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Abstract

The main goal of this study is to design and implement a robust inertial navigation sys-

tem (INS) for in-pipe inspection robot. To achieve this goal, different mechanization

approaches, that are derived in different frames or have different implementation meth-

ods, are investigated. These methods include INS derived in e-frame, INS derived in

n-frame and 3D reduced inertial sensor system (RISS). The INS uses the full inertial

measurement unit (IMU) data to calculate the navigation solution, whereas RISS uses

encoder, one single-axis gyroscope, and two accelerometers. Advantages and disadvan-

tages are highlighted for each approach. Due to accumulated error in the INS or RISS

solution, a sensor fusion based on extended Kalman filter is proposed. The INS is pro-

posed to be fused with encoder’s derived velocity with velocity constraints, and with

the detected pipe length as measurements to correct INS solution. RISS is proposed

to be fused with the detected pipe length only as measurements to correct its solution.

Subsequently, the accuracy of the proposed algorithm is verified experimentally. An

experimental setup, with a prototype of the in-pipe robot, is designed and built to test

and validate our algorithms in a real pipe. The accuracy of the proposed algorithms was

around ±3 cm after sensor fusion.

Search Terms: inertial navigation system, reduced inertial sensor system, extended

Kalman filter, sensor fusion, GPS, encoder, nonholonomic constraints
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Chapter 1: Introduction

The aim of this thesis is to provide a comprehensive solution to the navigation

problem of in-pipe inspection robot, by developing a robust navigation algorithm that

enables high-accurate localization. This research focuses mainly on analyzing and car-

rying out navigation systems using commercially available sensors, integrating them

using fusion algorithm based on extended Kalman filter.

1.1. Background

Navigation is a technique for the determination of position and velocity of a

moving platform with respect to a known reference, but it can also include the attitude

of the platform [1]. Position, velocity and attitude are called the navigation states. A

navigation system can either be autonomous or be dependent on external sources, or in

some cases, a combination of the two. The fusion of the two systems is traditionally

based on the technique of Kalman filtering, developed in 1960 mainly for navigating

in space. The sensors for a navigation system typically include accelerometers, gyro-

scopes and radio receivers. There are two fundamental methods for finding a navigation

solution:

• position fixing.

• dead reckoning (DR).

Position fixing is based on the information of external sources with known loca-

tions (e.g. GPS, MAP and Active beacons). The main advantage of this system is that

the solution is independent of previous location estimate, whereas the disadvantage is

that the solution is not always available (i.e. the sampling frequency is very low).

On the other hand, dead reckoning is autonomous and relies on knowledge of the

initial location, speed and heading information (e.g. INS, Encoder and odometery). By

comparing this system to previous one, the advantage of this system is that the solution

is always available (i.e. the sampling frequency is very high), but the disadvantage is

the accumulative error because this system is based on integration.
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Due to advantages and disadvantages of position fixing and dead reckoning sys-

tems, in order to have a compact, low-cost and high-accuracy navigation system, we

fuse both systems by using one of the following commonly used fusion algorithms:

• Kalman filter [2–6].

• Particle filter [7, 8].

• Artificial intelligence [9, 10].

1.2. Motivation

Pipelines like the one shown in Figure 1 are considered a necessary media in

transporting a fluid or gas to various destinations. The fluid, while traveling, will im-

pose pressure on the internal wall of the pipe, and will cause particles formation and

precipitation on the internal wall of the pipe. The surrounding environment of the pipe

has a great effect on its condition. For instance, it can cause corrosion of the pipe. These

points affect its life expectancy, and with time, the pipe becomes more susceptible to

leakages and failures. Thus, automated routine inspection of pipes has become widely

needed. In-pipe inspection robots are an innovative way for handling pipe inspection

and detecting cracks and leakages. To implement such robots, a robust navigation sys-

tem is needed to navigate the robot through the pipe and to correctly localize the de-

tected defects. Also, this system should be cheap and based on commercially available

sensors.

1.3. Thesis Objectives

This thesis is part of a wider project that aims at enhancing risk assessment and

condition inspection of an operating pipe in the field, by investigating and develop-

ing Navigation system for the in-pipe robot. To achieve this goal, this thesis has the

following objectives:

• Different mechanization methods of INS are investigated and they are intended

to be used to find out the best suitable method for our application.
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Figure 1: Bu Hasa - Habshan gas pipeline, Abu Dhabi, UAE [11].

• A low-cost hardware composed of an IMU, a GPS antenna, encoder with non-

holonomic velocity constraints and light sensor are intended to be used, where

their measurements are fused using extended Kalman filter.

• An experimental setup consists of a prototype of the in-pipe robot which is de-

signed and built to test our navigation solution in a real pipe.

1.4. Report Structure

This thesis consists of the following six chapters:

• Chapter 1 is an introduction about the theoretical background behind navigation

systems in order to give a better understanding of the topic. Also, the objectives

of this thesis are explained in this chapter. This chapter also reviews the literature

that has been published about topics in the same field.

• Chapter 2 describes the inertial navigation system (INS), its components, its phys-

ical implementation methods and the sources of its error.
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• Chapter 3 describes the mechanization methodology of INS. The equations of

INS are presented for different frames. Finally reduced inertial sensor system

(RISS) is presented and its advantages over regular INS is demonstrated.

• Chapter 4 shows the fusion algorithm of INS with other aided systems. The

implementation process of fusion algorithm based on extended Kalman filter is

demonstrated.

• Chapter 5 describes the designed experimental setup and the experimental proce-

dure. Also, a set of results obtained experimentally is presented.

• Finally, Chapter 6 shows the conclusion of this thesis and the proposed future

work that can be performed related to this project.

The next section consists of a brief literature review of the work that was per-

formed and published about the field of navigation.

1.5. Literature Review

Pipeline-based applications have become an integral part of life, so fully au-

tonomous mobile pipeline inspection robot becomes necessary. The problem of design-

ing an in-pipe inspection robot is being continuously addressed, among theses studies

[12–14], which propose a robust automated in-pipe inspection robot. In [12], a new in-

pipe leak detection system is proposed. Detection is based on the presence of a pressure

gradient in the neighborhood of the leak. The authors validate the concepts by building

a prototype and evaluating the systems performance under real conditions in an exper-

imental laboratory setup. The design and implementation of a single-modulated fully

autonomous mobile pipeline exploration robot, called FAMPER, is presented in [13].

FAMPER’s mechanism provides for the excellent mobility in vertical as well as hori-

zontal pipelines, and proposed the system architecture that would enable FAMPER to

be fully autonomous. In [14], The authors present a robotic system for inpipe inspec-

tion of underground urban gas pipelines,where robot is developed with the purpose of

being utilized as a mobile platform for visual and Non-Destructive Testing (NDT) of the

pipeline networks. In this work, the robot is configured as an articulated structure-like

snake with a tether cable.
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Visual odometry and visual simultaneous localization and mapping (VSLAM)

are promising techniques for localization of the in-pipe inspection robot. Many studies

have been made to localize the robot by using VSLAM and visual odometry [15–21].

