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Abstract

Automatic Modulation Classification (AMC) is a new technology implemented into

communication receivers to automatically determine the modulation type of a received

signal. One of the main applications of AMC is in adaptive modulation systems, where

the modulation scheme is changed dynamically according to the changes in the wire-

less channel. However, this requires the receiver to be continuously informed about the

modulation type, resulting in a loss of bandwidth efficiency. The existence of smart

receivers that can automatically recognize the modulation type improves the utilization

of available bandwidth. In this thesis, a new AMC algorithm based on a Hierarchi-

cal Polynomial Classifier structure is introduced. The proposed system is tested for

classifying BPSK, QPSK, 8-PSK, 16-QAM, 64-QAM and 256-QAM modulation types

in Additive White Gaussian Noise (AWGN) and flat fading environments. Moreover,

the system uses High Order Cumulants (HOCs) of the received signal as discriminant

features to distinguish between the different digital modulation types. The proposed

system divides the overall modulation classification problem into hierarchical binary

sub-classification tasks. In each binary sub-classification, the HOC inputs are expanded

into a higher dimensional space in which the two classes are linearly separable. Fur-

thermore, the signal-to-noise ratio of the received signal is estimated and fed to the pro-

posed classifier to improve the classification accuracy. Another modification is added

to the proposed system by using stepwise regression optimization for feature selection.

Hence, the input features to the classifier are chosen to give the highest classification

accuracy while maintaining a minimum number of possible features. Extensive simula-

tions showed that a significant improvement in classification accuracy and reduction in

the system complexity is obtained compared to the previously suggested systems in the

literature.

Search Terms: Adaptive Modulation, Automatic Modulation Classification (AMC),

Hierarchical Polynomial Classifiers (HPC), SNR Estimation, Stepwise Regression.
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Chapter 1: Introduction

Automatic Modulation Classification (AMC) has been a topic of research for

the last few decades due to its many applications in modern communication systems.

For example, in adaptive modulation, the modulation type of the transmitted signal is

changed based on the state of the channel between the transmitter and receiver, where

high modulation levels are used whenever the channel is clean, and low modulation lev-

els are used for noisy channels. The former procedure enhances the use of the available

spectrum while maintaining a low probability of error. However, any modulated signal

needs to be demodulated at the receiver side in order to extract the original transmitted

messages. This is usually performed by sending a pilot signal along with the origi-

nal message to inform the receiver about the modulation type of the transmitted signal.

Although the previous solution is valid and can solve the problem, it has a number of

drawbacks. Firstly, it reduces the data throughput of the system by periodically send-

ing pilot signals that does not carry data, especially for systems with very small data

blocks. Moreover, in many practical life applications, such as military applications,

there is no prior agreement between the transmitter and receiver. Automatic modula-

tion classification solves this problem by using some properties of the received signal

in order to identify the modulation identity. The challenge is to select the proper dis-

criminating properties (features) that can separate the different modulation types. In

this thesis, we develop a new automatic modulation classification system that achieves

high classification accuracy while maintaining a simple structure, which is an important

feature for many practical applications. Most of the proposed systems in the literature

assume perfect information about the channel at the receiver side, which is not a valid

assumption all the time. In this work, a new SNR estimation algorithm is proposed,

where the estimated SNR value is fed to the modulation classifier in order to improve

its overall classification accuracy. Moreover, modulation classification is usually a real-

time problem that should be solved within a specified, relatively short, time constraint.

Therefore, in order to minimize the complexity of the proposed system, a feature selec-

tion algorithm is proposed resulting in a significant reduction in the order of required

calculations.
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1.1. Contribution

The contribution of this thesis is summarized in the following points:

• Propose an automatic modulation classification system based on Hierarchical

Polynomial Classifier (HPC) and High Order Cumulants (HOCs). The proposed

system has the following advantages:

1. Provides higher classification accuracy compared to most of the proposed

systems in the literature.

2. Has low computational complexity and can be easily implemented.

3. Is robust to rotations in the signal constellation.

4. Able to identify different modulation schemes even in the existence of Ri-

cian or Rayleigh fading.

• An optimization for the number of received symbols used in extracting the classi-

fication features is carried out in order to provide the best classification accuracy

for flat fading channels.

• Feature selection system based on stepwise regression is integrated with the pro-

posed Hierarchical Polynomial Classifier resulting in a simplified final classifier

model.

• An SNR estimation technique is proposed, the system is able to recognize the

SNR of the signal with high accuracy, especially at low SNR values.

• Different classification algorithms are simulated and examined, and their perfor-

mance and complexity are investigated.

1.2. Thesis Outline

This thesis is organized as follows: Chapter 1 presents the motivation for re-

search, and thesis contribution. Chapter 2 delivers an important background in order

to fully understand the problem and its circumstances, including the building blocks of

communication systems, modulation schemes and models of wireless communications

channels. Chapter 3 discusses the previous work done in the literature. The chapter

starts by highlighting the known applications of AMC. Then a brief explanation of the

15



different proposed features in the literature is presented. Finally, some optimization

algorithms are introduced such as Genetic Programing and Particle Swarms Optimiza-

tion. Chapter 4 introduces an overview to pattern recognition systems and presents the

structure and mechanism of different machine learning classifiers. Chapter 5 presents

the proposed model including the polynomial classifier, hierarchical polynomial classi-

fier, SNR estimation model, and stepwise regression system. Chapter 6 includes the

simulation results and provides a comparison between the proposed scheme and other

related work. Chapter 7 concludes the thesis and discusses the thesis outcomes and the

future work.
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Chapter 2: Background

In this chapter, the end-to-end components of communication systems are intro-

duced, and a brief review of M-ary Phase Shift Keying (MPSK) and M-ary Quadrature

Amplitude Modulation (MQAM) and their constellations is presented. Moreover, dif-

ferent types of signal impairments including noise and fading are covered. Finally, the

effect of different Doppler shift values on the received constellation is discussed.

2.1. Digital Communication Systems

The use of digital communication systems is rapidly growing due to the increas-

ing need for fast and reliable data transmission. However, the performance of such

systems affects the quality of the data received by the end user. For example, real-time

applications such as video streaming and voice over IP are very sensitive to delays in

transmission. Accordingly, increasing the data rate is necessity in order to meet the

minimum quality of service (QoS) expected by the user. Furthermore, technological

advancements in various fields are becoming more dependent on wireless communica-

tion systems given the availability of high transmission rates with low error probability.

All these reasons, in addition to the continuous growth of the number of users, moti-

vated research that investigates new solutions and optimizes the available bandwidth

resources to satisfy all the growing needs [1].

Figure 1 shows the basic components of a typical communication system. First,

input messages such as voice, text, and video are converted by an input transducer in

order to form the electrical input signal to the transmitter. Then, the signal is modulated

and conveyed through wired or wireless communication channel. At the receiver side,

the demodulation process is performed and the transmitted signal is extracted; then the

output transducer converts the received signal into its original form [2].

2.2. Modulation

The baseband signals at the transmitter are usually low frequency signals with

very large wavelengths. Emitting this type of signals requires a radiating antenna with

17



Figure 1: Block digram of a typical communication system.

enormous dimensions (antenna dimensions are related to the wavelength of the signal)

[2]. Furthermore, most of the original low frequency signals occupy almost the same

bandwidth frequency; therefore transmitting them as they are results in overlapping

between the signals and loss of information.

The modulation process modulates the baseband signal information onto a higher

frequency signal called the carrier. This process transfers the frequency of the signal

being transmitted to a new center frequency that occupies a reserved bandwidth in the

spectrum. Thus, the transmission of the signal occurs without any interference with

other signals (in the optimal case scenario). Modulation can be performed by chang-

ing different parameters of the carrier signal based on the nature of the original base-

band signal being transmitted. For example, Amplitude Shift Keying (ASK) modulation

changes the amplitude of the carrier signal in order to convey the transmitted message,

where each amplitude level represents a different transmitted sample. As for Frequency

Shift Keying (FSK) modulation, each symbol of the signal is coded as a certain fre-

quency; hence, the transmitted signal contains more than one frequency. Another type

of modulation that is widely used modifies the phase of the carrier signal based on the

signal being modulated into it. This type of modulation is called Phase Shift Keying

(PSK). Finally, a hybrid modulation techniques called Quadrature Amplitude Modula-

tion (QAM), which is a mix between PSK and ASK modulation, carries the transmitted

symbols in both the amplitude and the phase of the carrier. However, in this work we

will consider different levels of PSK and QAM modulations.

18



2.2.1. Phase Shift Keying.

In Phase Shift Keying (PSK), the baseband symbol is conveyed by the phase of

the carrier signal. For example, Binary Phase-Shift Keying (BPSK) uses two different

phases to represent the value of the transmitted symbol (either 0 or 1), while Quadrature

Phase-Shift Keying (QPSK) uses four different phases to represent the two transmitted

symbols of the signal (00, 01, 10 and 11).

In general, higher-order PSK modulations transmit more bits per symbol; thus

they achieve higher data rate transmission, a very attractive feature for all commutation

systems. Unfortunately, although PSK modulation comes with multiple benefits, the

associated probability of error increases as the level of modulation increases, i.e. 16-

PSK has a higher probability of error compared to the simple BPSK. However, the main

factor in favoring one modulation level over the other is the quality of service (QoS)

required for each application. Some applications, such as video streaming and voice

calls, are very sensitive to time delay but are less sensitive to errors in the transmission;

therefore, higher modulation levels are recommended. On the other hand, applications

like emails and banking services are more sensitive to transmission errors; for such

applications, lower modulation schemes can be used to minimize the probability of

errors.

Higher-order PSK modulations are usually referred to as M-ary PSK, The wave

form of which is expressed as:

Si(t) = Acos(ωct +φi) i = 0,1,2, ...,M−1 0 6 t 6 T (1)

where

A =

√
2E
Ts

, φi =
2πi
M

i = 0,1,2, ...,M−1 (2)

and where E is the symbol energy, Ts is the symbol time, 0≤ t≤Ts, φc is the carrier fre-

quency and M is the number of different possible symbols in the M-ary PSK modulation

scheme. For example, in BPSK modulation, M=2 with only two possible transmitted

symbols and bandwidth efficiency of a 1 bit/s/Hz , and for QPSK modulation, M=4

with a bandwidth efficiency of 2 bit/s/Hz. Figure 2 shows the 8-PSK constellation

with M=8, and each symbol represents 3 different transmitted bits.
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Figure 2: 8-PSK constellation.

