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Abstract

The rapid expansion of smartphones’ market coupled with the advances in mobile com-

puting technology has opened up doors for new mobile services and applications. Quite

a few of these services require the knowledge of the exact location of their handsets.

Although, existing global positioning systems (GPS) perform best in outdoor environ-

ments, they have poor performance indoors. This has initiated the need for a new gen-

eration of positioning systems. In this thesis, we focus on wireless local area networks

(WLAN)-based indoor positioning systems to act as GPS counterpart indoors. More

specifically, we study two received signal strength (RSS)-based positioning techniques,

fingerprinting and propagation models. We shed light on the advantages of each tech-

nique and propose different methods to counteract their shortcomings. Namely, we

propose a hybrid solution of clustering and fast search techniques to reduce the com-

putational requirements of fingerprinting. In addition, we propose a dimensionality re-

duction technique to restrict the location fingerprints to signal strength values received

from only informative Access Points (APs), hence to further reduce fingerprinting com-

plexity. For this purpose, we implement a modified fast orthogonal search method to

choose the most informative APs from the set of all hearable APs in the region. Finally,

we propose an indoor localization system that integrates the RSS correction methods to

enhance the positioning accuracy of propagation models. This proposed system aims

to achieve accurate modeling of signals’ propagation inside buildings without the need

for expensive site surveys required for fingerprinting. Our experiments were conducted

inside the engineering building at our university, using real RSS data. The obtained re-

sults show that the aforementioned first two proposed methods enhance fingerprinting

techniques by reducing their computational complexity, while the third enhances the

accuracy of propagation models.

Search Terms: fingerprinting, propagation models, KNN, clustering, fast orthogonal

search, Kalman filtering, Gaussian process regression
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Chapter 1: Introduction

Indoor positioning has gained a remarkable interest in the last few years. The

increasing human activities inside buildings demanded indoor localization that cannot

be achieved solely by the existing Global Positioning Systems (GPS). The reason is

that GPS has poor indoor positioning coverage due to the poor penetration of GPS sig-

nals through construction materials and the lack of line of sight conditions indoors [1].

Therefore, research efforts are dedicated to find GPS alternatives that can provide seam-

less indoor and outdoor positioning coverage. The motivation behind these efforts is

the demand for ubiquitous location-based services coupled with the increasing trend of

mega constructions. Indoor positioning promises a wide range of services and appli-

cations, such as autonomous object tracking, impaired vision aid, asset tracking, etc.

In addition, indoor positioning contributes greatly to the development of applications

on smart phones, enabling context aware applications. According to a recent project

established by Google Company [2], 3-D space sensing is one of the features intended

for future smart phones.

Various systems have been investigated in the literature to support indoor po-

sitioning. This includes infrared-based systems, cellular-based systems, WLAN-based

systems, etc. [3]. However, wireless local area networks (WLAN) are the most widely

investigated systems to be the indoor counterparts of GPS. Although positioning is not

the main application of WLAN, using these networks for indoor positioning is promis-

ing due to their ubiquitous availability inside buildings. In addition, using WLAN for

indoor positioning is an inexpensive choice for two reasons. First, WLAN offers a

stand-alone positioning capability, as it does not need any extra hardware. Second,

WLAN is a universal and wide-spread technology, that is nowadays deployed in almost

every building, hence no further infrastructure associated cost is incurred [1]. Not only

will equipping WLAN with positioning capabilities help provide indoor positioning

coverage, but also it will provide WLAN with an important safety public feature [4].

This is in response to the order issued by the federal communication commission in

1996 to enhance the positioning capabilities of WLAN, since it is very difficult to track

the exact location of a user in WLAN compared to other Networks [5]. WLAN-based
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indoor positioning can help detect the exact location of emergency callers, as well as in-

truders. In this thesis, wireless local area network (WLAN)-based indoor positioning is

investigated. Specifically, Wi-Fi received signal strength (RSS) indoor models are im-

proved and fingerprinting based localization algorithms and techniques are proposed.

1.1. Problem Statement

The complex structure and the dynamic nature of indoor environments pose

several challenges to the design of indoor positioning systems [6]. These challenges,

which are discussed in more details in Section 2.9, prevent achieving the sub-meter

level accuracy required by the majority of indoor positioning applications. In addition,

many difficulties involved in the design of indoor positioning systems are intrinsic to

WLAN [4]. For example, in a typical WLAN-based positioning system, the computa-

tions of the mobile user location take place on a battery-powered device with limited

processing capability and limited power supply. Consequently, using algorithms of

low computational complexity is mandatory for indoor positioning. Moreover, WLAN-

based positioning systems should be designed to concurrently support a large number

of users to be compatible with the huge user base of WLAN. Lightweight algorithms

accelerate the location finding process and hence enable accommodating a larger num-

ber of users. In this thesis, we are mainly concerned with two design aspects of indoor

positioning systems; accuracy and complexity. Our objective is to balance the two con-

flicting goals of high accuracy and low computational complexity in the design of the

cost effective WLAN-based positioning techniques.

1.2. Contributions

In this section we explain the major contributions of this thesis.

• A new search method is proposed and implemented that improves the search

process for the location best match in fingerprinting. The method enables doing

a faster search with better accuracy performance than the conventional clustering

and search techniques. The method is based on a hybrid solution of location-

based clustering and fast search strategies.
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• A new implementation of a fast orthogonal search (FOS) is proposed to measure

an Access Point (AP) contribution to the positioning system. The method helps

to find the most informative APs in the region and to restrict the radio map to

only those points. The modified implementation of FOS was found to result in a

better performance than the original implementation.

• The modified FOS algorithm is combined with the hybrid search methods which

resulted in an ultimate reduction in the computations of fingerprinting. In addi-

tion, a better positioning performance of the hybrid search methods is achieved

when the latter is combined with the modified FOS algorithm.

• A system that integrates dynamic propagation models with RSS correction tech-

niques is also proposed to enhance the accuracy performance of the propagation

models, as they are a cheaper alternative to fingerprinting. Kalman filters are used

to eliminate the environmental noise contaminating the RSS measurements hence

improving the performance of the positioning.

1.3. Thesis Outline

The rest of the thesis is organized as follows: Chapter 1 presents the significance

and challenges of this research field, as well as the objective and contribution of this

thesis. In Chapter 2, the background to this research topic is presented. The latest

advances, and the progress achieved in this field so far, are stated in Chapter 3. The

methods and positioning approaches proposed by this thesis and their evaluation are

explained in Chapters 4, 5 and 6. Finally, Chapter 7 outlines the conclusion and the

future work.
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Chapter 2: Background

2.1. Wireless Positioning Systems

There are several potential wireless localization systems, besides WLAN-based

systems, each of which has its advantages and shortcomings. These systems can be

categorized into systems with a non-dedicated infrastructure, or with a dedicated infras-

tructure [7]. Systems with a dedicated infrastructure are advantageous for having wide

specification options and a control over the quality of positioning, while systems with

non-dedicated infrastructures are restricted to certain specification and hold less control

over the quality of positioning. Despite this, we choose systems with non-dedicated

infrastructure because establishing a dedicated infrastructure, only for indoor position-

ing, has a substantial cost. This cost is a result of a required frequency band dedicated

for the new infrastructure to operate on, base stations to provide geographical coverage,

new built-in mobile devices’ hardware that corresponds to the new infrastructure, and

so on [1]. Therefore, systems with non-dedicated infrastructures are still preferable, due

to their low cost of implementation and their resources efficiency [8]. A list of systems

that utilize existing infrastructure is examined below:

2.1.1. GPS-based

Global positioning system (GPS) was proposed by the US Department of De-

fense in the 1970s. It is the most accurate available positioning system in outdoor

environments. GPS consists of three segments; space, ground, and user segments. The

space segment is a constellation of 24 satellites distributed on 6 orbital planes surround-

ing Earth. Such structure allows at least 4 satellites to be visible anywhere on earth at

all times. The ground segment consists of stations to control and monitor the satellites

movements, as well as the satellites clocks. The user side on the other hand, consists of

all GPS enabled receivers that receive GPS signals for location determination by em-

ploying the concept of signal time of arrival (ToA) [9]. The distance of the user receiver

from each visible satellite and each satellites longitude, latitude, and altitude are used

to estimate the receiver’s position [10]. As shown in Figure 1, the user location is es-

timated as the point of intersection of the satellites signal propagation spheres, using
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lateration techniques. Consequently, a minimum of 4 satellites are needed for location

determination, three for location calculation and a fourth one for time synchronization

purposes [9]. However, as mentioned before, GPS require LoS conditions which makes

it impractical for indoor positioning. Furthermore, satellite signals might undergo at-

mospheric delays according to weather conditions, which highly affect the distance

calculations accuracy [9]. Therefore, network assisted GPS is suggested to compensate

for the poor indoor GPS coverage, and GPS atmospheric layer delays.

R1 

R2 

R3 

Figure 1: Position estimation using GPS.

2.1.2. Cellular-based

Cellular network is a wireless communication network that covers geographical

areas to provide communication for mobile units. Areas that have cellular service are

divided into small sections called cells. Each cell is monitored by one or two cellular

transceivers called base stations. The working principle of a cellular network is that

it tracks callers, and dedicates channels for calls through the base stations closest to

the users. The network has a mobile switching center (MSC) that is used to handover

channels as the user moves from one cell area to another [11]. Thus, a cellular network
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user can be located using the Cell-ID and the geographical sector that are serving it.

Such that, the location of the mobile unit is estimated to be the centre of the serving cell.

This positioning technique is called proximity, and is discussed further in section 2.4.2.

The advantages of using Cell-ID method is that this method is already in use nowadays,

and it is unified for all mobile phones [8]. However, this method has very poor accuracy

performance, since the coverage area diameter of a cell ranges from 2 Km to 20 Km [7].

Some researchers suggest using this network to enhance GPS performance in urban

areas [9].

2.1.3. WLAN-based

Wi-Fi is a technology that provides network access for wireless enabled devices.

This technology is governed by a family of standards established by The Institute of

Electrical and Electronics Engineers (IEEE). The most popular standard amongst this

family is the 802.11b which operates on 2.4 GHz with a data rate of 11 Mbps, depending

on the standard [12]. Positioning can be simply implemented in WLAN using RSS-

based techniques or triangulation techniques. Moreover, WLAN have a standardized 50

m range, which makes it appropriate enough for indoor positioning [13]. In addition,

the costs for the positioning system components are modest, which makes this system

an inexpensive choice [13].

