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Abstract 

In most applications where humans are involved, it is important to augment the 

interaction between users and the components of these applications. One significant 

element is the cognitive state of the subjects involved. The cognitive state can be 

manipulated by the amount of cognitive workload allocated to the working memory. 

If the assigned cognitive workload is too low, the subject’s cognition will be 

underutilized. In contrast, if the workload is more than the subject's capabilities, he or 

she will be mentally overloaded. Thus, there is a serious need to accurately assess and 

quantify cognitive workload levels. In this work, a method for separating four 

different cognitive workload levels is presented. We use an existing data set that 

contains EEG signals recorded from sixteen subjects while experiencing four different 

levels of cognitive workload. Some of these workload levels is due to the degradation 

of visual stimuli. The proposed solution integrates preprocessing of EEG signals, 

feature extraction based on discrete wavelet transform and statistical features, 

dimensionality reduction using stepwise regression and multiclass linear 

classification. Experimental results show that the average classification accuracy of 

the presented method is 93.4%. The effect of EEG channel selection on the 

classification accuracy is also investigated. The results show that channels included in 

the brain frontal lobes are important in cognitive workload classification. By utilizing 

only 23 channels, most of them are located in the frontal region; the proposed solution 

provides an average classification accuracy of 91%. It is shown that the proposed 

solution is more accurate and computationally less demanding when compared to the 

existing work.  

 

Search Terms: Cognitive workload, EEG, DWT, stepwise regression, channel 

selection 
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 Introduction 

 Background and Motivation 

Cognitive workload is the amount of mental resources and mental effort being 

used and required in the working memory at any given moment while performing any 

mental task. Its level is affected by many factors including the requirements of the 

task, the environment in which the task is being performed and the perceptual 

capabilities and the skills of the performer [1]. Many jobs are greatly influenced by 

extremely high or low cognitive workload. These include military, clinical, industrial, 

computer-based assistance [2], or even driving and gaming and all sensitive 

applications that require high level of vigilance. Thus, there is a serious need to 

accurately quantify the level of cognitive workload. The importance of measuring 

cognitive workload is to monitor and enhance the cognitive performance of users. 

This is in addition to reducing any degradation in performance caused by lack of 

attention or cognitive overload. This degradation can affect memory, learning process 

and decision-making. Internal and external factors, such as the level of noise in the 

environment, can affect the current cognitive state of the human user. This state, as 

well as the mental capacity of the user, must be taken into consideration in order to 

avoid any cognitive overload and to better utilize their cognitive capabilities [3]. The 

measurement of cognitive workload helps to better understand the internal processes 

of users. Thus, it helps to assess their abilities to process information and decide 

whether to trust decisions made in specific cognitive states. Moreover, in designing 

work environments, cognitive workload can be an important factor to consider in 

order to avoid any situations that may impose or result in demanding work conditions 

and to avoid cognitive overload [4].  

In designing a method to measure or assess cognitive workload, many aspects 

must be taken into consideration. These include experience; unskilled or novices are 

expected to undergo more cognitive load implementing a task than those who are 

more familiar with it [5]. Stimuli type, such as visual, auditory or other type, 

determines the conscious perception. Additionally, how salient the stimulus is, has a 

great effect on the amount of mental resources needed to process information. 

Attention to the stimulus; saliency may not have an effect if the stimulus is not 

noticeable. Anticipation of a priori knowledge of the stimulus can influence the time 

to perceive information, which will therefore reduce the amount of cognitive 
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workload placed on the brain [6]. Multitasking is directly related to the cognitive state 

and the mental resources required for completing each task.  

Accurately measuring the cognitive workload can be a challenging task.  

However, some physiological and psychological indicators can help in quantifying 

different cognitive workload levels. In general, there are four main methods for 

assessing cognitive workload [7]: 

Analytical methods: They are based on modeling workload. Examples: Time-

Line analysis and Prediction (TLAP) [8].  

Subjective methods: These methods rely on the subject rating for the different 

mental tasks, such as the NASA TLX [9] and the Friedman’s Chi-Square test [10]. 

Performance methods: In these methods, the user’s performance can help in 

determining the cognitive workload. For example, any deterioration in performance 

can indicate the increase of workload level. Metrics used in these methods include 

reaction time and accuracy. 

Psychophysiological methods: The physiological methods measure 

physiological changes associated with different cognitive workload levels. In 

comparison with the previously mentioned methods, the physiological methods are 

found to be objective and have less interference with the main task [11]. Next, some 

of the most popular techniques in the psychophysiological methods are presented: 

Eye-tracking: With the increasing potential of eye-tracking technologies, it is 

now possible to collect eye tracking data with high sampling rates. Unlike the 

previous generations of eye-trackers, nowadays the devices are non-invasive. This 

enables the collection of data without the interference with the subjects. Tracking the 

eye can offer two methods of assessing cognitive workload. The first one is done by 

utilizing the relation between eye movements and cognitive load. Eye-movements, 

especially small movements around the fixation points (called saccades) are highly 

modulated by visual attention. This relation between eye movements and attention 

offers a method of assessing mental workload. The second potential source for 

measuring cognitive workload offered by eye tracking is the size of the pupil. The 

pupil diameter has a direct relationship with the cognitive state, visual search, 

sentence processing, visuospatial memory and attention [12]. A well-known indicator 

for cognitive state is the Index of Cognitive Activity (ICA). ICA is the measure of 

sudden changes in the pupil diameter occurring in small time.  One limiting factor of 
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using pupil size as a measure of mental workload is the effect of light on the dilation 

of the pupil. The amount of light reaching the retina can directly affect the diameter of 

the pupil. Thus, the brightness of the environment must be controlled while measuring 

ICA, to overcome this issue. 

Functional Near-Infrared Spectroscopy (fNIRS): fNIRS is the application of 

near-infrared (NIR) in determining the functioning areas of the brain. It takes 

advantage of the fact that the amount of light absorbed by oxygenated blood is less 

than the amount of light absorbed by deoxygenated blood. Using emitters and 

detectors of near-infrared light can allow for determining the hemoglobin 

concentrations in the different parts of the brain, consequently the functioning areas. 

fNIRS is also used as a method for measuring the cognitive workload by analyzing 

these functioning areas of the brain. 

Heart rate variability (HRV): HRV is the variation in the interval separating 

heartbeats (beat to beat time). HRV reflects many of the social and mental 

characteristics such as stress [13], emotional strain and anxiety [14]. Moreover, HRV 

is used frequently in the field of psychophysiology. Additionally, HRV offers a 

method for separating different cognitive states. 

Electroencephalogram (EEG): This is a noninvasive electrophysiological 

method for monitoring and measuring the electrical activities of the brain. EEG 

reflects the voltages produced by the ionic currents of the brain neurons [15]. It is 

used in many applications related to understanding or assessing the brain 

functionalities. These include sleep disorders, controlling the process of anesthesia, 

coma, epilepsy and brain death [16]. Additionally, EEG signals are very sensitive to 

changes and variations in alertness and attention. Thus, EEG is considered to be a 

powerful means in measuring the levels of vigilance and mental effort.  

 Problem Statement 

The grand challenge of this work is the accurate quantitative assessment of 

cognitive workload. EEG signals are used in this work as a metric for classifying four 

levels of cognitive workload. An experiment was conducted to generate these 

different levels as a result of the degradation of visual stimuli, and EEG signals were 

recorded simultaneously. The dataset is reused from the existing work of K Yu et al. 

[17]. The classification system reported in [17] resulted in classification accuracy of 
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87%. The objective of this thesis is to develop another method for measuring 

cognitive workload that offers a higher classification accuracy. Another challenge that 

is considered in this work is the complexity of the developed system, in terms of 

processing time. Thus, a computationally efficient classification system is also 

developed in this work. 

The classification system adopted consists of multiple steps. The first step is 

the pre-processing of EEG signals. The objective of this stage is to include only the 

frequency components that increase classification accuracy. Additionally, any sort of 

eye movements, such as blinking, during the recording of the EEG signals can result 

in contamination of the signals. Thus, it is important to remove such artifacts before 

conducting any processing. The second step of the classification system is extracting 

useful and non-redundant information from the preprocessed data.  The extracted 

feature vectors are used to build a general model for classification. In this work, 

various statistical features are extracted from the discrete wavelet domain. The next 

step is dimensionality reduction of the extracted feature vectors, using stepwise 

regression. The final step of cognitive levels classification system is using a 

multiclass linear classifier to differentiate between the four levels.  