2.2.2. Quadrature Amplitude Modulation.

Quadrature Amplitude Modulation (QAM) is a modulation scheme that conveys

the baseband signal in both amplitude and phase of the carrier. It is a combination of

ASK and PSK modulations. Unlike PSK, QAM symbols are represented by different

levels of energy. M-ary QAM waveform can be represented as:

Si = Amicos(ωct)−Amqsin(ωct) i = 0,1,2, ...,M−1 (3)

where Ami and Amq are the signal amplitude in the in-phase and the quadrature com-

ponents, respectively, and M is the number of different possible symbols in the M-ary

QAM modulation scheme. Generally, QAM modulation has different forms; however,

in this work the discussion is narrowed to only include square-shaped QAM.

High-order QAM allows for high data rates and improved bandwidth efficiency.

However, it is easily corrupted by noise and interference. Hence, the modulation type

has to be optimized to yield the highest possible data rate and still abide by the limiting

BER specified by the system; i.e. the modulation type can be chosen to make the best

use of the available resources [3].

20



Figure 3 shows the constellation diagram for a 64-QAM with 64 different pos-

sible symbols; each symbol represents 6 different bits. In general, for any MPSK and

MQAM, the number of bits per symbol is given by:

k = log2(M) (4)

Figure 3: 64-QAM constellation.

2.3. Noise

Noise is one of the dominant impairments in wireless communication systems.

Noise can be due to the thermal energy in the receiver emitted by its antenna or an other

component of the receiver circuit, or because of the nonlinear properties of some filters

and devices (intermodulation noise). Noise corrupts the received signal and results in

errors when extracting the original message.

Figure 4 shows the Power Spectrum Density (PSD) of Additive White Gaussian
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Noise (AWGN) channels; the power density has constant magnitude in all the frequen-

cies. The effect of noise on the transmitted signal can be described by a ratio between

signal power and noise power (SNR), or sometimes by a ratio between the symbol en-

ergy Es and noise power spectrum density N0:

SNR =
Es

N0
(5)

In practical applications, noise is not the only impairment that undergoes the

power of transmitted signals and causes errors. A severe impact on the transmitted

signal is caused by the fading phenomena, where multiple copies of the same signal

arrive at the receiver side. However, scientists introduced different models in order to

study the performance of communication systems. The simplest model is the free space

propagation model which is introduced in the next section.

Figure 4: Power spectral density for white noise.

2.4. Free Space Propagation Model

This model is used to describe the power of the received signal in free space

environments with no reflections between the transmitter and the receiver. The received

power is inversely proportional to the square of the distance between the transmitter and
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the receiver:

Pr =
PtGtGrλ

2

(4πd)2 (6)

where Pr is the received power, Pt is the transmitted power, Gt and Gr are the transmitter

and the receiver antenna gains, respectively, λ is the wavelength of the transmitted

signal, and d is the distance between the transmitter and the receiver.

2.5. Fading

To study the performance of any communication system, the wireless channels

are usually assumed to be ideal where the transmitted signals are only corrupted by

AWGN noise. This assumption gives a basic understanding of the behavior of systems

and reflects their major trends. However, the interference between different signals in

the spectrum or between different copies of the same signal has a major impact and can

cause a significant degradation in the performance of the system [4]. In general, the

channel between the transmitter and the receiver varies with time and frequency. This

variation can be divided into:

• Large-Scale Fading: This type of fading describes the degradation in the signal

power with the distance or due to the shadowing effect by buildings or moun-

tains. Large-Scale Fading takes place in large distances where all the signals with

different frequencies experience the same behavior (are frequency independent).

• Small-Scale Fading: This type of fading happens in small distances, usually for

distances in the order of the signal wavelength. It is normally due to multipath

phenomena where reflected copies of the same signal arrive at the receiver and

add together constructively or destructively [5]. Figure 5 shows an example of

multipath fading.

2.5.1. Small-Scale Fading.

Based on the multipath time delay spread of the channel, small scale fading can

be divided into two types, either flat fading or frequency selective fading:

Flat Fading.

Flat fading is the type of fading in which the signal is transmitted over a band-
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Figure 5: Multipath fading.

width with a constant gain, which means all the frequency parts of the transmitted signal

experience the same fading and are multiplied by the same gain. Flat fading takes place

when:

Bs� Bc and Ts� στ (7)

where Bs is the bandwidth of the transmitted signal and Bc is the coherence bandwidth

of the channel. This can also be expressed in terms of the symbol time of the trans-

mitted signal Ts, and the channel spread delay στ , meaning that all the reflections of

the transmitted message arrive at the receiver within the symbol period of the signal,

resulting in no interference between the consecutive transmitted symbols [6].

Frequency Selective Fading.

Frequency selective fading has a more severe impact on the system performance

compared to flat fading. For frequency selective fading, the signal bandwidth is greater

than the coherence bandwidth of the channel. In other words, the symbol interval of

the signal is smaller than the delay spread of the channel. Thus, the reflected copies

of the same signal arrive at the receiver during the time of receiving the next symbol

or maybe the symbols after that. This type of fading causes severe inter-symbol inter-

ference (ISI) between the consecutive received symbols. An equalizer is required at

the receiver side to compensate for the changes produced by the fading nature of the
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channel. Mathematically, frequency selective fading takes place when:

Bs� Bc and Ts� στ (8)

Furthermore, small scale fading can also be divided, based on the Doppler

Spread of the channel, into fast or slow fading:

Fast Fading.

This type of fading occurs when the relative motion between the transmitter and

the receiver is high. Accordingly, the channel impulse response is rapidly changing

during the symbol period. Thus, the transmitted symbols experience different channel

gains which distort the final received signal. The coherence time of a channel TD is de-

fined as the time over which the channel impulse response is constant. If the coherence

time of the channel is smaller than the symbol period, then the signal is undergoing fast

fading [7]. This can also be written in terms of the bandwidth of the transmitted signal

Bs and the Doppler spreadBD as:

Bs� BD and Ts� TD (9)

Slow Fading.

This type of fading has less impact on the performance of wireless commu-

nication systems, since the channel impulse response is constant during the time of

transmitting the symbol. Therefore, the transmitted symbol is multiplied by a constant

gain without causing any intersymbol interference between the adjacent transmitted

symbols. The condition for slow fading is:

Bs� BD and Ts� TD (10)

2.5.2. Rayleigh Fading.

The Rayleigh fading model represents the random change in the magnitude of

the received signal due to the arrival of multiple copies of the same signal at the receiver
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when there is no clear path between the transmitter and the receiver. The complex pha-

sor of the received signal envelope due to N copies of the reflected signal is expressed

as:

Ẽ =
N

∑
n=1

Ene jΘn (11)

where En and e jΘn are the relative magnitude and phase of each path, respectively. The

values of Θn are assumed to be independent and uniformly distributed, since the phase

magnitude is very sensitive to small changes in the path length. According to the Central

Limit Theorem, the summation in (11) can be represented by a Gaussian distribution

for a large number of independent reflected paths. Accordingly, the Probability Density

Function (PDF) of the received signal envelope is expressed as [8].

P(r) =
r

σ2 e−
r2

2σ2 , r > 0 (12)

where σ is the rms value of the reflected signals. Rayleigh Fading is the most used

model for wireless channels in urban environments due to the blocking of radio signals

by buildings.

2.5.3. Rician Fading.

In the Rayleigh fading model, reflected signals from different paths are assumed

to have relatively the same power. In other words, there is no Line of Sight (LOS)

path between the transmitter and the receiver. For some scenarios, like indoor wireless

communication, a LOS path between transmitter and the receiver exists; hence, the

Rayleigh fading model is no longer accurate to describe the distribution of the amplitude

of the received signal. The Rician fading channel model assumes that reflected signals

along with a direct signal arrive at the receiver. Therefore, the complex phasor of the

received signal envelope is expressed as:

Ẽ = E0 +
N

∑
n=1

Ene jΘn (13)
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where E0 is the LOS component of signal. Moreover, Rician PDF is modeled as:

P(r) =
r

σ2 e−
r2+v2

2σ2 I0(
rv
σ2 ), r > 0 (14)

where v2 is the power in the non-fading component and I0 is the modified Bessel func-

tion of zeroth order. Another important factor when defining the Rician fading is the

power of the direct path with respect to the reflected paths which can be determined by

the K factor as:

K =
v2

∑
N
n=1 |En|2

(15)

where |En|2 is the power of the nth reflected path. In general, when the K factor in-

creases, the probability of the signal to undergo a deep fading decreases.

2.6. Doppler Shift

Doppler shift is the change in the frequency of the received signal when either

or both the transmitter or the receiver is in motion.The detected frequency at the re-

ceiver will be different than the original transmitted frequency based on the direction

of movement. For instance, when the receiver is moving toward the transmitter, the

received frequency appears higher than the original transmitted frequency. Likewise, if

the receiver is moving away from the transmitter, the received frequency appears to be

lower than the original transmitted frequency.

For example, when the receiver is moving with respect to the transmitter, the

received frequency is:

fr = f0(1±
v
c
) (16)

where f0 is the original transmitted frequency, v is the speed of the receiver, and c is the

speed of light. Accordingly, the resultant Doppler shift can be expressed by:

fD = fr− f0 =± f0
v
c

(17)

Generally, if there is an angle Θ between the motion of the receiver and the
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direction of radiation, the resultant Doppler shift is:

fD =± f0
v
c

cosΘ (18)

However, the maximum Doppler shift occurs when the angle between the trans-

mitter and the receiver is zero. Thus, maximum Doppler shift can be written as:

fD(Max) =± f0
v
c

(19)

Figure 6 shows examples of channels with different values of Doppler shifts.

The channels have two reflected paths (Rayleigh Fading) with Doppler shifts equal to

3Hz, 30Hz, and 83Hz, respectively. It is clear that, for higher Doppler shifts, the chan-

nel expresses more fluctuation, which means the received symbols experience chan-

nels with different gains. Accordingly, the received constellation appears very different

compared to the original constellation of normal MPSK and MQAM.

(a) 3Hz Doppler Shift (b) 30Hz Doppler Shift

(c) 83Hz Doppler Shift

Figure 6: Rayleigh channel with different values of Doppler shifts.
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Chapter 3: Literature Review

In this chapter, we will introduce some applications of automatic modulation

classification in cognitive radio, OFDM, and electronic welfare systems. We will also

discuss various proposed algorithms for AMC including likelihood and pattern recog-

nition based approaches. Moreover, different classification features are used in the

literature such as Instantaneous Amplitude, Phase and Frequency, Spectrum Analysis,

Wavelet Transform, Clustering Algorithms, and High Order Cumulants. We will go

through these features in detail in order to show their calculations, advantages, disad-

vantages, and limitations. Finally, we will dedicate the last section of this chapter to

introduce some feature optimization techniques like Genetic Programming and Particle

Swarm Optimization.

3.1. Automatic Modulation Classification (AMC)

Automatic Modulation Classification (AMC) is the process of identifying the

modulation type of a transmitted signal from the received data samples automatically

[9]; it is an intermediate step between signal detection and demodulation. AMC has

received a great deal of research and investigation in recent years because of its various

applications in modern communication systems.

