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Abstract 

Reliable power transmission is a main factor in designing transmission and 

distribution lines. Contaminated environments significantly reduce the performance of 

outdoor insulators in which the accumulation of contamination eventually leads to a 

complete flashover. The main factors that lead to contamination flashover include, 

operating voltage, humidity level and temperature. Contamination flashover happens 

when soluble or non-soluble deposits cover the surface of the insulator, which results 

in a reduction of the surface resistance. The flashover event is the main problem that 

affects the life-time of the insulators reducing the security and reliability of the power 

transmission system. Controlling the risk of flashover is practically done by cleaning 

and replacing heavily polluted insulators. However, there is no standard technique for 

scheduling cleaning or maintenance of outdoor insulators, which in some cases can 

extend for hundreds of kilometers. To make this process as efficient as possible, many 

researchers are trying to develop techniques for flashover prediction. In the past, some 

researchers used the leakage current to predict the contamination level on the surface 

of ceramic and porcelain outdoor insulators. This can help as a mean to warn 

transmission power operators about the advent of contamination flashover. However, 

there have been few researches to predict the contamination levels on the surface of 

non-composite or polymer insulators. This work aims to develop a practical technique 

to monitor and evaluate the surface condition of non-composite by predicting the 

soluble contamination level. In this research, the leakage current was used to predict 

the soluble salt deposit on the surface of polymer insulators. Based on this prediction 

the surface condition of the insulator was evaluated.  

 

 

Search Terms: Outdoor Polymer Insulators, Leakage Current, ESDD Prediction, 

Contamination Flashover. 
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Chapter 1: Introduction 

1.1 Problem Statement  

High voltage outdoor insulation design and monitoring are vital to ensure 

reliable power transmission and distribution. Outdoor insulators have two main 

functions in overhead lines, which are providing electrical insulation to the conductor 

and providing mechanical support to the structure. In order to sustain their role in 

overhead lines, the outdoor insulators must be able to withstand different types of 

stresses including, electrical stresses, and mechanical loads under different 

environmental conditions. Ceramic insulators have been employed in the field since 

1800 and they are characterized by great mechanical stability and long life time. On 

the other hand, polymer insulators were first introduced in 1959 and nowadays they 

are being increasingly used worldwide. The polymer insulators have certain 

advantages including light weight, low cost and superior contamination resistance as a 

result of their excellent hydrophobic properties [1]. 

The main concerns which arise for polymer insulators are their long term 

pollution performance and aging due to tracking and erosion. The process of aging in 

polymer insulators starts with the loss of hydrophobicity allowing the flow of leakage 

current, which causes further aging processes like dry-band arcing. The dry-band 

activities deteriorate the polymeric material and eventually bridge the whole length of 

insulator causing a flashover incident. Therefore, monitoring of leakage current is 

extremely essential to evaluate the aging condition of outdoor insulation. The leakage 

current magnitudes showed no correlation with the aging state of insulators. However, 

the leakage current shape [8] and frequency spectrum [9] can be used to monitor and 

assess the surface and aging conditions in insulators. 

The leakage current development can be categorized into three stages: namely 

the early aging period, transition period and final aging period [14]. Leakage current 

measurement is used in lab tests in order to study the performance of outdoor 

insulators under different conditions as well as to study different aging mechanisms. 

Salt fog test is a standard test, which is used to study the flashover performance and 

aging mechanisms including, loss of hydrophobicity and dry-band arcing [1]. In 

addition, leakage current monitoring is widely used by power utilities in the field in 

order to examine the conditions of outdoor insulators.  
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Leakage current measurement is a very popular technique to monitor the 

pollution performance of outdoor insulators. Many researchers have used leakage 

current to predict the pollution severity on the surface of insulators and to predict the 

flashover voltage. The prediction of leakage current can give a good indication of the 

surface state of insulator which can be used to better plan an efficient cleaning and 

maintenance schedule. Cleaning routines for outdoor insulators is time consuming and 

very expensive as the transmission lines may extend for hundreds of kilometers. If 

leakage current monitoring is employed to predict early contamination levels, then the 

scheduling of cleaning and maintained can be optimized to minimize effort and 

money.  

Environmental conditions have the greatest effect on the performance of the 

outdoor insulators. The accumulation of contamination, like salt, dust and sand 

eventually leads to a complete flashover on the surface of the insulator. 

Contamination flashover has become a significant aspect in designing outdoor 

insulators and it has been under extensive research. When the insulator surface gets 

covered by soluble salts and moisture, the insulator surface becomes more conductive. 

After the formation of conductive layers, dry band regions will appear on the surface 

leading to the start of partial arcs. These arcs get elongated which finally bridges the 

whole insulator leading to a flashover. 

 Many researches have been conducted to predict the contamination level on 

the outdoor insulators in order to prevent the advent of flashover occurrence. 

Knowing the contamination levels can serve as warning system and help in 

scheduling washing and maintenance routines. All researches were performed on 

ceramic, porcelain and glass insulators. The researchers found that the leakage current 

peak value is the most effective in the prediction of contamination levels along with 

the environmental conditions including, operating voltage, temperature and humidity. 

However, to the best of our knowledge, no research has been done to predict 

the contamination level for polymer insulators. The main objective of this research is 

to use the leakage current parameters techniques in order to predict the soluble salt 

deposit (ESDD) level for polymer insulators. This can help in evaluating the surface 

condition of the insulator which will enhance the monitoring, cleaning and 

maintenance of insulation along the transmission lines. 



14 

 

1.2 Thesis Contribution 

Previous researches have been conducted to correlate the ESDD and Leakage 

current for ceramic and porcelain outdoor insulators. Since polymer insulators are 

relatively new and their mechanism of suppressing the leakage current known as 

hydrophobicity is not fully understood, it is difficult to predict the ESDD level on its 

surface. Very few researches were performed to predict the contamination level on the 

surface of polymer outdoor insulators. In this study a practical approach is developed 

to evaluate the surface condition of polymer insulation by predicting the ESDD level 

on its surface. This work can help in developing a practical monitoring system for 

outdoor polymer insulator which will allow power system operators to schedule 

maintenance and cleaning routines based on practically more precise measures.       

1.3 Thesis Arrangement 

The next chapters of this thesis are arranged as the following. Chapter 2 

provides a background on outdoor insulation, polymer insulator as well as leakage 

current monitoring and ESDD prediction. The literature review about the leakage 

current and ESDD prediction is provided in chapter 3. Chapter 4 explains the 

experimental setup, experimental procedure and the data collection. An overview of 

the pattern recognition techniques which will be used for the prediction of the ESDD 

Level is described in chapter 5. Then chapter 6 presents and discusses the main 

findings of this study. Finally, Chapter 7 will conclude this work and give 

recommendations for further work. 
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Chapter 2: Outdoor Insulators 

2.1 Outdoor insulators 

Outdoor insulators are essential elements in power distribution and 

transmission overhead lines. They are primarily required to support the outdoor 

conductors as well as to electrically insulate the conductors from the supporting 

structures. Most of the generated electric power is transmitted through overhead lines 

at high voltages (hundreds of kV) in order to minimize the power losses. The line 

voltage conductors operating at such high voltages need to be connected to the 

support structures, and they also need to be insulated. Both functions are performed 

by the outdoor insulators, which are expected to provide mechanical support and 

electrical insulation. Moreover, these insulators must also withstand the outdoor 

conditions that they are normally subjected to [1]. 

During their operation time, three types of stresses are encountered by outdoor 

insulators which are mechanical, electrical and environmental stresses. These stresses 

vary according to the application and surrounding conditions of the insulators. For 

instance, line posts can experience mechanical loads like cantilever or bending loads, 

while suspension insulators are subjected to tensile loads. In addition, wind and ice 

adds more mechanical load to the insulator. Some transient loads can also impact the 

insulator including vibrational loads, shock loads due to natural disasters or man-

made actions like vandalism (gun shots).   

The electrical stresses include steady state or normal operating voltages and 

frequencies. They also include transient voltages or voltage surges that result from 

switching and lightening events. These voltage surges impose a higher stress on the 

insulator but for shorter durations. The outdoor environmental conditions include 

temperature, which increases the conductivity of insulating materials. Ultraviolet 

radiations may cause breakdown or cross linking of certain chemical bonds leading to 

surface degradation. Contamination resulting from rain, dew, fog, ice or moisture in 

general decreases the surface resistance of insulators. Therefore, the outdoor 

insulators must be designed to withstand steady state and transient stresses whether 

they are electrical or mechanical under different environmental conditions. 

