
LEARNING-BASED SPECTRUM SENSING AND ACCESS FOR

COGNITIVE RADIO SYSTEMS

by

Menatalla Diaaeldin Shehabeldin

A Thesis Presented to the Faculty of the
American University of Sharjah

College of Engineering
in Partial Fulfillment
of the Requirements

for the Degree of

Master of Science in
Electrical Engineering

Sharjah, United Arab Emirates

June 2015



c© 2015 Menatalla Shehabeldin. All rights reserved.



 

 

Approval Signatures  
 

We, the undersigned, approve the Master’s Thesis of Menatalla Diaaeldin Shehabeldin. 
 

Thesis Title: Learning-Based Spectrum Sensing and Access for Cognitive Radio 

Systems 

 

Signature        Date of Signature 
         (dd/mm/yyyy) 

 
___________________________     _______________ 

Dr. Mohamed El-Tarhuni 

Professor of Electrical Engineering     

Thesis Advisor 

 
___________________________     _______________ 

Dr. Khaled Assaleh 

Professor of Electrical Engineering  

Thesis Advisor 

 

___________________________     _______________ 

Dr. Mahmoud Ibrahim 

Visiting Associate Professor of Electrical Engineering     

Thesis Committee Member 

 
___________________________     _______________ 

Dr. Tamer Shanableh 

Associate Professor of Computer Science       

Thesis Committee Member 

 
___________________________     _______________ 

Dr. Nasser Qaddoumi 

Head of Department of Electrical Engineering 

 
___________________________     _______________ 

Dr. Mohamed El-Tarhuni 

Associate Dean, College of Engineering 

 
___________________________     _______________ 

Dr. Leland Blank 

Dean, College of Engineering 

 
___________________________     _______________ 

Dr. Khaled Assaleh 

Interim Vice Provost for Research and Graduate Studies 



Acknowledgements

I would like to thank all those who have contributed in one way or another to the

final presentation of this thesis. First, I would like to thank my advisors, Dr. Mohamed

El-Tarhuni and Dr. Khaled Assaleh, who provided continuous support and guidance

throughout the research process. Second, I would like to thank all the professors and lab

instructors I worked with as a teaching assistant during the master’s program for helping

me realize that I want to pursue a career in academia. Special thanks to the Department

of Electrical Engineering for providing me with the assistantship to continue my studies.

I would also like to thank my friends Ayah and Rabiya for making my experience in the

program a memorable one. Last but not least, I would like to thank my family for being

considerate at the times I got busy with my work on the thesis.



To Mom . . .



Abstract

Spectrum management is one of the most important elements of the overall design of

cognitive radio systems. Primary users (PUs), or license holders, should not be affected

by the opportunistic use of the spectrum by the secondary users (SUs). Moreover, sec-

ondary users, or the non-license holders, should try to maximize their utilization of

free channels for better spectrum efficiency. The decision whether to access a channel

or not is crucial to both the primary and secondary users. In this thesis, an improved

spectrum access algorithm is proposed for cognitive radio systems by modeling the pri-

mary user channel usage pattern as a Hidden Markov Model (HMM). The proposed

algorithm maximizes the channel utilization without causing significant interference to

the primary user by considering access based on the availability of the channel at the

current timeslot. The decision on the availability of the channel is investigated using

three machine learning techniques, namely HMMs, polynomial classifiers and nonlin-

ear autoregressive with exogenous inputs (NARX) models. Simulation results based

on models from real spectrum measurements show that using the conventional HMM-

decoding technique leads to high collision probabilities of around 25%. On the other

hand, using polynomial classifiers for deciding the availability of the channel enhances

the system performance significantly, with collision probabilities less than 1%, while

maintaining high utilization probabilities. A thorough investigation of the effect of the

order of the polynomial classifier shows that while lower orders reduce the compu-

tational complexity of the algorithm, higher orders are more robust to high levels of

shadowing. Another approach to mitigate the effect of shadowing is using cooperative

spectrum sensing, where multiple SUs send the sensing results to a fusion center, which

makes a global decision about the availability of the channel. Results show that the

decision based on the scores of the classifiers outperforms majority vote in terms of

collision and utilization probabilities.

Search Terms: cognitive radio, spectrum management, dynamic spectrum access,

spectrum sensing, hidden Markov model, polynomial classifier, nonlinear autore-

gressive with exogenous inputs model
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Chapter 1: Introduction

Cognitive radio networks are thought to be the next generation networks that

will overcome the spectrum scarcity problem using dynamic spectrum access tech-

niques. Since the static spectrum allocation currently adopted by regulation authorities

has led to a number of spectrum bands being unused at different times of the day, the

bands can be utilized by other users who can access the band opportunistically. Re-

search in cognitive radio is currently one of the most active in the field of wireless

communications since it provides a promising alternative to the existing fixed spectrum

allocation policies.

One of the major challenges in cognitive radio system design is spectrum man-

agement. The secondary users (SUs), or the non-license holders, can access the spec-

trum band only when it is not in use by a primary user. The decision whether or not

to access the channel is based on the analysis of the channel properties. Knowing how

likely the channel is to be free, what quality of service (QoS) the SU would get, etc.,

are some of the main problems that are addressed in spectrum management.

In this thesis, the problem of spectrum management is viewed from a machine-

learning perspective. The primary user (PU) channel activity is modeled as a hidden

Markov model (HMM), and the channel availability is decided by three different tech-

niques, namely HMMs, polynomial classifiers and nonlinear autoregressive with exoge-

nous inputs (NARX) models. Furthermore, a channel access algorithm that improves

the utilization of primary user channels is proposed.

1.1. Problem Statement

In a cognitive radio network, the secondary users, or the users who do not have

license to the spectrum, are required to vacate the channel once a primary user, or the

license holder, needs to use the channel. The PU should not be affected, under any

circumstances, by the opportunistic use of the SUs. Simultaneously, the requirements

of the SU should also be satisfied, which requires proper spectrum management.

Given a PU and an SU(s), it is required that the SU maximizes the utilization

of spectrum holes to increase spectrum efficiency and at the same time, minimizes the
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probability of colliding with a PU. This is achieved by an accurate spectrum sensing

mechanism along with a proper spectrum access scheme.

1.2. Motivation

Cognitive radio is a promising solution for the spectrum scarcity problem. The

current static allocation policies lead to a large portion of the spectrum being under-

utilized, and hence a system that increases the efficiency of the spectrum is needed.

Spectrum sensing and access are major elements of cognitive radio system design. The

main aim of the system is to maximize the utilization of free channels while limiting

the amount of collisions with the primary users. These conflicting goals are a challenge

to researchers in the field of cognitive radio dynamic spectrum access.

1.3. Thesis Contributions

The main contributions of the thesis can be summarized as follows. A channel

access algorithm is proposed that maximizes the utilization of the PU channels com-

pared to other existing access algorithms, such as the one proposed in [1–3]. Moreover,

several spectrum sensing techniques that have the potential of increasing the utilization

of the PU channels and/or reducing the collision with the PUs are studied extensively.

In particular, HMM-decoding, polynomial classifiers and NARX models are used for

sensing a PU channel modeled by an HMM.

To the author’s best knowledge, the use of classifiers other than HMMs for

HMM-generated data in the context of cognitive radio has not been investigated in the

literature. The results in fact show a significant improvement in the sensing accuracy

with polynomial classifiers, compared to the conventional HMM-decoding approach.

1.4. Thesis Outline

This thesis is organized as follows: Chapter 2 provides a background on cogni-

tive radio and its main research fields. Moreover, it presents some of the primary user

activity models adopted in the literature. Furthermore, the necessary background on the
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machine-learning techniques used in this thesis to decide the availability of the channels

is provided in this chapter.

In Chapter 3, a detailed literature review on spectrum sensing and access is pre-

sented. Chapter 4 discusses the proposed access scheme and is followed by the simula-

tion results presented in Chapter 5. Finally, Chapter 6 concludes the thesis, summarizes

the main findings and suggests recommendations for further research.
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Chapter 2: Background

The electromagnetic radio spectrum is a natural resource used primarily for

wireless communications. The spectrum is divided into frequency bands, each allocated

to a specific user or application. This fixed allocation policy results in some bands be-

ing underutilized, leading to a phenomenon known as spectrum holes. A spectrum hole

is defined as a frequency band that is not used by its primary user (PU), or the license

holder, at a specific time and geographical location [4]. The significance of spectrum

holes lies in the scarcity of frequency bands as the demand on wireless communications

is in continuous increase. Moreover, it is estimated that the available electromagnetic

spectrum is not used 80% of the time [5].

As a consequence, cognitive radio was introduced as a means of accessing the

electromagnetic spectrum in order to use spectrum holes efficiently. Cognitive radio

(CR) technology was first introduced by Joseph Mitola in 1999 [6,7]. As defined in [4],

a cognitive radio system is a system that is aware of its environment and is capable of

learning and adapting to the changes in the environment.

A cognitive radio system consists of two networks: the primary and the sec-

ondary networks. Primary users are license holders and own the full right of using the

spectrum band at all times. Dedicated base stations already exist for the primary users,

e.g. TV broadcasters. Secondary users on the other hand, share the spectrum band in an

opportunistic manner with primary users, since they do not have a license to the band.

The idea lies in the ability of a cognitive system to sense the availability of

spectrum holes and use the holes until a primary user appears. When a PU appears, the

system should be able to reallocate another free band to the SU so that the service is not

interrupted. The principle of cognitive radio is illustrated in Figure 1.

Cognitive radio networks (CRNs) could be either centralized or distributed. In

a centralized network, the activities of secondary users are coordinated by base stations.

The base station receives spectrum sensing results from the SUs and allocates frequency

bands accordingly. Once a primary user is present, it is the duty of the base station to

ensure that the SU is reallocated another frequency band such that no interference is

caused to the PU, and simultaneously, the SU should not experience any interruption in
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the service. In this case, the decisions related to spectrum allocations and reallocations

are made solely by the base station.

Figure 1: Illustration of the principle of cognitive radio

The main disadvantage of a centralized network is the need for additional infrastructure

in conjunction with the existing PU’s base stations. Moreover, having a single unit that

controls the entire network is considered to be a single point of failure. However, since

the decision is made by a single unit, coordination between SUs is considerably simpler.

On the other hand, in distributed CR networks, SUs form an ad hoc network without the

need for a dedicated base station. In this case, the allocation and reallocation decisions

are made by the SUs themselves, which requires significantly more complicated sharing

mechanisms. Figure 2 shows the two types of CR network architectures.