In [15], the authors design a VSLAM method that can accurately provide the position

of the AUV in the pipe. A group of sensors, consists of INS, digital camera and laser

range finder, is utilized in implementing the proposed VSLAM method. The main ad-

vantage of this method is the ability of the proposed method in accurate localization of

the AUV inside the pipe, while in the same time reducing the processing load, especially

for the image processing. A complementary technique for visual/inertial localization of

a mobile robot in sewer pipe network is proposed in [16]. The data fusion, in the pro-

posed system, is based on the Graph SLAM framework, where it uses sensor data from

an IMU and from a cable encoder. The proposed system is well suited to be considered

as a complementary technique to solve situations where visual feature tracking could

fail, due to environment situations. An artificial land mark for vision-based SLAM

of water pipe rehabilitation robot is proposed in [17]. A monocular visual odometry

method for calculating the displacement of the robot inside the culverts is proposed

in [18]. Their method starts with finding the image displacement and its rotation using

Fourier transform and then relates it to physical motion using total derivative of per-

spective camera model. In [19], authors investigated two monocular visual odometry

algorithms, dense and sparse, that are designed to estimate camera pose in a straight

cylindrical pipe in liquefied natural gas pie system. In [20], authors introduced a noise

tolerant landmark detection method using line laser beam projected on internal surface

of the pipeline. The localization of the robot is performed by generating unique line

pattern, once the line laser is projected on the surface of landmarks such as elbow or

branch. In [21], authors proposed a reconstruction method of a piping shape by using a

rangefinder constructed with an omni-directional camera and an omni-directional laser,

to perform self-localization and 3D model construction.

Many research works have been made to obtain a reliable positioning method

for different applications of land vehicle by fusing of INS with various aided systems by

using different fusion algorithms. In [22], a low-cost navigation system is proposed for

enhancing highway traffic safety even in situations such as fog or rain, by using fusion
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of velocity constraints with IMU and GPS data using Kalman filter and Information

filter. In [23], GPS and encoders, fused with a digital map, which is a layer of General

Information System (GIS), are used to estimate a vehicles state. The implementation of

such a system would be too expensive and not applicable in places where a precise dig-

ital map, built up from small 2-D curves, is not available. Measurements of gyroscope,

GPS and a speedometer are used in the proposed solution by [24], where a nonlinear

observer which consists of three subfilters is used in developing a vehicle navigation

solution. One of the subfilters has two gains and estimates yaw angle and gyro bias.

Another subfilter has one gain and is responsible for estimating the speedometers scal-

ing. The third one also has one gain and gives estimates of the vehicles velocity and

position. In the filtering stage proposed in [24], nonholomonic constraints are taken into

consideration to further enhance the estimates. When tested, the algorithm gave reli-

able results. However, the algorithm does not take into consideration the accelerometer

bias and it also does not use the quaternion approach which is known for its stability in

finding a vehicles attitude. Constraints are also fused in a navigation solution for land

vehicles proposed in [25]. These constraints depend on the orientation of the vehicle

relative to the earth and the relation between the attitude of the vehicle with its veloc-

ity, and are mainly used to enhance the estimates, especially the estimates of velocity

and position. Velocity constraints are also fused with an INS and GPS in [26], for a

navigation solution consisting of nine states. The results of this fusion of the velocity

constraints along with the vehicles speed showed that the observability and attitude of

the vehicle are guaranteed. This leads to decreases in the errors of these states.

Also, several navigation techniques were developed recently for navigation us-

ing artificial intelligence (AI) rather than using Kalman filter (KF) to avoid inadequacies

present in the approach of KF [10, 27–32]. Some of the main inadequacies in the KF

approach for GPS/INS integration are a stochastic error model for every sensor used,

which should be predefined, and values like correlation time, variance and covariance

should be known accurately. However, these AI-based techniques relate INS errors to

INS output at specific time intervals only. They do not take into consideration the error

dependency on past INS readings. To overcome this problem, a study proposes the use

of Input-Delayed Neural Networks (IDNN) to model the INS errors based on current
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and some of the past INS data [10], another study proposes an architecture based on an

adaptive neuro-fuzzy inference system for fusing the GPS/IMU measurements [32].

To enhance the integrity of the navigation algorithm, fault detection algorithms

are proposed in [3, 33]. The proposed fault detection algorithm in [3], is for detection

and isolation of the possible bias in the encoder by using limited memory noise esti-

mation, to estimate a possible bias in the encoder velocity measurement. In [33], the

authors proposed two GPS fault detection and identification (FDI) techniques; the χ2

gating function and the multiple model adaptive estimation (MMAE). A sequential FDI

scheme is proposed to integrate both methods in order to obtain a high-integrity, high-

accuracy state estimate from a filter structure with low-computational requirement.

In the next chapters, the inertial navigation system (INS), its components, its

physical implementation methods and the source of its error will be explained.
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Chapter 2: Inertial Navigation Systems

2.1. Introduction

Inertial navigation system (INS) employs inertial sensors (gyroscopes and ac-

celerometers). The accelerometers and gyroscopes constitute the inertial sensor as-

sembly (ISA) that is housed along with related electronics in a unit called the inertial

measurement unit (IMU) [34]. By measuring angular rates, gyroscopes provide attitude

information in three dimensions. Accelerometers measure the specific forces (acceler-

ations) that can be converted to velocity and position by a navigation computer using

the process of integration. Starting with initial values of position, velocity and attitude,

together with a gravity model, the computer operates on the IMUs outputs to furnish

the current position, velocity and attitude of the host vehicle, as shown in Figure 2.

Figure 2: The block diagram of an inertial navigation system (INS).
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2.2. Inertial Measurement Unit

The measurements of the acceleration and the rotation of the vehicle are made

by a combination of the inertial sensors mounted in a unit called the inertial measure-

ment unit (IMU). As shown in Figure 3, this holds two orthogonal sensor triads; one

with three accelerometers and the other with three gyroscopes. Accelerometers measure

linear motion in three mutually orthogonal directions, whereas gyroscopes measure an-

gular motion in three mutually orthogonal directions. We assume that, the axes of these

two triads are parallel, sharing the origin of the accelerometer triad. The sensor axes

are fixed in the body of the IMU, and are therefore called the body axes or body frame.

Apart from the inertial sensors, the IMU also contains related electronics to perform

self-calibration, and to sample the inertial sensor readings. Subsequentially, these read-

ings are used by the navigation computer.

Figure 3: The components of a typical IMU [34].

2.3. Physical Implementation Methods of an INS

Mainly, there are two implementation approaches for an INS:

• Stable platform system (gimbaled system).
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• Strapdown system.

As shown in Figure 4(a), in gimbaled systems accelerometers and gyroscopes

are fixed on an inner stationary gimbal in a certain direction and pose relative to in-

ertial or earth navigation frame. This state does not change even if the vehicles pose

and orientation change. This is because the inner gimbal is isolated from being affected

by the motions of the surrounding vehicle. For the inner gimbal to be stable, torque

actuators are used along with servo feedback. These systems usually have high accu-

racy and cost due to the high complexity of their control system and design that can

only measure very small changes in deviations. One main drawback of such systems is

that they sometimes suffer from gimbal lock. This lock can be fixed by adding a fourth

gimbal to the already present three-axis gimbals. However, this solution is usually a

very expensive one. On the other hand, strapdown inertial navigation systems are fixed

to the body of the vehicle and are not stable in space as they move with the body’s mo-

tion, as shown in Figure 4(b). The system’s angular motion is continuously measured

with a set of three perpendicular rate gyros, and the acceleration is measured with a set

of three perpendicular accelerometers. Such systems are cheaper, mechanically sim-

pler and stronger than gimbaled ones. However, it is more complex to mathematically

analyze, especially if pose in earth and navigation frames are needed.

Figure 4: Arrangement of the components of (a) gimbaled system, and (b) strapdown
system [34].
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2.4. Inertial Sensors Errors

Inertial sensors are subjected to various errors, which get more complex as the

price of the sensor decreases. The errors minimize the accuracy of the measured values.

We can categorize the errors type as follows.