One of the earliest, yet most significant challenges faced by insulator 

designers is the environmental effects on their performance. Contaminated 
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environments have a great effect in reducing the performance of outdoor insulators in 

which the accumulation of contamination eventually leads to a complete flashover. 

Contamination flashover has become the most significant aspect in designing outdoor 

insulation and hence it needs to be carefully studied [2].  

For contamination flashover to occur, the insulator surface needs to be covered 

with soluble salts and moisture which are generally referred to as pollution. Moisture 

plays a critical role in the flashover process because under dry conditions, the 

contaminants are non-conducting. Therefore, light rain, fog and mist are very 

dangerous to outdoor insulators as they wet the surface making the pollution layer 

conductive. After the formation of conductive layers, dry band regions will appear on 

the surface leading to the start of partial arcs. These arcs get elongated which finally 

bridges the whole insulator leading to a flashover. 

There are two main categories of outdoor insulators which are ceramic and 

polymer insulators. The ceramic insulation is normally made of two materials, either 

porcelain or glass. Polymer insulators are made of composite material and generally 

comprise a fiber glass core protected by rubber housing. The polymer insulators were 

introduced due to their, light weight, contamination resistance, vandalism resistance, 

low cost and easier handling. However, composite insulators are subjected to long 

term aging processes leading to the deterioration of their mechanical and electrical 

properties. The ceramic insulators on the other hand are more chemically and 

mechanically stable. However, they have low pollution resistance, heavy weight and 

are more expensive.  

2.2 Polymer Outdoor Insulation 

2.2.1 Structure of Polymer Insulation 

The first polymeric outdoor insulators can be traced back to 1959 and they 

were made of epoxy. However, they failed when applied to outdoor contaminated 

conditions. The modes of failure were due to ultraviolet degradation, tracking and 

erosion. The sixties and seventies experienced an increase in the production of 

polymer insulators. These insulators had the same fundamental design features as the 

contemporary designs as illustrated in Figure 1. A fiber glass rod was used as the core 

material to give the necessary support, while the rubber housing provided protection 

from the environmental conditions and contaminations [2].  
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Figure 1: Structure of Composite Insulators [2] 

Typically a composite insulator comprises a core material, end-fitting, and a 

rubber insulating housing. The core of the insulator is made from fiber-reinforced 

plastic (FRP) to distribute the tensile load providing mechanical support to the 

insulator. The reinforcing fibers used in FRP are glass (E or ECR) and epoxy resin. 

The sheath of the insulator is made from silicone rubber which provides electrical 

insulation and weather resistance. The weather resistance is essential to protect the 

insulator’s core from environmental conditions. The silicone rubber is particularly 

famous for its excellent hydrophobic properties, which has a great effect in resisting 

the contamination conditions and aging processes encountered by the insulator during 

its service time. 

2.2.2 Hydrophobic Properties of Polymer Insulation 

One of the greatest advantages of polymeric insulators over ceramic insulators 

is its ability to resist the formation of continuous water films above its surface, 

suppressing leakage currents (LC), dry-band arcing and flashover. This surface 
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property is known as hydrophobicity, and is defined as the ability of the insulator to 

repel water on its surface, forming individual droplets rather than a film [3]. The 

hydrophobic behavior of polymer insulators arises due to the low surface energy on 

its surface. Hydrophilic materials, like ceramic insulators, have higher surface energy 

allowing the formation of water films on its surface [4]. The hydrophobic properties 

of polymer insulators have been widely investigated to understand the surface 

condition of insulators. Figure 2 shows the leakage current development in both 

ceramic and polymer insulators. 

 

Figure 2: Leakage Current Development in Porcelain and Rubber Insulators [7] 

As depicted in Figure 2, the leakage current development in porcelain is very 

fast compared to silicone rubber. The hydrophobic behavior of silicone rubber 

suppressed the leakage current formation for much longer time. The hydrophobicity is 

commonly evaluated by measuring the static contact angle between the water droplet 

and the surface. Other methods like dynamic contact angle, Swedish transmission 

research institute, sliding angle and water soaking can also be used to quantify 

hydrophobicity [3]. The contact angle for hydrophobic surfaces is higher compared to 

hydrophobic surfaces as shown in Figure 3, 
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Figure 3: Relation between Contact angle and Hydrophobicity [34] 

The hydrophobicity of silicone rubber is lost due to chemical reactions on the 

surface. For instance corona discharges result in oxidation reactions, which lead to the 

decrease in hydrophobic properties. Other reasons for the loss of hydrophobicity 

include, surface pollution, UV radiations and temperature. However, after the removal 

of the electric or environmental stresses, the polymeric insulators can recover the 

hydrophobic properties again. The most significant process for the hydrophobicity 

recovery is the migration of the low molecular chain fluids from the bulk of the 

material to the surface of the silicone rubber [5]. The process of loss and recovery of 

hydrophobicity occurs several times during the life time of silicone rubber insulators. 

2.3 Aging Process in Polymer Insulators 

Unlike porcelain and glass insulators, the flashover events in composite 

insulators are much less frequent. The excellent water repellency property of silicone 

rubber suppresses the formation of leakage current, which in turn reduces the 

possibility of flashover. The causes of failure in polymer insulators are largely 

mechanical in nature [3]. As a result of housing damage, the fiber glass core gets 

exposed to the outdoor conditions, which can cause brittle fraction of the core. The 

aging process starts with the loss of hydrophobicity which leads to the development of 

leakage currents and eventually to dry-band arcing which causes a deterioration to the 

insulator material [6]. 
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The main cause for initiating the aging process in polymer insulators is the 

development of corona discharges [3]. When the surface of insulator is contaminated 

with water droplets, the electric field gets enhanced at the triplet point between, the 

air, water molecule and the insulator surface. Figure 4 shows the field enhancement, 

around the triplet point, due to the presence of a single water droplet on the surface of 

silicone rubber insulator. This field enhancement causes the development of small 

partial discharges known as corona, which attack the surface of insulator leading to 

chemical changes. Although the energy associated with the partial discharges are very 

weak, however; their high frequency occurrence can lead to a temporary loss of 

hydrophobicity [7].  

 

Figure 4: Field Enhancement due to Water Droplet 

As the surface of insulator becomes hydrophilic, water droplets start to be 

converted into continuous filaments, leading to the development of leakage currents, 

which heats up the insulator surface. However, the current density on the surface is 

non-uniform, and hence the heat dissipation in some regions is much higher than other 

regions, leading to water evaporation. This non-uniform water evaporation forms 

narrow dry bands on the surface, which changes the voltage distribution and causes 

greater discharges, known as dry-band arcs, to bridge the dry bands [7]. 

Time = 0 Surface: Electrical Field Norm (V/m) 
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  There are three aging periods, through which the development of leakage 

current takes place, which are: early aging period, transition period and final aging 

period. The leakage current normally follows a pattern as shown in the Figure 5, 

 

Figure 5: Aging Process for Composite Insulators [21] 

In region one, early aging, the insulator’s surface hydrophobicity is still 

preserved, suppressing the leakage current development, while the migration of low 

molecular weight fluids to the surface helps to maintain the hydrophobicity property. 

In region two, transition period, the insulator surface becomes wet, as a result of 

partial loss of hydrophobicity, while dry band-arcing starts to develop at this stage. In 

the last stage of aging, the hydrophobic properties are completely lost and the leakage 

current reaches a saturation level, where the dry-band arcing starts to degrade the 

material [7]. 

2.3.1 Leakage Current Characteristics 

The leakage current is one of the most important parameters to assess the 

performance of outdoor insulators. The magnitude of leakage current can be related to 

the contamination level on the insulator surface. However, the studies have shown no 

correlation between the leakage current magnitudes and the aging state of polymer 

insulators [8]. The shape of the leakage current signal [8] and its frequency spectrum 

[9], on the other hand; can give information about the surface conditions of the 

insulator. For instance, when the hydrophobicity is still maintained the leakage 

current is capacitive, however; hydrophilic surfaces are characterized by resistive 

leakage currents [7] as shown in Figure 6, 
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Figure 6: (a) Capacitive LC (Hydrophobic) and (b) Resistive LC (Hydrophilic) [7] 

In Figure 6(a), it can be noticed that the leakage current is capacitive since the 

phase shift between the leakage current and applied voltage is almost 90 degrees. 