2.1.4. Bluetooth-based

Bluetooth is wireless technology with positioning capabilities, it was introduced

by Ericsson Company. It is an ad hoc network that functions on the 2.4 GHz Industrial,

Scientific, and Medical (ISM) band. This technology is governed by IEEE 802.15 stan-

dards which belongs to wireless personal area networks (WPAN). Bluetooth is func-

tional only on a room or hall level, with a range of 10 to 15 m, and a bit rate of 1 Mbps.

The main use of Bluetooth technology is to connect devices of different functions, such

as tablets, mobile phones, and personal computers [11]. Not only is this technology

ubiquitous and embedded in almost all mobile devices, it also has lighter standards than

WLAN. Positioning can be achieved using Bluetooth tags, which are small transceivers

with unique IDs. In a similar manner to WLAN, the strength of the Bluetooth signal

can be used to find the position of a Bluetooth enabled device relative to another [8].
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2.2. WLAN Positioning System Components

The positioning system architecture consists of the following units:

• Network: The underlying wireless network, IEEE 802.11, utilizes radio fre-

quency (RF) signals to establish communication between the users of the same

wireless local area network (WLAN) and the network access points (APs) [3].

The network APs are configured to broadcast beacon packets that contain differ-

ent types of system information. These packet are transmitted every 100 ms or so.

Any network can be used for positioning, even the closed ones, since the beacons

are not encrypted and can be received by any WLAN-enabled device [1]. Each

AP has a unique MAC address with a known fixed location [9].

• Communication medium: In WiFi standards, 11 channels are specified for the

2.4 GHz. Typically, 3 non overlapping channels are occupied at the same time in

the same geographical area. If interference is expected, APs can transmit beacon

packets on different channels. The mobile devices scan all the channels to find

the APs.

• Mobile unit: Mobile devices that are WiFi enabled can receive the beacon packets

and the system information conveyed on them are extracted using the so-called

network interface cards (NICs). The NIC can measure the RSS value from the

packets. NIC can measure all the RSS values from all the hearable APs at the

location of the mobile handset [1].

• Server: This unit is optional. It is implemented in mobile-assisted systems. The

location information are transmitted through a TCP/IP link to a central unit, where

the position calculation are done [14].

With this system breakdown, the position of a WLAN mobile user can be estimated

using the signals it receives from the fixed APs in the surrounding region [1].

2.3. WLAN Positioning Topologies

The system topology is the method by which the system components are ar-

ranged and distributed to achieve their intended tasks. For indoor positioning systems,

there are three main positioning topologies. The first one is remote positioning, whose
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localization units are fixed receivers that sense the transmitted signal from a mobile de-

vice and remotely calculates its position. It is the opposite of self positioning, where

the mobile target estimates its own position based on the signals it receives from fixed

transmitters. If a wireless data link is available in the system, the mobile device can

sense the signals from the transmitters and then communicates the measurements to a

central unit to estimate the mobile device position. This is the third topology which is

called hybrid positioning [1].

2.4. Wireless Positioning Algorithms

Indoor positioning algorithms are divided into three main categories: triangu-

lation, proximity, and scene analysis. Figure 2 summarizes all the techniques used in

indoors location estimation [12]. Each of these techniques is discussed in details below:

Wireless 
Positioning 
Algorithms  

 Triangulation 

Lateration 

Time of 
Arrival  

Time 
Difference of 

Arrival 

Angulation 

Angle of 
Arrival 

Proximity  
Scene 

Analysis  

Figure 2: Indoor positioning algorithms taxonomy.
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2.4.1. Triangulation

In this method, geometry principles along with signal parameters are used to

estimate the position of a mobile unit. Triangulation technique is further divided, based

on the used signal parameter, into two subcategories; lateration and angulation [8]. In

the lateration technique, distance measurements from fixed reference points (Access

points), are used in to locate a mobile device. The most famous lateration technique is

known as time of arrival (ToA). This technique utilizes the time that the signal takes to

travel from a reference point to the receiver of the target to be detected. The distance

traveled by an RF signal is directly proportional to its propagation time, given that an

RF signal propagates with the speed of light. Therefore, the velocity of the transmit-

ted signal and its travel time are used to estimate the distance between the transmitter

of the reference point and the receiver of the mobile unit [9]. When using lateration

techniques, at least three reference points are required to achieve two dimensional (2-

D) positioning, which is positioning in reference to the xy plane. Having three access

points (APs) available, the xy coordinates of a mobile device position is estimated, as

shown in Figure 3. ToA is used to estimate the distance between each AP and the mobile

user, such that the calculated distances serve as the radii of the three propagation circles

of the signals transmitted from the APs. Finally, the location of the user is estimated to

be the intersection point of the three propagation circles [7].

Although the lateration technique is used widely in GPS, it has poor perfor-

mance indoors. The reason is that it requires line of sight (LoS) conditions, which is

hardly the case in indoor environments. Moreover, ToA technique requires time stamps

to indicate the departure time of the signal from the transmitter, and the arrival time of

the signal to the receiver. It also requires time synchronization between the base sta-

tions and the mobile device. These two requirements introduce less system hardware

flexibility, as well as limitations in the type of mobile device to be used [12]. Fortu-

nately, synchronization limitation can be eliminated using the time difference of arrival

(TDoA) method. In TDoA, the differences in time of arrival of the signals from differ-

ent APs at the receiver are used as distance measurements, instead of using the absolute

travel time [8]. However, this technique still assumes LoS condition, which makes it

inappropriate for indoor positioning.
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Figure 3: ToA technique for WLAN-based positioing.

The second triangulation technique is angulation. In this method the angle of

arrival (AoA) of the signal is used to estimate the position of the target. The 2-D position

of the mobile unit is the intersection point between the lines of bearing or the direction

lines at which the signals arrive from the reference points, as in Figure 4. In this case,

only two reference points or measuring units are needed to help estimate the position of

the target. One advantage of this method is that the system can be easily extended to find

3-D positions, which is achieved only by adding a third reference point to the system.

Moreover, this method does not require any synchronization between the transmitters of

the APs [8]. On the other hand, AoA method requires more complex hardware than ToA

and TDoA, as it requires an array of antennas to determine the angle at which the signal

arrives at the receiver [10]. Furthermore, AoA technique requires the LoS condition

which is almost not available indoors due to the harsh propagation environment. In

both triangulation techniques, the system always assumes that the transmitted signal is

in direct LoS with the receiver. Namely, the triangulation system does not differentiate

between a LoS signal and a None Line of Sight (NLoS) signal. Therefore, it results in

erroneous distance estimation.
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Figure 4: AoA technique for WLAN-based positioing.

2.4.2. Proximity

This algorithm collocates the target with the antenna or the reference point that is

closest to it, as depicted in Figure 5. For this case, a dense grid of antennas, with known

coordinates, is used. The mobile unit location is assigned to be the coordinates of the

antenna that receives the strongest signal from the mobile device [8]. This algorithm

is characterized by its simplicity and that it can be implemented on different physical

media, such as radio frequency identification (RFID) and base stations (Cell-ID) [8].

The drawback of this method, as previously mentioned in Section 2.1.2, is that it has

low resolution and hence poor accuracy.

2.4.3. Fingerprinting

Fingerprinting, which is also referred to as scene analysis, is the algorithm in

which locations in an environment are associated with a unique signal parameter to

that location. Any signal feature that is location dependent can be used, such as the

multipath structure per location, the coordinates of the AP with the strongest signal per

location, or the strength of the signal received (RSS) by the user per location [1].
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Figure 5: Proximity for WLAN-based positioing.

The most commonly investigated is the RSS-based fingerprinting, which uses the RSS

to fingerprint locations in the region of interest. This method is performed in two stages:

• Offline stage: This is a calibration stage where fingerprinting actually occur. Dur-

ing this phase, the RSS values received from the visible AP in the region are col-

lected at known grid points, forming an RSS model for that area [7]. In the case

where more than one AP are visible, the fingerprint becomes multidimensional.

The collected fingerprints are then saved to a database called a radio map [1]. The

pre-stored radio map that results from the offline stage is used in the online stage

to estimate the user location.

• Online stage: A positioning algorithm is used in this stage to match the RSS

online measurement of the mobile target with the prestored radio map for that

area [8]. There are many positioning techniques that can be used to estimate

the position of the mobile user. These methods are implemented and tested in

section 2.5.

The RSS-based fingerprinting method have been proven to overcome other methods

in terms of accuracy; it results in the highest positioning accuracy indoors. The rea-
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son is that in fingerprinting techniques the multipath and fading contaminating the RSS

measurements are reflected on the real RSS values recorded in the radio map. There-

fore, fingerprinting is considered as an effective method to handle the disturbance in

RSS measurements. Furthermore, fingerprinting techniques are of a low cost of im-

plementation compared to the triangulation techniques, since they utilize the existing

WLAN infrastructure. For these reasons, fingerprinting techniques are employed by

many WLAN-based positioning systems [15], [16]. It is also for these reasons that this

thesis is employing fingerprinting techniques.

2.5. Fingerprinting Localization Algorithms

As described in the previous section, localization algorithms are needed to de-

termine the mobile device position during the online phase. There are two types of

fingerprinting positioning algorithms; deterministic algorithms and probabilistic algo-

rithms. The first type employs feature matching between the online measurements and

the stored training data i.e. Radio Map. The second type uses feature probability dis-

tributions to find the grid point with the maximum likelihood of resulting in the online

measurements. It is not the objective of this thesis to list all the existing algorithms,

only the most popular examples of each type are explained bellow [1].

2.5.1. Deterministic Algorithms-Nearest Neighbor

To demonstrate deterministic positioning algorithms, k-nearest neighbor (KNN)

is reviewed in this section. KNN is a simple deterministic positioning algorithm [17]

that employs feature matching to find the closest location points in the radio map (neigh-

bors) to the target. This algorithm sets the RSS vector measured by the target device

against the n location fingerprints saved in the database to find the k closest points to

the target, where 2≤ k ≤ n. The Euclidean distance d(i, t) between the target t and the

pre-stored location points in the radio map is calculated as:

d(i, t) =
√

∑
M
z=1 (RSSiz−RSStz)2, (1)
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where RSSiz is the RSS measurement received from the zth AP at the ith location point

in the radio map. The xy position of the target are found by averaging the x and y

coordinates of the k closest fingerprints to the target.

2.5.2. Probabilistic Algorithms-Maximum Likelihood

In probabilistic algorithms, the maximum a posteriori (M.A.P) principle is ap-

plied to find the location of the target mobile device. To be able to apply this principle,

the joint distribution of the RSS from all the APs visible to a certain grid point, is

required. In other words, the radio map for this case is composed of the RSS joint

probability density functions (PDF) from each AP for each location point in the map.

