.  

The evolution of the GPU has brought enormous advantages for high speed 

computing. GPUs are not only being used for graphical processing but also for 

numerical computations. This motivated us to implement an algorithm for 

determining the minimal length of an adaptive distinguishing experiment for 
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nondeterministic FSMs on a GPU so that we can reduce the execution time for the 

algorithm and attain significant speedup as compared to the same algorithm running 

on a single core machine. Normally, execution on a GPU can be carried out using 

various platforms such as OpenCL [56], CUDA [56], Thrust [56], etc. All of these 

are software platforms that enable us to program complex problems on GPUs. In this 

thesis we use CUDA and Thrust to implement an algorithm for determining the 

minimal length of an adaptive distinguishing experiment for non-deterministic FSMs 

on a GPU. Further details for CUDA and Thrust are mentioned in the sections below. 

Table 1. Recent NVidia GPUs and their configurations 

Card Cores Cores/SM SM Compute Capability 

GTX 980 2048 128 16 5.2 

GTX 970 1664 128 13 5.2 

GTX 960 1024 128 8 5.2 

GTX TITAN Z 5760 480 12 3.5 

GTX TITAN Black 2880 240 12 3.5 

GTX Titan 2688 192 14 3.5 

GTX 780 2304 192 12 3.5 

GTX 770 1536 192 8 3.0 

GTX 760 1152 192 6 3.0 

GTX 690 3072 192 16 3.0 

 

2.2.1 Compute Unified Device Architecture (CUDA) 

At the end of 2006, NVIDIA introduced CUDA™ [32], a general purpose 

parallel computing platform and programming model that made it possible to execute 

parallel computation on GPUs. Many complex computational problems could be 

solved in a more efficient and faster way compared to a traditional single core CPU. 

CUDA is a parallel platform that allows and supports high level programming 

languages, application programming interfaces, or directive-based approaches, such 

as C [32], FORTRAN [32], DirectCompute [32], and OpenACC [32]. CUDA was 

developed keeping several design goals in mind such as: 
  

 CUDA provides a small set of extensions to standard programming 

languages, like C, which enables a straightforward implementation of parallel 

algorithms. Programmers experienced with C/C++ can simply focus on 
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parallelization of the algorithms rather than spending time on their 

implementation. 

 CUDA was developed to support heterogeneous computation where 

applications and algorithms use both the CPU and GPU. Serial portions of 

applications and algorithms run on the CPU, whereas parallel portions are 

unloaded to the GPU. This enables CUDA to be applied to many research 

domains such as molecular dynamics [57], quantum chemistry [57], and 

bioinformatics [57]. As the CPU and GPU are counted as separated devices, 

they have their own memory spaces. This allows simultaneous computation 

on the CPU and GPU without contention for memory resources. 

CUDA architectures are organized into multiprocessors, each multiprocessor 

having a number of cores. With the evolution of the technology, current architectures 

from NVidia include more multiprocessors per die, and/or more cores, registers or 

shared memory per multiprocessor. For example, the CUDA-enabled GPU, Fermi, 

has twice the number of cores and increases the clock frequency as compared to the 

previous generation, the GT200. This one also doubles the number of 

multiprocessors and 32-bit register within each multiprocessor as compared to the 

G80. 

The processor for the G80 follows the Single Instruction Multiple Data (SIMD) 

parallel architecture, and it is equipped with 128 cores. These cores are organized 

into 16 multiprocessors, each consisting of 8192 registers, a 16 KB shared memory, 

which is very close to the registers in speed (both 32 bits wide), and a few kilobytes 

of constant and texture memory caches. Each multiprocessor is capable of running a 

variable number of threads, though the local resources are divided amongst them. 

Since the G80 is SIMD, in a given cycle, each core in a multiprocessor will execute 

the same instruction but with different data depending on its thread ID. 

Communication between the multiprocessors can take place through the global 

memory. These basic features were shared by every hardware generation until the 

Fermi architecture was fabricated. Figure 1 shows the hardware resources for the 

Fermi GPU. 
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Figure 1. Hardware Resources for the Fermi GPU 

The advantage of the CUDA programming model is that it guides the 

programmer to exploit fine-grained parallelism as required by massively parallel 

GPUs. In the CUDA programming model, the CPU host and GPU device maintain 

their own Dynamic Random Access Memory (DRAM) and address, denoted as host 

memory and global memory. However, multiprocessors have on-chip memory, 

which can be of two types: registers and shared memory, as depicted in Figure 2. 

 

Figure 2. CUDA Programming Model 

In the CUDA programming model, a program is decomposed into blocks which 

are running in parallel. A block is a group of threads which are being mapped to run 

on a single multiprocessor, where they can share Static Random Access Memory 
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(SRAM). Threads in the blocks are concurrently assigned to a single multiprocessor, 

and they divide the multiprocessor’s resources equally amongst themselves.  

The programming model also consists of warps. A warp consists of 32 threads 

that can physically run concurrently on all of the multiprocessors. Due to memory 

access limitations, warp size is less than the total number of cores.  The programming 

model allows the programmer to determine the number of threads to be executed, but 

in case the number of threads exceeds the warp size, they are time-shared on the 

actual hardware resources. 

In order to run the code on a GPU, the CUDA programming model calls for the 

creation of a kernel. A kernel is a function compiled according to the instructions of 

the device, which are downloaded and executed by all the threads on the GPU. 

Threads running on the different processors of the multiprocessors, sharing the same 

executable and global address space, may differ in the execution path, as the 

conditional execution of different operations on each multiprocessor can be achieved 

based on a unique thread ID. Threads also work independently on different data 

according to the SIMD model. Threads are organized into a grid as a set of thread 

blocks. A grid is defined as a collection of all the blocks in a single execution, which 

is explicitly defined by the developer and is assigned to a multiprocessor.  When a 

kernel is invoked, it defines the sizes and dimensions of the thread blocks in the grid 

to be created. These sizes and dimensions must be carefully defined because they 

affect the performance of the GPU.    

A thread block consists of a group of threads which are executed on a single 

multiprocessor. Threads in a block can communicate together by sharing data 

through the SM's shared memory. They can be synchronized together using the 

__syncthreads() primitive. Synchronization is mainly done for the coordination of the 

memory accesses. Each thread in a block has its own thread ID, which is the number 

of the thread within a 1D, 2D or 3D array of arbitrary size. Threads from the different 

blocks in the same grid cannot communicate, though threads belonging to the same 

block must all share registers and shared memory on a given multiprocessor. In order 

to maximize the execution efficiency, a programmer should wisely solve the tradeoff 

between parallelism and thread resources.   



23 
 

2.2.2 Thrust 

Thrust is a C++ template library for CUDA that follows the Standard Template 

Library (STL) conventions. Thrust allows a programmer to implement high 

performance parallel applications with minimal programming effort through a high-

level interface that is fully interoperable with CUDA C. 

Thrust provides a rich collection of data parallel primitives such as scan, sort, and 

reduce, which can be composed together to implement complex algorithms with 

concise, readable source code. By describing a computation in terms of these high 

level abstractions the programmer provides Thrust with the freedom to select the 

most efficient implementation automatically. As a result, Thrust can be utilized in the 

rapid prototyping of CUDA applications, where programmer productivity matters 

most, as well as in production, where robustness and absolute performance are 

crucial. 

2.3 Message Passing Interface (MPI) 

MPI stands for Message Passing Interface, a portable message-passing standard 

that enables the development of parallel applications and libraries [37-40]. MPI 

specifies the names, calling sequences, and results of the subroutines or functions to 

be called from FORTRAN, C or C++ programs. Commercial and free, public domain 

implementations such as OpenMPI, MPICH, and pyMPI (MPI implementation in 

Python) are available. These implementations run on both tightly-coupled, Massively 

Parallel Machines (MPPs), and on Networks of Workstations (NoWs) [41]. 

MPI is used to specify the communication among a set of processes forming a 

concurrent program. The message passing paradigm is attractive because of its wide 

portability and scalability. It is compatible with both distributed-memory and shared-

memory multiprocessors, and combinations of these elements. In MPI, the processes 

executed in parallel have separate memory address spaces. Communication between 

the processes takes place when part of the memory content of one process is copied 

into the memory content of another process. This operation is cooperative and occurs 

only when the first process executes a “send” operation and the second process 

executes a “receive” operation. In MPI, workload partitioning and mapping of tasks 
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are accomplished by the programmer. Programmers are responsible for management 

of the tasks computed by each process.  

MPI consists of many communication models such as point-to-point, collective, 

one-sided, and parallel I/O operations. Point-to-point operations such as the 

“MPI_Send”/“MPI_Recv” pair facilitate communications between processes. 

Collective operations such as “MPI_Bcast” ease communications involving more 

than two processes. Regular MPI send/receive communication uses a two-sided 

model. This means that matching operations by sender and receiver is required. In the 

new versions of MPI, one-sided communications are also possible. One-sided 

communication decouples data transfer from synchronization and allows remote 

memory access. Three communication calls are provided: “MPI_Put” (remote write), 

“MPI_Get” (remote read), and “MPI_Accumulate” (remote update). Parallel I/O 

provides access to external devices exploiting data types and communicators [39]. 

2.4 Divisible Load Theory (DLT) 

In recent times, the interest in network-based computing has grown significantly. 

Network-based computing consists of workstations or computers which are linked 

together through a communication network, forming a large, loosely coupled 

distributed computing system. This allows the use of shared resources and offers a 

user at any single node to exploit the considerable power of the complete network or 

a subset of it by partitioning and transferring its own processing load to the other 

processors in the network. 

The two major approaches for designing parallel algorithms are function 

parallelism and data parallelism. Divisible Load Theory (DLT) is an application of 

data parallelism, in which data or load can be split and assigned to many processors. 

But the manner in which partitions can be created depends on the divisibility 

property of the data or load. A divisible load is the one that can be arbitrarily 

decomposed into smaller parts that do not have any interdependencies, i.e., they can 

be processed independently of each other. There are situations where a non-divisible 

(i.e., non-partition able) load “quantum” [42] exists, which have been addressed in 

[43]. The partitioning can occur at the beginning, or can be done dynamically when 

the computation is in progress and the computational requirements become clearer. 



25 
 

This framework of computing is best suited for applications which allow the 

partitioning of the processing load into smaller fractions or segments so that they can 

be processed independently. 

DLT is applied when a single large load arrives at one of the nodes in the 

network. The processor or node partitions the load into more than one fraction, keeps 

one fraction for itself for processing, and sends the rest to other nodes in the network 

for processing. DLT is a powerful tool that provides polynomial time complexity 

[42] solutions to partitioning and scheduling problems. 