However, in Figure 6(b), the leakage current is in phase with the applied voltage 

indicating a resistive leakage current.  Moreover, the harmonic content of leakage 

current, specifically the odd harmonics, were found to correlate well with the aging 

state of the insulator [10]. 

Different aging stages impose changes on the shape of leakage current 

waveforms. Figure 7 shows typical leakage current waveforms along with their 

frequency spectrum for different aging states of polymeric insulators. As mentioned 

earlier capacitive leakage currents follow through the insulation surface, as long as the 

hydrophobicity property is maintained. The leakage current in this condition is 

capacitive, sinusoidal with very low magnitudes, Figure 7(a).  As the hydrophobicity 

is lost, more current flows and the phase shift between the leakage current and applied 

voltage starts to decrease. The current waveform, in this condition is still sinusoidal 

but resistive, while the magnitude of the leakage current is higher compared to the 

first condition as depicted in Figure 7(b). When dry-band activities start to take place, 

as a result of partial or complete loss of hydrophobicity, the leakage current pattern 

becomes resistive and non-linear. The magnitudes of such currents are also higher 

than the first waveform.  Strong dry-band discharges can cause long spikes to appear 

on the leakage current signal as shown in Figure 7(c) [7].  
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Figure 7: Time and Frequency LC signals during (a) early, (b) transition and (c) late aging period [14] 

Observing the frequency spectrum of the leakage current, it can be noted that 

the fundamental components are the only significant portion of the frequency 

characteristics during early aging. As the resistive currents starts to develop, the 3
rd

 

harmonics will have the highest intensity among other harmonic components. When 

local arcs start to appear, other odd harmonics will grow rapidly and become more 

significant [9]. The leakage currents low frequency harmonics were found to correlate 

with the aging condition of insulator [10]. It was shown that the 3
rd

 and 5
th

 harmonics 

had a higher rate of increase compared to the fundamental component during dry-

band arcing.  However, with increased degradation due to erosion and tracking these 

harmonic contents were found to decrease, while the fundamental component started 

to increases. Therefore, the 3
rd

 and 5
th

 harmonic content can indicate the start of dry-

band arcing and the start of tracking and erosion.  
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2.4 Leakage Current Monitoring 

Polymeric insulators performance is largely affected by the aging processes 

which arise due to electrical and environmental conditions. Humid conditions 

resulting from fog, rain or mist accompanied by salt contaminants produce corona 

discharge, which degrades the surface hydrophobicity. The loss of hydrophobic 

properties initiates the development of leakage current which in turn causes more 

degradation processes such as dry-band arcing and even complete flashover. The 

leakage current frequency content can provide information about these degrading 

discharges and therefore; it has been used to evaluate the aging condition of outdoor 

insulators under both laboratory and field conditions [11].  

The leakage current is measured under different aging tests in order to 

understand the aging process of outdoor insulators and correlate the findings to actual 

field conditions. In addition, it can be used to find the effect of different electrical and 

environmental stresses on the aging process and flashover performance. Particularly 

leakage current can be used in laboratory tests to study aging phenomena like corona 

discharges, hydrophobicity loss and dry-band arcing. There are different types of 

aging and flashover tests including salt-fog, clean-fog and inclined plane tests. The 

salt and clean fog tests are used for flashover testing and to study the effect of 

contamination level on the aging process, including corona and dry-band arcing. They 

are also used to evaluate tracking and erosion resistance. The inclined plane test is a 

classical method for evaluating the erosion and tracking resistance of outdoor 

insulators [12].  

The salt fog test was developed to simulate the effect of wetting resulting from 

salty ocean water in coastal areas. It is used extensively in European countries and 

Japan. Under this test, a clean insulator is energized at a constant voltage while 

subjected to a salt-water nozzle. The test conditions severity is controlled by either 

changing the applied voltage or the concentration of sodium chloride in the water. The 

test was initially used to evaluate the flashover voltage under different contamination 

levels. However, wetting by water impingement is a very rare type of wetting [1-2]. 

Another method of generating fog is using ultrasonic humidifiers instead of the spray 

nozzles. The humidifiers generates a uniform fog, which produces a more uniform 

wetting and represents the majority of wetting instances in real conditions. 
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2.5 ESDD Prediction 

2.5.1 Contamination Flashover and ESDD Prediction 

Contamination flashover, as discussed earlier is the major problem in 

deteriorating the surface conditions of polymer insulators. The contamination problem 

has a direct impact on the security and reliability of the power transmission systems 

and therefore it needs to be fully understood. There are two main types of 

contamination which are: 

1) Soluble Salt Deposit (ESDD) 

2) Non-soluble Material Deposit (NSDD) like dust and sand 

The accumulation of both soluble and non-soluble deposits increases the 

conductivity of the insulator surface allowing more current to flow. The increase in 

the leakage triggers the aging process on the insulator surface which eventually leads 

to flashover. The relationship between the ESDD level and the contamination 

classification according to the IEC 60587 standard is shown in Table 1 [33]. 

Table 1: IEC 605087 Standard Contamination Severity Classification 

 

 

 In the few past years, there has been an increasing demand to predict the 

contamination level on the outdoor insulators in order to prevent the advent of 

flashover occurrence. The prediction of contamination levels can signal an early 

warning to power station operators and help in scheduling washing and maintenance 

routines. The exact parameters for determining the contamination level are not fully 

established. Several studies have been conducted to predict the contamination levels 

for ceramic, porcelain, glass and polymer [27-32] insulators. It has been found that the 

leakage current characteristics are very useful in the prediction of the contamination 
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levels [31]. In addition, there are other factors which dynamically affect both, the 

leakage current and contamination levels including, the operating voltage, 

temperature and humidity [29].  

 In most of the conducted studies, the insulators were first polluted with a 

known ESDD value, and then the insulator will be subjected to a high voltage stress 

and clean-fog. After the end of the experiment, the leakage current will be used to 

predict the applied ESDD level. However, in this study, salt-fog test will be applied to 

the insulator and then the ESDD level will be measured at the end of the experiment. 

The ESDD can be measured by cleaning the insulator with distilled water and then 

measuring the conductivity of the resulting solution. The details of ESDD measured 

are explained in the IEEE standard 4-1995 as discussed in the following section. 

2.5.2 ESDD Calculation Procedure 

According to IEEE Std. 4-1995, The ESDD should be collected from the 

surface of insulator by the following procedure [18]: 

1. The salt deposit is collected from the surface of the tested insulator 

excluding metal parts and assembly materials. 

2. A known quantity of distilled water with known conductivity is then 

used to wash the insulator surface and dissolve the salt deposit. 

3. The ESDD is calculated by measuring the conductivity of the resulting 

water solution. 

Then the ESDD is calculated by applying the following equations: 

1. The layer conductivity at 20 degrees is first calculated as shown below: 

                        (1) 

 

where, 

     represents the layer conductivity at a temperature of 20 
0
C (S/m) 

   represents the volume conductivity at a temperature of 
0
C (S/m) 

  represents the temperature of the insulator surface (
0
C) 

b is a factor which depends on the temperature as shown in Table 2: 
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Table 2: Temperature Conversion for ESDD Claculation 

Temperature   B 

5 0.03156 

10 0.02817 

20 0.02277 

30 0.01905 

 

2. The salinity, Sa (kg/m
3
) is then calculated by: 

 

             
        (2) 

 

3. Finally the Salt Deposit Density (mg/cm
2
) is calculated as shown: 

      
    

 
     (3) 

where, 

V represents the volume of slurry (cm
3
) 

A represents the area of cleaned surface (cm
2
) 

  



 

28 

 

Chapter 3: Literature Review 

3.1 Leakage Current Prediction 

The leakage current has been used to study the aging state of outdoor 

insulators. In particular the leakage current harmonics were found to correlate with 

dry-band arcing and hence with erosion and tracking [10]. In addition, the leakage 

current low harmonics were found to correlate with some weathering conditions, like 

humidity levels [11], and ultraviolet radiations [20]. The saturation level of leakage 

current during the early aging period was predicted for polymer insulators in [22]. In 

this study the experiment was performed for 100 hours and the saturation level for LC 

was recorded and predicted using neural networks. The features used in this study 

included the initial leakage current value and the rate of change of leakage current for 

the first 5 hours of the experiment. The accuracy for this experiment was 95 % when 

the training and testing was done on the same insulator rating. When the training and 

testing was done on insulators with different ratings, the accuracy was 81%. 