Figure 2: Cognitive radio network architectures
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Whether a CR network is centralized or distributed, the main principle employed

is dynamic spectrum access (DSA), where PU channels are utilized opportunistically.

To design a CR system, two main requirements need to be met: (1) the dynamic access

should not have an adverse effect on the usage of the PU’s channel (2) the SUs should

try to maximize their channel usage to improve spectrum efficiency. In order to satisfy

these requirements, several elements need to be taken into consideration, including the

decision on the availability of the PU channels, which is the main focus of the thesis.

The rest of the chapter gives an overview of cognitive radio system (CRS) de-

sign. In Section 2.1, an introduction to the main functionalities of a CRS is given. Sec-

tion 2.2 outlines some of the PU activity models adopted in the literature and Section 2.3

discusses a number of artificial intelligence techniques used to decide the availability of

the PU channels.

2.1. Functionalities of a Cognitive Radio System

The main functionalities of a cognitive radio system can be categorized into

spectrum sensing, spectrum management, spectrum mobility and spectrum sharing [8].

Figure 3 summarizes the functionalities of a CRS.

Figure 3: Functionalities of a cognitive radio system
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2.1.1. Spectrum sensing. In order to access a free channel, the first step is

to determine the available channels. The accuracy with which sensing is done is vital

because the primary user should not, under any circumstances, experience any degrada-

tion in the performance due to the opportunistic access by the secondary users. There

are numerous methods used for spectrum sensing, some of which are [9]:

• Energy detection

As the name suggests, the energy level of the signal is sensed and a decision is

made as to whether the primary user is active or not by comparing the output of

the energy detector to the noise floor [9]. The main advantage of energy detection

is the low implementation cost and reduced computational complexity. However,

energy detection is not suitable for spread spectrum systems, where the signal

level is low enough to be considered as noise. Moreover, the performance of

energy detectors under low signal-to-noise ratio (SNR) is poor, and the distinction

between PU and SU transmissions is not possible.

• Matched filter detection

The optimal detector under additive white Gaussian noise (AWGN) is the matched

filter [10]. However, this requires the knowledge of the primary user signal statis-

tics, which are not always available.

• Cyclostationary detection

A cyclostationary signal is one whose mean and autocorrelation are periodic. The

detector exploits the cyclostationarity property of primary user signals. The cy-

clostationary detector performs better than the energy detector but requires longer

processing time [8].

2.1.2. Spectrum management. After sensing the channels and deciding on

their availability, the next step is to decide which channel provides the best quality of

service (QoS). Two aspects of spectrum management are spectrum analysis and spec-

trum decision [8].

• Spectrum analysis

The quality of the available channels is governed by a number of factors, includ-

ing the SNR, the holding time, or the time that the SU gets to use the channel
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without interruption, the correlation of spectrum holes and the amount of inter-

ference and path loss [8, 11]. Analysis of the channels is important in deciding

the proper access mechanism.

• Spectrum decision

Given the user requirements and the characteristics of the channel obtained by

spectrum analysis, a decision has to be made regarding the optimal choice of a

channel. To access a channel, a decision model is required, the most common

being stochastic optimization methods, such as Markov decision processes [11,

12].

Another aspect that has to be considered in spectrum decision is that an SU can

use more than one channel simultaneously. The decision in this case has to be

made over multiple channels [8].

2.1.3. Spectrum mobility. A secondary user can access a channel only if it

is not in use by its primary user.1 If a channel is currently in use by an SU, and a PU

needs to access a channel, the SU needs to vacate the channel immediately such that no

interference is caused to the PU. On the other hand, the service to the SU should not be

interrupted. This can be achieved by switching the SU to another channel that satisfies

the user’s requirements, referred to as spectrum handoff. There are plenty of elements

to be considered in spectrum mobility some of which are the duration of the handoff,

and the service degradation introduced by the handoff [8].

2.1.4. Spectrum sharing. So far, the discussion has been limited to a single

secondary user. When multiple users are involved, a proper sharing mechanism that

controls the usage of the spectrum bands by the secondary users is required.

As discussed earlier, sharing could be achieved in a centralized or a distributed

manner. In a centralized network, spectrum sharing is controlled by the CR base station.

On the other hand, in a distributed network, the decision is made by each of the users

individually.

In a distributed network, sharing could be achieved in a cooperative or non-

cooperative manner [8]. In a cooperative sharing scheme, channel access decision is

1This is true for overlay spectrum sharing paradigms discussed in Section 2.1.4
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made collaboratively. Results of spectrum sensing are shared among users and a deci-

sion is made in a way that maximizes the channel usage of the network as whole. A

non-cooperative scheme, on the other hand, makes a decision based on each SU individ-

ually. The SU would try to maximize its own utilization of the spectrum regardless of

other users in a selfish manner. This can reduce the spectrum utilization of the network

as a whole, but it also minimizes the information shared between users.

Another spectrum sharing principle is based on the access technique used. An

SU can access a channel in three ways: overlay, underlay or interweave spectrum access

[13,14]. In underlay spectrum sharing, the SU transmissions are concurrent with the PU

transmissions, using spread spectrum techniques that utilize high bandwidths and are

considerably more complex, such that the SU transmissions are perceived as noise by

the primary user. In overlay spectrum sharing, SUs use prior knowledge of the primary

user transmissions to help improve the PU communication and simultaneously for SU

transmissions. In interweave spectrum sharing, the SU is allowed to use the frequency

bands only if the primary user is not active. Hence, a good spectrum access technique

is needed to avoid interference to the primary user. Throughout this thesis, interweave

spectrum access will be adopted.

2.2. Primary User Activity Models

A good cognitive radio system design needs to have an accurate PU activity

model to ensure that PUs are not affected by the SU transmissions. It is worth noting

that no single model can describe all patterns of primary user activity. This is because

different wireless networks have different patterns of PU activity.

The most commonly used primary user activity models fall under the umbrella

of either Markov processes or queuing theory [15]. The following subsections provide

an overview of these models.

2.2.1. Markov processes. A Markov process is one whose future is indepen-

dent of the past, i.e., given that the system is in a particular state, the next state of the

system will depend only on the current state, but not on previous states [16].
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Several PU activity models are based on Markov processes. An example of such

models is a two-state Markov chain, where a PU channel can be in one of two states:

busy or idle. The Markov chain could be either discrete or continuous. A discrete-time

Markov chain (DTMC) is characterized by transition probabilities pi j, where i and j

represent the current and next states respectively. On the other hand, in a continuous-

time Markov chain (CTMC), the time it takes to transition from one state to another is

exponentially distributed, with rate λ for the transition from idle to busy and rate µ for

the transition from busy to idle.

Another model based on Markov processes is the three-state Markov chain pro-

posed in [17], where the PU channel could be in one of three states: busy, idle or

occupied by SU. The advantage of this model over the two-state model is that the sys-

tem takes into account the interference caused by other SUs. This, however, does not

provide a model for the interference among SUs.

Unlike the Markov chains discussed so far, in hidden Markov models (HMMs)

the states of the channel are hidden. Each hidden state emits a set of observable sym-

bols, from which the state of the channel needs to be deduced. HMMs can be further

classified based on their emissions, which can be discrete or continuous. In [18], the PU

activity is modeled by an HMM with discrete observations, while modeled by an HMM

with continuous observations in [1]. Although HMMs are a powerful tool, modeling a

PU activity by HMMs is limited in the literature.

2.2.2. Queuing theory. The activity of the PU can be modeled by a queuing

system. Before going through the details of the queuing systems used in the literature, it

is useful to introduce the notation used in queuing theory. A queuing system is typically

denoted by a/b/m/K, where a is the type of the arrival process, b is the distribution

of the service time, m is the number of servers, and K is the maximum number of

users [16].

A commonly used queuing model for the PU’s activity is the M/G/1 model,

where M represents a Poisson arrival process with independent and identically dis-

tributed (iid) exponential interarrival times, and G represents iid service times of a
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general distribution2. The packet arrival rate is denoted by λ , and the service rate is

given by 1/E[D] where E[D] is the expected value (or the average) of D, and D is the

medium access delay, or the time it takes a packet to gain access to the channel.

Although the queuing model is simple to use and is widely used in the literature,

it does not capture the small variations in the PU’s activity. Furthermore, the model does

not take into account any correlation in the PU’s activity [15].

2.3. Artificial Intelligence Techniques

To find or predict the availability of a primary user, different spectrum-sensing

techniques can be used. Artificial intelligence (AI) is a broad class of spectrum-sensing

techniques, where machine learning algorithms are used to learn the patterns of the PU

activity. This section gives a brief background on some of these techniques, namely

hidden Markov models (HMMs), polynomial classifiers and nonlinear autoregressive

with exogenous inputs (NARX) models.

2.3.1. Hidden Markov models and their parameters. Unlike several ma-

chine learning techniques, the notion of time is inherent in hidden Markov models, i.e.,

states at a particular time instant are dependent on the previous state [19].

Before going into the details of HMMs, it is essential to describe the Markov

property. The Markov property states that a random process at a particular state at any

time instant t is only dependent on the previous state (the state at t− 1) regardless of

any other states the process went through to reach the state at t−1 [16]:

P [X(t) = xt |X(t−1) = xt−1, . . . ,X(1) = x1]

= P [X(t) = xt |X(t−1) = xt−1] (1)

where P[.] represents the probability of an event, X is a random process and x is a

realization of that process.

If the random process is discrete-valued, the Markov process is called a Markov

chain. Let S represent the states of the Markov chain, qt represent the state at time t and

2When K is not specified, the number of users is unlimited
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N denote the total number of states, then A = {ai j}, the transition probability matrix, is

given by

{ai j}= P[qt+1 = S j|qt = Si], 1≤ i, j ≤ N. (2)

Figure 4 shows the state diagram of a 3-state Markov chain, with marked transition

probabilities.

a33

S1

S2

S3

a12

a21

a22

a32

a23

a11 a31

a13

Figure 4: An example of a 3-state Markov Chain

In a hidden Markov model, each state emits one or more observed states, which

are a probabilistic function of the hidden states [20]. The observation symbol probabil-

ity matrix, denoted by B = {b j(k)}, is given by

b j (k) = P[Vk at t|qt = S j], 1≤ j ≤ N

1≤ k ≤M
(3)

where V represents the observations, and M is the total number of observations for the

discrete case. Furthermore, the initial state distribution, denoted by πππ = {πi}, is given

by

πi = P[q1 = Si], 1≤ i≤ N. (4)

A typical HMM is therefore characterized by a set of parameters θ = (A,B,πππ).