An important issue is how to optimally partition the load between the processors 

so that computation is completed in the shortest possible time. There are two key 

limiting factors when applying the DLT approach for the optimal partitioning of the 

load or data: (1) the cost model employed, and (2) the number of load originating 

nodes (i.e., number of data sources) [42]. Most of the literature studies for DLT make 

use of linear cost models [44]; however, there are a few studies in which we consider 

start-up costs and other latencies [45, 46] while partitioning the data. Drozdowski 

and Wolniewicz in [46] used piecewise-affine models to account for the different 

speeds of a typical machine’s memory hierarchy. Hung and Robertazzi in [47] made 

progress in the area by using quadratic and power-of-x computational cost models for 

multi and single-level trees, respectively, and predicted a superlinear speedup for 

nonlinear complexities [42]. According to [48], load or data partitioning becomes 

much more complicated when computational cost does not depend upon the data 

size. Although the applicability of DLT is not completely ruled out, it is something 

that would have to be examined on a case-by-case basis.   

Most of the literature studied for DLT has also employed a single load origination 

node [42], with a few exceptions mentioned in [49-51]. The authors in [49] studied 

two scheduling strategies that partition the graphs representing the network joining 

sources (i.e., load origination loads) and sinks (i.e., workers) into disjoint subgraphs. 

However, there is a limitation for the proposed strategies that each of the sources 

carries a queue of individual loads. This hinders their application in the case of 

parallel filesystems or in cases where the sources share a load. 
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The same limitations are also applied to work presented in [51]. The authors in 

[51] suggests three resource-aware scheduling schemes that implicitly use multiple 

installments to process the loads which are present at the sources. The size of the 

installments is determined by the buffer space available to the workers at any given 

time. 

In the next chapter, we discuss preliminaries, definitions of a distinguishing test 

case, and algorithms for determining the minimal length of an adaptive 

distinguishing experiment for a nondeterministic FSM. 
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Chapter 3: Determining the Minimal Length of Adaptive Distinguishing 

Experiments for Nondeterministic FSMs 

This chapter includes preliminaries and definitions, mostly taken from [34], 

which can be used in the context of deriving/determining minimal length of an 

adaptive distinguishing experiment for a complete observable nondeterministic FSM. 

The chapter also includes two algorithms for determining the minimal length of an 

adaptive distinguishing experiment for a pair of initial states of a complete 

observable nondeterministic FSM. 

3.1 Preliminaries 

A finite state machine (FSM), or simply a machine, is a 4-tuple S = (S, I, O, hS), 

where S is a finite nonempty set of states; I and O are finite input and output 

alphabets; and hS  S  I  O  S is a (behavior) transition relation. An FSM is 

nondeterministic if, for some pair (s, i)  S  I, there can exist several pairs (o, s)  

O  S such that (s, i, o, s)  hS. If the FSM has the designated initial state then the 

FSM is an initialized FSM, written (S, I, O, hS, s0). An FSM S is complete if for each 

pair (s, i)  S  I there exists (o, s)  O  S such that (s, i, o, s)  hS. An FSM S is 

observable if for each two transitions (s, i, o, s1), (s, i, o, s2)  hS it holds that s1 = s2. 

An FSM S is single-input if at each state there is at most one defined input at the 

state, i.e., for each two transitions (s, i1, o1, s1), (s, i2, o2, s2)  hS it holds that i1 = i2, 

and S is output-complete if, for each pair (s, i)  S  I such that the input i is defined 

at state s, there exists a transition from s with i for every output in O. An initialized 

FSM S is acyclic if the FSM transition diagram has no cycles. An initialized FSM S 

is (initially) connected if each state is reachable from the initial state. 

A trace of S at state s is a sequence of input/output pairs of sequential transitions 

starting from state s. The set of all traces of S at state s, including the empty trace, is 

denoted Tr(S/s). Let Tr(S/S), S  S, denote the union of Tr(S/s) over all states s  

S . For state s and a sequence   (IO)* of input-output pairs, the -successor of state 

s is the set of all states that are reached from s by . If  is not a trace at state s, then 

the - successor of state s is the empty set. For an observable FSM S, the -successor 
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of s has at most one item. Given a nonempty subset S  of states of the FSM S, the -

successor of S is the union of the -successors over all s S .  

To characterize the common behavior of two weakly initialized machines, the 

operation of the intersection of initialized FSMs is extended as follows [34]. Given 

two complete FSMs S and P with the sets S and P of initial states, the intersection 

S  P is the connected FSM Q such that states of Q are pairs (b, c) of sets of states of 

FSMs S and P. The initial state of Q is (S, P), and hQ is the smallest set and is 

derived using the following rule: given state (b, c), b  S and c  P, and an 

input/output pair i/o, the FSM Q has a transition ((b, c), i, o, (b, c)) if there exist 

states s  b and p  c with an outgoing transition labeled by the pair i/o, and b and c 

are i/o–successors of subsets b and c. By definition, the FSM S  P is observable 

even for non-observable FSMs S and P. 

As an example of the FSM intersection, consider FSMs P (Figure 3) and S 

(Figure 4). FSM P is an initialized FSM while S has three initial states marked in 

bold. The intersection S   P is shown in Figure 5. As usual, the intersection of two 

weakly initialized FSMs describes the common behavior of component FSMs, and in 

addition, it also provides some information about the structure of their transition sets. 

For example, a state of the intersection provides information about which states of 

the corresponding machines are reachable from the initial states under a 

corresponding trace. 

In this thesis, we consider adaptive experiments with complete nondeterministic 

observable FSMs with an initial pair of states. An experiment can be described using 

an initialized single-input output-complete FSM with an acyclic transition graph that 

is usually referred to as a test case [34, 52].  

Test Case:  

Given an input alphabet I and an output alphabet O, a test case is an initially 

connected single-input output-complete observable initialized FSM 

P = ),,,,( 0phOIP p with the acyclic transition graph. A state of P that has no 

outgoing transitions is a deadlock state. Based on this definition, at each intermediate 



29 
 

state only a single input is defined with all outputs.  A test case over alphabets I and 

O defines an adaptive experiment with any FSM S over the same alphabets. 

 In general, given a test case P, the length of the test case P is determined as the 

length of the longest trace from the initial state to a deadlock state of P and it 

specifies the length of the longest input sequence that can be applied to an FSM S 

during the experiment. As usual, for testing, one is interested in deriving a test case 

(experiment) with minimal length. 

A test case P is a distinguishing test case for FSM S = (S, I, O, hS, S) if (1) for 

each deadlock state (b, c) of the intersection S  P, b is a singleton, and (2) for each 

transition ((b, c), i, o, (b, c)) of the intersection S  P the subset b does not have two 

different states which have the same i/o–successor, i.e., 

s1, s2  b ((s1, i, o , s)  hS  (s2, i, o , s)  hS  s1 = s2). 

In other words, a distinguishing test case can also be defined as: a test case P, 

over input and output alphabets I and O, is a distinguishing test case for the FSM S if 

every trace from the initial state to a deadlock state of P is a trace at most at one state 

of the set S. If there exists a distinguishing test case for the FSM S, then the set S is a 

distinguishing set, or the FSM is distinguishable, and the test case P is a 

distinguishing test case for the FSM. Otherwise, the FSM has no distinguishing set. 

A test case P over alphabets I = {a, b} and O = {0, 1} is shown in Figure 3. 

 

Figure 3. A Test Case P Over Alphabets I = {a, b} and O = {0, 1} 
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Figure 4. Considered FSM S with Three Initial States 

 

Figure 5. The Intersection S  P 

An example of a distinguishing test case is the weakly initialized FSM S 

presented in Figure 4 and the test case P presented in Figure. 3 By direct inspection, 

one can notice that each deadlock state of the intersection S   P (Figure 5) is labeled 

by a pair of singletons and each two different states of any subset b, such that (b, c) 

labels an intermediate state of the intersection, do not have the same i/o-successor. 

Thus, the set {1, 2, 3} is a distinguishing set and the test case in Figure 3 is a 

distinguishing test case for the FSM S. For example, if the output 1 is produced to the 

input b at the initial state of the FSM S, then the FSM reaches state 2 after the 

experiment and we certainly know that the initial state before the experiment was 2.  
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A test case TC (I, O) over alphabets I and O defines an adaptive experiment with 

any FSM S over the same alphabets. As an example, consider the test case P in 

Figure 3. An adaptive experiment with an FSM S over alphabets I = {a, b} and O = 

{0, 1} is conducted using P as follows. At the first step the input b is applied to S, as 

this input is the only input defined at the initial state of P. If the output of the FSM 

S to this input is 1, then the experiment is over, since we reach the deadlock state p3 

of P. If the FSM S produces the output 0 to input b, then the experiment is not over, 

since the test case P enters the intermediate state p2 where the single input a is 

defined. As this input does not take the test case to a deadlock state, the next input 

which is also a is applied. If the output to a is 0, then the next input is b; otherwise, 

the next input is a. For this example, the length of the longest trace of the test case is 

three, i.e., at most three inputs are applied during this adaptive experiment. 

Given a complete observable FSM S = (S, I, O, hS), in order to derive a 

distinguishing test case with minimal length, the notion of k-distinguishing sets of 

states is usually introduced [52]. A subset g  S is 0-distinguishing if g is a singleton. 

Let all (k – 1)-distinguishing sets, k > 0, be already defined. A subset g  S is a k-

distinguishing set if (1) g is (k - 1)-distinguishing, or (2) there exists an input i  I, 

such that for each o  O, the i-o-successor of g is either empty or is a (k – 1) 

distinguishing set. In addition, the i-o-successors of two different states of g must not 

coincide. Given an observable complete FSM S, the set g  S of states is k-

distinguishing, k > 0, if and only if there exists a distinguishing adaptive experiment 

of length k for the set g. If S is k-distinguishing, k > 0, but is not (k – 1)-

distinguishing then k is the minimal length of a corresponding adaptive experiment.  

3.2 Two Algorithms for Determining the Minimal Length of Adaptive 

Distinguishing Experiments for Complete Observable Nondeterministic FSMs 

In this section, we describe two algorithms for determining the minimal length of 

adaptive distinguishing experiments for a complete observable nondeterministic 

FSM. The first algorithm is named Algorithm A, and the second is an alteration of A, 

named as Algorithm B. Algorithm A is taken from [34], and has been adapted for 

finding minimal length of adaptive experiments for a pair of initial states. Algorithm 

A derives the I/O-successors iteratively for each subset of states in the FSM S and 
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checks for the distinguishing sequence in the corresponding iteration. However, 

Algorithm B derives the I/O-successors for all the subsets of states in the FSM S in 

advance, and then it proceeds to check the distinguishing sequence for a given initial 

pair. In the following sections, we describe Algorithms A and B in detail and we 

provide an example for each. 

