ON THE UNIT DOT PRODUCT GRAPH OF A COMMUTATIVE RING

by

Mohammad Ahmad Abdulla

A Thesis Presented to the Faculty of the
American University of Sharjah
College of Arts and Sciences
in Partial Fulfillment
of the Requirements
for the Degree of
Master of Science in
Mathematics

Sharjah, United Arab Emirates
January 2016
Approval Signatures

We, the undersigned, approve the Master’s Thesis of Mohammad Ahmad Abdulla.

Thesis Title: On The Unit Dot Product Graph Of A Commutative Ring.

<table>
<thead>
<tr>
<th>Signature</th>
<th>Date of Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Ayman Badawi</td>
<td></td>
</tr>
<tr>
<td>Professor</td>
<td></td>
</tr>
<tr>
<td>Thesis Advisor</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Faruk Uygul</td>
<td></td>
</tr>
<tr>
<td>Assistant Professor</td>
<td></td>
</tr>
<tr>
<td>Thesis Committee Member</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Taher Abualrub</td>
<td></td>
</tr>
<tr>
<td>Professor</td>
<td></td>
</tr>
<tr>
<td>Thesis Committee Member</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Hana Sulieman</td>
<td></td>
</tr>
<tr>
<td>Head of Mathematics</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. James Griffin</td>
<td></td>
</tr>
<tr>
<td>CAS Graduate Programs Director</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Mahmoud Anabtawi</td>
<td></td>
</tr>
<tr>
<td>Dean of CAS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Khaled Assaleh</td>
<td></td>
</tr>
<tr>
<td>Interim Vice Provost for Research and Graduate Studies</td>
<td></td>
</tr>
</tbody>
</table>
Acknowledgments

I would like to express my deepest gratitude to my advisor, Dr. Ayman Badawi, for his excellent guidance, caring, patience, and providing me with an excellent atmosphere for doing research. I also would like to thank my committee Dr. Faruk Uygul and Dr. Taher Abualrub for patiently guiding my research and helping me to develop my background. Many thanks to mathematics department and friends. Special thanks goes to my parents. They were always supporting me and encouraging me with their best wishes.
Abstract

In 2015, Ayman Badawi (Badawi, 2015) introduced the dot product graph associated to a commutative ring A. Let A be a commutative ring with nonzero identity, $1 \leq n < \infty$ be an integer, and $R = A \times A \times \cdots \times A$ (n times). We recall from (Badawi, 2015) that total dot product graph of R is the (undirected) graph $TD(R)$ with vertices $R^* = R \setminus \{(0,0,\ldots,0)\}$, and two distinct vertices x and y are adjacent if and only if $x \cdot y = 0 \in A$ (where $x \cdot y$ denote the normal dot product of x and y). Let $Z(R)$ denotes the set of all zero-divisors of R. Then the zero-divisor dot product graph of R is the induced subgraph $ZD(R)$ of $TD(R)$ with vertices $Z(R)^* = Z(R) \setminus \{(0,0,\ldots,0)\}$. Let $U(R)$ denotes the set of all units of R. Then the unit dot product graph of R is the induced subgraph $UD(R)$ of $TD(R)$ with vertices $U(R)$. Let $n \geq 2$ and $A = Z_n$. The main goal of this thesis is to study the structure of $UD(R = A \times A)$.

Search Terms: Total dot product graphs, zero dot product graphs, dominating sets, domination number.
Table of Contents

Abstract ... 5
List of Figures .. 7
CHAPTER 1 Introduction ... 8
CHAPTER 2 The Structure of $UD(R = A \times A)$ When A Is a Field 11
CHAPTER 3 Unit Dot Product Graph of $R = Z_n \times Z_n$ 16
CHAPTER 4 Subgraphs of the Zero-Divisor Dot Product Graph of $Z_n \times Z_n$ 22
CHAPTER 5 Equivalence Dot Product Graph 23
CHAPTER 6 Domination Numbers of $TD(R)$, $ZD(R)$, and $UD(R)$... 27
CHAPTER 7 Conclusion and Future Work 32
References ... 33
Vita ... 35
List of Figures

Figure 2.1 The unit dot product graph of the ring $A \times A$, where A is a field with 4 elements . 14

Figure 2.2 The unit dot product graph of the ring $Z_5 \times Z_5$ 15

Figure 3.1 The unit dot product graph of the ring $Z_8 \times Z_8$ 20

Figure 3.2 The unit dot product graph of the ring $Z_{10} \times Z_{10}$ 21

Figure 5.1 The equivalence unit dot product graph of the ring $Z_{20} \times Z_{20}$ 26

Figure 5.2 The equivalence unit dot product graph of the ring $Z_{34} \times Z_{34}$ 26
1. Introduction

Let R be a commutative ring with $1 \neq 0$. Then $Z(R)$ denotes the set of zero-divisors of R and the group of units of R will be denoted by $U(R)$. As usual, \mathbb{Z}_n, denotes the ring of integers modulo n. The nonzero elements of $S \subseteq R$ will be denoted by S^*. Over the past several years, there has been considerable attention in the literature to associating graphs with commutative rings (and other algebraic structures) and studying the interplay between ring-theoretic and graph-theoretic properties; see the recent survey articles (D. Anderson, Axtell, & Stickles, 2010) and (H. Maimani, Pouranki, Tehranian, & Yassemi, 2011). For example, as in (D.F. & Livingston, 1999), the zero-divisor graph of R is the (simple) graph $\Gamma(R)$ with vertices $Z(R) \setminus \{0\}$, and distinct vertices x and y are adjacent if and only if $xy = 0$. This concept is due to Beck (Beck, 1988), who let all the elements of R be vertices and was mainly interested in colorings. The zero-divisor graph of a ring R has been studied extensively by many authors, for example see ((Akbari, Maimani, & Yassemi, 2003)-(D. D. Anderson & Naseer, 1993), (D. Anderson & Badawi, 2008a), (Axtel, Coykendall, & Stickles, 2005)-(Axtel & Stickles, 2006), (Chiang-Hsieh, Smith, & Wang, 2010)-(DeMeyer, Greve, Sabbaghi, & Wang, 2010), (H. R. Maimani, Pournaki, & Yassemi, 2006)-(Smith, 2007), (Wickham, 2008)). We recall from (D. Anderson & Badawi, 2008b), the total graph of R, denoted by $T(\Gamma(R))$ is the (undirected) graph with all elements of R as vertices, and for distinct $x, y \in R$, the vertices x and y are adjacent if and only if $x + y \in Z(R)$. The total graph (as in (D. Anderson & Badawi, 2008b)) has been investigated in (Akbari, Kiani, Mohammadi, & Moradi, 2009), (Akbari, Jamaali, & Seyed Fakhari, 2009), (Akbari, Aryapoor, & Jamaali, 2012), (?, ?), (H. Maimani et al., 2011), (H. Maimani, Wickham, & Yassemi, 2012), (Pucanović & Petrović, 2011), (Chelvam & Asir, 2013c) and (Shekarriz, Shiradereh Haghighi,
and several variants of the total graph have been studied in (Abbasi & Habib, July 2001), (D. Anderson & Badawi, 2012), (D. Anderson & Badawi, 2013), (D. Anderson, Fasten, & LaGrange, 2012), (Atani & Habibi, 2011), (Barati, Khashyarmanesh, Mohammadi, & Nafar, 2012), (Chelvam & Asir, 2013b), (Chelvam & Asir, 2011), (Chelvam & Asir, 2012), (? , ?), (Chelvam & Asir, 2013a), and (Khashyarmanesh & Khorsandi, 2012). Let $a \in \mathbb{Z}(R)$ and let $\text{ann}_R(a) = \{ r \in R \mid ra = 0 \}$. In 2014, Badawi (Badawi, 2014) introduced the annihilator graph of R. We recall from (Badawi, 2014) that the annihilator graph of R is the (undirected) graph $AG(R)$ with vertices $Z(R^*) = Z(R) \setminus \{0\}$, and two distinct vertices x and y are adjacent if and only if $\text{ann}_R(xy) \neq \text{ann}_R(x) \cup \text{ann}_R(y)$. It follows that each edge (path) of the classical zero-divisor of R is an edge (path) of $AG(R)$. For further investigations of $AG(R)$, see (Afkhami, Khashyarmanesh, & Sakhdari, 2015), and (Visweswaran & Patel, 2014).