Unfortunately, the correlation between the RSS values from different APs at a certain

location is not clear. However, researchers still assume the PDFs from different APs

at certain location points to be independent to simplify the analysis. Therefore, the

joint PDF can be simply obtained by the product of the individual RSS PDFs from each

AP [1]. During the online phase of this algorithm, the location of the target is approx-

imated to be the fingerprint that has the maximum probability of resulting in the RSS

vector. Such probability is found using Bayes rule, where the conditional probability of

a certain grid point corresponding to the location of the target, given the observed RSS

vector, is given by:

max
m

(P{pm |r}) = max
m

(
P{r |pm}P{pm}

P{r}

)
. (2)

The grid point that maximizes the above probability is approximated as the position

of the target [1]. This optimization problem can be simplified, since the probability

of an observed RSS vector is constant for all grid points. Moreover, the grid points

are assumed to be equiprobable. Thus, the problem can be simplified to the maximum

likelihood problem given by:

max
m

(P{pm |r}) = max
m

(P{r |pm}) . (3)
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2.6. RSS Propagation Models

Propagation modeling is another RSS-based positioning technique that is con-

sidered as a cheaper alternative to fingerprinting. Such models are capable of replacing

the radio maps employed in fingerprinting with theoretical formulas that express the

space propagation of an RF signal. Therefore, propagation models do not require the

expensive site surveys needed by fingerprinting to calibrate radio maps. The simplest

model according to which a radio signal propagates in free space, is the path loss model.

In this model, the power density of a radio signal logarithmically decays with the dis-

tance traveled from the transmitter, this model is given by:

Pr = P0−10n log10

(
dr

d0

)
, (4)

where P0 is the initial transmitted power at a reference distance given by d0, dr is the

distance between the transmitter and the receiver, n is the path loss exponent which is

an environment-dependent parameter. The path loss exponent, in open space, is known

to be n = 2 while in indoor environments it takes a value between n = 4 − 6. On the

other hand, the loss exponent in indoor environments can be less than n < 2 in narrow

areas and corridors, as such narrow structures can act as waveguides [18]. Having these

parameters and the measured RSS, the distance from the receiver to the transmitter

can be extracted and the position of the device can be estimated using triangulation

techniques. However, even if indoor losses are included in the formula, this model

unfortunately does not hold in indoor environments. This is due to the fact that indoor

environments are characterized by dense multipath and NLoS conditions, which cause

the RSS power patterns to deviate from the path loss model. This results in high distance

errors, causing the path loss model to be incapable to stand alone for indoor position

estimation [1].

2.7. RSS Properties

Many factors, beside the distance from the AP, appear to have an effect on the

power levels indicated by the RSS measurements. These factors are mainly divided into
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two groups, hardware-related and environment-related factors. The hardware-related

factors are due to the method by which RSS is reported by WLAN cards. In WLAN,

the RSS measurement that is visible to the receiving device is not the actual received

strength, rather it is an indication of the strength level. In essence, this RSS indicator is

the average of the RSS values observed over a certain sampling period [18]. Different

WLAN vendors, which support different implementation of hardware and chipsets, are

expected to result in different RSS measurements at the same location [19]. The rea-

son is that the RSS measurement can vary substantially depending on the quality of the

implemented receiver and the type of receiving antennas. In addition, RSS values are

measured differently by different vendors. For instance, the power levels are usually

specified between 0 and a maximum level known as RSSI-Max. This RSSI-Max varies

from a vendor to another, for example the RSSI-Max specified by Cisco is based on

100 levels while Atheros chipset bases its RSSI-Max on 60 levels [19]. Moreover, the

quantization step of the real RF signal can differ depending on the used WLAN card.

In general, the card that uses more quantization levels result in a better positioning per-

formance since it provides a better representation of the real signal. On the other hand,

there are environment-related factors that affect RSS measurements, such as building

materials, user’s presence and orientation and environmental noise. The effect of en-

vironmental noise on RSS measurements is typically modeled as a combination of the

small scale fading and the large scale fading. The large scale fading is owed to the

signal attenuation due to the absorption of the signal by large structures and it has a log-

normal distribution. Whereas, the small scale fading is a result of multipath and it has a

Rayleigh distribution under NLOS conditions and a Rician distribution otherwise [20].

It is worth mentioning, that those models are used for communication purposes, mainly

to model the Wi-Fi coverage indoors. However, the aforementioned models cease to

fit real RSS data resulting in these models to be insufficient for positioning. The effect

of human presence on the RSS signals is mainly attributed to the absorption of the RF

signals by the water molecules constituting the majority of human bodies [20]. In addi-

tion, the wavelength of the Wi-Fi signal is much smaller than the average human trunk,

causing the signals to diffract around the human bodies resulting in further losses [13].

The orientation of the measuring device in reference to the AP has also a major effect on
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the RSS values. This problem can be avoided using WLAN cards with omni-directional

antennas.

2.8. System Performance Metrics

Although the accuracy of positioning systems is the most important metric, it is

not sufficient to assess the overall performance of such systems. Therefore, researchers

have established certain performance criteria by which positioning systems can be eval-

uated and compared against each other [8]. The most important metrics are defined

below:

• Accuracy: The accuracy of a positioning system is usually specified by the lo-

cation error. Namely, it is the mean distance error between the estimated and

the true position. This performance metric is highly desirable, but typically it is

acquired at the expense of other metrics

• Precision: the precision of the system measures the coherence and consistency of

the results. Such metric can be calculated in different ways. The most popular

way is the distance error standard deviation. Small standard deviation indicates

high precision, thus the smaller the result error deviation from the mean value the

better the system performance.

• Complexity: The complexity of the system can be investigated in terms of hard-

ware and software. In this thesis, only software complexity is considered, which

translates into the computational complexity of the positioning algorithm. This

metric is important, especially when the computations are performed on a mobile

device, where the processing capability and the power supply are limited. Unlike

previous metrics, there is no specific method to measure the complexity of the

system. Fortunately, it can be attributed to the computational time of the algo-

rithm. Hence, the system that takes less time to complete the computations is

considered of lower complexity.

• Robustness: Robustness is the ability of the system to resume functioning under

perturbations. That is in the case of a node failure or the addition of a node to the

system. The system is preferred to be persistent under unusual circumstances.
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• Scalability: Scalability in principle is similar to robustness, but it deals with posi-

tioning scope changes. Such changes can be on a geographical scale or a density

scale. The first scope change is associated with the changes in the system cover-

age area, whereas the second is related to the changes in the number of positioning

units per area. It is very often that the systems accuracy degrades when the dis-

tance between the locator and the target is increased. The same applies when the

number of units (positioning nodes) per area is reduced. The positioning system

must ensure enough number of localization units to accommodate for increasing

the space domain, provided that the number of units does not exceed the required

quantity. Otherwise, increasing the number of units/area will result in communi-

cation channels’ congestion, more complex computations, and obviously higher

cost.

• Cost: There are many underlying factors other than the financial cost that govern

the overall cost of the positioning system. These include time, space and energy

costs. The space cost is related to the density of units per area, as explained

previously. The time cost is related to the time needed for installation and main-

tenance. Finally, the systems energy consumption is also classified as a cost, and

it is required to be fair, especially for mobile devices.

2.9. WLAN Positioning Systems Design Challenges

As previously mentioned, WLAN-based positioning systems are potential can-

didates to be the indoor counterparts of GPS. In such systems, the strength of the signal

received by the mobile unit can be used as a measure of distance. However, position-

ing is not the main application of Wi-Fi technology. Thus, some challenges arise when

using WLAN infrastructure for localization. These challenges are discussed below:

• Temporal variation of RSS: RSS measurements are usually contaminated with

environmental noise causing the RSS values to fluctuate even at the same lo-

cation [9]. The environmental noise results from the NLoS conditions and the

dynamic environmental variations characterizing the indoor environments. The

NLoS conditions are considered the main source of errors in localization sys-
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tems [21]. To elaborate on this, the NLoS conditions occur when the RF sig-

nals travel through obstructed paths causing them to get reflected, refracted, and

diffracted by obstacles. As a result, different rays of the same signal, arriving

from different paths, add up with the original signal at the receiver in a phe-

nomenon called multipath. This prevents raw RSS measurements from being a

reliable distance measure. On the other hand, the dynamic environment variations

are introduced inside buildings due to moving objects, and in general, due to peo-

ple’s presence [12]. Consequently, the multipath pattern is continuously altered

making it very difficult to be stochastically modeled and compensated for [9].

• Interference: Wi-Fi operates on the 2.4 GHz band which is an unlicensed band

that is also used by Bluetooth technology, microwave ovens, and cordless phones.

These devices cause interference to mobile devices, hence affecting the RSS mea-

surements and position estimation results [4]. In addition, water molecules are

sensitive to the 2.4 GHz frequency, and since 70 % of the human body is com-

posed of water, people’s presence and movement inside buildings highly deterio-

rate the signal strength, and hence, affect the RSS model [12].

• Latency and throughput: A mobile device takes some time to scan for Wi-Fi sig-

nals, coupled with the time needed by the system to provide location information,

is considered a source of latency that becomes crucial if there are many users’ po-

sitioning requests. In addition, the continuous scanning for Wi-Fi signals if the

user is moving causes data flow interruptions which in turn results in a degraded

throughput [1].
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Chapter 3: Literature Review

This chapter outlines related previous work and the literature that covers certain

aspects of RSS-based positioning systems investigated in this thesis. It also discusses

the latest advances in the indoor positioning field and some existing WLAN-based sys-

tems.

3.1. Fingerprinting Computational Complexity Reduction

Fingerprinting based algorithms require exhaustive matching between the RSS

measured by the mobile target and the pre-stored RSS samples to find the best match.

This process is computationally expensive. To reduce the number of needed operations

by fingerprinting to locate the user, clustering and search strategies are employed. In

addition, the dimension of a location fingerprint can grow to include all the hearable

access points in the region. However, not all the APs actually contribute to positioning;

the majority are just redundant. Therefore, including all APs in the positioning system

results in a superfluous computational cost, if not also, a deterioration in the positioning

accuracy.

3.1.1. Clustering and Search Strategies

The complexity of fingerprinting algorithms can be reduced by minimizing the

number of operations needed to find the best match. For the purpose of reducing the

computational complexity of fingerprinting, different clustering techniques are pro-

posed in the literature [15, 22–24]. Clustering is defined as the process of grouping

the elements in a data set according to some feature called cluster key, such that the

elements in the same cluster show more resemblance to each other than to the ele-

ments outside the cluster. There are various techniques with which clustering can be

performed; all vary with respect to the feature that classifies the clusters.

