
A NAVIGATION SYSTEM FOR INDOOR/OUTDOOR ENVIRONMENTS

WITH AN UNMANNED GROUND VEHICLE (UGV)

by

Milad Roigari

A Thesis Presented to the Faculty of the
American University of Sharjah

College of Engineering
in Partial Fulfillment
of the Requirements

for the Degree of

Master of Science in
Mechatronics Engineering

Sharjah, United Arab Emirates

May 2015

© 2015 Milad Roigari. All rights reserved.

Approval Signatures

We, the undersigned, approve the Master’s Thesis of Milad Roigari.

Thesis Title: A Navigation System for Indoor/Outdoor Environments with an

Unmanned Ground Vehicle (UGV)

Signature Date of Signature
 (dd/mm/yyyy)

___________________________ _______________

Dr. Mohammad Abdel Kareem Rasheed Jaradat

Associate Professor, Department of Mechanical Engineering

Thesis Advisor

___________________________ _______________

Dr. Mamoun Abdel-Hafez

Associate Professor, Department of Mechanical Engineering

Thesis Co-Advisor

___________________________ _______________

Dr. Hasan Saeed Mir

Associate Professor, Department of Electrical Engineering

Thesis Committee Member

___________________________ _______________

Dr. Shayok Mukhopadhyay

Assistant Professor, Department of Electrical Engineering

Thesis Committee Member

___________________________ _______________

Dr. Mamoun Abdel-Hafez

Director, Mechatronics Engineering Graduate Program

___________________________ _______________

Dr. Mohamed El Tarhuni

Associate Dean, College of Engineering

___________________________ _______________

Dr. Leland Blank

Dean, College of Engineering

___________________________ _______________

Dr. Khaled Assaleh

Director of Graduate Studies

Acknowledgements

I would like to express my gratitude to my supervisors, Dr. Mohammad Abdel

Kareem Rasheed Jaradat, Associate Professor and Dr. Mamoun Fahed Saleh Abdel-

Hafez, Associate Professor of department of mechanical engineering, American Uni-

versity of Sharjah, for their support and guidance, and for providing me with the op-

portunity to work on a thesis related to my own area of interest. I would also like to

thank Dr. Ali Jhemi, my previous supervisor, for his patience and support. My deep-

est thanks go to my parents and my sister for their kind and continuous support all the

way throughout my life. I would also like to thank my fellow students Alexander Ad-

veev, Hesam Afzali, Muhannad Al-Omari, Rabiya Ahmed, Bara Emran, Syed Ali Rizvi

and Amina Amoor for their friendship and for the good time that we spent together,

as Mechatronics students at AUS. I am also greatful for Ehab Al-khatib and Wasim Al-

Masri for their immense assistance during the testing phase of the thesis. Furthermore, I

would like to thank Mr. Kent Bernales Roferos and Mr. John Mempin for their help and

for valuable suggestions in the Mechatronics lab of AUS. Finally, I gratefully acknowl-

edge the graduate assistantship provided to me by AUS, without which the present study

could not have been accomplished.

Abstract

This thesis presents an approach for solving the global navigation problem of wheeled

mobile robots. The presented solution for outdoor navigation uses Extended Kalman

Filter (EKF) to estimate the robot location based on the measurements from Global Po-

sitioning System (GPS), inertial measurement unit (IMU) and wheel encoders. For in-

door navigation (where GPS signals are blocked) another probabilistic approach, based

on Monte Carlo Localization (MCL), is used for localization. This algorithm utilizes

the map of the environment to estimate the posterior of the robot using the depth mea-

surements from a Kinect sensor. The output from the Kinect sensor is processed to

imitate the output of a 2D laser scanner by projecting the points from a thin horizontal

strip of pixels in the image plane to the corresponding real world 3D coordinates using

the pin-hole camera model. Two different controllers based on Dynamic Feedback Lin-

earization (DFL) and Input-Output State Feedback Linearization (I-O SFL) have been

analyzed, simulated and compared. Based on the thesis objective and the simulated

results, the I-O SFL method was chosen for solving the trajectory tracking problem.

A set of test experiments was conducted to evaluate the performance of the proposed

system in outdoor, indoor and a combination of both environments. The results show

that the robot can successfully navigate through the way-points with a great accuracy

in indoor environments, while the accuracy in outdoor environments is within the 3m

position accuracy of the GPS.

Search Terms: Navigation, Extended Kalman Filter, Monte Carlo Localization, In-

put Output State Feedback Linearization, Dynamic Feedback Linearization, Kinect,

Depth Camera

5

Table of Contents

Abstract . 5

List of Figures . 8

List of Tables . 12

List of Abbreviations . 13

1. Introduction . 15

1.1 Background . 15

1.2 The Navigation Problem . 16

1.3 Applications . 17

1.4 Literature review . 18

1.5 Software . 26

1.5.1 Programming language . 26

1.5.2 Used Libraries . 26

1.6 Hardware . 27

1.7 Thesis Overview . 28

2. System Setup . 29

2.1 Communication . 31

3. Robot Motion . 36

3.1 Introduction . 36

3.2 Motion Model . 36

3.2.1 Unicycle . 36

3.2.2 Exact Motion . 37

4. Trajectory Following . 40

4.1 Motion Control . 40

4.2 Dynamic Feedback Linearization . 41

4.3 Input-Output State Feedback Linearization 48

5. Outdoor Navigation . 55

5.1 Extended Kalman Filter . 56

5.1.1 Filter Design . 57

5.1.2 Simulation . 60

6

5.2 Navigation Software . 64

5.2.1 GUI . 64

5.2.2 Geodetic Transformation . 64

5.3 Practical Results . 69

6. Indoor Navigation . 75

6.1 Monte Carlo Localization (MCL) . 75

6.2 Kinect . 79

6.2.1 Calibration . 79

6.2.2 Measurement . 82

6.3 Simulation . 87

6.4 Practical Results . 89

7. Hybrid System (Indoor/Outdoor) . 92

7.1 Practical Result . 94

8. Conclusion and Future Work . 95

8.1 Summary . 95

8.2 Future Work . 96

References . 97

Vita . 103

7

List of Figures

Figure 1: Why multi-sensor data fusion? . 16

Figure 2: A comparison of the posture stabilization controllers implemented
on SUPERMARIO [35]. 21

Figure 3: Particle filters have been used successfully for on-board localization
of soccer-playing Aibo robots with as few as 50 particles [47]. 25

Figure 4: General Hardware Setup . 29

Figure 5: Block Diagram of the system . 30

Figure 6: mBin Packet Frame . 31

Figure 7: Fletcher Algorithm . 31

Figure 8: First Loop . 32

Figure 9: Second Loop: Initialize . 33

Figure 10: Second Loop: Get byte . 33

Figure 11: Second Loop: Check Sync . 34

Figure 12: Second Loop: Check Checksum . 34

Figure 13: Second Loop: Calculate Checksum 34

Figure 14: Second Loop: Packet Received . 35

Figure 15: Third Loop . 35

Figure 16: Robot pose, in global configuration space 37

Figure 17: Motion carried out by a noise-free robot moving with constant ve-
locities (ν) and (ω), starting at (x y θ)T 38

Figure 18: Trajectory Following . 40

Figure 19: Steering Block(LabVIEW Robotics) 41

Figure 20: Reference Trajectory of The Robot 43

Figure 21: DFL: Reference and Robot Trajectories 44

Figure 22: DFL: Robot motion: x(m),y(m),θ(rad) 44

Figure 23: DFL: Linear velocity . 45

Figure 24: DFL: Angular velocity . 45

Figure 25: DFL: Cartesian error (x,y) . 46

8

Figure 26: DFL: Norm of the error . 46

Figure 27: DFL: Robot following a square shaped trajectory.(brighter the color,
the closer the robot is to the final position) 47

Figure 28: DFL: Angular velocity of the robot following a square shaped tra-
jectory. 48

Figure 29: Point B outside the wheel axle with distance b 6= 0 49

Figure 30: Pulling a toy car with a piece of rope 49

Figure 31: I-O SFL: Reference and Robot Trajectories 51

Figure 32: I-O SFL: Robot motion: x(m),y(m),θ(rad) 51

Figure 33: I-O SFL: Linear velocity . 52

Figure 34: I-O SFL: Angular velocity . 52

Figure 35: I-O SFL: Cartesian error (x,y) . 53

Figure 36: I-O SFL: Norm of the error . 53

Figure 37: I-O SFL: point B (yellow) is used by the robot to track a square
shaped path . 54

Figure 39: The Extended Kalman filter algorithm (for full mathematical deriva-
tion of the EKF refer to [20]) . 57

Figure 40: Flowchart: The basic outdoor navigation process 60

Figure 41: EKF with encoder and heading measurement 61

Figure 42: EKF with encoder, heading and noisy GPS measurements 62

Figure 43: EKF is used with the I-O SFL algorithm to follow the square shaped
trajectory . 63

Figure 44: Overall robot pose along the path(robot’s color becomes brighter as
it gets closer to the end of the path) 63

Figure 45: Main features of the GUI . 64

Figure 46: Map features include a list of map providers, local caching of the
map, zooming and panning) . 65

Figure 47: WGS84 Ellipsoid Parameters [57] 66

Figure 48: ECEF and Reference Ellipsoid [57] 67

Figure 49: A screen shot of a portion of the GUI. 68

9

Figure 50: Conversion result from the software compared with the same con-
version from google map engine. 68

Figure 51: A simple algorithm that checks if the robot has reached the target
way-point . 69

Figure 52: Outdoor navigation using a set of 17 way-points 70

Figure 53: EKF output versus GPS output. 71

Figure 54: Norm of the Cartesian error: the dotted lines shows the error in time
when the robot reaches the current way-point and changes its desti-
nation to the next one. 71

Figure 55: Outdoor Navigation with a circular path 73

Figure 56: Norm of the Cartesian error: the dotted lines shows the error in time
when the robot reaches the current way-point and changes its desti-
nation to the next one. 73

Figure 57: Monte Carlo Localization Algorithm [20] 76

Figure 58: The probability densities and particle sets for one iteration of the
algorithm [60]. 76

Figure 59: Kidnapped robot problem . 77

Figure 60: Modified Monte Carlo Localization Algorithm [20] 78

Figure 61: KLD-Sampling algorithm [61] . 79

Figure 62: Kinect Sensor Components . 79

Figure 63: Depth camera imaging geometry based upon the pinhole camera
model. 80

Figure 64: Kinect calibration using a checker board 81

Figure 65: Depth image to range finder. 82

Figure 66: Depth stream values [65] . 83

Figure 67: Depth Range [65] . 83

Figure 68: A frame from the depth stream and its 3D projection that shows a
door at the end of a corridor . 84

Figure 69: (a) Infrared image of the pattern of speckles projected on a sample
scene. (b) The resulting depth image [48]. 84

10

Figure 70: Algorithm for computing the likelihood of a depth measurement zt ,
assuming conditional independence between the individual depth
measurements in the image. 86

Figure 71: Monte Carlo Localization with 1000 particles 87

Figure 72: Monte Carlo Localization with 5000 particles 88

Figure 73: Monte Carlo Localization with 200 particles 89

Figure 74: Indoor Navigation with a set of 800 particles 90

Figure 75: Robot trajectory shown in blue, has been recorded during the practi-
cal test in AUS . 91

Figure 76: Ray Casting Algorithm . 93

Figure 77: Ray Casting Flowchart . 93

Figure 78: The hybrid system has been tested by placing it on the bridge be-
tween the two engineering buildings in AUS 94

Figure 79: Robot trajectory during the hybrid test, plotted using the recorded data. 94

11

List of Tables

Table 1: KF Vs EKF [20] . 57

Table 2: Outdoor navigation error: way-points 0 to 7 72

Table 3: Outdoor navigation error: way-points 8 to 16 72

Table 4: Outdoor navigation(circular path) error: way-points 0 to 7 74

Table 5: Outdoor navigation(circular path) error: way-points 8 to 15 74

Table 6: Calibration Parameters . 81

12

List of Abbreviations

API Application Programming Interface.

AUS American University of Sharjah.

CUDA Compute Unified Device Architecture.

DFL Dynamic Feedback Linearization.

ECEF Earth-Centered, Earth-Fixed.

EKF Extended Kalman Filter.

FOV Field Of View.

FPGA Field-Programmable Gate Array.

FPS Frames Per Second.

GPS Global Positioning System.

GPU Graphics Processing Unit.

GUI Graphical User Interface.

ICP Iterative Closest Point.

IMU inertial measurement unit.

I-O SFL Input-Output State Feedback Linearization.

IR Infrared.

KF Kalman Filter.

LLA Latitude-Longitude-Altitude.

LTP Local Tangent Plane.

13

MAV Micro Aerial Vehicles.

mBin Microbotics binary protocol.

MCL Monte Carlo Localization.

NI National instruments.

OpenGL Open Graphics Library.

PIP point-in-polygon.

RGB Red-Green-Blue.

RMS Root Mean Square.

SDK Software Development Kit.

SGM Semi-Global Matching.

SLAM Simultaneous Localization And Mapping.

SV Satellite Vehicle.

UKF Unscented Kalman Filter.

WGS84 World Geodetic System 1984.

WMR Wheeled Mobile Robots.

WSN Wireless Sensor Network.

14

Chapter 1: Introduction

The aim of this thesis is to provide a comprehensive solution to the naviga-

tion problem of Mobile robots, by developing robust software that enables robots to

withstand the numerous challenges arising in indoor and outdoor environments. This

research focuses mainly on analyzing localization techniques using commercially avail-

able sensors, integrating them with a trajectory tracking algorithm and implementing the

integrated system on a Wheeled Mobile Robots (WMR) platform.

1.1. Background

Mobile robots navigation covers a broad spectrum of Mechatronic systems.

However, the most challenging problem is obtaining exact knowledge of the position of

the robot. In search for a solution, researchers and engineers have developed a variety

of systems, sensors, and techniques for mobile robot positioning [1].