3.2.1 Algorithm A (For Determining the Minimal Length of an Adaptive 

Distinguishing Experiment) 

Distinguishability is defined as an experiment which allows one to determine the 

unknown current (initial) state of the machine under study. For a given FSM S 

= (S, I, O, hS), the algorithm mentioned below can be used for deriving the minimal 

length for an adaptive distinguishing test case for a distinguishing set for an initial 

pair of states g in S S. In case the set g is not distinguishing, then the states 

contained in set S cannot be distinguished by an adaptive experiment. The main idea 

of the procedure below is to iteratively derive subsets of states that are distinguished 

by adaptively applying an input sequence of the length j  1, 2… k. The states of a 

test case under construction are labeled by subsets of S states.  

In this section we describe an algorithm given in [34, 52] for determining the 

minimal length for an adaptive distinguishing experiment for complete observable 

nondeterministic FSMs. The algorithm given in [34] works for any number of pairs 

of initial states and as in this thesis, we target adaptive experiments for a pair of 

initial states. Thus, we re-write the algorithm given in [34] as Algorithm A given 

below: 

Algorithm A 

Description: Determining the minimal length of an adaptive distinguishing 

experiment for a pair of states of an FSM S  

 
Input: Complete observable nondeterministic FSM S = (S, I, O, hS) with 

initial pair of states of S 

Output: Minimal length k of a distinguishing sequence for the given initial 

pair of FSM S or a message “there is no adaptive distinguishing sequence for 

the pair”. 
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Derive the set Q of all pairs of the set S of FSM S // Q represents pairs not 

distinguished  

Step-1: //Set the values of variables k, P & R as follows: 

k = 1:   // length of the sequence 

Let the set P be empty; // represents pairs of Q that are already distinguished 

Let the set R be empty; 

Step-2: 

Step-2.1:  

For each pair, call it current in the set Q, do: 

Step-2.2:  

For each input Ii : 

Step-2.3: Derive the set of all i-o-successors of the current pair  

Step-2.4: If the set of i-o-successors has a singleton then continue 

Step-2.5: If the set of i-o-successors of current is empty  

{  

If current is not initial, 

Add current pair to P and break  

Else 

Return k and End Algorithm A (Exit) 

} 

Step-2.6: If the set of i-o-successors is in R 

{   

If current is not initial, 

Add current pair to P and break  

Else 

Return k and End Algorithm A (Exit) 

}   

End-For 

End-For  
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Step-3: 

If P = R then End Algorithm A and return message “there is no adaptive 

distinguishing sequence for the pair” 

Q = Q \ P 

k = k + 1 

Let set R = P 

Step-4: Go-to Step-2 

Example 1: As an application example of Algorithm A, consider the FSM S in         

Figure 6 with four states, inputs {a, b} and outputs {0, 1}. Applying Algorithm A, 

we proceed as follows: At Step 1, Q = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}. Let            

initial = (1, 3). Also, we have k = 1; P = Ø; R = Ø. 

 

 

 Figure 6. Considered FSM S  

Table 2. Tabular Representation for the Considered FSM S in Figure 6. 

Input\ State 1 2 3 4 

a 2 / 1 

3 / 0 

2 / 0 2 / 0 

4 / 1 

3 / 1 

b 1 / 0 2 / 1 3 / 0 2 / 1 

At Step 2.1, let current = (1, 2) of Q. At Step 2.2, select input ‘a’. At Step 2.3, 

derive the set of all i/o-successors of current. As the a-0-successors (1, 2) = {(2, 3)} 

and the a-1-successors (1, 2) = Ø, the a-successors (1, 2) = {(2, 3)}. At Step 2.4, the 
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set of a-successors (1, 2) is not a singleton, so proceed to Step 2.5. At Step 2.5, the 

set of a-successors (1, 2) is not empty, so proceed to Step 2.6. At Step 2.6, as the set 

of a-successors (1, 2) is not in R, then we go back to Step 2.2, select input ‘b’ and 

repeat Steps 2.3 to 2.6; derive the set of all i/o-successors of current where the b-0-

successors (1, 2) = Ø and the b-1-successors (1, 2) = Ø; thus the b-successors (1, 2) = 

Ø. Since the set of b-successors (1, 2) is not a singleton, but the set of b-successors 

(1, 2) is empty and current is not initial; therefore add (1, 2) to P to obtain P = {(1, 

2)}. Repeat Step 2 for the remaining subsets of states {(1, 3), (1, 4), (2, 3), (2, 4), (3, 

4)} in the FSM S as follows. Let current = (1, 3) of Q, the set of a-successors (1, 3) = 

{(2, 3), (2, 4)}, and the b-successors (1, 3) = {(1, 3)}. As the set of all i/o-successors 

of current is not a singleton, not empty, and it is not present in the set R, thus we 

repeat Step 2 for the remaining subsets {(1, 4), (2, 3), (2, 4), (3, 4)} as follows. Let 

current = (1, 4) of Q, the set of a-successors (1, 4) = {(2, 3)}, and the b-successors (1, 

4) = Ø. As the set of b-successors (1, 4) is not a singleton, but is empty, and current 

is not initial, add (1, 4) to P to obtain P = {(1, 2), (1, 4)}. We repeat Step 2 for 

remaining subsets {(2, 3), (2, 4), (3, 4)}. Let current = (2, 3) of Q, the set of a-

successors (2, 3) = {(2, 2)}, and the b-successors (2, 3) = Ø. As the set of b-

successors (2, 3) is not a singleton, but is empty, and current is not initial, add (2, 3) 

to P to obtain P = {(1, 2), (1, 4), (2, 3)}. We repeat Step 2 for remaining subsets {(2, 

4), (3, 4)}. Let current = (2, 4) of Q, the set of a-successors (2, 4) = Ø. As the set of 

a-successors (2, 4) is not a singleton, but is empty and current is not initial, add (2, 4) 

to P to obtain P = {(1, 2), (1, 4), (2, 3), (2, 4)}. Repeat Step 2 for remaining subsets 

{(3, 4)}. Let current = (3, 4) of Q, the set of a-successors (3, 4) = {(3, 4)}, and the b-

successors (3, 4) = Ø. As the set of b-successors (3, 4) is not a singleton, but is 

empty, and current is not initial, add (3, 4) to P to obtain P = {(1, 2), (1, 4), (2, 3), 

(2, 4), (3, 4)}. Since there are no further subsets remaining in the FSM S, we proceed 

to Step 3. 

At Step 3, since P = {(1, 2), (1, 4), (2, 3), (2, 4), (3, 4)} is not equal to                              

Q = {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (1, 4)}, we separate subsets of the states which 

have already been distinguished in Step 2 by subtracting Q from P such that we 

obtain Q = Q\P = {(1, 3)}. Also, we add 1 to the length k such that k = 2. Add all the 

distinguished subsets from P to R (R = P = {(1, 2), (1, 4), (2, 3), (2, 4), (3, 4)}). 
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At Step 4, since the solution is not found (i.e., length has not been determined 

yet), we go back to Step 2. Repeating Step 2, we proceed as follows: at Step 2.1, let 

current = (1, 3) of Q. At Step 2.2, select input ‘a’. Since the set of all i/o-successors 

of current has a-successors (1, 3) = {(2, 3), (2, 4)}, and a-successors (1, 3) is not a 

singleton, and it is not empty, but a-successors (1, 3) is present in the set R and 

current is initial, return k = 2 (the minimal length of the distinguishing sequence) and 

End Algorithm A. 

3.2.2 Algorithm B (For Determining the Minimal Length of an Adaptive 

Distinguishing Experiment) 

We modify Algorithm A so that instead of deriving i/o-successors for subsets of 

states iteratively as done in Steps 2.1 to 2.6 of Algorithm A, first we derive                          

i/o-successors for all the subsets in advance. After the derivation of i/o-successors for 

all the subsets, we proceed to determine the minimal length of the distinguishing 

sequence by applying an adaptive input sequence of the length j  1, 2… k. The 

reason for this variation is (1) to make derivation of i/o-successors independent from 

finding the solution, and (2) to check whether this independent derivation of i/o-

successors can affect (i.e., either increase or decrease) the performance (i.e., the 

execution time) of Algorithm B to find the solution. The modified procedure is 

expressed in Algorithm B as given below: 

Algorithm B 

Description: Determining the minimal length of an adaptive distinguishing 

experiment for a pair of states of an FSM S  

 
Input: Complete observable nondeterministic FSM S = (S, I, O, hS) with 

initial pair of states of S 

Output: Minimal length k of a distinguishing sequence for the given initial 

pair of FSM S or a message “there is no adaptive distinguishing sequence for 

the pair”. 

Derive the set Q of all pairs of the set S of FSM S // Q represents pairs not 

distinguished 

Apply Step-1 of Algorithm A // Initialization of variables 
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Step-1.1:  

For each pair, call it current in the set Q, do: 

Step-1.2:  

For each input Ii : 

Derive the set of all i-o-successors of current pair 

End-For  

End-For 

Step-2: 

Step- 2.1:  

For each pair, call it current in the set Q, do: 

Step- 2.2:  

For each input Ii : 

Apply Step-2.4 of Algorithm A 

Apply Step-2.5 of Algorithm A 

Apply Step-2.6 of Algorithm A  

End-For 

End-For 

Apply Step-3 & Step-4 of Algorithm A 

Example 2: As an application example of Algorithm B, consider the FSM S2 in       

Figure 7 with four states, inputs {a, b}, and outputs {0, 1}. Applying Algorithm B 

proceeds as follows: Apply Step 1 from Algorithm B, Q = {(0, 1), (0, 2), (0, 3), (1, 

2), (1, 3), (2, 3)}. Let initial = (0, 2). Also we have k = 1; P = Ø; R = Ø. Then we 

proceed to the next step, i.e., derivation of i/o-successors for all the subsets of states.  

 

Figure 7. Considered FSM S2 
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Table 3. Tabular Representation for the Considered FSM S2 in Figure 7 

Input\ State 0 1 2 3 

a 3 / 0 

0 / 1 

1 / 1 

3 / 0 

0 / 0 

2 / 0 

2 / 1 

1 / 1 

b 2 / 1 0 / 0 3 / 0 1 / 0 

At Step 1.1, set current = (0, 1) of Q. At Step 1.2, select input ‘a’. Derive the set 

of all i/o-successors of current. As the a-0-successors = {(3, 3)} and a-1-successors = 

Ø, the a-successors (0, 1) = {(3, 3)}. Then we go back to Step 1.2 and select input 

‘b’. Derive the set of all i/o-successors of current where the b-0-successors = Ø and                     

b-1-successors = Ø; thus the b-successors (0, 1) = Ø. The set of i/o-successor (0, 1)                

= {(3, 3)}. By repeating Step 1.1 for the remaining subsets of states {(0, 2), (0, 3), (1, 

2),   (1, 3), (2, 3)} in the FSM S we obtain the following: i/o-successors (0, 2) = {(0, 

3)}, i/o-successors (0, 3) = {(2, 3)}, i/o-successors (1, 2) = {(0, 3), (0, 3)},                              

i/o-successors (1, 3) = {(2, 3), (0, 1), (0, 2), (1, 1), (1, 2), (0, 1)}, and i/o-successors 

(2, 3) = {(0, 2), (1, 3)}. The derivation of i/o-successors for all the subsets (i.e., pairs) 

of the states in FSM S is completed, and we proceed to Step 2. 