3.1.1.1. Incremental Triangulation Clustering

Incremental Triangulation (IT) clustering technique is employed in [15], where

the fingerprints that share a common set of visible APs constitute a cluster. In other

words, the cluster key in this case is the set of APs that cover the location points. The
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multi-level clustering approach proposed by [15] works as follow: at first, the system

takes the first AP visible to the target mobile device and scans for the pre-identified

clusters that contain this AP. Then, it takes the second AP visible to the target and scans

for the clusters that are covered by the first and second APs, and so on.

3.1.1.2. k-Means Clustering

k-Means clustering is another clustering technique that is used in [22]. This

technique uses minimum distance to assign elements to k clusters in the data set itera-

tively. Firstly, k clusters are initialized with k centre points, and then the points in that

data set which are closest to a certain center are assigned to the cluster which that center

belongs to. After that, the centroids for each cluster are recalculated, and the pervious

steps are repeated to find the new centroids. The same steps are repeated until there are

no changes in the centre points of each cluster. The algorithm for k-means clustering is

described below:

k-Means Clustering

1: Given n data points to be clustered
2: begin initialize k centers
3: do classify n points to nearest clusters
4: recalculate the centers for each cluster
5: until there is no change in the centers
6: return new k centers
7: end

Figure 6: k-Means clustering algorithm.

3.1.1.3. Fuzzy k-Means Clustering

On the other hand, fuzzy k-Means clustering is proposed in [23] to reduce fin-

gerprinting complexity. This technique relies on fuzzy logic to assign elements to clus-

ters, where one data point can be assigned to more than one cluster. Namely, each data

element has a sort of fuzzy membership to all k clusters, such that the membership

is expressed in a form of a probability [25]. This technique is used to minimize the
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following objective function:

J =
n

∑
i=1

k

∑
j=1

ui jd2
i j, (5)

where n is the number of data points, ui j is the degree of membership of element i

in cluster j and di j is the distance between the data point i and centre of cluster j.

Clustering is carried out iteratively until Equation 5 is minimized.

3.1.1.4. The Sierpinski Triangle Search Strategy

The Sierpinski triangle search strategy is implemented in [26] to optimize the

fingerprints matching process in a Wireless Sensor Network (WSN). The working prin-

ciple of this strategy is to divide the search region into sub-areas, and find the closest

sub-area to the new measurement. As though, polygonal regions are covered by refer-

ence nodes placed exactly at the vertices. Then, each region is divided to 4 triangles

and each triangle is divided further to 4 sub-triangles. During localization, the search

for the target location is restricted to the sub-regions of the triangle with the reference

nodes that are closest to the target.

3.1.2. Fingerprints Dimensionality Reduction

If it is possible to reduce the computational complexity of fingerprinting algo-

rithms by reducing the number of search operations to find the best match, then it is

legitimate to consider reducing the number of APs involved in the calculations too.

Since, each dimension of a location fingerprint corresponds to RSS measurements from

a certain AP in the region, then dimensionality reduction techniques can be used to

reduce fingerprints dimensions from M to C, where C < M.

3.1.2.1. Principal Component Analysis

Principal Component Analysis (PCA) is a famous dimensionality reduction method

that copes with the high dimensionality problem by linearly combining features into a

lower dimensional space [25]. PCA uses the knowledge of the training data covariance

matrix to decorrolate the features and to project the data in the direction of the largest

variance. Therefore, PCA can be used to choose the most informative APs in any region

given its radio map. However, PCA has a major drawback when used for classification,

which is due to the fact that PCA preserves the features with the maximum variance, but
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not the most discriminative features. Therefore, PCA dimensionality reduction might

be at a cost of degradation in the positioning accuracy which is against our objective of

maintaining high positioning accuracy.

3.1.2.2. Fast Orthogonal Search

Fast Orthogonal Search (FOS) is used to reduce the dimensionality of RSS fin-

gerprints, as described in [27]. This approach is shown to outperform conventional

dimensionality reduction techniques, such as PCA in terms of speed and accuracy.

Namely, the FOS algorithm employs a Gram-Schmidt orthogonalization procedure to

obtain the set of APs that, if used as basis functions, would minimize the total mean

square error over all the APs in the global radio map. Therefore, an AP significance is

measured in FOS by its contribution to other visible APs. If an AP is found to be con-

tributing to most of the APs in the radio map, it is then marked as significant. Namely,

FOS finds the subset of APs that form together the best replica of the original radio

map.

3.1.2.3. APs Significance Measures

Other approaches are proposed in the literature to eliminating redundant APs.

This is achieved by measuring the AP significance or contribution to the positioning

performance. In [28], the strength of the signal received from a certain AP is used to

measure the significance of that AP at each location fingerprint in the region. Each

AP is therefore assigned a weight proportional to the strength of the signal and those

with minimum weights are dropped from each fingerprint. A preliminary study of the

various AP significance measures such as, average RSS, entropy, variance, maximum

RSS is presented in [29]. The different measures are examined during both phases

of fingerprinting. The obtained results show that if RSS-based measures are used to

eliminate redundant APs, the accuracy of positioning will improve. Furthermore, the

study in [30] suggests storage reduction for systems employing on-device stored radio

maps for mobile-based positioning. The authors propose two modes for choosing the

most informative APs, which are batch and continuous modes. In the batch mode, the

APs that are mostly visible at all the location fingerprints are marked as significant.

While in the continuous mode, the algorithm updates the most informative APs every
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time a new fingerprint is recorded, in the sense that APs generating low RSS values are

dropped.

3.2. Dynamic Propagation Models

Propagation models, such as pathloss, are static and deterministic which means

they do not take into account the randomness in the RSS measurements when calcu-

lating the distance. Therefore, such models do not suit the indoor environments and

are expected to result in poor positioning performance. In [31], the authors suggest

an alternative probabilistic model to the commonly encountered path loss model; that

is the Gaussian process regression model (GPR). GPR models are used to estimate

the distance of the target from any AP. GPR is a powerful tool that can handle noisy

RSS measurements. In addition, the probabilistic nature of GPR models allow them

to capture the dynamic changes in indoor environments, as well as the multipath pat-

tern. Moreover, the system suggested in [31] is capable of performing the estimation

of the signal propagation model at runtime without the need for offline training. In

addition, the authors in [32] suggest updating the conventional path-loss model into a

path-loss log normal shadowing model that takes into account the shadowing effect in

the environment. This model is justified by the fact that the shadowing effect in in-

door environments is considered as a source of the temporal variations characterizing

RSS. Therefore, it can reflect the noise in indoor environments. Recursive least squares

(RLS) algorithm is suggested to estimate the parameters of this model [32]. The RLS

algorithm is used to filter out noise and provide a better estimate of the log normal

path-loss model.

3.3. RSS Correction Methods

One way of handling the temporal variations in the RSS measurements chal-

lenge discussed in Section 1.2 is to use RSS correction methods. The objective of such

methods is to obtain location only dependent information from the RSS measurements

by eliminating any environmental noise.

36



3.3.1. Feature Extraction

A commonly used RSS correction method is the feature extraction based method

that considers statistical features of the RSS measurements such as the mean, mode,

standard deviation, etc [33]. The correction is achieved by taking samples from the

RSS measurements at a certain location and then replacing the samples by one RSS

value. This value can be taken as one of the statistical features of the samples, such as

average or mode.

3.3.2. Time Series Analysis

In [34], time series analysis is used to analyze the correlation between consecu-

tive RSS samples received from one AP. This paper investigates the temporal variation

of the RSS values at a fixed location. By experimental tests, it is shown that the fluc-

tuations in the RSS values, at a fixed point, can be as large as 10 dBm. Therefore,

considering one sample in the position estimation, might result in low accuracy. In ad-

dition, simple averaging improves accuracy but the experiments show that consecutive

samples have high correlation. Hence, assuming independence of samples in averaging

is misleading. To account for the samples correlation, the authors of this paper treat the

RSS samples as a discrete time series that is expressed by a first order autoregressive

model. The mean and variance of n correlated samples are obtained, and it is shown

that the variance of n correlated samples is further reduced resulting in less fluctuations

and hence better expected positioning accuracy.

3.3.3. Kalman Filtering

The accuracy performance of RSS-based fingerprinting technique is improved

in [35] and [36] using the Kalman filtering method. Kalman filter is used to eliminate

the temporal variations of RSS signals. Typically, the RSS measurements, at the same

location, exhibit fluctuations that can be as large as 10 dBm. Using Kalman filter, the

authors claim that the RSS fluctuations are reduced to 1 ∼ 3 dBm. The filtered RSS

values are then averaged to find the true RSS value at a certain location.
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3.4. Online Calibrated Radio Maps

Although fingerprinting outperforms other indoor positioning algorithms, it is

not commercially adopted due to the many impracticalities coupled with it. This is

because fingerprinting require extensive site surveys to calibrate the radio map, which

are costly and time consuming. In addition, any constructed radio map runs outdated

if there is a variation in the environment, compelling new up to date site surveys. To

avoid this tedious process, attempts were made to find a method to automatically con-

struct radio maps without the need for offline data training. In [37], the authors suggest

a method to offset the offline constructed radio maps to adapt for the environmental

changes by using a system of reference points. The presented model applies regres-

sion analysis to predict new radio map values using retrieved relationship between the

RSS values measured by a mobile device and those measured by the reference points.

The same principle is applied in [38], except that an artificial neural networks based

model is used to offset the environmental factors. In [39], the authors exploit manifold

alignment and a Hidden Markov Model to update outdated radio maps of a wireless-

based localization system without the need for any extra hardware. In all the previous

models, at least an initial offline data training is required to calibrate the radio map for

the region of interest. However, the authors in [14] propose a system that estimates

and calibrates radio maps automatically for indoor positioning with zero-configuration

needed. The system proposed in [14], consists of a network of APs that are equipped

with transceivers that allow them to measure RSS values received from neighboring

APs. With a modification to the APs software, the power recordings, along with the

APs MAC addresses, are carried on managerial packets to be sensed by Wi-Fi enabled

devices. Thereafter, the mobile devices communicate the received data to a central unit

where the radio map is constructed using regression algorithms.

3.5. WLAN-based positioning systems

Many implementations of WLAN-based positioning systems are proposed in the

literature. In [16], an RF-based positioning system for indoors localization is presented.

The RSS values collected, at known locations in the region of deployment, along with
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the RSS propagation models are used to find the mobile user location. Namely, the

Floor Attenuation Factor (FAF) propagation model is used. Triangulation technique

and KNN are employed to find the user location using both empirically and theoreti-

cally determined information. The system is implemented on two phases; an online and

an offline phase. During the offline phase, the RSS data are collected and the propaga-

tion model parameters are learnt. During the online phase, the RSS values measured by

the user are communicated to a central unit where the location calculations take place.