In addition to the classification system, EEG channel selection was also 

investigated. Two methods of channel selection were examined to further reduce the 

computational complexity. The rest of this thesis is organized as follows:  

Chapter 2 presents the work done in the area of cognitive workload 

assessment, especially using physiological methods. It includes two sections; the first 

one addresses the physiological methods in general. While the other focuses on the 

existing approaches that utilize EEG signals in cognitive workload classification. The 

last section in Chapter 2, explains the need for channel selection in cognitive 

workload classification. Additionally, it provides examples from the literature for 

EEG channel selection. 

Chapter 3 explains the details of the experiment system. The paradigm along 

with the data acquisition system are detailed in this chapter. Additionally, Chapter 3 

illustrates the different cognitive levels studied in details. 

Chapter 4 explains the existing approach for cognitive workload classification 

under vague stimulation. It introduces the existing work as well as the proposed 
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solution. Additionally, the various steps of the adopted classification system are 

explained in detail.  

In Chapter 5, the evaluation of the proposed solution is provided. Also, 

Chapter 5 presents a comparison between the existing and the developed solutions.   

Finally, Chapter 6 provides the conclusion of this thesis; it also includes the 

future work and recommendations. 

  



  

17 

  

 Literature Review 

In comparison with the several methods available for cognitive workload 

assessment, physiological methods are found to be objective and to have less 

interference with the main task [11]. This chapter reviews existing studies in the topic 

of assessing and separating different levels of cognitive workload based on 

physiological methods. Firstly, different techniques are presented, then, this chapter 

focuses on EEG signals in cognitive levels classification. It also introduces EEG 

channel selection, and presents available approaches to implement it.  

 Cognitive Workload Classification using Different Physiological Methods 

In [18], S. Tokuda et al. aimed to evaluate the Mental Workload (MWL) of 

individuals using a specific type of eye-movements called Saccadic Intrusions (SI) 

and accordingly, deciding subject’s ability to safely drive a vehicle. The motivation 

behind using SI is that the previous methods of estimating MWL using pupil diameter 

are not efficient in applications such as driving. Unlike SI, the pupil diameter is very 

dependent on the environment around the subject and can easily change due to the 

brightness level variations. SI has many types including regular saccades, 

microsaccades, and saccadic intrusion. The main focus of the study was regular 

saccades. The characteristics that define SI are the amplitude and the dwell time. The 

amplitude (horizontal not vertical) is measured in degrees, and lies in the range of 0.4-

4.1 degrees. The dwell time is the plateau of the rectangular pulse, and its value is 

usually in the range of 60-870 ms. For generating different levels of MWL, the 

participants were engaged in an experiment of three cognitive levels. The recorded 

eye movements were examined to find the gaze deviations with similar characteristics 

to SI. These eye behaviors were then represented in SI values. For each participant, 

the MWL versus the SI was compared. The results showed a high correlation between 

the MWL level and the level of SI detected. Additionally, the MWL was compared to 

the change of pupil diameter of the participants. The results showed that the SI is a 

better indicator than the pupil diameter in assessing cognitive load. 

Oskar Palinko and Andrew L. Kun in [19] suggested a way to eliminate the 

effects of light on the size of the pupil diameter. The objective was to have more 

accurate results in assessing cognitive workload. This study, as the one reviewed 

previously, considered driving as an application for the measured cognitive workload. 



  

18 

  

Similarly, in [20], the authors examined the ability to separate the response of the 

pupil size to the cognitive task from the reflex of the pupil to light. In both studies, 

they were successful in separating the Task Evoked Pupillary Response (TERP) from 

the effect on the pupil resulting from the change in light. However in [20], the 

stimulation of the cognitive workload was originating from visual and auditory 

sources, while in the later work, the stimulation was produced from two visual tasks 

(one for the simulation of driving and the other for the simulation of the participant’s 

interaction with a device). Having two stimuli that use the same channel (the visual 

channel), complicates the process of separating TERP from the pupil’s reflex to light. 

They conducted three-task experiments on 12 subjects. The first task is to study the 

effect of light on the pupil size. The second task is to study the effect of TERP on the 

pupil size. The last one is to separate the effect of TERP from the effect of 

illumination.  Since the third task is a combination of the first two tasks, the authors 

subtracted the average pupil diameter of the first experiment from the pupil diameter 

of the third experiment. This is in order to separate the effect of illumination from the 

recorded size of the pupil. The resulted diameter was very similar to that of the second 

task. This indicates the possibility of separating the TERP effect from the illumination 

effect on the pupil diameter. 

S. Marshall in [21] studied the ability of index of cognitive activity (ICA) in 

measuring the cognitive workload. ICA is the measure of sudden changes in the pupil 

diameter. The relation between ICA and cognitive workload was studied using 4 

different settings of tasks. The different settings were to test all the different 

combinations of light and darkness, with and without cognitive effort. The results 

showed that ICA level is different when comparing the cognitive effort vs. the 

absence of cognitive effort. This is regardless of the amount of light in the 

environment.  In contrast, ICA has no differences in levels, or remains almost 

constant if the level of cognitive load is constant. This is true even if the environment 

undergoes a change in light. Thus, the study concluded that ICA is not affected by the 

brightness of the environment and therefore, can be used in cognitive workload 

assessment. 

In [22], M. Bartels and S.  Marshall evaluated different types of eye-tracking 

devices. They assessed the performance of these devices in measuring cognitive 

workload using ICA.  The procedure included three different workload tasks and four 
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different eye-tracking hardware systems with at least one eye tracking hardware for 

each participant. For each of the hardware systems, the measured ICA had a strong 

correlation with the level of difficulty of the cognitive task. As the level of the 

difficulty increases, the level of ICA increases accordingly. The results show that 

regardless of the hardware used, ICA can be considered a good metric in evaluating 

cognitive workload. 

In the work done by E. Solovey et al. in [23], cognitive workload was assessed 

in order to better understand the internal state of brain computer interface (BCI) users. 

The objective was to design efficient systems and user interfaces with improved task 

switching and utilized multitasking processes. Functional near-infrared spectroscopy 

(fNIRS) sensors were used to measure signals from a subject’s brain. The measured 

signals reflect the oxygenated and deoxygenated blood in different parts of the brain. 

First, they conducted an experiment with three different multitasking scenarios that 

are common to BCI. The results verified that different cognitive states could be 

distinguished using the signals measured from fNIRS sensors. A real-time system was 

then developed to use the feedback from the cognitive workload classification system. 

This feedback is used to improve the behavior of a user interface application with 

integrated multitasking conditions. 

In the subject of HRV and cognitive workload, A. Luque-Casado [24] studied 

this relation and compared it to the fitness level. He conducted an experiment to 

compare the HRV of two groups while performing three different cognitive tasks. The 

first cognitive task was designed to test the sustained attention of the participants. The 

second task aimed to test the ability of the participants to build-up expectancies about 

the occurrence of a certain event. In the last experiment the subjects were requested to 

discriminate between the duration of two visual stimuli. The members of the first 

group were of high levels of fitness, while the members of the second group were of 

normal levels of fitness. The purpose of this experiment was to prove the relation 

between cognitive performance of the participants and their HRV. The results 

compared the response time, the accuracy, HRV and the fitness level. They show that 

the performance of the high-fitness group was better in tasks that require sustained 

attention. Additionally, HRV was proven to have a strong correlation with cognitive 

load, especially, for tasks with high perceptual demands. Another work done on the 

relation between memory workload and HRV was conducted by M. Suriya-Prakash et 
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al. in [25]. The results were similar to the previous one. As the memory workload 

increases, the HRV decreases. Also, from the conducted experiment, it was noted that 

subjects who performed better in completing the cognitive tasks had lower values of 

HRV than those who had poor performance.  

E. Haapalainen et al. compared the performance of many sensors in measuring 

and assessing cognitive workload. They used different stimuli that require elementary 

cognitive processes. Then, using the multiple psycho-physiological sensors, they were 

able to decide which metrics are most helpful in determining the cognitive state. The 

experiment included 20 participants who implemented 6 different cognitive tasks. The 

sensors included in the experiment were a contactless eye-tracker to track the eye-

gaze and measure the pupil size, a Body-Media armband to measure 

electrocardiogram signal (ECG) and galvanic skin response (GSR), wireless EEG 

headset to measure EEG signal, and a wireless heart rate monitor. Statistical features 

such as mean, median, spectral power and variance were extracted from the signals 

recorded by the different sensors. The results indicated that the best features in 

assessing cognitive workload were the median of the ECG signals and the mean of the 

heat flux, with a classification accuracy of over 80%. 

 Cognitive Workload Classification using EEG Signals 

As mentioned previously, EEG signals are very sensitive to changes and 

variations in alertness and attention. This makes EEG signals a powerful means in 

cognitive workload classification. Following are some of the studies carried out in the 

area of cognitive workload classification using EEG signals. This review focuses on 

the various techniques used for EEG pre-processing, feature extraction and 

classification used.  