Based on the measurement techniques used, positioning systems can roughly be classi-

fied into two categories:

Absolute position measurements (reference based systems)

• Global positioning systems [2, 3]

• Landmark navigation [4–6]

• Active beacons [7–9]

• Model matching [10–12]

Relative position measurements (dead-reckoning)

• wheel odometry [13]

• Visual odometry [14]

• Inertial navigation [15]

Each of these methods comes with a number of advantages and disadvantages.

For instance, GPS signal is not always available or in case of relative measurement, the

error will accumulate over time. Because of the lack of a single good method, develop-

ers of mobile robots usually combine the two methods to provide a third solution, called

Sensor Fusion [16–18].

15

Figure 1 provides a brief comparison between sensor fusion and non sensor

fusion systems.

Figure 1: Why multi-sensor data fusion?

The basic problem of multi-sensor data fusion is determining the best procedure

for combining the multi-sensor data inputs [19]. Another significant issue with navi-

gational systems that needs to be dealt with, is the unpredictability that exists in the

operating environment, whether it is the unpredictability of the physical world, or the

corruption in the sensors output due to noise. The level of uncertainty arises if the robot

lacks critical information for carrying out its task. To address such issues scientists

and researchers often come up with mathematical techniques and algorithms that can

improve the overall robustness of the system. Thus robotics, is increasingly becoming

a software science. The goal is to develop robust software that enables robots to with-

stand the numerous challenges arising in unstructured and dynamic environments [20].

The main advantage of a statistical approach is that explicit probabilistic models are em-

ployed to describe the various relationships between sensors and sources of information

taking into account the underlying uncertainties [19].

1.2. The Navigation Problem

To overcome the navigation problem, we need to answer three key questions:

• Where am I?

The robot’s ability to determine its own position in the robots reference environ-

ment, which is referred to as localization.

• Where am I going?

The robot’s ability to plan a path towards the goal location. This process usually

16

consists of pre-planning a path that is optimized for the shortest distance by taking

point obstacles and dangerous areas into consideration.

• How should I get there?

The robot’s ability to accurately follow the planned path.

1.3. Applications

While fixed robots will always have a place in manufacturing, mobile robots

equipped with reliable navigation systems, promises additional operation flexibility

without requiring alterations in existing infrastructure in new applications. These ap-

plications include medical and surgical uses, personal assistance, security, warehouse

and distribution applications, as well as ocean and space exploration. The list below

provides a brief explanation on how self-navigating mobile robot can be of benefit to

different applications:

Inspection and maintenance

A self-navigating mobile robot can be used as a tool to efficiently perform the

maintenance and inspection work in challenging areas such as tunnels or other

industrial installations.

Security and defense

A mobile robot can access dangerous environments and can provide a range of as-

sistance from rescue missions to detection and sampling of toxic industrial agents

(nuclear, radiological, biological and chemical) in the environment [21].

Logistic system

In the logistics sector, cost optimization and reduction of task execution times

are two determining factors. Autonomous robots are able to carry heavy loads

between different areas, without causing any risk.

Urban transport

The use of autonomous vehicles can revolutionize urban mobility by increasing

the road capacity and safety, reducing the pollution and many other tasks.

17

Agriculture

The jobs involved in agriculture are not straightforward. Moreover, they include

many repetitive tasks. Therefore, the use of self-navigating robots can easily

outperform humans, hence reduce the cost and boost the performance.

Medical/Surgical Applications

Autonomous mobile robots can play a vital role in assisting doctors in surgical

procedures, helping the patients by moving supplies such as medications, linens

and food and basically by accomplishing more in less time.

1.4. Literature review

To get a grasp of the published work concerning this topic, a number of related

papers have been briefly explained in this section in order to provide a basis for the

proposed navigation solution.

1. Aided Navigation Techniques for Indoor and Outdoor Unmanned Vehicles

The navigation technique proposed in this paper [22], investigates the use and

advantages of using Wireless Sensor Network (WSN) for indoor, and GPS for

outdoor navigation. This system uses EKF to estimate the robot location by uti-

lizing a laser range finder(indoor) and an IMU(outdoor) as the main measurement

units. The system periodically corrects the estimate by integrating absolute mea-

surements from a WSN interface(indoor), and a GPS(outdoor). Although no field

test was conducted, the proposed solution was simulated using USARSim and

Player/Stage. The result from the simulation proved the advantage of using ex-

ternal absolute sensors in improving the accuracy of navigation for both outdoor

and indoor environments.

2. LOBOT: Low-Cost, Self-Contained Localization of Small-Sized Ground Robotic

Vehicles

The work in [23] proposes a low-cost, self-contained localization system referred

to as LOBOT, for small-sized ground robotic vehicles. One advantage of the

18

proposed system is that it does not require external reference facilities, expensive

hardware, careful tuning or strict calibration. Another advantage is its capability

of operating under various indoor and outdoor environments. LOBOT uses wheel

encoders, an accelerometer and a magnetic field sensor as the measurements for

local relative positioning. It utilizes infrequent GPS measurements for correcting

the drifting error associated with local positioning sensors.

One of the key points of this paper is the adaptive approach used in GPS sam-

pling. The more frequent GPS sampling is likely to results in better correction

of positioning; However, more frequent GPS sampling also means significantly

higher cost of power consumption [24], [25], [26]. LOBOT adjusts its GPS sam-

pling frequency, according to the magnitude of the cumulative error of the local

relative positioning. When the cumulative error of the local relative positioning

between the current GPS sampling and its preceding GPS sampling increases,

LOBOT increases its GPS sampling frequency accordingly; otherwise, LOBOT

reduces its GPS sampling frequency.

3. GPS-compatible Indoor-positioning Methods for Indoor-outdoor Seamless Robot

Navigation

The work in [27] is concerned with the problem of autonomous navigation with

a Micro Aerial Vehicles (MAV) in indoor environments. The proposed system

employs a mobile processor to address multi-floor mapping with loop closure,

localization, planning, and autonomous control, including adaptation to aerody-

namic effects during traversal through spaces with low vertical clearance or strong

external disturbances, in real time. A laser range finder sensor is used as the

main source of information for estimating position and yaw using Iterative Clos-

est Point (ICP) algorithm [28], while a Kalman Filter (KF), similar to [29] is used

to fuse the IMU data with redirected laser scans to provide altitude estimation.

The problems of mapping and drift compensation are addressed via a simpli-

fied occupancy grid-based incremental Simultaneous Localization And Mapping

(SLAM) algorithm. This algorithm was chosen instead of particle filter-based oc-

19

cupancy grid [30] and feature-based methods [31,32] due to the limited on-board

processing power.

The performance of the on-board estimator was compared to ground truth, where

ground truth is defined by a sub-millimeter accurate Vicon motion tracking sys-

tem, which shows that the estimation tends to be more accurate while the robot

controls along a specified trajectory.

4. Using the Kinect as a Navigation Sensor for Mobile Robotics

The work in [33] investigates the suitability of the Xbox Kinect optical sensor

for navigation and SLAM. The prototype presented, uses the 3D point cloud data

captured by Kinect to create 3D model of the environment. Then, it projects the

3D model to a 2D plane for 2D localization. A laptop mounted on a Pioneer

III(P3-DX) robot is responsible for the SLAM and localization processing. The

Robot System’s software is based on the Robot Operating System (ROS), which

provides libraries and tools including drivers for the Kinect, robot base, and laser

scanner. RGBD SLAM [34] was used for 3D SLAM but found to be very slow,

thus the robot speed was reduced for the algorithm to work in real-time.

The presented prototype was compared with traditional solutions with a laser

scanner (Hokuyo URG-04LX) in terms of SLAM performance and suitability as

a navigation sensor. The results show that the use of the Kinect sensor is viable.

However, its narrow field of view, short depth range and the high processing

requirements, limit its range of applications in practice.

5. WMR Control Via Dynamic Feedback Linearization:Design, Implementation,

and Experimental Validation

Due to the perfect rolling constraints, a WMR is a typical example of a non-

holonomic system. This paper tries to show the efficiency of DFL as a tool,

simultaneously valid for both trajectory tracking and set point regulation prob-

lems. The quality of the proposed approach was assessed by implementing it on

the laboratory prototype SuperMARIO, a two-wheel differentially driven mobile

robot. Its performance was compared with several existing control techniques

20

such as linear and nonlinear feedback design in a number of experiments. The

result of this comparison in terms of performance, ease of parameter tuning, sen-

sitivity to non-idealities, generalizability to more complex WMRs, and relation

with tracking controllers is gathered in Figure 2.

Figure 2: A comparison of the posture stabilization controllers implemented on SU-
PERMARIO [35].

6. Trajectory Tracking for a Mobile Robot

This project uses I-O SFL, a common approach used in controlling non-linear

systems to solve the trajectory tracking problem, on a Pioneer differential drive

robot. The kinematic model of this robot is based on unicycle model [36]. Input-

Output linearization is a well known systematic approach to the design of trajec-

tory tracking controllers.

The idea of the I-O SFL is to consider an output to control a point B

out of the wheel axis, in particular at a distance b from it. In this way,

we obtain that the point (xB,yB) is no more subject to the kinematic

constraints and that it can move instantaneously in all direction.

It should be emphasized that the reference trajectory may exhibit a path with

discontinuous geometric tangent without the need for the robot to stop and correct

its orientation, The detailed explanation of this technique is available in Section

4.2.

21

7. Stereo Vision based indoor/outdoor Navigation for Flying Robots

Motivated by creating a usable platform in disastrous situations such as the fukushima

nuclear plant meltdown, the authors of this article [37] present an autonomous

navigation system for a quad-rotor flying robot. The presented work utilizes an

EKF to fuse the visual odometry with the data from an IMU to create a solution

robust to challenging indoor/outdoor environments.

To calculate the visual odometry, the depth image is computed from rectified

stereo images by Semi-Global Matching (SGM) . The depth image is not only

used for obstacle avoidance and mapping, but it also serves as base for visual

odometry, which works on subsequent left camera images. The visual odome-

try is fused with IMU data for getting a system state estimate that is used for

mapping and control. For error estimation, corresponding to the EKF update

step, we need to use two measurement sources. Most of the time, the IMU ac-

celeration measurement is dominated by thegravity vector. This pseudo gravity

measurement for roll and pitch angle stabilization, which is especially important

for flying platforms is fused with the second measurement update provided by the

stereo odometry system. A low level PD attitude controller along with a PID posi-

tion controller is used to control the robot. The trajectory is generated by linearly

interpolating the position between way-points and low-pass filtering the result.

The experimental result shows that the relative loop closure error of the presented

navigation system on the 60m trajectory was less than 2% without conducting an

actual loop closure.

8. Multi-Sensor Fusion for Robust Autonomous Flight in Indoor and Outdoor Envi-

ronments with a Rotorcraft MAV

The design objective of this article [38] is to design a modular sensor-fusion filter

that is easily extensible even for inexperienced users. This means that the amount

of coding and mathematical deviation for the addition/removal of sensors should

be minimal. One of the drawbacks of the popular EKF is the requirement of com-

puting the Jacobian matrices, which is proven to be difficult and time consuming

for a complex MAV system. For this reason the employed derivative-free Un-

22

scented Kalman Filter (UKF) based approach [39].

One of the issues in fusing multiple measurements is the possibility of the mea-

surements arriving out-of-order to the filter; that is a measurement that corre-

sponds to an earlier state arrives after the measurement that corresponds to a later

state. This violates the Markov assumption of the Kalman Filter. The presented

system, addresses these two issues by storing measurements in a priority queue,

where the top of the queue corresponds to the oldest measurement. A pre-defined

a maximum allowable sensor delay td of 100ms was set for our MAV platform.

Newly arrived measurements that correspond to a state older than td from the cur-

rent state (generated by state propagation) are directly discarded.

The experimental result after a total flight time of approximately 8 minutes, for a

distance of 445 meters with an average speed of 1.5 m/s, demonstrate the robust-

ness of framework in large-scale, indoor and outdoor environments.

9. A Navigation Subsystem For an Autonomous Robot Lawn Mower

As the topic suggests, this thesis describes a low-cost navigation system, suitable

for outdoor commercial mobile robots. The proposed navigational algorithm uti-

lizes two GPS receivers, an IMU and wheel encoders to provide measurements

for a 7-state Kalman Filter [40] to accurately estimate the physical state of the

robot. The real-time control of the robot happens in a National instruments (NI)

sbRIO. The NI sbRIO platform has a 40 MHz Field-Programmable Gate Array

(FPGA) unit which allows the robot to parse all the critical low-level data such as

GPS and IMU on board to avoid latency and communication problems. When us-

ing low-cost off the shelf sensor for navigation, the optimality of classic Kalman

filter can not be guaranteed. Thus, methods such as [41] can be applied on this

system to improve the estimation result.

10. Three-state Extended Kalman Filter for Mobile Robot Localization

This report describes a similar approach as citeLawnMower with a 3-state discrete

EKF with the measurement taken from the odometry, fiber-optic gyroscope, and

the angular measurements to the ground markers (obtained from the video frames

23

taken during motion).

The author suggests that the overall filtering performance can be improved by:

• Online adjustment of the system and measurement covariance matrices based

on the statistical properties of the incoming data.

• Extending the state of the Filter to include the translational and rotational

velocities.

• Improved real time data correlation.

• Increased external measurement data frequency.

• Improved external data precision.

11. Particle Filters in Robotics

The work in this article [42] examines some of the innovative techniques that use

particle filters to solve perceptual problems in robotics, by providing pointers to

in-depth articles on the use of particle filters in robotics. Before the introduction

of probabilistic methods, most was focused on planning and control problems un-

der the assumption of fully modeled, deterministic robot and robot environments.

This changed radically in the mid- 1980s, when the paradigm shifted towards re-

active techniques.Particle filters are approximate techniques for calculating pos-

teriors in partially observable controllable Markov chains (see [43]) with discrete

time.