Another famous WLAN-based positioning system is Horus system which is proposed

in [15]. Horus system is also an RF based positioning system that employs probabilis-

tic positioning techniques. This system is recognized for its ability to achieve high

accuracy results using reduced complexity algorithms. The reason for the achieved

high accuracy is that the system compensates for sources of wireless channels instabil-

ity. Moreover, it utilizes clustering techniques to decrease the algorithm computational

time. Consequently, this system is suitable for mobile devices with limited power sup-

ply. This system uses offline fingerprinting to construct a radio map that is composed

of an RSS distribution received from visible APs at each grid point. It has different

components starting with the clustering module that is used to reduce the complexity of

calculations by dividing the fingerprints into groups, according to the common visible

APs by them. It uses a discrete space estimator to return the fingerprint that has the

maximum likelihood of resulting in the measured RSS vector. A correlation handler is

used to correct the discrete estimator output by taking the average of n RSS samples.

Then, it forwards the output of the correlation handler to the continuous space estimator

to refine the location estimate.
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Chapter 4: Enhanced Fingerprinting using Hybrid Search
Techniques

In this chapter, we propose a hybrid search technique to enhance fingerprint-

ing localization algorithms. This proposed search technique employs selective match-

ing between the received signal strength (RSS), measured by the target, and the pre-

stored fingerprints to reduce fingerprinting computational requirements. The reduction

is achieved by minimizing the number of search points needed to find the best match

between the target RSS and the pre-stored fingerprints. Although, clustering helps to

minimize the search operations needed to find the target location, the amount of its com-

plexity reduction is restricted by the trade-off between the required number of search

points and the positioning error. Namely, as the number of used search points reduces,

the error performance becomes worse. This has encouraged us to investigate fast search

strategies, such as Three Step Search (TSS), Orthogonal Search (OS) and Diamond

Search (DS), which are used to avoid exhaustive search in video compression appli-

cations [40, 41]. Our investigation concluded that a hybrid solution of clustering and

search strategies violates the accuracy-complexity tradeoff allowing more computations

reduction.

Therefore, we propose a system that integrates fast search strategies with clus-

tering techniques to further reduce the complexity of fingerprinting algorithms, while

maintaining high positioning accuracy and precision. To do so, we have modified the

fast search strategies such that they can be easily integrated with clustering techniques.

In our system model, a clustering technique is applied to the constructed radio map

during the offline phase of fingerprinting, and a fast search strategy is used during the

online phase to find the delegate cluster. It is important to note that fast search strategies

are used to speed up the process of finding the cluster where the mobile user is located.

Once a cluster is found, a fine resolution search within that cluster is used to achieve

higher localization accuracy. Such breakdown of the localization process is expected to

be of low computational complexity which makes the proposed system more suitable

for battery-operated devices with limited processing capability. In addition, achieving

accurate positioning makes the system suitable for applications requiring high position-
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ing accuracy, such as tracking mobile emergency callers and automated object tracking.

4.1. Overview of The Proposed Positioning Approach

In this thesis, we adopt the location-based clustering technique proposed in [24].

A major advantage of this technique, over other clustering techniques, is its simplicity.

This is due to the fact that it is a one step classification that only uses the physical

proximity of the grid points. In addition, this technique is not only scalable to changes

in the system coverage area, but is also robust to environmental changes [24]. For

search strategies, we employ the so-called fast search strategies that are used in applica-

tions demanding a fraction of a second processing, such as motion estimation in video

compression algorithms [40, 41]. In the following subsections, the breakdown of the

proposed system is explained.

4.1.1. Fingerprinting

As explained in Subsection 2.4.3, fingerprinting is performed on two phases; an

offline phase and online phase. This technique is illustrated in Figure 7.

Figure 7: Illustration of fingerprinting technique.
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During the offline phase, an n×m radio map for the area of interest is constructed.

The RSS values RSSi j received from m visible APs in the region are collected at n grid

points pi, where i = 1, ...,n , and j = 1, ...,m. The resulting radio map is saved to a

database, to be used during the online phase. In the online phase, a matching algorithm

is used to compare the RSS measured by the target, against the pre-stored radio map, to

find the grid point with the minimum matching error. The matching algorithm adopted

in this thesis is the weighted KNN, instead of the standard KNN that is explained in

Subsection 2.5.1. The weighted KNN is regarded as a better positioning algorithm,

since it gives more importance (higher weight) to the neighbors closest to the target. In

other words, it employs a weighted average of the k closest grid points to the target to

estimate its location. This algorithm, as clarified by Equation 6, employs the root mean

square error to associate the locations pi of the grid points with weights wi, where RSSt

is the RSS measured by the target and RSSi is the RSS at the ith grid point.

pt = w1 p1 +w2 p2 + · · ·+wk pk, (6a)

wi =
e−(RSSt−RSSi)

2

k
∑

z=1
e−(RSSt−RSSz)2

. (6b)

Such that, the grid point with the minimum RSS root mean square error is given the

maximum weight and vice versa. Eventually, the position of the target pt is estimated

by summing the weighted locations of the k closest grid points, where 2≤ k ≤ n. [7].

4.1.2. Location-based Clustering

In location-based clustering, the radio map is divided into distinct or overlap-

ping clusters of neighboring grid points, with defined midpoints for each cluster. The

clustered radio map resulting from the offline phase is saved into a database. During

the online phase of fingerprinting, the predefined midpoints of the clusters, marked by

1 in Figure 8, are examined first. Afterwards, the search for the best match is limited to

the cluster with the closest midpoint to the target, marked by 2 in Figure 8.
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Figure 8: Illustration of location-based clustering.

4.1.3. Fast Search Strategies

Fast search strategies can also be considered for the use in indoor positioning to

reduce the number of operations needed to find the best match. In this thesis, strategies,

like Three Step Search (TSS), Orthogonal Search (OS), and Diamond Search (DS),

are modified to be easily integrated with fingerprinting algorithms and to suit location

finding applications.

The first search strategy to be used, is the TSS. This search strategy consists

of three levels of hierarchal search with varying step sizes. In a sense that the search

resolution increases for every next level, as shown in Figure 9. The first search window,

marked by 1 on the figure, is reduced around the search point that results in the best

matching. The same is repeated for the remaining steps, until the distance between

search points reaches 1 point separation.

The second search strategy is the Orthogonal Search (OS), or sometimes called

Directional Search. As the name suggests, the search in this technique takes place on

two orthogonal directions, horizontal and vertical.
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Figure 9: Illustration of three step search.

Figure 10: Illustration of orthogonal search.
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This strategy is illustrated in Figure 10, starting from a centre point (labeled by 1 in

Figure 10), the two vertical nearby points at a distance of 2 points separation are exam-

ined. The point that results in minimum error, when compared to the target, is chosen

as the centre for the horizontal search. The same is repeated for steps 3 and 4 but with

a distance separation of 1.

The third strategy examined is the Diamond Search (DS). This technique is

similar to the TSS, but diamond-shaped search windows are used instead of square-

shaped windows. The DS strategy is elaborated in Figure 11. As shown in the figure,

the centre point and its four surroundings, forming a diamond shape, are tested in the

first step. Later on, the point that results in the minimum distance error is compared

against its neighbors to find the best match. The same is repeated for the following

steps until the smallest possible search window is reached.

Figure 11: Illustration of diamond search.

4.1.4. The Proposed Hybrid Search

In the proposed hybrid search, we investigate the performance of clustering

when integrated with one of the search strategies proposed in this chapter. If a suffi-
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cient number of search points is used, clustering techniques can result in a comparable

accuracy to that of full search. To further reduce the number of search points, while

maintaining the good performance of clustering, fast search strategies can be used. Fast

search strategies converge faster to the minimum error matching, requiring a minimum

number of search points when compared to clustering. However, they are less accurate

and less precise. Since fast search strategies result sometimes in a local best match,

instead of an absolute best match, we accordingly integrate both clustering and fast

search strategies into the system to capitalize on the advantages of both techniques.

The proposed hybrid solution is shown in Figure 12. In the proposed hybrid system,

location-based clustering is performed during the offline stage immediately after data

collection. Whereas, any of the three suggested search strategies is implemented, dur-

ing the online phase, to search through the midpoints of the clusters. In other words, our

proposed system uses search strategies to reduce the number of search points needed to

implement clustering.

Figure 12: Proposed system model of the hybrid solution.
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4.2. Experimental Setup

A test bed was set up to collect RSS values at the first floor of the engineering

building I rotunda at the American University of Sharjah, Sharjah, UAE. The RSS val-

ues from 15 visible access points, over an area of 324 m2, were collected. The RSS

values were measured using a personal laptop with the Intel Wireless N 2230 WLAN

card. The measured values were extracted from the specified card using the Vistumbler

Software. The testing area was divided into 49 grid points with 3 meters separation

between each. Then, approximately 300 RSS samples were recorded at each location

point within a 2 minutes period. The samples were measured with 4 different orienta-

tions at each grid point. The average of the RSS values from each AP at each location

point is saved into a radio map. The radio map construction is illustrated in Figure 13.

The black dots in the figure indicate the fingerprints, while the stars indicate the loca-

tion of the access points. Finally, the obtained radio map is tabulated and exported to

MATLAB. The RSS values for 15 targets distributed over the area were also recorded

for testing.

Figure 13: Top view of the experimental area.
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4.3. Experimental Results

To evaluate the performance of the proposed hybrid search, the geographical

map with the 49 grid points is divided into 9 overlapping location-based clusters. Af-

terwards, the hybrid search strategies are used during the online phase of fingerprinting

to find the location of the 15 targets. For the sake of comparison, the localization error

performance is investigated for different search schemes. Full search is intuitively the

best when it comes to error performance. Therefore, the error cumulative density func-

tion (CDF) obtained by full search is used as a reference to assess other schemes. More

specifically, we have studied the performance of full search against the performance of

location-based clustering, the three fast search strategies when deployed independently,

and the performance of the proposed hybrid search. Figure 14 depicts the error CDF

curves for all search schemes.

Figure 14: CDF error curve of different clustering and search strategies.

In the figure, (TSS+C), (OS+C) and (DS+C) stand for the hybrid schemes, where the

three step search is integrated with clustering, the orthogonal search is integrated with
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clustering, and the diamond search is integrated with clustering, respectively. Figure 14

shows that the error CDF curves of the different combinations of the hybrid search

overlap with that of clustering. It also shows that those curves are very close to the

error performance curve of the full search, achieving the second best performance. The

probability of error for the fast search strategies, however, add up to one at a high

distance error value, indicating poor performance.

Table 1, summarizes the accuracy, precision and percentage of used search

points for each scenario. The mean distance error is used as a metric to judge the

accuracy of positioning, while the distance error standard deviation is attributed to the

positioning precision. The results in Table 1 show that the full search results in the high-

est accuracy and precision at the cost of high computational complexity, as it requires

searching the entire map. When using location-based clustering techniques, it can be

seen from the results that the accuracy and precision are slightly reduced, although the

required number of search points is less than half of the points required for full search.