Eq. (3) is true when the observed sequence is discrete with M distinct observa-

tions. However, if the observed symbols are continuous, and if in addition the symbols
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follow a Gaussian distribution, b j(k) is redefined as

b j (Ot) =
1√

2πσ2
j

exp

(
−
(Ot−µ j)

2

2σ2
j

)
, 1≤ j ≤ N (5)

where Ot is the observed symbol at time t, µ j and σ j are the mean and standard de-

viation of the observations given state j respectively. The HMM can now be modeled

by θ = (A,µµµ,ΣΣΣ,πππ), where B, the observation probability matrix has been replaced by

µµµ = [µ1,µ2, . . . ,µN ] the mean vector and ΣΣΣ = [σ2
1 ,σ

2
2 , . . . ,σ

2
N ] the variance vector since

M, the total number of observations, is now infinite.

For the above formulation to be valid, two conditions must be satisfied [21].

First, the current state should be independent of all other states given the previous state.

Second, the observation given a state is independent of all other observations of the

state.

2.3.2. Linear discriminant classification. The main principle in linear dis-

criminant classification is that the samples of different classes are linearly separable.

While this might not be true in several cases, data can be projected to higher dimen-

sions such that the decision surface is linear, as illustrated in subsequent sections. One

of the advantages of a linear classifier is that no assumption is made on the distribution

of the data [19].

A linear discriminant function of a d-dimensional feature vector x takes the

form:

g(x) = wtx+w0 (6)

where w is the weight vector, w0 is the bias, and (.)t is the transpose operator. In general,

if there are N classes, N discriminant functions are needed, one for each class. For a

two-class problem, the decision can be made as follows: decide class S1 if g(x)> 0 and

class S2 if g(x)< 0.

To simplify the notation, Eq. (6) can be re-written as [19]:

g(x) = aty (7)
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where a is the augmented weight vector given by

a =


w0

w1
...

wd

=

 w0

w

 (8)

and y, the augmented feature vector, is given by

y =


1

x1
...

xd

=

 1

x

 . (9)

2.3.2.1. Feature expansion. As discussed earlier, assuming that samples of

different classes are linearly separable is not always true. To use linear discriminant

functions, data samples that are non-linearly separable are projected to higher dimen-

sions, where they can be separated by a linear hyperplane. Figure 5 shows the mapping

of a one-dimensional feature vector to three dimensions. It can be seen clearly in the

figure that although the data from the two classes are non-linearly separable, projecting

the data onto a higher dimension allows the data to be separated by a linear plane.

One class of mapping functions that project the data onto higher dimensions are

polynomial discriminant functions. Let d̂ denote the dimension of the feature vector

after mapping. Suppose we have a 1-dimensional feature vector (d = 1), a quadratic

discriminant function (d̂ = 3) is given in the form:

g(x) = a0 +a1x+a2x2 (10)
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Figure 5: Mapping of 1-D feature vector to 3-D

where, equations (8) & (9) are replaced by:

a =


a0

a1

a2

 (11)

y =


1

x

x2

 . (12)

In general, a polynomial discriminant function of order n (d̂ = n+1) is given in

the form

g(x) = a0 +a1x+a2x2 + · · ·+anxn. (13)
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For feature vectors of higher dimensionality (d > 1), cross terms are also taken into

account. For example, a quadratic discriminant function for a d-dimensional feature

vector is given by

g(x) = a0 +
d

∑
i=1

aixi +
d

∑
i=1

d

∑
j=1

ai jxix j. (14)

It should be noted that the number of terms involved in the computation of dis-

criminant functions with feature vectors of high dimensionality increases exponentially

with the order of the polynomial [19]. A d-dimensional feature vector would require dn

terms, which makes it computationally unfeasible for high values of d and n.

2.3.3. Nonlinear autoregressive with exogenous inputs (NARX) model. The

use of artificial neural networks (ANNs) as a machine learning technique has several

desirable characteristics, including the ability to map any input to any output. Neural

networks are inspired by the way the brain works, where many nerve cells, or neurons,

are activated in a specific manner to perform a particular function. A typical neural

network consists of an input layer, one or more hidden layers, which consist of neurons

with non-linear activation functions, and an output layer.

One type of neural networks that represent dynamic networks, or networks that

change with time, is the nonlinear autoregressive with exogenous inputs (NARX) model.

Unlike static neural networks, the output of a NARX network is fed back to the in-

put [22]. Figure 6 shows a NARX network with 2 input delays, 2 output delays, one

hidden layer with 3 neurons and an output layer.

A NARX network can be mathematically expressed as [22]:

y(n+1) = f (y(n), . . . ,y(n−q+1),u(n), . . . ,u(n−q+1)) (15)

where y(n+1) is the output at time index n+1, u(n) is the input, and q is the number

of delays in the system. Eq. (15) can be expressed in terms of the synaptic weights, or

the strength of a connection between neurons, as follows [23]:

y(n+1) = f

(
nH

∑
j=1

wk j(n)

(
q

∑
i=1

wu, jiu(n− i+1)+
q

∑
i=1

wy, jiy(n− i+1)+w j0

))
(16)
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where w ji and wk j are the weights that connect the hidden and input layers, and the

output and hidden layers respectively, w j0 is the weight of the bias, nH is the number of

neurons in the hidden layer, and the subscripts u and y are used to distinguish the input

and output weights.

z-1

z-1

z-1

z-1

z-1

Input 

u(n)

u(n-1)

u(n-2)

y(n-2)

y(n-1)

y(n)

Bias

Hidden 

neurons

Output 

neuron

y(n+1) Output

y(n)

input layer i hidden layer j output layer k

Figure 6: An example of a NARX network

31



Chapter 3: Literature Review

Spectrum management is one of the key elements in cognitive radio system

design. As explained in Section 2.1.2, spectrum management is required to analyze

the available channels and decide on the channel that best suits the user’s requirements.

The problem of spectrum management has been addressed in the literature in one of the

three approaches: optimization, game theory, and machine learning [11]. This chapter

provides a detailed literature review of the three different approaches. Additionally,

spectrum sensing using energy detection is briefly discussed to get an insight of the

most common spectrum sensing technique.

3.1. Optimization

The problem of spectrum management can be formulated as an optimization

problem, where an objective function is to be maximized or minimized under certain

constraints. Optimization techniques can be classified into [11]:

• Closed-form solution

The Lagrangian method can be used to solve constrained optimization problems.

• Mathematical programming

Techniques including linear, non-linear, convex, dynamic and stochastic pro-

gramming can be used to model the problem of spectrum management.

• Integer/combinatorial optimization

When the target is to optimize with respect to a parameter that has only integers,

such as the modulation index, integer programming can be used. Similarly, pa-

rameters such as channel allocation have a combinatorial nature. Such problems

are solved using relaxation and decomposition, enumeration, cutting planes, and

solutions of the knapsack problem.

Some of the optimization techniques for spectrum management are discussed

in [24–31]. In [24], resource allocation is done based on swarming mechanisms. Given

a network of secondary users, the goal is to minimize an objective function with respect

to a vector of frequency bands that each SU occupies. The minimization is also con-

strained by the QoS requirements of the SUs expressed in terms of the signal to noise
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and interference ratio (SNIR). The probability that the SNIR is less than a threshold η

should be less than a certain probability Pε .

Let xk be the frequency band chosen by SU k and let the total number of SUs in

the network be C. The optimization problem can be formulated as [24]:

min
x

J(x)

s.t. Prob{ŜNIR(xk)< η} ≤ Pε , k = 1, . . . ,C
(17)

where J(x) is the objective function given by [24]:

J(x) =
C

∑
k=1

Ik(xk)+
1
2

C

∑
k=1

C

∑
l=1

aklJar (|xl− xk|) (18)

where the first term represents the sum of the interference perceived by the SUs and the

second term is an attraction/repulsion term that represents the swarming mechanism of

the frequency allocation.1

In [25], spectrum sharing is formulated in terms of the interference temperature,

or the radio frequency power per unit bandwidth measured at a receiving antenna. To

relax the assumption of a convex objective function, particle swarm optimization (PSO)

is used. Moreover, simulated annealing (SA) is incorporated in the proposed algorithm

to prevent the swarm particles from getting trapped into a local minimum.

In [29], three variants of particle swarm optimization are compared, namely the

binary PSO, the socio-cognitive PSO and derivation 0, with the objective to maximize

the throughput of secondary links, under the interference constraint.

Swarm intelligence portrayed in [24, 25] is one of several biologically-inspired

solutions to problems in communications. In the context of spectrum management,

several algorithms inspired by insect colonies have been developed [26]. In [27], a

biologically-inspired spectrum sharing (BIOSS) algorithm is proposed, where decen-

tralized spectrum sharing is performed without inter-user coordination. However, a high

probability of collision between the SUs decreases spectrum utilization. This problem

is addressed in [28], where an enhanced BIOSS (e-BIOSS) algorithm is proposed. The

e-BIOSS algorithm enables SUs to select the appropriate channels and simultaneously

1For more details on Eq. 18, please refer to [24].
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avoid collision between SUs. The SUs are gravitated towards channels that have min-

imum power. Moreover, a binary learning factor is introduced, which decides whether

to access a certain channel or not.

In [32], improved throughput and spectrum sensing capabilities are achieved by

formulating a Lagrange dual optimization problem. The proposed access algorithm has

the optimal power allocation strategy and target detection probability. A Lagrange func-

tion is also introduced in [31], with the aim of reducing the computational complexity

of existing sensing-based access schemes.

3.2. Game Theory

Game-theoretic approaches are commonly used in resource allocation problems.

The general principle in game theory lies in the competition between players (or users)

each having their own strategy, trying to maximize their utilities. There are different

types of games including non-cooperative, cooperative and stochastic games [11].

• Non-cooperative games

In the case where information is restricted to local information, there is no op-

tion but to adopt a non-cooperative game, however, the overall outcome is less

efficient. Some concepts of non-cooperative games include the Nash equilibrium

and Pareto optimality [11].

• Cooperative games

In cooperative games, players do not actually cooperate with each other. How-

ever, the cooperation is enforced by a third party (e.g., a regulation authority) in

the form of penalties, etc. Some examples of cooperative games are the bargain-

ing game and the coalition game.

• Stochastic games

Stochastic games are used when the information is not deterministic but rather

statistical. One important example is the Markov decision process (MDP), where

the current state of the game depends on the previous state and the current actions

of the players.
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In [33], a double-auction model from the microeconomic theory is used in mod-

eling the trading of TV bands among TV broadcasters and wireless regional area net-

work (WRAN) service providers. For WRAN service providers, the problem of spec-

trum bidding and pricing is formulated as a non-cooperative game. The Nash equilib-

rium is obtained as the solution.