3.1.1. Applications.

Automatic modulation classification has many applications in cognitive radio,

OFDM, and electronic welfare systems.

Cognitive Radio (CR).

In many communication systems, a reserved spectrum bandwidth is specified

for the different licensed services. Studies showed that, most of the time the reserved

bandwidth is unoccupied and significant available resources are wasted [10]. Cognitive

Radio (CR) systems provide a solution for this problem by giving the priority of using

the reserved spectrum to the primary users (licensed services), and allowing the sec-

ondary users (other users in the system) to use the spectrum if it is unoccupied. This
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process optimizes the usage of the available spectrum, and allows both the primary and

the secondary users to use the spectrum efficiently. However, the secondary users are

assumed to be able to recognize the state of the spectrum (whether it is occupied or

not). AMC is used to identify the types of signals in the spectrum and therefore would

be implemented in the secondary transmitter [11].

Orthogonal Frequency Division Multiplexing (OFDM).

In wireless communication, channels are time varying and many obstacles exist

between the transmitter and the receiver. Using a single carrier transmission method

in such multipath fading environments results in a corrupted received signal, as the

different frequencies in the transmitted signal experience different channel gains.

OFDM schemes solves this problem by dividing the spectrum into smaller sub-

bands, then using a single sub-carrier for each sub-band. Consequently, all the small

frequency bands are transmitted through flat fading channels and the effect of the inter-

symbol interference is reduced.

Moreover, different modulation levels can be used based on the channel state

of each sub-band [12]. This process is known as adaptive modulation. For example

the standards OFDM protocol IEEE 802.11a has throughput in the range of 6 Mbps

for BPSK modulation and 48 Mbps for 64-QAM modulation, but the probability of

error increases when the level of modulation increases. Accordingly, high modulation

levels are used for sub-carriers with high SNRs, and low modulation levels are used for

sub-carriers with low SNRs, resulting in a significant improvement in the throughput of

communication systems.

Receivers in adaptive modulation systems are required to identify the modula-

tion type of each sub-carrier in order to select the corresponding demodulation method.

This can be done using a Bit Allocation Table (BAT), which is sent within each trans-

mitted frame in order to inform the receiver about the modulation type of each sub-

carrier [13]. Unfortunately, the BAT adds an extra overhead, especially for high num-

bers of sub-carriers and small OFDM frames. An attractive solution is to use AMC at

the receiver side to recognize the modulation type of each sub-carrier, therefore increas-

ing the overall transmission rate of the system.
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Other Applications.

Automatic modulation classification has many applications in civilian areas like

spectrum surveillance, interference identification, transmission control and monitoring,

and software defined radio (SDR). In addition, it has applications in military areas like:

electronic warfare, threat analysis, target acquisition, jamming, and homing [14]. For

example, in military applications, automatic modulation classification is used to identify

the modulation type of an intercepted enemy’s signal where there is no information

available about the modulation type of such signals [15].

Different solutions were proposed to accomplish successful modulation classi-

fication. Generally we can divide modulation classification techniques into two main

approaches:

• Maximum likelihood (ML).

• Feature-based methods.

3.2. Maximum Likelihood (ML)

Maximum likelihood classifiers formulate the modulation recognition process

as multiple hypothesis testing problems, in which each modulation scheme is repre-

sented by one hypothesis. ML classifiers optimize the classification procedure and give

the best possible recognition rate. This is performed by finding the likelihood function,

which is usually a function of the transmitted symbols and channel parameters [16].

The candidate with the highest likelihood is chosen as the modulation type.

ŝ = argmax
sm

(p(r|sm)) (20)

where ŝ represents the selected modulation scheme by the receiver, p(r|sm) is the like-

lihood that the received signal is r given that the transmitted signal is sm, where rm is

modulated using modulation type m.

Maximum likelihood approaches can be divided into three main categories: Av-

erage Likelihood Ratio Tests (ALRT), Generalized Likelihood Ratio Tests (GLRT) and

Hybrid Likelihood Ratio Tests (HLRT). In ALRT, the unknown signal quantities like

signal constellation and noise power are treated as random variables where the proba-
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bility density function (PDF) of the received signal is computed by averaging over these

random variables with the assumption that their distributions are known. This method

leads to the best classification accuracy if this assumption is accurate. In contrast, for

GLRT, the PDF of the received signal is calculated using the maximum likelihood esti-

mation (MLE) of the unknown values, where they are treated as deterministic variables.

However, ALRT requires heavy calculations, especially when the number of random

variables increases; on the other hand, GLRT is less complex but has a drawback when

it is used to classify nested signal constellations like (16-QAM and 64-QAM) resulting

in an incorrect classification. This problem is solved by HLRT, which has the benefits of

both of ALRT and GLRT. Hence, HLRT assumes that some parameters of the signal are

random variables with known PDFs and some of the parameters are deterministic [17].

Although ML approaches can lead to the optimal solution, feature extraction approaches

are usually preferred due to their low complexity and satisfactory performance.

3.3. Feature-Based Method

In Feature-Based (FB) approaches, the modulation class is identified using a

two-step process. First, representative features are used to represent the received signal

instead of dealing with the signal as a stream of symbols. Then, the selected features are

used by a machine learning classifier in order to make a decision about the modulation

class. Feature extraction methods are simpler to implement and can lead to suboptimal

solutions compared to the likelihood-based approach. The efficiency of this approach

depends on the classification power of the selected features and the simplicity of the

applied classifiers. Many types of features are proposed in the literature. However, we

will dedicate this section to discussing these features and explaining their power and

usage.

3.3.1. Spectrum Analysis-Based Classification Scheme.

Analyzing the spectrum of an unknown signal is used to identify certain mod-

ulation types. For example, Multiple Frequency Shift Keying (MFSK) signals convey

baseband information into different carrier frequencies; the magnitude of the spectrum

at these frequencies is higher than at other unused frequencies. Likewise, the phase
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spectrum of MPSK determines the number of phases used to modulate the baseband

signal. Generally, frequency and phase spectrums cannot distinguish all types of mod-

ulation, and their performance varies from one group of modulation to another [18].

In [19], the Fast Fourier Transform (FFT) of the received signal is used to iden-

tify its modulation type. For example, if the modulation is BFSK, the frequency spec-

trum shows two peaks at the two modulating frequencies, likewise; for 4-FSK the spec-

trum possesses four peaks, and generally for MFSK modulation, the spectrum has M

peaks. Using this criterion, the author in [19] calculated the ratio between the second

peak and the third peak. If the ratio is greater than one (or some specified threshold),

then the third peak has very small a value compared to the second peak; in other words,

there are only two peaks in the spectrum, and the modulation type is identified as BPSK.

If the ratio is smaller than the specified threshold, the modulation type is definitely not

BPSK. Another test is done between the fourth and the fifth peaks to recognize if the

modulation type is 4-FSK or not, and so on. The ratio will always be unity for non-FSK

modulations. This hierarchical approach fails if the signal contains any impulsive noise

component other than AWGN [20].

3.3.2. Wavelet Transform.

The Fourier transform is the main analytical method used to study different

signals in the frequency domain. However, the Fourier transform provides information

about the spectrum of a signal assuming that the signal is stationary and its spectrum

is time invariant. For non-stationary signals, the wavelet transform is introduced as a

general solution to investigate the signal in both time and frequency domains. Moreover,

the wavelet transform has a strong advantage of reducing the effect of noise on the

transmitted signals.

In order to calculate the wavelet transform of a signal, the signal is processed

by a group of high pass and low pass filters. The high pass filters allow high frequency

components of the signal to pass (the detailed components of the signal). In contrast,

the low pass filters suppress high frequency components of the signal and allow low

frequencies to pass (an approximation of the signal) [21].

Figure 7 shows the wavelet decomposition method. It can be seen that the re-
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ceived signal is first applied to a low pass filter (LPF) and high pass filter (HPF) result-

ing in an approximation and detailed coefficients of the signal, respectively. In the next

level, the output of each filter is again applied to an HPF and an LPF with different cut-

off frequencies from those used in the first stage. The result is another approximation

and detailed coefficients of the signal. The final outputs of the 3-level wavelet transform

are represented by the sequences D1, D2, D3, and A3 [22]. Digital modulated signals

are band-limited signals that have different details at the same scale. Classification fea-

tures can be extracted from the decomposed components and applied to a classifier to

discriminate between the different modulation levels [23].

Figure 7: Wavelet decomposition.

3.3.3. Clustering Algorithms.

Clustering algorithms are used to group the received symbols of an unknown

signal into clusters. The number of these clusters as well as the location of their cen-

34



troids can be used to identify the modulation type of the received signal. For example,

a 4-QAM modulation has four different states. If the received signal is transmitted

through a noisy channel, then the received symbols will reach the receiver scattered

around their original positions. By using clustering algorithms, the scattered symbols

are grouped based on their distribution resulting in four different clusters, which indi-

cates that the modulation type is 4-QAM. Many clustering algorithms are suggested in

the literature, such as k-means, fuzzy c-means, and subtractive clustering. For instance,

subtractive clustering is used in [24] to classify different modulation types. Firstly, the

likelihood of each received symbol to be a center of a cluster is calculated. This is

usually done by measuring the Euclidean distances between each received symbol and

all other received symbols in the constellation. The received symbol with the highest

likelihood is selected as the center of the first cluster. Next, the likelihood of the re-

maining points to be a new center of a cluster is recalculated. This time, the likelihoods

of the neighboring points to the first centroid are minimized. This is usually done to

avoid selecting a very close point to the first centroid, since there is a high probability

that the neighboring points belong to the same cluster. Again, the second centroid is

selected. This process is continued until all the remaining points have no potential to be

a centroid. The result is a final number of clusters with their centroids. Based on this

information, the modulation type of the received signal is determined.

3.3.4. High Order Moments (HOMs) and High Order Cumulants (HOCs).

A signal’s moments are the expected value of the signal raised to a power determined

by the order of each moment. The mean of a signal is the first-order moment while the

second-order moment usually indicates the power of the signal. For a complex-valued

stationary random process, yn, the pth order moment is defined as:

Mpq = E
[
yp−q(y∗)q] (21)

where y∗ is the complex conjugate of y, and q is the power of the conjugate signal y∗.

High-order cumulants are considered as another method to calculate a signal’s statistics.

In order to introduce signal cumulants, we first define the first characteristic function of

any random variable x as [20]:

35



Φ(s) =
∫

∞

−∞

f (x)esxdx (22)

And its second characteristic function is defined by:

ϕ(s) = ln(Φ(s)) (23)

Signal cumulants are the derivatives of the second characteristic function around the

origin:

λp =
dpϕ(0)

dsp (24)

where p indicates the order of the cumulant.Generally, HOCs are expressed as functions

of a signal’s High Order Moments (HOMs) [20]. Typically, HOMs are calculated for

zero mean signals. Thus, the mean is subtracted from the received data symbols as

follows:

ỹn = yn−
1
N

N

∑
n=1

yn (25)

where N is the total number of symbols. Table 1 shows the relationship between some

of the commonly used HOCs to the HOMs.