P. Zarjam et al. in [26] aimed to classify 7 levels of cognitive workload using 

EEG signals. The source of the cognitive workload was arithmetic tasks with different 

levels of difficulty.  Signals contaminated with EOG artifacts were discarded from the 

analysis. The remaining signals were then filtered with a band-pass filter of 0.5-30Hz.  

For feature extraction, the discrete wavelet transform (DWT) was applied to the 

signals and then entropy measurements were calculated to construct the features. For 

classification, Artificial Neural Network (ANN) classifier was used. One important 

thing to be noted in this study is the use of source localization to reduce the number of 



  

21 

  

channels used in the analysis. The algorithm used for source localization was cortical 

source imaging using a minimum norm estimate. With 7 channels form the Frontal 

region, the average classification results of the entropy measurements were 94.7%. 

In the work done by C. L. Baldwin and B.N. Penaranda in [27], EEG signals 

recorded from fifteen subjects were used to classify cognitive workload. The signals 

were collected at 500 Hz sampling rate, with ground at the second EEG channel 

(FPz). The experiment included three different working memory tasks, with two 

levels of difficulty each.  After visually inspecting the EEG signals to remove noisy 

channels, the remaining subset of EEG channels was further reduced. The EEG subset 

included channels ‘F3’, ‘Fz’, ‘F4’, ‘C3’, ‘Cz’, ‘C4’, ‘P3’, ‘Pz’, ‘P4’ and ‘Oz’ only.  

These signals were filtered using a high-pass filter with cutoff frequency of 0.1 Hz 

and a 70 Hz low-pass filter. In this study, the feature vector that consisted of the 

power, was calculated from five frequency bands. These bands were delta (0.01–3 

Hz), theta (4–7 Hz), alpha (8–12 Hz), beta (13–30 Hz), and gamma (31–42 Hz). 

Artificial neural networks (ANNs) were used for classification. The data was split 

equally between the training and testing phases. The average classification result in 

this study was 85%. 

EEG signals were also used by Christian Mühlet al. in [28] in order to classify 

two levels of mental workload. After removing the (EOG) artifacts, the signals were 

divided into six frequency bands. The bands were delta (1–4 Hz), theta (4–8 Hz), 

alpha (8–12 Hz), beta (12–30 Hz), gamma (30–47 Hz), and high gamma (53–90 Hz). 

The spectral powers of these frequency bands were used as features. Additionally, 

features were also extracted from spatially filtering the signals using common spatial 

pattern (CSP) filter to calculate the spectral power of these filtered signals. The 

resulting feature vectors were reduced in size using maximum Relevance Minimum 

Redundancy (mRMR) feature selection algorithm. Finally, the classification was 

implemented using Linear Discriminant Analysis (LDA) classifier. 

In [29], Shreyasi Datta et al. recorded EEG signals from 10 electrodes. These 

electrodes were FP1, FP2, F3, F4, O1, O2, P3, P4, T3 and T4. The recorded signals 

were used in the classification of three cognitive activities, in an experiment that 

included four subjects. Elliptical Band pass filter with bandwidth of (13-30 Hz) was 

used for filtering the EEG signals. Additionally, in order to remove the interference of 

adjacent channels, common average referencing method was performed on the 
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recorded EEG signals. For feature extraction, several methods were used in this study. 

These are Automatic Autoregressive parameters, computed using Kalman filter, 

Hjorth Parameter, Hurst Exponents and Approximate Entropy. Interval Type 2 Fuzzy 

System was used for classification. Using the combination of all features, the average 

classification accuracy reported, reached 85.33%. 

Wireless EEG signals were explored in [30] to assess memory workload. The 

workload levels of an n-back task were classified for 9 subjects. The system proposed 

in this paper included automatic artifacts removal, feature extraction, feature scaling, 

feature selection and classification.  Four groups of feature extraction techniques were 

employed. These are spectral power density, statistical features, morphological 

features and time–frequency features based on four-level DWT. The statistical 

features included were mean, variance, skewness, and kurtosis. The morphological 

features included in this work were curve length, number of peaks and average non-

linear energy. The wavelet entropy was employed for decreasing the dimensionality 

of the features. The classification was carried out using support vector machine 

classifier, which was used in this work. For the n-back cognitive levels, the system 

proposed in this study resulted in an average classification accuracy of 82%.   

 Channel Selection 

Altahat et al. in [31], collected EEG data from 64 channels. This data was 

used for person authentication. The dataset included the EEG signals of 106 subjects 

performing six different mental tasks. The recorded signals were filtered using a 

bandpass filter of (4-52 Hz) pass band. For each channel, the PSD of six frequency 

bands with a resolution of 8 Hz was extracted as features. For channel selection, the 

data of 50 participants only was included in the analysis. The feature vectors of all 

subjects for a given mental task alongside all channels were assumed to have a 

Gaussian distribution. The channels were ranked based on their stability, then, a 

sequential forward selection procedure was implemented to find the best subset of 

EEG channels. The suggested subset of EEG channels for person authentication 

included 8 EEG channels. 

Common Spatial Pattern (CSP) is another method for channel selection which 

was presented in [32]. The idea of CSP method is to project the channels into low-

dimensional subspace to maximize the variances of two classes. CSP is based on the 
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simultaneous diagonalization of the covariance matrices of both classes. In [32], the 

authors are assuming that the two channels corresponding to the maximal coefficients 

of the spatial pattern vectors are the channels with the most correlation to the task 

specific sources. The reported average classification accuracy reached around 92.6% 

for two subjects, using a subset of four EEG channels only. 

In order to optimize the previous method of channel selection, the authors of 

[33] proposed the Sparse Common Spatial pattern (SCSP) method for channel 

selection. The proposed method reduces the number of EEG channels by sparsifying 

the common spatial filters within the classification accuracy constraint. SCSP method 

which outperformed the CSP method, in terms of classification accuracy, especially 

when the number of selected channels is relatively small. 

This chapter provided a review for the different techniques in cognitive 

workload clsassification. EEG signals, as explained above, are used in many studies 

as a metric for classifying the cognitive levels. In this thesis, EEG signals are used for 

classifying four levels of cognitive workload. The experiment conducted to generate 

these levels is explaind in the following chapter. 
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 Experimental Setup 

In this chapter, the details of the experimental procedure are described. The 

experimental setup and data collection, illustrated in Figure 1, were performed as 

explained in [17]. They are described in this thesis for completeness.  

 

Figure 1: System setup 

 Participants  

The experiment included 16 healthy subjects, with normal or corrected-to-

normal vision. These subjects were tested for color blindness and had to go through 

the dominant eye test. The history of the participants shows that they were not on 

medication and had not experienced any neurological or cardiovascular diseases. 

Additionally, the participants did not suffer from any psychiatric disorders or 

hypertension. NASA task load index (NASA TLX) questionnaire, which is a 

subjective workload assessment, was completed by every participant before and after 

the experiment. This assessment is based on different subscales that act as sources of 

workload demand. These subscales are Mental Demands, Physical Demands, 

Temporal Demands, Own Performance, Effort and Frustration [9].  

 Protocol 

The main focus of the experiment is the cognitive workload for visual 

perception. The experiment was conducted using a 24” monitor to display the visual 

stimuli, and was performed in a quiet room with controlled brightness. The total time 
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of the experiment was around 90 minutes (including the preparation time). Four levels 

of cognitive workload were tested, with each level lasting for about 10 minutes. 

During that time, and while the experiment was being performed, EEG signals were 

recorded from 64 channels. 

For each level of the cognitive tasks, the subjects were asked to identify the 

human face (the target) displayed on the monitor, by pressing the letter ‘Q’. 

Otherwise, to identify the non-target images (i.e. anything displayed other than a 

human face), they were asked to press the letter ‘P’. The difficulty level of the 

cognitive tasks increased from level 1, as the easiest, to level 4, as the most difficult 

cognitive task. 

Figure 2 illustrates the sequence of the visual stimuli displayed on the monitor. 

Each trial started by displaying a fixation cross (+) that lasted for 500 ms, after which 

a digit (Digit 1) was displayed for 300 ms. Following that, another digit (Digit 2) was 

displayed for 300 ms before an image of 256x256 pixels was displayed for 300 ms. 

Finally, a maximum time window of 3000 ms is left for the subjects to respond (wait 

for response). The next trial is initiated immediately after the response. The previous 

sequence was repeated for all the levels. The difference between the levels was the 

definition of the target image. The four cognitive levels are described in the following 

levels: 

Level 1: In this level, the definition of the target is simply an image of a 

human face. This target can easily be distinguished from the image itself, regardless 

of the values of the two digits. 