2.4.1. Systematic errors.

The main systematic errors in accelerometers and gyroscopes come from scale

factor, bias and non-linearity in readings. Consequently, any misalignment in the units

axes with respect to local navigation axes would cause inaccurate results in the compo-

nent of acceleration due to gravity, which will affect the position and velocity. These

errors are carried on for the next time steps. So, they keep propagating in time. These

types of errors can be compensated by laboratory calibration, especially for errors that

come from scale factor bias in accelerometers and gyroscopes readings, and among

these procedures we have the following:

2.4.1.1. Six-position static test. In this method, the inertial system is mounted

on a level table with each sensitive axis pointing alternately up and down (six positions

for three axes). Then, estimates of the accelerometer bias and scale factor are obtained

by summing and differencing combinations of the inertial system measurements.

2.4.1.2. Angle rate tests. In this type of calibration, the IMU is mounted on

a precision rate table, which is rotated through a set of very accurately defined angles.

If the table is rotated clockwise and counterclockwise through the same angle then, the

biases and scale factors errors of the gyros can be estimated.

2.4.2. Random errors.

Inertial sensors suffer from a variety of random errors, which are usually mod-

eled stochastically in order to mitigate their effects. The most important random error

in accelerometers and gyroscopes readings is bias drift and white noise. Mainly, these

errors can be minimized by the estimation techniques, which are described in Chapter 4.
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2.4.3. Alignment and initialization errors.

One of the most important issues in any navigation solution is the initialization

of position, velocity and attitude, and the alignment of the IMU unit. The initialization

of velocity can be set to zero thus assuming a stationary vehicle initially. However,

the position can be initialized from an external source like a GPS antenna or manu-

ally entering initial position values. Also, the initialization of the attitude angles is

very important as they are used in the initialization of the quaternions by initializing

cosine rotation matrices. Therefore, it should be ensured that the IMU unit is aligned

accurately such that the axes of the unit’s body frame coincide with the axes of the ve-

hicle’s body frame. There are several techniques which were developed for alignment

purposes. Some of these are [35]:

• Estimating alignment variables by matching the position with a GPS.

• The usage of a star tracker or an optical line of sight reference to a ground station

for estimating alignment.

• Using the gyrocompass alignment approach, where acceleration readings are used

to get the rotation directions and local vertical thus estimating north direction.
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Chapter 3: Kinematic Modeling and Mechanization of INS

3.1. Introduction

Kinematic modeling is often used where dynamic modeling of a moving object

is impractical. It deals with studying the motion of an object without consideration of

its mass or the forces acting upon it. In kinematic modeling, the motion of a body is

determined only based on position, velocity or acceleration measurements, which are

collectively known as observables. In order to measure this acceleration, an accelerom-

eter is needed. Then, this acceleration is integrated once to get the velocity, and twice to

get the position with respect to an initial condition. However, the acceleration that we

measure with an accelerometer is a combination of acceleration due to gravity and other

external forces. The gravity component needs to be removed from the acceleration. In

order to do so, the accelerometer’s attitude with respect to the computational reference

frame needs to be measured, and here comes the role of a gyroscope. The gyroscope

measures the angular velocity, which when integrated, gives us the angle change with

respect to an initial condition.

Mechanization of INS is the process of converting the output of an IMU into

position, velocity and attitude information. The outputs include rotation rates about

three body axes ωb
ib measured by the gyroscopes triad and three specific forces Fb along

the body axes measured by the accelerometer triad, all of which are with respect to the

computational frame. Mechanization of INS is a recursive process that starts with a

specified set of initial values and iterates on the output. A general diagram of INS

mechanization is shown in Figure 5.

In order to have a good understanding of how INS and their algorithms work,

and before we go into more detail, the coordinate frames used in inertial navigation

systems should be understood. In the next section, the main coordinate frames used in

inertial navigation systems are demonstrated.
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Figure 5: A block diagram of INS mechanization.

3.2. Coordinate Frames

Navigation algorithms involve various coordinate frames and the transforma-

tion of coordinates between them. For example, inertial sensors measure motion with

respect to an inertial frame which is resolved in the host platforms body frame. This

information is further transformed to a navigation frame. A GPS receiver initially esti-

mates the position and velocity of the satellite in an inertial orbital frame. Since the user

wants the navigational information with respect to the Earth, the satellites position and

velocity are transformed to an appropriate Earth-fixed frame. Since measured quantities

are required to be transformed between various reference frames during the solution of

navigation equations, it is important to know about the reference frames and the trans-

formation of coordinates between them. So, the listed below are the main coordinate

frames used in inertial navigation systems and they are shown in Figure 6.

3.2.1. Earth-centered inertial (ECI) (i-frame).

This frames origin is fixed at the center of the Earth. The axes of this frame do not rotate

with the Earth and always point to reference stars. This frame is considered a reference

to other coordinate frames.

3.2.2. Earth-centered earth-fixed (ECEF) (e-frame).

In this coordinate frame, we have the origin fixed to the center of the Earth. The z-axis

points to the North Pole of the Earth, while the x-axis points to the intersection point
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Figure 6: Axes systems

between Greenwich meridian and the equator(0olatitude, 0o longitude). The y-axis is

orthogonal to both, the x and z axes, and it is found using the right hand rule. Unlike

ECI frame, this frame moves with the Earth.

3.2.3. WGS-84 frame.

GPS uses another coordinate frame, called the World Geodetic System (WGS-84). This

frame is an ECEF frame. Its origin is at the center of the Earth. The x-axis points to

the intersection point between Greenwich meridian and the mean astronomic equator.

This equator is the reference meridian which is parallel to the zero-meridian that is

defined by the Bureau International de LHeure (BIH), based on adopted longitudes for

its stations. The y-axis is measured 90 degrees to the east of the x-axis and completes

the right hand rule in the mean astronomic equator plane. The z-axis is parallel to the

conventional international origin for a polar motion based on the adopted latitudes for

BIH stations.
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3.2.4. Navigation frame (n-frame).

In this coordinate frame, the origin is at the location of inertial navigation system. The

x and y axes are tangent to the Earth ellipsoid, with the x-axis pointing to the North Pole

of the Earth, and the y-axis pointing towards the east. The z-axis points perpendicularly

down to the ellipsoid, which means that this axis does not have to pass through the

center of the Earth. That is why sometimes this frame is referred to as NED frame,

meaning North East Down frame. This frame is also known as the geocentric frame.

The transformation matrix, Cn
e , that transforms a coordinate of the e-frame to

the n-frame is given by

Cn
e =


−sinΦcosΛ −sinΦsinΛ cosΦ

−sinΛ cosΛ 0

−cosΦcosΛ −cosΦsinΛ −sinΦ

 (1)

where Φ and Λ are geodetic latitude and geodetic longitude of the robot’s position.

3.2.5. Body frame (b-frame).

The x-axis of this frame is aligned with the x-axis of the robot’s body (the roll axis),

pointing forward. The y-axis points perpendicularly to the right (the pitch axis), while

the z-axis points perpendicularly down (the yaw axis) as shown Figure 7. This frame

is fixed to the body of the robot, so it moves with the robot.

Figure 7: Body frame axes and (roll(φ ),pitch(θ ),yaw(ψ)) angles [22]
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The transformation matrix from the b-frame to the n-frame is described by the

conventional angles (roll(φ ),pitch(θ ),yaw(ψ)) of the body frame:

Cn
b =


cosθ cosψ sinφ sinθ cosψ− cosφ sinψ cosφ sinθ cosψ + sinφ sinψ

cosθ sinψ sinφ sinθ sinψ + cosφ cosψ cosφ sinθ sinψ− sinφ sinψ

−sinθ sinφ cosθ cosφ cosθ


(2)

Then, the transformation matrix from the b-frame to the e-frame is defined as

Ce
b =Cn

e
TCn

b =Ce
nCn

b (3)

3.3. Measurement Model of the Gyroscope and the Accelerometer

The mechanization of an INS depends on the gyroscopes and accelerometers

measurements. The error in accelerometer and gyroscope measurements can be elim-

inated by using the calibration techniques described in section 2.4, but for the white

noise and bias uncertainty, which represent the random walk that is assumed to be

slowly varying parameters, can be minimized by the estimation techniques described in

chapter 4. The measurement equation for the accelerometer and gyroscope is demon-

strated in the following subsections.