Table 1: High order cumulants

HOCs HOMs Expression

Second-Order Cumulants
C20 M20

C21 M21

Fourth-Order Cumulants
C40 M40−3M2

20
C41 M40−3M20M21

C42 M42−|M20|2−2M2
21

Sixth-Order Cumulants

C60 M60−15M20M40 +30M3
20

C61 M61−5M21M40−10M20M41 +30M2
20M21

C62 M62 − 6M20M42 − 8M21M41 − M22M40 +
6M2

20M22 +24M2
21M20

C63 M63 − 9M21M42 + 12M3
21 − 3M20M43 −

3M22M41 +18M20M21M22

It is noticed that the magnitude of the sixth and fourth-order cumulants is greater

than the magnitude of second-order cumulants. This results in a different range of
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values for the different HOC orders. Therefore, feature normalization is required in

order for machine learning algorithms to work properly. For normalization, HOCs are

rescaled as described in Table 2, with each cumulant raised to the power 2
r , where r is

the order of the cumulant [20].

Table 2: Normalized high order cumulants

Normalized HOCs Normalization

Ĉ20 C20

Ĉ21 C21

Ĉ40 C
1
2
40

Ĉ41 C
1
2
41

Ĉ42 C
1
2
42

Ĉ60 C
1
3
60

Ĉ61 C
1
3
61

Ĉ62 C
1
3
62

Ĉ63 C
1
3
63

For more simplicity, the magnitude of the cumulants are used instead of their

complex values. This step has a great advantage in reducing the processing time in the

training stage because classifier’s weights are real-valued in this case instead of being

complex. Another major advantage is reduced vulnerability to shifts in the constella-

tion, as the phase shift does not affect the magnitude of the cumulants though it may

affect their imaginary part. Finally, some HOCs are more useful in separating a partic-

ular group of modulation types than others. Deciding which HOCs to use in each case

is another challenge. The values of the normalized HOCs for the six modulation types

BPSK, QPSK, 8-PSK, 16-QAM, 64-QAM and 256-QAM, at different SNR values, is

presented in Appendix A.

The values of the fourth-order cumulants for Pulse Amplitude Modulation (PAM),

Phase Shift Keying (PSK) and Quadrature Amplitude Modulation (QAM) under a noise-

less environment are presented in [25]. It is shown that HOCs have different values for
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different modulation schemes. For example, C20 is found to be zero for all types of

QAM, PSK, and PAM, except 8-PAM. Based on this observation, C20 is calculated for

every received signal and if C20 is not zero then the signal is classified as 8-PAM. On

the other hand, if C20 is zero then it could be any of the other candidates. Finally, the

modulation identity of the received signal is determined by comparing the values of

the fourth-order cumulants to predefined thresholds [26]. The previous hierarchical ap-

proach is very common in classifying different modulated signals, since it is effective

and has low computational complexity. Mixed-order moments are used in [27] to dis-

criminate between different levels of QAM modulation. Two new parameters, V20 and

V30, are defined as:

V20 =
M42(s)
M21

2(s)
(26)

V30 =
M63(s)
M21

3(s)
(27)

These parameters are extracted from any received signal and projected using

the Fisher criterion into one dimensional space. The modulation type is determined by

comparing the projected value to some thresholds.

3.4. Optimization Techniques

In automatic modulation classification, optimization methods are used to find

the best features from a group of features or sometimes to generate and test new fea-

tures. Using optimization techniques has a great impact on increasing modulation clas-

sification accuracy. In each modulation classification problem, different classification

features are calculated from the received signal and used to determine its modulation

type. These features have different discriminant powers based on the modulation clas-

sification problem at hand. Optimization techniques are used to select the best features

that impact the classification accuracy and remove the redundant features. The final

output of the optimization step is a feature vector that has a fewer number of features

compared to the original feature vector, as well as the same accuracy or sometimes bet-

ter compared to the classification accuracy achieved using the original set of features.

In general, heuristic optimization has several advantages such as:
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• Insensitivity to the problem size.

• Providing a global solution.

• Providing a number of best solutions.

However, heuristic optimization techniques have disadvantages such as:

• Complexity.

• Long running time due to their iterative approach.

In the next section, two optimization techniques are introduced namely, genetic

algorithms and particle swarm optimization.

3.4.1. Genetic Programming.

A genetic algorithm (GA) is a heuristic search algorithm invented by John Hol-

land in 1970. GA applies the idea of natural selection and genetics on computer op-

timizations problems. GA is superior in problems where there is a large number of

possible solutions and the search space has many hills and valleys. By conducting a

parallel search and using the history of the previous solutions, GA is capable of find-

ing the global optimum solution and oversees local optimum solutions that may not be

easily avoided by most other optimization techniques. GA is widely used on different

optimization problems when the objective is to find the best candidates from a certain

population that lead to the optimal solution. The selection criteria are employed using

operators such as mutations and recombinations.

In automatic modulation classification, several features are proposed to distin-

guish between different modulation types. These features differ in their classification

power. GA is used to select the best features and discard the redundant ones to avoid

using a large number of redundant features that might result in reducing the classifi-

cation accuracy (this phenomenon is referred to as the curse of dimensionality). The

implementation of GA requires:

• Fitness function: the objective function that should be maximized or minimized

by the genetic programming algorithm. For automatic modulation classification,

it can be chosen as the classification accuracy.

• Initial population: genetic programming needs initial values that represents possi-

ble solutions to the problem (classification features for the case of automatic mod-
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ulation classification). The initial population is selected randomly from the group

of possible solutions in order to cover all the possible solutions. These solutions

are evaluated by the fitness function to determine the best solutions among the

initial population. The best solutions are then used in the next iteration whereas

the unselected solutions are discarded.

• Crossover and mutations: the surviving population, usually referred to as parents,

are used to generate a new group of possible solutions known as children. Chil-

dren are generated from their original parents by a process called crossover. In

the crossover process, different functions such as plus, minus, times, reciprocal,

negator, abs, sqrt, sin, cos, tan, asin, acos, and tanh [28] are used to combine the

different parents and produce new children with mutual features from their origi-

nal parents. Moreover, another process called mutation is used to slightly change

the produced child in order to keep the randomness behavior in the generation of

the new population.

• Stopping criteria: after generating the new population, children solutions are eval-

uated using the predefined fitness function, and the best children among the new

solutions are kept for the next iteration to represent the new parents. Usually the

fitness of solutions in the second iteration is higher compared to the fitness of so-

lutions in the first iteration. The process of combing the features and evaluating

the solutions continues for several iterations until a certain condition is satisfied;

either the number of iterations reaches its maximum, or the fitness of the new

generations has no significant addition compared to the previous solutions.

3.4.2. Particle Swarm Optimization.

The Particle Swarm Optimization (PSO) algorithm is a robust optimization tech-

nique developed in 1995 [29]. PSO imitates the behavior of flocks of birds, swarms of

insects, or schools of fish when traveling together as a group to reach their final destina-

tion. In PSO, particles are flying through a multidimensional search space where each

particle adjusts its position according to what it experiences along with feedback from

all the neighboring particles. In PSO, all particle positions are initiated randomly and

evaluated to compute a predefined fitness function.
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For automatic modulation classification, classification features represent the

particles in the swarm, and the fitness function is defined as the achieved classification

accuracy when using these features. In the first iteration, a group of solutions (particles)

is initiated randomly, where each particle is a vector of features. The particle with the

highest classification accuracy is referred to as the local best, whereas the particle that

leads to the best classification accuracy in all the iterations is referred to as the global

best [30]. Features in each particle are changed based on its previous experience and

the experience of the entire swarm in order to increase its fitness function (classification

accuracy) in the next iteration. By the end of this optimization technique, the output

is a group of particles (vectors of features) that lead to the best classification accuracy.

These features are then used in the automatic modulation problem instead of the original

set of features.
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Chapter 4: Pattern Recognition Techniques

“Pattern recognition is the scientific discipline whose goal is the classification

of objects into a number of categories or classes ” [31]. Pattern recognition has many

applications in different fields. For instance, Machine Vision is used to analyze cap-

tured images and determine their type, for example in the manufacturing industry to

determine whether the product is defective or not. Biomedical Applications help physi-

cians in diagnosing the different types of diseases, and Character recognition is used to

identify written texts like letters and numbers that can be used to identify signatures in

banks, or in supermarkets price checkers.

In pattern recognition, the identity of different patterns is determined from their

distinguishing features. The accuracy of this approach depends on the discriminating

power of the selected features (classification features) and the capability of the applied

classifier. Pattern recognition can be divided into three main categories: Supervised

Learning Algorithms where labeled data from known classes are used to train the ma-

chine learning classifier; Unsupervised Learning Algorithms in which the class identity

of the training data is not available at the classifier, which is usually harder to solve;

and finally Semi-Supervised Learning Algorithms, which is a hybrid classification type

when part of the training data is labeled and the other part is not.

Any pattern recognition system typically consists of a number of stages as

shown in Figure 8. Input data is usually raw data like images (in image processing

problems), human voice (in speech recognition problems) or modulated received sig-

nals (in automatic modulation classification problems). The preprocessing stage is used

to clean the patterns of interest, and usually noise filtering, data normalization, and data

smoothing are done in this phase [32]. After that, the selected discriminant features

are extracted from the processed input data in order to form the actual input to the

machine learning classifier. An example of feature extraction is calculating the signal

amplitude and phase (in automatic modulation classification problems). The last stage

in any pattern recognition system is choosing the classifier model by which the class

identity is determined. Different types of classifiers are examined in this thesis such as

the K-Nearest Neighbor Classifier, Naı̈ve Bayes Classifier, Artificial Neural Network
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Classifier, Support Vector machine Classifier, and Polynomial Classifier.

Figure 8: Pattern recognition system.