Level 2: In this level, the target is defined as the human-face image that is 

preceded by either two odd numbers or two even numbers.  

Level 3: The target of this level is the same as the previous one. Only in this 

level the signal to noise ratio (SNR) of the images was reduced to 0 dB. The objective 

of reducing the SNR is to increase the amount of cognitive workload imposed on the 

subjects. 

Level 4: This level is similar to the previous two levels. However, the SNR of 

the images was decreased more than the previous level. The images had SNR of -5dB, 

again. This is to increase the cognitive workload placed on the subjects. 
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Figure 3 provides examples for the target sequences of each of the cognitive 

levels. The order in which the levels were presented was random so as to avoid any 

adaptation that could affect the perception of the subjects during the experiment. 

 

Figure 2: The sequence of visual stimuli 

 

Figure 3: Sample targets for each of the four workload levels 

 Data Collection 

The recorded EEG data was collected from 62 different channels. These 

channels were referenced to the two channels recorded from the ears. Additional to 

the EEG signals, one channel electrooculogram (EOG) and one channel 

electrocardiogram (ECG) were also recorded simultaneously. ANT waveguard caps 

(Waveguard, ANT B.V., Enschede, The Netherlands) were used for the data 

collection, with the 64 electrodes arranged in a 10-10 international system. All the 

signals were collected and sampled using the ANT amplifier (ANT B.V., Enschede, 

Netherlands) at 512 Hz sampling rate. 

Figure 4 presents an example of EEG signals from 16 channels. The x-axis 

represents the time (temporal aspects of the channels), while the y-axis represents 

channels locations (spatial aspects). Figure 5 illustrates the locations of the electrodes 

on the subject’s head. These electrodes are explained in more details in Chapter 4.  

300 ms 300 ms300 ms

2 3 

7 5 

1 3 

Cognitive Level 1 

Cognitive Level 2

Cognitive Level 3

13 9 Cognitive Level 4
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Figure 4: Example of EEG signals 

 

Figure 5: The locations of EEG channels 

This chapter illustrated the experiment conducted to generate the four 

cognitive levels and the differece between these levels. Additionally, this chapter 

explained the data collected during the experiment. The following chapter illustrates 

the steps of the exisiting method for cognitive workload classification, as well as the 

method proposed in this thesis.  
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 Methodology 

This chapter introduces the various steps of the classification system. The first 

section summarizes the approach used in the existing work of [17], for cognitive 

workload classification. In the second section of this chapter, the proposed techniques 

for preprocessing, feature extraction, dimensionality reduction and classification are 

presented. Additionally, EEG channel selection is presented as an optional step in the 

classification system. The last section in this chapter presents the stationarity test for 

EEG signals. 

 Existing Work 

This section reviews the preprocessing, feature extraction and classification 

used in the existing work of Yu et al. [17]. 

4.1.1. Pre-processing. The EEG signals were passed through a second-order 

blind identification “SOBI” filter [34] to remove the effect of eye blinks on the EEG 

signals. The signals were also filtered using “pop_eegfiltnew” [35] with pass-band of  

(0.3-40 Hz).    

4.1.2. Feature extraction. Two methods of feature extraction were used. The 

first one was Power Spectral Density (PSD) method. In this method the feature vector 

was the average of the spectral powers across the 62 channels. The power of each 

channel was calculated in the frequency bands: α (8-12 Hz), θ (4-7) Hz and σ (0.5-3 

Hz). Then, these values were used as features. The second method of feature 

extraction was bilinear common spatial pattern (BCSP). In this method, the feature 

vector contained 2 spatial projections and 4 temporal projections. The projections 

were calculated using the BSCP objection functions: 

𝑚𝑎𝑥𝑊,𝑉
det⁡(𝑊𝑇𝑋+𝑉𝑉

𝑇𝑋+
𝑇𝑊)

det⁡(𝑊𝑇𝑋−𝑉𝑉𝑇𝑋−𝑇𝑊)
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1) 

⁡𝑚𝑎𝑥𝑊,𝑉
det⁡(𝑊𝑇𝑋−𝑉𝑉

𝑇𝑋−
𝑇𝑊)

det⁡(𝑊⁡𝑇𝑋+𝑉𝑉𝑇𝑋+
𝑇𝑊)

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2) 

where W and V are the spatial and the temporal projections respectively. det(.) is the 

determinant operator. X+ and X- are the EEG data belonging to different classes 

(different level of cognitive workload). W and V can be found by solving (3) and (4), 

respectively [36].  
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⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑋+𝑉𝑉
𝑇𝑋+𝑊 = 𝑋−𝑉𝑉

𝑇𝑋−𝑊Λ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3) 

𝑋+𝑊𝑊
𝑇𝑋+𝑉 = 𝑋−𝑊𝑊

𝑇𝑋−𝑉Λ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4) 

where Λ is a diagonal matrix. V is initially assumed to be known and set to be a full 

rank square matrix. 

4.1.3. Classification. For classification, a one-against-one method was used. 

For each combination of two classes (two levels of cognitive workload), a binary 

Support Vector Machine (SVM) classifier [37] was generated. Six classifiers were 

needed for the four levels to cover all different combinations. Each binary classifier 

would deliver one result and each result was considered as one vote. Then, the 

majority voting was used for determining the classification result. Probabilistic values 

of each classifier were used in the case of even scores. 

 Proposed Solution 

This section introduces the proposed solution for cognitive level classification. 

It demonstrates the proposed preprocessing technique, channel selection approaches, 

feature extraction schemes and linear multiclass classification. Figure 6 illustrates the 

general steps of the proposed solution. The first step is the preprocessing of EEG 

signals using filtering techniques. The next step is channel selection. This step is 

optional in the classification. However, if added, channel selection can reduce the 

computational overhead in the rest of the classification system. Two methods for 

channel selection are explained in this section, where the effect of these methods on 

the classification system will be explained in Chapter 5. The following step in the 

proposed system is feature extraction based on Discrete Wavelet Transform (DWT) 

and statistical measures. The dimensionality of the feature vectors is then reduced by 

using the stepwise regression procedure. Lastly, a simple linear classifier is used to 

predict the cognitive levels.  

 

Figure 6: Proposed cognitive workload classification solution 
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4.2.1. Pre-processing. In this step, two filters were used. First, the signals 

were filtered using Hamming windowed sinc FIR filter. The function 

“pop_eegfiltnew” was used to implement this filter with a pass-band of (0.1-60 Hz). 

These values are typical in processing EEG signals to remove noise (frequencies 

below 0.1 Hz) and unwanted higher frequencies (above 60 Hz). The purpose of the 

second filter was to remove the EOG artifacts. This was implemented using “SOBI” 

filter.  

4.2.2.  Channel selection. Channel selection is the process of selecting the 

relevant channels that contain the major features of cognitive states. Channel selection 

reduces the processing and data acquisition complexity. It can also help in improving 

the performance of classification by reducing the amount of overfitting that may occur 

due to the utilization of unnecessary channels [38]. 

In this work, the effect of channel selection on the overall classification 

accuracy was studied. To achieve that, we applied two approaches for channel 

selection prior to the proposed feature extraction and classification steps. The first 

approach examined is based on selecting EEG channels that correspond to the 

different regions of the human brain. The cerebral cortex of the human brain consists 

of four lobes. These are the Frontal, Parietal, Occipital and Temporal as illustrated in 

Figure 7. The Frontal lobes are associated with reasoning, planning and problem 

solving [39]. The parietal lobes are related to movements and perception of stimuli 

[40], while the occipital lobes are related to visual processing [38].  The temporal 

lobes, located on both sides of the brain and just above the ears, control the hearing 

and contain the auditory cortex [41]. In this work, the selection of EEG channels was 

examined based on their locations as illustrated in Figure 8, i.e. channels in the same 

region comprise a subset. The objective of this experiment is to identify the region of 

the brain that contributes most to the classification of cognitive levels. Figure 8 shows 

the 16 channels for the Frontal lobes (red electrodes in Figure 8), 9 channels for the 

Parietal lobes (yellow), 10 channels for the Occipital lobes (blue) and 6 channels for 

the Temporal lobes (purple). The Central channels are treated as a separate region 

(grey) with 7 channels. As illustrated in Figure 8, there are 7 channels shared between 

the Frontal and Central regions. These were considered as part of both the Frontal and 

the Central subsets. Similarly, the 7 channels shared between the Central and the 
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Parietal regions were considered as part of both the Central and the Parietal subsets.  

Thus, the total number of channels in the Frontal, Parietal, Occipital, Temporal and 

Central regions is 23, 16, 10, 6 and 21, respectively.  