While the three suggested search strategies have the lowest required number of search

points, their positioning accuracy and precision are the worst. Combining search strate-

gies with clustering techniques result in an improved performance. As it can be seen

from the last three hybrid solutions results, the accuracy and precision of which are

comparable to the full search performance. Although, they require a reduced number

of search points.

Table 1: Evaluation of the different clustering and search strategies.

Scenario Accuracy (m) Precision (m) Search Points (%)
Full search 0.5622 0.7455 100

Clustering (C) 0.7982 1.0390 36.37
Three-Step Search (TSS) 2.2302 2.8727 24.49
Orthogonal Search (OS) 2.3712 1.5274 24.49
Diamond Search (DS) 2.5250 3.2176 30.61

Hybrid Solution 1 (TSS+C) 0.8506 1.0710 34.69
Hybrid Solution 2 (OS+C) 1.4829 2.4476 30.61
Hybrid Solution 3 (DS+C) 0.7921 1.0390 33.47
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Chapter 5: RSS Fingerprints Dimensionality Reduction

In this chapter, a dimensionality reduction method is proposed to eliminate re-

dundant or non-informative access points (APs) from the positioning system. Reduction

methods can be used to restrict the location fingerprints only to RSS values measured

from informative APs. In doing so, the performance of fingerprinting is improved from

two aspects. First, the number of RSS values involved in the position calculation is

reduced, hence reducing the computational requirements of fingerprinting. Second, in-

cluding only informative APs can even improve the positioning accuracy. Although,

as discussed earlier, the multidimensional RSS vectors provide unique identification of

position points in the region of interest, it is known in practice that a larger number

of features can lead to worse positioning results [25]. This happens because involving

too many APs in the location computation causes confusion to the system especially in

indoor environments. This is due to the fact that the signals transmitted by those APs

undergo spatially variant environmental noise that can be highly more severe in some

places compared to others. Therefore, it is not at all unusual to have very close APs that

result in very different RSS values at the same location point. In addition, one should

keep in mind that mobile devices are involved in location computations in WLAN-

based positioning which makes high computational costs unaffordable. Whether the

positioning system is totally mobile based or assisted by a server, the high dimensional

RSS vectors are costly. High dimensionality infers computational and storage costs in

mobile based systems, while in mobile assisted systems, high dimensionality induces

transmission costs and time delays. Reducing the dimensionality of RSS fingerprints

helps in avoiding all these costs and it could improve the accuracy of positioning if some

of these APs are misleading. Therefore, the objective of this study is to employ a feature

reduction technique to reduce the dimensionality of the RSS vector while maintaining

good positioning performance.

The proposed dimensionality reduction method, in this thesis, is based on the

fast orthogonal search method proposed in [27]. Specifically, a modification to the FOS

implementation is proposed. The objective is to benefit from the lightweight of the

original FOS algorithm and modify it to further improve the resulting positioning accu-
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racy. According to the modified algorithm, the most informative APs to the positioning

system are those providing unique signal strength values that enhance the regional dis-

crimination. To elaborate on this, for an AP to be marked informative, it should provide

regionally discriminative RSS values, which if added to an RSS vector, will result in a

higher correspondence to the associated location point. To the best of our knowledge,

there is no obvious measure for the truly most informative APs to the positioning sys-

tem. However, we argue that the APs resulting in divergent RSS values, that are more

unique than the rest of the APs in the radio map, are more informative. Therefore, we

modified the FOS algorithm to choose the AP with the minimum contribution to the rest

of the APs. However, before we implement the modified FOS, it is needed to ensure

that all the RSS values chosen as discriminant are valid RSS values and not zero i.e.,

the AP is not hearable. Therefore, an algorithm is proposed to remove all the APs that

are not hearable at all location points.

5.1. Overview of The Proposed Approach

During the Offline phase of the fingerprinting technique, a radio map is obtained

by collecting real RSS samples at known locations. The obtained radio map is repre-

sented as an M x N matrix, see Table 2, where each of the M rows corresponds to a

known location and the columns represent the signal strength measurements from N

APs. Having the radio map in this format, dimensionality reduction techniques will be

implemented to reduce M x N matrix to a M x C matrix, where C < M.

Table 2: Radio map for M gridpoints and N access points.

AP1 AP2 · · · APN

P1 RSS11 RSS12 · · · RSS1N

P2 RSS21 RSS22 · · · RSS2N
...

...
...

...
...

PM RSSn1 RSSn2 · · · RSSMN
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5.1.1. Fast Orthogonal Search

The fast orthogonal search method considers the following model:

y(n) =
c−1

∑
m=0

am pm(n)+ e(n), (7)

where y(n) is every data column of the radio map, modeled using a small subset of

the other N − 1 columns. Furthermore, pm are the C basis functions and am are the

coefficients that are calculated using optimization techniques in order to minimize the

error e(n), which is the error between the actual output and the estimated y(n), as de-

scribed in Equation 7. Essentially, Orthogonal Search (OS) techniques study each term

am pm(n) in order to determine its contribution in modeling the desired output. FOS is

an iterative algorithm that searches for C columns from among N columns (C <N), that

if used as basis functions, would minimize the total mean squared error (MSE) over all

columns. These C columns are equivalent to the most informative APs in the radio map.

The functions pm(n) in 7 are replaced using the Gram-Schmidt procedure, with a set of

orthogonal basis functions wm(n) that are represented in the following model [42]:

y(n) =
c−1

∑
m=0

gmwm(n)+ e(n). (8)

The parameters gm minimize the MSE are modeled as [43]:

gm =
y(n)wm(n)

wm(n)2
, (9)

and the MSE is calculated as:

e2 = (y(n)−
c−1

∑
m=0

gmwm(n))2. (10)

With some mathematical manipulations, the above equation can be simplified to:

e2 = y(n)2−
c−1

∑
m=0

Qm, (11)
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where,

Qm =
[y(n)wm(n)]

2

wm(n)2
. (12)

It is clear that there is reduction in error by an amount Qm due to the addition of the

term gmwm(n) in the model. Therefore, it is required to calculate Qm for each candidate

and choose the one for which Qm is found to be greatest. Furthermore, the construction

of orthogonal basis functions wm is found to be computationally intensive and can be

avoided in FOS, where only the correlations of wm(n) with pm(n) and y(n) are required

[43]. These can be obtained through the following set of equations:

gm =
C(m)

D(m,m)
, ∀ m ∈ {1, · · · ,M} (13)

amr =
D(m,r)
D(r,r)

,∀ r ∈ {1, · · · ,m} & m ∈ {1, · · · ,M} (14)

and where

D(0,0) = 1, (15)

D(m,0) = pm(n), ∀ m ∈ {1, · · · ,M} (16)

C(0) = y(n). (17)

Thus, in general,

D(m,r) = pm(n)pr(n)−
r−1

∑
i=0

ariD(m, i), (18)

C(m) = y(n)pm(n)−
m−1

∑
r=0

amrC(r). (19)

Finally, Qm, the amount each orthogonal function deducts from the MSE, is calculated

using the following equations:

Qm = g2
mw2

m(n), ∀ m ∈ {1, · · · ,M}

Qm = g2
mD(m,m) = C(m)2

D(m,m) .
(20)
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5.1.2. FOS Implementation in Positioning System

Two different implementations of FOS are tested in this thesis; traditional FOS

and modified FOS.

5.1.2.1. Traditional FOS

Each column of the radio map is treated as a potential basis function pm(n). At

each iteration, the significance of each column is evaluated by calculating the reduction

in error caused by adding the basis function pm(n) to the current model of y(n). The

basis function with the largest reduction in error (maximum Qm), when added to the

group of already selected basis functions from previous iterations, is stored. The iter-

ations, for the current model of y(n), are carried out until C data columns, causing the

largest reduction in error, are found. Consequently, the same procedure is carried out

for every y(n), after which the C columns for each model are tallied in order to identify

the APs (columns) that result in the highest Qm values [9].

5.1.2.2. Modified FOS

To ensure that all the APs are hearable at all location points, a simple algorithm

is used. The algorithm basically eliminates all APs that don’t cover the entire location

area. This algorithm is explained below:

Eliminate nonhearable APs

1: for i = 1 to N do
2: y(i); (Radio Map Columns)
3: for z = 1 to M do
4: if any of y(i) values = 0
5: Remove the ith column from the radio map
6: end
7: end

Figure 15: The algorithm to eliminate nonhearable APs.

Afterwards, the radio map becomes ready to be compressed using the modified

FOS (MFOS). In the implementation of MFOS, the search is after the unique APs.

Therefore, The FOS algorithm is altered such that Qm value for each pm(n) is calculated
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for each model y(n). For every model, the C top pms with the lowest Qms are stored.

Finally, C columns for each model are tallied in order to identify the APs (columns)

that contributed the least to the models indicating the most unique APs. A flowchart

describing the above process is shown in Figure 16.

Figure 16: Flowchart representing the modified FOS procedure.

The reduced radio map is saved so that it will be used during the online phase

of fingerprinting. Positioning is carried out using one of the matching algorithms, such

as KNN, to find a new RSS measurements’ location. Particularly, weighted KNN is

adopted in this part as the matching algorithm which is explained by Equation 6 in

Subsection 4.1.1.
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5.2. Experimental Results

To evaluate the performance of the proposed hybrid search, the experimental

setup and the radio map obtained in Section 4.2 were used in this part as well. Using

the nonhearable APs elimination algorithm, 12 out of 15 APs in the region were found

to be hearable to all location fingerprints. Therefore, the obtained radio map is reduced

to 12x49. The dimensionality reduction methods were used to reduce the 12x49 radio

map to a 4x49. Where, M = 49 is the number of location gridpoints, N = 12 is the

number of visible APs, and C = 4 is the number of chosen APs. In other words, the

4 most informative APs, out of the visible 12 APs, in the region were determined us-

ing dimensionality reduction techniques. The feature reduction on the radio map was

performed separately for PCA, traditional FOS and the altered FOS. For all methods,

the execution halts after adding 4 data columns. The three algorithms are compared

to a reference solution of 4 APs chosen heuristically (try all possibilities to choose the

APs that result in minimum error). The reduced radio maps obtained by all the above

mentioned techniques were used to find the location of 15 targets and the positioning

accuracy was used to indicate the quality of the dimensionality reduction technique.

The KNN algorithm is used and the k = 2 closest neighbors were found for each case.