4.1. K-Nearest Neighbor Classifier

The K-Nearest Neighbor Classifier (KNN) is one of the oldest and simplest

pattern recognition classifiers. It is a non-parametric technique that requires little or no

information about the data distribution [33]. In a KNN classifier, labeled training data

is used as a reference and based on their distribution the identity of an unknown tested

sample is determined. A KNN classifier calculates the distances between the tested

sample and all the labeled training samples; then the identity of the tested sample is

determined by the class of its majority neighbors. Different parameters may impact the

performance of a KNN classifier such as:

• Number of neighbors (K): the number of neighbors used by a KNN classifier to

determine the class of an unlabeled sample. The selection of an appropriate value

of K is an important parameter to obtain high classification accuracy and maintain

system simplicity. However, the best value of K differs from one application to

another, and its selection depends on the problem at hand.
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• Distance measures: different types of distances can be used as a measure when

using a KNN classifier. For a classification problem with n-dimensional feature

vectors, the distance between a test sample x and a training sample y is defined

as follows:

1. The Euclidean distance: the most commonly used measure (the default in

many programming languages), described as:

D(x,y) = ‖x−y‖=

√
n

∑
i=1
|xi− yi|2 (28)

2. City block distance: Also known as Manhattan distance, city block distance

is very similar to the Euclidian distance, but has less sensitivity to large

differences in one dimension (each dimension represent a feature), since the

square value of the distances is not calculated in this case:

D(x,y) =
n

∑
i=1
|xi− yi| (29)

3. Cosine distance: Is a measure of similarity between two points calculated

by:

D(x,y) =
xT y
‖x‖‖y‖

(30)

where (.)T indicates the transpose operation.

4. Correlation distance: Is another similarity measure that takes values be-

tween zero to one. A correlation distance of one indicates that the samples

belong to the same class:

D(x,y) =
cov(x,y)√

Var(x)Var(y)
(31)

where cov(x,y) is the covariance matrix between vector x and vector y, and Var(x) and

Var(y) are the variance in vector x and vector y, respectively.
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An example of a KNN algorithm using Euclidean distance is showed in Figure 9.

Two features are extracted from each sample and are mapped into two dimensional

space. For a tested sample represented by the cross, its distance from all the training

samples is calculated, and for a KNN classifier with K = 5. Three of the closest samples

are from class B while only two samples are from class A. Accordingly, the class of the

test sample is assigned as B.

Figure 9: KNN classifier.

4.2. Naı̈ve Bayes Classifier

This is one of the simplest classifiers that is originally based on the Bayesian

theory of probability. It makes the naı̈ve assumption about the different features in the

classification problem that they are totally independent. A naı̈ve Bayes classifier re-

quires a small set of training data to estimate the data distribution (mean and variance).

Since no dependency between the features is assumed, only the variance is calculated

(not the covariance matrix) as in the case of dependent features. In spite of its simplicity,

the naı̈ve Bayes classifier was tested for a variety of real problems and showed a very

good performance even in some cases when the different attributes are not independent.

It also has an advantage when the sample size is small [34]. The conditional probabil-
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ity of a tested sample to be from class C, given the set of features [x1,x2,x3, ...xn], is

calculated by the naı̈ve Bayes classifier as:

P(C/x1, ...,xn) =
P(C)P(x1, ...,xn/C)

P(x1, ...,xn)
(32)

where P(C) is the prior probability of occurrence of class C, P(x1, ...,xn) is the proba-

bility of having the feature vector [x1,x2,x3, ...xn], and P(x1, ...,xn/C) is the probability

of having the feature vector [x1,x2,x3, ...xn] given that the class of the signal is C.

After we apply the naı̈ve assumption that all the features are independent:

P(C/x1, ...,xn) =
∏

n
i=1 P(C)P(xi/C)

P(x1, ...,xn)
(33)

Since P(x1, ...,xn) is equal for all the classes:

P(C/x1, ...,xn) α P(C)
n

∏
i=1

P(xi/C) (34)

Thus, the selected class is the one that has the largest value:

Ĉ = argmax
C

{
P(C)

n

∏
i=1

P(xi/C)

}
(35)

The naı̈ve Bayes classifier is very simple and fast in delivering the final decision. There-

fore, it is suitable for real-time applications.

4.3. Artificial Neural Networks

Artificial Neural Networks (ANNs) or Neural Networks (NNs) are mathemati-

cal models inspired by biological nervous systems such as the human brain. They were

first introduced in 1943 as a computational model called the threshold model [35]. Re-

searchers continued the work on artificial intelligence and created different models of

neural networks that exist today. Neural networks have the ability to estimate the non-

linear relationship between a system’s inputs and outputs. Moreover, it can also find

the patterns and trends in complicated data that might be difficult to extract using other
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techniques. NNs require a training stage, wherein the system is provided with differ-

ent patterns from different data sets in order to estimate a mathematical model for the

problem. It is followed by a testing stage in which the performance of the classifier is

evaluated and tested.

NNs can be categorized into supervised and unsupervised based on their learn-

ing method. They can also be classified as a single layer or multilayer based on their

connection structure. In single layer construction, inputs (which represent the input

features and a bias in our automatic modulation classification problem), are connected

to each other and multiplied by weights to give the final output. The multilayer struc-

ture is the most commonly used configuration. It has three main layers an input layer

(that accepts features and a bias value as inputs) and activates the significant inputs, a

hidden layer (a combination of the activated input features multiplied by their corre-

sponding weights represents the input to this layer), again another activation functions

are used in this layer to keep the significant combinations. Finally the output layer,

which is the final output from the neural network, is used to determine the class of

the unknown modulation type. Figure 10 shows an example of 3 layered NNs with M

different classes.

The iutput to each neuron in the hidden layer is:

g j =
n

∑
i=1

w ji ∗ xi + w j0 (36)

where n is number of the activated neurons in the input layer, w ji is the weight of the

link joining neuron i in the input layer to neuron j in the hidden layer, and w j0 is the

weight of the link connecting the bias input to neuron j. Figure 11 shows neuron j in

the hidden layer, where an activation function is applied on the input g j to define the

output z j. Different activation functions are used in NNs, however, one of the simplest

functions is defined as:

z j = f
(
g j
)
=

 1 i f g j ≥ 0

−1 i f g j < 0
(37)

Finally, in the output layer, C outputs are calculated, where each output repre-
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sents a different class. Figure 12 shows neuron k in the output layer, where its input is

defined as:

mk =
b

∑
j=1

wk j ∗ z j + wk0 (38)

where b is number of the activated neurons in the hidden layer. Accordingly, the final

output of an NN classifier is expressed as:

yk = f (mk) =

 1 i f mk ≥ 0

−1 i f mk < 0
(39)

where yk is a nonlinear function of the input features xi. Moreover, the DC input bias

allows the final classifier model to be a non-homogeneous function of the original input

features (most of the practical discriminant functions have a DC constant term).

Figure 10: Three layer neural networks.
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Figure 11: Neuron j in the hidden layer.

Figure 12: Neuron k in the output layer.

4.4. Support Vector Machines

Support Vector Machines (SVMs) are a powerful supervised machine learning

algorithm introduced in 1995 [36]. An SVM is essentially designed for binary classi-

fication problems where the decision is either one class or an other. SVM can easily

solve classification problems when the two classes are non-linearly separable by simply

mapping the input set of features into a higher dimensional space in which the given

classes are linearly separated.

In the training phase, the classifier estimates a separating hyper-plane between

the two classes in the new dimensional space. Usually there is more than one hyper-

plane that satisfies the criterion. However, the SVM classifier chooses the best one

that yields to the maximum distance between the support vectors (support vectors are

the closest samples from the two classes to the separating hyper-plane). In the testing

phase, an unlabeled testing sample is mapped to the same high dimensional space used

in calculating the model. And its identity is determined based on its position from

the boundary. Figure 13 shows a binary classification problem in a two-dimensional

space; the separating boundary is perpendicular to the line that maximizes the distance
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between the closest support vectors from different classes.

Figure 13: SVM classifier.

50



Chapter 5: Proposed Hierarchical Automatic Modulation
Classification Scheme

The objective of this work is to develop an AMC scheme that would allow the

receiver to decide which of the modulation types is used by the transmitter to send a

given block of data. AMC is treated as a pattern recognition problem, where features

are extracted from the received signals and used in a classifier to decide upon the mod-

ulation level. The features used in this work are the HOCs of the received signal and

the classifier used is a Hierarchical Polynomial (HP) classifier. It is noted that the per-

formance of any pattern recognition scheme depends on the selected features applied to

the classifier and the capability of the classifier itself. In order to improve the classifi-

cation accuracy of the HP classifier, an SNR estimation system is proposed, where the

estimated SNR is fed to the classifier and used to optimize the classifier’s weights in

order to improve the overall classification accuracy. Moreover, feature selection system

based on stepwise regression is proposed, where the important features for the modula-

tion classification are identified and the redundant features are discarded. The result is

a simplified modulation classifier with optimized performance.

5.1. Signal Model

In this work, the signals are assumed to be transmitted over a flat fading channel,

which is a valid and rational assumption for narrow band systems. For example, an

OFDM system modulates a group of subcarriers, with each subcarrier carries data with

a low symbol rate. Thus, the reflected signals from the different paths arrive within a

short time period smaller than the symbol duration. Therefore, there is no inter-symbol

interference (ISI) between the different consecutive transmitted symbols. The baseband

discrete-time received signal contaminated by Additive White Gaussian Noise (AWGN)

in a flat fading environment can be expressed as:

yn = hnxn +wn n = 1, ...,N (40)
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where xn is the discrete time transmitted signal, wn is the AWGN process with zero

mean and two-sided power spectral density N0
2 , hn is the complex valued channel gain

assumed to follow a Gaussian distribution, and N is the number of transmitted symbols.

The transmitted signal xn is selected to be one of L possible modulation types. In this

work we consider BPSK, QPSK, 8-PSK, 16-QAM, 64-QAM or 256-QAM modulation

types (L = 6). Furthermore, the transmitted power is normalized to unity for all the

modulation types.

5.2. Hierarchical Polynomial Classifier

The Weierstrass approximation theorem states that “every real-valued continu-

ous function on a finite closed interval [a, b] can be uniformly approximated by poly-

nomials with real coefficients” and “every complex-valued continuous function on a

finite closed interval [a, b] can be uniformly approximated by polynomials with com-

plex coefficients” [37]. According to this theorem, a polynomial classifier can be used

to approximate the nonlinear boundaries between different classes. A polynomial clas-

sifier is a machine learning algorithm that expands the original set of features in a given

space to a higher dimensional space in which the different classes are linearly sepa-

rated. Due to its simplicity and high accuracy, it has applications in a variety of fields

like speech recognition [38], cognitive radio systems [39], and biomedicine [40].

Figure 14 shows a binary classification example in the original feature’s space

d1 and d2. It can be noticed that the two classes are nonlinearly separable and can only

be separated by a quadratic function. However, the new set of features, x1, x2, and

x3, derived from an expansion of d1 and d2, can linearly separate the two classes in

a higher dimensional space (3 dimensions in this case), where x1 = d2
1 , x2 = d2

2 , and

x3 =
√

2d1d2.

Similar to any supervised learning algorithm, a polynomial classifier has two

main stages, as shown in Figure 15. First, there is a training stage in which features

from labeled training signals are used in calculating the classifier weights, and then

there is a testing stage where unlabeled signals are applied to the classifier to identify

the classes of the signal.
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Figure 14: Classification features in the original space and high dimensional space.