3.3.1. Gyroscope measurement model.

Measurements of angular rate from the gyroscope can be modeled by the following

equation:

ω̄
b
ib = ω

b
ib +bb

g +wg (4)

where

ω̄b
ib is the gyroscope measurement vector (rad/s)

ωb
ib is the true gyroscope measurement vector (rad/s)

bb
g is the gyroscope instrument bias vector (rad/s)
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wg is a vector representing the gyro sensor noise (rad/s).

3.3.2. Accelerometer measurement model.

Measurements of the specific force can be modeled by the following equation:

F̄b = Fb +bb
a +wa (5)

where

F̄b is the accelerometer measurement vector (m/s2)

Fb is the true specific force vector (m/s2)

bb
a is the accelerometer instrument bias vector (m/s2)

wa is a vector representing the accelerometer sensor noise (m/s2).

In the next sections, the mechanization of INS in different frames and by us-

ing different methods is presented. The experimental results for theses algorithms are

presented in Chapter 5.

3.4. Mechanization of INS in e-frame

3.4.1. Position and velocity.

The vehicles kinematics are obtained from the accelerometers and gyroscopes

measurements. The time rate of change of the velocity of the vehicle in e-frame can be

shown to be given as [34]:

V̇ e =Ce
bFb−2Ω

e
ieV

e−Ω
e
ie

2Pe +Ge (6)
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where 2Ωe
ieV

e represents the Coriolis acceleration and Ωe
ie

2Pe represents the Centrifugal

acceleration, where Ωe
ie is as follows.

Ω
e
ie = [ωe

ie]
× (7)

ω
e
ie =


0

0

ωe

 (8)

where [ωe
ie]
× represents the skew symmetric matrix of ωe

ie and ωe is earth sidereal rota-

tion rate.

Ge in Equation (6), is the gravitational vector in e-frame, which is described by

using the Legendre polynomial. If we considered up to second order polynomial, the

gravitational force vector components in the ECEF, Ge, are as follows.

gx =−
µ

R2

[
1− 3

2
J2

(
Re

R

)2(
5

z2
e

R2 −1
)]

xe

R
(9)

gy =−
µ

R2

[
1− 3

2
J2

(
Re

R

)2(
5

z2
e

R2 −1
)]

ye

R
(10)

gz =−
µ

R2

[
1− 3

2
J2

(
Re

R

)2(
5

z2
e

R2 −3
)]

ze

R
(11)

where the J2 is the coefficient of second zonal harmonics of the Earth potential function,

the Re is the semi major axis of the Earth, and the R is the range from the Earth center

to the center of the robot.

After obtaining the velocity of the vehicle, we can integrate the velocity to find

the vehicle’s position, by using the following

Ṗe =V e (12)

3.4.2. Attitude.

The rate gyros measure the vehicle angular velocity relative to inertial frame,ωb
ib.
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The angular velocity of vehicle relative to the ECEF is given by

ω
b
eb = ω

b
ib−ω

b
ie (13)

where ωb
ie =Cb

e ωe
ie.

For angular motion and attitude calculation, usually, the quaternion approach is

used to avoid the singularity problem that is faced with the Euler approach [36]. Let

a quaternion qe =
[
qo q1 q2 q3

]T
describes the attitude between the b-frame and

e-frame. Then the DCM from b-frame to e-frame, Ce
b, is represented by

Ce
b =


q2

o +q2
1−q2

2−q2
3 2(q1q2−q3qo) 2(q1q3−qoq2)

2(q1q2−qoq3) q2
o−q2

1 +q2
2−q2

3 2(q2q3−qoq1)

2(q1q3−qoq2) 2(q2q3−qoq1) q2
o−q2

1−q2
2 +q2

3

 (14)

The quaternion is governed by following differential equation

q̇e =
1
2

Ω̄
b
ebqe (15)

where

Ω̄
b
eb =

 0 −ωb
eb

T

ωb
eb −

[
ωb

eb

]×
 (16)

with a constraint:

q2
o +q2

1 +q2
2 +q2

3 = 1 (17)

Mostly, the initial attitude is represented by (roll(φ ), pitch(θ ), yaw(ψ)) angles.

The initial condition of quaternion is necessary to integrate the quaternion differential

equation. Let Ci j denote the i-th row, j-th column element of initial Ce
b. Initial values of
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qe are obtained from Equation (14):

qo =
1
2

√
1+C11 +C22 +C33 (18)

q1 =
C32−C23

4qo
(19)

q2 =
C13−C31

4qo
(20)

q3 =
C21−C12

4qo
(21)

3.4.3. Summary.

The e-frame mechanization equations can be summarized as follows.
Ṗe

V̇ e

q̇e

=


V e

Ce
bFb−2Ωe

ieV
e−Ωe

ie
2Pe +Ge

1
2Ω̄b

ebqe

 (22)

which represents the mechanization equations in the e-frame where the inputs are the

sensed accelerations Fb from the accelerometers and rotation rates ωb
ib from the gyro-

scopes. The outputs are the position vector Pe, the velocity vector V e, and the quater-

nions, all expressed in the e-frame.

3.5. Mechanization of INS in n-frame

In many applications the mechanization equations are preferable to be in the

n-frame for the following reasons [7]:

• The navigation solution is intuitive to the user on or near the Earth’s surface.

Also, since the axes of the n-frame are aligned to the local east, north and down

directions, the attitude angles (roll(φ ),pitch(θ ),yaw(ψ)) can be obtained directly

from the output of the mechanization equations when solved in the n-frame.

• The computational errors in the navigation parameters on the horizontal (E-N)

plane are bound by the Schuler effect [37].
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3.5.1. Position and velocity.

The time rate of change of the velocity of the vehicle in n-frame can be shown

to be given as [34]:

V̇ n =Cn
bFb− (2Ω

n
ie +Ω

n
en)V

n +gn (23)

The gn mentioned in Equation (23) represents the Earth’s gravity field, which equals

gn =


0

0

g

 (24)

where g is the magnitude of the normal gravity vector over the surface of the ellipsoid,

which can be computed as a function of latitude and height by a closed form expression

known as the Somigliana formula.

In Equation (23), Ωn
ie is defined as

Ω
n
ie = [Cn

e ω
e
ie]
× (25)

and Ωn
en is defined as

Ω
n
en = [ωn

en]
× (26)

where

ω
n
en =


ve

RN+h
−vn

RM+h
−ve tan(Φ)

RN+h

 (27)
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where h is the geodetic height of the robot’s position. RN and RM represent the normal

radius and the meridian radius respectively, which are defined as

RN =
Re

(1− e2
m sin2 (Φ))

1
2

(28)

RM =
Re
(
1− e2

m
)

(1− e2
m sin2 (Φ))

3
2

(29)

where em represents the major eccentricity of the Earth reference ellipsoid.

After obtaining the velocity of the vehicle, we can integrate the velocity to find

the vehicle’s position, based on the following differential equation:

Ṗe =Ce
nV n (30)

3.5.2. Attitude.

Similar to what is explained in subsection 3.4.2, the angular velocity of vehicle

relative to the n-frame is given by

ω
b
nb = ω

n
ie−ω

n
en (31)

where ωb
in is calculated as follows.