The performance evaluation of the three dimensionality reduction techniques, such as

the PCA, the FOS and the modified FOS, are all compared to the positioning perfor-

mance of full radio map and the heuristic search. The performance of the FOS and

the modified FOS are shown in Figure 17. As shown in this figure, the modified FOS

algorithm provides a lower error when compared to the original FOS. Namely, it can

be seen that for high probabilities modified FOS result in a better error performance,

achieving higher accuracy.

In Figure 18, the positioning error performance is shown for all scenarios. As

it is shown in the figure, the full radio map gives the best performance along with the

heuristic search, while the modified FOS results in the second best performance. The

original FOS method performs worse than the former techniques, however it outper-

forms PCA which matches the results in [27]. In Table 3, the overall performance of

the various dimensionality reduction techniques is summarized.
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Figure 17: Positioning error CDF of FOS and modified FOS.

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Positioning Error (m)

C
D

F

 

 

Full Radio Map

Heuristic Search

PCA

Modified FOS

Original FOS

Figure 18: Positioning error CDF of MFOS compared to all techniques.

In terms of computation, the complexity of the FOS, due to the cross-correlations be-

tween all pairs of data and applying mean square error reduction N times, is CFOS =

O(MN2 +N2C) which is small compared to CPCA = O(MN2 +N3 +MCN). Further-
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more, the MFOS has similar complexity to that of the original. Since, the computational

complexity for the FOS is much better than the PCA, it has a faster processing time.

The processing time of the algorithms were obtained using MATLAB.

Table 3: Processing time and complexity for different reduction methods.

Metric PCA FOS & MFOS
Average error (m) 1.8639 1.5135 or less

Computational complexity 11,136 7,632
Processing times (secs) 2.857 0.094

Afterwards, we investigated the performance of the MFOS compared to the FOS

at different reduction levels. The reduction methods were used to obtain different re-

duced sizes of the same radio map. The chosen APs from each reduction method were

used to find the location of 15 targets. The accuracy performance for each method is

presented in Table 4.

Table 4: Performance of different reduction methods for different levels of reduction.

Resulting accuracy (m)

Scenario Heuristic search FOS MFOS

Reduction by 1 AP 0.5471 0.6012 0.5471

Reduction by 2 APs 0.4955 0.5743 0.6505

Reduction by 3 APs 0.5248 0.6221 0.6820

Reduction by 4 APs 0.5002 0.7382 0.6004

Reduction by 5 APs 0.4886 0.6076 0.6964

Reduction by 6 APs 0.4663 0.9765 0.8571

Reduction by 7 APs 0.4767 1.0773 0.9663

Reduction by 8 APs 0.5796 1.3465 0.9574

Reduction by 9 APs 0.8860 2.3294 1.5692

The heuristic search is used as a reference to define the minimum possible error at every
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reduction level. It can be seen that the MFOS mainly results in a better performance

than the FOS, especially when a significant reduction is achieved. When only one AP

is removed from the system, it can be seen that the MFOS is as good as the heuristic

search. In addition, it can be seen that when more than 50 % of the radio map is elim-

inated, the APs chosen by the MFOS result in a better positioning accuracy than those

chosen by the FOS. From the obtained results, the modified FOS algorithm provides

the best performance in terms of the average positioning error. In addition, it still main-

tains the good computational complexity and the processing time performance which is

much better than the PCA method.

Additionally, the proposed reduction method in this chapter can be easily com-

bined with the clustering and search strategies proposed in Chapter 4. Consequently,

an ultimate reduction in the computational requirements of fingerprinting is achieved.

Such that, the hybrid search solution of clustering and search strategies is used to min-

imize the number of search operations needed to find the best match, while the MFOS

technique is used to minimize the number of features used in the matching process.

Combining both methods is achieved as following: The reduced radio map attained by

the MFOS is divided into clusters during the offline phase of fingerprinting. Then, a fast

search strategy is used, during the online phase, to search through the pre-determined

clusters. Once a delegate cluster is found, the search for the location best match is ex-

ecuted within that cluster only. The performance of all the clustering and the search

strategies investigated in Chapter 4 when combined with the MFOS is presented in

Table 5.

Table 5: Accuracy of clustering and search strategies with and without MFOS.

Resulting accuracy (m)
Scenario without MFOS with MFOS

Full search 0.5622 0.5920
Clustering (C) 0.7982 0.6696

Three-Step Search (TSS) 2.2302 1.7324
Orthogonal Search (OS) 2.3712 2.5304
Diamond Search (DS) 2.5250 2.8335

Hybrid Solution 1 (TSS+C) 0.8506 0.6802
Hybrid Solution 2 (OS+C) 1.4829 1.5105
Hybrid Solution 3 (DS+C) 0.7921 0.6696
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It can be seen from the results that the error performance actually improves when using

the reduced radio map obtained by MFOS in most of the scenarios. Although, the

accuracy deteriorates for some scenarios, the amount of accuracy reduction at those

scenarios is insignificant.

In the same manner, the time needed to find the positions of the 15 targets is

investigated. An assumption is made that all the RSS measurements for all the targets

are available at the processing unit. In other words, the time investigated in this part

is just the time needed to search for the best match of the 15 targets in the radio map.

Table 6 summarizes the processing time for the different clustering and search strategies

studied in Chapter 4 with and without using MFOS. It can be seen from the results

that the processing time for the location calculations is reduced significantly when the

reduced radio map, obtained by MFOS, is used instead of using the entire radio map. In

addition, the results underline the effect of the different clustering and search strategies

on the processing time. The results show that using full search and clustering are at the

cost of increased time requirements. While the fast search strategies (TSS, OS, DS) are

the fastest in location determination. Finally, the hybrid search solution proposed by

this thesis is shown to have a relatively small processing time when combined with the

MFOS, as well as high positioning accuracy, as shown in Table 5.

Table 6: Computational requirements of clustering and search strategies with and with-
out MFOS.

Processing time (sec)
Scenario without MFOS with MFOS

Full search 0.029704 0.019688
Clustering (C) 0.026615 0.012736

Three-Step Search (TSS) 0.012011 0.007180
Orthogonal Search (OS) 0.009335 0.007225
Diamond Search (DS) 0.010020 0.008438

Hybrid Solution 1 (TSS+C) 0.014285 0.010776
Hybrid Solution 2 (OS+C) 0.010921 0.009579
Hybrid Solution 3 (DS+C) 0.011619 0.009185
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Chapter 6: Error Reduction in Distance Estimation of RSS
Propagation Models using Kalman Filters

In this chapter, a different positioning technique is investigated; that is prop-

agation models. Such models are less accurate than fingerprinting-based positioning

techniques, however, they don’t require expensive calibration. To enhance the position-

ing accuracy of propagation models, we propose using RSS correction methods. The

reason behind using the RSS correction methods is to handle the temporal variations

in the RSS measurements. Essentially, correction methods are used to eliminate any

environmental noise contaminating the RSS measurements, hence obtain location only

dependent measurements. We argue that when RSS correction methods are integrated

with propagation models, the performance of such combined models is expected to get

enhanced significantly.

A commonly used RSS correction method is the feature extraction based method

that considers the statistical features of the RSS measurements, such as the mean, the

mode and the standard deviation [33]. However, such correction methods give equal

importance to all samples without differentiating between noisy and true RSS values.

Therefore, such methods do not suit the noisy nature of the RSS samples. On the other

hand, the most famous RF propagation model is the path loss model. However, the path-

loss model is deterministic, which means it does not take into account the randomness

of the RSS. Therefore, it does not suit indoor environments and is expected to result in

poor positioning performance. Instead, we use Kalman filters in the correction process

of the RSS measurements. Then, Kalman filters will be integrated with a probabilistic

propagation model, such as the Gaussian Process Regression, to estimate the distance

at which those filtered RSS values were measured.

Kalman filter is a powerful mathematical tool that is typically used in estimation

problems. In the proposed system, Kalman filters are used to estimate the actual RSS

value from a set of noisy RSS measurements at a certain location. We adopted Kalman

filters in this thesis due to their known optimality in achieving minimum mean square

error (MMSE). Hence, Kalman filters are expected to result in better performance in

terms of estimating real RSS values, as compared to other RSS correction methods.
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Afterwards, the filtered RSS values are forwarded to a GPR model to estimate the dis-

tance of the target from the AP. The GPR is another powerful tool that can handle noisy

measurements. The probabilistic nature of the GPR models allow them to capture the

dynamic changes in indoor environments, as well as the multipath pattern. Therefore,

integrating both tools is expected to provide accurate distance estimation and hence en-

hance the positioning accuracy of propagation models which are cheaper alternatives to

the more expensive fingerprinting techniques.

6.1. Overview of Proposed System

In this section we present the different components of the proposed system.

First, we present the RSS measurements correction method using Kalman filters. Sec-

ond, we discuss the usage of the GPR models in distance estimation. Then, we present

the coordination between those system components to estimate a user position.

6.1.1. RSS Measurements Correction

Let {RSS1m, RSS2m, · · · , RSSkm} be a set of k noisy RSS values measured from

a certain AP (APm) at a certain location. Kalman filter will be used to estimate the true

RSS value given the noisy measurements.

6.1.1.1. Kalman Filter Algorithm

Kalman filters are Bayesian filters that provide the state that maximizes the prob-

ability of resulting in the online observations p(x|Y k), where Y k = [y(0), y(1), · · · , y(k)]

are the observations up to time k. As stated previously, Kalman filters provide the

MMSE estimate which happens to be the mean of p(x|Y k), and its covariance is the

measure of accuracy of the estimate. With every new observation, the filter propagates

the mean and the covariance of a system state to provide a new estimate. Therefore, the

Kalman filter is suitable for real time processing of data. In this paper, we implement a

discrete time Kalman filter to estimate a time varying state parameter, such as the RSS,

that follows a discrete time linear difference equation expressed by

xk = Ak−1xk−1 +wk−1, (21)
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while the observed system is given by

yk = Hkxk + vk. (22)

The random processes wk and vk are the system and the observation noises, respectively,

which are assumed to be independent of each other with covariance matrices Qk and

Rk. A is a matrix that relates the previous to the current estimates, while the H matrix

defines the relation between the measurement and the desired estimate. In our system,

both matrices are equal to one, since the estimate here is just a constant that can be

measured directly. Based on the system model and the measurements model, the filter

is supposed to estimate the true RSS value. A posteriori estimate x+k of the state can be

found if all the measurements up to the kth time are available. On the other hand, if all

the measurements up to time k− 1 are available, a priori x−k estimate of RSS value at

time k is found. This makes x−k a predicted estimate of the state, whereas x+k a smoothed

estimate of the state. In addition, Kalman filters provide a measure of the uncertainty in

the state estimate at each iteration which is calculated by the estimation error covariance

P. The filter algorithms can be summarized using the following equations [44]:

x−k = Ak−1x+k−1, (23)

P−k = Ak−1P+
k−1AT

k−1 +Q, (24)

Kk = P−k HT
k (HkP−k HT

k +R)−1, (25)

P+
k = (1−KkHk)P−k , (26)

x+k = x−k +Kk(yk−Hkx−k ). (27)

6.1.2. Probabilistic Propagation Modeling

Propagation models are used to estimate the distance of a device from the AP,

given its measured RSS value. Probabilistic propagation models consider the input and

output to be randomly distributed. Hence, they work better in dynamic environments.