The author describes the application of particle filters in low dimensional spaces

for robot localization. Mobile robot localization addresses the problem of estima-

tion of a mobile robot’s pose relative to a given map from sensor measurements

and controls. According to the paper, the most difficult variant of the localization

is the kidnapped robot problem [44]. This problem was reported, for example, in

the context of the RoboCup soccer competition [45], in which judges picked up

robots at random occasions and placed them somewhere else. In the context of

localization, particle filters are commonly known as MCL [46]. In most variants

of the mobile localization problem, particle filters have been consistently found to

outperform alternative techniques, including parametric probabilistic techniques

such as the KF and more traditional techniques. MCL has been implemented with

24

as few as 50 samples [47] on robots with extremely limited processing and highly

inaccurate actuation, such as the soccer playing AIBO robotic shown in Figure 3.

Figure 3: Particle filters have been used successfully for on-board localization of soccer-
playing Aibo robots with as few as 50 particles [47].

12. KLD-Sampling: Adaptive Particle Filters

The algorithm presented in this technical report is a variation of particle filters

for state estimation, where it uses a statistical approach to increase the efficiency

of particle filters by adapting the size of sample sets on-the-fly. ’The key idea of

the KLD-sampling method is to bound the approximation error introduced by the

sample-based representation of the particle filter.’

13. Accuracy and Resolution of Kinect Depth Data for Indoor Mapping Applications

Kinect sensor, as a low-cost consumer-grade range camera, has the potential to

be used in mapping applications where accuracy requirements are less strict [48].

This paper discusses the calibration of the Kinect sensor and provides an anal-

ysis of the accuracy and resolution of its depth data which are essential in the

realization of its potential. It has been showed that the random error of depth

measurement increases with increasing distance to the sensor, and ranges from a

few millimeters up to about 4 cm at the maximum range of the sensor. Accord-

ing to the article the errors and imperfections in the sensors output may originate

from three main sources:

• The sensor.

• Measurement setup.

• Properties of the object surface.

25

The theoretical and experimental analysis of the geometric quality of the Kinect’s

depth data shown in the article provides a better understanding of how the sensor

should be configured in order to achieve better quality data.

1.5. Software

Listed below, is the set of tools used in this thesis to develop the software that

can perform the navigation task:

1.5.1. Programming language.

C# has been chosen as the main programming language of this thesis over tradi-

tional C/C++, because, as a part of Microsoft.Net framework it has a number of modern

features that some are listed below:

• It has native garbage-collection.

• It has an enormous list of standard libraries, that are useful for achieving the

objective of the thesis.

• It allows for both managed and native code blocks.

• It is more flexible when it comes to source code organization.

C# is an interesting language that, although it may run slower than C/C++ in some situ-

ations, but its rapid development paradigm makes it the superior choice among modern

programming languages. Below is the list of external software libraries that are used in

this thesis to enhance the already rich standard library of C#.

1.5.2. Used Libraries.

A set of software libraries has been used in conjunction with the standard C#

libraries to improve the overall functionality of the software.

• OpenTK1: low-level C# library that wraps OpenGL, OpenCL and OpenAL.

• GMap.NET2: An open source .NET control that enables the use of routing, Geo-

coding, directions and maps from online map providers such as Google, Yahoo!

etc..

1http://www.opentk.com
2https://greatmaps.codeplex.com

26

http://www.opentk.com
https://greatmaps.codeplex.com

• EmguCV3: is a cross platform .Net wrapper to the OpenCV image processing

library.

• Microsoft Kinect Software Development Kit (SDK) 4: This SDK enables de-

velopers to create applications that support gesture and voice recognition, using

Kinect sensor technology on computers running Windows.

In addition to the mentioned external libraries, a custom graphical simulation

environment has been developed for this thesis using low-level OpenGL Application

Programming Interface (API).

1.6. Hardware

A group of hardware and devices has been employed in this thesis to test the

performance of the proposed navigation solution.

1. NI LabVIEW Robotics Starter Kit: Robotics Platform for Teaching, Research,

and Prototyping

• Motors: Pitsco Education 12 VDC motors featuring 152 rpm and 300 oz-in.

of torque

• Encoders: Optical quadrature encoders with 400 pulses per revolution

• Processor: 400 MHz Freescale real-time processor

• Memory: 128 MB DRAM, 256 MB nonvolatile storage

• Connection: RS232 serial port for peripheral devices

• Weight: 3.6 kg (7.9 lb)

2. MIDG IIC: A GPS aided inertial navigation system (INS) for use in applications

requiring attitude, position, velocity, acceleration, and angular rates for naviga-

tion or control

• Input Voltage: 10 VDC - 32 VDC

• Power: 1.2W max (including GPS antenna)

• Position Accuracy: 2m (CEP) with WAAS/EGNOS available, 3 m (CEP)

otherwise
3http://www.emgu.com/
4http://www.microsoft.com/en-us/download/details.aspx?id=40278

27

http://www.emgu.com/
http://www.microsoft.com/en-us/download/details.aspx?id=40278

• Data Output Rates: Position , Velocity, attitude, rates, accelerations - 50 Hz

GPS measurements - 4 Hz

• Output: RS422 async., 115200 baud (configurable), 8-N-1

• Weight: 55 grams

3. Microsoft Kinect for Xbox 360

• Viewing angle: 43°vertical by 57°horizontal field of view

• Frame rate (depth and color stream): 30 Frames Per Second (FPS)

• Resolvable Depth: 0.8m to 4.0m

• Latency: approximately 90ms with processing

1.7. Thesis Overview

This thesis is organized in eight major chapters:

• Chapter 2 discusses the overall hardware and software architecture of the robot.

This chapter introduces the method of communication between major parts of the

system and goes into detail about how it is implemented in the software.

• Chapter 3 explains the motion model that is used throughout this thesis.

• Chapter 4 is compromised of analyzing, implementing and testing two trajectory

following algorithms. In this chapter a comparison has been made between the

trajectory following methods, based on the proposed objectives of the robot.

• Chapter 5 focuses on the use of EKF for localization, and explains how it is being

used for sensor fusion by combining GPS, Heading sensor and encoder data.

• Chapter 6 discusses the process of Monte Carlo Localization; a variation of parti-

cle filter algorithm. It also discusses how the depth measurements from a Kinect

sensor is used to localize the robot in indoor environments where GPS signals are

blocked.

• Chapter 7 offers a solution for integrating the indoor and outdoor algorithms that

involves ray-casting on the indoor map polygon. The resulting hybrid system is

able to autonomously switch between the two algorithms based on the location.

• Chapter 8 concludes the thesis by summarizing the content and points out direc-

tions for further improvement of the system and future work on the subject.

28

Chapter 2: System Setup

There are a few limitations to the real-time controller board available on the NI

LabVIEW Robotics Starter Kit1. A major limitation is the limited processing power

with only a single RS-232 port. To overcome this limitation, a laptop computer has

been added to the system as the main processing unit which can effectively handle all

the navigation and localization responsibilities, thus the on-board processing on the

robotic platform will be limited to low-level controllers such as the DC motor velocity

controller. The laptop will continuously communicate with the robot platform through a

serial connection to simultaneously read the velocity outputs and to send the appropriate

control commands to the robot controller unit. The general hardware setup can be seen

in Figure 4.

Figure 4: General Hardware Setup

The block diagram shown in Figure 5 illustrates the high-level/low-level system

integration.

1sbRIO-9632.

29

Fi
gu

re
5:

B
lo

ck
D

ia
gr

am
of

th
e

sy
st

em

30

2.1. Communication

The MIDG IMU/INS package uses the Microbotics binary protocol (mBin) to

communicate with the host computer. Due to the simple yet reliable characteristic

of this protocol, it has also been selected as the communication protocol between the

robotic platform and the laptop.

The mBin protocol is a standard binary package that has the following structure:

Figure 6: mBin Packet Frame

As can be seen in Figure 6, the packet starts with two predefined sync bytes

followed by the message ID. However the most important part of the packet is the

Fletcher checksum(CKSUM0 and CKSUM1), which is computed over the bytes that

include the message ID, Count byte, and the payload bytes. The basic algorithm can be

seen in Figure 7.

Algorithm 2.1.1: COMPUTEFLETCHER(id,count, payload)

cksum0← 0
cksum1← 0
for each byte ∈ IDtoPayload

do
{

cksum0← cksum0+byte
cksum1← cksum0+ cksum1

Figure 7: Fletcher Algorithm

The sbRIO-9632 device is programmed using the LabVIEW graphical develop-

ment environment. To process the information received at the serial port, three separate

loops are defined with the following responsibilities:

31

1. The first loop will add the data bytes received at the serial port to the ’Byte

Stream’ queue.

2. The Second loop will process the available data in the ’Byte Stream’ queue and

try to parse the received packets. If successful, the packets will be added to the

’Packet Stream’ queue

3. The Third loop will extract the message ID, payload length and the payload data

itself from the ’Packet Stream’ queue.

The first loop(Figure 8) consists of three other loops. One to write the available

data in the ’Write Stream’ queue to the serial port’s write buffer. The next is a while

loop that ensures the data is fully received before reading it from the read buffer. Finally

the received bytes are added to the ’Byte Stream’ queue.

Figure 8: First Loop

The second loop’s job is to parse the packet data in the stream queue. It contains

a 5 states case structure block:

Initialize This is the first case which will initialize Shift registers and will create a

buffer array with 256 elements(the size of the buffer must be greater than the

largest packet that may be received at the serial port).

Get byte This case comes after the initialization, and its job is to dequeue one element

at a time and add that element in the last position of the buffer array. To achieve

this first the array rotated by −1 then the new item is inserted in the (n− 1)th

element of the array, where (n is the size of the array). This means that each new

32

Figure 9: Second Loop: Initialize

element is added to the bottom of the buffer and will push the last element to the

top. After adding one element to the array the state will change to ’check sync’.

Figure 10: Second Loop: Get byte

Check Sync This state will go through the buffer to look for the to Sync bytes defined

by the protocol, 0x81 and 0xA1. If these two bytes are detected it will check

if the number of remaining bytes after these two are greater than the minimum

possible packet which is 6 bytes(2 sync bytes + message ID + payload length + 2

checksum bytes). Only if this is true it will change the state to ’check checksum’,

if not it will go back to ’get byte’

Check Checksum This state will check the last two bytes of the received packet with

the calculated checksum bytes(Figure 13), if they both match it means the packet

is correct and it will change the state to ’packet received’. If not it will go back to

’get byte’

33

Figure 11: Second Loop: Check Sync

Figure 12: Second Loop: Check Checksum

Figure 13: Second Loop: Calculate Checksum

Packet Received This state will check the last two bytes of the received packet with

the calculated checksum bytes. If they both match it means the packet is correct

and it will change the state to ’packet received’. If not it will go back to ’get byte’.

It should be noted that the Producer/Consumer design pattern that has been used

here is based on the Master /Slave pattern which is geared towards enhancing the data

sharing between multiple loops running at different rates. As with the standard Master/

Slave design pattern, the Producer/Consumer pattern is utilized to decouple processes

34

Figure 14: Second Loop: Packet Received

Figure 15: Third Loop

that produce and consume data at different rates. The first loop here (Producer loop) is

producing the data which is consumed by the second loop(Consumer loop). The same

thing goes for the second and the third loop which makes the second loop the producer

of the packet data and the third loop its consumer.

35

Chapter 3: Robot Motion

3.1. Introduction

This chapter elaborates on the motion model used for this study to model and

controls the robot. It starts with examples of the basic motion model of a unicycle and

how it is applied to derive the state transition, which plays an essential role both in the

trajectory following and the filter design.

3.2. Motion Model

3.2.1. Unicycle.

Kinematics is the geometry of pure motion, when dealing with the kinematics

of robots. We are only interested in the motion without reference to force or mass. The

robot kinematic state or pose consists of its two-dimensional planar coordinates (x,y)

with respect to an external coordinate frame, along with its angular orientation θ . The

pose of the robot in its configuration space is described as follows:


x

y

θ

 ∈ℜ
3 (1)

The orientation of a robot or as is often called, heading suggests that a robot

with heading θ = 0 points into the direction of x-axis (Figure 16). Using the follow-

ing assumptions, we can simplify the motion of differential drive robots to a unicycle

model:

• No sliding on the wheels.

• Each wheel adds a non-holonomic constrain to the system(no movement perpen-

dicular to the rolling direction)

• The instantaneous limitation of the wheel does not limit the robot maneuverabil-

ity.

36

Figure 16: Robot pose, in global configuration space

The kinematic model of a unicycle is usually described by a simple non-linear

model [49]:

ẋ = υcosθ

ẏ = υsinθ

θ̇ = ω

(2)

where

υ = Linear velocity of the robot

ω = Angular velocity of the robot

For any position (x,y), the unicycle can point at any direction (θ). However,

we know the fact that the unicycle can not move sideways if there is no slippage. This

means that there is a constraint that:

ẋ = υ (cosθ x̂+ sinθ ŷ) (3)

Or

ẏ = ẋtanθ (4)

37

3.2.2. Exact Motion.

Mobile robots operating in planar frames can be described in two specific mo-

tion models based on the available information. Both models are rather complimentary

in the type of motion information that is being processed. The first model assumes

that the motion data ut specifies the velocity commands given to the robot’s motors.

The robotic platform(NI Robotic Starter Kit v.2) that is used in this thesis, like many

commercial mobile robots, employs this motion model, meaning that it is actuated by

independent linear and angular velocities. The second model assumes that one is pro-

vided with odometry information(distance traveled, angle turned). In practice, odom-

etry models tend to be more accurate than velocity models [20]. However, it is only

available post-the-fact. Therefore, it cannot be used for motion planning.