Figure 15: Training and testing stages.

The proposed HP classifier is shown in Figure 16, where the classification of

the six (L = 6) modulation types (BPSK, QPSK, 8-PSK, 16-QAM, 64-QAM and 256-

QAM) is done in hierarchical binary-classification stages. In each stage, modulations

having features of similar values are clustered in one class and the rest are placed in a

second class. For example, the received signal is firstly classified to be either PSK or

QAM. In the next stage, if the signal is PSK, two new classes are introduced, BPSK

as a class and QPSK and 8-PSK as another class. If the signal is classified as BPSK,

the classification procedure is completed; otherwise, another binary classification be-

tween QPSK and 8-PSK is introduced. The same principle applies for the QAM types

as shown in Figure 16. This process helps in optimizing the weights in each binary
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classification stage leading to an overall improvement in the classification accuracy. In

contrast, a conventional polynomial classifier used in [9] has less classification accu-

racy, especially for high values of L (more considered modulation types). For example,

it is much easier to identify 64-QAM when the modulation is either 64-QAM or 256-

QAM, compared to a case when the modulation is either of BPSK, QPSK, 8-PSK,

16-QAM, 64-QAM, or 256-QAM.

Figure 16: Hierarchical polynomial classifier.

5.2.1. Training Stage.

HOC features are calculated from each received signal with known classes. The

obtained features are expanded into a higher dimensional space using a polynomial clas-

sifier in order to produce more features and allow for easier separation of the classes.

The order of the polynomial classifier determines the dimensionality of the space. Al-

though higher order polynomial classifiers could be used, for implementation simplic-

ity, a second-order polynomial classifier is normally implemented, where the new set of

features is the original features plus their products and squared values. For instance, for

an input feature vector d composed of normalized HOCs defined as d = [d1,d2, ... ,dM],

the expanded feature vector p is expressed as:
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p =



1, d1, d2, ... , dM,

d1×d2, d1×d3, ... , d1×dM,

d2×d3, d2×d4, ... , d2×dM,
...

...

dM−1×dM, d2
1 , d2

2 , ... , d2
M


(41)

where M is the number of HOCs used as input features. For simplicity, vector p can be

written as:

p = [p1, p2, · · · , pn] (42)

where n is the length of the higher dimensional feature vector.

To explain how the polynomial classifier works, let us consider a case of two

modulation types, for example BPSK and QPSK (i.e. L = 2). In order to train the

polynomial classifier, K training signals are transmitted from each of the BPSK and

QPSK modulations. HOCs are extracted from each signal and the corresponding p

vector is calculated using (41). After that, a new matrix vl that has all the expanded

feature vectors for modulation type l is defined as:

vl =


p(l)

1

p(l)
2
...

p(l)
K

 l = 1,2 (43)

By rearranging both v1 for the BPSK modulation and v2 for the QPSK modulation in a

new matrix, V, we get:

V =

v1

v2

 (44)

The next step is to calculate the optimum classifier weights, wopt
1 for BPSK and wopt

2

for QPSK. In order to do so, the square of the second norm is minimized as:

wopt
l = argmin

wl
‖Vwl− tl‖2 (45)
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where tl is the target matrix defined as:

tl =

1

0

 ,when calculating wopt
1 (46)

and

tl =

0

1

 ,when calculating wopt
2 (47)

with

0 = b0,0, ...,0cT1×K (48)

1 = b1,1, ...,1cT1×K (49)

Equation (45) can be simply written as:

VTVwl = VTtl (50)

2

∑
m=1

VT
mVmwl = VTtl (51)

However, by defining:

Y =
2

∑
m=1

VT
mVm (52)

Then:

wopt
l = Y−1vl (53)

where Y−1 is the inverse of matrix Y [41]. Finally, after finding wopt
1 and wopt

2 , the

classifier is ready for the testing stage.

5.2.2. Testing Stage.

In the testing stage, the objective is to find the identity of an unlabeled modulated

signal, either BPSK or QPSK. To classify the modulation type, the HOC feature vector
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d is first extracted from the received signal and the expanded vector p is calculated using

the second-order expansion. Then, vector p is multiplied by the classifier weights wopt
1

and wopt
2 obtained during the training stage to give two scores s1 and s2, respectively.

These scores represent the new super features for the polynomial classifier, and based

on their values the modulated signal identity is determined. Ideally, the weights are

optimized during the training stage to give s1 = 1 and s2 = 0 if the modulation is type

one (BPSK), and to give s1 = 0 and s2 = 1 if the modulation is type two (QPSK). Since

the received symbols are noisy, the decision is made based on the maximum values of

s1 and s2, meaning that if s1 > s2 then the modulation is class one, and if s2 > s1 the

modulation is class two. Hence,

Class identity l = argmax
l
{sl} (54)

The previous example explained the modulation classification process for only

two modulation types, BPSK and QPSK. In this work, we consider a more general clas-

sification problem among BPSK, QPSK, 8-PSK, 16-QAM, 64-QAM and 256-QAM.

Using the same concept introduced before, we divide the modulation classification pro-

cess into binary sub-classification stages. In the first stage, PSK signals are treated as

one class and QAM signals as another class. In other words, we define a problem of

two modulation groups, the PSK modulation group that has BPSK, QPSK and 8-PSK

signals, and the QAM modulation group that has 16-QAM, 64-QAM and 256-QAM. K

training signals form BPSK, QPSK and 8-PSK are used to calculated matrix v1, and K

training signals form 16-QAM, 64-QAM and 256-QAM are used to calculated matrix

v2. Following the same procedure, wopt
1 and wopt

2 are calculated in the training stage. In

the testing stage, if s1 > s2, the received signal is PSK and if s2 > s1, the received signal

is QAM. If the signal is decided to be PSK, another binary modulation classification

problem is considered. This time, another polynomial classifier is used, where matrix

v1 has the expanded feature vector of the BPSK modulation, and matrix v2 has the ex-

panded feature vector of both QPSK and 8-PSK. Accordingly, in the testing stage, if

s1 > s2, the received signal is BPSK, and if s2 > s1 then the received signal is either

QPSK or 8-PSK. Finally, if s2 > s1 then another polynomial classifier is used to deter-

mine the modulation type identity as either QPSK or 8-PSK using the same illustrated
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concept. The same idea is used if the signal is decided to be QAM, as illustrated in

Figure 16.

5.3. Stepwise Regression

Solving the classification problem in higher dimensional space proved to be ad-

vantageous; however, the dimensionality of the final feature vector grows dramatically

with the increase in the number of input features. For example, for two input features,

the corresponding expanded vector will have five features, whereas for our scenario

with nine input features, the final expanded feature vector has a total of fifty-four fea-

tures. Moreover, some of the features in the new dimensional space are redundant;

therefore, calculating them adds to the complexity of the problem. In fact, it may result

in decreasing the classification accuracy due to the possibility of having an over-fitted

model. However, in this section we propose a combined model based on polynomial

classifiers and stepwise regression for feature selection.

A stepwise regression model is used to select the significant features from the

expanded feature vector p. In order to do so, the algorithm starts by constructing various

regression models, each one based on one feature from the expanded feature vector. For

example, for a model based on the first feature p1, the regression model is defined as:

Ŷ = B0 +B1 p1 (55)

where Ŷ is the predicted output based on the fitted regression model. The regression

coefficients B0,andB1 are calculated by assuming the input to the model to be p1, and

the output of the model is Y , where Y represents the modulation label. The p-value of

each feature is then calculated and the lowest p-value indicates the most significant fea-

ture. The p-value is defined as the null-hypothesis test probability (the null-hypothesis

in this case is the event that the feature has no statistical significance).

Typically, the p-value is calculated with a tolerance of α for adding the feature

to the model, and a tolerance of β for removing the feature from the model. In the

next iteration, the p-value is calculated for all the remaining features given that the best

feature has already been selected from the first iteration. The output of this iteration
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is the best two-feature model. In the third stage, another feature is added to the model

and tested; moreover, the model is examined when removing the first selected feature

and keeping the other two features. If the p-value of the first feature is less than β , the

first feature is removed from the model. Finally by the end of all iterations, the output

of the regression model is the best features for the classification problem. Algorthim 1

shows the stepwise regression process explaining both of the adding and the removing

processes [42].

The significance of each regression model is tested using the partial F-statistic

parameters [1] defined as:

Fj =
SSR

(
B j/B0,B1, ...,B j−1,B j+1, ...,Bk

)
MSE

(56)

where the F-statistic parameters are calculated when adding the term p j given that the

coefficients B0,B1, ...,B j−1,B j+1, ...,Bk are already in the model. MSE is the mean

square error of the model and SSR is the sum of squares defined as:

SSR =
N

∑
n=1

(
Ŷt− Ȳ

)2 (57)

where Ȳ is mean of the outputs defined as:

Ȳ =
1
n

n

∑
i=1

Yi (58)

and n is the number of observations used in calculating the regression model.

Finally, the stepwise regression model is integrated with the polynomial clas-

sifiers. In the training stage, the second-order expansion is calculated for each feature

vector and examined by the stepwise regression model. Therefore by the end of the

regression process, only the significant features are used to train the classifier; thus the

final classifier model is a function of the best calculated features. Using this approach,

the stepwise regression process is required in the training stage only, and no heavy cal-

culations are conducted in the testing stage. In fact, only the important features are

extracted from the received signal in the testing stage, which reduces the complexity of

the system in the real life scenario. Figure 17 shows the integrated model with both the
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stepwise regression system and the polynomial classifier.

Algorithm 1 Stepwise regression
1: procedure START THE REGRESSION

2: Calculate the P-Value
3: if Terms have P−Value < α then
4: Add the term with the minimum P-Value
5: else if Terms have P−Value > β then
6: Remove the term with the largest P-Value

(a) Training Stage

(b) Testing Stage

Figure 17: The proposed classifier using stepwise regression.

5.4. Signal-to-Noise Ratio Estimation

In this chapter, a new Signal-to-Noise Ratio (SNR) estimation method based

on C20 and the naı̈ve Bayes classifier is proposed. The SNR estimation system is then
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integrated with the proposed automatic modulation classifier in order to improve the

overall classification accuracy.

In general, received signals at different SNR values have different patterns, since

the effect of noise in each case is different. Accordingly, some HOCs express some vari-

ations in their values at different SNRs. These variations lead to two different classifier

training scenarios. In the first scenario, training signals at different SNR values are

used to calculate average classifier weights, where the classifier is trained for different

HOC patterns. As a result, the final classifier model can accurately identify signals at

an unknown SNR. In contrast, the second training scenario intends to train the classifier

for a specific pattern of HOCs, in other words at a specific SNR value; this leads to the

best classification accuracy if the tested signals are at the same SNR value. However,

the second scenario has a severe drop in classification accuracy if the received signal

is at a different SNR value. Hence, for the second scenario to work, an accurate SNR

estimation system is required.