3.2 Flashover Prediction 

Flash over prediction was carried out in several studies [13-15].The time to 

flashover was estimated in [16]. The flashover performance of outdoor insulators has 

also been investigated using leakage current [17, 19]. In [23], the flashover time was 

predicted for ice covered polymer insulator using neural networks. The features used 

in this study included the phase difference, amplitude of 3
rd

 harmonic, amplitude of 

5
th

 harmonic and leakage current envelope. The establishment of white arcs which 

lead to the development of flashover was predicted within a time frame of 1 to 36 

minutes.  

In [24], the flashover voltage was predicted for ceramic insulators. The 

features used in this study included the height, diameter, total leakage length, number 

of sheds and number of chain of the insulator as well as the surface conductivity. The 

prediction was performed using least square support vector machine with a Root mean 

Square Error (RMSE error) of 0.00812 and multilayer feed-forward neural network 

with an RMSE error of 0.0126. 

In [25], the flashover voltage was predicted for polymer insulators using 

neural networks. The features used included, water conductivity, number of water 

droplets and volume of water droplets. The accuracy for this prediction was 96%. In 



 

29 

 

[26], the flashover voltage was predicted for porcelain insulators using back 

propagation neural networks. The features used included, height, diameter and 

creepage distance of the insulator as well as the form Factor and the surface 

conductivity. The flashover voltage was predicted with an RMSE value of 0.112. 

3.3 ESDD Prediction 

The ESDD prediction has been carried on ceramic and porcelain insulators 

[27-31]. However, few researches have been done to predict the contamination level 

for polymer insulators [32]. The main concern for polymer insulators is the 

hydrophobic properties which have a great influence in the development and 

suppression of leakage current and on the contamination level on the insulator's 

surface. This concern arises as the hydrophobic properties of the polymer insulation 

are not fully understood. In addition, there is no established or practical technique to 

monitor and measure the hydrophobic properties of polymers for long durations. This 

limitation may affect the accuracy of ESDD prediction, however; it is still possible to 

make practical classification of the ESDD levels on polymer insulators as presented in 

this research. 

In [27] the ESDD was predicted for porcelain insulators by processing the 

image of the contaminated insulators. Fifty one porcelain insulators were collected 

and their ESDD levels were measured. The ESDD levels were classified into 4 classes 

as shown in Table 3. The insulators image was processed and compared against an 

image of a clean insulator to predict the ESDD level. The percentage difference 

between the hue histograms of clean insulator reference image and polluted insulator 

image is calculated using six features including, the normalized error, mean, variance, 

skewness, kurtosis and energy. The feature extraction was done using hue segmented 

image technique and the prediction was done using a neural network. Thirty six 

insulators were used for testing and fifteen insulators were used for testing. The 

ESDD was predicted with an RMSE value of 0.0407. Furthermore, the class of the 

ESDD was predicted with an overall recognition of 86.7 % as shown in Table 3.  

The overall recognition rate for this study is high, around 87%. However, the 

recognition rate for classes B and C are low, 50% each. The reason for this low 

recognition rate is the small number of available class B and C data. 
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Table 3: ESDD levels and classification results 

ESDD Class ESDD Range 
Number of Data 

Points 
Recognition Rate 

A < 0.1 8 100% 

B 0.1 – 0.2 2 50% 

C 0.2 – 0.3 2 50% 

D > 0.3 3 100% 

Total 15 86.7% 

 

In [28], the ESDD was predicted for glass disk insulators using neural 

networks. The glass disk insulator samples were pulverized by 5 pollution levels 

according to the IEC 507 standard. The five pollution levels as well as a clean 

insulator were used to create 6 classes as shown in Table 4. 

Table 4: ESDD Classes 

ESDD Class ESDD Range mg/cm
2 

A 0.00 

B 0.000 - 0.032 

C 0.032 - 0.038 

D 0.038 - 0.056 

E 0.056 - 0.123 

F > 0.123 

 

The insulators were subjected to a clean fog test and the surface discharges 

acoustic signals were collected using an ultrasonic sensor. The Area centroid feature 

extraction technique was applied to the ultrasonic signals to predict the applied ESDD 

class. The classification was done using neural networks and the recognition rate was 

95%. 

In [29], the ESDD level was predicted for porcelain insulators using neural 

networks. The insulators were polluted by 9 ESDD values, which are 0.017, 0.04, 

0.07, 0.09, 0.13, 0.25, 0.28, 0.34 and 0.37 mg/cm
2
. Clean fog test was applied at 

different humidity and temperature levels. The humidity level ranged from 70% to 

100% and the temperature ranged from 5 to 27 degrees. The leakage current was used 

to predict the applied ESDD level. The LC features used are the maximum leakage 
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current and 3
rd

 harmonic to fundamental ratio. In addition, the applied humidity and 

temperature were also used as features. The ESDD prediction was carried using 

neural networks and the accuracy rate was 92%. 

In [30], the ESDD level was predicted at the surface of contaminated glass 

plates using neural networks. The surface of the glass plates was polluted with NaCl 

solution and dried for 60 seconds. The dry salt granules were collected from the 

surface and mixed with distilled water to find the ESDD level at the surface. The 

experiment is repeated for 42 times using NaCl solutions of different conductivity and 

different plate sizes. The measured ESDD level ranges from 0.013 to 0.168 mg/cm
2
. 

The features used to predict the ESDD included the temperature, salinity of the salt 

solution, the volume conductivity, the volume conductivity at 20
0
 C, salt quantity, 

type of water and the plate size. Thirty seven data points were used for training and 

seven data points were used for testing. Back propagation neural networks were used 

to predict the ESDD level with an R
2
 value of 0.981. 

In [31], the ESDD level was predicted for porcelain insulators using neural 

networks. Clean fog test was applied to 2 porcelain insulators of different length at 

20.2 kV and 100 % relative humidity. The pollution level was adjusted by applying a 

contamination layer of 5 different ESDD levels (0.03, 0.05, 0.1, 0. 2 and 0.3 mg/cm
2
). 

These five ESDD levels were applied to each insulator resulting into 10 experimental 

values. The experiment was performed for 20 minutes. The leakage current mean, 

maximum value and standard deviation were used as the feature vector. For each 

insulator 50 data points were used for training and 10 data points were used for 

testing. The ESDD was predicted using neural networks with an absolute difference 

of 0.035 mg/cm
2
. 

In [32], the ESDD level was predicted for polymer insulators using neural 

networks and neuro-fuzzy inference system (ANFIS). Clean fog test was applied to a 

polymer insulator at 11 kV and 100 % relative humidity. The pollution level was 

adjusted by applying a contamination layer of NaCl and Kaolin of 5 different ESDD 

levels (0.01, 0.06, 0.08, 0.12 and 0.25 mg/cm
2
). The experiment was done once for 

each ESDD level. The leakage current mean, maximum value, standard deviation and 

total harmonic distortion were used as the feature vector. 50 leakage current signals 

were recoded for each ESDD level resulting into 250 LC data points. 180 data points 

were used for testing, 40 for validation and 30 for testing. The LC characteristics were 

used to predict the applied ESDD level. The neural network predicted the ESDD with 
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an RMSE error of 0.0252 and the ANFIS system predicted the ESDD with an RMSE 

error of 0.00323. 