To show the kinematics for an ideal, noise-free robot with the velocity model

(Figure 17), let ut = (ν ω)T denote the control at time t. If both velocities are kept

at a fixed value for the entire time interval [t − 1, t], the robot moves on a circle with

radius:

r =
∣∣∣ ν

ω

∣∣∣ (5)

Figure 17: Motion carried out by a noise-free robot moving with constant velocities (ν)
and (ω), starting at (x y θ)T

In case the robot does not turn at all(i.e., ω = 0), Equation (5) will be equal to

infinity, which means the robot is moving on a straight line. A straight line corresponds

to a circle with infinite radius, hence we note that r may be infinite.

38

If we let xt−1= (x y θ)T be the initial pose of the robot, and suppose we keep

the velocity constant at (ν ω)T for some time ∆t. As one easily shows, the center of

the circle is at

xc = x− ν

ω
sinθ (6)

yc = y+
ν

ω
cosθ (7)

The variables (xc,yc)
T denote this coordinate. After ∆t time of motion, our ideal

robot will be at xt = (x,́y,́θ)́ with


x́

ý

θ́

=


xc +

υ

ω
sin(θ +ω∆t)

yc− υ

ω
cos(θ +ω∆t)

θ +ω∆t

 =


x

y

θ

=


− υ

ω
sinθ + υ

ω
sin(θ +ω∆t)

υ

ω
cosθ − υ

ω
cos(θ +ω∆t)

ω∆t

 (8)

39

Chapter 4: Trajectory Following

4.1. Motion Control

To perform trajectory tracking of WMRs (Figure 18), kinematic models are used

to design feedback laws because the dynamic terms can be canceled out via feedback.

The output from the controller is then used by the existing low-level PID controller on

the platform as the velocity reference for each wheel.

Figure 18: Trajectory Following

The basic control scheme of the system is made of a high-level controller, which

will compute the velocity set-points of the motors, and a low-level controller that will

have this set-points as an input, to control the real velocity of the motors. Given a

desired position, the high-level controller decides the motion of the robot while the low-

level controller, controls the motors in a way that the desired motion is achieved. If the

control gains in the low-level controller are high enough the delay between the desired

and actual velocity will be negligible. To make things easier and more compatible

with the robotic platform, NI LabVIEW Robotics is equipped with such controller that

accepts linear and angular velocity of the robot as the input and controls the motors

velocity internally Figure 19.

The design of the high-level controller is based on the kinematic model of the

robot which has to take into account the constraints introduced by the wheels. The

complexity of the high-level controller is raised by the nonlinearity that exists in the

40

Figure 19: Steering Block(LabVIEW Robotics)

system. The rest of this chapter is focused on the design, test and comparison of two

control systems that overcomes the nonlinearity problem.

4.2. Dynamic Feedback Linearization

DFL is an efficient design tool leading to a solution for both trajectory follow-

ing and set-point regulation problems [35]. The odd nature of the nonholonomic kine-

matics of a unicycle, indicates that linear control is ineffective, and innovative design

techniques are required.

After preliminary attempts, the trajectory tracking problem was globally solved

by using DFL in [50] and [51]. The DFL problem consists of finding, a feedback

compensator of the form:

ξ̇ = a(q,ξ)+b(q,ξ)u

ω̇ = c(q,ξ)+d (q,ξ)u
(9)

where ξ ∈ Rυ and u ∈ Rm, such that the closed loop system (11) is equivalent

to:

q̇ = G(q)ω q ∈ Rn,ω ∈ Rm (10)

41

The procedure [35]: for exact linearization of the unicycle model using DFL is

listed below:

1. Based on the unicycle kinematics (2), a new state ξ is introduced in the controller:

ξ̇ = u1cosθ +u2sinθ

υ = ξ

ω =
u2cosθ +u1sinθ

ξ

(11)

2. Then coordinates are transformed with respect to the new state:

z1 = x

z2 = y

z3 = ẋ = ξ cosθ

z4 = ẏ = ξ sinθ

(12)

3. The resulting system is a linear system with two decoupled integrators:

z̈1 = u1

z̈2 = u2

(13)

1. Finally using a simple PD feedback regulator the system can be controlled :

u1 =−kp1x− kd1ẋ u2 =−kp2y− kd2ẏ (14)

Based on DFL, if we assume the robot follows a smooth path (xd(t),yd(y))

with no discontinuity, by modifying only the 4th step, we can design an exponentially

stabilizing feedback to stabilize the trajectory tracking error:

u1 = ẍd + kp1(xd− x)+ kd1(ẋd− ẋ)

u2 = ÿd + kp2(yd− y)+ kd2(ẏd− ẏ)
(15)

42

To obtain the actual control inputs, the result from Equation (15) should be

directly sent to the dynamic compensator Equation (11) in step 1. The result is only

valid if the dynamic feedback compensator Equation (11) does not meet the singularity

ν = ξ = 0. This may only happen during the initial transient of an asymptotic tracking

problem.

The controller has been tested by simulating the robot motion with the kinematic

model 5 in Matlab, Tracking the 8 figured trajectory of Figure 20. The travelled path by

the robot can be obsereved in Figure 21 while the changes in the robot pose (Figure 22)

and velocities (Figure 23 and Figure 24) proves the effectiveness of the algorithm.

xdes = 0.5sin(
t

20
), ydes = 0.5sin(

t
40

), t ∈ [0,T] (16)

With initial conditions defined by:

x0 = 0.1, y0 = 0.1, θ0 =
π

2
(17)

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x(m)

y(
m

)

Figure 20: Reference Trajectory of The Robot

43

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x(m)

y(
m

)

Reference Trajectory
Robot Path

Figure 21: DFL: Reference and Robot Trajectories

0 50 100 150 200 250 300
−4

−3

−2

−1

0

1

2

3

4

t

X
Y
Theta

Figure 22: DFL: Robot motion: x(m),y(m),θ(rad)

44

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

v(
m

/s
)

t(s/10)

Figure 23: DFL: Linear velocity

0 50 100 150 200 250 300
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

om
eg

a(
ra

d/
s)

t(s/10)

Figure 24: DFL: Angular velocity

45

0 50 100 150 200 250 300
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

E
rr

or
: x

, y

t(s/10)

x(m)
y(m)

Figure 25: DFL: Cartesian error (x,y)

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

E
rr

or

Figure 26: DFL: Norm of the error

46

One of the main disadvantages of using DFL is that the implementation of the

control scheme is rather complex. This complexity is arisen by critical state initializa-

tion of the dynamic controller and problems when linear velocity is 0 (start and stop).

Another big disadvantage of DFL method is its inability to follow trajectories with sharp

edges (it is impossible with constant velocity as the robot has to stop and turn). In this

case, tracking will be temporarily lost. Such behavior can be observed when we set the

robot to follow a square shaped trajectory Figure 27.

Figure 27: DFL: Robot following a square shaped trajectory.(brighter the color, the
closer the robot is to the final position)

Due to temporary loss of tracking at the sharp edges of the path, the angular

velocity will drastically increase (Figure 28 which results in complete change in robot

heading.

47

0 50 100 150 200 250 300
−10

0

10

20

30

40

50

60

70

om
eg

a(
ra

d/
s)

t(s/10)

Figure 28: DFL: Angular velocity of the robot following a square shaped trajectory.

4.3. Input-Output State Feedback Linearization

The limitation of DFL to follow a path with tangent discontinuities is enough

motivation to look for other solutions for the problem. By taking a point b outside

the wheel axle of the unicycle model, as the output(reference point) of the system, it is

possible to control the robot motion with a constant linear velocity regardless of the path

curvature as it is not subjected to kinematic constraints and can move in any direction

instantaneously [52].

xB = x+bcosθ

yB = y+bsinθ

(18)

Such solution can be illustrated by a kid pulling a toy car Figure 30:

1. The kinematic model of the robot with respect to the coordinate transformation:

48

Figure 29: Point B outside the wheel axle with distance b 6= 0

Figure 30: Pulling a toy car with a piece of rope

ẋb = υcosθ −ωbsinθ

ẏb = υsinθ −ωbcosθ

θ̇ = ω

(19)

2. The dependence on the inputs is invertible in the first two equations:

det

cosθ −bsinθ

sinθ bcosθ

= b 6= 0 (20)

3. The resulting system is a linear system with two decoupled integrators:

49

ẋb = υdx

ẏb = υdyẋb

ẏb

=

cosθ −bsinθ

sinθ bcosθ

υ

ω


υ

ω

=

cosθ −bsinθ

sinθ bcosθ

−1υdx

υdy


=

 υdxcosθ +υdysinθ

1
b(υdycosθ −υdxsinθ)



(21)

4. Given a trajectory (xdes, ydes), it is possible to find υdx and υdy that guarantee

the asymptotic tracking:

υdx = ẋdes + k1(xdes− xB)

υdy = ẏdes + k2(ydes− yB)

⇒ ėx + k1ex = 0

ėy + k2ey = 0
ex,ey→ 0 (22)

The controller has been tested against the same 8 shaped trajectory Figure 20

in matlab. Figure 31 shows the robot path along the reference trajectory. By observing

the changes in x(m),y(m),θ(rad) in Figure 32 along with the controller outputs (Fig-

ure 33 and Figure 34), it can be concluded that the controller is effectively following

the trajectory while maintaining minimum cartesian error (Figure 35).

I-O SFL is a very straightforward method for trajectory tracking. Its ease of

implementation along with its performance over any trajectory with or without tangent

discontinuities makes it a superior controller over DFL method. This feature improves

the overall maneuvrability of the robot by having the ability to make sharper turns with

constant linear velocity (Figure 37). It should be noted that when using I-O SFL, we

have no direct way to control the angle of the robot (θ) while following a trajectory, but

instead the robot will try to correct its angle over time as it is being pulled by the point

B. This behavior is more apparent in Figure 37 where the robot naturally aligns itself

with the trajectory over a period of time depending on the length b.

50

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x(m)

y(
m

)

Reference Trajectory
Robot Path

Figure 31: I-O SFL: Reference and Robot Trajectories

0 50 100 150 200 250 300
−4

−3

−2

−1

0

1

2

3

4

t(s/10)

X(m)
Y(m)
Theta(rad)

Figure 32: I-O SFL: Robot motion: x(m),y(m),θ(rad)

51

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

v(
m

/s
)

t(s/10)

Figure 33: I-O SFL: Linear velocity

0 50 100 150 200 250 300
−2

−1.5

−1

−0.5

0

0.5

1

1.5

om
eg

a(
ra

d/
s)

t(s/10)

Figure 34: I-O SFL: Angular velocity

52

0 50 100 150 200 250 300
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

E
rr

or
: x

, y

t(s/10)

x(error)
y(error)

Figure 35: I-O SFL: Cartesian error (x,y)

0 50 100 150 200 250 300
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

E
rr

or
(m

)

t(s/10)

Figure 36: I-O SFL: Norm of the error

53

Figure 37: I-O SFL: point B (yellow) is used by the robot to track a square shaped path

54

Chapter 5: Outdoor Navigation

Globally navigating a mobile robot requires the ability to locate its position

when placed in any unknown location and to update that information while moving to

fulfill other mission objectives (in this case navigation through the waypoints). Based

on the measurement method, robot localization can be divided into three categories:

• Relative localization or dead-reckoning

This method can be achieved using sensors such as wheel encoders or visual

odometry with the advantage of data being always available. The problem with

relative localization arises from the fact that each measurement is based on the

last measurement which will result in the accumulation of the error.

• Absolute localization

In the early 60’s the American Navy Navigation Satellite System (NNSS) was

developed, using ’Transit’ Satellites, to provide a global position fixing system

for the US Navy’s Polaris submarines. This system became fully operational in

1964 and was made available to the general public in 1967 by Presidential or-

der [53]. Since then, the GPS became a de facto standard for absolute position

measurements in outdoor environments. The main disadvantage of absolute lo-

calization (whether it is coming from a GPS or an active beacon) is that the data

is not always available(eg. A GPS will lose signal in a forest).

• Sensor Fusion

Combining both absolute and relative measurements into one system, will result

in a more accurate, more complete and more dependable localization system.

Depending on the type of sensors, methods, such as KF [54] or Particle Filter,

can be used to attain a reliable localization system.

KF is essentially a set of mathematical equations that implement a predictor-

corrector type estimator which is optimal in the sense that it minimizes the estimated

error covariance when some presumed conditions are met. Since the time of its intro-

duction, the Kalman filter has been the subject of extensive research and application,

particularly in the area of autonomous or assisted navigation. This is likely due in large

part to advances in digital computing that made the use of the filter practical because

55

of the relative simplicity and robust nature of the filter itself. Rarely do the conditions

necessary for optimality actually exist, and yet the filter apparently works well for many

applications in spite of this situation.

The algorithm (Figure 38) is a two-step process, in the first step(prediction),

KF estimates the current state variables and their uncertainties. Once the next mea-

surements(prone to noise and random errors) are observed, these estimates are updated

using a weighted average, with more weight being given to estimates with higher cer-

tainty. The KF algorithm is computationally quite efficient. because of its recursive

nature, it can run in real time using only the present input measurements and the pre-

viously calculated state and its uncertainty matrix; no additional past information is

required.