In 2015, Badawi (Badawi, 2015) introduced the dot product graph associated to a commutative ring A. Let A be a commutative ring with nonzero identity, $1 \leq n < \infty$ be an integer, and $R = A \times A \times \cdots \times A$ (n times). We recall from [1] that total dot product graph of R is the (undirected) graph $TD(R)$ with vertices $R^* = R \setminus \{(0,0,...,0)\}$, and two distinct vertices x and y are adjacent if and only if $x \cdot y = 0 \in A$ (where $x \cdot y$ denote the normal dot product of x and y). Let $Z(R)$ denotes the set of all zero-divisors of R. Then the zero-divisor dot product graph of R is the induced subgraph $ZD(R)$ of $TD(R)$ with vertices $Z(R)^* = Z(R) \setminus \{(0,0,...,0)\}$. Let $U(R)$ denotes the set of all units of R. Then the unit dot product graph of R is the induced subgraph $UD(R)$ of $TD(R)$ with vertices $U(R)$. Let $n \geq 2$ and $A = \mathbb{Z}_n$. The main goal of this thesis is to study the structure of $UD(R = A \times A)$. Let G be a graph with V as its set of vertices. We recall that a subset $S \subseteq V$ is called a dominating set of G if every vertex in V is either in S or is adjacent to a vertex in S. The domination number $\gamma(G)$ of G is the minimum cardinality among the dominating sets of G. If $A = \mathbb{Z}_n$
and $R = Z_n \times \cdots \times Z_n$ (m times, where $m < \infty$), then the domination numbers of $TD(R)$ and $ZD(R)$ are determined. Furthermore, the domination number of $UD(Z_n \times Z_n)$ is determined.

Let G be a graph. Two vertices v_1, v_2 of G are said to be adjacent in G if v_1, v_2 are connected by an edge (line segment) of G and we write $v_1 - v_2$. A finite sequence of edges from a vertex v_1 of G to a vertex v_2 of G is called a path of G and we write $v_1 - a_1 - a_2 - \cdots - a_k - v_2$, where $k < \infty$ and the a_i, $1 \leq i \leq k$, are some distinct vertices of G. Hence it is clear that every edge of G is a path of G, but not every path of G is an edge of G. We say that G is connected if there is a path between any two distinct vertices of G. At the other extreme, we say that G is totally disconnected if no two vertices of G are adjacent. We denote the complete graph on n vertices by K_n (recall that a graph G is called complete if every two vertices of G are adjacent) and the complete bipartite graph on m and n vertices by $K_{m,n}$ (we allow m and n to be infinite cardinals, recall that $K_{m,n}$ is the graph with two sets of vertices, say V_1, V_2 such that $|V_1| = n, |V_2| = m, V_1 \cap V_2 = \emptyset$, every two vertices in V_1 are not adjacent, every two vertices in V_2 are not adjacent, and every vertex in V_1 is adjacent to every vertex in V_2). We will sometimes call a $K_{1,n}$ a star graph. We say that two (induced) subgraphs G_1 and G_2 of G are disjoint if G_1 and G_2 have no common vertices and no vertex of G_1 (resp., G_2) is adjacent (in G) to any vertex not in G_1 (resp., G_2). A general reference for graph theory is (Bollaboás, 1979).
2. The Structure of $UD(R = A \times A)$ When A Is a Field

Let p be a positive prime number, $n \geq 1$. Then $A = GF(p^n)$ denotes a finite field with p^n elements. Let $R = A \times A$. Then $TD(R)$ is not connected by (Badawi, 2015, Theorem 2.1). The first two results give a complete description of the structure of $UD(R)$ and $TD(R)$.

Theorem 2.1. Let $n \geq 1$, $m = 2^n - 1$ and $R = GF(2^n) \times GF(2^n)$. Then

1. $ZD(R) = \Gamma(R) = K_{m,m}$.

2. $UD(R)$ is the union of one K_m and $(2^{(n-1)} - 1)$ disjoint $K_{m,m}$’s.

3. $TD(R)$ is the union of one K_m and $2^{(n-1)}$ disjoint $K_{m,m}$’s.

Proof. (1). The result is clear by (Badawi, 2015, Theorem 2.1) and (D. Anderson & Mulay, 2007, Theorem 2.2).

(2). Let $A = GF(2^n)$. Then $R = A \times A$. Let $v_1, v_2 \in U(R)$. Since R is a vector space over A, $v_1 = u(1,a) \in R$ and $v_2 = v(1,b) \in R$ for some $u, v, a, b \in A^*$. Hence v_1 is adjacent to v_2 if and only if $v_1 v_2 = uv + uvab = 0$ in A if and only if $b = -a^{-1} = a^{-1}$ in A. Thus for each $a \in U(A) = A^*$, let $X_a = \{u(1,a) \mid u \in A^*\}$ and $Y_a = \{u(1,a^{-1}) \mid u \in A^*\}$. It is clear that $|X_a| = |Y_a| = 2^n - 1$. Let $a = 1$. Since $\text{char}(A) = \text{char}(R) = 2$, $X_a = Y_a$ and the dot product of every two distinct vertices in X_a is zero. Thus every two distinct vertices in X_a are adjacent. Thus the vertices in X_a form the graph K_m that is a complete subgraph of $TD(R)$. Let $a \in U(A)$ such that $a \neq 1$. Since $a^2 \neq 1$ for each $a \in U(A) \setminus \{1\}$, we have $X_a \cap Y_a = \emptyset$, every two distinct vertices in X_a are not adjacent, and every two distinct vertices in Y_a are not adjacent. Since $\text{char}(A) = \text{char}(R) = 2$, it is clear that every vertex in X_a is adjacent to every vertex in Y_a. Thus the vertices in $X_a \cup Y_a$ form the graph $K_{m,m}$ that is a complete bi-partite subgraph of $TD(R)$. By construction, there are exactly $(2^n - 2)/2 = 2^{n-1} - 1$ disjoint complete bi-partite
$K_{m,m}$ subgraphs of $TD(R)$. Hence $UD(R)$ is the union of one complete subgraph K_m and $(2^n - 1 - 1)$ disjoint complete bi-partite $K_{m,m}$ subgraphs.

(3). The claim follows from (1) and (2).

\[\square\]

Theorem 2.2. Let $p \geq 3$ be a positive prime integer, $n \geq 1$, $m = p^n - 1$, and let $R = GF(p^n) \times GF(p^n)$. Then

1. $ZD(R) = \Gamma(R) = K_{m,m}$.

2. If $4 \nmid m$, then $UD(R)$ is the union of $m/2$ disjoint $K_{m,m}$'s.

3. If $4 \mid m$, then $UD(R)$ is the union of two K_m's and $(m - 2)/2$ disjoint $K_{m,m}$'s.

4. If $4 \nmid m$, then $TD(R)$ is the union of $(m + 2)/2$ disjoint $K_{m,m}$'s.

5. If $4 \mid m$, then $TD(R)$ is the union of two K_m's and $m/2$ disjoint $K_{m,m}$'s.

Proof. (1). The result is clear by (Badawi, 2015, Theorem 2.1) and (D. Anderson & Mulay, 2007, Theorem 2.2).