 At Step 2.1, set current = (0, 1) of Q. At Step 2.2, select input ‘a’. At Step 2.4, 

the set of a-successors (0, 1) is a singleton, so we go back to Step 2.2 and select input 

‘b’. As the set of b-successors (0, 1) is not a singleton, and is empty and current is 

not initial, add (0, 1) to P to obtain P = {(0, 1)}. We repeat Step 2 for the remaining 

subsets of states {(0, 2), (0, 3), (1, 2), (1, 3), (2, 3)} in the FSM S as follows. Let 

current = (0, 2) of Q. As the set of a-successors (0, 2) is not a singleton, is not empty 

and is not present in the set R, we continue with the set of b-successors (0, 2). As the 

set of b-successors (0, 2) is not a singleton, is empty and current is initial, we return 

k = 1 (the minimal length of the distinguishing sequence) and End Algorithm B. 

3.3 An Example Comparing Algorithms A and B 

In this section, we compare the performance of both the sequential algorithms A 

and B. We demonstrate this through a simple example (i.e., Example 3) in which we         

re-apply Algorithm A on FSM S2 in Figure 7. We compare both examples (i.e., 2 and 
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3) and evaluate which algorithm (either A or B) gives the better performance in 

determining the minimal length of the distinguishing sequence. 

Example 3: By applying Step 1 of Algorithm A on FSM S2, we proceed as 

follows: Let Q = {(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)}. Let initial = (0, 2). Also 

we have k = 1; P = Ø; R = Ø.  

Recalling Step 2 from Algorithm A and by applying Steps 2.1 to 2.6, we proceed 

as follows. Let current = (0, 1) of Q, the set of a-successors (0, 1) = {(3, 3)}, and the                     

b-successors (0, 1) = Ø. As the set of b-successors (0, 1) is not a singleton, but is 

empty and current is not initial, add (0, 1) to P to obtain P = {(0, 1)}. Repeat Step 2 

for remaining subsets {(0, 2), (0, 3), (1, 2), (1, 3), (2, 3)} as follows. Let current = (0, 

2) of Q, the a-successors (0, 2) = {(2, 3)}, and the b-successors (0, 2) = Ø. As the set 

of b-successors (0, 2) is not a singleton, but is empty and current is initial, return k = 

1 (the minimal length of the distinguishing sequence) and End Algorithm A. 

After applying Algorithm B in Example 2 and Algorithm A in Example 3 for 

FSM S2 in Figure 7, we observe that the Algorithm A performs better than Algorithm 

B. Algorithm A performs better because it derives the I/O-successors for each subset 

(i.e., pair) of states in FSM S iteratively (i.e., this process might not derive all the 

I/O-successors) and then in the corresponding iteration it proceeds to check the 

solution (i.e., the length of the distinguishing sequence). However, by contrast, 

Algorithm B derives I/O-successors for all the subsets (i.e., pairs) of states in the 

FSM in advance. Once the derivation of I/O-successors is completed, only then it 

proceeds to check the solution (i.e., the length of the distinguishing sequence). 

In Example 2 above, Algorithm B derives thirteen I/O-successors for all the 

subsets (i.e., pairs) of states in the FSM S2, thus iterating through all the transitions in 

FSM S2. Once the derivation of I/O-successors is completed, it proceeds to find the 

length of the distinguishing sequence for the given initial pair. However, on the other 

hand, Algorithm A in Example 3 only requires two iterations to find the solution. 

Algorithm A derives the I/O-successors for two subsets (i.e., pairs) of states in the 

FSM S2 and finds the distinguishing sequence in the second iteration, thus iterating 

through the minimum number of transitions required to find the solution. As a result, 

Algorithm B takes more time as it iterates through all the transitions to find the 
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solution, whereas Algorithm A finds the solution by iterating through the minimum 

number of transitions, resulting in better performance as compared to Algorithm B. 

However, in other cases as well, in which the length of the distinguishing sequence is 

greater than one (i.e. k = ,3,2  and so on), the performance of Algorithm A should 

remain better as it iterates through the minimum number of transitions to find the 

solution, but in such cases where the length of the distinguishing is greater than one 

and we derive all the I/O-successors to obtain a solution, Algorithm B will give better 

performance than Algorithm A. Algorithms A and B will take the same amount of 

time to derive the I/O-successors, but Algorithm B will not iterate through transitions 

again to check the solution, resulting in better performance as compared to Algorithm 

A. Another added advantage of Algorithm B is that we develop independent 

derivation of I/O-successors, which in turn helps us to easily parallelize the process 

of I/O-successor derivation through a data decomposition/partitioning approach. 

In the next chapter, we discuss the parallel algorithms for Algorithms A and B.  
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Chapter 4: Parallel Algorithms for Determining the Minimal Length of 

Adaptive Distinguishing Experiments for Nondeterministic FSMs 

In this chapter, we discuss and describe parallel derivatives of the sequential 

algorithms A and B presented in Chapter 3. We present two algorithms: a parallel 

algorithm for A and a parallel algorithm for B. We present four different 

implementations of the Parallel Algorithm B, based on the different software and 

hardware platforms used. The software and hardware platforms used influence how 

the data is partitioned (i.e., distributed) for parallel execution and how the partial 

results (i.e., results obtained from the distributed computation) are handled.  

The four implementations are as follows: 

 MTB: targets execution on a multicore CPU via multiple threads 

 CUDAB: targets execution on a GPU using the software platform CUDA. 

 ThrustB: targets execution on a GPU using the software platform Thrust. 

 MNB: targets execution on a Network of Workstations. 

As Algorithm A derives the I/O-successors iteratively and checks for the solution 

in the corresponding iteration, this requires an inter-process and inter-thread 

communication in NoWs and in GPUs respectively. As inter-process and inter-thread 

communication is not possible in the current design of Algorithm A, the parallel 

algorithm for A has a single implementation on multi-core CPUs via multiple threads 

and from here on, it will be denoted as MTA.  As described above, MTB, CUDAB, 

ThrustB, and MNB are the parallel implementations of Algorithm B given in the 

previous chapter for deriving and determining the minimal length of an adaptive 

distinguishing experiment for non-deterministic FSMs and MTA is the parallel 

implementation of Algorithm A. The purpose behind the development of the parallel 

algorithms is to reduce the execution time as observed in the sequential algorithms 

and obtain the solution (i.e., the length of the distinguishing sequence) in a 

reasonable time. 

In the parallel algorithms we represent each subset (i.e., pair) of states of a given 

FSM by a unique integer value. For this purpose we present a function that maps all 

the pairs of states of FSM S to an integer representation. 
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Let  jiF , be the function, such that  jiF , → ℕ, which maps each subset (i.e., 

pair  ji, ) in FSM S to a unique integer value and is given by: 

 

jiji

jzjiF
i

z








,

1,
1

1  (1) 

4.1 Multi-Threaded Implementation for Algorithm A (MTA) 

In this section, we describe and discuss a parallel derivative of the (sequential) 

Algorithm A through its implementation on a multi-core CPU via multiple threads. In 

this algorithm, we divide the data (i.e., subsets (pairs) of states) by creating 

individual tasks and assigning each subset to the individual task. These individual 

tasks are then executed in parallel depending upon the number of threads available in 

the multi-core CPU and are scheduled by the scheduler of the CPU. This 

algorithm/implementation is specifically designed for execution on a multicore CPU 

via multiple threads.  

Multi-Threaded implementation for Algorithm A (MTA): 

Description: A parallel (multi-threaded) variation of Algorithm A for 

determining the minimal length of an adaptive distinguishing experiment for a 

pair of states of an FSM S 

 
Input: Complete observable nondeterministic FSM S = (S, I, O, hS) with 

initial pair of states of S. 

Output: Minimal length k of a distinguishing sequence for the given initial 

pair of FSM S or a message “there is no adaptive distinguishing sequence for 

the pair”. 

Step-1: 

Derive the set Q consisting of all pairs   jiji , , of the set S of FSM S. // 

set Q represents pairs not distinguished yet. 

Let Q′ be the ordered set that contains integer values representing the state of 

pairs  ji,  of the set Q, such that:  

Q′ =  jiF ,   jiSjSi  ,,  

k = 1;   // length of the sequence 
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Let the set P be empty; // represents pairs of Q′ that are already distinguished 

Let the set R be empty; 

Let M be the number of pairs of different states of S, calculate the total 

number of pairs of different states in S and assign it to M. 

Step-2: 

For each pair call it current in the set Q′, do: 

  Create task vT  (where v  1….. M) and assign current pair to each task vT . 

// vT is an independent running task and does not relate to a process or a 

thread. 

End-For 

Do in Parallel 

For each Task vT  call it current task, do the following: 

For each input Ii : 

Derive the set of all i-o-successors of the pair in current task  

If the set of i-o-successors has a singleton then continue 

If the set of i-o-successors of current is empty  

{  

If the pair in the current task is not initial,  

Add the pair to P and break  

Else 

Return k (Stop all the asynchronous running tasks) 

and End Algorithm MTA (Exit) 

} 

If the set of i-o-successors is in R 

{   

If the pair in the current task is not initial,  

Add the pair to P and break  

Else 

Return k (Stop all the asynchronous running tasks) 

and End Algorithm MTA (Exit) 

}  

End-For  
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End-For 

End Parallel Execution 

Step-3: 

If P = R then End Parallel Algorithm MTA and return message “there is no 

adaptive distinguishing sequence for the pair” 

Q′ = Q′ \ P 

 k = k + 1 

Let set R = P 

Step-4: 

Go-to Step-2 

4.2 Parallel Algorithm for B 

In this section, we discuss and describe a generic parallel derivative of the 

(sequential) Algorithm B. This parallel algorithm is specifically designed for 

execution in parallel via different data partitioning approaches.  

Parallel Algorithm B  

Description: A parallel algorithm of Algorithm B for determining the minimal 

length of an adaptive distinguishing experiment for a pair of states of an FSM S  

 
Input: Complete observable nondeterministic FSM S = (S, I, O, hS) with 

initial pair of states of S. 

Output: Minimal length k of a distinguishing sequence for the given initial 

pair of FSM S or a message “there is no adaptive distinguishing sequence for 

the pair”. 