 

Figure 7: The cerebral cortex 

 

Figure 8: The locations of the EEG electrodes based on the lobes of the human brain 

The second method examined in this work for channel selection is the 

approach reported by [31]. The reviewed algorithm was proposed for a human 

authentication system, in this work however, we use it in the overall system of 

cognitive load classification. In the Experimental Results chapter, channel selection 

algorithm is applied to the data and the locations of the top selected channels are 

visualized. In this section,  the channel selection algorithm proposed by [31] is 

reviewed for completeness. The experiment reported in [31] included the data for 64 

EEG channels from 50 subjects.  The subjects performed six mental tasks, for the 

purpose of person authentication. For each channel of the EEG signals, the PSD of six 
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frequency bands with a resolution of 8 Hz was extracted as features. The feature 

vectors of all subjects for a given mental task alongside all channels were assumed to 

have a Gaussian distribution. The channels were ranked based on their stability. Then, 

a sequential forward selection procedure was implemented to find the best subset of 

EEG channels. The stability of each channel was calculated using: 

𝑆𝑖 = 𝐷𝐵𝑖 − 𝐷𝑊𝑖⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5) 

where 𝐷𝑊𝑖⁡ is the within-subject distance. In our work of cognitive level 

classification, this can be calculated using the Mahalanobis distance between the 

means of the feature vectors’ distributions, of different cognitive levels for the same 

subject at a given channel. 𝐷𝐵𝑖 is the inter-subject distance. In this work, this can be 

calculated as the Mahalanobis distance between the means of feature vectors’ 

distributions of different subjects for the same cognitive level and EEG channel. The 

Mahalanobis distance is a measure of the distance between a point and a distribution, 

taking the correlation of the data set into account [42], and defined as follows [43]: 

𝐷𝑀(𝑥) = ⁡√(𝑥 − 𝜇)
𝑇

𝐶−1(𝑥 − 𝜇)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(6) 

where 𝐷𝑀(𝑥)⁡is the Mahalanobis distance of an observation 𝑥 =

⁡(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑁)
𝑇⁡from a set of an observations with means 𝜇 =

⁡(𝜇1, 𝜇2, 𝜇3, … , 𝜇𝑁)
𝑇 and covariance matrix 𝐶. 

4.2.3. Feature extraction. The output of the pre-processing step is filtered 

signals of 62 EEG channels. The second step in the proposed system is feature 

extraction. In this step, only useful and non-redundant information will be selected 

from the raw EEG data in order to build a general model for classification. In this 

work, the filtered signals from the 62 channels are treated as a 2-D image, then, a 

discrete 2-D wavelet transform (DWT) is applied. We use the Haar wavelet 

transformation for its simplicity and speed. For image transformations, matrix 

operations are used as expressed in (7): 

𝑌𝑛 = 𝐻𝑛𝑋𝑛𝐻𝑛
𝑇⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(7) 

where 𝑋𝑛⁡is the input nxn image, and 𝐻𝑛 are the Haar basis functions. In general, the 

Haar basis functions 𝐻𝑘(𝑥) is defined for 𝑥 between 0 and 1, and 𝑘 is an integer 

between 0 to 𝑁 − 1, where 𝑁 is the length of the input. The integer k can be 
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computed as the 2𝑝 + 𝑞 − 1 where 𝑝⁡ = ⁡0, . . . , 𝑛 − 1 and q is either 0 or 1 if 𝑝 = 0, 

and between 1 and 2𝑝 otherwise. The Haar basis functions are therefore defined as: 

ℎ00(𝑥) =
1

√𝑁
⁡,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑓𝑜𝑟⁡0 ≤ 𝑥 ≤ 1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(8) 

and 

ℎ𝑝𝑞(𝑥) =
1

√𝑁

{
 
 

 
 2𝑝/2 ⁡,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

𝑞−1

2𝑝
≤ 𝑥 <

𝑞−
1

2

2𝑝
,

−2𝑝/2 ,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
𝑞−1/2

2𝑝
≤ 𝑥 <

𝑞

𝑝
,

⁡0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒⁡𝑓𝑜𝑟⁡𝑥⁡𝜖⁡[0,1]⁡

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(9) 

Applying DWT on the EEG signals results in four subbands. These subbands 

contain the approximation coefficients matrix (𝒀𝟎,𝟎) and the detail coefficients 

matrices of the horizontal (𝒀𝟎,𝟏), vertical (𝒀𝟏.𝟎) and diagonal (𝒀𝟏,𝟏) edges. With a one 

level wavelet transformation, the dimensions of each subband are half of the input, 

namely, 62/2 rows and 257/2 columns. The number of columns pertains to the length 

of each epoch. Statistical features are then extracted from the vertical edges matrix 

(𝒀𝟏.𝟎). This matrix is chosen because it represents the temporal dynamics of the EEG 

signals. The extracted statistical features included:  

i. Spatial and temporal means of the 𝒀𝟏.𝟎 EEG subband. 

ii. Spatial and temporal standard deviations of the (𝒀𝟏.𝟎) EEG subband 

iii.  Spatial and temporal entropy of the 𝒀𝟏.𝟎⁡EEG subband. 

iv. The spatial covariance matrix of the 𝒀𝟏.𝟎⁡EEG subband 

The entropy can be considered as the average uncertainty associated with an 

event, and is defined as:  

𝐸 = −∑𝑃(𝑥𝑖)𝑙𝑜𝑔2𝑃(𝑥𝑖)

𝑛

𝑖=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(10) 

where the length 𝑛 is 62/2 and 257/2 for spatial and temporal measures respectively. 

𝑃(𝑥)⁡is the probability of encountering the value 𝑥⁡and can be approximated through 

relative frequencies of the input data. 

For a matrix⁡𝐴𝑛𝑥𝑚, the covariance matrix of 𝐴 is⁡𝐶𝑛𝑥𝑚. Each 𝑐𝑖𝑗 element in⁡𝐶 

is the covariance of the⁡𝑖𝑡ℎ⁡and the 𝑗𝑡ℎ columns in⁡𝐴. In general, the covariance of the 

variables 𝑌 and 𝑍 is defined as: 

𝑐𝑜𝑣(𝑌, 𝑍) =
∑ (𝑌𝑖 − 𝑦̅)

∗(𝑍𝑖 − 𝑧̅)
𝑛
𝑖=1

𝑛 − 1
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(11) 
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where n is the length of vector 𝑌 and Z, 𝑦⁡̅𝑎𝑛𝑑⁡𝑧̅ are the means of Y and Z 

respectively. In our case, Y and Z are 2 different columns of the 𝒀𝟏,𝟎 EEG subband. 

Hence, the size of the covariance matrix is 31x31. Since the covariance matrix is 

symmetrical, then only the values above the main diagonal are retained and 

represented as a vector.  

Figure 9 illustrates the process of feature extraction used in this work. The 

filtered EEG signals are combined as an image, and transformed using DWT. 

Statistical features are then extracted from the vertical subband Y1,0  as explained 

above. 

 

Figure 9: Proposed feature extraction process 

The outcome of feature extraction is feature vectors that represent the data 

samples. Thereafter, normalization is needed to ensure that the different features are 

on similar scales. This is crucial to make the features have the same impact on the 

classification model. 

Z-score, also known as zero-mean normalization, is a method used for 

normalization of feature vectors. It measures the distances between data points and 

the mean (μ) in terms of standard deviations. A z-score can be either positive, 

negative or zero. A z-score of zero indicates that the data point has the same value as 

the mean (μ). A positive z-score indicates that the data point is above the mean, and a 

negative z-score results from a data point below the mean. The unit of measure is in 

standard deviations (σ). For a feature vector X the z-score of data point xi is defined 

as: 

z⁡ = ⁡⁡
(𝑥𝑖 ⁡− μ)

σ
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(12) 

where μ and σ are the mean and standard deviation of X, respectively. In terms 

of implementation, the z-scores are applied to the train dataset only. The resultant 

means and standard deviations of which are then used to normalize the test dataset.  
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4.2.4. Dimensionality reduction. The dimensionality of the resultant feature 

vectors is detailed in Table 1. The total length of each feature vector is 945 variables. 

Such a dimensionality is considered high, and can affect the performance of the 

classifier if not enough feature vectors are available in the training phase, causing 

what is known as “curse of dimensionality” [44]. Therefore, in this work, we used 

stepwise regression to reduce the dimensionality of the feature vectors, whilst 

retaining the most important variables. 