Algorithm 5.0.1: KALMANFILTER(µt−1,Σt−1,ut ,zt)

µ̄t = At µt−1 +Bt µt
Σ̄t = AtΣt−1AT

t +Rt

Kt = Σ̄tCT
t (Ct Σ̄tCT

t +Qt)
−1

ut = µ̄t +Kt(zt−Ct µ̄t)
Σt = (I−KtCt)Σ̄t
return (ut ,Σt)

µ̄t = Predicted state estimate
Σ̄t = Predicted covariance estimate
Kt = Near-optimal Kalman gain
ut = Updated state estimate
Σt = Updated covariance estimate

Figure 38: The Kalman filter algorithm for linear Gaussian state transitions and mea-
surements. [20]

5.1. Extended Kalman Filter

Unfortunately, in practice the assumption of linear state transitions and linear

measurements with added Gaussian noise are rarely fulfilled. For example, a mobile

56

robot platform with differential drive and non-holonomic constraints typically moves

on a circular trajectory, which cannot be described by linear next state transitions. So

an attempt was made to apply this filtering technique to nonlinear systems. By adapting

techniques from calculus, namely (first order) Taylor Series expansions, EKF, approx-

imately linearize a model about a working point. The EKF algorithm in Figure 39, in

many ways, is similar to KF algorithm with the most important differences gathered in

Table 1

Algorithm 5.1.1: EXTENDEDKALMANFILTER(µt−1,Σt−1,ut ,zt)

µ̄t = g(µt ,µt−1)
Σ̄t = GtΣt−1GT

t +Rt

Kt = Σ̄tHT
t (Ht Σ̄tHT

t +Qt)
−1

ut = µ̄t +Kt(zt−h(µ̄t))
Σt = (I−KtHt)Σ̄t
return (ut ,Σt)

Figure 39: The Extended Kalman filter algorithm (for full mathematical derivation of
the EKF refer to [20])

Table 1: KF Vs EKF [20]

Kalman filter Extended KF
state prediction (Line 2) At µt−1 +Bt µt g(µt ,µ,t−1)
measurement prediction (Line 5) Ct µ̄t h(µ̄t)

The linear equations in prediction step of KF are replaced by their nonlinear gen-

eralizations in EKF. In addition EKF uses jacobians Gt and Ht instead of corresponding

linear matrices At , Bt and Ct .

For the detailed mathematical derivation of EKF refer to [20].

5.1.1. Filter Design.

The readings from the wheel encoders, IMU, and the GPS can be fused together

to form a much more reliable reading which can effectively reduce the localization error.

Almost every commercially available sensor is associated with some level of reading

57

uncertainties. In our case noisy sensors include the wheel encoders(integration error,

wheel slippage, etc.), heading sensor (magnetic interference,etc.) and GPS(ionosphere

and troposphere delays, number of visible satellites,etc.). The integrated system which

resulted from EKF provide superior performance over either GPS or odometry based

positioning system.

As an example to visualize EKF, one can imagine a human walking towards a

door. As you move, your body tells your brain how far you moved from the last known

position, while your eyes can tell you how far you exactly are from the door. Now go

through the same process with your eyes closed. On the first step your body can tell you

how much you moved with a little uncertainty, but since you have no way to measure

your distance from the door, with each step this uncertainty grows. So, after a few step

the best you can do is to make a rough guess about your location. In this conceptual

example, the brain functioning happens in two discrete steps: 1) Prediction step (how

your body moves), and 2) Measurement (Measuring the distance using your eyes). As

mentioned before the EKF algorithm works in a similar two-step process by guessing

the internal state of the system, using the system and measurement models. The system

model is necessary to predict the system state based on the previous state. Then the

estimated state is updated by measurement model, given the sensor data. The first step

of the filter design is to choose the states which consists of all the parameters that need

to be estimated:

X =
[
x y θ υ ω

]t
(23)

The motion model (8) derived in chapter 3 can be used to model the system:

xk = xk−1−
υ

ω
sinθ +

υ

ω
sin(θ +ω∆t)

yk = yk−1 +
υ

ω
cosθ − υ

ω
cos(θ +ω∆t)

θk = θk−1 +ω∆t

υk = υk−1

ωk = ωk−1

(24)

58

Measurement model purpose is to tell the system what parameters the sensor is

measuring, there are three different sensors used for measurement in our system. So,

we need three measurement models:

• Encoder

Encoders will give the information about total displacement of the robot since its

last known position, which in our case, will be calculated by multiplying the state

vector (5.2.2) with the following measurement matrix:

Henc =


0 0 0 1 b

2

0 0 0 1 −b
2

0 0 0 0 0

 (25)

Where b is the distance between the wheels.

• Heading

Heading value will only affect θ so the measurement matrix is pretty straight

forward:

Henc =


0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

 (26)

• GPS

GPS measures the location of the robot in x and y (ECEF) so if we put the GPS

receiver antenna exactly on the robot axis the measurement matrix would be as

simple as:

HGPS =

xgps

ygps

=

xk

yk

 (27)

But in practice that is usually not the case as there would be an offset from where

the antenna is to the robot axis. Using simple trigonometry we can easily consider

this offset in the measurement calculations:

59

HGPS =

xgps

ygps

=

xk + xo f f cosθk− yo f f sinθk

yk + xo f f sinθk + yo f f cosθk

 (28)

The additional terms represent a rotation matrix around the true point of interest

(xk,yk) .

5.1.2. Simulation.Figure 40 demonstrates the general trajectory following with

the use of EKF for sensor fusion.

Figure 40: Flowchart: The basic outdoor navigation process

60

To generate a realistic sensor reading, measurements have been simulated by

adding Gaussian noise to the true value of the measured parameter taken from the state

vector. This set of simulations shows the ability of EKF to correct the robot path given

the following configuration:

x0 = y0 = θ0 = 0

υ = 0.4ms

ω = 0.2rad/s

Encoder Noise⇒Mean' 0, Variance' 1

GPS Noise⇒ Mean' 0, Variance' 0.05

(29)

Apart from the white noise, an error of magnitude 0.4m/s has been added to

the value of right encoder between the 100th and 110th iteration to simulate the error

caused by wheel slippage. Figure 41 shows the filter in action when only the encoder

and heading data are available.

−3 −2 −1 0 1 2 3

−1

0

1

2

3

4

5

x(m)

y(
m

)

Reference Path
Odometry
Estimated Position

Figure 41: EKF with encoder and heading measurement

61

It should be noted that a measurement update step will only happen if the mea-

surement data is available, thus in case of multiple sensors, measurements updates may

happen with different rates. The next example shows how the measurement update rate

can affect the filter performance.

It can be concluded from the result in Figure 42 that EKF can effectively min-

imize the error caused by imperfect sensors such as encoders and GPS by fusing their

data together. The accuracy of the filter has a direct relation with the frequency of

measurements. For example, if instead of every fifth iteration the GPS measurement

happens on every single iteration, the outcome will become closer to the expected path

(Figure 42b).

−2 −1 0 1 2 3 4

−1

0

1

2

3

4

5

x(m)

y(
m

)

Reference Path
Odometry
Estimated Position

(a) GPS update on every fifth iteration

−2 −1 0 1 2 3 4

−2

−1

0

1

2

3

4

x(m)

y(
m

)

Reference Path
Odometry
Estimated Position

(b) GPS update on every iteration
Figure 42: EKF with encoder, heading and noisy GPS measurements

In the next simulation, estimated data from EKF is used as the input to the tra-

jectory following algorithm (I-O SFL) using the same configuration defined in Equation

(29) to follow a square shaped trajectory (Figure 43). The robot motion can be observed

in Figure 44 as it moves through the path.

62

−2 −1 0 1 2 3

−2

−1

0

1

2

3

x(m)

y(
m

)

Reference Trajectory
Estimated Position
Noisy GPS Readings

Figure 43: EKF is used with the I-O SFL algorithm to follow the square shaped trajec-
tory

Figure 44: Overall robot pose along the path(robot’s color becomes brighter as it gets
closer to the end of the path)

63

5.2. Navigation Software

5.2.1. GUI.

The main Graphical User Interface (GUI) is divided into two tabs; the first tab,

as shown in Figure 45 displays the essential information regarding the sensors such as

wheel velocities (given by the encoders) and IMU/GPS data. It also includes a graphical

representation of the robot in a gridded environment that is useful for observing the

robot behavior during the navigation process. Highlighted in blue is the information

about the serial port configuration, likewise red is the encoder data, magenta shows

the IMU/GPS data with the artificial horizon and black represents EKF and navigation

configuration.

Figure 45: Main features of the GUI

The second tab provides the user with the option to choose waypoints by click-

ing on a zoomable map provided by a list of most popular online map providers Fig-

ure 46

64

Figure 46: Map features include a list of map providers, local caching of the map,
zooming and panning)

5.2.2. Geodetic Transformation.

A Geodetic system or geodetic datum is defined as ’A set of constants specifying

the coordinate system for a collection of points on the Earth surface.’ [55].

Datums are used to transform positions indicated on maps to their real posi-

tion on Earth and vice versa. For satellite geodesy, a global geodetic datum is defined.

For example World Geodetic System 1984 (WGS84) is an Earth-centered, Earth-fixed

terrestrial geodetic datum which is based on a consistent set of constants and model

parameters that describe the Earth’s size, shape, and gravity and geomagnetic fields.

WGS84 is the standard U.S.Department of Defense definition of a global reference sys-

tem for geospatial information which is the reference system for the Global Positioning

System (GPS) [56].

The process of waypoint selection encompasses a set of coordinate transforma-

tions that allows the software to translate the coordinates chosen by the user to their

respective geodetic coordinates and vice versa. This process starts by converting the

local (x,y) coordinate of the mouse cursor to its intended geodetic location(Latitude-

Longitude-Altitude (LLA)) on the map. The main idea behind this conversion is to save

65

the geodetic coordinate of each pixel on the time of map rendering in an array so it can

be accessed later. This functionality is provided by GMap.Net control 1.

The selected point in LLA coordinate system is then converted to the Earth-

Centered, Earth-Fixed (ECEF) Cartesian coordinate system using the WGS84 parame-

ters (Figure 47).

Figure 47: WGS84 Ellipsoid Parameters [57]

This LLA to ECEF conversion(in meters) is performed using the closed

formulas shown below.

X = (N +h)cosϕcosλ

Y = (N +h)cosϕsinsλ

Z = (
b2

a2 N +h)sinϕ

(30)

ϕ = latitude

λ = longitude

h = height above ellipsoid(meters)

N = radius of curvature(meters), defined as: =
a√

1− e2sin2ϕ

1More information can be found at: https://greatmaps.codeplex.com

66

https://greatmaps.codeplex.com

Figure 48: ECEF and Reference Ellipsoid [57]

Finally, the ECEF coordinate is is further transformed into what will be termed

here the Local Tangent Plane (LTP). This is an orthogonal, rectangular, reference system

defined with its origin at an arbitrary point on the Earth’s surface. This system is written

as e,n,u and forms a right-handed coordinate system with a strong analogy to the usual

x,y,z coordinates. The great advantage of the LTP system is that its axes coincide with

the expectation of people on the ground concerning such ingrained things as up, and

north, which ECEF coordinate system does not [58]. The ECEF to LTP transformation

is involved with a set of simple rotations and translations:

Xenu =


e

n

u

=


−sinλ cosλ 0

−cosλ sinϕ −sinsinλ cosϕ

cosϕcosλ cossinλ sinϕ

 .


x− x0

y− y0

z− z0

= Rt(X−X0) (31)

where
λ = origins latitude

ϕ = origins longitude

X0 = origin in ECEF coordinate

Having a reference point as the origin of the LTP is essential to this transforma-

tion. Thus, the software restricts the user from selecting the waypoints before choosing

a reference point on the map. An example of such selection is shown in Figure 49.

67

Figure 49: A screen shot of a portion of the GUI.

The accuracy of this transformation can be confirmed using the Google Maps

online map. The top part of the Figure 50 shows the position of a point on the map with

respect to the selected reference point. The calculated distance (
√
−93.3162 +61.7812'

111.91m) is very close to the Google Map result(11.83m) shown on the bottom.

Figure 50: Conversion result from the software compared with the same conversion
from google map engine.

68

5.3. Practical Results

To evaluate the outdoor navigation system, it has been tested in a range of out-

door environments, applying different trajectories. The recorded data from the robot

was used in Matlab to create the plots to evaluate the results. No path planning algo-

rithm was used in this experiment. Only point to point navigation with the condition

that if the robot is within 40cm of the way-point, the robot will consider that it reached

the target waypoint and will switch the target to the next way-point(Figure 52). The

40cm way-point boundary that is used in the following experiment is approximately

equal to the size of the robot platform. By defining such boundary, the navigation pro-

cess will be handled faster. By reducing the radius of this boundary the robot will slow

down and will try to reach the exact location of each waypoint before moving to the

next one. This tolerance is adjustable in the software based on the navigation objective.

This simple algorithm can be observed in Figure 51.

Algorithm 5.3.1: TARGETWAYPOINT(xestimate,yestimate,xdesired,ydesired)

if
(√

(xestimate− xdesired)
2 +(yestimate− ydesired)

2 ≤ 0.4
)

then return (NextWaypoint)

else return (CurrentWaypoint)

Figure 51: A simple algorithm that checks if the robot has reached the target way-point

All the variables were recorded during the experiment and used to create Matlab

plots to analyze the result. Figure 54 shows the norm of the Cartesian error from the

experiment in Figure 52. The dotted line shows the time when the robot changes its

destination way-point after reaching the current way-point. The error values at each

way-point are gathered in Table 2 and Table 3. The effectiveness of EKF can be ob-

served in Figure 53 by comparing the noisy GPS readings with the output of the filter.

69

(a) A set of way-points chosen by the user on the software’s map.

−2 −1 0 1 2 3 4 5

−7

−6

−5

−4

−3

−2

−1

0

x(m)

y(
m

)

Initial Position
Way Points
EKF

(b) Final result plotted in Matlab using recorded data.
Figure 52: Outdoor navigation using a set of 17 way-points

70

2.6 2.8 3 3.2 3.4 3.6 3.8

−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

x(m)

y(
m

)

GPS Readings
EKF Output

Figure 53: EKF output versus GPS output.

100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t(s/10)

N
or

m
 o

f t
he

 E
rr

or
(m

)

Error
Way−point reached

Figure 54: Norm of the Cartesian error: the dotted lines shows the error in time when
the robot reaches the current way-point and changes its destination to the next one.