Another spectrum access scheme based on auction models has been developed

in [34]. The objective is to maximize the revenue of the service provider, as well as the

satisfaction of the SUs under the condition of imperfect channel sensing. In order to

do so, a sealed-bid first-price auction is proposed. Results show a better performance

compared to other spectrum trading methods.

In [35], a distributed, collaborative spectrum sharing approach is proposed with

minimum coordination overhead. This is achieved by the implicit coordination be-

tween SUs through a set of predefined rules. Five rules are proposed where a trade-off

is made between performance, and implementation and computational complexity. Re-

sults show superior performance compared to other existing schemes.

In [36], both cooperative and non-cooperative spectrum access schemes are con-

sidered. They show that the optimal scheme for both cases is solely based on threshold

policies. Moreover, for the non-cooperative case, access strategies are developed so that

the system reaches a Nash equilibrium.

In [37], a spectrum sensing and access scheme is proposed where the channel

access scheme is modeled as a multi-armed bandit problem. Different scenarios are

studied including the case of partial channel sensing, where the sensing is done for only

a fraction of time. Moreover, detailed derivations are provided for the computational

complexity for the cases of full and partial channel sensing.

The following sections will focus on the spectrum sensing techniques investi-

gated in the literature.

3.3. Energy Detection

Energy detection is one of the most commonly adopted spectrum sensing tech-

niques in the literature due to its simplicity and mathematical tractability. Two hypothe-
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ses H0 (the channel is available) and H1 (the channel is busy) are made. The received

signal is modeled as [38]:

x[n] =

v[n] if H0 holds

v[n]+hs[n] if H1 holds
(19)

where v[n] is additive white Gaussian noise (AWGN), with zero mean and standard

deviation σv, s[n] is the PU signal, and h is the channel gain.

The energy of the signal x[n], denoted by y[k] is given by [38]:

y[k] =
N−1

∑
n=0
|x [n+ kN]|2 (20)

where k is the time index of the energy estimator and N is the total number of received

samples. The decision on the availability of the channel is made based on a threshold

γ , above which the channel is assumed to be busy.

Numerous variants of the basic form of energy detection were investigated in

the literature, some of which are discussed in this section.

In [38], a novel algorithm is proposed, which introduces an objective func-

tion that depends on a test statistic that contains information about the availability of

the channel. The objective function performs weighted cooperative sensing, and also

spectrum sensing locally at each SU. Results show that the proposed algorithm out-

performs other state-of-the-art energy detection algorithms in terms of probability of

miss-detection.

In [39, 40], energy detection spectrum sensing for a cooperative scenario is in-

vestigated under fading conditions. A novel algorithm is proposed where an extra sens-

ing cycle is performed locally at the SUs to overcome the problem of outdated sensing

results caused by the delay introduced due to cooperative sensing. The proposed scheme

compromises between sensing accuracy and computational complexity.
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3.4. Machine Learning

Machine learning techniques are used in spectrum sensing to decide the avail-

ability of primary users. The advantage of machine learning over traditional cooperative

sensing schemes is that it is more adaptive, since it does not require prior knowledge of

the environment [41]. Moreover, machine learning techniques are also used in spectrum

management to predict the behavior of the primary user based on its past activities. The

three main categories of machine learning are [11]:

• Supervised learning

In supervised learning, the classifier is first trained using a set of training data,

where the output to a given input is known. Once the classifier is trained, it

can determine the output corresponding to an input of a new set of data. Meth-

ods including support vector machines (SVMs) and weighted k-nearest neighbors

(kNNs) are used to determine the availability of primary user channels [41].

• Unsupervised learning

Unsupervised learning uses clustering techniques to identify the class of a given

input, without the training stage. Some of the methods used are the k-means and

Gaussian mixture models (GMMs) [41].

• Reinforcement learning

Similar to unsupervised learning, reinforcement learning does not require a train-

ing stage. However, in reinforcement learning, the agent explores all possible

actions and rewards in a trial-and-error manner. This optimizes the long-term

on-line performance of the system [11].

3.4.1. Hidden Markov models. Hidden Markov models are one of the impor-

tant machine learning techniques that are widely used for prediction. HMMs have been

used for prediction in various fields, including stock markets and speech recognition

because of their solid theoretical foundation and tractability [20]. In cognitive radio

spectrum management, in order to gain access to the spectrum, the primary user chan-

nel usage pattern has to be learned first, then, based on the learned pattern, predictions

about future PU patterns can be made.

The use of HMMs for primary user pattern prediction is discussed in [1–3, 12,
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42–45]. In [12], the SU first learns the pattern of the primary user using a hidden

Markov model. The PU is modeled as a continuous-time Markov chain (CTMC) whose

parameters are obtained using a gradient method. The SU then gains access to the chan-

nel using a partially-observable Markov decision process (POMDP), which is a form of

stochastic games. Simulation results show that the proposed scheme provides efficient

access to spectrum holes, and the interference to the primary users is below the target

limit. The proposed scheme also outperforms a heuristic algorithm without any learn-

ing capability.

Similar to [12], dynamic spectrum access in [46] is formulated as a Markov

decision process and is solved using a linear programming relaxation and primal-dual

index heuristic algorithm. The proposed scheme minimizes the energy consumption

and decreases the frame error rate and thereby improving the QoS.

In [42], the cognitive radio system is modeled as an HMM, and the channel pa-

rameters are estimated using an expectation maximization algorithm. Numerical results

show that the proposed algorithm successfully estimates the true channel parameters.

In [43], the Baum-Welch algorithm is used to determine the HMM parameters

and the results are tested on the 450-470 MHz band in Australia. The proposed model

determines the optimal number of SUs to operate in the spectrum band by examining

the channel usage that results in maximum reward.

In [1], the HMM predictions of the primary user channel availability are tested

with real spectrum data. Results show that HMM-based spectrum sensing outperforms

energy detection, especially in cases where the SNR is low. The use of HMMs for

spectrum sensing is also discussed in [47].

3.4.2. Polynomial classifiers. Polynomial classifiers have been used in vari-

ous machine learning applications including communications. Classification of mod-

ulation schemes, for example, is one of the applications that use polynomial classi-

fiers [48].

The use of polynomial classifiers for spectrum sensing is discussed in [49–52].

In [49], linear and polynomial classifiers are compared, and their performance is eval-

uated based on the probability of detection of a PU. Results show that linear and poly-
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nomial classifiers are comparable, with high detection rates even at low signal-to-noise

ratios (SNRs). A variant of these classifiers is proposed in [50,51], where energy, coher-

ent or cyclostationary features are used. It is shown in [51] that cyclostationary-based

schemes are the most reliable but require longer sensing periods. Moreover, in [50],

the system is tested under fading conditions.

In [52], a hybrid cooperative sensing technique that combines energy detection

and cyclostationary detection is proposed, and the decision is made at a fusion center.

Results show that using the hybrid scheme outperforms energy detection in terms of

accuracy and cyclostationary detection in terms of computational complexity.

In this report, polynomial classifiers are used to learn the availability of a PU

modeled by an HMM, a case that has not been studied before in the literature. In par-

ticular, HMM-generated data is usually decoded by the conventional Viterbi algorithm,

which results in high collision probabilities, as discussed in Chapter 5. The use of

polynomial classifiers is expected to enhance the performance of the system. Further-

more, a channel access algorithm is proposed, which improves the spectrum efficiency

compared to the one proposed in [1].
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Chapter 4: Proposed Channel Access Scheme

In a cognitive radio system, a secondary user first performs spectrum sensing

and decides whether a PU channel is available or not. If more than one SU is present,

the decision is made in a centralized manner, where a fusion center makes a global

decision on the availability of the channel. Once a decision is made, an SU can either

use the channel or not, based on the sensing results and on the access rules of the system.

A generalized block diagram of the proposed system is illustrated in Figure 7.

Spectrum 
Sensing

Fusion of 
Sensing 
Results

Channel 
State 

Decision

Channel 
Access 

Decision

Figure 7: Block diagram of the proposed system

The function of each block is as follows:

• Spectrum sensing

Secondary user(s) sense the PU channel(s) to be used for transmission. The en-

ergies of the received signals detected by the sensors are then sent for fusion in

the case of multiple secondary users, or used directly to decide the state of the

channel in the case of a single SU.

• Fusion of sensing results

In the case of several secondary users, it is required that sensing results are com-

bined in such a way that it is used for making a global decision about the avail-

ability of the channel(s). In a centralized network, the results are sent to a fusion

center, or the base station.

• Channel state decision

Once the results are combined, a global decision about the availability of the

channel has to be made. Given the energy level, the system determines whether

the channel is in the ‘ON’ state (where the channel is occupied) or the ‘OFF’ state

(where the channel is available).
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• Channel-access decision

If a channel is determined to be available, the SU has two options, either to access

the channel or not. The decision depends on several factors, including the amount

of anticipated collision with the primary user if the SU was to access the channel,

and the efficiency of channel usage if the SU was to abandon the channel.

4.1. Primary User Model and Channel Availability

The system consists of P primary users and one secondary user. Each primary

user is assumed to occupy one channel and hence the number of channels corresponds

to the number of primary users. The primary user is modeled by a two-state discrete-

time Markov chain (N = 2) with initial state transition matrix A and initial probability

mass function (pmf) vector πππ . The state of the primary user (or the channel) is 0 when

the primary user is off (or the channel is available) and 1 when the primary user is

on. The observed sequence is a series of energy levels (in dBm) that are Gaussian

distributed with mean µµµ and variance ΣΣΣ. For simplicity, errors in the measured energy

levels are assumed to be negligible. Each of the P channels is sensed periodically, and a

vector of energy levels is obtained. Given the observed sequence of energies, the HMM

estimates the most likely state sequence, as well as the HMM parameters A, πππ , µµµ , ΣΣΣ by

the procedure outlined in the following sections.

4.1.1. Parameter estimation. Given an observed sequence O = {O1O2 . . .

OT}, where T is the length of the sequence, it is required to estimate the model param-

eters that most likely produced the sequence. The procedure for estimating the HMM

parameters is known as the Baum-Welch or the forward-backward algorithm.