Table 1: Description of the feature vector content and size 

Features 
No. of 

variables 

Mean of subband  Y1,0 columns 129 

Standard deviation of subband  Y1,0  columns 129 

Mean of subband  Y1,0  rows 31 

Standard deviation of subband  Y1,0  rows 31 

Entropy of subband  Y1,0  columns 129 

Entropy of subband  Y1,0  rows 31 

Spatial covariance matrix 465 

Stepwise regression is a method of variable selection, but it can be used for 

dimensionality reduction as proposed by [45]. Dimension reduction or model 

selection procedures are usually either forward or backward. Forward selection starts 

with the simplest model of all (i.e. one feature variable), then, adds suitable variables 

one at a time until the “best” model is reached. Backward elimination works with the 

most general model, and drops variables one at a time until the “best” model is 

reached. Stepwise, on the other hand, is a combination of both forward and backward 

methods, where variables can be dropped and added. For a set of variables x1, x2… xk, 

fin is the F-random variable for adding a variable to the model and fout is the value of 

the F-random variable for removing a variable from the model. The stepwise 

regression is defined by the following steps [46]. 

Step 1: All the variables are examined one by one to generate a one-variable model in 

the form of: 

ℎ(𝑥) = 𝜃0 +⁡𝜃1𝑥1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(13) 

where h(x) denotes the hypothesis that the included variables are needed for the 

classification of the cognitive level. x1 is one of the different k variables that gives the 

highest F-statistics. 
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Step 2: For the remaining k-1 variables the variables are examined to choose the 

second best variable such that the model in Equation (14) gives the best classification 

result. Here, x2 is added such that its statistic f2 is greater than fin. 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ℎ(𝑥) = ⁡𝜃0 + 𝜃1𝑥1 +⁡𝜃2𝑥2⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(14) 

f2 is calculated by: 

⁡𝑓2 =⁡
𝑆𝑆𝑅(𝜃1|𝜃2𝜃0)

𝑀𝑆𝐸(𝑥1, 𝑥2)
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(15) 

𝑆𝑆𝑅 denotes the regression sum squares error and MSE denotes the mean square error.  

After x2 is chosen, the algorithm rechecks if x1 is to be removed. This is done by 

comparing f1 to fout. If f1 is less than fout x1 is removed from the model. f1 is calculated 

using the Equation (16): 

⁡⁡⁡𝑓1 =⁡
𝑆𝑆𝑅(𝜃2|𝜃1𝜃0)⁡⁡

𝑀𝑆𝐸(𝑥2, 𝑥1)
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(16) 

Step3: For the remaining (k-2) variables, the third best variable is included by testing 

3-variables model such that the model in Equation (17) which has the best 

classification result. x1 and x2 are the variables chosen in the previous steps and x3 is 

chosen from the remaining (k-2) variables. Similarly, x3 is chosen using the F-

statistics. 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ℎ(𝑥) = ⁡𝜃0 + 𝜃1𝑥1 +⁡𝜃2𝑥2 + 𝜃3𝑥3⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(17) 

This algorithm continues until no more variables can be included or removed 

from the model.  

Figure 10 illustrates the process of feature vector dimensionality reduction. 

Stepwise regression is applied to the feature vectors of the training dataset. The output 

from the stepwise regression is the indices of the retained feature variables. These 

indices are stored and used to reduce the number of features in the test dataset. 

 
Figure 10: Dimensionality reduction of feature vectors using stepwise regression 
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4.2.5. Classification. In this work, both linear and non-linear classification 

approaches were examined. We found that linear classifiers worked best with the 

proposed feature extraction approach. In linear classifiers, the class is determined by a 

linear combination of features with predetermined weights. The weights are the 

attributes of the model, thus, the hypothesis or the predicted class will be:  

ℎ(𝑥) = ⁡𝜃0 +⁡𝜃1𝑥1 +⁡𝜃2𝑥2 +⋯+⁡𝜃𝑁𝑥𝑁⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(18) 

where θj’s are the attributes of the model. For k classes we can define the input matrix 

X as: 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑋 = ⁡ [𝑋1, 𝑋2, … ⁡𝑋𝑘]
𝑇⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(19) 

 where Xi is a matrix with all the feature vectors belonging to class i, with M features, 

the size of Xi is Ni*M. The optimum set of weights for the ith class is defined as: 

𝜃𝑖
𝑜𝑝𝑡 =⁡𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝑖‖𝑋𝜃𝑖 − 𝑦𝑖‖𝑝⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(20) 

with: 

⁡𝑦𝑖 = [⁡0𝑁1 , 0𝑁2 , . . 1𝑁𝑖 , . . 0𝑁𝑘]
𝑇 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(21) 

where ⁡𝑦𝑖 is the ideal output vector for class i, which should be all zeros except when 

the input feature vector belongs to the same class. Ni is the number of training 

examples of class i. The ‖. ‖𝑝⁡operator in this work is the second norm (p=2). 

The closed form solution for Equation (20) that gives the optimum weights is 

defined as [45]: 

⁡𝜃𝑖
𝑜𝑝𝑡 =⁡ (∑𝑋𝑗

𝑇𝑋𝑗

𝐾

𝑗=1

)−1𝑋𝑖
𝑇1𝑖⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(22) 

where 1i is the target vector of class i, which is comprised of zeros and ones, in the 

same manner as the ideal output vector. In this work, the result of the training phase is 

four sets of weights {𝜃1, 𝜃2, 𝜃3𝑎𝑛𝑑⁡𝜃4}, with a set for each class (level of cognitive 

workload). 

In the testing phase, the features of the testing sets are extracted, normalized 

and reduced in dimension. As explained above, the dimensionality reduction reuses 

the indices generated by the stepwise regression applied to the training dataset. Each 

feature vector from the testing set Xt is estimated against the four levels to calculate 

set of scores {si} as follows: 

𝑠𝑖 =⁡𝑋𝑡𝜃𝑖
𝑜𝑝𝑡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(23) 
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The predicted level was determined by choosing the class that corresponds to 

the highest score. Finally, the classification rate (𝐶𝑅) is calculated using Equation 

(24). 

𝐶𝑅 =⁡
𝑁𝑃
𝑁𝑇
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(24) 

where 𝑁𝑃 is the number of the correctly predicted testing examples and 𝑁𝑇 is the total 

number of testing set. 

The process of model generation and classification is illustrated in Figure 11. 

Based on the reduced feature vectors of the training set and their corresponding class 

labels, the training process generates the classification model. This model contains a 

weight set for each of the different levels of cognitive workload. Features are 

extracted from the testing dataset using the same process explained in Figure 9. Then, 

these vectors are reduced in dimensionality using the indices of the retained variables 

generated by the stepwise regression procedure. Linear classifier is then used for 

classifying the testing feature vectors using the generated models. The true labels of 

the testing feature vectors are then used to calculate the classification accuracy. 

 

Figure 11: Block diagram of the proposed classification system 

 Stationarity Test 

The developed system of cognitive levels classification is based on statistical 

features. These features determine the properties of the generated model. Thus, we 

clarify that these statistical features are independent on time, and that the generated 

model based on the training dataset is valid for classifying the test data set. This can 

be achieved by testing the stationarity of the EEG signals. 
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In general, a process X(n) that is an ensemble of K sample functions {X1(n), 

X2(n),…, XK(n)}, is said to be stationary if the following conditions are met: 

a- The mean of the process does not depend on time: 

𝜇𝑥(𝑛) = 𝜇𝑥⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(25) 

b- The correlation function depends only on the time lag l: 

𝑟𝑥(𝑛, 𝑛 − 𝑙) = 𝑟𝑥(𝑙)                                                (26) 

where 𝑟𝑥(. ) is the correlation function. 

This chapter introduced the method proposed for cognitive levels 

classification. The next chapter presents the results of implementing the various steps 

of the classification system.   
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 Experimental Results 

This chapter includes the experimental results carried out in this thesis. The 

first section provides a detailed description of the dataset used in this work. The 

second section presents the classification results of the four levels of cognitive 

workload. The section starts by the results of the existing work, then, presents the 

results of the proposed solution. Moreover, this chapter presents the analysis of 

applying the stepwise regression procedure on the proposed feature variables. The 

results of the computational complexity of both the existing and the proposed methods 

are presented in Section 5.4. Section 5.5 presents the effect of the two channel 

selection procedures examined in this thesis. The classification system proposed here 

was also evaluated in subject-independent cognitive levels classification. The results 

of this evaluation are presented in Section 5.6. Finally, the last section of this chapter 

examines the stationarity of the EEG signals. 

 Data Description 

The training and testing examples comprised of one epoch each. Each epoch 

contains 62 EEG channels and recorded for 4400 ms with 512 Hz sampling 

frequency. Only the data from the onset of the second image to 500 ms, after the 

image was displayed, was included in the analysis. Hence, the total duration of the 

EEG signals is 1100 ms. Thus, each training or testing example contains 62 channels 

with 257 (512 Hz * 0.501 sec) samples.  