71

Table 2: Outdoor navigation error: way-points 0 to 7

Way-point # 0 1 2 3 4 5 6 7

Error in x[m] 0.16 0.01 -0.01 0.15 0.16 -0.27 -0.35 -0.34

Error in y[m] -0.35 -0.36 -0.38 -0.35 -0.35 -0.24 -0.15 -0.17

Error Norm[m] 0.38 0.36 0.38 0.38 0.38 0.36 0.38 0.38

Table 3: Outdoor navigation error: way-points 8 to 16

Way-point # 8 9 10 11 12 13 14 15 16

Error in x[m] -0.3 -0.37 -0.33 -0.22 -0.19 -0.39 -0.36 -0.38 -0.37

Error in y[m] -0.19 -0.09 0.19 0.31 0.32 0 0.13 -0.03 -0.09

Error Norm[m] 0.35 0.38 0.38 0.38 0.37 0.39 0.38 0.38 0.38

Figure 55 and Figure 56 shows the outdoor navigation conducted with a set of

way points that forms a circular path. The errors shown in Tables 2, 3, 4 and 5 are

calculated by subtracting the robot pose estimated by the EKF from the desired way-

point, at the moment when the control point b (refer to section 4.3) reaches the way-

point. Since the control point b is located outside the robot axis the minimum possible

error is equal to the distance from the robot axis to the point b which in this case is 0.45

meters.

The repeatability of the outdoor navigation solution is hindered by the accuracy

of the GPS. This means that if we make the robot run through the same set of way-

points twice, although the position error with respect to the waypoints is bounded in the

algorithm, but due to the limited accuracy of the GPS the waypoints chosen on the map

may not exactly point to the same location on earth.

72

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x(m)

y(
m

)

Initial Position
Way Points
EKF

Figure 55: Outdoor Navigation with a circular path

0 200 400 600 800 1000 1200 1400 1600
0

0.5

1

1.5

2

2.5

3

Norm of the Error(m)

t(
s/

10
)

Error
Way−point reached

Figure 56: Norm of the Cartesian error: the dotted lines shows the error in time when
the robot reaches the current way-point and changes its destination to the next one.

73

Table 4: Outdoor navigation(circular path) error: way-points 0 to 7

Way-point # 0 1 2 3 4 5 6 7

Error in x[m] 0.43 0.76 0.75 0.35 0.32 0.11 -0.26 -0.41

Error in y[m] 0.05 0.04 -0.16 -0.59 -0.70 -0.76 -0.45 -0.63

Error Norm[m] 0.43 0.76 0.77 0.68 0.77 0.77 0.53 0.76

Table 5: Outdoor navigation(circular path) error: way-points 8 to 15

Way-point # 8 9 10 11 12 13 14 15

Error in x[m] -0.54 -0.73 -0.74 -0.61 -0.36 -0.18 0.01 0.23

Error in y[m] -0.49 -0.19 0.07 0.47 0.68 0.73 0.75 0.71

Error Norm[m] 0.73 0.75 0.75 0.77 0.77 0.75 0.75 0.74

74

Chapter 6: Indoor Navigation

The navigation solution that was discussed in the last chapter relies on position

information received by the GPS. GPS is a space-based navigation system which needs

an unobstructed line of sight to four or more GPS satellites [59]. Any such system would

be rendered useless once it is inside an indoor environment. Hence, a separate solution

has been proposed in this chapter that can accurately estimate the robot location, pro-

vided a predefined 2D map of the environment. This solution is able to solve global

localization problem, which means no prior knowledge of the robot states is needed,

and in some instances, it is able to solve the kidnapped robot problem. This approach is

called the MCL algorithm, also known as particle filter localization comparatively easy

to implement .

6.1. Monte Carlo Localization (MCL)

MCL algorithm (Figure 60), despite its relatively short existence, is arguably

one of the most popular algorithms in robotics. It tends to works well across a range

of localization problems and it is comparatively easy to implement [20]. Our goal

in robot localization is to estimate the state of the robot at current time-step, given

information about the initial state and all measurements up to the current time. The

basic MCL algorithm(shown in Figure 57) represents the bel(xt) by a set of M particles

χ t =
{

x[1]t , x[2]t , ..., x[M]
t

}
. Line 1 in algorithm 57 samples from the motion model,

using particles from present belief as starting points. The beam measurement model is

then applied in line 2 to determine the importance weight of that particle. The initial

belief bel(x0) is obtained by randomly generating M such particles from the prior p(x0)

distribution, and assigning the uniform importance factor M−1 to each particle [20].

The functions motion model, is implemented by the motion model derived in Chapter

3, while the measurement model implementation is discussed in the next section of this

chapter.

Figure 58 illustrates one iteration of MCL. The top row of the figure shows the

exact density, whereas the lower panel shows the particle-based representation of that

75

Algorithm 6.1.1: MCL(χt−1,ut ,zt ,m)

χ t = χt = /0
for m← 1 to M

do


x[m]

t = SAMPLE MOTION MODEL(ut ,x
[m]
t−1) (1)

w[m]
t = MEASUREMENT MODEL(zt ,x

[m]
t ,m) (2)

χ t = χ t +
〈

x[m]
t ,w[m]

t

〉
for m← 1 to M

do

{
draw i with probability ∝ w[i]

t

add x[i]t to χt
return (χt)

Figure 57: Monte Carlo Localization Algorithm [20]

density. Column (a) shows a cloud of particles representing the uncertainty about the

robot position. In this example, the robot position is fairly localized, but its orientation

is still unknown. Column (b) shows what happens to our belief state after we are com-

manded the robot to move exactly one meter since the last time-step. We now know the

robot to be somewhere on a circle of 1-meter radius around the previous location. col-

umn (c) shows what happens when the robot observes a landmark, half a meter away,

somewhere in the top-right corner: the top panel shows the likelihood of the poste-

rior density and the bottom panel illustrates how each sample is weighted according to

this likelihood. Finally, the last column (d) shows the effect of resampling from this

weighted set, and this forms the starting point for the next iteration [60].

Figure 58: The probability densities and particle sets for one iteration of the algorithm
[60].

76

The MCL algorithm in its present form, is able to solve global localization prob-

lem but it can not recover from robot kidnapping problem. Such problem is quite ob-

vious in Figure 59: As the position is acquired, particles at places other than the most

likely pose gradually disappear. At some point, particles only ’survive’ near a single

pose, and the algorithm is unable to recover if this pose happens to be incorrect. Shown

in yellow is the true location of a robot operating in a room. Due to the symmetry that

exists in the map, there exist an ambiguity about the true location of the robot. In this

particular example all the particles are concentrated in a location that gives the exact

measurements as the true location of the robot which happens to be incorrect.

Figure 59: Kidnapped robot problem

Fortunately, this problem can be overcame by injecting random particles into the

particle sets. This process can be mathematically justified, by assuming the probability

that the robot might get kidnapped, therefore generating a fraction of random states in

the motion model. Even if the robot does not get kidnapped, the random particles add

an additional level of robustness. This solution, presented in [20], is adaptive, in that

it tracks the short-term and the long-term average of the likelihood p(zt |zt−1,ut ,m) .

Figure 60 shows the MCL algorithm with the mentioned adaptive algorithm.

77

Algorithm 6.1.2: MCL(χt−1,ut ,zt ,m)

static = w f ast ,wslow
χ t = χt = /0
for m← 1 to M

do


x[m]

t = SAMPLE MOTION MODEL(ut ,x
[m]
t−1) (1)

w[m]
t = MEASUREMENT MODEL(zt ,x

[m]
t ,m) (2)

χ t = χ t +
〈

x[m]
t ,w[m]

t

〉
waverage = waverage

1
mw[m]

t
wslow = wslow +αslow (waverage−wslow)
w f ast = w f ast +α f ast

(
waverage−w f ast

)
for m← 1 to M

do



with probability max
(
0.0,1.0−w f ast \wslow

)
do

add random pose to χt
else

draw i with probability ∝ w[i]
t

add x[i]t to χt
endwith

return (χt)

Figure 60: Modified Monte Carlo Localization Algorithm [20]

Figure 61 shows a variation of particle filter algorithm that adapts the size of the

sample set on-the-fly, but what is important for us in this algorithm is the normalization

of the weights that happens after the sampling.

There are a few possibilities of how to choose the estimated posterior of the

robot based on the converged particles and their weighing factors. For example one

could choose the particle with the highest weight as the one closest to the true posterior

of the robot, another option is to take the average of particles with highest weighing

factors. Although these may yield to a solution, the problem with methods of this kind

is that it will completely ignore the distribution which, in fact, disagrees with the main

idea of the particle filter. A better approach is to multiply each particle state by its

weight and sum them up to obtain the posterior state.

78

Figure 61: KLD-Sampling algorithm [61]

6.2. Kinect

6.2.1. Calibration.

Kinect sensor is equipped with two built-in cameras; an RGB camera and an

Infrared (IR) depth sensor which comes with an IR. The emitter emits infrared light

beams and the depth sensor reads the IR beams reflected back to the sensor. The re-

flected beams are converted into depth information measuring the distance between an

object and the sensor. This makes capturing a depth image possible [62].

Figure 62: Kinect Sensor Components

79

Kinect’s IR depth sensor uses the same geometrical setup of any traditional pin-

hole camera model. The projection of a point in three dimensional space onto a pinhole

camera’s image plane loses the point’s depth information. Thus, inverting the projec-

tion of a point results in just the beam from the camera’s focal point through that point

rather than the point itself. However, the image from a depth camera contains points

depths instead of color or light information. To compute the actual point in space cor-

responding to a point on the camera’s projected image, the projection process can be

easily inverted using the camera’s intrinsic parameters.

The vector −→r in Figure 63 defines the ray from the camera’s focal point to

the nearest object that maps to image coordinates (xi,yi). Knowledge of z from the

depth image pixel value enables finding the x and y that originally produced xi and yi,

respectively, up to the precision allowed by the image’s discretization [63].

Figure 63: Depth camera imaging geometry based upon the pinhole camera model.

A standard camera calibration is performed to estimate the calibration parame-

ters including the camera’s intrinsic using ’kinect-stereo-calib’ tool which is a part of

MRPT 1 package (Figure 64). A total of 16 images were used by the software which

resulted in overall calibration accuracy of 0.650283 pixels as Root Mean Square (RMS)

error. The computed parameters can be seen in Table 6.

1Mobile Robot Programming Toolkit : http://www.mrpt.org

80

http://www.mrpt.org

Figure 64: Kinect calibration using a checker board

Table 6: Calibration Parameters

Calibration Parameter IR Image

Resolution[Pixels] W ×H 640×488

Focal Length[Pixels] fx 585.790641±0.100

fy 584.429454±0.098

Principal Point Offset[Pixels] cx 314.618673±0.017

cy 253.087399±0.017

Radial Lens Distortion K1 −8.712269e−002

K2 2.153357e−001

K3 1.994357e−002

Decentring Lens Distortion T 1 −1.784296e−003

T 2 1.293932e−003

The kinect depth output can be mapped to metric 3D space using the following

formula [63, 64]:

81


x

y

z

= zκ
−1


u

v

1

=


−(u− cx)

z
fx

−(v− cy)
z
fy

z

 (32)

Where

x,y,z = World Coordinates

u,v = Image Coordinates

z = Depth Value

k = Intrinsic Matrix

fx, fy, = Focal Length

cx,cy = Principal Point Offset

(33)

Kinect’s depth image size is (640,480) pixels with a 57 degree horizontal Field

Of View (FOV) [62]. To consider all the 640 measurements will add unnecessary com-

putational load to the system and its a rather excessive to do so, instead only 20 equally

distant points have been taken to form a 57 degree range measurements unit Figure 65.

Figure 65: Depth image to range finder.

6.2.2. Measurement.

A frame from the Kinect’s depth stream contains a 2D array of pixels. Each

pixel holds the Cartesian distance, in millimeters, from the camera plane to the nearest

object at that particular (x,y) coordinate, as shown in Figure 66. The (x,y) coordinates

of a depth frame do not represent physical units in the room; instead, they represent the

location of a pixel in the depth frame [65].

82

Figure 66: Depth stream values [65]

As illustrated in Figure 67, the default range in the Kinect sensor used in this

thesis (Kinect for Xbox 360) can effectively detect distance from objects located from

0.8m up to 0.4m.

Figure 67: Depth Range [65]

Using (32), 2D depth pixels can be mapped to 3D space(Figure 68). This pro-

jection is very useful for our localization problem as it can be used to derive our mea-

surement model which is an essential part of our MCL algorithm. Although, in this

thesis we are only interested in 2D localization of the robot, it is also possible to use the

depth information for 3D localization.

The measurement model used in our particle system is very similar to the model

of range finders, thus the depth data is manipulated to imitate a 2D range finder sensor

with measurement errors modeled in a similar manner. There are three types of mea-

surement errors in our model, all of which are essential to making this model work:small

83

(a) Color Coded 2D Depth Frame (b) Depth Frame Mapped to 3D Space
Figure 68: A frame from the depth stream and its 3D projection that shows a door at
the end of a corridor

measurement noise , errors due to unexpected objects and errors due to failures to detect

objects [20].

1. Correct range with local measurement noise. Even in a perfect scenario the

value returned by sensor is subject to error [20]. For kinect this error arises from

sensor itself or properties of the object surface [48] an example of such can be

seen in Figure 69, smooth and shiny surfaces that appear overexposed in the in-

frared image (the lower part of the box).

Figure 69: (a) Infrared image of the pattern of speckles projected on a sample scene.
(b) The resulting depth image [48].