Considering every possible model that could produce the observed sequence is

computationally prohibitive, hence two variables, namely the forward and backward

variables, are introduced. The forward variable, denoted by αt(i) is defined as [20]:

αt (i) = P(O1O2 · · ·Ot ,qt = Si|θ) (21)
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and is computed recursively as follows:

αt+1 ( j) =


π jb j (O1) t = 0 and 1≤ j ≤ N[

N
∑

i=1
αt (i)ai j

]
b j (Ot+1) 1≤ t ≤ T −1 and 1≤ j ≤ N

(22)

Similarly, the backward variable, denoted by βt(i) is defined as [20]:

βt (i) = P(O1O2 · · ·Ot |qt = Si,θ) (23)

and is computed as follows:

βt (i) =


1 t = T and 1≤ i≤ N
N
∑

i=1
ai jb j (Ot+1)βt+1 ( j) t = T −1,T −2, . . . ,1 and 1≤ i≤ N

(24)

Let ξt(i, j) denote the probability of being in state Si and S j at times t and t +1

respectively, given the observation sequence and the model [20]:

ξt(i, j) = P
(
qt = Si, qt+1 = S j|O,θ

)
=

αt (i)ai jb j (Ot+1)βt+1 ( j)
P(O|θ)

=
αt (i)ai jb j (Ot+1)βt+1 ( j)

N
∑

i=1

N
∑
j=1

αt (i)ai jb j (Ot+1)βt+1 ( j)
(25)

Furthermore, let γt(i) denote the probability of being in state Si at time t, given the

observation symbol and the model, i.e. [20]

γt(i) = P(qt = Si|O,θ)

=
αt ( j)βt ( j)

P(O|θ)

=
αt ( j)βt ( j)

N
∑
j=1

αt ( j)βt ( j)
(26)
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The parameters µµµ and ΣΣΣ can be estimated as [20],

µ̂ j =

T
∑

t=1
γt ( j) .Ot

T
∑

t=1
γt ( j)

(27)

σ̂
2
j =

T
∑

t=1
γt ( j) .(Ot−µ j)

2

T
∑

t=1
γt ( j)

(28)

The elements of the state transition matrix A are computed as follows [20]:

âi j =

T−1
∑

t=1
ξt (i, j)

T
∑

t=1
γt (i)

(29)

Finally, πππ can be estimated as [20],

π̂i = γ1 (i) (30)

The parameter estimation procedure, or the Baum-Welch algorithm, can be sum-

marized as follows. First, πi, ai j, µ j and σ2
j are initialized using rough estimates. The

improved estimates are then calculated using Eqs. (27)-(30) and the process is repeated

until convergence is achieved. The Baum-Welch algorithm is considered to be a gen-

eralized expectation-maximization (EM) algorithm. The computational complexity of

the Baum-Welch algorithm is O(S2T ), where S = 2 since the system can be in one of

2 states, and T is the total number of slots. Figure 8 shows the Baum-Welch algo-

rithm [19].

The estimated HMM parameters serve as initial model parameters that are con-

stantly updated, as discussed in Section 4.2.

It is worth noting that in general, parameter estimation is done for observations

that are a mixture of Gaussians, rather than a single Gaussian distribution for each state.

However, since the adopted PU model has a single Gaussian for each state, this prior

knowledge is used for parameter estimation to reduce unnecessary computations.
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Baum-Welch Algorithm

1: initialize πi, ai j, µ j, σ2
j , convergence criterion κ , z = 0

2: repeat
3: z = z+1
4: compute πi, ai j, µ j, σ2

j , by (27)-(30)
5: πi(z)← π̂i(z)
6: ai j(z)← âi j(z)
7: µ j(z)← µ̂ j(z)
8: σ2

j (z)← σ̂2
j (z)

9: until
max

i, j

[
πi(z)−πi(z−1), ai j(z)−ai j(z−1),

µ j(z)−µ j(z−1),σ2
j
(z)−σ

2
j
(z−1)

]
< κ

Figure 8: Baum-Welch algorithm

4.1.2. Viterbi algorithm. Given a sequence of observed symbols O = {O1

O2 . . .OT}, it is required to know the state sequence Q = {q1q2 . . .qT} that is most

likely to produce the observed sequence. The objective is therefore to choose the path

that maximizes P(Q|O,θ), which is equivalent to maximizing P(Q,O|θ). Let δt(i)

denote the highest probability of a state and observation sequence up to time t that ends

with state Si [20]:

δt(i) = max
q1,q2,...,qt−1

P [q1q2 . . .qt = i,O1O2 . . .Ot |θ ] . (31)

Furthermore, let ψt( j) be the vector that stores the argument that maximizes (31). The

procedure with which the most likely state sequence is found, based on dynamic pro-

gramming methods, is known as the Viterbi algorithm, and is shown in Figure 9 [20].

Similar to the Baum-Welch algorithm, the computational complexity of the Viterbi al-

gorithm is O(S2T ).

4.2. Proposed Channel Access Algorithm

Spectrum sensing is performed on every channel and the state of the channel

is determined by an HMM as described in Section 4.1. Since the system consists of P

primary users, we require P HMMs, one for each channel.
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Viterbi Algorithm

1: δ1(i) = πibi(O1), 1≤ i≤ N
2: ψ1(i) = 0
3: for t = 2 to T do
4: for j = 1 to N do
5: δt( j) = max

1≤i≤N

[
δt−1(i)ai j

]
b j (Ot)

6: ψt( j) = argmax
1≤i≤N

[
δt−1(i)ai j

]
7: end for
8: q∗T = argmax

1≤i≤N
[δT (i)]

9: for t = T −1 to 1 do
10: q∗t = ψt+1

(
q∗t+1

)
11: end for
12: end for

Figure 9: Viterbi algorithm

The decision whether or not to access the channel is based on the current state of the

channel only. Other access algorithms, for instance, the one proposed in [1], suggest

that the decision should be made based on the current and future states of the chan-

nel. In Chapter 5, it is shown that transmission based on the current state outperforms

the transmission based on current and future states, with no prominent increase in the

probability of collision with the primary user.

The rate at which the channel is sensed and a decision is made should be propor-

tional to the latency time, which is the time required by the secondary user to respond

to a change in the state of the channel. Specifically, the time the SU takes to leave a

channel when a PU is detected must be strictly less than the sensing period, denoted

by τ . In order to increase the probability of predicting the state of the channel, the SU

does not transmit before a couple of sensing periods. This allows the HMM to learn

the pattern of the primary user and to predict the current state of the channel. The

frequency with which the sensing is performed depends on the architecture of the SU

transceiver as well as the maximum time of interference permitted by the primary user.

For simplicity, it is assumed that the maximum allowed interference time is longer than

the sensing period τ .
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In [12], the authors propose a frame structure, shown in Figure 10, which will

be adopted in this thesis.

Tl Slots T- Tl Slots

T Slots

Training Access

Figure 10: Frame structure

The time frame is divided into timeslots of length τ , and the total number of slots in

a frame is T . Let t denote the time at the beginning of a time frame. For the first

t +mτ timeslots, where m = 1,2, . . .Tl and Tl is the number of slots used for learning,

the channel is sensed and the energy levels are stored in a vector ρ . At the time instant

t +Tl , the HMM is trained and the model of the primary user is estimated. This process

is done for each of the P channels, and the channel whose parameters correspond to

the least active primary user (u) is chosen for the transmission. For the next T − Tl

timeslots, the state of the channel is estimated. The SU will not transmit unless the

current timeslot is free, i.e., current state is 0. Figure 11 summarizes the proposed

access algorithm.

Consider an example of a cognitive radio system with 2 PUs. The HMM param-

eters are given by:

A =

 a00 a01

a10 a11

 (32)

πππ =
[

π0 π1

]
(33)

µµµ =
[

µ0 µ1

]
(34)

ΣΣΣ =
[

σ2
0 σ2

1

]
(35)

Figure 12 shows a realization of 2 PU channels with hidden states marked for each

timeslot, and the corresponding transition matrix A.
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Channel Access Algorithm

1: for m = 1 to Tl do
2: for i = 1 to P do
3: sense channel i and record its energy level
4: end for
5: end for
6: estimate the HMM parameters of each channel using the Baum-Welch algo-

rithm (Figure 8)
7: choose channel u corresponding to the least active PU
8: for m = Tl +1 to T do
9: estimate the state of the channel u using the Viterbi algorithm (Figure 9)

10: if state = 0 then
11: transmit in slot m
12: end if
13: end for

Figure 11: Proposed channel access algorithm

The two elements that are of particular interest are a00 and a11. The larger the value

of the element a00, the more likely the channel will stay in the ‘OFF’ state, and the

lower value of a11, the more likely the PU is to vacate the channel. As seen in the

figure, channel 1 corresponds to the least active PU, and hence channel 1 is used for

transmission. For the rest of the timeslots, the Viterbi algorithm estimates the state of

the channel, and if the channel is available, the SU is allowed to start transmission.
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Figure 12: Channel usage pattern of 2 primary users

4.2.1. Supervised learning techniques for channel-state decision. An im-

portant element of the channel access algorithm is deciding whether the channel is avail-
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able or not. The Viterbi algorithm that is commonly used for HMM-decoding results in

high collision probabilities with the PU, as demonstrated in Chapter 5. Therefore, other

machine learning techniques need to be investigated in order to achieve lower collision

probabilities.

In supervised learning, a portion of the sequence of energy levels whose corre-

sponding hidden states are known is required for training a classifier. For comparison

purposes, the length of the training sequence is equal to the number of learning slots Tl ,

as in the case of HMM-training. Two of the techniques studied in this thesis are poly-

nomial classifiers and NARX networks. The following sections explain the procedure

with which each of these classifiers is used to determine the availability of a channel.

4.2.1.1. Training a polynomial classifier by minimizing the squared error.

In Section 2.3.2.1, feature expansion was introduced as a means of transforming non-

linearly separable data to data that can be separated by a linear hyperplane. The next

step is to train the classifier by finding the weight vector a.

One method to find a is by minimizing the sum of squared-error criterion func-

tion given by [53]:

J(a) = ‖Ya−b‖2 (36)

where Y is a matrix whose rows are the training data, each with feature vector y, and

b is a column vector of positive constants that define the distance of a sample from the

separating hyperplane.

The training data Y is divided into two sets: the training data for class S1 and

the negative of the training data for class S0.

The solution to (36) is given by [53]:

a = Y†b, (37)

where Y† is the pseudoinverse of Y given by:

Y† =
(
YtY

)−1 Yt . (38)
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It should be noted that the solution given by (37) is not unique. Different values of b

produce different separating hyperplanes. A common practice is to set b as follows [19]:

b =

 s
s0

10

s
s1

11

 (39)

where s is the total number of samples, s0 is the number of samples of class S0, s1 is the

number of samples of class S1 and 1i is a column vector of si ones.