(2) Let $A = GF(p^n)$. Then $R = A \times A$. Let $v_1, v_2 \in U(R)$. Since R is a vector space over A, $v_1 = u(1, a) \in R$ and $v_2 = v(1, b) \in R$ for some $u, v, a, b \in A^*$. Hence v_1 is adjacent to v_2 if and only if $v_1.v_2 = uv + uvab = 0$ in A if and only if $b = -a^{-1}$ in A. Thus for each $a \in U(A) = A^*$, let $X_a = \{u(1, a) \mid u \in A^*\}$ and $Y_a = \{u(1, a^{-1}) \mid u \in A^*\}$. Since R is a vector space over A, for each $a \in U(A) = A^*$, let $X_a = \{u(1, a) \mid u \in A^*\}$ and $Y_a = \{u(1, -a^{-1}) \mid u \in A^*\}$. It is clear that $|X_a| = |Y_a| = m = p^n - 1$. Since $4 \nmid m$, $U(A) = A^*$ has no elements of order 4. Thus $a^2 \neq -1$ for each $a \in U(A)$. Hence $X_a \cap Y_a = \emptyset$, every two distinct vertices in X_a are not adjacent, and every two distinct vertices in Y_a are not adjacent. By construction of X_a and Y_a, it is clear that every vertex in X_a is adjacent to every vertex in Y_a. Thus the vertices in $X_a \cup Y_a$ form the graph
that is a complete bi-partite subgraph of \(TD(R) \). By construction, there are exactly \(m/2 \) disjoint complete bi-partite \(K_{m,m} \) subgraphs of \(TD(R) \). Hence \(UD(R) \) is the union of \(m/2 \) disjoint \(K_{m,m} \)’s.

(3). Note that \(|U(A)| = m \). Since \(U(A) = A^* \) is cyclic and \(4 \mid m \), \(U(A) \) has exactly one subgroup of order 4. Thus \(U(A) \) has exactly two elements of order 4, say \(b, c \). Since \(a \in U(A) \) is of order 4 if and only if \(a^2 = -1 \), it is clear that \(x^2 = -1 \) for some \(x \in U(A) \) if and only if \(x = b, c \). Let \(X_b = \{ u(1, b) \mid u \in U(A) \} \) and let \(X_c = \{ u(1, c) \mid u \in U(A) \} \). It is clear that \(|X_b| = |X_c| = m \). Let \(H = \{ b, c \} \). Then the dot product of every two distinct vertices in \(X_h \) is zero for each \(h \in H \). Thus every two distinct vertices in \(X_h \) are adjacent for every \(h \in H \). Thus for each \(h \in H \), the vertices in \(X_h \) form the graph \(K_m \) that is a complete subgraph of \(TD(R) \). Let \(a \in U(A) \setminus H \), \(X_a = \{ u(1, a) \mid u \in A^* \} \), and \(Y_a = \{ u(1, a^{-1}) \mid u \in A^* \} \). It is clear that \(|X_a| = |Y_a| = m \). Since \(a \not\in H \), we have \(X_a \cap Y_a = \emptyset \), every two distinct vertices in \(X_a \) are not adjacent, and every two distinct vertices in \(Y_a \) are not adjacent. By construction, it is clear that every vertex in \(X_a \) is adjacent to every vertex in \(Y_a \). Thus the vertices in \(X_a \cup Y_a \) form the graph \(K_{m,m} \) that is a complete bi-partite subgraph of \(TD(R) \). By construction, there are \((m - 2)/2 \) disjoint \(K_{m,m} \) subgraphs. Hence \(UD(R) \) is the union of two \(K_m \)'s and \((m - 2)/2 \) disjoint \(K_{m,m} \)’s.

(4). The claim follows from (1) and (2).

(5). The claim follows from (1) and (3).

\[\square\]

In view of Theorem 2.2, we have the following corollary.

Corollary 2.3. Let \(p \geq 3 \) be a prime positive integer, and let \(R = \mathbb{Z}_p \times \mathbb{Z}_p \). Then

1. \(ZD(R) = \Gamma(R) = K_{p-1,p-1} \).

2. If \(4 \nmid p - 1 \), then \(UD(R) \) is the union of \((p - 1)/2 \) disjoint \(K_{p-1,p-1} \).
3. If $4 \mid p - 1$, then $UD(R)$ is the union of two disjoint K_{p-1}'s and $(p - 3)/2$ disjoint $K_{p-1,p-1}$'s.

4. If $4 \nmid p - 1$, then $TD(R)$ is the union of $(p + 1)/2$ disjoint $K_{p-1,p-1}$'s.

5. If $4 \mid p - 1$, then $TD(R)$ is the union of two disjoint K_{p-1}'s and $(p - 1)/2$ disjoint $K_{p-1,p-1}$'s.

Example 2.4. Let $A = \frac{\mathbb{Z}_2[X]}{(X^2 + X + 1)}$. Then A is a finite field with 4 elements. Let $v = X + (X^2 + X + 1) \in A$. Since $(A^*, .)$ is a cyclic group and $A^* = \langle v \rangle$, we have $A = \{0, v, v^2, v^3 = 1 + (X^2 + X + 1)\}$. Let $R = A \times A$. Then the $UD(R)$ is the union of one K_3 and one $K_{3,3}$ by Theorem 2.1(1). The following is the graph of $UD(R)$.

![Graph](image-url)
Example 2.5. Let $A = \mathbb{Z}_5$ and $R = A \times A$. Then the $UD(R)$ is the union of two disjoint K_4 and one $K_{4,4}$ by Corollary 2.3(3). The following is the graph of $UD(R)$.

![Graph of UD(R)](image)

Fig. 2.2: The unit dot product graph of the ring $\mathbb{Z}_5 \times \mathbb{Z}_5$
3. Unit Dot Product Graph of $R = Z_n \times Z_n$

Let $n > 1$ and write $n = p_1^{k_1} \cdots p_m^{k_m}$, where the p_i’s are distinct prime positive integers. Then $U(Z_n) = \{1 \leq a < n \mid a \text{ is an integer and } \gcd(a, n) = 1\}$.

It is known that $U(Z_n)$ is a group under multiplication module n and $|U(Z_n)| = \phi(n) = (p_1 - 1)p_1^{k_1 - 1}(p_2 - 1)p_2^{k_2 - 1} \cdots (p_m - 1)p_m^{k_m - 1}$.

If $n \geq 3$, then it is clear that $\phi(n)$ is an even integer. In the next result, we give an alternative proof of this fact.

Proposition 3.1. Let n be an integer such that $n \geq 3$. Then $\phi(n)$ is an even integer.

Proof. Let $k \in U(Z_n)$. It is clear that $\gcd(n - k, n) = 1$ and thus $n - k \in U(Z_n)$. It is also clear that $k, n - k$ are distinct elements in $U(Z_n)$. Thus all numbers in $U(Z_n)$ can be put into pairs. Hence if $n \geq 3$, then $\phi(n)$ is an even integer. \hfill \Box

The following lemma is needed.