Step-1: 

Derive the set Q consisting of all pairs   jiji ,  of the set S of FSM S. // 

set Q represents pairs not distinguished yet. 

Let Q′ be the ordered set that contains integer values representing the state of 

pairs  ji,  of set Q, such that:  

Q′ =  jiF ,   jiSjSi  ,,  

k = 1;   // length of the sequence 

Let the set P be empty; // represents pairs of Q′ that are already distinguished 
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Let the set R be empty; 

Let M be the number of pairs of different states of S, calculate the total 

number of pairs of different states in S and assign it to M. 

Step-1.1: // Divide the data depending upon the data partitioning scheme 

Divide: 

Divide set Q′ into disjoint subsets of ordered sets: 

Step-1.2:  

Do in Parallel: 

For each subset of Q′ do the following:  

For each pair, call it current in the subset of Q′, do: 

Derive the set of all i-o-successors of current pair 

End-For 

End-For 

End Parallel 

Step-1.3:  

Join: // Join partial subsets created in Step 1.1 in the set Q′.  

Step-2: 

For each pair, call it current in set Q′, do: 

For each input Ii : 

If the set of i-o-successors has a singleton then continue 

If the set of i-o-successors of current is empty  

{  

If current is not initial,  

Add current pair to P and break  

Else 

Return k and End Parallel Algorithm B (Exit) 

} 

If the set of i-o-successors is in R 

{   

If current is not initial,  

Add current to P and break  
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Else 

Return k and End Parallel Algorithm B (Exit) 

}   

End-For 

End-For 

Step-3: 

If P = R then End Parallel Algorithm B and return message “there is no 

adaptive distinguishing sequence for the pair” 

Q′ = Q′ \ P 

 k = k + 1 

Let set R = P 

Step-4: 

Go-to Step-2 

4.2.1 Multi-Threaded Implementation for Parallel Algorithm B (MTB) 

Below, we present a multi-threaded implementation of Parallel Algorithm B. In 

this implementation, we partition the data (i.e., subsets (pairs) of states) over a multi-

core CPU via multiple threads. This parallel implementation is specifically designed 

for execution on a multi-core CPU via multiple threads as shown below.  

Multi-Threaded Implementation (MTB) 

Description: A multi-threaded implementation of Parallel Algorithm B for 

determining the minimal length of an adaptive distinguishing experiment for a 

pair of states of an FSM S 

 
Input: Complete observable nondeterministic FSM S = (S, I, O, hS) with 

initial pair of states of S, number of threads x. 

Output: Minimal length k of a distinguishing sequence for the given initial 

pair of FSM S or a message “there is no adaptive distinguishing sequence for 

the pair”. 

Apply Step-1 of Parallel Algorithm B  

Modifying Step-1.1, Step-1.2 & Step-1.3 of Parallel Algorithm B as below: 

Step-1.1: // Dividing set Q′ on multi-core CPU via multiple threads  
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Divide:  

Divide the set Q′ into disjoint subsets of ordered sets; 

xQQ  1  (where x is number of threads) 

Let  yG be the function, such that  yG → ℕ, which calculates the index 

for the first item, (i.e., pair of states of S) of the ordered set xQ , and is 

given by: 
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where xy ,2,1  

Let  yH be the function, such that  yH → ℕ, which calculates the index 

for the last item (i.e., pair of states of S) of the ordered set xQ , and is 

given by: 
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where xy ,2,1  and Q  is the size of set Q′ 

Step-1.2:  

Do in Parallel 

For each subset vQ (where v  1….. x) do the following: 

Let vm be the first item (i.e., pair of states of S) of the ordered set Q′v 

then: 

 vGmv   

Let vn  be the last item (i.e., pair of states of S) of the ordered set Q′v 

then:  

 vHnv   

Let current = vm ;   
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While ( vncurrent ) do: 

Derive the set of all i-o-successors of current pair  

current++; 

End-while 

End-for 

End Parallel 

Step-1.3:  

Join: // Join partial subsets created in Step 1.1 in the set Q′. 

Apply Step-2, Step-3 & Step-4 of Parallel Algorithm B 

4.2.2 GPU Implementations for Parallel Algorithm B (CUDAB and ThrustB) 

In this section, we present two implementations for Parallel Algorithm B on a 

GPU. In these implementations, we partition the data (i.e., subsets (pairs) of states) 

over the GPU cores depending upon the computing capability of the GPU device. 

The execution on the GPU can be carried out by using either of two software 

platforms: CUDA or Thrust. 

GPU Implementation for execution on CUDA (CUDAB) 

Description: An implementation of Parallel Algorithm B on a GPU using CUDA 

for determining the minimal length of an adaptive distinguishing experiment for 

a pair of states of an FSM S 

 
Input: Complete observable nondeterministic FSM S = (S, I, O, hS) with 

initial pair of states of S.  

Output: Minimal length k of a distinguishing sequence for the given initial 

pair of FSM S or a message “there is no adaptive distinguishing sequence for 

the pair”. 

Apply Step-1 of Parallel Algorithm B  

Modify Step-1.1, 1.2 & Step-1.3 of Parallel Algorithm B as below: 

Step-1.1: // Dividing set Q′ on the GPU by following kernel configurations:
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Divide:  

Divide set Q′ into disjoint subsets of ordered sets, such that the number of 

disjoint subset equals the number of pairs M, and each disjoint subset 

contains a single pair  ji, : 

MQQ  1 (where M is the number of pairs) 

Create threads t on the GPU such that the number of threads equals the 

number of disjoint subsets.  

Assign each subset VQ  to a corresponding thread Vt (where MV 1 ).   

Step-1.2:  

Do in parallel 

For each subset VQ (where MV 1 ), do the following on the GPU: 

Derive the set of all i-o-successors of the pair  ji,  in the subset VQ  

End-for 

End Parallel 

Step-1.3:  

Join: // Join partial subsets created in Step 1.1 in the set Q′. 

Apply Step-2, Step-3 & Step-4 of Parallel Algorithm B 

GPU Implementation for execution on Thrust (ThrustB) 

Description: An implementation of Parallel Algorithm B on a GPU using Thrust 

for determining the minimal length of an adaptive distinguishing experiment for 

a pair of states of an FSM S 

 
Input: Complete observable nondeterministic FSM S = (S, I, O, hS) with 

initial pair of states of S. 

Output: Minimal length k of a distinguishing sequence for the given initial 

pair of FSM S or a message “there is no adaptive distinguishing sequence for 

the pair”. 

Apply Step-1 of Parallel Algorithm B 

Modify Step-1.1, Step-1.2 & Step-1.3 of Parallel Algorithm B as below:  
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Step-1.1: // Dividing set Q′ on the GPU through Functor using the following 

steps: 

Divide: 

Divide set Q′ into disjoint subsets of ordered sets, such that the number 

of disjoint subsets equals the number of pairs M and each disjoint subset 

contains a single pair  ji, : 

MQQ  1 (where M is the number of pairs) 

Step-1.2:  

Create a Functor and assign all the disjoint subsets to the functor which 

performs the following operations: 

Start Functor: 

Assign each subset VQ  to a corresponding thread Vt (where MV 1 ).   

Do in parallel 

For each subset VQ (where MV 1 ), do the following on the GPU: 

Derive the set of all i-o-successors of the pair  ji,  in the subset VQ  

End-for 

End Parallel 

End Functor 

Step-1.3:  

Join: // Join partial subsets created in Step 1.1 in the set Q′. 

Apply Step-2, Step-3 & Step-4 of Parallel Algorithm B 

4.2.3 Multiple-Node Implementation of Parallel Algorithm B (MNB) 

In this section, we present an implementation of Parallel Algorithm B on a NoW 

via multiple nodes. In this implementation, we partition the data (i.e., subsets (pairs) 

of states) over multiple nodes (N) in the NoW. We consider node computation 

capability, communication speed amongst the nodes, communication overhead, and 

constant overhead associated with the computation at the node. In order to partition 

the data optimally, we formulate a model which uses Divisible Load Theory (DLT), 

described in detail in Chapter 2. In order to attain optimum execution time, we take 
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into consideration that all the nodes must finish on time. The formulation of the 

model is shown below: 

In the data partitioning model we make the following assumptions: 

1. All the nodes read the machine description (N-port setup). 

2. The master node collects the partial results and solves the problem by 

finding   the length of the distinguishing sequence. 

The following are notations which are used in the formulation. 

 bd: constant communication overhead during distribution (sec) 

 ld: (inverse) communication speed during distribution (sec/byte) 

 bc: constant communication overhead during result collection (sec) 

 lc: (inverse) communication speed during result collection (sec/byte) 

 pi: (inverse) computation speed of node Pi (sec/transition) 

 ei: constant overhead associated with the computation at node Pi (sec) 

 parti: part of load assigned to node Pi 

 B: size of machine description in bytes 

 T: number of transitions 

 O: size of I/O successors table (bytes) 

 N: number of nodes 

 ti
distr: Distribution time for the node i 

 ti
comp: Computation time for the node i 

 ti
coll: Collection time for the node i 

The formulation for the model is presented below: 

∀ node i ∈ [1, N − 1] compute: 

ti
distr = ld · B + bd (4) 

ti
comp = parti · pi · T + ei (5) 

ti
coll = lc parti · O + bc (6) 

For the master node we have t0
coll = 0. 

To minimize the overall execution time, all the nodes must finish at the same 

time. Thus we have: 

 i
coll

i
comp

i
distrcompdistr ttttt 00  
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From the normalization equation we can calculate part0: 
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From the model above, ipart (where i = 0, 1, 2… N-1) represents computation 

load for a particular node; in particular, part0 represents the load for the master node, 

and ipart  represents the percentage for the number of subsets (pairs) of the states 

that each node should compute for deriving I/O-successors. Appendix A provides 

more information about how the model parameters can be derived.   

After computing the load for each node, ipart  can be applied as an input to the 

implementation, so that each node can be assigned with the number of subsets (pairs) 

of states for the derivation of I/O-successors.  

We consider two types of nodes in the NoW: sequential nodes and nodes 

containing GPUs. To identify the type of each node, we apply node type as an input 

parameter in the implementation.  

This implementation is well suited for execution on a NoW via multiple-node 

execution, and is shown below. 
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Multiple-Node Implementation (MNB) 

Description: An implementation of Parallel Algorithm B on a NoW via 

multiple-nodes for determining the minimal length of an adaptive distinguishing 

experiment for a pair of states of an FSM S 

 
Input: Complete observable nondeterministic FSM S = (S, I, O, hS) with 

initial pair of states of S, ipart (the computation load for each node N), type of 

node (i.e. either Sequential or GPU), number of nodes N.  

 
Output: Minimal length k of a distinguishing sequence for the given initial 

pair of FSM S or a message “there is no adaptive distinguishing sequence for 

the pair”. 