The computational complexity of the calculation of the weight vector a is O(Tl d̂2+

d̂3 +Tl d̂), where d̂ is dimension of the feature vector after feature expansion. Once the

weight vector is computed, the state of the channel is decided by multiplying the ex-

panded feature vector by the weight vector for the rest of the T − Tl timeslots. The

decision is made as follows: decide class 1 if score > 0, and class 0 if score < 0. The

procedure of polynomial classification is given by the flowchart in Figure 13.
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Figure 13: Decision on the channel availability by polynomial classifiers: (a) training
phase, (b) testing phase
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4.2.1.2. Training algorithms for NARX networks. One of the supervised

learning techniques is the NARX network introduced in Section 2.3.3. Training a

NARX network involves calculation of the synaptic weights and choosing the appro-

priate activation functions, the number of hidden layers, the number of hidden neurons

and the learning algorithm. Several learning algorithms are used to train a NARX net-

work. Regardless of the method of training, the computational complexity analysis

of the neural networks is quite involved. In general, the computational complexity of

training a neural network is higher than that of polynomial classifiers or the Viterbi

algorithm.

One method of training a NARX network is by converting the network into a

series-parallel architecture [54]. A series-parallel architecture does not involve a feed-

back from the output to the input since the output is assumed to be known at the training

stage. In this case, a NARX network can be trained as a regular neural network with

the static back-propagation algorithm given in Figure 14. The objective function to be

minimized is:

J(w) =
1
2
(t− z)2 (40)

where t is the target output, and z is the output of the neural network, and both can be

expressed in terms of the synaptic weights.

Back-Propagation Algorithm

1: initialize nH , weight vector w, learning rate η , m = 0
2: repeat
3: for k=1 to no. of training samples do
4: m = m+1
5: compute the output zk using (15)
6: calculate the error ∆w =−η

∂J
∂w

7: update the weight vector w(m+1) = w(m)+∆w(m)
8: end for
9: until all samples correctly classified or other stopping criterion is met

10: return w

Figure 14: The standard back-propagation algorithm
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If the output is not known at the training stage or if the training needs to be

done in real-time, another variant of the back-propagation algorithm, known as the

back-propagation-through-time (BPTT) algorithm is used. The objective function to be

minimized is:

J(w(n)) =
1
2
(t(n)− z(n))2 (41)

Figure 15 shows the BPTT algorithm.

Back-Propagation-Through-Time Algorithm

1: initialize nH , weight vector w(n), learning rate η

2: for n=1 to no. of training samples do
3: compute the output z(n) using (15)
4: calculate the error ∆w(n) =−η

∂J(n)
∂w(n)

5: update the weight vector w(n+1) = w(n)+∆w(n)
6: end for
7: return w

Figure 15: The back-propagation-through-time algorithm

Once the NARX network is trained using either of the training algorithms, for

the rest of the T −Tl timeslots, the energy of the signal is passed through the network

to decide whether the channel is available or not.

In the next chapter, the performance of the classifiers is assessed in terms of

the amount of collision with the PUs, and how efficiently the channel was used. The

performance of the classifiers will also be tested for various SNRs and under various

shadowing conditions.
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Chapter 5: Simulation Results

This chapter presents the simulation results that were performed on HMM-

generated data simulating the behavior of a PU. Extensive simulations were done to

evaluate the performance of the system for different scenarios.

5.1. Simulation Setup

The data used in the simulations were obtained based on a model from real

spectrum measurements performed by [1–3]. The measurements in [1] were obtained

from the 380-382 MHz band over 25 hours. The measurements were performed at a

frequency resolution of 10 kHz and a repetition rate of 4.4 sec. The HMM parameters

of the primary user with center frequency 381.7375 MHz and 11 kHz bandwidth were

estimated in [1] by the Baum-Welch algorithm in Figure 8, and the results, with a slight

modification (discussed shortly), are as follows:

πππ =
[

1 0
]

(42)

A =

 0.9687 0.0313

0.7970 0.2030

 (43)

µµµ = { −113.9235, −108.4308} (44)

ΣΣΣ = { 3.4105, 1.5993} (45)

where πππ is the initial state distribution vector with the first and second elements repre-

senting the initial probability of being in state 0 (channel available) or 1 (channel busy)

respectively, A is the transition probability matrix, µµµ is the mean vector measured in

dBm, and ΣΣΣ is the variance vector. The modification made on the results in [1] is the

mean of state 1, where the value has been changed from−92.4308 to−108.4308, which

corresponds to a lower SNR (6 dB) than the actual spectrum measurements. The change

was necessary to evaluate the classification performance under low SNR values. The

effect of changing the SNRs is investigated in subsequent sections.
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The joint probability density function (pdf) of energy and classes 0 and 1 is

shown in Figure 16. As can be seen in the figure, the channel corresponds to an inactive

primary user or a channel with low duty cycle.
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Figure 16: Distribution of the energy levels

Throughout this chapter, the data generation is performed based on the model

given by (42)-(45) unless stated otherwise. The software used for the simulations is

MATLAB R©, with an HMM toolbox distributed under the MIT License [55].

The number of timeslots in each frame was T = 10000, out of which the number

of the learning timeslots is Tl = 1000. As discussed earlier, the length of the timeslot

(and hence the length of the learning slots of the frame) depends on the sensing capa-

bility of the SU transceiver. If the SU takes a longer time in sensing the channel, the

length of the learning vector ρ will decrease, which results in a less accurate estimate

of the PU model. Another option is to decrease the number of timeslots the SU gets

for transmission. However, this decreases the utilization of the channel. It should be

noted that even if the sensing capability of an SU transceiver varies from one SU to

another, the assumption that the length of the timeslot is strictly less than the maximum

interference time allowed by the PU still holds.
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5.2. Classification using Hidden Markov Models

This section discusses the performance of the conventional decoding process of

an HMM-generated sequence of observations. Different performance measures, includ-

ing the collision and utilization probabilities, are evaluated.

5.2.1. Collision probability. The collision probability1 is defined as the prob-

ability with which an SU uses a channel that is occupied by the primary user, given by

the ratio

collision probability =
number of slots collision occurs

total number of slots used by the PU

Throughout this chapter, the maximum allowed collision probability is assumed to be

10%.

The collision probability was calculated for 1000 frames and averaged over 10

realizations, as shown in Figure 17.
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Figure 17: Collision probability over time

In each frame, after the learning phase is completed, the HMM predicts the state of

the channel. As proposed in Figure 11, if the current timeslot is free, the SU transmits

1The term collision in the literature is sometimes also used to refer to the case when SUs try to access
a channel simultaneously.

54



over that timeslot. Other access algorithms were also tested. In [1], the authors propose

that two consecutive timeslots should be free for the transmission to be allowed. This

requires the SU to wait for one timeslot and then transmit over the next timeslot only

if both timeslots were free. The same scenario was repeated with 3 timeslots, where

the SU waits for 2 timeslots and transmits over the third only if all the three timeslots

are free. With 2 and 3 timeslots, the SU is not allowed to transmit over an available

slot, which in turn reduces the utilization of the channel. However, this decreases the

probability of making a wrong decision about the availability of the channel, which

reduces the probability of collision with the primary user. As can be seen in Figure 17,

collision probability decreases as the number of slots increases.

For the first 400 frames and the last 300 frames, the PU was modeled as per

(42)-(45). In order to monitor the effect of changing the PU behavior, the transition

matrix A for the frames between frame numbers 400 and 700 was changed to:

A =

 0.3000 0.7000

0.7970 0.2030

 (46)

The transition matrix was also changed to test the ability of the HMM to track the

changes in the PU channel usage pattern, which can be clearly seen in the figure.

The collision probability is highly correlated with the behavior of the primary

user. The transition matrix given by (43) corresponds to a channel that is mostly va-

cant (probability that the channel is vacant and will stay vacant for the next timeslot

is 96.87%). The corresponding collision probabilities for the first 400 frames and the

last 300 frames are in the range of 18-30%. Such a high collision probability is due to

the nature of HMM predictions, which are less accurate when there is no clear pattern

of the PU. This is because the predictions are dependent on the previous states of the

channel, as explained in Section 4.1.1. Consider a sequence of 1000 ‘0’s followed by

a ‘1’. The probability of the HMM correctly predicting it is a ‘1’ is less than the case

where there is an actual pattern of ‘0’s and ‘1’s. Consequently, the SU would assume

that a channel is free when in fact it is busy, which leads to a collision. On the other

hand, the transition matrix given by (46) corresponds to a more active user and there-
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fore, the accuracy of the predictions is much higher, which is translated in low collision

probabilities of less than 3% for the frames between 400 and 700.

5.2.2. Utilization probability. The utilization probability is defined as the

probability with which an SU uses the channel given that the primary user is not using

the channel. Utilization probability is given by the ratio

utilization probability =
number of free slots used by an SU

total number of free slots

Although the proposed access algorithm increases the probability of collision

with the primary user, as seen in Section 5.2.1, the utilization probability is increased

significantly as seen in Figure 18. The utilization probability increases by at least a

factor of 3 for the frames between 400 and 700 when the timeslots were decreased

from 2 to 1. This is at the expense of a slight increase in the collision probability.

Furthermore, the utilization probability with 1 timeslot stays almost constant, which

shows that with the proposed access algorithm, the utilization probability is immune to

changes in the PU behavior.
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Figure 18: Utilization probability over time
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5.2.3. Signal-to-noise ratio (SNR). Another factor that changes the collision

probability is the signal-to-noise ratio (SNR). Figure 19 shows the collision probability

as the SNR increases from 4 to 12 dB. Since an increase in the SNR corresponds to a

higher separation between the means of the ‘ON’ and ‘OFF’ distributions, it is easier to

decide the state of the primary user and hence the collision probability decreases.
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Figure 19: Collision probability vs. SNR

5.2.4. Log-normal shadowing. Log-normal shadowing was introduced by

adding a Gaussian random variable ε of zero mean and standard deviation of σε = 2 dB

and σε = 3 dB to the mean of the distribution of state ‘1’ (µ1), and the results are shown

in Figure 19. The higher the value of σε , the higher the probability of collision with the

primary user. This is expected because shadowing results in weakening the signal, and

the SU decides that the channel is idle when in fact it is busy. According to the impact

of shadowing, the SU can wait for three or more consecutive slots before transmission

to minimize the collision probability. Another method to mitigate this problem is to

have multiple SUs to sense the channel and hence decrease the likelihood of the signal

being shadowed.
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5.2.5. Learning curve. The HMM takes a few iterations before it correctly

estimates the parameters that most likely produced the sequence of observed energy

levels of the channel, as explained in Section 4.1.1. The learning curve is defined as

the log-likelihood of the estimated parameters, or log(P [O|θ ]). The learning curve

at each iteration is shown in Figure 20. It can be seen from the figure that the HMM

converges within a few iterations, which is a direct result of using a large training vector

of Tl = 1000 slots.