Lemma 3.2. Let n be a positive integer and write $n = p_1^{k_1}p_2^{k_2} \cdots p_r^{k_r}$, where the p_i’s are distinct prime positive integers. Then

1. If $4 \mid n$, then $a^2 \not\equiv n - 1 \pmod n$ for each $a \in U(Z_n)$.

2. If $4 \not\mid n$, then $x^2 \equiv n - 1 \pmod n$ has a solution in $U(Z_n)$ if and only if $4 \mid (p_i - 1)$ for each odd prime factor p_i of n. Furthermore, if $x^2 \equiv n - 1 \pmod n$ has a solution in $U(Z_n)$, then it has exactly 2^{r-1} distinct solutions in $U(Z_n)$ if n is even and it has exactly 2^r distinct solutions in $U(Z_n)$ if n is odd.

Proof. (1). Suppose that $4 \mid n$. Then $n \geq 4$. Since $4 \not\mid (n - 2), n - 1 \not\equiv 1 \pmod 4$ and thus $a^2 \not\equiv n - 1 \pmod n$ for each $a \in U(Z_n)$ by (LeVeque, 1977, Theorem 5.1).
(2). Suppose that 4 \nmid n. Then \(a^2 \equiv n - 1 \pmod{n} \) for some \(a \in U(\mathbb{Z}_n) \) if and only if \(a^2 \equiv n - 1 \pmod{p_i} \) for each odd prime factor \(p_i \) of \(n \) by (LeVeque, 1977, Theorem 5.1). Thus \(a^2 \equiv n - 1 \pmod{n} \) for some \(a \in U(\mathbb{Z}_n) \) if and only if \((a \mod{p_i})^2 \equiv p_i - 1 \pmod{p_i}\) for each odd prime factor \(p_i \) of \(n \). Since \(U(Z_{p_i}) = Z_{p_i}^* = \{1,...,p_i - 1\} \) for each prime factor \(p_i \) of \(n \), we have \(|U(Z_{p_i})| = p_i - 1 \). For each \(x \in U(Z_{p_i}), \ 1 \leq i \leq r \), let \(|x| \) denotes the order of \(x \) in \(U(Z_{p_i}) \). Let \(p_i, 1 \leq i \leq r \), be an odd prime factor of \(n \). Since \(|p_i - 1| = 2 \) in \(U(Z_{p_i}) \), \(b^2 = p_i - 1 \) in \(U(Z_{p_i}) \) for some \(b \in U(Z_{p_i}) \) if and only if \(|b| = 4 \) in \(U(Z_{p_i}) \). Since \(|U(Z_{p_i})| = p_i - 1 \), we conclude that \(b^2 = p_i - 1 \) in \(U(Z_{P}) \) for some \(b \in U(Z_{p_i}) \) if and only if \(4 \mid (p_i - 1) \).

Thus \(x^2 \equiv n - 1 \pmod{n} \) has a solution in \(U(Z_n) \) if and only if \(4 \mid (p_i - 1) \) for each odd prime \(p_i \) factor of \(n \). Suppose that \(x^2 \equiv n - 1 \pmod{n} \) has a solution in \(U(Z_n) \). We consider two cases:

Case 1. Suppose that \(n \) is an even integer. Then there are exactly \(r - 1 \) distinct odd prime factors of \(n \). Since \(4 \nmid n, \ x^2 \equiv n - 1 \pmod{n} \) has exactly \(2^{r-1} \) distinct solutions in \(U(Z_n) \) by (LeVeque, 1977, Theorem 5.2).

Case 2. Suppose that \(n \) is an odd integer. Then there are exactly \(r \) distinct odd prime factors of \(n \). Thus \(x^2 \equiv n - 1 \pmod{n} \) has exactly \(2^r \) distinct solutions in \(U(Z_n) \) by (LeVeque, 1977, Theorem 5.2). \[\square \]

Let \(A = \mathbb{Z}_n \), where \(n \) is not prime. Then \(TD(A \times A) \) is connected by (Badawi, 2015, Theorem 2.3). In the following result, we show that \(UD(A \times A) \) is disconnected, and we give a complete description of the structure of \(UD(A \times A) \).

Theorem 3.3. Let \(n \geq 2 \) be an integer, \(R = \mathbb{Z}_n \times \mathbb{Z}_n \) and \(\phi(n) = m \). Then

1. If \(4 \mid n \), then \(UD(R) \) is the union of \(m/2 \) disjoint \(K_{m,m} \)'s.

2. If \(4 \nmid n \) and \(4 \nmid (p_i - 1) \) for at least one of the \(p_i \)'s in the prime factorization of \(n \), then \(UD(R) \) is the union of \(m/2 \) disjoint \(K_{m,m} \)'s.
3. If $4 \nmid n$ and $4 \mid (p_i - 1)$ for all the odd p_i’s in the prime factorization of n, then we consider the two cases:

Case I. If n is even, then $UD(R)$ is a union of $(m/2) - 2^{r-2}$ disjoint $K_{m,m}$’s and 2^{r-1} disjoint K_m’s.

Case II. If n is odd, then $UD(R)$ is a union of $(m/2) - 2^{r-1}$ disjoint $K_{m,m}$’s and 2^r disjoint K_m’s.

Proof. Let $A = Z_n$. Then $R = A \times A$. Note that $UD(R)$ has exactly m^2 vertices. Let $v_1, v_2 \in U(R)$. Since R is a vector space over A, $v_1 = u(1, a) \in R$ and $v_2 = v(1, b) \in R$ for some $u, v, a, b \in U(A)$. Hence v_1 is adjacent to v_2 if and only if $v_1.v_2 = uv + uvab = 0$ in A if and only if $b = -a^{-1}$ in A. Thus for each $a \in U(A)$, let $X_a = \{u(1, a) \mid u \in U(A)\}$ and $Y_a = \{u(1, -a^{-1}) \mid u \in U(A)\}$. It is clear that $|X_a| = |Y_a| = m$.

1. Since $4 \mid n$, $a^2 \not\equiv n - 1 \pmod n$ for each $a \in U(Z_n)$ by Lemma 3.2(1). Hence $X_a \cap Y_a = \emptyset$. It is clear that every two distinct vertices in X_a are not adjacent, and every two distinct vertices in Y_a are not adjacent. By construction of X_a and Y_a, it is clear that every vertex in X_a is adjacent to every vertex in Y_a. Thus the vertices in $X_a \cup Y_a$ form the graph $K_{m,m}$ that is a complete bi-partite subgraph of $TD(R)$. By construction, there are exactly $m/2$ disjoint complete bi-partite $K_{m,m}$ subgraphs of $TD(R)$. Hence $UD(R)$ is the union of $m/2$ disjoint $K_{m,m}$’s.

2. Write $n = p_1^{k_1}p_2^{k_2}\cdots p_r^{k_r}$, where the p_i’s are distinct prime positive integers. Since $4 \nmid n$ and $4 \mid (p_i - 1)$ for at least one of the p_i’s, $a^2 \not\equiv n - 1 \pmod n$ for each $a \in U(Z_n)$ by Lemma 3.2. Thus by the same argument as in (1), $UD(R)$ is the union of $m/2$ disjoint $K_{m,m}$’s.