Tables 2 and 3 describe in details the EEG-signals dataset used in both the 

existing and the proposed work: 

Table 2: Dataset description 

Subject  No. of epochs for 

level 1 

No. of epochs 

for level 2 

No. of epochs for 

level 3 

No. of epochs for 

level 4 

Total no. 

of epochs 

1 210 210 210 210 840 

2 210 210 210 210 840 

3 210 210 210 210 840 

4 210 209 210 210 839 

5 210 210 210 210 840 

6 210 210 210 210 840 

7 210 210 187 201 808 

8 210 210 209 210 839 
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Table 3: Continuation of dataset description 

Subject No. of epochs for 

level 1 

No. of epochs for 

level 2 

No. of epochs 

for level 3 

No. of epochs for 

level 4 

Total no. 

of epochs 

9 210 210 210 210 840 

10 210 210 200 210 830 

11 210 210 210 210 840 

12 210 210 210 210 840 

13 210 210 207 210 837 

14 210 210 210 208 838 

15 210 210 210 210 840 

16 210 210 210 210 840 

 Classification 

A randomly selected 80% of the data is used in the training phase; the 

remaining 20% of the data was used for testing. This process was repeated 5 times, 

generating 5 different sets, and the average and standard deviation of the classification 

results are calculated. A similar approach was used in [17] as well. 

5.2.1. Existing work. Figure 12 shows the classification results using the 

BCSP features and LIBSVM classifier reported in [17] for the 16 subjects. The x-axis 

represents the subjects, and the y-axis represents the average classification accuracy 

of the four cognitive levels for each subject. The classification rates for each of the 

four cognitive levels are presented in Figure 13. The overall average classification 

accuracy for this method is 87.6%.  

The confusion matrix of classifying different cognitive levels using the 

reviewed work is reported in Figure 14. The rows represent the predicted cognitive 

levels, while the columns represent the true cognitive levels. The diagonal cells show 

how many of the cognitive levels were correctly predicted. Considering the 

misclassifications with error rates greater than 5%, the figure shows that cognitive 

level 1 is misclassified with level 4. Additionally, level 2 and level 3 are misclassified 

with level 1. 
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Figure 12: Cognitive workload classification results for the 16 subjects using the existing 

solution   

 

 

Figure 13: Classification results for the 4 cognitive levels using the existing solution 

 

 

Figure 14: Cognitive levels classification confusion matrix (the existing solution) 
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5.2.2. Proposed solution. In order to determine the best method for cognitive 

workload classification, several approaches were studied in this work. The different 

steps of the classification system; preprocessing, features extraction and classification 

were examined. In addition to these steps, the effect of dimensionality reduction and 

channel selection processes on the performance of the classification system was 

inspected. 

The first approach examined is based on statistical features, extracted from a 

single-level 2D DWT. The three subband of the horizontal, diagonal and vertical 

edges were examined separately, and the performance of each in cognitive workload 

classification was evaluated. The following steps summarize this approach. 

i. The EEG signals are pre-processed using band-pass filter (0.3-40 Hz) and SOBI 

filter. 

ii. The signals are combined into an image of dimensions 62x257. 

iii. Statistical features are extracted from the three subbands (Y0,1, Y1,0 and Y1,1) of 

the DWT image. 

iv. Feature vectors are normalized using the z-score method. 

v. Stepwise regression is applied to reduce the dimensionality of the feature vectors. 

vi. A linear classifier is used for classification. 

The classification rates of this approach are presented in Figure 15. The y-axis 

represents the classification results for considering each of the three subbands in the 

feature extraction step. The average classification results over the 16 subjects, 

presented in the y-axis, are 85.7%, 86.2% and 84.0%, for feature extraction based on 

Y0,1, Y1,0 and Y1,1 subbands, respectively. Y1,0 which represents the vertical 

decomposition, as explained in section 4.2 provides the best classification rate. This 

frequency band contains the temporal EEG differences, which are important in 

cognitive level classification.  

For the second approach, further analysis was performed in order to study the 

effect of applying two-level DWT in cognitive workload classification. This is 

realized by implementing a second level of the DWT to the Y0,0 (approximation) 

subband that resulted from the first level of the DWT. Then, the three subbands Y0,1, 

Y1,0 and Y1,1 were considered for features extraction. The following steps explain the 

sequence followed to implement this approach.  
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i. The EEG signals are pre-processed using band-pass filter (0.3-40 Hz) and SOBI 

filter. 

ii. The signals are combined into an image of dimensions 62x257. 

iii. The first level of DWT is implemented on the resulting image. 

iv. The second level of DWT is implemented on the Y0,0 subband. 

v. Statistical features are extracted from the three subbands (Y0,1, Y1,0 and Y1,1) of 

the second level of DWT. 

vi. Feature vectors are normalized using the z-score method. 

vii. Stepwise regression is applied to reduce the dimensionality of the feature 

vectors. 

viii. A linear classifier is used for classification. 

The classification results of this approach are presented in Figure 16. The 

average classification rates, represented in the y-axis, are 61.6%, 76.7% and 61.6%, 

for considering the Y0,1, Y1,0 and Y1,1 subbands respectively, in the feature extraction 

step. Analyzing these results reveals the following results. First, these results confirm 

the result of the previous approach, that the temporal differences contained in the Y1,0 

are significant in cognitive workload classification. Also, the two-level DWT resulted 

in lower classification rate than the single level DWT. A reasonable justification for 

this is that the frequency bands used for feature extraction are from the second level 

of DWT. These are quarter of the size of their one-level transformation counterpart. 

Thus, some information is lost, and the feature vectors are therefore less accurate. 

 

Figure 15: Cognitive workload classification accuracy of applying single-level DWT 
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Figure 16: Cognitive workload classification accuracy of applying two-levels DWT 

Since the vertical edge subband (Y1,0) of a single-level DWT provided the best 

classification results so far, the next approach (Figure 17) examined is based on this 

information. However, as shown in Figure 17, more frequency components are 

included in this approach. As illustrated in the Figure 17, the pass band of the first 

filter used in the preprocessing step was modified from (0.3-40Hz) to (0.1-60Hz). The 

following steps explain the implementation of this method. 

i. The EEG signals are pre-processed using band-pass filter (0.1-60Hz) and SOBI 

filter. 

ii. The signals are combined into an image of dimensions 62x257. 

iii. Statistical features are extracted from the Y1,0 subband of the DWT image. 

iv. Feature vectors are normalized using the z-score method. 

v. Stepwise regression is applied to reduce the dimensionality of the feature 

vectors. 

vi. A linear classifier is used for classification. 

 

Figure 17: Block diagram of the proposed solution  
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The classification accuracy of this result is presented in Figure 18. For 

comparison reasons, the figure also presents the classification results of the existing 

work [17]. The error bars represent the standard deviations of the five runs per 

subject. From these results we can deduce the following results. Since the 

classification rate of the suggested approach is much higher than the previous 

approaches, this indicates that the band of frequencies (0.1-60 Hz) contains 

information that is important in separating the different cognitive workloads. 

Additionally, it is clear that the suggested approach achieves an average classification 

accuracy (93.4%) that is higher than the one achieved by the existing work (87.6%). 

Hence, the proposed classification system is more accurate. It is also shown that the 

proposed solution results in higher classification accuracy in nearly all subjects in 

comparison to the existing work. The variation between the five runs per subject 

which is represented by the error bars is also lower than the existing work. Figure 19 

illustrates the average classification accuracy for each of the four cognitive levels, for 

both the proposed solution and the reviewed work [17]. The error bars represent the 

standard deviation of the classification accuracy resulting from the five runs of the 

experiment. It can be seen that the average classification accuracy of the proposed 

method, for all levels is above 93%. The lowest classification accuracy is 89% for 

Level 3, and the highest is 96% for Level 1. In general, the accuracies of Level 1 and 

Level 2 are higher than those of Level 3 and Level 4. This indicates that Level 1 and 

Level 2 are more separable than the other two levels. From the figure, it is clear that 

the proposed solution results in higher classification rate for each level than the 

existing work. Again, the variation between the five runs per subject which is 

represented by the error bars is also lower than the existing work.  

The confusion matrix of classifying the 4 cognitive levels, using the proposed 

solution is presented in Figure 20. Again, considering the misclassifications with error 

rates greater than 5%, the figure shows that only level 4 is misclassified with level 3. 

This can be attributed to the similar nature of the cognitive workloads imposed by 

level 3 and level 4. The difference between these two cognitive levels is the increase 

in image distortion only. In comparison to the confusion matrix of the existing work 

(Figure 14), the proposed solution reduces the classification confusion to Level 3 and 

Level 4 only, which is a clear advantage. 
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Figure 18: Cognitive workload classification results of the 16 subjects 

 

 

Figure 19: Cognitive workload classification results of the 4 cognitive levels 

 

 

Figure 20: Cognitive levels classification confusion matrix (the proposed solution) 
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 Analysis of Stepwise Regression Results 

The stepwise regression procedure is used in this work for dimensionality 

reduction. Its output is the indices of retained features. Table 4 provides an example 

of the stepwise regression output. The second column represents the number of 

variables before the stepwise regression. The third column represents the number of 

retained variables after applying the stepwise regression procedure. 