Figure 20: Learning curve of the HMM

5.2.6. Number of learning slots. To monitor the effect of changing the num-

ber of learning timeslots (Tl) on the collision probability, various simulations were first

performed to determine the minimum number of slots that would guarantee the conver-

gence of the HMM and was found to be Tl = 600. The number of learning slots was then

varied and examined at different SNR values, and the results are shown in Figure 21.

It can be seen from the figure that at low SNR values, the HMM performance

is not governed by the number of learning slots. As long as the HMM converges, the

collision probability stays almost the same. On the other hand, at high SNRs, the larger

the value of Tl , the lower the collision probability. A 3-D plot is shown in Figure 22 for

better visualization.
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Figure 21: Collision probability vs. SNR
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Figure 22: Collision probability vs. SNR vs. Tl

The difference in the performance at high SNRs is due to the fact that the longer

the duration of learning, the better the estimation of the channel model and hence the

better the prediction of the state of the channel. This cannot be seen at low SNRs since

the difference between the means of the ‘ON’ and ‘OFF’ distributions is small, and

hence the overlap between the two classes is more. Having a longer duration of learning
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in this case does not enhance the performance of the HMM since the confusion level of

whether the channel is ‘ON’ or ‘OFF’ stays the same.

The use of a larger Tl results in a lower collision probability at high SNRs but

has a converse effect on the utilization probability as seen in Figure 23.
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Figure 23: Utilization probability over time

Although the collision probability at higher SNRs is lower with larger Tl , the

collision probability at high SNRs is much lower compared to the case of lower SNRs

and therefore, the use of a larger Tl is unjustifiable. Furthermore, the utilization proba-

bility is improved with a smaller Tl .

5.2.7. Multiple PUs. To study the effect of having multiple PUs, a scenario

with 5 PUs was simulated. For every frame, each PU can be in one of 5 activity patterns,

given by:

A1 =

 0.9687 0.0313

0.7970 0.2030

 , A2 =

 0.3000 0.7000

0.7970 0.2030

 ,
A3 =

 0.8 0.2

0.8 0.2

 , A4 =

 0.8 0.2

0.2 0.8

 , A5 =

 0.5 0.5

0.5 0.5

 (47)
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Clearly, the transition matrix A1 corresponds to the least active primary user, followed

by A3, and the transition matrices A2, A4, and A5 correspond to higher activities and

result in less number of free timeslots. Moreover, these transition matrices are assumed

to be equally likely.

The collision and utilization probabilities over time are shown in Figure 24 and

Figure 25 respectively.
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Figure 24: Collision probability over time with 5 PUs
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Figure 25: Utilization probability over time with 5 PUs
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It can be seen in the figures that the pattern does not change much, which suggests that

the SU always chooses the channel with the least activity. Moreover, the probability that

none of the channels has the transition matrix A1 or A3 is low (0.65 = 0.08). Therefore,

in contrast to the case of 1 PU simulated in Sections 5.2.1-5.2.2, as the number of

PU increases, the changes in the pattern of the collision and utilization probabilities

decreases.

5.3. Classification using Polynomial Classifiers

In this section, the data generated using the model (42)-(45) is used to train a

polynomial classifier. As in the case with HMM-training, the number of learning slots

is Tl = 1000 and the total number of frames T = 10000. For the case of polynomial

classifiers, the state of the channel for each of the learning timeslots is assumed to

be known by the SU. This assumption is valid if the learning slots are considered as

pilot signals sent by the SU base station periodically, and are treated as transmission

overhead.

At the end of the training phase of each frame, a training vector ρ is formed.

The weight vector a is then calculated by the procedure outlined in Section 4.2.1.1. For

the the rest of the T − Tl timeslots, the expanded feature vector is multiplied by the

weights. If the score is greater than zero, the state of the channel is classified as ‘1’,

otherwise it is classified as ‘0’.

In the following subsections, the performance of the classifiers is studied thor-

oughly. In all the following simulations, the results are averaged over 400 realizations.

5.3.1. Classification accuracy. The performance of the polynomial classifier

is evaluated in terms of the overall classification rate, the classification rate of class 0

and the classification rate of class 1. The overall classification rate is defined as the

fraction of correctly classified states to the total number of states. The classification

rate of class 0 is the fraction of correctly classified class 0 states to the total number of

class 0 states. Since class 0 represents an available channel, the higher the classification

rate of class 0, the higher the spectrum efficiency. Similarly, the classification rate of

class 1 is the fraction of correctly classified class 1 states to the total number of class
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1 states. The higher the classification rate of class 1, the less likely an SU will collide

with a PU.

The order of the polynomial classifier was varied from n = 1 to n = 6 to observe

the effect of the polynomial order on the classification rate. Figure 26 shows the classi-

fication rate vs. the order of feature expansion. As can be seen in the figure, the overall

classification accuracy increases with the order of the classifier, which suggests that the

two classes are non-linearly separable.
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(a) Overall classification accuracy
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(b) Class 0 classification accuracy
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(c) Class 1 classification accuracy

Figure 26: Classification accuracy vs. order of classifier

5.3.2. Collision and utilization probabilities. The collision probability was

calculated for different orders of the classifier and is shown in Figure 27.
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By definition, the collision probability is given by:

collision probability = 1− classification rate of class ‘1’.

The collision probability increases slightly with the order of the classifier. This

is because the number of class ‘1’ samples are much less that class ’0’ samples, as

seen in Figure 16, which leads to the classifier being more sensitive to errors in the

classification rate of class ‘1’. However, even with a polynomial of order n = 6, the

collision probability is less than 2%, which is quite acceptable.
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Figure 27: Collision probability vs. order of classifier

The utilization probability was also calculated for different orders of the classi-

fier and is shown in Figure 28. By definition, the utilization probability is essentially the

classification rate of class ‘0’. The utilization probability increases significantly with

the order of the classifier. This gain in the performance comes at an expense of higher

computational complexity. In particular, the computational complexity of the calcula-

tion of the weight vector a is O(Tld2 +d3 +Tld), where Tl is the length of the training

vector ρ , and d is the dimension of the feature vector (d = n+ 1). Moreover, there is

diminishing gain in the performance after order 3.

5.3.3. Effect of changing the SNR. The collision and utilization probabilities

are calculated for various SNRs with n = 1, and the result is shown in Figure 29.
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Figure 28: Utilization probability vs. order of classifier
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Figure 29: Utilization probability vs. collision probability for various SNRs

As the SNR increases, the utilization increases for the same collision probability. This

is expected because a higher SNR corresponds to a higher separation between the means

of the ‘ON’ and ‘OFF’ distributions and hence better classification performance.

5.3.4. Comparison with other existing energy-detection schemes. The per-

formance using polynomial classifiers was compared to other schemes, namely the con-

ventional energy detection (ED) described in Section 3.3, and a modified ED scheme

proposed by [38]. It is worth noting that the comparison is approximate since the PU

model adopted by the proposed scheme (the HMM model) is different from the other

schemes. Moreover, the terminologies used in the performance evaluation of spectrum
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sensing and access schemes are different. In spectrum sensing, the performance of

the system is assessed in terms of the probability of false alarm and the probability of

detection. The probability of false alarm is defined as the probability that the signal

level is above the threshold γ given that the channel is available. The complement of

the probability of false alarm is analogous to the utilization probability, and hence, and

with a slight abuse of notation, the utilization probability can be expressed in terms of

the probability of false alarm as:

utilization probability = 1−probability of false alarm.

Similarly, the probability of detection is defined as the probability that the signal level

is above the threshold γ given that the channel is busy. The collision probability can be

expressed in terms of the complement of the probability of detection, the probability of

miss-detection as:

collision probability = probability of miss-detection.

Figure 30 shows the utilization vs. the collision probabilities for the two ED

schemes and the polynomial classifier of orders n=1, 2,& 3.
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Figure 30: Comparison with other existing schemes
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It can be seen in the figure that the polynomial classifier outperforms the other

two schemes. The polynomial classifiers with different orders, however, have a compa-

rable performance in terms of utilization versus collision probabilities. The advantages

of having higher-order polynomials will be prominent in subsequent sections.

5.3.5. Multiple-timeslot scenario. So far, the feature vector (before expand-

ing the features) was of dimension (d = 1) since the energy level of the current timeslot

only was taken into consideration. The feature vector x could be expanded to incorpo-

rate energy levels from previous timeslots. For example, if measured energy levels of

the previous two timeslots need to be taken into account, the feature vector will be:

x =
[

xt−2 xt−1 xt

]
This introduces delay to the system since the SU has to wait for a couple of timeslots be-

fore making a decision on the availability of the channel. However, better performance

is expected if the data is correlated.

The classification rate results for classes ‘1’ and ‘0’ will be omitted in the fol-

lowing discussions since they are directly related to the collision and utilization re-

spectively. Figures 31, 32 and 33 show the classification rate, collision probability and

utilization probability respectively, as previously explained. The results suggest that the

data is uncorrelated since the performance is degraded with increasing delays.
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Figure 31: Classification accuracy vs. order of classifier for the multiple-timeslot sce-
nario
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Figure 32: Collision probability vs. order of classifier for the multiple-timeslot scenario
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Figure 33: Utilization probability vs. order of classifier for the multiple-timeslot sce-
nario

To introduce correlation to the data, the transition matrix A was changed to:

A =

 0.8 0.2

0.2 0.8

 (48)

where a00 and a11 were set to 0.8, which corresponds to a higher correlation in the ‘0’

and ‘1’ states.
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The results are shown in Figures 34-36. It can be seen from the figures that there

is a negligible improvement in the performance with delay=1 and delay=2 over the no

delay case since the data is correlated. Furthermore, the Markov property states that a

state is dependent on the previous state, which is reflected in the figures where the best

performance is when delay=1.