3. Write $n = p_1^{k_1}p_2^{k_2}\cdots p_r^{k_r}$, where the p_i’s are distinct prime positive integers. Suppose that $4 \nmid n$ and $4 \mid p_i - 1$ for all the odd p_i’s in the prime factorization of n. Let $B = \{b \in U(Z_n) \mid b^2 = n - 1 \in U(Z_n)\}$ and $C = \{c \in$
We consider two cases:

Case I. Suppose that \(n \) is even. Then \(|B| = 2^{r-1}\) by Lemma 3.2(2) and hence \(|C| = m - 2^{r-1}\). For each \(a \in B \), we have \(X_a = Y_a \) and hence the dot product of every two distinct vertices in \(X_a \) is zero. Thus the vertices in \(X_a \) form the graph \(K_m \) that is a complete subgraph of \(TD(R) \). Hence \(UD(Z_n) \) has exactly \(2^{r-1} \) disjoint \(K_m \). For each \(a \in C \), we have \(X_a \cap Y_a = \emptyset \), every two distinct vertices in \(X_a \) are not adjacent, and every two distinct vertices in \(Y_a \) are not adjacent. By construction, it is clear that every vertex in \(X_a \) is adjacent to every vertex in \(Y_a \). Thus the vertices in \(X_a \cup Y_a \) form the graph \(K_{m,m} \) that is a complete bi-partite subgraph of \(TD(R) \). Thus \(UD(Z_n) \) has exactly \(m - 2^{r-1} \) disjoint \(K_{m,m} \)'s.

Case II. Suppose that \(n \) is odd. Then \(|B| = 2^r\) by Lemma 3.2(2) and hence \(|C| = m - 2^r\). For each \(a \in B \), we have \(X_a = Y_a \) and hence the dot product of every two distinct vertices in \(X_a \) is zero. Thus the vertices in \(X_a \) form the graph \(K_m \) that is a complete subgraph of \(TD(R) \). Hence \(UD(Z_n) \) has exactly \(2^r \) disjoint \(K_m \). For each \(a \in C \), we have \(X_a \cap Y_a = \emptyset \), every two distinct vertices in \(X_a \) are not adjacent, and every two distinct vertices in \(Y_a \) are not adjacent. By construction, it is clear that every vertex in \(X_a \) is adjacent to every vertex in \(Y_a \). Thus the vertices in \(X_a \cup Y_a \) form the graph \(K_{m,m} \) that is a complete bi-partite subgraph of \(TD(R) \). Thus \(UD(Z_n) \) has exactly \(m - 2^r \) disjoint \(K_{m,m} \)'s.

Recall that a graph \(G \) is called **completely disconnected** if every two vertices of \(G \) are not connected by an edge in \(G \).

Theorem 3.4. Let \(n \geq 4 \) be an even integer, and let \(R = Z_n \times Z_n \times \ldots \times Z_n \) (\(k \) times), where \(k \) is an odd positive integer. Then \(UD(R) \) is completely disconnected.

Proof. Let \(x = (x_1, \ldots, x_k), y = (y_1, \ldots, y_k) \in U(R) \). Then \(x_i, y_i \in U(Z_n) \) for every \(i, 1 \leq i \leq k \). Since \(n \) is an even integer, \(x_i \) and \(y_i \) are odd integers for every \(i, 1 \leq i \leq k \). Hence, since \(k \) is an odd integer, \(x_1 y_1 + \cdots + x_k y_k \) is an odd integer,
and thus $x_1y_1 + \cdots + x_ky_k \neq 0$ in Z_n, since n is even. Thus $UD(R)$ is completely disconnected.

Theorem 3.5. Let $n \geq 4$ be an even integer, and let $R = Z_n \times Z_n$. Then the vertex $(n/2, n/2)$ in $ZD(R)$ is adjacent to every vertex in $UD(R)$.

Proof. It is clear that $(\frac{n}{2}, \frac{n}{2})$ is a vertex of $ZD(R)$. Let $u \in U(Z_n)$. Since n is even, u is an odd integer. Thus $u - 1 = 2m$ for some integer m. Hence

$$\frac{n}{2}(u - 1) = \frac{n}{2}(2m) = mn = 0 \in Z_n.$$

Thus $\frac{n}{2}u = \frac{n}{2}$ in Z_n. Now let $(a, b) \in U(R)$. Then $a, b \in U(Z_n)$ are odd integers. Hence $(a, b)(\frac{n}{2}, \frac{n}{2}) = \frac{n}{2} + \frac{n}{2} = n = 0 \in Z_n$.

Thus the vertex $(n/2, n/2)$ in $ZD(R)$ is adjacent to every vertex in $UD(R)$. \qed

Example 3.6. Let $A = Z_8$ and $R = A \times A$. Then the $UD(R)$ is the union of two disjoint $K_{4,4}$ by Theorem 3.3(1). The following is the graph of $UD(R)$.

![Fig. 3.1: The unit dot product graph of the ring $Z_8 \times Z_8$](image)

Example 3.7. Let $A = Z_{10}$ and $R = A \times A$. Then the $UD(R)$ is the union of two disjoint K_4 and one $K_{4,4}$ by Theorem 3.3(3, case I). The following is the graph of $UD(R)$.
Fig. 3.2: The unit dot product graph of the ring $Z_{10} \times Z_{10}$
4. Subgraphs of the Zero-Divisor Dot Product Graph of
\[Z_n \times Z_n \]

For an integer \(n \geq 2 \), let \(R_1 = \{ (u_1, z_1) \mid u_1 \in U(Z_n) \text{ and } z_1 \in Z(Z_n) \} \) and \(R_2 = \{ (z_2, u_2) \mid u_2 \in U(Z_n) \text{ and } z_2 \in Z(Z_n) \} \). It is clear that \(R_1 \subset Z(Z_n \times Z_n) \) and \(R_2 \subset Z(Z_n \times Z_n) \). In this section, we study the induced subgraph \(ZD(R_1 \cup R_2) \) of \(ZD(Z_n \times Z_n) \) with vertices \(R_1 \cup R_2 \).

Theorem 4.1. Let \(R = Z_n \times Z_n \) and \(\phi(n) = m \). Then

1. If \(n \) is prime, then \(ZD(R_1 \cup R_2) = ZD(Z_n \times Z_n) = \Gamma(R) = K_{n-1,n-1} \).

2. If \(n \) is not prime, then \(ZD(R_1 \cup R_2) \) is the union of of \((n - m) \) disjoint
 \(K_{m,m} \)'s.

Proof. (1). Suppose that \(n \) is prime. Then it is clear that \(R_1 \cup R_2 = Z(Z_n \times Z_n) \).
If \(n = 2 \), then it is trivial to see that \(ZD(R_1 \cup R_2) = ZD(Z_n \times Z_n) = \Gamma(R) = K_{1,1} \).
If \(n \geq 3 \), then the claim is clear by Corollary 2.3(1).

(2). Let \(A = Z_n \). Suppose that \(n \) is not prime. It is clear that every two vertices in \(R_i \) are not adjacent for every \(i \in \{1, 2\} \). Let \(v_1 \in R_1 \) and \(v_2 \in R_2 \). Then \(v_1 = u(1,a) \in R_1 \) and \(v_2 = v(b, 1) \in R_2 \) for some \(u, v \in U(A) \) and some \(a, b \in Z(A) \). Then \(v_1 \) is adjacent to \(v_2 \) if and only if \(v_1.v_2 = uvb + uva = 0 \) in \(A \) if and only if \(b = -a \) in \(A \). Hence for each \(a \in Z(A) \), let \(X_a = \{ u(1,a) \mid u \in U(A) \} \) and \(Y_a = \{ u(-a,1) \mid u \in U(A) \} \). It is clear that \(|X_a| = |Y_a| = m \). For each \(a \in Z(A) \), \(X_a \cap Y_a = \emptyset \), every two distinct vertices in \(X_a \) are not adjacent, and every two distinct vertices in \(Y_a \) are not adjacent. By construction, it is clear that every vertex in \(X_a \) is adjacent to every vertex in \(Y_a \). Thus the vertices in \(X_a \cup Y_a \) form the graph \(K_{m,m} \) that is a complete bi-partite subgraph of \(ZD(R) \). Since \(|R_1| = |R_2| = m(n - m) \) and \(R_1 \cap R_2 = \emptyset \), we have \(|R_1 \cup R_2| = 2m(n - m) \). Thus \(ZD(R_1 \cup R_2) \) is the union of of \((n - m) \) disjoint \(K_{m,m} \)'s. \[\square \]
5. Equivalence Dot Product Graph