For most of the studies discussed in the section for ESDD prediction, the 

following limitations can be noted. First, there are very few studies performed to 

predict the ESDD level for polymer insulators. Second, the number of predicted 

ESDD levels is very small. For instance, in studies [28], [31] and [32] only 5 ESDD 

levels were applied and predicted. In study [29] 9 ESDD levels are applied and 

predicted. Third, the experimental duration is usually small with a maximum of 20 

min duration. To enhance the practicality of the experiments, in this study salt fog test 

was applied for polymer insulators for 5 hours duration. At the end of the experiment, 

the insulators were washed and the ESDD level deposited on the insulator’s surface 

was measured according to the IEEE standard. The experiment was repeated to 

produce 80 different ESDD levels. The leakage current was recorded and used to 

predict the ESDD level which deposited on the surface of the insulator.  
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Chapter 4: Materials and Methods 

4.1 Salt-Fog Aging Test 

Salt fog test will be used as an aging test to predict the level of salt deposition 

on the surface of the insulator. The fog is generated using an ultrasonic humidifier 

with a maximum flow rate of 0.3 l/min. The rate of flow can be adjusted to change the 

humidity level, which is measured using a humidity sensor. The experiment is done at 

different voltage levels and water conductivities. The water conductivity is adjusted 

by changing the concentration of added NaCl, and is measured by a conductivity 

meter. At the end of the experiment each insulator was washed by distilled water to 

collect the salt deposition on the surface. The ESDD level is calculated by measuring 

the conductivity level of the water. 

4.2 Experimental Procedure 

4.2.1 Experimental Setup 

The fog chamber used has a dimensions of 1x1x0.75 m, where the insulators 

are energized by a 0.22/20 kV transformer. The other end of the insulators will are 

grounded using a 100 ohm resistor. The leakage current is determined by measuring 

the voltage drop across the shunt resistance. Before measurement, the voltage was 

stepped down by a factor of 1000 using a voltage divider with ratio 1000:1. The 

protection circuit is designed in parallel with the grounding resistance. It consists of a 

surge arrestor to protect the system from transients and it also has a clipping circuit to 

limit the voltage between -9 and 9 V in order to protect the measuring devices [33]. 

Figures 8 and 9 show the fog chamber schematic, and the actual fog chamber setup 

respectively.  In order to acquire more test data, four similar insulators will be tested 

simultaneously.  
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Figure 8: Fog Chamber Schematic [34] 

 

Figure 9: Fog Chamber Setup [34] 
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4.2.2 Experimental Test Procedure 

The duration of each experiment is fixed to 5 hours. All insulator samples 

have the same type, where two sets of insulators were used. The first set consists of 4 

insulators which have a length of 6 cm each, while the second set consists of 4 

insulators which have a length of 10 cm each. Different factors have been varied 

during the salt fog test. These factors are: 

1. Voltage Stress  

2. Salt-fog conductivity  

3. Insulator length expressed  

Table 5 shows the ranges for each of the experimental factors: 

Table 5: Experimental Conditions 

Factor Unit Range 

1. Electric Field kV/cm 0.1 – 0.6  

2. Salt-fog 

conductivity 
S/cm 10, 15 and 20 

3. Insulator length cm 6 and 10 

 

The Experiment was repeated for 20 times at different voltage stress, salt-fog 

conductivity and insulator length.  

4.3 Data Collection and Feature Selection 

4.3.1 Data Collection 

The data was collected using a data acquisition system and it was processed 

using Labview interface. The applied voltage level and leakage current are measured 

each 10 seconds during the whole duration of the experiment. Therefore, the feature 

vector for the leakage current and voltage level has a total of 1800 points. The leakage 

current was smoothed using moving average technique [22]. The full leakage current 

waveform is not collected; however, the following features of the leakage current are 

measured and saved: 

1. Peak Value 

2. Fundamental Component 

3. Third harmonic 

These features will be used later to predict the ESDD level. 
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4.3.2 Feature Selection 

In order to predict the ESDD, the most relevant features are selected. Possible 

features for prediction include LC peak value, slope of the leakage current, 

fundamental, third and the fifth harmonic components of leakage current. A 

combination of these features was created using pattern recognition techniques, 

including stepwise regression and principle component analysis. In addition, the 

experimental conditions including voltage, salt-fog conductivity and insulator length 

will be used in the feature vector as they have a direct effect on the salt level 

deposition. 

4.4 Feature Extraction and Classification Techniques  

The following chapter gives a background on the feature extraction techniques 

as well as the classifiers which will be used in the results analysis. Two feature 

extraction methods will be used and compared, which are: 

1. Stepwise Regression 

2. Principle Component Analysis (PCA) 

In addition, three classifiers will be used in this study including: 

1. K-Nearest Neighbor Classifier (KNN) 

2. Polynomial Classifier 

3. Neuro-fuzzy Classifier 

The following section will provide an overview of the pattern recognition principles 

with regard to the feature extraction and classification process. Afterwards, the feature 

extraction methods and classification techniques will be discussed. 

4.4.1 Pattern Recognition Review  

Pattern recognition is defined as the process in which the inputs are assigned 

with labels. Depending on the type of problem, the assigned labels may be a distinct 

group, which is commonly known as a class. In that case, the goal of the pattern 

recognition system or "classifier" is to identify the correct class of each input in a 

process known as classification [35]. However, if the labels are real-value then the 

pattern recognition process or "regression", tries to find the exact value for each input. 

The pattern recognition process has several steps starting with data collection, data 

pre-processing, feature extraction and classifier design, training and testing as shown 

in Figure 10. 
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Figure 10: Pattern recognition steps [36] 

 During the data collection, the raw data are collected for certain conditions 

which correspond to a specific output. The output could be a class of data or a real-

value data depending on the problem being studied. During the second stage, data pre-

processing, the raw data is converted into a meaningful data input which could be 

done by statistical representation like the mean, standard deviation or by taking the 

Fourier transform or other data processing techniques.   

During feature extraction the most distinguished features are being selected, 

which will help the classifier to accurately represent the data and predict the correct 

output. The feature extraction process depends on the knowledge of the factors which 

affect the required outcome. It has been reported that the main factors which correlate 

with the ESDD level include [29-30]: 

1. Applied Voltage Stress. 

2. Creepage Distance of insulator. 

3. Environmental Conditions, like humidity and temperature. 

4. Leakage Current. 

Therefore, these factors will be used as features to predict the ESDD level. If the 

number of features is very large, then the dimensionality of the feature vector can be 

reduced by the feature extraction methods mentioned earlier. 

 The classifier design largely depends on the distribution shape of the data. 

Linear relationships can be easily modeled using linear classifiers, while quadratic 

relationships can be modeled using polynomial classifiers. Gaussian distributions are 

modeled by Gaussian Naive Bayes Classifier. If the distribution of data is unknown, 

then different classifiers can be used, starting with simple classifiers like linear, 

polynomial and KNN classifiers. If these classifiers don’t produce good recognition 

rates, then more advanced classifiers can be used, like Neural Networks and Neuro-

fuzzy classifiers. The experimental data to be classified is sorted into two data sets, 
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the training data and testing data. The training data is used to design the classifier 

parameters, while the testing data is used to validate the design. 

4.4.2 Feature Reduction Techniques. 

4.4.2.1 Stepwise Regression. 

The stepwise regression technique aims to find the best subset of features by 

searching for different feature combinations. The method works by adding or deleting 

the features which have the greatest impact on the residual sum of squares (RSS) [37]. 

The residual sum of squares represents the summation of the square difference 

between the predicted value and the mean value as shown below:  

     ∑ (        )
  

   
    (4) 

There are two main selection criteria which are forward selection and backward 

elimination. In the forward selection, the stepwise starts with no features. Each feature 

is added separately and its effect on the model is noted. The feature which produces 

least residual sum of squares is chosen as the first feature. Other feature combination 

will be added until there is no improvement on the model. The backward elimination 

method starts with all features, and then the effect of deleting features is noted. The 

algorithm deletes the features which best improve the model by being deleted [41].  

4.4.2.2 Principle Component Analysis (PCA) 

The Principle Component Analysis, known as the Karhunen-Lo`eve expansion 

is a well-known reduction technique, that combines an old feature vector x to produce 

a new feature vector y. The PCA feature reduction preserves all necessary information 

which is required for the classification. The PCA technique works by projecting the 

old feature vector into the direction of the largest variance. In that sense, the 

dimensionality of the feature vector is reduced while the information significance is 

preserved. The direction of the largest variance can be obtained by finding the 

eigenvector which corresponds to the largest eigenvalues [35]. The demonstration of 

PCA analysis is shown in Figure 11: 
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Figure 11: PCA component analysis [36] 

When using the PCA technique both the training and testing samples will be 

processed using the same method illustrated below. 