ω
b
in =Cb

nω
n
in (32)

where

ω
n
in = ω

n
ie +ω

n
in (33)

where ωn
ie =Cn

e ωe
ie, and ωn

en is defined by Equation (27).
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The attitude between the b-frame and n-frame is described by quaternion qn =[
qo q1 q2 q3

]T
. Then the DCM from b-frame to n-frame, Cn

b is represented by

Cn
b =


q2

o +q2
1−q2

2−q2
3 2(q1q2−q3qo) 2(q1q3−qoq2)

2(q1q2−qoq3) q2
o−q2

1 +q2
2−q2

3 2(q2q3−qoq1)

2(q1q3−qoq2) 2(q2q3−qoq1) q2
o−q2

1−q2
2 +q2

3

 (34)

The quaternion is governed by following differential equation

q̇n =
1
2

Ω̄
b
nbqe (35)

where

Ω̄
b
nb =

 0 −ωb
nb

T

ωb
nb −

[
ωb

nb

]×
 (36)

with a constraint:

q2
o +q2

1 +q2
2 +q2

3 = 1 (37)

To convert from quaternion to the (roll(φ ),pitch(θ ),yaw(ψ)) angles, let Ci j de-

note the i-th row, the j-th column element of Cn
b . Then the (roll(φ ),pitch(θ ),yaw(ψ))

angles are given by

φ = tan−1(C32/C33) (38)

θ = sin−1(−C31) (39)

ψ = tan−1(C21/C11) (40)
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3.5.3. Summary.

The n-frame mechanization equations can be summarized as follows.
Ṗe

V̇ n

q̇n

=


Ce

nV n

Cn
bFb− (2Ωn

ie +Ωn
en)V

n +gn

1
2Ω̄b

nbqn

 (41)

where Ce
n relates V n with Ṗe, Pe is represented in ECEF Cartesian coordinates (xe,ye,ze).

3.6. Mechanization of 3D Reduced Inertial Sensor System

The 3D Reduced Inertial Sensor System (RISS) presented in this section is a

3D navigation solution using encoder, one single-axis gyroscope, and two accelerome-

ters [7]. The gyroscope is aligned with the vertical axis of the vehicle. The pitch and

roll angles that would have been provided by the two eliminated gyroscopes are now

calculated using the two accelerometers. The 3D RISS integrates the measurements

from the vertically aligned gyroscope and the two horizontal accelerometers with speed

readings provided by an odometer or wheel encoders.

The advantages of using 3D RISS solution over using full IMU solution are the

following:

• By using the accelerometers in full IMU mechanization, the error in velocity is

proportional to t, and in position is proportional to t2. To overcome the error, due

to accelerometer biases, the encoder-derived speed will be used in RISS.

• An uncompensated bias in one of the two horizontally aligned gyroscopes, in

full IMU mechanization, introduces error in velocity proportional to t2, and er-

ror in position proportional to t3 [38]. To overcome the error due to horizontal

gyroscope biases, the pitch and roll angles will be obtained by combining mea-

surements from the horizontal accelerometers and the encoder.

The mechanization of 3D RISS system is depicted in Figure 8, to obtain a navi-

gation solution of 3D position, 3D velocity and 3D attitude.
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Figure 8: A block diagram of RISS mechanization.

3.6.1. Position and velocity.

As mentioned before, the velocity in 3D RISS is provided directly from the

wheel encoder measurements, V b. Then, the velocity in n-frame can be calculated as

V n =


V N

V E

V D

=Cn
bV b (42)

Then, the position can be calculated by solving the following deferential equa-

tion:

Ṗe =Ce
nV n (43)

3.6.2. Attitude.

3.6.2.1. Roll and pitch calculation. The forward accelerometer measure the

specific force, which includes the forward acceleration of the robot as well as the gravity

component in forward direction. Based on that, the pitch angle at time k is calculated

41



by removing gravity effect as follows.

θk = sin−1

[
Fb

x,k−ab
x,k

gk

]
(44)

where ab
x,k is calculated by differentiating encoder’s velocity, V b

x,k.

In similar way, to calculate the roll angle, the normal component of robot’s

acceleration must be subtracted from the lateral accelerometer measurements, then roll

angle is given as

φk =−sin−1

[
Fb

y,k +V b
x,k ωb

z,k

g cos(θk)

]
(45)

3.6.2.2. Yaw calculation. The first step to calculate the yaw angle, which is the

deviation of the robot’s forward (xb) axis from the north, measured clockwise in the E-N

plane, is by finding U l
k|k−1. Where Ub

k|k is the unit vector along the forward direction of

the robot at time k observed from the body frame at time k, Ub
k|k =

[
1 0 0

]T
. Ub

k|k−1

is the unit vector along the forward direction of the robot at time k, observed from the

body frame at time k−1. The relation between the two previous mentioned unit vectors

is given as

Ub
k|k = Rzb(γ

z
k) Ub

k|k−1 (46)

where γk represents the angle of clockwise rotation around the vertical downward axis

of the body frame of the robot, in time interval ∆t between time epochs k−1 and k,

γ
z
k = ω

z
k ∆t (47)

Due to the fact, Rzb

(
γ

z
k

)
is an orthogonal rotation matrix, Ub

k|k−1 is given as

Ub
k|k−1 =

(
Rzb

(
γ

z
k

))T Ub
k|k =


cos
(
γ

z
k

)
sin
(
γ

z
k

)
0

−sin
(
γ

z
k

)
cos
(
γ

z
k

)
0

0 0 1


T 

1

0

0

=


cos
(
γ

z
k

)
sin
(
γ

z
k

)
0

 (48)
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Then, the unit vector along the forward direction of the vehicle at time k seen

from the navigation frame at time k−1 is given as

Un
k|k−1 =


UN

UE

UD

= Rn
b,k−1Ub

k|k−1 (49)

Finally, by adding the yaw’s component due to the rotations performed by the

robot due to the angle γ
z
k , which is equal tan−1

(
UN

UE

)
, to other two components, due to

the Earths rotation and the change of orientation of the navigation frame, the resultant

of the yaw angle is defined as

ψk = tan−1
(

UE

UN

)
+ωe sin(Φk−1)∆t +

V E
k−1 tan(Φk−1)

RN +hk−1
∆t (50)

3.6.3. Summary.

The 3D RISS mechanization equations can be summarized in discrete form as

follows.



Pe
k

V n
k

φk

θk

ψk


=



Pe
k−1 +Ce

n,kV
n
k

V n
k−1 +Cn

b,kV
b
k

−sin−1
[

Fb
y,k+V b

x,kωb
z,k

g cos(θk)

]
sin−1

[
Fb

x,k−ab
x,k

g

]
tan−1

(
UE

k
UN

k

)
+ωe sin(Φk−1)∆t +

V E
k−1 tan(Φk−1)

RN+hk−1
∆t


(51)

where the inputs are encoder velocity, V b
x,k, the sensed accelerations in forward direction,

Fb
x , and lateral direction, Fb

y , of the robot, and rotation rates, ωb
ib,z, from the vertical

gyroscope. The outputs are the position vector, Pe, the velocity vector, V n, and the

attitude represented by (roll(φ ),pitch(θ ),yaw(ψ)) angles.
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Chapter 4: Integration of INS with Aided Systems

The positioning solution obtained by INS tends to drift with time due to the

integration, which can lead to unbounded accumulation of errors. Inertial navigation

alone, especially with low cost sensors, is not suitable for accurate positioning over a

long period of time, making it inapplicable to depend on them. This makes it necessary

to fuse INS with aided systems such as GPS, Encoder, Camera, LIDAR and Sonars. The

aiding systems are needed in order to limit the errors and predict their behavior. The

error models are required for the analysis and estimation of the error sources that are

associated with any inertial navigation system. The estimator options include Kalman

filters (KF) [2–6], particle filters (PF) [4,7,8], and artificial intelligence (AI) techniques

[6,9,10]. Traditionally various forms of KF are used for sensor fusion, therefore, in this

study, we will restrict ourselves to extended Kalman filter (EKF) technique.