The range of the values measured by kinect is limited to the interval [0.8;4] (Fig-

ure 67), thus the measurement probability is given by:

phit(zk
t |xt ,m) =

 ηN
(
zk
t ;zk∗

t ,σ2
hit

)
if 0.8≤ zt ≤ 4

0 otherwise
(34)

where zk
t is calculated from xt and m via ray tracing, and N

(
zk
t ;zk∗

t ,σ2
hit

)
denotes

the univariate normal distribution with mean zk
t and variance σ2

hit hit:

84

N
(

zk
t ;zk∗

t ,σ2
hit

)
=

1√
2πσ2

hit

e
− 1

2
(zk

t −zk∗
t)

2

σ2
hit (35)

The normalizer η evaluates to:

η =

(∫ 4

0.8
N
(

zk
t ;zk∗

t ,σ2
hit

)
dzk

t

)2

(36)

2. Unexpected objects. Environments of mobile robots are dynamic, whereas maps

m are static [20]. As a result, objects not contained in the map can cause Kinect

to produce surprisingly short ranges, at least when compared to the map. A typ-

ical example of moving objects is when people share the operational space of

the robot. One way to deal with such objects is to treat them as a part of the

state vector and estimate their location. Another, much simpler approach, is to

treat them as sensor noise. Treated as sensor noise, unmodeled objects have the

property that they cause ranges to be shorter than zk∗
t , not longer. Mathemati-

cally, the probability of range measurements in such situations is described by

an exponential distribution. The parameter of this distribution, λshort , is an in-

trinsic parameter of the measurement model. According to the definition of an

exponential distribution we obtain the following equation for pshort(zk
t |xt ,m):

pshort(zk
t |xt ,m) =

 ηλshorte−λshortzk
t if 0.8≤ zk

t ≤ zk∗
t

0 otherwise
(37)

As in the previous case, we need a normalizer η since our exponential is limited

to the interval
[
0.8;zk∗

t
]
. Because the cumulative probability in this interval is

given as:

∫ zk∗
t

0.8
λshorte−λshortzk

t dzk
t =−e−λshortzk∗

t + e−λshort0 = 1− e−λshortzk∗
t (38)

the value of η can be derived as:

η =
1

1− e−λshortzk∗
t

(39)

85

3. Failures. Sometimes, obstacles are missed altogether [20]. With Kinect, failure

can happen due to lighting condition which influences the correlation and mea-

surement of disparities [48]. Direct sunlight or any source of IR interference is

going to affect the depth-data information, which can lead to outliers or gap in the

resulting point cloud. A typical result of sensor failures are max-range measure-

ments: the sensor returns its maximum allowable value zmax . Since such events

are quite frequent, it is necessary to explicitly model max-range measurements in

the measurement model. We will model this case with a point-mass distribution

centered at zmax :

pmax

(
zk
t |xt ,m

)
= I (z = zmax) =

 1 if z = zmax

0 otherwise
(40)

These four different distributions are now mixed by a weighted average, defined

by the parameters zhit , zshort and zrand with zhit + zshort + zrand = 1 (Figure 70).

pmax

(
zk
t |xt ,m

)
=


zhit

zshort

zrand


T

.


phit
(
zk
t |xt ,m

)
pshort

(
zk
t |xt ,m

)
prand

(
zk
t |xt ,m

)
 (41)

Algorithm 6.2.1: BEAM RANGE FINDER MODEL(zt ,xt ,m)

q = 1

for k← 1 to K

do


compute zk∗

t for the measurement zk
t using ray casting

p = zhit ·phit
(
zk
t |xt ,m

)
+ zshort ·pshort

(
zk
t |xt ,m

)
+zrand·prand

(
zk
t |xt ,m

)
q = q · p

return (q)

Figure 70: Algorithm for computing the likelihood of a depth measurement zt , assuming
conditional independence between the individual depth measurements in the image.

86

6.3. Simulation

The first simulation (Figure 72) shows the MCL algorithm in action with 5000

particles. At start (a) all the particles are randomly distributed in the map except for

small gaps near the walls that are physically impossible for the robot to be in due to

the size of the robot. After a few steps (b, c) the particles get more concentrated. The

last image, (d) shows that most of particles are converged in two possible locations that

are closest to the true location of the robot, finally in (e) all the particles are converged.

Estimated location of the robot can be seen in (f).

The size of the particle set used in MCL can be varied depending upon the

size of the map and the required accuracy of the localization. Figure 72 demonstrates

the MCL with a particle set of 1000 particles in the same map. This simulation is an

example of how MCL can fail due to relative symmetry that exist in the map (c), in (d)

the algorithm tries to recover from this failure by inserting random particles in the map.

(a) (b) (c) (d)
Figure 71: Monte Carlo Localization with 1000 particles

87

(a) (b) (c)

(d) (e) (f)
Figure 72: Monte Carlo Localization with 5000 particles

The size of the particle set can be significantly reduced by taking advantage of

the last known location of the robot given by the EKF. After all, the MCL will only

come into effect when the GPS is lost, thus the whereabouts of the robot can be used

in the initial distribution of the particles. This approach will increase the likelihood of

a successful localization while reducing the computational load of the algorithm. This

approach has been successfully tested in two different maps (Figure 73 (a) to (d) and

(e) to (h)) with only 200 particles.

88

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 73: Monte Carlo Localization with 200 particles

6.4. Practical Results

The indoor navigation algorithm has been tested extensively using different

maps. To measure the accuracy, location of the waypoints was marked on the ground

and then manually measured with respect to the robot position. The experiment de-

picted in Figure 74, has been conducted in the Engineering Building 1 in American

University of Sharjah (AUS) with a set of 800 particles. It shows the robot following

a set of way points, leading it approximately 6m in a straight line and then back to the

starting position.

89

(a) Particles are distributed around the last
known location

(b) Particles are more concentrated around the
true location

(c) The robot is fully localized (d) The robot navigating through the way
points

(e) The robot navigating through the way
points

(f) The robot navigating through the way points

Figure 74: Indoor Navigation with a set of 800 particles

90

Using the data recorded during this test, it is possible to plot the robot trajectory

estimated by the MCL in matlab (Figure 75).

Figure 75: Robot trajectory shown in blue, has been recorded during the practical test
in AUS

To test the accuracy of the localization, the MCL output has been compared to

the actual position of the robot, measured manually. The accuracy was shown to be

highly dependent on the availability of depth measurement. Due to the limited range of

the Kinect sensor, it is unable to provide data for objects located outside of its range. In

this particular test an average error of 6.72% with a standard deviation of 3.1% , was

measured on ten random locations of the map. The larger errors were recorded in parts

of the map, where there was no object anywhere within 4m of the Kinects field of view.

91

Chapter 7: Hybrid System (Indoor/Outdoor)

Two solutions presented in this thesis are proved to be useful in their designated

environments. This chapter discusses the integration of the two systems and provides

an inclusive solution for both indoor and outdoor environments.

One way to determine if the robot has entered an indoor environment is to mon-

itor the number of satellite used by the GPS. A GPS needs at least 4 different satellite

signals to workout position in 3-dimensions. One can add a condition in the programs

main loop to switch to the indoor algorithm, if the number of Satellite Vehicle (SV)

drops below 4 (or 3). One problem with this assumption is that there may be some

instances where the GPS momentarily loses the satellite connection while still located

outdoor, while the outdoor algorithm can still handle such situations by relying only

on encoder and heading measurements. The indoor algorithm will be rendered use-

less under the outdoor conditions such as sunlight which interferes with the Kinect’s

IR emitter. Another problem with this method is the delay that exist between the time

robot enters the indoor map and the SV number changes in GPS output. During this

delay the robot will still be using the outdoor algorithm which will yield to erroneous

localization. A safer approach would be to check the first way-point position against the

indoor map. At the starts, to see if the point is located inside or the outside of the map

polygon(point-in-polygon (PIP)) and then to run the appropriate localization algorithm

accordingly. From this point forward, the same process is repeated, but with the esti-

mated position of the robot instead of the way-point at the end of each iteration of the

main loop. The PIP problem can be resolved by using a simple ray-casting algorithm

(Figure 76). The idea is to test how many times a ray starting for the point p inter-

sects the sides of the polygon (the indoor map is defined as a polygon). The number of

intersections is an even if the point is outside, and it is odd if inside.

92

Algorithm 7.0.1: RAYCASTING(p, polygon)

Count← 0

for each side ∈ polygon

do if ray intersects segment(P,side)

then count← count +1

if is odd(count)

then return (inside)

else return (outside)

Figure 76: Ray Casting Algorithm

A general flowchart of this process can be viewed in Figure 77

Figure 77: Ray Casting Flowchart

93

7.1. Practical Result

The area shown in Figure 78 has been used to test the hybrid system. By plac-

ing the starting way-point on the middle of the bridge the robot starts following the

way-points towards the building. One problem here is that the accuracy of the GPS

deteriorates sharply as the robot approaches the building. This localization error is cor-

rected by the MCL once the robot enters the indoor map.

Figure 78: The hybrid system has been tested by placing it on the bridge between the
two engineering buildings in AUS

The collected data from the experiment is used to plot overall robot trajectory

(Figure 79).

2 4 6 8 10 12 14 16 18 20

−1

0

1

2

3

4

5

6

x(m)

y(
m

)

Initial Position
Way Points(out)
Way Points(in)
EKF
MCL

Figure 79: Robot trajectory during the hybrid test, plotted using the recorded data.

94

Chapter 8: Conclusion and Future Work

8.1. Summary

This chapter concludes this thesis by outlining its contents, and suggesting how

the work presented here can be extended or improved.

The trajectory following problem requires a unique solution for both indoor and

outdoor navigation, thus by considering the thesis objective, two different approaches

analyzed in chapter 4 that lead to the conclusion that the I-O SFL method is better suited

for this application than the DFL.

A GUI, which is developed for this thesis, consists of a simulation environment

that provides real time illustration of the robot movements based on the running al-

gorithm and sensor readings. Using the GUI all the parameters such as output of the

algorithm and sensor data can be monitored. It also provides the option to interactively

add or modify the way-point.

For outdoor navigation, data from the GPS, odometry and IMU (heading) are fused us-

ing EKF , to improve the position accuracy of the robot. This data is then used in the

trajectory following algorithm to calculate the command parameters needed to control

the robot velocity.

Another probabilistic method based on MCL is used for indoor navigation that

relies on the depth measurements of a Kinect sensor. The depth data of the Kinect is

accurately projected from the image plane to the world coordinates using the intrinsic

parameters of its camera retrieved after calibration. To use these projected points a

function is developed that takes the points as input and provides an output similar to the

output from a two-dimensional range finder sensor.

The different approaches explored in this thesis, when combined together, pro-

vide a comprehensive solution to global navigation problems. The current software is

separated into two different executables; one for indoor navigation and one for outdoor

navigation. While, each program can be run on its own, there is an option available that

automates the switching operation. This means that, the last known location of the robot

is passed as command-line arguments between the programs once the robot enters an

95

indoor environment or vice versa. It is worth mentioning that the controllers developed

in this thesis are based on the kinematics of wheeled mobile robots that can only move

in 2 dimensions. The same techniques can be modified and then applied for navigation

in 3D space using platforms such as quad-rotors.

8.2. Future Work

There are several ways in which the navigation system presented here can be

improved. A list of such improvements is gathered here.

• Using a single on board processor to control both, the robot motion and the lo-

calization algorithm, which will effectively eliminate the communication latency

that exists in the current system.

• The covariance matrix plays a fundamental role in the GPS data adjustment, using

approaches such as [66] can provide a faster and more smooth filter.

• Using Compute Unified Device Architecture (CUDA) platform, the computation-

ally expensive algorithms such as particle filters can be processed in parallel in

the Graphics Processing Unit (GPU), thus more particles can be used in less time.

• KLD-Sampling [61] provides a statistical approach for particle filters that adapts

the size of sample sets during estimation that can improve the efficiency of parti-

cle filter.

• The indoor and outdoor executables can be merged together, by rearranging the

GUI to provide an interface that is appropriate for both indoor and outdoor navi-

gation.

96

References

[1] J. Borenstein, H. R. Everett, L. Feng, and D. K. Wehe, “Mobile robot positioning:
Sensors and techniques,” J. Field Robotics, vol. 14, no. 4, pp. 231–249, 1997.

[2] Y. S. Khraisat, M. Al-Khateeb, Y. Abu-Alreesh, A. Ayyash, and O. Lahlouh, “Gps
navigation and tracking device.” iJIM, vol. 5, no. 4, pp. 39–41, 2011.

[3] C. Magnusson, K. Rassmus-grhn, and D. Szymczak, “Navigation by pointing to
gps locations,” Personal and Ubiquitous Computing, vol. 16, no. 8, pp. 959–971,
12 2012.

[4] R. Zhu and H. A. Karimi, “Automatic selection of landmarks for navigation guid-
ance,” Transactions in GIS, 2014.

[5] C. Tessier, M. Berducat, R. Chapuis, and F. Chausse, “A new landmark and sensor
selection method for vehicle localization and guidance,” in Intelligent Vehicles
Symposium, 2007 IEEE, June 2007, pp. 123–129.

[6] A. Howard and L. Kitchen, “Navigation using natural landmarks,” Robotics and
Autonomous Systems, vol. 26, no. 2, pp. 99–115, 1999.

[7] C. McGillem and T. Rappaport, “A beacon navigation method for autonomous
vehicles,” Vehicular Technology, IEEE Transactions on, vol. 38, no. 3, pp. 132–
139, Aug 1989.

[8] E. Brassart, C. Pegard, and M. Mouaddib, “Localization using infrared beacons,”
Robotica, vol. 18, pp. 153–161, 2000.

[9] W. Eom, J. Park, and J. Lee, “Hazardous area navigation with temporary beacons,”
International Journal of Control, Automation and Systems, vol. 8, no. 5, pp. 1082–
1090, 2010.

[10] S. Taneja, B. Akinci, J. H. Garrett, L. Soibelman, and H. A. Karimi, “Effects of
positioning data quality and navigation models on map-matching of indoor posi-
tioning data,” Journal of Computing in Civil Engineering, p. 4014113, 2014.

[11] M. Ren and H. A. Karimi, “A hidden markov model-based map-matching algo-
rithm for wheelchair navigation,” The Journal of Navigation, vol. 62, no. 3, pp.
383–395, 2009.