In this section, we propose an SNR estimation algorithm that can be integrated

with our modulation classifier. The power of the received signal (C20) is used as an

identification feature to estimate the SNR of the signal. The power of the received

signal equals the power of the transmitted signal plus the power of the noise. Without

loss of generality, we assume that the transmitted power is normalized to unity. Hence,

C20 can accurately indicate the power of noise in the received signal, in other words its

SNR value.

This approach is able to identify the SNR of the signal when there is a significant

noise power added to the signal, (i.e. at low SNR values), but fails at high SNRs where

the value of C20 is always close to unity. For that reason, we limit our estimator to SNR

values in the range of 0 dB to 10 dB. We define 12 different classes where class one to

eleven represent the SNR value 0 dB,1 dB,2 dB, ..., 10 dB, respectively, and the twelfth

class represents any SNR value greater than 10 dB. A naı̈ve Bayes classifier is used to

decide on the SNR of the channel.

It is worth mentioning that the actual SNR of the signal is a continuous value and

not discrete as we defined in our estimator. However, the estimated SNR is only used

to select the corresponding classifier’s weights. Hence, an approximated value is suf-
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ficient to achieve a significant improvement in the modulation classification accuracy.

Figure 18 shows the testing stage for the integrated SNR estimator and the proposed

polynomial classifier system.

Figure 18: Modulation classification with SNR estimation (testing stage).
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Chapter 6: Simulation Results

In this section, the performance of the proposed Hierarchical Polynomial (HP)

classifier is examined under different channel conditions and is compared to other meth-

ods from the literature. First, the advantage of the proposed classifier over the traditional

threshold-based method is investigated. A simulation involving the generation of 1000

different realizations of each of 16-QAM and 64-QAM signals is conducted at a 20 dB

signal-to-noise (SNR), where each signal represents a block of N = 2000 symbols. The

conventional method for classifying 16-QAM and 64-QAM signals uses the value of

the fourth-order cumulant C42, or the value of the sixth-order cumulant C63 as defined

in [43]. Using a threshold to decide on the modulation type is not the optimal solution.

Figure 19 shows that there are many signal misclassification errors when the classifica-

tion is done based on a threshold value of C42 only or C63 only. On the other hand, it is

clear from Figure 19 that the two modulation types can be easily classified using a line

which is a function of C42, C63 and a constant value. Figure 20 shows the two output

scores when using the proposed polynomial classifier with the same input features C42

and C63. In this scenario, when 16-QAM is transmitted (the first 1000 signals) then the

first score s1 is always greater than the second score s2. The opposite happens when

the transmitted signal is 64-QAM (signals numbered 1001 to 2000) where the second

score s2 is always greater than the first score s1. Using the values of s1 and s2 results in

a classification rate close to 100%.

6.1. Classification in AWGN Channels

All simulations in the next section are conducted for N = 10000 symbols. In

Figure 21, a classification problem among BPSK, QPSK, 8-PSK, 16-QAM, 64-QAM,

and 256-QAM is considered under AWGN channel conditions using 2000 realization

for each modulation type. First, we have compared the performance of the proposed

HP classifier with the conventional polynomial (CP) classifier, i.e. nonhierarchical,

under the assumption that no SNR information is available at the receiver side. During

the training stage, signals with different known SNR values are used to calculate the
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Figure 19: Features in the original dimensional space.

Figure 20: The two scores (super features) of the polynomial classifier.
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average classifier weights. The average weights are then used during the testing stage

to classify the modulation type of unknown signals regardless of the received signal

SNR. The results show that the HP classifier provides better correct classification of the

modulation type than the CP scheme, especially at higher values of SNR. However, due

to the lack of SNR information, the performance of both schemes reaches an upper limit

indicating the non-optimality of selecting the classifier weights. Then, we investigated

the case when the SNR is known at the receiver. Accordingly, classifier weights are

calculated for each SNR value in the training stage. Then, based on the SNR of the

received signal, the corresponding classifier weights are used in the testing stage. The

results presented in Figure 21 show that when the channel information is available at the

receiver, a significant improvement in the classification accuracy is achieved, reaching

to about 100% accuracy for SNRs above 12 dB. The advantage of using the proposed

HP over the CP in the two scenarios is clearly demonstrated.

Figure 21: Classification rate in AWGN only for CP and HP classifiers.

The effect of using a different number of symbols per data block on the classi-

fication rate of an HP classifier is shown in Figure 22. It is shown that using a larger

number of received symbols to extract the classification features improves the classifi-

cation rate. For example, using N=5000 symbols leads to a 4 dB improvement in SNR

compared to N=1000 symbols.

The performance of different classifiers is investigated for the same modulation
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Figure 22: Classification rate in AWGN only for different numbers of symbols.

classification problem. In order to use the KNN classifier, the performance of the clas-

sifier is firstly tested for different values of K using different distances. This test is done

using signals of length N=10000 at 10 dB. Figure 23 shows the classification accuracy

when using Euclidian, city block, cosine and correlation distances. From Figure 23, it

is obvious that using the correlation distance with K=16 results in the best classification

accuracy.

Figure 23: Classification using KNN classifier.

Next, the performance of the SVM classifier is examined for different values of

66



σ at 10 dB and for N=10000. As shown in Figure 24, the highest classification accuracy

is achieved for σ= 2.40. Accordingly, a comparison between the different classifiers is

conducted using SVM with σ= 2.40 and a KNN classifier with correlation distance and

K=16.

Figure 24: Classification using SVM classifier.

In Figure 25, the classification rate of the SVM, NN, naı̈ve Bayes, KNN, and the

proposed HP classifiers are presented and compared. The results are almost identical

for SVM, NN and the proposed HP classifiers. The classification rate started to reach

100% at 13 dB. On the other hand, KNN and naı̈ve classifiers achieved lower overall

classification accuracy compared to the others, with the KNN classifier having more an

advantage.

To summarize, the proposed classifier achieved the best accuracy in AWGN

environments. Although NN and SVM have similar classification rates in this scenario,

preferring one classifier over another depends on other factors like simplicity and ease

of implementation.
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Figure 25: Comparison between different classifiers.

6.2. Classification in Slow Flat Fading Channels

In this section, the performance of the proposed hierarchical polynomial clas-

sifier is investigated in flat fading channel conditions with either Rayleigh (no line of

sight) or Rician fading (with line of sight component). Without loss of generality, the

Rician factor, which represents the ratio between the power of the direct path and the

power of the reflected paths, is assumed to be 6. The parameters used are the same as

in [20] with a sampling interval of 1× 10−6 seconds, average path gains [0, −10]

dB, path delays
[
0, 1×10−7] seconds, and maximum Doppler shift of 3Hz, 30Hz,

or 83Hz. Figure 26 and Figure 27 show the recognition rate for N=5000 with different

values of maximum Doppler shifts in Rician and Rayleigh fading, respectively. The

maximum Doppler shift and the SNR of the channel are assumed to be known at the

receiver side. Accordingly, these values are used to train the classifier. It is clear that

the recognition rate is higher for Rician fading channels compared to Rayleigh fading

channels. This is because of the existence of the strong signal due to the line of sight

component. It is noted that a higher Doppler shift results in lower recognition rate.

The classification performance as a function of the number of received symbols

and Doppler shift is shown in Figure 28 for flat Rayleigh fading. It is also observed

that when the Doppler shift is high it is better to reduce the number of symbols used

in the classification process in order to reduce the impact of the time variation of the

channel on the classification performance. For instance, at a Doppler shift of 83 Hz,
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Figure 26: Classification rate in Rician fading channels.

Figure 27: Classification rate in Rayleigh fading channels.

the classification rate reaches it is peak by using about 500 symbols as opposed to a

Doppler shift of 30 Hz that requires about 1500 symbols to reach its maximum.

Figure 29 presents the constellation diagram for a QPSK signal plotted at differ-

ent time instants. This explains the degradation in the performance when the number of

symbols is increased for the case of high Doppler shifts. It is obvious that for N=20000

and N=10000, the constellations are very different compared to the original QPSK con-

stellation; this is due to the fast variation in the channel during the time of receiving

these symbols. However, for smaller numbers of received symbols, the constellation

tends to reserve its main structure. Accordingly, to achieve high classification accuracy,
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the number of received symbols should be optimized to be high enough to increase the

classification accuracy and small enough to preserve the shape of the constellation. This

optimized value of N varies based on the Doppler shift of the channel.

Figure 28: Classification rate versus number of symbols for different values of Doppler
shift.

6.3. Classification Using Stepwise Regression

In this section, stepwise regression is integrated with the proposed hierarchi-

cal polynomial classifier with the aim of selecting the best classification features and

reducing the system complexity. In the training stage, the second-order polynomial ex-

pansion of the input HOCs defined in Table 2 is calculated. The result is a new vector

with fifty five classification features. These features are fed to the stepwise regression

model in order to select the best features and discard the insignificant ones.

The values of α and β are chosen to be 0.01 for all the experiments. Figure 30

shows the recognition rate for a classification problem among BPSK, QPSK, 8-PSK,

16-QAM, 64-QAM, and 256-QAM. It is clear from the graph that the classification rate

increases when the number of received symbols increases; for example, the correct clas-

sification accuracy is 97.94% for N = 10000 at 10dB compared to 91.08% and 87.93%

at N = 2000 and N = 1000, respectively. Moreover, the recognition rate improved as
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(a) N=20000 (b) N=10000

(c) N=5000 (d) N=1000

Figure 29: Constellation diagram for Rayleigh fading channel at 20 dB and for
Fd=83Hz.

the SNR of the signal increases to reach 100% at 16 dB for N = 10000 and N = 5000.

Figure 31, Figure 32, Figure 33, Figure 34 and Figure 35 show the number of

selected features at different SNR values for the five classification stages in Figure 16.

In general, the number of selected features increases at high SNRs, since variation in

the features’ values is greater at low SNRs.

Moreover, the figures show the reduction in the number of classification fea-

tures when using stepwise regression. For example, only three features are required

to classify 64-QAM and 256-QAM in the range of 0dB to 3dB (see Figure 31), which

indicates a 94.5% reduction in the number of features compared to the original sce-

nario. On the other hand, in some cases the number of features reaches forty-four like
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in Figure 31 at 20dB, where 80% of the original expanded feature vector are used. It

is also worth mentioning that the stepwise regression produces some errors in selecting

the final model, meaning that not all the significant features are selected, and not all the

redundant features are discarded. This error is due to the inaccurate estimation of the

coefficient values B j during the regression process. Table 3 compares the classification

rate obtained when using the original expanded feature vector as in Figure 22 to the case

when the reduced set of features is used. Both systems provided the same classification

accuracy, which confirms the possibility of having redundant or insignificant features

that can be eliminated leading to reduced system complexity.