4.1. Error Equation

The INS accuracy is affected by various sources. These include errors during

the initial alignment procedure, sensor errors, and the limitations of the processing algo-

rithm. To see the effect of these errors on the navigational output parameters (position,

velocity and attitude), it is important to understand their propagation through the nav-

igation equations. Once the nature of the errors is known, one can mitigate them by

proper modeling and estimation techniques. Mechanization equations describe phys-

ical process by a deterministic dynamic system. Navigation parameters can be deter-

mined using these state equations by taking kinematic measurements along a nominal

trajectory. Since the solution of these equations incorporate errors (both deterministic

and stochastic), sensor error models are required for analysis and estimation purposes.

The errors of dynamic systems are variable in time, therefore, they are described by

differential equations.

4.1.1. INS error equation in e-frame.

As explained in [39, 40], the computed Direct Cosine Matrix, Cē
b, note that ē
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denotes the computed e-frame, is represented as:

Cē
b =Cē

eCe
b (52)

where Cē
e is the error in the computation of Ce

b. If the error is assumed to be small,

Cē
e = (I−2 [δqe]×) (53)

where the quaternion δqe describes the attitude between E and Ē frame:

δqe =


δq1

δq2

δq3

 (54)

Therefore

Cē
b = (I−2 [δqe]×)Ce

b (55)

Let

P̄e = Pe +δPe (56)

V̄ e =V e +δV e (57)

b̄b
a = bb

a +δbb
a (58)

b̄b
g = bb

g +δbb
g (59)

where ’−’ denotes the computed value of each variable and it is assumed that the quan-

tities δPe, δV e, δbb
a and δbb

g are very small. Substituting Equation (56) into Equa-

tion (12), Equation (57) into Equation (6), with assuming

˙̄bb
a = 03×1 (60)

˙̄bb
g = 03×1 (61)
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yield after neglecting higher order terms the following error equations:

δ Ṗe = δV e (62)

δV̇ e = (5Ḡe−Ω
2)δPe−2ΩδV e−2

[
Cē

bF̄b
]×

δqe +Cē
bδbb

a +Cē
bwa (63)

δ q̇e =−Ωδq+
1
2

Cē
bδbb

g +
1
2

Cē
bwg (64)

δ ḃb
a = wba (65)

δ ḃb
a = wbg (66)

where gravity tensor is given as

OḠe =


∂gx
∂xe

∂gx
∂ye

∂gx
∂ ze

∂gy
∂xe

∂gy
∂ye

∂yx
∂ ze

∂gz
∂xe

∂gz
∂ye

∂gz
∂ ze

 (67)

If the second zonal harmonic term in the gravitational force is neglected, then

∂gx

∂xe
=− µ

R̄3 [1−3(
x̄e

R̄
)2] (68)

∂gy

∂ye
=− µ

R̄3 [1−3(
ȳe

R̄
)2] (69)

∂gz

∂ ze
=− µ

R̄3 [1−3(
z̄e

R̄
)2] (70)

∂gx

∂ye
=−3

µ

R̄3 (
x̄eȳe

R̄
) (71)

∂gx

∂ ze
=−3

µ

R̄3 (
x̄ez̄e

R̄
) (72)

∂gx

∂ ze
=−3

µ

R̄3 (
ȳez̄e

R̄
) (73)
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∂gy

∂xe
=

∂gx

∂ye
,
∂gz

∂xe
=

∂gx

∂ ze
,
∂gz

∂ye
=

∂gy

∂ ze
(74)

Representing Equations (62)-(66) in state space representation yields:

ẋ = Ax+Bw (75)

which represents error model equation used by Kalman filter:



δ Ṗe

δV̇ e

δ q̇e

δ ḃb
a

δ ḃb
g


=



03×3 I3×3 03×3 03×3 03×3

5Ḡe−Ωe
ie

2 −2Ωe
ie −2[Cē

bF̄b]
× Cē

b 03×3

03×3 03×3 −Ωe
ie 03×3

1
2Cē

b

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3





δPe

δV e

δqe

δbb
a

δbb
g



+



03×3 03×3 03×3 03×3

Cē
b 03×3 03×3 03×3

03×3
1
2Cē

b 03×3 03×3

03×3 03×3 I3×3 03×3

03×3 03×3 03×3 I3×3




wa

wg

wba

wbg

 (76)

4.1.2. INS error equation in n-frame.

In similar way to what is explained in subsection 4.1.1, the error model sate

equation for Kalman filter, derived in n-frame [34]:
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δ Ṗe

δV̇ n

δ q̇n

δ ḃb
a

δ ḃb
g


=



03×3 Cē
n̄ 03×3 03×3 03×3

03×3 03×3 −2[Cn̄
bF̄b]

× Cn̄
b 03×3

03×3 03×3 −Ωn
in 03×3

1
2Cn̄

b

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3





δPe

δV n

δqn

δbb
a

δbb
g



+



03×3 03×3 03×3 03×3

Cn̄
b 03×3 03×3 03×3

03×3
1
2Cn̄

b 03×3 03×3

03×3 03×3 I3×3 03×3

03×3 03×3 03×3 I3×3




wa

wg

wba

wbg

 (77)

4.1.3. INS error equation for RISS.

As explained in [34], the error sate equation for Kalman filter for 3D RISS:
δ Ṗe

δV̇ n

δ ḃr

=


03×3 Cē

n̄ 03×3

03×3 03×3 A1

03×3 03×3 A2




δPe

δV n

δbr

+


03×1

03×1

σr

wr (78)

where

A1 =


−V E V N 0

V N V E 0

0 V D 0

 (79)

A2 =


0 0 −1

0 −γod 0

0 0 −βz

 (80)

br =


bψ

bod

bb
g,z

 (81)
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σr =


0√

2 γod σ2
od√

2 βz σ2
g,z

 (82)

where wr is the unit-variance white Gaussian noise, bψ is the error in the yaw angle, bod

is the error of the encoder-derived speed, and bb
g,z is the stochastic drift in the vertical

gyroscope. The stochastic errors associated with the gyroscope and the encoder-derived

speed are modeled by a Gauss-Markov model, where γod is the reciprocal of the auto-

correlation time for the error in encoder-derived speed, σ2
od is the variance of the noise

associated with γod , βz is the reciprocal of the autocorrelation time for the vertical gy-

roscopes stochastic bias drift, and σ2
g,z is the variance of the noise associated with βz.

4.2. Error Measurement Model

Encoder-derived velocity measurements and pipe length measurements are used

to correct the drift in the navigation state of the robot, which are obtained from INS

mechanization. In addition to encoder-derived velocity, velocity constraints are taken

into consideration to achieve a high-accuracy state estimate. The encoder-derived ve-

locity with zero velocity constraint measurement equation and pipe length measurement

equation are derived in the following subsections.

4.2.1. Encoder velocity measurements with nonholonomic constraints.

As explained in [3], in land vehicles applications, the velocity in the x axis of the

body frame, V b
x , is obtained from the wheel encoder and the velocity in the y and z axes

of the body frame, V b
y and V b

z , are constrained to zero mean with an additive white noise

process, where the fusion of these constraints helps in improving the estimated states.