Apply Step-1 of Parallel Algorithm B  

Modify Step-1.1, Step-1.2 & Step-1.3 of Parallel Algorithm B as shown below: 

Step-1.1: // Dividing set Q′ on the NoW via multiple nodes on the Master Node 

Divide:  

Divide the set Q′ into disjoint subsets of ordered sets; 

10 

NQQ   (where N is number of nodes) 

Let  yU be the function, such that  yU → ℕ, which calculates the index 

for the first item, (i.e., pair of states of S) of the ordered set 1

NQ , and is 

given by: 
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where 12,1,0  Ny   

Let  yW  be the function, such that  yW  → ℕ, which calculates the 

index for the last item (i.e., pair of states of S) of the ordered set 1

NQ , and 

is given by: 
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where 12,1,0  Ny   and M is the number of pairs of states S 

For each v N  in [0, N – 1], do the following: 

Let vm be the first item (i.e., pair of states of S) of the ordered set Q′ 

then: 

 vUmv   

Let vn  be the last item (i.e., pair of states of S) of the ordered set Q′v 

then:  

 vVnv   

End-for 

Step-1.2:  

Do in Parallel 

For each subset vQ (where v  0...N-1), do on multiple nodes the 

following:  

If the node is a Sequential Node 

    Apply Step-2 of Algorithm B on subset vQ  

Else if the node is a GPU Node 

    Apply Step-1.1, Step-1.2 & Step-1.3 of CUDAB on subset vQ  

End-for 

End Parallel Execution 

Step-1.3:  

Join: // Join partial subsets created in Step 1.1 at the Master Node in the set 

Q′. 

Apply Step-2, Step-3 & Step-4 of Parallel Algorithm B 

In the next chapter, we present the results of the experimental evaluation of the 

sequential algorithms presented in Chapter 3 and parallel algorithms presented in this 

chapter. For each algorithm, we record the execution time that it takes to determine 

the minimal length for a distinguishing sequence. Based on the recorded execution 

time for each algorithm, we perform related analyses as described in detail in Chapter 

5.



55 
 

Chapter 5: Experimental Evaluation 

In this chapter, we present the results of the sequential and parallel 

implementations of algorithms described in Chapters 3 and 4. We conducted many 

experiments by generating different FSMs by a generator used in [53] with all the 

possible combinations shown in Table 4. For each combination we generated five 

FSMs and for each generated FSM we considered five different initial pairs. 

Therefore in total we experimented with 2000 machines (i.e., 80 combinations, 5 

FSMs for each combination, and 5 different initial pairs for each FSM). For each 

experiment, we run sequential and parallel algorithms and determine the minimal 

length of an adaptive experiment. We compare (a) the time taken by each algorithm 

to reach a solution, (b) the speedup (defined as how much faster the parallel 

algorithm is in comparison to the sequential algorithms). 

Table 4. Combinations of Generated FSMs 

Inputs Outputs States Determinism Range 

4 4 100 50 50-60 

6 6 150 60 60-70 

8 8 200 70 70-80 

10 10 250 80 80-90 

 12    

The system configuration and platform details of the test beds on which the 

experiments were conducted are shown in Table 5. 

Table 5. System Configuration & Platform Details 

 Dune Kingpenguin Dune2 

CPU 
Core(TM) 2 Quad CPU 
Q8200 @ 2.33 GHz 

Intel(R) Xeon(R) CPU 
E5-2640 @ 2.50GHz 

Intel(R) Core(TM) i7-
4820K CPU @ 3.70GHz 

CPU Cores 4 12 4 

Threads/Core 1 2 2 

RAM 4 GB 64 GB 32 GB 

GPU Quadro 5000 - GeForce GTX 770 

GPU Cores 352 - 1536 

GPU RAM 2559 MBytes - 2048 MBytes 

Compute Capability 2.0 - 3.0 

Number of GPUs 1 - 2 

The software environment is the same for all the test beds in Table 5 and is 

mentioned below: 
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 Operating System: Kubuntu 14.04 (64 bit) 

 Environment (IDE): Qt Creator 3.0.1 

 Qt Version: Qt 5.2.1 

 Compiler: GCC 4.8.2, 64 bit 

 QMake version 3.0 

 CUDA Driver Version / Runtime Version 6.5 / 6.5 

Sequential algorithms A and B with corresponding parallel implementations 

MTA, MTB, CUDAB, and ThrustB are tested on Dune as shown in Table 5. However, 

the parallel implementation MNB is tested on the NoW. For this purpose, we consider 

three machines as shown in Table 5, which are inter-connected and correspond to 

multiple nodes in the network. For the execution of MNB, we consider three CPU 

nodes and three GPU nodes which are listed below:  

CPU Nodes: 

 Dune 

 Kingpenguin 

 Dune2 

GPU Nodes: 

 Dune 

 Dune2  

Dune2 is considered as two GPU nodes because it consists of multiple (i.e., two) 

GPUs in its hardware specifications, and these GPUs are capable of independent 

concurrent executions.   

In the sections below we compare the proposed algorithms and their 

implementations to determine which one gives the best performance under different 

circumstances. Special consideration is given to how the number of transitions (i.e., 

the size) and non-determinism of the FSM affects the overall execution time. For this 

purpose, we considered FSMs in three categories based on their sizes (i.e., number of 

transitions) which are as follows:   

 Small FSMs: number of transitions ranges from 100,000 to 1 million. 

 Medium FSMs: number of transitions ranges from 1 million to 1.5 million. 

 Big FSMs: number of transitions ranges from 1.5 million to 5 million. 
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5.1 Execution Time versus Number of Transitions of Sequential Algorithms A 

and B 

In this section, we compare the execution times of the two sequential algorithms 

(A and B) and determine which one gives the best performance as the number of 

transitions increases. Figures 8 and 9 depict the results for all the experiments 

conducted for sequential algorithms.    

 

Figure 8. Algorithm A versus Algorithm B for Small and Medium FSMs 

 

Figure 9. Algorithm A versus Algorithm B for Big FSMs 

According to the results depicted in Figures 8 and 9, the similarity between both 

sequential algorithms is that the execution time increases exponentially with an 

increasing number of transitions. However, the performance of Algorithm A is better 

than Algorithm B. We also observe that in special cases where the length of the 
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distinguishing sequence is one (i.e. the distinct points in the Figure 9) the execution 

time of Algorithm A is significantly better than Algorithm B. 

5.2 Execution Time versus Number of Transitions of Sequential Algorithm A 

Against MTA 

In this section, we compare the execution times of (sequential) Algorithm A with 

the multi-threaded implementation of Parallel Algorithm A. The purpose of this 

comparison is to analyze the difference in execution time between them and quantify 

the speedup that can be achieved. The results are summarized in Figures 10 and 11. 

 

Figure 10. Algorithm A versus MTA for Small and Medium FSMs 

 

Figure 11. Algorithm A versus MTA for Big FSMs 
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According to the results depicted in Figures 10 and 11, both algorithms exhibited 

an exponential increase in execution time with number of transitions. However, the 

speedup obtained is less favorable than MTB as mentioned later in Section 5.3.  

 

Figure 12. Speedup for MTA w.r.t. (Sequential) Algorithm A for Small and 

Medium FSMs 

 

Figure 13. Speedup for MT A w.r.t. (Sequential) Algorithm A for Big FSMs 
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sequence is one and the sequential algorithm gives the better performance as 

compared to MTA.  

The variation in speedup is due to the varying length of the distinguishing 

sequence and I/O-successors derived. Since the (sequential) Algorithm A derives 

I/O-successors iteratively for each subset of states and then proceeds to check the 

solution, there is a possibility that it finds the solution before iterating through all the 

subsets and transitions in the FSM, especially when the solution (i.e., the length of 

the distinguishing sequence) is one. Therefore when the length of the distinguishing 

sequence is one, MTA is much more costly in terms of execution time than 

(sequential) Algorithm A.   

5.3 Execution Time versus Number of Transitions of Sequential Algorithm B 

Against MTB 

In this section, we compare the execution times for (sequential) Algorithm B and 

the multi-threaded implementation of Parallel Algorithm B. The purpose of this 

comparison is to analyze the difference in execution time between them and 

determine whether we attain speedup in multi-threaded implementation. Figures 14 

and 15 depict the results for all the experiments conducted for sequential and parallel 

multi-threaded implementation of Algorithm B. 

 

Figure 14. Sequential Algorithm B versus MTB for Small and Medium FSMs 
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Figure 15. Sequential Algorithm B versus MTB for Big FSMs 

According to the results depicted in Figures 14 and 15, the similarity between 

both algorithms is that the execution time for both of them scales exponentially with 

an increasing number of transitions.  

 

Figure 16. Speedup for MTB w.r.t. (Sequential) Algorithm B for Small and Medium 

FSMs 
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Figure 17. Speedup for MTB w.r.t. Sequential Algorithm B for Big FSMs 

According to the results depicted in Figures 17 and 18, we obtain nearly 2x 

speedup for two threads and nearly 4x speedup for four threads as compared to 

(sequential) Algorithm B.  

The implementation of MTB is based on equal partitioning of the problem data 
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the threads share the load equally, and we obtain a stable improvement in execution 

time. 
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Figure 18. Sequential Algorithms versus Other Parallel Implementations for 

Small and Medium FSMs 

 

 

 

Figure 19. Sequential Algorithms versus Other Parallel Implementations for Big 

FSMs 
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significant. However, when the number of transition increases (i.e. for medium and 

big FSMs), the difference in execution time increases for all CUDAB, ThrustB, and 

MNB. MNB gives the best performance throughout the experiments amongst the 

considered parallel implementations. The second best is CUDAB and the third best is 

ThrustB. There are distinct cases where (sequential) Algorithm A performs better 

than ThrustB and CUDAB; in such cases again the length of the distinguishing 

sequence is one and the (sequential) Algorithm A does not iterate through all the 

subsets and transitions, giving better performance than other implementations. 

 

Figure 20. Speedup for Other Parallel Implementations w.r.t (Sequential) 

Algorithm A for Small and Medium FSMs 

 

Figure 21. Speedup for Other Parallel Implementations w.r.t (Sequential) 

Algorithm A for Big FSMs 
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Figures 20 and 21 illustrate the speedup w.r.t. to (sequential) Algorithm A. As 

observed, there is a constant variation in the speedup obtained for all small to big 

FSMs. Although there are cases in which MNB scales up to 10x times, CUDAB scales 

up to 8x times, and ThrustB scales up to 6x times faster than the (sequential) 

Algorithm A. There are also some distinct cases (i.e., in which the length of the 

distinguishing sequence is one), but these implementations fail to scale above one, 

and in such cases parallel implementations are more costly in terms of execution time 

rather than (sequential) Algorithm A. The trend in the performance measure also 

remains the same (i.e., MNB gives better performance than CUDAB and ThrustB, and 

CUDAB gives better performance than ThrustB). 