Although there is a slight improvement in the sensing accuracy, the use of delays

is unjustifiable for the following reasons: (1) delays improve the performance only

if the data is correlated, which is not always the case as seen in the results, (2) the

computational complexity increases exponentially with increasing delay, and (3) the

performance gain is insignificant. Hence, the use of delays should not be considered.
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Figure 34: Classification accuracy vs. order of classifier with correlated data

5.3.6. Multiple-antenna scenario. The performance of the system is ex-

pected to improve if the SU has more than one antenna. Although the antennas are

physically close to each other, each antenna will receive a different signal and hence

diversity gain is achieved. This comes at the price of computational complexity, which

increases exponentially with increasing number of antennas and higher orders of the

classifier.

For the simulation of the multiple-antenna scenario, the antennas are correlated

with a correlation coefficient of 0.7.
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Figure 35: Collision probability vs. order of classifier with correlated data
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Figure 36: Utilization probability vs. order of classifier with correlated data

Figures 37-39 show the classification rate, collision probability and utilization prob-

abilities respectively. As seen in the figures, the enhancement in the performance is

minimal, and hence, using multiple antennas in this case will only increase the com-

putational complexity without any significant gain. This is mainly because small-scale

fading was not taken into account. It is expected that with small-scale fading, the im-

provement in the system performance with multiple antennas should be much higher.

5.3.7. Log-normal shadowing. To monitor the performance of the system

under the effect of log-normal shadowing, a random variable ε is added to the mean of

the ‘ON’ distribution.
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Figure 37: Classification accuracy vs. order of classifier for the multiple-antenna sce-
nario

1 2 3 4 5 6
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Order of Classifier

C
ol

lis
io

n 
P

ro
ba

bi
lit

y

 

 
antenna=1
antenna=2
antenna=3

Figure 38: Collision probability vs. order of classifier for the multiple-antenna scenario

The classification accuracy and the collision and utilization probabilities were calcu-

lated for different levels of shadowing using polynomial classifiers of order n= 1, 3&6,

and are shown in Figures 40-42.

At polynomial of order n = 1, the utilization probability stays almost constant at

around 55% for increasing values of σε , whereas the collision probability increases sig-

nificantly from close to 0% to 30%. This is expected since the a larger σε corresponds

to a larger overlap between the ‘ON’ and ‘OFF’ distributions, and hence introduces

more errors.
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Figure 39: Utilization probability vs. order of classifier for the multiple-antenna sce-
nario
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Figure 40: Classification accuracy vs. σε

In addition, since the channel is mostly idle, the number of ‘1’s is much less than the

number of ‘0’s, causing the system to be more sensitive to misclassification errors of

state ‘1’ and hence a higher collision probability.

It is also noted that, as discussed in previous sections, the utilization probabil-

ity increases significantly with increasing order of the classifier, at the cost of a slight

increase in the collision probability. What is of more interest is the behavior of higher

order classifiers to larger shadowing. The results suggest that after a certain limit, as

shadowing is increased, collision probability is reduced. Hence, although a polyno-

mial of order n = 6 increases the computational complexity, the collision probability
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decreases significantly. The utilization probability, however, is still slightly affected by

the high shadowing.
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Figure 41: Collision probability vs. σε
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Figure 42: Utilization probability vs. σε

5.3.8. Cooperative spectrum sensing. To mitigate the effect of shadowing,

multiple SUs could cooperate to form a joint decision. The results are sent to a fusion

center that decides on the availability of the channel. The decision can be made in

various techniques, some of which are:
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• majority vote- each SU decides whether the channel is available or not. The

results are then sent to the fusion center which makes a decision based on the

majority of the votes.

• fusion at the feature level- a feature vector that comprises of the energy level from

each user is formed at the fusion center. The feature vector is then expanded, and

the weight vector is calculated. At the testing phase, the energies from users are

multiplied by the weight vector, and the decision is made based on the sign of

score.

• fusion at the score level- training of the polynomial classifier is done by each SU

individually. At the testing phase, the energy measured by each SU is multiplied

by its corresponding weight vector and a score is obtained. The fusion center then

makes a decision based on the weighted average of the scores. In the following

simulations the scores are weighted based on their sign. If the score is positive

(corresponding to a busy channel), the score is divided by s/s1, where s is the total

number of training samples, and s1 is the number of samples of class 1. Similarly,

if the score is negative, the score is divided by s/s0, where s0 is the number of

samples of class 0. This is done because the score should ideally be either s/s0,

or s/s1, as defined in (39).

Three SUs under different SNR conditions were simulated in this scenario. All

SUs experience shadowing of σε = 2 dB. The results are shown in Figures 43−45.

Regardless of the method of data fusion, having multiple users enhances the

classification accuracy. There is no clear trend in the results, but in general, fusion of

scores outperforms the rest of the schemes in terms of collision and utilization probabil-

ities at all classifier orders,with an exception of n = 3. At lower orders of the classifier,

feature fusion and score fusion have the same performance in terms of collision proba-

bility, however utilization probability increases by about 10% when score fusion is used.

It seems that the cross-terms introduced by expanding a feature vector with 3 elements

do not help in classification. In fact, it can be seen from the figures that, especially at

higher orders of the classifier, the performance using feature fusion is even worse than

the majority vote.
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Figure 43: Classification accuracy vs. order of classifier for the multiple-SU scenario
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Figure 44: Collision probability vs. order of classifier for the multiple-SU scenario

5.4. Classification using NARX

As for the case with polynomial classifiers, the data is generated using an HMM

and is trained using a nonlinear autoregressive with exogenous inputs (NARX) model

network. The NARX network was trained using the two algorithms in Section 4.2.1.2. It

was found that the back-propagation algorithm performs better than back-propagation-

through-time algorithm in terms of classification accuracy since the former uses super-

vised learning. Different parameters of the NARX network were changed to achieve

the best performance as follows:
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Figure 45: Utilization probability vs. order of classifier for the multiple-SU scenario

• Input delays- the number of input delays was changed with delay=1 and delay=2.

Better classification performance was obtained with delay=1.

• Output delays- similar to input delays, 1 and 2 output delays were tested and a

higher classification rate was achieved with delay=2.

• Number of hidden layers and neurons- it is a common practice to have only one

hidden layer and multiple neurons rather than having multiple hidden layers. With

hidden layers=1, the number of neurons were changed from 1 to 5, and the opti-

mal number was found to be 2.

• Activation function- different activation functions of the neurons in the hidden

layer were used, including the tan-sigmoid function, which generates outputs be-

tween -1 and 1, and the log-sigmoid function, which generates outputs in the

range of 0 to 1. The function that results in better performance was found to be

the tan-sigmoid function.

Table 1 lists the optimal parameters for training, and the results are shown in

Figure 46. It can be seen from the figure that the curves overlap at the region for colli-

sion probabilities higher than 10%, implying that the performance of the system is not

governed by the SNR, which is not generally true. Moreover, even at low probabili-

ties, the utilization performance is worse than both HMMs and polynomial classifiers.

Therefore, the use of NARX is not recommended.
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Table 1: Parameters of the NARX network

Parameter Value
Input delays q 1
Output delays 2
Number of hidden layers 1
Number of hidden neurons 2
Activation function of hidden layers tan-sigmoid
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Figure 46: Utilization probability vs. collision probability for the NARX scheme

5.5. Comparison of the Learning Schemes

This section compares between the different learning techniques that were used

to determine the availability of the PUs. Classification using NARX is excluded from

the comparison since it was found to produce inconsistent results.

The main reason behind the superior performance of polynomial classifiers over

the Viterbi algorithm is because the former uses labeled samples for training, or more

formally, supervised learning. The collision probability using the Viterbi algorithm is

around 25%, which is not acceptable. The collision probability improves by a factor

of 25 when using polynomial classifiers. In terms of utilization probability, the perfor-

mance of the two schemes are comparable. The utilization probability with the Viterbi

algorithm is around 90%, which is achieved by the polynomial classifiers only at higher

orders of the classifier. Moreover, in terms of the performance under shadowing, poly-

nomial classifiers exhibit a unique behavior where the collision probability decreases
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with increasing levels of shadowing. Finally, polynomial classifiers outperform the

Viterbi algorithm in terms of computational complexity.

Table 2 summarizes the main differences in the system performance with poly-

nomial classifiers and the conventional HMM-decoding approach, the Viterbi algo-

rithm.

Table 2: Comparison of the learning schemes for spectrum sensing

Viterbi Algorithm Polynomial Classifier
Training mode Unsupervised Supervised
Collision probability 25% < 2%
Utilization probability 90% 55-92%
Shadowing σε ↑ col. prob.↑ σε ↑ col. prob.↓
Computational complexity High Low
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Chapter 6: Conclusions

Cognitive radio users are required to minimize the interference caused to the

primary users such that SU transmissions do not affect PU transmissions. In order to do

so, an access scheme is proposed where the secondary user is not allowed to transmit

unless the channel is free for the current timeslot. As the number of slots increases, the

collision probability decreases, but the utilization probability also decreases. Transmis-

sion based on one slot was proven to increase the utilization probability, which reaches

up to more than a factor 10 in some cases. This is at the expense of a slightly higher col-

lision probability. Results show that with the conventional HMM-decoding approach

for spectrum sensing (the Viterbi algorithm), the collision probability exceeds 20%,

which is not acceptable.

To reduce the collision probability, the use of polynomial classifiers has been

proposed, where a feature vector containing the energy sensed by the SU is expanded

to higher orders in order to make the data linearly separable. Results show that using

polynomial classifiers achieves considerably lower collision probabilities (< 1%) while

maintaining high utilization probabilities. Moreover, several other cases exhibit an im-

proved performance with the use of polynomial classifiers. In particular, higher order

polynomial classifiers show significant enhancement in the performance in the case of

extreme shadowing. Furthermore, the performance of the system is enhanced in terms

of computational complexity, compared to the Viterbi algorithm.

The case of multiple secondary users was briefly discussed, where a cooperative

sensing scheme was adopted. Different methods of data fusion were tested, and the

results show that the highest classification rates are obtained when the fusion is done at

a score level.

Another supervised learning technique, namely NARX networks, was tested

with the aim of achieving higher classification rates. However, the use of NARX net-

works for the decision on the availability of primary users is ruled out due to the inex-

plicable randomness in the obtained results. Moreover, NARX is more computationally

complex than both the Viterbi algorithm and polynomial classifiers.
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For future work, the polynomial classifiers could be tested for different patterns

of primary users, to investigate whether or not the gain in the performance is only

shown in the cases where the primary user is inactive. Moreover, the case of cooperative

sensing could be further studied in terms of the collisions between SUs and the possible

scheduling schemes that reduce these collisions.
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