 Assume that the training feature vector X has m vectors {            }T
 with 

each feature vector    having a size d. Initially the sample mean is subtracted from the 

data as shown in the following equations.  

 

                                                           (5) 

 

where, the sample mean is defined as: 

  
 

 
∑                                                           

 

   

    

The sample size is reduced from dimension d to dimension k using a linear 

transformation. The linear transformation matrix E has size of dk and it projects the 

sample vector    of size d to a reduced feature vector    of size k. The transformation 

matrix E is obtained from the eigenvectors of the scatter matrix S of the sample 

data   . The following equations illustrate the derivation process.  

 

                                                                  

 

The data scatter matrix is defined as:                                        

   ∑  
   

 

   

                                                          

The scatter of all projected samples is maximized by taking the eigenvectors which 

correspond to the k largest eigenvalues. Hence, the transformation matrix E can be 

expressed as:  

 

                                                          (9) 
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where {  |         } represents the eigenvectors which represent the k largest 

eigenvalues of the scatter matrix.  

4.4.3 Classification Techniques 

4.4.3.1 K-Nearest Neighbor Classifier (KNN)  

The K-Nearest Neighbor Classifier or KNN classifier is one of the most 

simple and effective classification methods that could be applied. The KNN 

classification is non-parametric technique that can classify data which don't possess a 

well know distribution, like conventional linear, quadratic or Gaussian distributions. 

The KNN works by comparing each incoming test data point with the whole training 

data samples and then classify the data based on the nearest neighboring training 

samples. The KNN simply compares the distance between the testing samples and the 

k nearest samples, and then assigns the class depending on the nearest neighbors [38].  

There are two main parameters which are required to design the KNN classifiers 

which are: 

1. The value of K which decides the number neighboring samples which 

will be compared with the  

2. The distance measure which decides how the distance between the test 

and training samples should be evaluated 

There are several distance measures which can be used for the KNN 

classification including distance correlation, Euclidian distance, city-block and cosine 

distance. 

1. Distance Correlation 

 Typically if the correlation between two data points is equal to zero, then the 

two points are independent. However, if the correlation is equal to 1 then the two 

points are dependent, implying that they come from the same class. The formulation 

for distance correlation is shown below: 

    (     )  
    (     )

√    (  )    (  )
 
                                          

 

Or 
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    (     )  
(    ̅ )(    ̅ )

√(    ̅ )(    ̅ )
 
√(    ̅ )(    ̅ )

 
                   

where, 

 

 ̅  
 

 
∑   

 

                                                       

 ̅  
 

 
∑   

 

                                                       

 

Properties of distance correlation: 

i.       (     )   . 

ii.     (     )    if and only if      and     are independent. 

iii. If     (     )   , then     and     are completely dependent.  

In order to be used for KNN Classification the distance correlation is modified 

so that independent data should have a correlation distance of 1 and dependent data 

should have a correlation distance of 0. Therefore, the distance correlation can be 

modified as follows: 

    (     )
 
   

(    ̅ )(    ̅ )

√(    ̅ )(    ̅ )
 
√(    ̅ )(    ̅ )

 
                 

 

For instance, if     (     )   , implying that    and    are independent, 

then the distance     (     )
 
 is equal to 1. This indicates that the distance between 

    and     is very large and the chance that they are of the same class is very low. 

Similarly, For instance, if     (     )   , implying that    and     are dependent, 

then the distance     (     )
 
 is equal to 0. This indicates that the distance between 

    and     is very small and the chance that they are of the same class is very high. 

2. Euclidian Distance 

The Euclidean distance is similar to the Pythagorean distance measure which 

can be formulated as: 
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 (     )  √∑ (  
   

   
   

)
  

   
                                   (15)                

  

 

3. City Block Distance 

 

The Cityblock or Manhattan distance approximates the Euclidean distance by 

the following formulation: 

       (     )  ∑ |  
   

   
   

|
 

   
                                  (16)                    

 

4. Cosine Distance 

The cosine distance is evaluated by finding inner product between two vectors. 

In that sense the similarity between both vectors is measured. The cosine distance 

formula is shown below: 

  (     )  
  
    

‖  ‖‖  ‖
                                          (17)                    

 

After the distance measure and k are selected, the KNN works by applying the 

following procedure. Given a training data set D and a test sample     ̃   ̃  , the 

KNN algorithm calculates the distances between the test point and all training points 

        to determine its nearest neighbor list,   , where: 

  ̃  is the test data while  ̃  is its class 

   is the training data set and y is the corresponding class set.  

The test data is classified based on the majority class of its nearest neighbors 

as follows: First,    ̃    or the distance between the testing data   and each training 

sample         is calculated. After that,     , the set of the closest K training 

objects to   will be selected. Finally, the algorithm will calculate the class  ̃ of each 

testing data as: 

 ̃           ∑                  
                          (18) 

4.4.3.2 Polynomial Classifier 

The polynomial classifier can be considered as an approximation to the 

optimal Bayes classifier. The classifier expands an incoming feature vector by adding 
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all pairwise products of the individual elements [39]. For example, a quadratic 

expansion for X containing 2-dimensional training feature vectors of different classes 

can be expressed as: 

  [

      

      

      

]                                              (19)                                                                                         

Hence the augmented features are defined as  

Xaug = [

                
    

 

                
    

 

                
    

 

]                       (20)                   

Assuming each row of X corresponds to a different ESDD value, the target 

matrix would be the output ESDD value. The weight matrix W is achieved by 

multiplying the Pseudo-inverse of Xaug by the target matrix.  

 

       (    )                                          (21)                  

 

Each incoming test feature vector Y has to undergo the same expansion of the 

training data. The class label of the test vector is then determined using the obtained 

weight matrix as follows: 

 

      
                                              (22)                  

4.4.3.3 Neuro-Fuzzy logic 

The idea of fuzzy logic was first introduced in 1965 to process data which 

have statistical uncertainties. The main concept for fuzzy logic is to work with 

approximate reasoning instead of exact reasoning. Therefore, the fuzzy logic could 

achieve better performance when the system has uncertainties. The approximate 

reasoning can be more suitable for systems which cannot be mathematically modeled. 

The fuzzy logic system has some limitations including the imprecision of the type, 

location and number of its membership functions. Neural networks, on the other hand, 

have the advantage of recognizing patterns by adjusting their weights. However, the 

learning process of neural networks is very slow as they keep updating the weights in 

order to be trained [40].   

A hybrid neuro-fuzzy system takes advantage of both neural networks and 

fuzzy logic. The neural network will be used to tune the membership functions of 



 

44 

 

fuzzy systems which will increase the precision of fuzzy logic to represent uncertain 

statistical data. A typical fuzzy inference system has four main functions which are 

illustrated in the figure below:  

 

Figure 12: Fuzzy Inference System Main Blocks [40] 

The first block corresponds to a knowledge base, which defines the fuzzy rules 

and database. These rules determine the membership functions in terms of their type. 

There are several types of membership functions including generalized bell, 

triangular, trapezoidal and sigmoid functions which are depicted in equations 23-26 

respectively.  

 

1. Generalized Bell Function: 

            
 

   |
   

 
|
                             (23) 

 

where,  

a determines the half width 

b and a determine the slopes at the crossover points 

c determines the center of the corresponding membership function 

 

2. Triangular Function: 

                (   (
   

   
 
   

   
)   )              (24) 

 

Where,  

a and c determine the lower points of the triangle 

b determines the peak of the triangle 

 



 

45 

 

3. Trapezoidal Function: 

                  (   (
   

   
   

   

   
)   )        (25) 

 

where,  

a and d determine the lower points of the trapezoid 

b and c determine the upper points of the trapezoid 

 

4. Sigmoid Function: 

          
 

           (26) 

 

where,  

a determine the slope  

The inference engine is responsible for processing the inference operations on 

the rules. The fuzzification interface will find the degree of match between the input 

and their linguistic value, represented by the membership function. Finally at the 

defuzzification phase, the fuzzy result will be transformed back into its crisp output 

value.  