Figure 30: Classification Rate for Different Number of Symbols Using Stepwise Re-
gression.

Figure 31: MPSK Versus MQAM.
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Figure 32: BPSK Versus QPSK and 8-PSK.

Figure 33: QPSK Versus 8-PSK.

Figure 34: 16-QAM Versus 64-QAM and 256-QAM.
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Figure 35: 64-QAM Versus 256-QAM.

Table 3: Stepwise Regression System Versus Normal HP Classifier System

System type
SNR (dB)

Number of Symbols
0 5 10 15 20

Stepwise 75.35 89.84 97.94 100 100
N = 10000

HP 75.14 89.78 98.04 100 100
Stepwise 71.25 86.68 94.78 99.62 100

N = 5000
HP 71.22 86.53 94.84 99.67 99.98

Stepwise 65.05 81 91.08 97.07 99.23
N = 2000

HP 64.96 80.88 91.03 97.16 99.2
Stepwise 56.98 77.84 87.93 93.06 96.92

N = 1000
HP 57.08 77.48 87.93 93.38 97.04

6.4. Classification Using Estimated SNR

As mentioned earlier, integrating the SNR estimation system with the proposed

HP classifier improves the classification accuracy. However, to understand how this

enhancement occurs, different scenarios are considered. In the first scenario, the system

was trained using signals with SNRs in the range of 0 dB to 20 dB to calculate the first

set of weights. The system was then tested with signals in the specified SNR range and

the performance is shown in Figure 36. As the results show, the classification accuracy

was about 70% at 0 dB and increased as the SNR increased. As for the second scenario,

the system was trained using signals with SNRs in the range of 5 dB to 25 dB, where
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signals between 0 dB to 5 dB were ignored. The system was then tested for signals

with SNRs in the range of 0 dB to 20 dB. The result shows a degraded performance for

signals with SNRs less than 5 dB while the performance, compared to the first scenario,

increased for higher SNRs as shown in Figure 36 and Figure 37. Likewise, for the third

scenario, signals with SNRs between 0 dB to 10 dB were ignored, and the training was

conducted using signals with SNRs in the range of 10 dB to 30 dB. The performance

of the system for this scenario shows further degradation for low SNRs compared to

the first two scenarios, while for higher SNRs the performance is enhanced as shown

in Figure 36 and Figure 37. The improvement in the classification accuracy was due to

the exclusion of low SNR signals (noisy signals); therefore the training was optimized

for clean signals. The previous discussion showed the importance of optimizing the

training procedure in order to achieve the highest possible classification accuracy.

Figure 36: Training for different ranges of SNR.

Next, the performance of the proposed SNR estimator is examined by signals

with SNR values in the range of 0 dB to 20 dB. Figure 38 shows a very accurate SNR

estimation at low SNR values (approximately 100% correct estimation for SNRs in the

range of 0 dB to 6 dB, whereas, for higher SNR values, the estimator started to produce

small errors between the adjacent SNRs).

From Figure 37 and Figure 38, we concluded that training the classifier for
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Figure 37: Training for different ranges of SNR (scaled).

Figure 38: Estimated SNR versus actual SNR (N = 10000).

different ranges of SNRs changes the overall classification accuracy. Since the SNR

estimator is relatively accurate for the SNR range of 0 to 10 dB, for this range, the esti-

mated SNR is fed to the classifier and the corresponding automatic modulation classifier

weights are used to determine the modulation type. If the SNR estimator identifies the

SNR of the channel to be higher than 10 dB, then the average classifier weights for the

range 10 to 30 dB are used. The result is improved classification accuracy as shown in

Figure 39. It is clear from the graph that using a modulation classifier and SNR estima-
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tor leads to the same performance (of the case of known SNR value at the receiver for

low SNR values,) and results in an overall improvement of the classifier performance

compared to the case of no channel information. Tables 4 to 6 show the confusion ma-

trix of the SNR estimation system for the cases of N = 20000, N = 10000 and N = 5000,

respectively.

Figure 39: Classification using estimated SNR.

6.5. Comparison to Related Work

In this section, we compare the performance of the proposed system against

other systems in the literature. Table 7 shows the classification rate of the Naı̈ve Bayes

classifier, Support Vector Machine (SVM) classifier, Maximum Likelihood (ML) classi-

fier, Genetic programming with KNN classifier, and the proposed Hierarchical Polyno-

mial (HP) classifier. To ensure a fair comparison, the proposed classifiers are simulated

using the same parameters used by the other authors. In particular, we used four modu-

lation types (BPSK, QPSK, 16-QAM and 64-QAM) with 512, 1024 and 2048 symbols

per data block.

The proposed HP classifier achieved a classification rate of 100% at 20 dB for

the three given scenarios, N=512, 1024, and 2048 symbols. For N=512 at 10 dB, the
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HP classifier managed to achieve a 96.49% accuracy rate, whereas GP-KNN, SVM, and

Naı̈ve Bayes classifiers achieved an accuracy of 94%, 91.23% and 90.17%, respectively.

On the other hand, only the ML classifier achieved a 75% classification rate. It is

clear that the proposed HP classifier outperformed the four other classifiers in terms

of classification rate. However, the classification rate is not the only factor that favors

one classifier over another. A crucial factor is the system complexity and the order of

calculations involved in making the classifier decision. Since modulation classification

is mostly a real-time identification problem, systems with a simple structure and low

complexity are preferred.

Table 7: Comparison to other systems in the literature

N
Classification Rate (%)

SNR Naı̈ve SVM ML GP-KNN HP (proposed
(dB) [44] [44] [44] [45] method)

512
0 63.91 64.53 50 65 65.78
10 90.17 91.23 75 94 96.49
20 94.66 98.33 100 98 100

1024
0 69.68 70.3 50 70 71.99
10 94.4 94.81 75 98 99.10
20 98.28 98.89 100 100 100

2048
0 76.75 75.73 50 75 77.60
10 97.89 97.92 75 100 99.96
20 99.68 99.78 100 100 100

The complexity of a classifier can be analyzed based on the complexity of the

training stage (offline) and the complexity of the testing stage (online). In the training

stage, GP-KNN and SVM use iterative approaches and consume significant processing

time to provide the final training model, especially for the case of GP-KNN where

different function pools are used to calculate the final training model. However, for our

proposed system and the naı̈ve Bayes classifier, the training process is straightforward

without any iterations involved. In general, the complexity of the training stage does

not usually matter if the calculations in the testing stage are simple, because the training

is performed offline.
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In the testing stage, nine features are applied to the proposed HP classifier, and

the classifier expands them forming a new feature vector with fifty-five features. It is

noted that the only complexity in this method is in producing the expanded feature vec-

tor and then calculating the classifier scores. The complexity of the proposed HP clas-

sifier can be estimated as O(2 f ) where f is the number of expanded features and the

factor 2 is for the two binary sub-classifications required for each decision. However,

the complexity of the proposed HP classifier can be reduced by using stepwise regres-

sion for feature selection. For the same classification problem, the combined system

of the proposed HP classifier and stepwise regression has a complexity of O(F1 +F2)

where F1 is the number of significant features for the first classifier to determine if the

signal is MPSK or MQAM, and F2 is the number of features for the second classifier to

identify the exact identity of the modulated signal. For example at 20 dB, F1 = 33 and

F2 = 20 for BPSK and QPSK, respectively, which indicates that the complexity of the

system dropped significantly compared to the case without the feature selection model.

It is worth mentioning that using stepwise regression adds to the system complexity in

the training stage.

On the other hand, for the case of the GP-KNN system, the complexity is much

higher since it involves the complexity of finding the final super feature (the calculations

to find this super feature depend on the pool function used like plus, minus, times,

reciprocal, negator, abs, sqrt, sin, cos, tan, asin, acos, or tanh [45]. Furthermore, in a

GP-KNN classifier, the distance is calculated between the calculated super feature and

all the reference samples. For example, the number of reference points in [14] is 300

points. Accordingly, after finding the super feature, the distances between this super

feature and the 300 reference points are calculated. Hence, the overall complexity of

GP-KNN is O(N) where N=300 plus the complexity of generating the super feature.

For the SVM and naı̈ve Bayes classifiers in the testing stage, the complexity is

less than the GP-KNN classifier, but their overall classification accuracy is relatively

lower. It should be noted that it is expected that the more complex computations the

classifier performs, the higher classification rate it provides. Yet in our proposed sys-

tem, we managed to achieve high classification accuracy and maintain simple classifier

structure.
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Chapter 7: Conclusion

Automatic modulation classification has a great importance in optimizing the

usage of the available spectrum and increasing the data throughput of communication

systems. Moreover, it has many other applications in military and civilian areas. In

this thesis, an automatic modulation classification system using a hierarchical polyno-

mial classifier and high-order cumulants as features is proposed. The proposed system

is used to classify M-PSK and M-QAM modulations using binary sub-classification

stages, where in each stage a separate polynomial classifier expands the original feature

vector into a higher dimensional space in which the two considered classes are linearly

separated.

A feature selection system based on stepwise regression is integrated with the

proposed classifier, whereas the significant features for each binary classification stage

are identified and used, and the insignificant features are removed. The result is a simpli-

fied modulation classification system with much reduced calculation complexity. More-

over, an SNR estimation scheme is introduced, where the SNR of the received signal is

estimated and used to select optimized classifier weights. Integrating the SNR estima-

tor with the proposed classifier results in an overall improvement in the classification

accuracy of the system.

Different classifiers are simulated in this work, and the results showed that neu-

ral networks and support vector machines have very close performance to the proposed

classifier. However, the proposed system is less complex, which makes it more suit-

able for real-time applications. For channels with slow flat fading, the proposed system

is shown to have no degradation due to the phase shift in the constellation. Then, a

relationship between the number of received symbols used to extract the classification

features and the classification rate is investigated for different scenarios of Doppler

shifts.

Finally, the advantage of the proposed system is investigated in terms of accu-

racy and calculation complexity compared to other work in the literature.
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Appendix A: HOCs versus SNR

This section shows the average values of HOCs for the six modulation types:

BPSK, QPSK, 8-PSK, 16-QAM, 64-QAM and 256-QAM at different SNR values, the

values are averaged for N = 10000 received symbols. Figures 40 to 48 show the dis-

crimination power of HOCs for classifying the different modulation types. Moreover,

Figure 41 shows the ability of C21 on identifying the SNR of the signal regarding its

modulation type.

Figure 40: C20 versus SNR.

Figure 41: C21 versus SNR.
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Figure 42: C40 versus SNR.

Figure 43: C41 versus SNR.

Figure 44: C42 versus SNR.

89



Figure 45: C60 versus SNR.

Figure 46: C61 versus SNR.

Figure 47: C62 versus SNR.
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Figure 48: C63 versus SNR.
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