Let $A = \mathbb{Z}_n$ and $R = A \times A$. Define a relation \sim on $U(R)$ such that $x \sim y$, where $x, y \in U(R)$, if $x = (c, c)y$ for some $(c, c) \in U(R)$. It is clear that \sim is an equivalence relation on $U(R)$. If S is an equivalence class of $U(R)$, then there is an $a \in U(A)$ such that $S = (1, a) = \{(1, a) \mid u \in U(\mathbb{Z}_n)\}$. Let $E(U(R))$ be the set of all distinct equivalence classes of $U(R)$. We define the equivalence unit dot product graph of $U(R)$ to be the (undirected) graph $EUD(R)$ with vertices $E(U(R))$, and two distinct vertices X and Y are adjacent if and only if $a \cdot b = 0 \in A$ for every $a \in X$ and every $b \in Y$ (where $a \cdot b$ denote the normal dot product of a and b). We have the following results.

Theorem 5.1. Let $n \geq 1$, $m = 2^n - 1$ and $R = GF(2^n) \times GF(2^n)$. Then $EUD(R)$ is the union of one K_1 and $(2^{(n-1)} - 1)$ disjoint $K_{1,1}$'s.

Proof. Let $A = GF(2^n)$. For each $a \in U(A)$, let X_a and Y_a be as in the proof of Theorem 2.1. Then $X_a, Y_a \in E(U(R))$. Since $|X| = m$ for each $X \in E(U(R))$, we conclude that each K_m of $UD(R)$ is a K_1 of $EUD(R)$ and each $K_{m,m}$ of $UD(R)$ is a $K_{1,1}$ of $EUD(R)$. Hence the claim follows by the proof of Theorem 2.1. □

Theorem 5.2. Let $p \geq 3$ be a positive prime integer, $n \geq 1$, $m = p^n - 1$, and let $R = GF(p^n) \times GF(p^n)$. Then

1. If $4 \nmid m$, then $EUD(R)$ is the union of $m/2$ disjoint $K_{1,1}$'s.

2. If $4 \mid m$, then $EUD(R)$ is the union of two disjoint K_m's and $(m - 2)/2$ disjoint $K_{1,1}$'s.

Proof. Let $A = GF(p^n)$. For each $a \in U(A)$, let X_a and Y_a be as in the proof of Theorem 2.2. Then $X_a, Y_a \in E(U(R))$. Since $|X| = m$ for each $X \in E(U(R))$, we
conclude each K_m of $UD(R)$ is a K_1 of $EUD(R)$ and each $K_{m,m}$ of $UD(R)$ is a $K_{1,1}$ of $EUD(R)$). Hence the claim follows by the proof of Theorem 2.2.

\[\square \]

Theorem 5.3. Let $n \geq 2$ be an integer, $R = Z_n \times Z_n$ and $\phi(n) = m$. Then

1. If $4 \mid n$, then $EUD(R)$ is the union of $m/2$ disjoint $K_{1,1}$’s.

2. If $4 \nmid n$ and $4 \nmid (p_i - 1)$ for at least one of the p_i’s in the prime factorization of n, then $EUD(R)$ is the union of $m/2$ disjoint $K_{1,1}$’s.

3. If $4 \nmid n$ and $4 \mid (p_i - 1)$ for all the odd p_i’s in the prime factorization of n, then we consider the two cases:

Case I. If n is even, then $EUD(R)$ is a union of $(m/2) - 2^{r-2}$ disjoint $K_{1,1}$’s and 2^{r-1} disjoint K_1’s.

Case II. If n is odd, then $EUD(R)$ is a union of $(m/2) - 2^{r-1}$ disjoint $K_{1,1}$’s and 2^r disjoint K_1’s.

Proof. Let $A = Z_n$. For each $a \in U(A)$, let X_a and Y_a be as in the proof of Theorem 3.3. Then $X_a, Y_a \in E(U(R))$. Since $|X| = m$ for each $X \in E(U(R))$, we conclude each K_m of $UD(R)$ is a K_1 of $EUD(R)$ and each $K_{m,m}$ of $UD(R)$ is a $K_{1,1}$ of $EUD(R)$. Hence the claim follows by the proof of Theorem 3.3. \[\square \]

Let $R_1 = \{(u_1, z_1) \mid u_1 \in U(Z_n) \text{ and } z_1 \in Z(Z_n)\}$ and $R_2 = \{(z_2, u_2) \mid u_2 \in U(Z_n) \text{ and } z_2 \in Z(Z_n)\}$, see section 4. We define a relation \sim on $R_1 \cup R_2$ such that $x \sim y$, where $x, y \in R_1 \cup R_2$, if $x = (c, c)y$ for some $(c, c) \in U(Z_n \times Z_n)$. It is clear that \sim is an equivalence relation on $R_1 \cup R_2$. By construction of R_1 and R_2, it is clear that if $x \sim y$ for some $x, y \in R_1 \cup R_2$, then $x, y \in R_1$ or $x, y \in R_2$. Hence if S is an equivalence class of $R_1 \cup R_2$, then there is an $a \in Z(Z_n)$ such that either $S = (1, a) = \{u(1, a) \mid u \in U(Z_n)\}$ or $S = (a, 1) = \{u(a, 1) \mid u \in U(Z_n)\}$. Let $E(R_1 \cup R_2)$ be the set of all distinct equivalence classes of $R_1 \cup R_2$. We define the equivalence zero-divisor dot product graph $R_1 \cup R_2$ to be the (undirected) graph
EZD(R₁ ∪ R₂) with vertices E(R₁ ∪ R₂), and two distinct vertices X and Y are adjacent if and only if \(a \cdot b = 0 \in A \) for every \(a \in X \) and every \(b \in Y \) (where \(a \cdot b \) denote the normal dot product of \(a \) and \(b \)). We have the following result.

Theorem 5.4. Let \(R = Z_n \times Z_n \) and \(\phi(n) = m \). Then

1. If \(n \) is prime, then \(EZD(R₁ ∪ R₂) = K_{1,1} \).

2. If \(n \) is not prime, then \(EZD(R₁ ∪ R₂) \) is the union of \((n - m) \) disjoint \(K_{1,1} \)'s.

Proof. (1). If \(n \) is prime, then \(E = \{(1,0), (0,1)\} \). Thus \(EZD(R₁ ∪ R₂) = K_{1,1} \).

(2). Suppose that \(n \) is not prime, and let \(A = Z_n \). For each \(a \in Z(A) \), let \(X_a \) and \(Y_a \) be as in the proof of Theorem 4.1. Then \(X_a, Y_a \in E(R₁ ∪ R₂) \). Since \(|X| = m \) for each \(X \in E(R₁ ∪ R₂) \), we conclude that each \(K_{m,m} \) of \(ZD(R₁ ∪ R₂) \) is a \(K_{1,1} \) of \(EZD(R₁ ∪ R₂) \). Hence the claim follows by the proof of Theorem 4.1. □

Remark 5.5.

1. Let \(A = Z_n \) and \(R = Z_n \times Z_n \). Since for each \(X \in E(U(R)) \) there exists an \(a \in U(A) \) such that \(X = (1,a) = \{u(1,a) \mid u \in U(A)\} \), note that we can recover the graph \(UD(R) \) from the graph \(EUD(R) \). However, drawing \(EUD(R) \) is much simpler than drawing \(UD(R) \).