The structure of an adaptive neuro fuzzy inference system is shown in Figure 

13. In this model, X1 and X2 are the input data. Ai and Bi represents the input 

membership function. The output of the first layer represents the degree of matching 

between the input and the membership function (fuzzification). At the second layer, 

the combinations of degrees of match between different inputs are used to create the 

output signal. This signal represents the firing strength of the fuzzy rule for each 

association. At layer three, the firing strength of layer 2 outputs are normalized and 

fed to layer four. An output membership function will be used to derive the inferred 

output (Defuzzification). Finally at layer five, both inferred outputs will be used to 

calculate the output results. 
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Figure 13: Two Input Adaptive Neuro Fuzzy Inference System Model [40] 
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Chapter 5: Results  

5.1 Feature Selection and Reduction 

The experimental procedure described in section four was performed 20 times 

using 4 insulators creating 80 data sets. The experiment time is 5 hours and the 

leakage current value was recorded every 10 seconds. For each experiment, the ESDD 

was measured at the end of the test and different features from the leakage current 

were calculated. These features include the peak value, fundamental, third and the 

fifth harmonic components. Each feature vector contains 1800 data points. A typical 

peak value of the leakage current during the test duration is depicted in Figure 14. 

 

 

Figure 14: Peak Value of Leakage Current for 6 cm insulator tested at 0.3 kV/cm with a fog 

conductivity of 15 mS/cm 

 The LC features along with the experimental conditions were used for 

predicting the ESDD level. The experimental conditions include voltage stress, salt-

fog conductivity and the insulator length. After combining all the features and the 

experimental conditions the best features that were selected are: 

1. Voltage Stress  

2. Salt-fog Conductivity  

3. Insulator Length  

4. LC average Peak Value for 5 hours  

5. LC average peak value for each 15 minutes  
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6. Rate of change of LC average peak value  

7. Rate of change of LC peak value  

Two feature reduction techniques were used, which are stepwise regression and 

principle component analysis (PCA). While the stepwise regression technique chooses 

the best feature combinations, the PCA reduces the dimensionality of the feature 

vector by taking a linear combination of all features. The PCA reduced the 

dimensionality of the seven features mentioned above. However, the stepwise 

regression selected the following features: 

1. Voltage Stress  

2. Salt-fog Conductivity  

3. Insulator Length  

4. LC average Peak Value for 5 hours  

5. LC average peak value for each 15 minutes  

After feature reduction, the ESDD was predicted using KNN, Polynomial and Neuro-

fuzzy classifiers. In addition, the prediction was performed using leave one out 

strategy. 

5.2 ESDD Regression Analysis 

Using leave-one out strategy, the 80 ESDD levels were predicted using the 

Stepwise regression and PCA combined with KNN, Polynomial and Neuro-fuzzy. 

The parameters for the classifiers were determined by trial and error. For KNN the 

distance measure which produced the maximum recognition rate was the correlation 

distance and the value of the constant k (number of neighbors) was 2. For the ANFIS 

model the membership function which gave the best recognition rates is the 

generalized bell function, while the number of membership function was 3. 

The root mean square error (RMSE) was calculated to indicate the accuracy of 

the results. The RMSE is evaluated by the following formula. 

      √
∑  ( ̂    )

  
   

 
     (27) 

where, 

 ̂  represents the predicted value 

   represents the actual value 

In addition, the recognition rate was also measured for each classifier. Finally, 

the classifier results were combined by taking an average value for the three 
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classifiers which were used. The classifier fusion was done at the score level by 

averaging the predicted ESDD level of the three classifiers. The results of the 

regression analysis are presented in Table 6. 

 

Table 6 Regression Analysis Results 

Reduction 

Technique 
Classifier 

Recognition 

Rate 

RMSE 

Error 

Step-wise 

Regression 

KNN 64.4 % 0.0360 

Polynomial 62.2 % 0.0427 

ANFIS 48.4 % 0.0595 

Combined Classifiers 67.3 % 0.0321 

PCA 

KNN 59.5 % 0.0509 

Polynomial 63.1 % 0.0327 

ANFIS 52.6 % 0.0477 

Combined Classifiers 66.7 % 0.0320 

 

Table 6 shows that the best RMSE values for PCA and Step-wise regression 

are 0.0320 and 0.0321 respectively. These values are close to several results in the 

literature. For instance, the RMSE error was 0.0407 in [29], 0.0252 in [32] and the 

average absolute difference was 0.035 in [31]. Also, the maximum recognition rate is 

67.3 % for Step-wise regression and 66.7 % for PCA analysis. The main possible 

reason for this low rate is the unaccounted effect of hydrophobicity and fluid 

migration which influences the development of leakage current. The hydrophobic 

behavior of polymer insulators arises due to the low surface energy on its surface. 

This property allows the insulator to resist the aging process and pollution deposition. 

In addition, low molecular fluids migrate to the surface and enhance the hydrophobic 

abilities of the insulator and it is difficult to measure the low molecular content. The 

prediction of ESDD level for ceramic insulation is more straightforward as it has no 

hydrophobic properties or low molecular fluid reserve. Stem plots for the regression 

analysis are shown in Figures 15 - 20. 
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Figure 15: Regression Results for Stepwise analysis and KNN Classifier 

 

Figure 16: Regression Results for Stepwise analysis and Polynomial Classifier 
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Figure 17: Regression Results for Stepwise analysis and ANFIS Classifier 

 

Figure 18: Regression Results for Stepwise analysis and Combined Classifiers 

0 10 20 30 40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Sample Number

E
S

D
D

 L
e

ve
l 

m
g

/c
m

2

 

 

Predicted

Actual

0 10 20 30 40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Sample Number

E
S

D
D

 L
e

ve
l 

m
g

/c
m

2

 

 

Predicted

Actual



 

52 

 

 

Figure 19: Regression Results for PCA analysis and KNN Classifier 

 

Figure 20: Regression Results for PCA analysis and Polynomial Classifier 
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Figure 21: Regression Results for PCA analysis and ANFIS Classifier 

 

Figure 22: Regression Results for PCA analysis and Combined Classifiers 
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Table 7: ESDD Range and Surface Contamination Severity 

ESDD Range 

(mg/cm2) 

Contamination Severity 

Classification 

0 - 0.03 Clean or Very Light 

0.03 - 0.06 Light 

0.06 -0.1 Moderate 

> 0.1 Heavy 

 

Therefore, the prediction problem was modified to predict the range of ESDD 

level or the surface contamination severity. 

5.3 Contamination Level Class Prediction 

Instead of finding the actual value of the ESDD level, the contamination 

severity class will be evaluated by predicting the ESDD range. The contamination 

class reflects a practical indication of the surface condition of the insulator. 

5.3.1 Four Class Prediction 

The pollution severity classes according to the IEC 60587 standard were 

converted into a four class problem as shown in Table 8: 

Table 8: Four Class Prediction   

ESDD Range 

(mg/cm2) 

Contamination 

Severity Classification 
Class 

Number of 

Data Points 

0 - 0.03 Clean or Very Light 1 12 

0.03 - 0.06 Light 2 14 

0.06 -0.1 Moderate 3 9 

> 0.1 Heavy 4 45 

 

The data points for class 1, 2, and 3 are relatively low compared to class 4. 

The aging process for polymer insulator is stochastic in nature, meaning that the same 

conditions may result in different behavior. For this reason, it is hard to control the 

outcome of the experiment in order to generate balanced data set among the four 

ESDD classes. For instance it is relatively easy to conduct the experiment to have 

very high ESDD level. However, it is very hard to control the experiment output to 

produce results in the lower and middle ranges of ESDD level. This may create a 
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problem as the classifiers will be more biased towards class 4. To minimize this 

effect, the classifiers will be used as "regressors" to predict the actual ESDD value, 

and then the range of ESDD will be assigned depending on the predicted ESDD 

value.  

 Using leave one out strategy, the 80 ESDD levels were predicted using 

stepwise regression and PCA analysis combined with KNN, Polynomial and Neuro-

fuzzy Classifiers. Table 9 summarizes the results for the four class classification 

problem. 