The velocity obtained from wheel encoder with zero velocity constraints measurement

equation is represented as

zencoder
vb

(k) =


vx

b

0

0

=Cb
eV e +


ηx

ηy

ηz

 (83)
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where
[
ηx ηy ηz

]T
is the encoders velocity constraint measurement noise. The INS

derived velocity in the body frame is defined as

zINS
vb

(k) = V̄ b
k =Cb

ē V̄ e (84)

As explained in subsection 4.1.1, the nominal states are related to the true states

as

Cb
e = Cb

ēCē
e =Cē

b
(
I−2 [δqe]×

)
(85)

V e = V̄ e−δV e (86)

by substituting Equation (85) and Equation (86) in Equation (83), we get

zencoder
vb

(k) =Cb
ē
(
I−2 [δqe]×

)
(V̄ e−δV e)+


ηx

ηy

ηz

 (87)

Expanding the terms in the above equation:

zencoder
vb

(k) =Cb
ēV̄ e−Cb

ē δV e−2Cb
ē [δqe]× V̄ e +2Cb

ē [δqe]× δV e +


ηx

ηy

ηz

 (88)

With assuming, the term 2Cb
ē [δqe]× δV e is negligible to first order, and defining

2Cb
ē [δqe]× V̄ e =−2Cb

ē [V̄ e]
×

δqe (89)

Equation (88) can be given as

zencoder
vb

(k) =Cb
ēV̄ e−Cb

ē δV e +2Cb
ē [V̄ e]

×
δqe +


ηx

ηy

ηz

 (90)
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By subtracting Equation (90 )from Equation (84), the velocity constraint measurement

error is defined as

zvb(k) = zINS
vb

(k)− zencoder
vb

(k) =Cb
ē δV e−2Cb

ē [V̄ e]
×

δqe +


ηx

ηy

ηz

 (91)

The covariance of the velocity constraint measurement error is given as:

Rvb =


σvxb

0 0

0 σvyb
0

0 0 σvzb

 (92)

4.2.2. Pipe length detection measurements.

In the field, the pipeline is composed of standard pieces, which have known

length for each and they are usually connected to each other by welding. By detecting

the welding line between each two pieces, we can define the beginning and the end for

each piece, which has known length. This length measurements can be used to correct

the drift in the navigation state obtained by INS mechanization process as explained

below.

Let the pipe piece, j, has a known length, l j, between edge detection measure-

ment, j−1, and measurement, j, then the pipe length detection measurement equation

is defined as

zL
pb
( j) = Lb

j =


l j

0

0

=Cb
e Le

j +


µx

µy

µz

 (93)
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where
[
µx µy µz

]T
is the detected pipe length measurement noise. The INS derived

pipe length measurement in the body frame is defined as

zINS
pb

( j) = L̄b
j =


∥∥P̄e( j)− P̂e( j−1)

∥∥
0

0

=Cb
ē L̄e

j (94)

In the same way as explained in subsection 4.2.1, the detected pipe length mea-

surement error is defined as

zpb( j) = zINS
pb

(n)− zL
pb
( j) =Cb

ē, j δLe
j−2Cb

ē, j
[
L̄e

j
]×

δqe +


µx

µy

µz

 (95)

It can be shown that, δLe
j represents δPe

j and L̄e
j represents P̄e

j −P̂e
j−1, then Equation (95)

becomes

zpb( j) = zINS
pb

( j)− zL
pb
( j) =Cb

ē, j δPe
j −2Cb

ē, j
[
P̄e

j − P̂e
j−1
]×

δqe +


µx

µy

µz

 (96)

where Cb
ē, j is assumed to be constant for the whole straight pipe piece. This assump-

tion is reasonable because the pipeline is mainly composed from straight pieces. The

covariance of the velocity constraint measurement error is given as:

Rpb =


σpxb

0 0

0 σpyb
0

0 0 σpzb

 (97)

4.2.3. Summary.

In subsection 4.2.1 and subsection 4.2.2, based in the deference between the en-

coders velocity with constraints measurement and the INS derived velocity, and the def-

erence between the detected pipe length measurement and the INS derived pipe length
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measurement, the error measurement equations are derived for e-frame. The error mea-

surement equations can be represented by matrix form as

z(k) = Hx(k)+ v(k) (98)

where H(k) is observation matrix, and v(k) is the vector of error measurements white

noise, its cov[v(k)] is defined as

cov[v(k)] = R(k) (99)

If only the encoders velocity with constraints measurement is available, then Equa-

tion (98) can be written as

z(k) = zINS
vb

(k)− zencoder
vb

(k) =
[
03×3 Cb

ē 2Cb
ē [V̄

e]
× 03×3 03×3

]
x(k)+ v(k) (100)

where cov[v(k)] =Rvb =R(k). In case of both measurements, the encoders velocity with

constraints and the detected pipe length, are available, Equation (98) can be written as

z(k) =

 zINS
pb

( j)− zL
pb
( j)

zINS
vb

(k)− zencoder
vb

(k)


=

Cb
ē, j 03×3 2Cb

ē, j

[
P̄e

j − P̂e
j−1

]×
03×3 03×3

03×3 Cb
ē,k 2Cb

ē,k [V̄
e]
× 03×3 03×3

x(k)+ v(k) (101)

where cov[v(k)] is defined as

cov[v(k)] =

 Rpb 03×3

03×3 Rvb

= R(k) (102)

Similarly, in the case of implementing INS mechanization in n-frame, the error

measurement equation, when only the encoders velocity is available, is defined as
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z(k) = zINS
vb

(k)− zencoder
vb

(k) =
[
03×3 Cb

n̄,k 2Cb
n̄,k [V̄

n]
× 03×3 03×3

]
x(k)+ v(k)

(103)

and the error measurement equation, when both measurements are available, is

defined as

z(k) =

 zINS
pb

( j)− zL
pb
( j)

zINS
vb

(k)− zencoder
vb

(k)


=

Cb
ē, j 03×3 2Cb

ē, j

[
P̄e

j − P̂e
j−1

]×
03×3 03×3

03×3 Cb
n̄,k 2Cb

n̄,k [V̄
n]
× 03×3 03×3

x(k)+ v(k) (104)

where cov[v(k)] is defined by Equation (102).

In the case of implementing RISS mechanization, encoder-derived velocity mea-

surements are utilized in the mechanization process to get the navigation state. The only

available measurement used to correct the drift in the navigation state of the robot, is

the detected pipe length measurement. If this measurement is available, then the error

measurement equation is defined as

z( j) = zINS
pb

( j)− zL
pb
( j) =

[
Cb

ē, j 03×3 03×3

]
x( j)+ v( j) (105)

where cov[v( j)] = Rpb = R( j).

4.3. INS Kalman Filter based Integration

4.3.1. Discrete-time extended Kalman filter.

The extended Kalman filter (EKF), the nonlinear version of the Kalman filter

which linearizes about the propagated state estimate x̂(k|k− 1), is used to obtain an

updated estimate of the error [41]. EKF corresponds to the closed-loop filter config-

uration in which the estimated errors are fed back to the inertial system to correct its
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output as shown in Figure 9, so the INS errors remain small and the linearity assump-

tion required for the KF technique is supported. The discretized dynamic equation of

Figure 9: Block diagram of an EKF

the system’s error is given as:

x(k) = Fx(k−1)+Γw(k−1) (106)

where w(k−1) is a dynamics noise, assumed as a Gaussian white noise. In the case of

dealing with e-frame and n-frame the covariance of w(k) is defined as

cov[w(k−1)] = Q =


I3×3 ∗σa

2 03×3 03×3 03×3

03×3 I3×3 ∗σg
2 03×3 03×3

03×3 03×3 I3×3 ∗σa
b

2 03×3

03×3 03×3 03×3 I3×3 ∗σ
g
b

2

 (107)

where for the case of dealing with RISS the variance of wr(k) is defined as

var[wr(k−1)] = Q = 1 (108)

The F is transition matrix, where F = I +A∆t. The Γ is the noise distribution ma-

trix, where Γ = B∆t. The discretized error measurement equation is defined by Equa-

tion (98).
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The implementation of Kalman filter is illustrated in Figure 10, with the ini-

tialization assumptions that x(0 | 0) and P(0 | 0) are known. In this study, x̂(k | k− 1)

will always equal zero because the navigation states after each epoch is updated, as

explained in the next section.