2. Since for each \(X \in E(R₁ ∪ R₂) \) there exists an \(a \in Z(Z_n) \) such that either \(X = (1,a) = \{u(1,a) \mid u \in U(Z_n)\} \) or \(X = (a,1) = \{u(a,1) \mid u \in U(Z_n)\} \), note that we can recover the graph \(ZD(R₁ ∪ R₂) \) from the graph \(EZD(R₁ ∩ R₂) \). However, drawing \(EZD(R₁ ∪ R₂) \) is much simpler than drawing \(ZD(R₁ ∪ R₂) \).
Example 5.6. Let $A = \mathbb{Z}_{20}$ and $R = A \times A$. Then the $EUD(R)$ is the union of 4 disjoint $K_{1,1}$ by Theorem 5.3(1), and thus $UD(R)$ is the union of 4 disjoint $K_{8,8}$. The following is the graph of $EUD(R)$.

Fig. 5.1: The equivalence unit dot product graph of the ring $\mathbb{Z}_{20} \times \mathbb{Z}_{20}$

Example 5.7. Let $A = \mathbb{Z}_{34}$ and $R = A \times A$. Then the $EUD(R)$ is the union of 7 disjoint $K_{1,1}$’s and 2 disjoint K_1’s by Theorem 5.3(3, Case I), and thus $UD(R)$ is the union of 7 disjoint $K_{16,16}$ and 2 disjoint K_8. The following is the graph of $EUD(R)$.

Fig. 5.2: The equivalence unit dot product graph of the ring $\mathbb{Z}_{34} \times \mathbb{Z}_{34}$
6. Domination Numbers of $TD(R)$, $ZD(R)$, and $UD(R)$

Let G be a graph with V as its set of vertices. We recall that a subset $S \subseteq V$ is called a dominating set of G if every vertex in V is either in S or is adjacent to a vertex in S. The domination number $\gamma(G)$ of G is the minimum cardinality among the dominating sets of G. Let p be a positive prime number, $n \geq 1$. Then recall that $A = GF(p^n)$ denotes a finite field with p^n elements.

Theorem 6.1. Let p be a positive prime integer, $n \geq 1$, $A = GF(p^n)$, and let $R = A \times \cdots \times A$ (k times, where $k < \infty$). Then

1. $D = \{(1,a,0,...,0) | a \in A\} \cup \{(0,1,0,...,0)\}$ is a minimal dominating set of $TD(R)$, and thus $\gamma(TD(R)) = p^n + 1$.

2. If $k = 2$, then $D = \{(1,0),(0,1)\}$ is a minimal dominating set of $ZD(R)$, and thus $\gamma(ZD(R)) = 2$.

3. If $k \geq 3$, then $D = \{(1,a,0,...,0) | a \in A\} \cup \{(0,1,0,...,0)\}$ is a minimal dominating set of $ZD(R)$, and thus $\gamma(ZD(R)) = p^n + 1$.

4. If $k = 2$, then $D = \{(1,a) | a \neq 0\}$ is a minimal dominating set of $UD(R)$, and thus $\gamma(UD(R)) = p^n - 1$.

Proof. (1). Let $x = (x_1,x_2,...,x_k)$ be a vertex in $TD(R)$. We consider two cases.

Case I. Assume that $x_2 \neq 0$. Then let $a = -x_1x_2^{-1}$. Hence $v = (1,a,0,...,0)$ is adjacent to x in $TD(R)$.

Case II. Assume $x_2 = 0$. Then $v = (0,1,0,...,0) \in D$ is adjacent to x in $TD(R)$. This shows that D is a dominating set of $TD(R)$. In order to show it is minimal, let’s first remove the vertex $w = (0,1,0,...,0)$. Then the vertex $v = (1,0,1,...,1)$ is not in the set D and for every $d = (1,u,0,...,0) \in D \setminus \{W\}$, we have $d \cdot v = (1,u,0,...,0) \cdot (1,0,1,...,1) = 1 \neq 0$. Thus w cannot be removed
from D. Now assume that the vertex $m = (1, a, 0, ..., 0)$ is removed from D. Then $v = (a, -1, 0, ..., 0) \in TD(R)$, but v is not adjacent to every $d \in D \setminus \{m\}$. Hence D is a minimal dominating set of $TD(R)$ and thus $\gamma(TD(R)) = |D| = p^n + 1$.

(2). If $k = 2$, then the set of all non zero zero divisors of R is $Z = \{(0, x) \mid x \in A^*\} \cup \{(y, 0) \mid y \in A^*\}$. Let v be a vertex in $ZD(R)$ if $v = (0, x)$ then it is connected to $(1, 0) \in D$ and if $v = (x, 0)$ then it is connected to $(0, 1) \in D$. This shows that D is a dominating set of $ZD(R)$. It is clear that D is in fact a minimal dominating set of $ZD(R)$ and hence $\gamma(ZD(R)) = |D| = 2$.

(3). Assume that $k \geq 3$, and let $x = (x_1, x_2, ..., x_k)$ be a vertex in $ZD(R)$.

Then at least one of the x_i’s is zero. (We will use similar argument as in (1)). We consider two cases.

Case I. Assume that $x_2 \neq 0$. Then let $a = -x_1x_2^{-1}$. Hence $v = (1, a, 0, ..., 0)$ is adjacent to x in $ZD(R)$.

Case II. Assume $x_2 = 0$. Then $v = (0, 1, 0, ..., 0) \in D$ is adjacent to x in $ZD(R)$. This shows that D is a dominating set of $ZD(R)$. In order to show it is minimal, let’s first remove the vertex $w = (0, 1, 0, ..., 0)$. Then the vertex $v = (1, 0, 1, ..., 1)$ is not in the set D and for every $d = (1, u, 0, ..., 0) \in D \setminus \{W\}$, we have $d \cdot v = (1, u, 0, ..., 0) \cdot (1, 0, 1, ..., 1) = 1 \neq 0$. Thus w cannot be removed from D. Now assume that the vertex $m = (1, a, 0, ..., 0)$ is removed from D. Then $v = (a, -1, 0, ..., 0) \in TD(R)$, but v is not adjacent to every $d \in D \setminus \{m\}$. Hence D is a minimal dominating set of $ZD(R)$ and thus $\gamma(ZD(R)) = |D| = p^n + 1$.

(4). Let $x = (u_1, u_2)$ be a vertex in $UD(R)$ and assume that $x \not\in D$. Let $a = -u_1u_2^{-1}$. Then (u_1, u_2) is adjacent to $(1, a) \in D$. Assume that $c = (1, a)$ is removed from D for some $a \neq 0$. Then $(-a, 1)$ is not adjacent to every vertex in $D \setminus \{c\}$. Hence D is a minimal dominating set and thus $\gamma(UD(R)) = |D| = p^n - 1$. \qed
Theorem 6.2. Let \(n \geq 4 \) be an integer that is not prime, \(A = Z_n \), and \(R = A \times \cdots \times A \) (\(k \) times, where \(k < \infty \)). Then write \(n = p_1^{k_1} \cdots p_m^{k_m} \), where the \(p_i \)'s, \(1 \leq i \leq m \), are distinct prime positive integers, and let \(M = \{ n/p_i \mid 1 \leq i \leq m \} \). Then

1. \(D = \{ (1, a, 0, \ldots, 0) \mid a \in A \} \cup \{ (0, b, 0, \ldots, 0) \mid b \in M \} \) is a minimal dominating set of \(TD(R) \), and thus \(\gamma(TD(R)) = n + m \).