Table 9: Summary of Four Class Prediction Results 

Reduction 

Technique 
Classifier 

Recognition Rate 

Class 

1 
Class 2 Class 3 Class 4 Total 

Step-wise 

Regression 

KNN 42 % 7 % 11 % 87 % 57.5 % 

Polynomial 25 % 57 % 67 % 78% 65 % 

Neuro-fuzzy 8 % 57 % 22% 76% 
56.25 

% 

Combined 

Classifiers 
25% 71 % 67% 80% 

68.75 

% 

PCA 

KNN 33% 7 % 56% 89% 62.5 % 

Polynomial 33% 59 % 67% 87% 70 % 

Neuro-fuzzy 8% 71 % 89% 78% 67.5 % 

Combined 

Classifiers 
33% 50 % 78% 89% 72.5 % 

 

 The PCA reduction has a higher overall recognition rates compared to the 

step-wise regression. The maximum overall recognition rate is 72.5 % for polynomial 

classifier and PCA analysis. However, classes 1, 2 and 3 suffer from relatively low 

recognition rate due to the low available number of data points. To improve further 

the classification rate, both class 1 and 2 will be combined together. The rational of 

such combination can be explained as follows: the distinction between class 1 (Clean 

or very light contamination) and class 2 (light contamination) will not have a 

significant practical impact when it comes to maintenance or cleaning routines.  
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5.3.2 Three Class Prediction 

The first two classes of the IEC 60587 standard were combined to form a 

single class. This resulted in a 3 class classification problem as shown in Table 10:  

Table 10: Three Class Prediction 

ESDD Range 

(mg/cm2) 

Contamination Severity 

Classification 
Class 

Number of 

Data Points 

0 - 0.06 Clean or Light 1 26 

0.06 -0.1 Moderate 2 9 

> 0.1 Heavy 3 45 

 

The number of class 1 has increased, which will create a more balanced 

classification problem. Using leave one out strategy the 80 ESDD levels were 

predicted using stepwise regression and PCA analysis combined with KNN, 

Polynomial and Neuro-fuzzy Classifiers. Table 11 summarizes the results for the three 

class classification: 

Table 11: Summary of Three Class Prediction Results 

Reduction 

Technique 
Classifier 

Recognition Rate 

Class 1 Class 2 Class 3 Total 

Step-wise 

Regression 

KNN 88 % 11 % 87 % 78.6 % 

Polynomial 81 % 67 % 78 % 77.5 % 

Neuro-fuzzy 81 % 22 % 76 % 71.25 % 

Combined 

Classifiers 
85 % 67 % 80 % 80 % 

PCA 

KNN 88% 56 % 89 % 85 % 

Polynomial 88% 67% 87% 85 % 

Neuro-fuzzy 81% 89 % 78 % 80 % 

Combined 

Classifiers 
88 % 78 % 89 % 87.5 % 

 

 Compared to step-wise regression, the PCA technique has resulted in a 

relatively better recognition for all classes. The KNN and Polynomial recognition 

rates increased from around 78 % to 85 %. The Neuro-fuzzy classifier has improved 

from 71.25 % to 80%. The PCA also improved the results for the four class problem. 
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It can be concluded that the PCA is a better reduction technique than the stepwise 

regression. In the three class problem the recognition rates were higher compared to 

the four class problem as the number of cases for class 1 has increased. This created a 

more balanced recognition problem which improved the overall recognition. 

 Followed by PCA, the KNN and polynomial classifiers achieved the highest 

recognition rates of 85%, while the Neuro-fuzzy classifier achieved the lowest rate of 

80%. However, The KNN and polynomial classifiers were not able to recognize class 

2 with high accuracy. On the other hand, the Neuro-fuzzy classifier was able to 

recognize class 2 with a very good accuracy of 89%. Therefore, taking an average of 

the three classifiers could increase the recognition rate of class 2 and maintain a high 

overall recognition rate. Taking an average value for KNN, polynomial and neuro-

fuzzy classifiers produced the highest recognition rate of 87.5 %. In addition, the 

classification rate for class 2 is around 78%. Therefore, combining the results of the 

classifiers improved the overall recognition rates and maintained a good accuracy for 

class 2. 

5.3.3 Two Class Prediction  

To further increase the number of data points for each class, the first two 

classes of the IEC 60587 standard were combined to form class 1 and the last two 

classes were combined to form class 2. This resulted in a 2 class classification 

problem as represented in Table 12:  

Table 12: Two Class Prediction  

ESDD Range 

(mg/cm2) 

Contamination Severity 

Classification 

Class 

0 - 0.06 Clean or Light 1  

> 0.06 Moderate or Heavy 2 

 

As previously reported, the PCA analysis proved to be better than stepwise 

regression when it comes to feature reduction therefore; it is used for the 2-class 

prediction. The prediction was done using leave one out strategy and applying KNN, 

Polynomial and Neuro-Fuzzy and the results are depicted in Table 13. 

All classifiers had high recognition rates of 93.75%. The KNN and 

Polynomial Classifiers achieved similar results and they predicted both classes with 

high accuracy. The neuro-fuzzy classifier predicted class 1 with less precision than 
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the KNN and the polynomial classifier, however; it predicted class 2 with higher 

precision. When the classifiers were combined, the recognition rate increased to 95% 

and the recognition rates for classes 1 and 2 are both above 90%. Such increase in the 

recognition rate demonstrates the importance of increasing the number of data point 

per class. Therefore, the proposed technique has the potential to be used in the field to 

predict the ESDD class if the number of the data point is sufficient in each class. 

 

Table 13: Summary of Two Class Prediction Results 

Classifier 
Recognition Rate 

Class 1 Class 2 Total 

KNN  88 % 96 % 93.75 % 

Polynomial 88 % 96 % 93.75 % 

Neuro-fuzzy 81 % 100 % 93.75 % 

Combined 

Classifiers 
92 % 96 % 95 % 
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Chapter 6: Conclusions and Recommendations 

6.1 Conclusions 

Polymer outdoor insulators are becoming more popular due to their low cost, 

light weight and pollution resistance property known as hydrophobicity. However, the 

mechanism of hydrophobicity is still not fully understood. Many researches have been 

done on polymer insulators to monitor or predict their aging process using the leakage 

current. Unlike ceramic and porcelain, little work has been done to predict the ESDD 

level or pollution severity on the surface of polymer insulators. In this study, the 

surface severity class of polymer outdoor insulation was predicted using leakage 

current monitoring and ESDD level prediction.  

Two reduction techniques were used for the prediction, which are the stepwise 

regression and PCA analysis. Three classifiers were used including KNN, polynomial 

and Neuro-fuzzy classifiers. The PCA performed better the stepwise regression in all 

classification cases. The actual value of ESDD level was predicted with nearly 60% 

recognition rate for all classifiers. Despite this low recognition rate, the surface 

condition was evaluated using the IEC standard pollution level classification. Instead 

of finding the actual ESDD value, the pollution level was classified according to the 

ESDD range. Creating a four class problem resulted in a low recognition rates using 

the stepwise regression. The best recognition rate was 65%. Using PCA analysis the 

recognition rate reached up to 70%. The reason for this problem is the relatively small 

number of classes 1, 2 and 3 compared to class 4.  

By combining classes 1 and 2 together, the classification problem was turned 

into a three class problem. Combining the first 2 classes does not have a significant 

impact on the practicality of the classification. Class 1 represents clean and very light 

contamination levels, while class two represents light contamination level. The 

recognition rates using PCA increased up to 85% for the KNN and Polynomial 

classifiers. However, both classifiers achieved low recognition rates for class 2, which 

is relatively small compared to classes 1 and 3. The neuro-fuzzy classifier achieved 

80% recognition rate and was able to achieve high recognition rate for class 2. Taking 

a combination of the three classifiers increased the overall recognition rate up to 

87.5% and the recognition rate for class two to almost 80 %. 

The problem was further simplified to a 2 class problem by combining classes 

1 and 2 into one class and classes 3 and 4 into a second class. The recognition rates 
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for all classifiers using PCA increased to 93.75 % with high recognition rates for both 

classes. It can be concluded that the leakage current can effectively predict 3 pollution 

severity classes for polymer insulation. 

6.2 Future Work 

This research study can be extended by trying to predict the non-soluble 

density deposit (NSDD) level for the polymer insulation. In addition, the effect of 

different environmental conditions, like temperature and humidity could be studied 

for polymer insulators. More features could be used in the prediction including the 

partial discharge. Also clean fog test could be used to predict the ESDD level and the 

test duration could be increased. Moreover, full length insulators could be used while 

keeping the insulator’s shed. More importantly, this research methodology could be 

applied in the field on real insulators which will help in developing a reliable system 

for predicting the ESDD level and evaluating the surface condition of the insulators.   
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