Table 4: Features retained by the stepwise regression 

Feature 
Initial number 

of variables 

Number of variables 

retained 

Mean of subband  Y1,0 columns 129 8 

Standard deviation of subband  Y1,0  columns 129 4 

Mean of subband  Y1,0  rows 31 0 

Standard deviation of subband  Y1,0  rows 31 3 

Entropy of subband  Y1,0  columns 129 0 

Entropy of subband  Y1,0  rows 31 0 

Spatial covariance matrix 496 45 

From the previous table we can reach the following conclusion. Since no 

variables were retained from the third feature (mean of subband Y1,0 rows), this 

indicates that EEG channels have the same or similar mean and are not useful for 

classification. Also, the entropy variables were not retained by the stepwise 

regression, which means that this feature is also not useful for classification purposes. 

The table also shows that the last feature (spatial covariance matrix) includes 

important information for classification of cognitive levels. 

 Computational Complexity 

The computational time of the proposed solution (Figure 17) and the work 

reported in [17] are also measured. Table 5 presents the time required by each 

solution to extract features and perform classification. These measurements are 

conducted using MATLAB R2012a on an Intel core-i7 processor and 8.00 GB 

memory computer. The preprocessing of both methods is similar and requires almost 

the same time, thus, it was excluded from the comparison. It is shown in Table 5, that 

the proposed solution is much faster than the reviewed work of [17]. This is due to 

simple statistical features used in combination with a linear classifier.  
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Table 5: Time comparison between the existing work and the proposed solution 

Method Time in sec 

Work presented in [17] 6515.25 

Proposed solution (Figure 16) 784.75 

 Channel Selection 

In this section, we present the effect of channel selection on the cognitive 

workload classification. Firstly, the intuitive approach of grouping EEG channels of 

the same brain region is examined. In Figure 21, we repeat the classification 

algorithm using each subset of channels individually. The objective of this experiment 

is to identify the region of the brain that contributes most to the classification of 

cognitive levels. The figure shows the resulting classification rates in the y-axis. It is 

clear that the subset of the Frontal channels achieved the highest classification 

accuracy of 84.3% using 23 channels only. This result is consistent with the decision 

making functionality of this brain area. This indicates that the EEG channels of the 

Frontal lobes are important in cognitive workload classification.  

The second method of channel selection examined in this work, is the one 

reported in [31]. After sorting the EEG channels based on their stabilities using 

Equation (5). The classification is then carried out using a varying number of channels 

ranging from 1 to 62. Figure 22 illustrates the effect of channel selection on the 

classification accuracy. In the figure, the classification results are reported using the 

proposed solution and the reviewed work of [17]. The maximum classification 

accuracy achieved by the existing work is 87% which requires the complete set of 62 

EEG channels. On the other hand, the same classification accuracy is achieved by the 

proposed solution, with only 15 EEG channels. Additionally, considering the top-

ranked 23 EEG channels, the proposed solution achieves 91% classification accuracy, 

while the existing work results in 72% accuracy. 

Figure 23 visualizes the top-ranked 23 channels. It is clear that most of these 

channels reside in the Frontal region. Interestingly, this confirms the result obtained 

by the intuitive channel selection approach that we reported in Figure 21 above.  
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Figure 21: Classification results including channel subsets according to the brain regions 

 

 

Figure 22: Classification results by varying the number of selected channels ranked by 

channels stability. 

 

  

Figure 23: The locations of the first 23 channels with the highest stability 
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 Subject-Independent Classification 

 In this thesis, EEG signals were evaluated for subject-independent cognitive 

workload classification. Figure 24 presents the results of repeating both the existing 

and the proposed methods for cognitive workload classification. However, in this 

experiment both the training (80%) and testing (20%) datasets are randomly selected 

from the combined data of EEG signals from all the subjects. This is considered semi-

subject-independent, as the train set contains data from all subjects including the one 

being examined.  As shown in the figure, the classification rate of the proposed 

solution is above chance (75%), while the classification rate of the existing work is 

25% only. The low classification rates can be attributed to the unique information 

related to the human identity, shown by the EEG signal. This makes the subject-

independent classification based on EEG signals very challenging. 

 

Figure 24: Subject-independent cognitive workload classification 

 Stationarity Test 

The stationarity of the EEG signals was evaluated in this thesis in order to 

insure that the classification system developed, based on statistical feature, is time 

independent. It is worth mentioning that the stationarity is tested under certain 

constraint; which is that the EEG signals must belong to the same subject and the 

same cognitive level. Otherwise, the stationarity cannot be insured. 

In this work, the stationarity was tested using two approaches as explained in 

the following. 

i. The first approach considers the human head as the source of the process to be 

tested for stationarity. In this case, each process is one epoch, which consists of 62 
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realizations (62 channels), with 257 time samples for each realization. For the first 

condition of stationarity to be true, the mean of each time sample must be constant 

across all epochs. It was found that, by taking random time samples, the mean values 

of the 62 EEG channels at each time sample have values with a small standard 

deviation, as represented in Figure 25. In this figure, the x-axis represents the time 

sample, and the y- axis represents the mean and standard deviation of the values. The 

small values of the deviations thus confirm the first stationarity condition. For the 

second condition of stationarity to be true, the correlation between time samples 

depends only on the time lag. When the difference between correlations with the same 

time lag was calculated, the results were found to be around zero. This was done for 

different time lags as depicted in Figure 26. The x-axis represents the time lag for 

which the correlation was calculated, and the y-axis represents the mean and standard 

deviation of the correlations differences.  

ii. The second approach considers all signals from one channel as a stochastic 

process. Since there are 62 EEG channels, the number of processes in each cognitive 

level is 62. Each process consists of 210 realizations, equivalent to the number of 

epochs in one cognitive level. To examine the first condition of stationarity, the mean 

values of each process are calculated. The y-axis of Figure 27 shows the means and 

standard deviations of these values, while the x-axis represents the different processes 

(channels).  The figure indicates that the means are almost the same. This confirms 

the first stationarity condition. For the second condition to be realized, the difference 

of correlations of the same time lag must be zero or close to zero. Figure 28 presents 

the calculated differences of correlations with different lags. Here, the x-axis 

represents the time lag, while the y-axis represents the average differences and 

standard deviations. Similar to the first approach, the differences have values around 

zero. These results, combined with the previous ones, indicate the stationarity of the 

EEG signals used in this work.  
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Figure 25: Ensemble mean of 10 time samples  

 

Figure 26: Mean of correlations differences 

 

 

Figure 27: Ensemble mean for the 62 channels 
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Figure 28: Mean of correlations differences   
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 Conclusion  

Classification of four cognitive workload levels was examined in this thesis. 

EEG signals from 16 subjects were used in the classification. The stationarity of these 

signals was tested to validate the generated model. A novel feature extraction method 

based on DWT was developed in this work. Statistical features were extracted from 

the vertical subband of single level DWT. The high dimensionality of the features was 

then reduced using stepwise regression procedure. The classification was carried out 

using linear classifier. For 16 subjects and 4 levels of cognitive levels, this approach 

resulted in an average classification accuracy of 93.4%. This indicates that the 

temporal differences contained in the vertical subband are important in cognitive 

levels classification.   

Furthermore, two methods of EEG channels selection were examined in this 

thesis, and their effect on the classification was evaluated. Using a subset of 23 EEG 

channels only in the proposed system resulted in an average classification accuracy of 

91%. These channels are Fpz, Fp1, Fp2, AF3, AF4, AF7, AF8, F1, F2, F3, F4, F5, F6, 

F7, F8, FT7, FC5, T7, T8, C6, PO4, O1 and O2. This subset is comprised mainly (16 

channels) of channels in the Frontal region. This indicates the strong relation between 

the Frontal lobes and the working memory. 

In comparison of the existing method in cognitive workload classification 

reported in [17], to the method presented in this thesis, we can conclude the 

following. The developed method resulted in higher classification accuracy, with and 

without channel selection. Additionally, the proposed solution reduces the 

classification confusion between the four cognitive levels to the highest two levels 

only. In terms of computational speed, the experimental results showed that the 

proposed method is more than eight times faster than the existing method. Thus, the 

objectives of this thesis were met, by developing classification system that is more 

accurate and less computationally complex. 

For future work, other techniuques for dimensionality reduction and channel 

selection can be studied. 
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