The cause for the constant variation in this speedup is mentioned later in Section 

5.6, where we analyze speedup from a different perspective and provide the reasons 

for this variation. 

 

Figure 22. Speedup for Other Parallel Implementations w.r.t (Sequential) 

Algorithm B for Small and Medium FSMs 
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Figure 23. Speedup for Other Parallel Implementations w.r.t (Sequential) 

Algorithm B for Big FSMs 

Figures 22 and 23 illustrate the speedup w.r.t. to (sequential) Algorithm B. For 

small to medium FSMs, the speedup varies frequently. However, in distinct cases, 

MNB scales up to 14x times, CUDAB scales up to 10x times, and ThrustB scales up to 

8x times faster than the (sequential) Algorithm B. For big FSMs, we observe a stable 

improvement in execution time. The speedup for MNB is constantly above 11x times, 

and is significantly faster than CUDAB and ThrustB. The speedup for CUDAB is  

nearly 5x times and gives better performance than ThrustB. The speedup for ThrustB 

is around 3x times. 
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Implementations Against Other Parallel Implementations 

In this section, we compare the execution time for multi-threaded 

implementations against other parallel implementations which include CUDAB, 

ThrustB and MNB. We consider four threads for multi-threaded implementations. The 

purpose of this comparison is to determine the best parallel implementation amongst 

them. Figures 24 and 25 summarize the results for all the parallel implementations.  
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Figure 24. Multi-Threaded Implementations versus Other Parallel Implementations 

for Small and Medium FSMs 

 

 

Figure 25. Multi-Threaded Implementations versus Other Parallel 

Implementations for Big FSMs 

According to the results depicted in Figures 24 and 25, for all the 
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MTA, MTB, ThrustB and CUDAB are close to each other. However, MNB performs 

slightly better than all the other implementations. For big FSMs, the performance of 

MNB is significantly better than all the other implementations. MTA and CUDAB 

have the same performance for execution time whereas MTB and ThrustB have the 

same performance for execution time. Hence, we can conclude that MNB has the best 

performance throughout (i.e. ignoring the performance of MNB in the small FSMs). 

However, MTB and ThrustB are costly in performance amongst the parallel 

implementations. 

5.6 Achieved Speedup with Respect to Algorithm A 

In this section, we study the relative performance improvement for all the parallel 

implementations through analyzing the speedup achieved in each experiment w.r.t. 

(sequential) Algorithm A. For this study, we categorize the considered FSMs 

according to the number of states. We have four main categories where the number 

of states are 100, 150, 200, and 250. These categories are further subdivided based on 

the number of inputs and outputs. Further, for each combination of number of states, 

number of inputs and number of outputs we consider four different ranges of non-

determinism (i.e. R1 = 50 %, R2 = 60 %, R3 = 70 %, R4 = 80 %). Figures 26, 27, 28 

and 29 depict the results of all conducted experiments. 

 
Figure 26. Achieved Speedup w.r.t. Algorithm A (States = 100) 
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Figure 27. Achieved Speedup w.r.t. Algorithm A (states = 150) 
 

 

 

Figure 28. Achieved Speedup w.r.t. Algorithm A (states = 200) 
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Figure 29. Achieved Speedup w.r.t. Algorithm A (states = 250) 

According to the results depicted in Figures 26 to 29, we observe that when the 

number of states is 100, the speedup for ThustB, CUDAB and MNB is less than the 

speedup for MTA (Threads = 4), hence giving better performance. We also noted that 

the speedup for MTA (Threads = 2) and MTA (Threads = 4) varies throughout. This 

variation in speedup is due to the distinct cases where the length of the distinguishing 

sequence is one and there is a high probability that the sequential algorithm will find 

the solution without iterating through all the subsets and transitions, resulting in less 

execution time. 

Similarly, there are distinct cases (i.e., in which the length of the distinguishing 

sequence is one). Most of these algorithms are not able to scale above speedup of 

one. In such cases, (sequential) Algorithm A performs better than the parallel 

implementations. However, when FSMs get bigger (i.e. number of states = 150, 200 

and 250) we observe a trend in the variations for speedup in ThustB, CUDAB and 

MNB. A summary of these variations is provided below:  
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a) As we increase the number of states, the speedup increases. This happens 

because GPUs are composed of thousands of computing cores which are able 

to perform operations in parallel. In order to utilize these cores efficiently, we 

need to put as much workload as possible on them, because the higher the 

ratio between computation and communication, the more efficient the 

execution is on a GPU. In the GPU implementations, we spawn as many 

threads as the number of subsets, hence when we increase the number of 

states, the number of subsets increases which puts more workload on the 

GPU, thus utilizing more cores and giving efficient execution. Hence, this 

results in increasing the speedup.   

b) In general, increasing the range of non-determinism increases the number of 

transitions. Therefore, for a fixed number of states, number of inputs, and 

number of outputs, if we keep increasing the range of non-determinism the 

number of transitions increases, which puts more workload on GPUs, thus 

utilizing them more efficiently and resulting in increased speedup.  

c) For a given number of states, if we increase the number of outputs while 

keeping the number of inputs unchanged, the speedup decreases. This 

happens because as we increase the number of outputs, the number of I/O-

successors and number of transitions increases. Therefore, it takes more time 

to find the solution, and as a result speedup decreases.  

5.7 Achieved Speedup with Respect to Algorithm B 

In this section, we study the relative performance improvement for all the parallel 

implementations, through analyzing the speedup achieved in each experiment w.r.t. 

to the (sequential) Algorithm B. For this study, we categorize FSMs in the same 

order as mentioned in Section 5.6. Figures 30, 31, 32 and 33 depict the results of all 

conducted experiments. 
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Figure 30. Achieved Speedup w.r.t. Algorithm B (States = 100) 

 

 
Figure 31. Achieved Speedup w.r.t. Algorithm B (states = 150) 
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Figure 32. Achieved Speedup w.r.t. Algorithm B (states = 200) 
 

 
 

Figure 33. Achieved Speedup w.r.t. Algorithm B (states = 250) 
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CUDAB and MNB is almost the same. However, for bigger FSMs (i.e., number of 

states = 150, 200 and 250) we observe a trend in the variations of speedup in ThustB, 

CUDAB and MNB. The summary of these variations is the same as described in 

Section 5.6. 

5.8 Achieved Speedup versus Number of Transitions with Respect to Algorithm 

A 

In this section, we study the relative performance improvement by analyzing the 

speedup achieved over the increasing number of transitions for parallel 

implementations as compared to (sequential) Algorithm A. For this purpose, we 

divide FSMs in two categories: Size-I FSMs in which the number of transitions goes 

up to one million, and Size-II FSMs in which the number of transitions ranges from 

one million to five million. In this section, for studying the overall performance 

improvement, we did not consider each experiment individually; rather we took the 

average of the speedup at regular intervals for the number of transitions. Figure 34 

depicts the results of speedup in Size-I FSMs, and Figure 35 depicts the results of 

speedup in Size-II FSMs.    

 

Figure 34. Speedup versus Number of Transitions w.r.t. Algorithm A for the 

Considered Size-I FSMs
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Figure 35. Speedup versus Number of Transitions w.r.t. Algorithm A for the 

Considered Size-II FSMs 

According to the results depicted in Figures 34 and 35, speedup for MTA 

(Threads = 2) and MT A (Threads = 4) in Size-I FSMs remains constant throughout 

the intervals (i.e., nearly 1.5 times and nearly 3 times, respectively). However, 

speedup for ThustB, CUDAB and MNB increases gradually, with intervals in Size-I 

FSMs.  

However in Size-II FSMs we see slight variations. Speedup for MT A (Threads = 

2) increases gradually with intervals, whereas the speedup for MTA (Threads = 4), 

ThustB, CUDAB and MNB remains constant throughout the intervals in Size-II FSMs.  

MNB has significant gain in speedup throughout the intervals in both categories 

whereas the speedup for CUDAB and MTA (Threads = 4) is close to each other in 

both the categories. However, the speedup for ThustB is the lowest amongst the 

parallel implementation, resulting in the worst performance amongst the parallel 

implementations. 
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In this section, we study the relative performance improvement by analyzing the 

speedup achieved over the increasing number of transitions for parallel 

implementations as compared to (sequential) Algorithm B. For this purpose, we 
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divide FSMs in two categories as mentioned in Section 5.8. Figure 36 depicts the 

results of speedup in Size-I FSMs, and Figure 37 depicts the results of speedup in 

Size-II FSMs.    

 

Figure 36. Speedup versus Number of Transitions w.r.t. Algorithm B for the 

Considered Size-I FSMs 

 

Figure 37. Speedup versus Number of Transitions w.r.t. Algorithm B for the 

Considered Size-II FSMs 
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MNB increases, with intervals in the category of Size-I FSMs, whereas the speedup 

for ThustB, CUDAB and MNB remains constant throughout the intervals in Size-II 

FSMs.   

MNB has a significant gain in speedup throughout the intervals in both categories. 

Speedup for CUDAB is more significant than for ThustB, and speedup for ThustB is 

more significant than for MTB (Threads = 4). 

5.10 Summary of All Obtained Results 

Below we provide a summary of the results for all conducted experiments. We 

also provide summaries based on the three different categories of FSMs (small, 

medium and big). For all FSMs and for each category, we rank (from best to worst) 

the sequential/parallel algorithms according to (1) the execution time it takes to find 

the solution and (2) the speedup achieved with respect to the sequential algorithms. 