In the case of indoor positioning, x, the input to the propagation model, is the RSS

measurement, while y, the output, is the estimated distance. The input and the output
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are related through an underlying function f (.) as presented by:

y = f (x)+ ε, (28)

where ε is an additive noise.

6.1.2.1. Gaussian Process Regression

The GPR is a mathematical tool that is used to estimate the output of a system

at a new input, given a set of noisy input/output data. A Gaussian process (GP) is

defined in [45], as a set of jointly Gaussian distributed random variables with a mean

and covariance that are given by the following equations [46]:

µx = E [ f (x)] , (29)

k(x,x′) = E
[
( f (x)−µx)( f (x′)−µx′)

]
. (30)

In GPR models, the ε is assumed to be an independent additive zero mean Gaussian

noise N
(
0, σ2

n
)
. Furthermore the covariance function is chosen to be the squared

exponential in

k(xp,xq) = σ
2
f exp

(
−(xp− xq)

2

2l2

)
. (31)

For this covariance function, it can be seen that when the input values are close, the

corresponding random variables have high correlation, almost equal to σ2
f . Whereas,

the covariance approaches zero when xp is far from xq. A separation factor, l, is used to

define the amount of change in the input that is required to result in a significant change

in the output [45]. After adding the noise to the system, the covariance function is given

by:

cov(yp,yq) = k(xp,xq)+σ
2
n δpq, (32)

where δpq is the Kronecker-delta function which is zero everywhere, except when p= q,

resulting in only the diagonal elements of the covariance matrix to be interrupted by
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noise [46]. The GPR model covariance matrix is evaluated for n data points as:

K =


k(x1,x1) · · · k(x1,xn)

... . . . ...

k(xn,x1) · · · k(xn,xn)

 , (33)

while the covariance function for a new input x∗ is given by

K∗ =
[

k(x∗,x1) k(x∗,x2) · · · k(x∗,xn)
]
,

K∗∗ = k(x∗,x∗).
(34)

Finally, the estimated output y∗ at the new input x∗ is given by the estimated mean given

by

y∗ = K∗K−1y, (35)

and the estimated uncertainty is given by the variance of the estimate which is given by

var(y∗) = K∗∗−K∗K−1K∗T . (36)

6.2. The Proposed System

In our proposed system, we integrate Kalman filters and Gaussian regression

models to estimate a distance traveled by a received Wi-Fi signal. The purpose of such

integration is to remove the temporal variations of the RSS measurements and to employ

probabilistic propagation models that mimic the dynamic nature of signals propagation

inside buildings. A one time confined calibration phase is needed to learn the param-

eters of the GPR models and the Kalman filter model covariances. The system is then

ready to be used in online localization. Figure 19 shows the integration of the proposed

system components into an online localization system. First, the mobile device, which

is to be located by the system, collects the RSS samples (RSSi j) from visible APs in

the region, where i = 1, · · · ,m APs and j = 1, · · · ,k samples. Those, RSS samples are

transmitted to a location server where the location computation is performed. The raw

RSS samples (RSSi j) measured by the mobile device are corrected using a Kalman filter
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to find the best estimate of the true RSS value received from each AP. As a result, one

estimate from the k samples received from each APs is obtained, resulting in a vector

of m RSS values {RSS1,RSS2, · · · ,RSSm}. Secondly, the filtered RSS values are for-

warded to the previously trained GPR propagation models to approximate the distance

of the mobile device from each fixed APs. For each AP in the region, a GPR model is

defined, hence, m GPR models are obtained. The input to each GPR model is the RSS

value received from the AP corresponding to it, and the output is the distance traveled

by the signal from the AP and received by the device (RSSi⇒ GPRi⇒ di). The exact

location of the user can then be calculated using triangulation techniques. Our objec-

tive is to reduce the error in distance estimation to enhance the positioning accuracy.

Kalman filters provide the optimal estimate of the RSS value by minimizing the mean

square error (MSE) given the noisy RSS samples. While GPR models are used to esti-

mate the distances, at which the RSS values are measured, through regression without

the need for the tedious calibration phase. Our proposed approach is more practical for

commercial use than fingerprinting techniques and more accurate than other traditional

propagation models.

Figure 19: Proposed system model of propagation models when integrated with Kalman
filters.
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6.3. Experimental Results

To evaluate the performance of the proposed system, 10 RSS measurements and

their corresponding distances were first collected to learn the model for each AP in the

range, as illustrated in Figure 20. In our experiments, we considered σ f and σn to be

10 dBm which is the amount of RSS fluctuations caused by the temporal variations. In

addition, we considered the separation factor (l) to be 18 m, the length of the testing

area. The Distance estimation is carried out for 36 targets sparsely distributed over the

testing area. During the run time of the positioning system, 50 RSS samples measured

from the same AP were collected at the 36 targets locations. Kalman filters were used to

correct these measurements. The parameters of the covariance functions of the system

and measurement noise, Rk and Qk, were learnt through tuning and they were found to

be 0.1 and 0.001 respectively.

Figure 20: Illustration of propagation modeling for one AP in the experimental area.

Our proposed system is tested on two stages. Firstly, Kalman filters are used

to correct RSS values for different propagation models: the PathLoss and the GPR

67



model. The distance estimation of both propagation models are plotted against the true

distances for RSS values ranging from -35 to -65 dBm. The performance is shown in

Figure 21 and it can be seen from the figure that the GPR performance is much better

than PathLoss especially for low RSS values. The achieved average error using Kalman

filters and GPR models is 3.635 m. However, the estimation error of PathLoss models

is still very high (8.53 m) even when it is integrated with Kalman filters. Therefore, our

results prove that GRP models outperform PathLoss models in distance estimation.

Figure 21: Distance estimation using GPR and Pathloss.

The second part of our proposed system evaluation is to test the GPR mod-

els performance when integrated with different RSS correction techniques. The dis-

tance estimation error cumulative density function (CDF) of the GPR models integrated

with different RSS correction methods is shown in Figure 22. As shown in the figure,

Kalman filters result in the best performance achieving a lower distance error for high

probabilities. Other RSS correction methods, such as using the statistical mean and

median of the noisy measurements, result in a worse performance with higher distance

error. The average of distance error estimation for GPR and the three RSS correction
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methods is shown in Table 7. As summarized in the table, integrating Kalman fil-

ters improves the distance estimation accuracy by almost 2 m when compared to other

RSS correcting methods. More specifically, integrating GPR models and Kalman filters

result in the best error performance amongst propagation models and RSS correction

methods.

Figure 22: GPR performance using different RSS correction methods.

Table 7: Accuracy of GPR distance estimation using different correcting methods.

Correcting method Kalman filter Mean Mode
Accuracy (m) 3.61 5.17 5.22

It is important to note that propagation models are highly dependent on the ob-

servability of the APs that are employed by the positioning system. In other words,

informative APs should be used to guarantee the good performance of distance estima-

tion. To illustrate, the integrated Kalman and the GPR models were used to estimate

distances from a non informative AP. It was found that the average distance error has
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increased to 4.7670 m. This proves that the position of the AP and its observability

of the targets are highly important. Therefore, we suggest using the MFOS technique

proposed in Chapter 5 to learn the APs that should be used by propagation models to

assure accurate distance estimation.
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Chapter 7: Conclusions

Advances in smartphone technology, coupled with the increasing demand for

context aware and location based services, have initiated the need for a new gener-

ation of positioning systems. While existing global positioning systems (GPS) have

good performance outdoors, they perform poorly inside buildings. This thesis studied

different indoor positioning techniques and approaches which are fingerprinting and

propagation models. In particular, we proposed a hybrid solution of clustering and fast

search techniques to improve fingerprinting techniques by reducing their computational

requirements. Our results showed that the proposed search approach has a compara-

ble performance to the full search with a much reduced number of searching points.

Moreover, the study presented in this thesis highlights the tradeoff between the system

performance and the required number of search points; the less the number of search

points, the worse the performance. With the hybrid solution, the accuracy-complexity

tradeoff is fortunately violated, allowing further complexity reduction while maintain-

ing high accuracy.

In addition, the FOS and the modified FOS algorithms were implemented in or-

der to reduce the dimensionality of the radio map to a matrix containing only the most

informative APs to the positioning system. Moreover, the modified FOS, which is a

variant of the FOS, is proposed in this thesis where the reduction in error is calculated

to determine the APs that result in the unique RSS values. Both these algorithms were

compared to the PCA reduced radio map, heuristically reduced radio map and the full

radio in terms of the positioning error. Results illustrate that the FOS provides lower

error when compared to the PCA, however, modified FOS outperforms its conventional

FOS counterpart and has a performance very close to the performance of heuristic and

full radio map. Furthermore, the FOS and the MFOS are less computationally intensive

than the PCA and therefore have lower processing time. Later, the MFOS was com-

bined with the hybrid search solution proposed previously which resulted in a better

positioning accuracy and a faster processing.

Furthermore, we have studied propagation models based positioning techniques.

Specifically, the GPR propagation models were investigated and their performance was
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compared against conventional propagation models, such as PathLoss. In addition, a

system that integrates Kalman filters with GPR was proposed in this thesis. The objec-

tive of such system design is to enhance the performance of GPR models by eliminating

the RSS temporal variations through Kalman filtering. It is found that our proposed sys-

tem improves distance estimation by almost 2 m. Our objective is hence achieved which

is to improve the modeling of signal propagation inside buildings at the lowest cost.

As part of future work, more clustering techniques can be considered for differ-

ent cases of positioning algorithms. Also, the effect of other involved parameters is to

be investigated, such as the number of grid points and the area of the test environment.

In addition, the amount of reduction suitable for different positioning cases will be stud-

ied. MFOS will also be investigated to be used in radio map partitioning for large scale

areas. On the other hand, The effect of the number of samples on the performance of

Kalman filters will be studied. Moreover, the latency resulting from samples collection

will also be considered. In addition, the distance estimation of the GPR models can be

enhanced by assuming a suitable mean for the estimates. Finally, the estimation of an

exact position of a user, using the distance estimates and triangulation techniques, will

be taken into account.
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