[12] L. Yaojun, P. Quan, Z. Chunhui, and Y. Feng, “Scene matching based ekf-slam
visual navigation,” in Control Conference (CCC), 2012 31st Chinese, July 2012,
pp. 5094–5099.

[13] J. Inthiam and C. Deelertpaiboon, “Self-localization and navigation of holonomic
mobile robot using omni-directional wheel odometry,” in TENCON 2014 - 2014
IEEE Region 10 Conference, Oct 2014, pp. 1–5.

97

[14] H. Azartash, N. Banai, and T. Nguyen, “An integrated stereo visual odometry for
robotic navigation,” Robotics and Autonomous Systems, vol. 62, no. 4, pp. 414–
421, 2014; 2013.

[15] B. Barshan and H. Durrant-Whyte, “Inertial navigation systems for mobile
robots,” Robotics and Automation, IEEE Transactions on, vol. 11, no. 3, pp. 328–
342, Jun 1995.

[16] M. Al-Sharman, M. Abdel-Hafez, and M. Al-Omari, “Attitude and flapping angles
estimation for a small-scale flybarless helicopter using a kalman filter,” Sensors
Journal, IEEE, vol. 15, no. 4, pp. 2114–2122, April 2015.

[17] A.-H. M. F. J. M. A. J. M. A. Saadeddin, Kamal, “Performance enhancement of
low-cost, high-accuracy, state estimation for vehicle collision prevention system
using anfis,” Mechanical Systems and Signal Processing, vol. 41, no. 1-2, pp.
239–253, 2013.

[18] M. Jaradat and M. Abdel-Hafez, “Enhanced, delay dependent, intelligent fusion
for ins/GPS navigation system,” Sensors Journal, IEEE, vol. 14, no. 5, pp. 1545–
1554, May 2014.

[19] H. B. Mitchell, Multi-Sensor Data Fusion: An Introduction, 1st ed. Springer
Publishing Company, Incorporated, 2007.

[20] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent Robotics
and Autonomous Agents). The MIT Press, 2005.

[21] M. Jaradat, M. BaniSalim, and F. Awad, “Autonomous navigation robot for land-
mine detection applications,” in Mechatronics and its Applications (ISMA), 2012
8th International Symposium on, April 2012, pp. 1–5.

[22] G. Tuna and K. Gulez, “Aided navigation techniques for indoor and outdoor un-
manned vehicles,” in New Technologies, Mobility and Security (NTMS), 2012 5th
International Conference on, 2012, pp. 1–4.

[23] G. Zhan and W. Shi, “Lobot: Low-cost, self-contained localization of small-sized
ground robotic vehicles,” vol. 24, no. 4, pp. 744–753, 2013.

[24] N. Priyantha, D. Lymberopoulos, and J. Liu, “Eers: Energy efficient responsive
sleeping on mobile phones,” Proceedings of PhoneSense, pp. 1–5, 2010.

[25] J. Paek, J. Kim, and R. Govindan, “Energy-efficient rate-adaptive gps-based po-
sitioning for smartphones,” in Proceedings of the 8th international conference on
Mobile systems, applications, and services. ACM, 2010, pp. 299–314.

[26] Z. Zhuang, K.-H. Kim, and J. P. Singh, “Improving energy efficiency of location
sensing on smartphones,” in Proceedings of the 8th international conference on
Mobile systems, applications, and services. ACM, 2010, pp. 315–330.

98

[27] Y. Sakamoto, T. Ebinuma, K. Fujii, and S. Sugano, “Gps-compatible indoor-
positioning methods for indoor-outdoor seamless robot navigation,” in Advanced
Robotics and its Social Impacts (ARSO), 2012 IEEE Workshop on, May 2012, pp.
95–100.

[28] S. Rusinkiewicz and M. Levoy, “Efficient variants of the icp algorithm,” in 3-D
Digital Imaging and Modeling, 2001. Proceedings. Third International Confer-
ence on. IEEE, 2001, pp. 145–152.

[29] S. Grzonka, G. Grisetti, and W. Burgard, “Towards a navigation system for au-
tonomous indoor flying,” in Robotics and Automation, 2009. ICRA’09. IEEE In-
ternational Conference on. IEEE, 2009, pp. 2878–2883.

[30] G. Grisetti, C. Stachniss, and W. Burgard, “Improving grid-based slam with rao-
blackwellized particle filters by adaptive proposals and selective resampling,” in
Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE Inter-
national Conference on. IEEE, 2005, pp. 2432–2437.

[31] J. Civera, A. J. Davison, and J. Montiel, “Inverse depth parametrization for monoc-
ular slam,” Robotics, IEEE Transactions on, vol. 24, no. 5, pp. 932–945, 2008.

[32] F. Dellaert and M. Kaess, “Square root sam: Simultaneous localization and
mapping via square root information smoothing,” The International Journal of
Robotics Research, vol. 25, no. 12, pp. 1181–1203, 2006.

[33] A. Oliver, S. Kang, B. C. Wünsche, and B. MacDonald, “Using the kinect as a
navigation sensor for mobile robotics,” in Proceedings of the 27th Conference on
Image and Vision Computing New Zealand, ser. IVCNZ ’12. New York, NY,
USA: ACM, 2012, pp. 509–514.

[34] N. Engelhard, F. Endres, J. Hess, J. Sturm, and W. Burgard, “Real-time 3d visual
slam with a hand-held rgb-d camera,” in Proc. of the RGB-D Workshop on 3D
Perception in Robotics at the European Robotics Forum, Vasteras, Sweden, vol.
180, 2011.

[35] G. Oriolo, A. De Luca, and M. Vendittelli, “Wmr control via dynamic feedback
linearization: design, implementation, and experimental validation,” Control Sys-
tems Technology, IEEE Transactions on, vol. 10, no. 6, pp. 835–852, Nov 2002.

[36] J. M. J.C. Alexander, “On the kinematics of wheeled mobile robots,” Int. J.
Robotics Research, vol. 8, pp. 15 – 27, 1989.

[37] K. Schmid, T. Tomic, F. Ruess, H. Hirschmuller, and M. Suppa, “Stereo vision
based indoor/outdoor navigation for flying robots,” in Intelligent Robots and Sys-
tems (IROS), 2013 IEEE/RSJ International Conference on, 2013, pp. 3955–3962.

[38] S. Shen, Y. Mulgaonkar, N. Michael, and V. Kumar, “Multi-sensor fusion for
robust autonomous flight in indoor and outdoor environments with a rotorcraft
mav,” in Robotics and Automation (ICRA), 2014 IEEE International Conference
on, 2014, pp. 4974–4981.

99

[39] S. Julier and J. Uhlmann, “A new extension of the kalman filter to nonlinear sys-
tems,” in Proc. of AeroSense: The 11th Int. Symp. on Aerospace/Defense Sensing,
Simulations and Controls, 1997.

[40] R. E. Kalman, “A new approach to linear filtering and prediction problems,” Trans-
actions of the ASME–Journal of Basic Engineering, vol. 82, no. Series D, pp.
35–45, 1960.

[41] K. Saadeddin, M. Abdel-Hafez, M. Jaradat, and M. Jarrah, “Optimization of
intelligent-based approach for low-cost ins/gps navigation system,” in Unmanned
Aircraft Systems (ICUAS), 2013 International Conference on, May 2013, pp. 668–
677.

[42] S. Thrun, “Particle filters in robotics,” in in Proceedings of the 17th Annual Con-
ference on Uncertainty in AI (UAI), 2002.

[43] J. Mı́guez, D. Crisan, and P. M. Djurić, “On the convergence of two sequential
monte carlo methods for maximum a posteriori sequence estimation and stochastic
global optimization,” Statistics and Computing, vol. 23, no. 1, pp. 91–107, Jan.
2013.

[44] S. Engelson and D. McDermott, “Error correction in mobile robot map learning,”
in Robotics and Automation, 1992. Proceedings., 1992 IEEE International Con-
ference on, 1992, pp. 2555–2560.

[45] I. Noda, S. Suzuki, H. Matsubara, M. Asada, and H. Kitano, “Robocup-97: The
first robot world cup soccer games and conferences.” AI Magazine, vol. 19, no. 3,
pp. 49–59, 1998.

[46] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust monte carlo localization
for mobile robots,” Artificial intelligence, vol. 128, no. 1, pp. 99–141, 2001.

[47] S. Lenser and M. M. Veloso, “Sensor resetting localization for poorly modelled
mobile robots.” in ICRA. IEEE, 2000, pp. 1225–1232.

[48] K. Khoshelham, “Accuracy analysis of kinect depth data,” International Archives
of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol.
XXXVIII-5/W12, pp. 133–138, 2011.

[49] Control of Unicycle Type Robots Tracking, Path Following and Point Stabilization,
vol. IV. Jornadas de Engenharia Electrnica e Telecomunicaes e de Computadores,
November 2008.

[50] A. D. Luca and M. D. D. Benedetto, “Control of nonholonomic systems via dy-
namic compensation,” Kybernetika, vol. 29, no. 6, pp. 593–608, 1993.

[51] B. d’Andrea novel, G. Bastin, and G. Campion, “Dynamic feedback lineariza-
tion of nonholonomic wheeled mobile robots,” in Robotics and Automation, 1992.
Proceedings., 1992 IEEE International Conference on, 1992, pp. 2527–2532.

100

[52] B. d’Andréa Novel, G. Campion, and G. Bastin, “Control of nonholonomic
wheeled mobile robots by state feedback linearization,” Int. J. Rob. Res., vol. 14,
no. 6, pp. 543–559, Dec. 1995.

[53] T. Hughes, “Electronic aids to navigation,” Journal of Navigation, vol. 45, pp.
446–446, 9 1992.

[54] L. Sahawneh, M. Al-Jarrah, K. Assaleh, and M. Abdel-Hafez, “Real-time imple-
mentation of gps aided low-cost strapdown inertial navigation system,” Journal of
Intelligent & Robotic Systems, vol. 61, no. 1-4, pp. 527–544, 2011.

[55] S. C. W. Kwok. Geodetic datum transformation. Geodetic Survey Section,
Lands Department, Hong Kong. [Accessed June 14, 2015]. [Online]. Available:
http://www.geodetic.gov.hk/smo/gsi/data/pdf/transformation.pdf

[56] National Imagery and Mapping Agency, “Department of defense world geodetic
system 1984: its definition and relationships with local geodetic systems,” Na-
tional Imagery and Mapping Agency, St. Louis, MO, USA, Tech. Rep. TR8350.2,
Jan. 2000.

[57] “Users handbook on datum transformations involving wgs 84,” International Hy-
drographic Organization, Tech. Rep., July 2003.

[58] B. Parkinson and J. Spilker, Global Positioning System: Theory and Applications.
American Institute of Aeronautics and Astronautics, 1996, no. v. 1.

[59] L. H. C. J. Hofmann-Wellenhof, B., Global positioning system: theory and prac-
tice, B. Hofmann-Wellenhof, Ed. Springer-Verlag Wien, 2001.

[60] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte carlo localization for mo-
bile robots,” in Robotics and Automation, 1999. Proceedings. 1999 IEEE Interna-
tional Conference on, vol. 2, 1999, pp. 1322–1328 vol.2.

[61] D. Fox, “Kld-sampling: Adaptive particle filters,” University of Washington, Tech.
Rep., 2001.

[62] Kinect for windows sensor components and specifications. Microsoft. [Accessed
June 14, 2015]. [Online]. Available: https://msdn.microsoft.com/en-us/library/
jj131033.aspx

[63] M. T. Draelos, “The kinect up close: Modifications for short-range depth imag-
ing,” Master’s thesis, North Carolina State University, 2012.

[64] Camera calibration and 3d reconstruction. Intel Corporation, Willow Garage,
Itseez. [Accessed June 14, 2015]. [Online]. Available: http://docs.opencv.org/
modules/calib3d/doc/camera calibration and 3d reconstruction.html

[65] Coordinate spaces. Microsoft. [Accessed June 14, 2015]. [Online]. Available:
https://msdn.microsoft.com/en-us/library/hh973078.aspx

101

http://www.geodetic.gov.hk/smo/gsi/data/pdf/transformation.pdf
https://msdn.microsoft.com/en-us/library/jj131033.aspx
https://msdn.microsoft.com/en-us/library/jj131033.aspx
http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
https://msdn.microsoft.com/en-us/library/hh973078.aspx

[66] K. C. Rodrigo Leandro, Marcelo Santos, “An empirical approach for the estima-
tion of gps covariance matrix of observations,” in 61st Annual Meeting of The
Institute of Navigation, 2005, pp. 1098 – 1104.

102

Vita

Milad Roigari was born in Tehran, Iran on January 12 , 1986. After finishing

high school in 2005, he continued his education in Sharif University of Technology

and graduated with B.Sc in Mechatronics engineering in 2010. Milad has moved to

United Arab Emirates in 2011 to pursue his M.Sc in Mechatronics engineering, where

he got a scholarship and worked as a Graduate Teaching assistant with both graduate

and undergraduate students on various classes.

103

	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background
	The Navigation Problem
	Applications
	Literature review
	Software
	Programming language
	Used Libraries

	Hardware
	Thesis Overview

	System Setup
	Communication

	Robot Motion
	Introduction
	Motion Model
	Unicycle
	Exact Motion

	Trajectory Following
	Motion Control
	Dynamic Feedback Linearization
	Input-Output State Feedback Linearization

	Outdoor Navigation
	Extended Kalman Filter
	Filter Design
	Simulation

	Navigation Software
	GUI
	Geodetic Transformation

	Practical Results

	Indoor Navigation
	Monte Carlo Localization (MCL)
	Kinect
	Calibration
	Measurement

	Simulation
	Practical Results

	Hybrid System (Indoor/Outdoor)
	Practical Result

	Conclusion and Future Work
	Summary
	Future Work

	References
	Vita