For the execution time, we rank (from best to worst) for lowest to highest execution 

time. For speedup we rank (from best to worst) for highest to lowest speedup. 

a) Summary of execution time (minutes) for all the conducted experiments: 

 

Table 6. Summary of Execution Time (Minutes) for All the Conducted 

Experiments 

Rank 
w.r.t 

Execution 
Time 

All 
Implementations 

Average  
Execution Time (mins) 

1 MNB 5.53 

2 CUDAB 11.80 

3 MTA (Threads = 4) 12.12 

4 ThrustB 16.84 

5 MTB (Threads = 4) 17.19 

6 Algorithm A 30.38 

7 Algorithm B 62.27 
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b) Summary of execution time (minutes) for the considered categories of FSMs:  
 

Table 7. Summary of Execution Time (Minutes) for Small FSMs 

Rank 
w.r.t 

Execution Time 

All 
Implementations 

Average  
Execution Time (mins) 

1 MNB 0.72 

2 CUDAB 1.17 

3 MTA (Threads = 4) 1.23 

4 ThrustB 1.47 

5 MTB (Threads = 4) 1.80 

6 Algorithm A 3.29 

7 Algorithm B 6.45 

Table 8. Summary of Execution Time (Minutes) for Medium FSMs 

Rank 
w.r.t 

Execution Time 

All 
Implementations 

Average  
Execution Time (mins) 

1 MNB 3.44 

2 MTA (Threads = 4) 6.82 

3 CUDAB 7.30 

4 ThrustB 9.67 

5 MTB (Threads = 4) 9.97 

6 Algorithm A 15.90 

7 Algorithm B 37.00 

Table 9. Summary of Execution Time (Minutes) for Big FSM 

Rank 
w.r.t 

Execution Time 

All 
Implementations 

Average  
Execution Time (mins) 

1 MNB 12.42 

2 CUDAB 27.41 

3 MTA (Threads = 4) 27.82 

4 MTB (Threads = 4) 39.38 

5 ThrustB 39.79 

6 Algorithm A 71.94 

7 Algorithm B 143.36 
 



79 
 

c) Summary for speedup with respect to (sequential) Algorithm A for all the 

conducted experiments: 

Table 10. Speedup w.r.t (Sequential) Algorithm A for All the Conducted 

Experiments 

Rank 
w.r.t 

Speedup 

Parallel  
Implementations 

Average  
Speedup 

1 MNB 7.24 

2 CUDAB 3.87 

3 MTA (Threads = 4) 3.51 

4 ThrustB 2.12 
 

d) Summary for speedup with respect to (sequential) Algorithm A for the considered 

categories of FSMs: 

 

Table 11. Speedup w.r.t (Sequential) Algorithm A for Small FSMs 
 

Rank 
w.r.t 

Speedup 

Parallel  
Implementations 

Average  
Speedup 

1 MNB 4.54 

2 CUDAB 2.81 

3 MTA (Threads = 4) 2.67 

4 ThrustB 2.23 

Table 12. Speedup w.r.t (Sequential) Algorithm A for Medium FSMs 

Rank 
w.r.t 

Speedup 

Parallel  
Implementations 

Average  
Speedup 

1 MNB 4.620 

2 MTA (Threads = 4) 2.330 

3 CUDAB 2.178 

4 ThrustB 1.645 
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Table 13. Speedup w.r.t (Sequential) Algorithm A for Big FSMs 

Rank 
w.r.t 

Speedup 

Parallel  
Implementations 

Average  
Speedup 

1 MNB 5.792 

2 CUDAB 2.624 

3 MTA (Threads = 4) 2.586 

4 ThrustB 1.808 
 

e) Summary for speedup with respect to (sequential) Algorithm B for all the 

conducted experiments: 

Table 14. Speedup w.r.t (Sequential) Algorithm B for All the Conducted 

Experiments 

Rank 
w.r.t 

Speedup 

Parallel  
Implementations 

Average  
Speedup 

1 MNB 10.40 

2 CUDAB 5.27 

3 ThrustB 3.95 

4 MTB (Threads = 4) 3.63 
 

f) Summary for speedup with respect to (sequential) Algorithm B for the considered 

categories of FSMs: 
 

Table 15. Speedup w.r.t (Sequential) Algorithm B for Small FSMs 

Rank 
w.r.t 

Speedup 

Parallel  
Implementations 

Average  
Speedup 

1 MNB 8.91 

2 CUDAB 5.51 

3 ThrustB 4.38 

4 MTB (Threads = 4) 3.58 
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Table 16. Speedup w.r.t (Sequential) Algorithm B for Medium FSMs 

Rank 
w.r.t 

Speedup 

Parallel  
Implementations 

Average  
Speedup 

1 MNB 10.75 

2 CUDAB 5.07 

3 ThrustB 3.83 

4 MTB (Threads = 4) 3.71 

Table 17. Speedup w.r.t (Sequential) Algorithm B for Big FSMs 

Rank 
w.r.t 

Speedup 

Parallel  
Implementations 

Average  
Speedup 

1 MNB 11.54 

2 CUDAB 5.23 

3 MTB (Threads = 4) 3.64 

4 ThrustB 3.60 
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Chapter 6: Conclusion 

FSMs are widely used in various application domains, such as 

telecommunication, communication protocols and other reactive systems. In FSM-

based testing, we apply experiments on a machine or a black-box Implementation 

Under Test (IUT) to deduce the required information. Experiments on FSMs consists 

of applying input sequences, observing corresponding output responses and drawing 

a conclusion about the machine under test. A distinguishing experiment determines 

the initial state of the FSM, and such experiments are widely used when checking the 

correspondence between transitions of an IUT and those of the specification FSM. In 

particular, Kushik et al in [34] proposed an algorithm for deriving the minimal length 

for an adaptive distinguishing experiment for any number of pairs of initial states for 

a complete observable nondeterministic FSM. 

In this thesis, we studied adaptive distinguishing experiments for non-

deterministic FSMs. To this end, we adapted the sequential algorithm proposed in 

[34] and developed two sequential algorithms (A and B) to derive the minimal length 

for an adaptive distinguishing experiment for a pair of initial states for a complete 

observable nondeterministic FSM. Algorithm A derives I/O-successors iteratively 

and checks for the solution (i.e., the length of the distinguishing sequence) in the 

corresponding iteration, while Algorithm B derives all the I/O-successors in advance 

and once the derivation is completed it proceeds to check the solution. We 

implemented both the sequential algorithms (A and B) and conducted comprehensive 

experiments on them. The sequential algorithms shows an exponential increase in the 

execution time as the number of transitions (i.e., size of the machine) increases. We 

also observed that in most cases, (sequential) Algorithm A gives the better 

performance as compared to (sequential) Algorithm B. Especially in cases where the 

length of the distinguishing sequence is one, we obtain significant gains in execution 

time for Algorithm A. To obtain the solution (i.e. the length of the distinguishing 

sequence) in a reasonable time, we implemented parallel versions of sequential 

algorithms (A and B) based on different hardware and software platforms. The 

parallel implementation of Algorithm B includes implementation on a multi-core 

CPU via multiple threads (MTB), implementation on a GPU using tools like CUDA 

and Thrust (CUDAB and ThrustB), and implementation on a NoW via multiple nodes 
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(MNB). Algorithm A has a single parallel implementation on a multi-core CPU via 

multiple threads (MTA). We conducted comprehensive experiments on all the parallel 

algorithms/implementations to assess their performance and to quantify the speedup 

that could be obtained using parallel algorithms/implementations versus sequential 

algorithms. We found that parallel implementations MNB, CUDAB, ThrustB, MTB, 

and MTA scale exponentially with the number of transitions. The parallel 

implementation MNB scales up to 14x times, CUDAB scales up to 10x times, and 

ThrustB scales up to 8x times w.r.t to Algorithm B. The parallel implementation MNB 

scales up to 10x times, CUDAB scales up to 8x times, and ThrustB scales up to 6x 

times w.r.t to Algorithm A. For the multi-threaded implementation MTB, we 

observed a stable speedup (i.e., nearly 2x speedup and 4x speedup for two and four 

threads, respectively). However, for the multi-threaded implementation MTA we 

observed a wide variation in the speedup, and this was due to the varying length of 

the distinguishing sequence. As a result, the speedup obtained in MTA was less 

favorable as compared to MTB. Overall, MNB gives the best performance amongst 

the parallel implementations, CUDAB and MTA (Threads = 4) have the same 

performance, and ThrustB and MTB (Threads = 4) have the same performance.
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Appendix A 

A.1 Nodes Considered in the NoW with Their Names and Respective Numbers 

Table 18 shows, the considered nodes connected together in a NoW along with 

their respective numbers in the network.  

Table 18. Considered Nodes (N) in the NoW 

S.no 
Machine Node 

Name Number 

1 Kingpenguin 0 

2 DUNE2-CPU 1 

3 DUNE2-GPU 2 

4 DUNE2-GPU 3 

5 DUNE-GPU 4 

6 DUNE2-CPU 5 

 

A.2 Estimating the Computational Speed for All Nodes 

In order to obtain the computation speed (p) and constant overhead associated 

with the computation (e) for each node, we benchmarked the computation of the I/O 

successors table on each node individually. 

The process was repeated for all the generated FSMs in order to obtain the 

execution time over a wide range of inputs.  Figure 38 depicts the execution times 

against the number of transitions. In order to obtain the p and e parameters, we 

calculated the least-squares lines of the data shown in Figure 38. The p parameter 

values corresponding to the line slope are shown in Table 19. 
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Figure 38. Execution Time versus the Number of FSM Transitions, for All the 

Considered Nodes 

Table 19. Computation Speed (p) for All the Considered Nodes 

Serial  

Number 
Notations Values 

Kingpenguin p[0] 0.00278 (sec/transition) 

DUNE2-CPU p[1] 0.00194 (sec/transition) 

DUNE2-GPU p[2] 0.00025 (sec/transition) 

DUNE-GPU p[3] 0.00075 (sec/transition) 

DUNE-CPU p[4] 0.00351 (sec/transition) 

 

The constant overhead (e) corresponds to the intercept of the least-squares line. 

The e parameter values are shown in Table 20.  
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Table 20. Values Calculated for the e Parameter for All the Considered Nodes 

Serial  

Number 
Notations Values 

Kingpenguin e[0] -1057.06 (sec) 

DUNE2-CPU e[1] -734.38 (sec) 

DUNE2-GPU e[2] -89.52 (sec) 

DUNE-GPU e[3] -282.87 (sec) 

DUNE-CPU e[4] -1090.51 (sec) 

A.3 Communication Speed Parameters 

In order to measure the communication speed (lc) and communication latency (bc) 

during result collection between the NoW nodes, we used a “ping-pong” approach: 

two processes each on a different node, exchanging messages of known length in a 

“Send-Receive” or “Receive-Send” sequence.  

The messages ranged between 100,000 Bytes and 17 MB (i.e. the maximum size 

of the I/O-successor tables used in testing), with an increment of 100,000 Bytes. The 

results are shown in Figure 39. The slope and intercept of the least-squares line 

correspond to the speed lc and latency bc. The actual values obtained are shown in 

Table 21.    

 

Figure 39. Communication Time versus Message Size, for Two Network Nodes 

Table 21. Communication Parameters 

Notations Values 

lc 1.89E-10 (sec) 

bc -0.000199 (sec/byte) 
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A.4 Remaining Parameters in the NoW Model 

The remaining parameters in the DLT model were derived from the problem 

data:  

1. Size of machine description in bytes (B): is the size of the given FSM in bytes 

for the experiment. 

2. Number of transitions (T): is the total number of transitions present in the 

given FSM for the experiment. 

3. Size of I/O successors table (O): is a size in bytes of the corresponding 2D 

array. The number of rows is equal to the number of different pairs (M) of a 

given FSM multiplied by the number of inputs. The number of columns is 

equal to the number of outputs plus 1 of the input FSM.  
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