2. If \(k = 2 \), then \(D = \{ (0, a) \mid a \in M \} \cup \{ (b, 0) \mid b \in M \} \) is a minimal dominating set of \(ZD(R) \), and thus \(\gamma(ZD(R)) = 2m \).

3. If \(k \geq 3 \), then \(D = \{ (1, a, 0, \ldots, 0) \mid a \in A \} \cup \{ (0, b, 0, \ldots, 0) \mid b \in M \} \) is a minimal dominating set of \(ZD(R) \), and thus \(\gamma(ZD(R)) = n + m \).

4. If \(k = 2 \), then \(D = \{ (1, a) \mid a \in U(A) \} \) is a minimal dominating set of \(UD(R) \), and thus \(\gamma(UD(R)) = \phi(n) \).

Proof.

(1). Let \(x = (x_1, x_2, \ldots, x_k) \) be a vertex in \(TD(R) \). We consider two cases.

Case I. Assume that \(x_2 \) is a unit. Then let \(a = -x_1x_2^{-1} \). Hence \(v = (1, a, 0, \ldots, 0) \) is adjacent to \(x \) in \(TD(R) \).

Case II. Assume \(x_2 \) is a zero-divisor of \(A \). Then \(p_i \mid x_2 \) in \(A \) for some \(p_i, 1 \leq i \leq m \). Then \(v = (0, n/p_i, 0, \ldots, 0) \in D \) is adjacent to \(x \) in \(TD(R) \). This shows that \(D \) is a dominating set of \(TD(R) \). In order to show it is minimal, let’s first remove the vertex \(w = (0, n/p_i, 0, \ldots, 0) \) from \(D \) for some \(i, 1 \leq i \leq m \). Then the vertex \(v = (1, p_i, 1, \ldots, 1) \) is not in the set \(D \) and for every \(d = (1, u, 0, \ldots, 0) \in D \setminus \{ W \} \), we have \(d \cdot v = (1, u, 0, \ldots, 0) \cdot (1, p_i, 1, \ldots, 1) = 1 + up_i \neq 0 \) (for if \(1 + up_i = 0 \), then \(up_i = -1 \) implies \(p_i \in U(A) \), a contradiction). Thus \(w \) cannot be removed from \(D \). Now assume that the vertex \(m = (1, a, 0, \ldots, 0) \) is removed from \(D \). Then \(v = (a, -1, 0, \ldots, 0) \in TD(R) \), but \(v \) is not adjacent to every \(d \in D \setminus \{ m \} \). Hence \(D \) is a minimal dominating set of \(TD(R) \) and thus \(\gamma(TD(R)) = |D| = n + m \).
(2). Let \(x = (x_1, x_2) \) be a vertex in \(ZD(R) \). Then \(x_1 \in Z(A) \) or \(x_2 \in Z(A) \).

Assume that \(x_1 \in Z(A) \). Hence \(p_i \mid x_1 \) in \(A \) for some \(i, 1 \leq i \leq m \). Hence \(x \) is adjacent to \((\frac{n}{p_i}, 0) \in D \). Assume that \(x_2 \in Z(A) \). Hence \(p_i \mid x_2 \) in \(A \) for some \(i, 1 \leq i \leq m \). Hence \(x \) is adjacent to \((0, \frac{n}{p_i}) \in D \). In order to show that \(D \) is minimal, let’s first remove the vertex \(w = (\frac{n}{p_i}, 0) \) from \(D \) for some \(i, 1 \leq i \leq m \). Then \(w = (p_i, 1) \) is a vertex of \(ZD(R) \) and it is not adjacent to every vertex in \(D \setminus \{w\} \). Assume that \(m = (0, \frac{n}{p_i}) \) is removed from \(D \) for some \(i, 1 \leq i \leq m \). Then \((1, \frac{n}{p_i}) \) is not adjacent to every vertex in \(D \setminus \{m\} \). Thus \(D \) is a minimal dominating set and hence \(\gamma(ZD(R)) = 2m \).

(3). Suppose that \(k \geq 3 \), and let \(x = (x_1, x_2, ..., x_k) \) be a vertex in \(ZD(R) \).

Then at least one of the \(x_i \)'s is a zero-divisor of \(A \). We consider two cases.

Case I. Assume that \(x_2 \) is a unit. Then let \(a = -x_1x_2^{-1} \). Hence \(v = (1, a, 0, ..., 0) \) is adjacent to \(x \) in \(ZD(R) \).

Case II. Assume \(x_2 \) is a zero-divisor of \(A \). Then \(p_i \mid x_2 \) in \(A \) for some \(p_i, 1 \leq i \leq m \). Then \(v = (0, \frac{n}{p_i}, 0, ..., 0) \in D \) is adjacent to \(x \) in \(ZD(R) \). This shows that \(D \) is a dominating set of \(ZD(R) \). In order to show it is minimal, let’s first remove the vertex \(w = (0, \frac{n}{p_i}, 0, ..., 0) \) from \(D \) for some \(i, 1 \leq i \leq m \). Then the vertex \(v = (1, p_i, 1, ..., 1) \) is not in the set \(D \) and for every \(d = (1, u, 0, ..., 0) \in D \setminus \{W\} \), we have \(d \cdot v = (1, u, 0, ..., 0) \cdot (1, p_i, 1, ..., 1) = 1 + up_i \neq 0 \) (for if \(1 + up_i = 0 \), then \(up_i = -1 \) implies \(p_i \in U(A) \), a contradiction). Thus \(w \) cannot be removed from \(D \). Now assume that the vertex \(m = (1, a, 0, ..., 0) \) is removed from \(D \). Then \(v = (a, -1, 0, ..., 0) \in TD(R) \), but \(v \) is not adjacent to every \(d \in D \setminus \{m\} \). Hence \(D \) is a minimal dominating set of \(ZD(R) \) and thus \(\gamma(ZD(R)) = |D| = n + m \).

(4). Let \(x = (u_1, u_2) \) be a vertex in \(UD(R) \). Let \(x = (u_1, u_2) \) be a vertex in \(UD(R) \) and assume that \(x \notin D \). Let \(a = -u_1u_2^{-1} \). Then \((u_1, u_2) \) is adjacent
to \((1, a) \in D\). Assume that \(c = (1, a)\) is removed from \(D\) for some \(a \in U(A)\). Then \((-a, 1)\) is not adjacent to every vertex in \(D \setminus \{c\}\). Hence \(D\) is a minimal dominating set and thus \(\gamma(UD(R)) = |D| = \phi(n)\). □
7. Conclusion and Future Work

In this thesis, we studied the unit dot product graph, the zero dot product graph and the total dot product graph of $\mathbb{Z}_n \times \mathbb{Z}_n$. We introduced a complete description of the structure of these graphs depending on the properties of the ring \mathbb{Z}_n. We started with the case where n is a prime number, then we studied the more general case where n is any positive integer. We proved that the structure of these graphs will vary depending on n. When we wanted to draw the unit dot product graph of $\mathbb{Z}_n \times \mathbb{Z}_n$ where n is a large positive integer, it was useful to use the equivalence dot product graph whose set of vertices are equivalence classes. In chapter 5, we defined this new graph and introduced a description of its structure. In chapter 6, we determined the domination numbers of the unit dot product graph, zero dot product graph and total dot product graph for different values of n. In our future work, we are looking forward to generalizing our new theories to the case $R \times R$ where R is any finite commutative ring using the new results and theories we proved in this thesis.

Mohammad Ahmad Abdulla was born in 1985. He has done his bachelor in communication engineering in Tishreen University. He began his master’s degree in American University of Sharjah in 2013. He expects to graduate in spring 2016.