Figure 10: Flowchart of the KF.
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4.3.2. State update.

From Kalman filter, we get posteriori estimate of the error states, δ P̂e, δV̂ e, δ q̂e,

δ b̂b
a, and δ b̂b

g. In the case of doing a full IMU mechanization in e-frame, the navigation

state variables are updated with these estimated errors as follows.

P̂e = P̄e−δ P̂e (109)

V̂ e = V̄ e−δV̂ e (110)

q̂e = δ q̂e⊗ q̄e (111)

b̂b
a = b̄b

a−δ b̂b
a (112)

b̂b
g = b̄b

g−δ b̂b
g (113)

where ⊗ is the quaternion conjugate and the quaternion multiplication operator

δ q̂e⊗ q̄e =


q̄o −q̄1 −q̄2 −q̄3

q̄1 q̄o q̄3 −q̄2

q̄2 −q̄3 q̄o q̄1

q̄3 q̄2 −q̄1 q̄o




1

δ q̂1

δ q̂2

δ q̂3

 (114)

after updating q̂e, it should be normalized. In the case of doing a full IMU mecha-

nization in n-frame, the navigation state variables are updated in similar way to what

explained before. Also, for the case of doing RISS, the navigation state variables are

updated in similar way to what explained before, but for updating the sensor’s bias, b̂r

is updated as

b̂r = b̄r−δ b̂r (115)
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Chapter 5: Experimental Work

5.1. Pre-Experimental Results: Car Test

Because the building of the experimental setup was still in progress and for val-

idation, the proposed algorithm is implemented and tested using a vehicle driving on

a path around the university campus , with an IMU and a GPS antenna. In this test, a

loosely coupled INS/GPS integration is used. The position and velocity estimated by

GPS receiver are directly used to correct the INS errors. The results of the proposed so-

lution is validated against a commercial off-the shelf (COTS) MIDG solution. Sensors

used are described in the following subsection.

5.1.1. Sensors used.

MIDG IIC.

The MIDG IIC is an aided inertial navigation system (INS) for use in applications

requiring attitude, position, velocity, acceleration, and angular rates for naviga-

tion or control [42]. An internal GPS receiver measures position and velocity

and passes this information to the data fusion processor to be combined with the

inertial data to generate an optimal solution. An internal three-axis magnetome-

ter provides a magnetic heading reference when needed. The frequency at which

readings can be obtained range from 1 to 50 Hz. In this experiment, the sensor is

used at 50 Hz. The specifications of the MIDG unit are shown in Figure 11.

GPS Antenna.

A GPS antenna is used to provide us with the position and velocity of the vehicle

in ECEF frame at 5 Hz. The GPS works properly when at least four of 24 satellites

orbiting the Earth are in the line of sight of the receiver antenna. GPS readings

are fused with those obtained from IMU to correct the estimate of our solution as

GPS usually gives more accurate readings than IMU but is updated at a slower

rate.
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Figure 11: MIDG II unit [42].

Figure 12: MIDG specifications [42].

Figure 13: GPS antenna.
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5.1.2. Results.

INS mechanization in e-frame without sensor fusion.

As shown in Figure 14, without fusion of INS with any other systems like GPS,

our solution will diverge .

Figure 14: Mechanization of INS in e-frame without sensor fusion.

INS/GPS fusion based on EKF, in e-frame.

The performance of the proposed navigation algorithm is shown in Figures 15-

17. The solution of proposed algorithm is achieved by integrating INS with GPS

based on EKF in e frame, where the measurements equation is as follows.

z(k) =

zINS
p (k)− zGPS

p (k)

zINS
v (k)− zGPS

v (k)


= Hx(k)+ v(k) (116)
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and H is defined as follows.

H =

I 0 0 0 0

0 I 0 0 0

 (117)

Figure 16 and Figure 17 show the position and velocity error normal distribution,

where the error is defined as the error between the proposed solution and the

MIDG solution.

Figure 15: Path estimate of the Vehicle, with using INS/GPS fusion based on EKF in
e-frame.

Figure 16: Position error distribution for INS/GPS fusion in e-frame.
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Figure 17: Velocity error distribution for INS/GPS fusion in e-frame.

INS/GPS fusion based on EKF, in n-frame.

The performance of the proposed navigation algorithm, integrating INS with GPS

based on EKF in n frame, is shown in Figures 18-20. The results for n-frame is

very similar to the previous results.

Figure 18: Path estimate of the Vehicle, with using INS/GPS fusion based on EKF in
n-frame.
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Figure 19: Position error distribution for INS/GPS fusion in n-frame.

Figure 20: Velocity error distribution for INS/GPS fusion in n-frame.

5.2. Experimental Setup

The designing and building process of the experimental setup is done in col-

laboration with undergraduate group of students, who are investigating the problem of

detecting cracks and leakage in the pipe, as a senior design project. More details about

the experimental setup are demonstrated in the following subsections.

5.2.1. Pipe line design.

A transparent acrylic pipe, with 7.75” diameter and 4 m length , has been as-

sembled as shown in Figure 21. Different shapes of the the pipe have been used to

validate our algorithms.
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(a) Straight pipe without elbow. (b) Straight pipe with one elbow.

(c) Straight pipe with two elbows.

Figure 21: Different used pipe shapes in the experimental work.
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5.2.2. Robot model design.

The main components for the in-pipe robot prototype, shown in Figure 22, are:

1. Arduino Due

2. MIDG

3. GPS Antenna

4. Light Sensor

5. Quadrature Encoders

6. Brushless Outrunner Motor

7. Propeller

8. Radio Remote Control (Futaba 8JH 2.4GHZ)

In the experimental test, Arduino due reads the data coming from the sensors

and stores it in the SD card. The motor with the propeller drive the robot through

the pipe and it is controlled by electronic speed controller which is connected to radio

receiver linked with radio remote control.
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(a) Top view.

(b) Back view.

Figure 22: In-pipe robot prototype.

5.3. Experimental Results

The first step in the experimental procedure is to bring out the setup outside to

an open area because we need the GPS signal to get the initial position, velocity, and

attitude. Inside the pipe, we are using the encoder’s velocity and the detected pipe length

as measurements to correct the INS solution. For detected pipe length measurement, we

are using the light sensor to detect the rings shown in Figure 21 and the elbows’ outlets

and inlets. The distance between each of the all detected features is known and it is

used to correct the INS solution. For validation purposes, we are simulating the crack

by using a small piece of dark cloth fixed on the top of the pipe to show how our

proposed algorithms are accurate in the localization of the detected cracks.
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For comparison purposes, the proposed algorithms were applied for two differ-

ent scenarios. In the first scenario, only the encoder measurement was used to correct

the INS solution and there was no measurement used to correct the RISS solution. In

the second scenario, the encoder’s velocity measurement and the detected pipe length

measurement were used to correct the INS solution and only the detected pipe length

measurement was used to correct the RISS solution.

5.3.1. First scenario.

5.3.1.1. Experimental results for straight pipe without elbows.

The performance of the proposed navigation algorithms for straight pipe without

elbow, for first scenario, is presented in Figures 23-25 and Tables 1-3. The performance

of the three algorithms is very similar and the average absolute error is around ±4 cm

for all.

INS integration in e-frame.

Figure 23: Path estimate of the robot for straight pipe without elbow, derived in e-frame,
first scenario.
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Table 1: Real length vs. measured length for each part of the pipe without elbow,
derived in e-frame, first scenario.

True Length Measured Length Abs. Error

Start edge to edge1 0.82 m 0.86 m 3.98 cm

Edge1 to Edge2 0.86 m 0.901 m 4.1 cm

Edge2 to Edge3 1.09 m 1.116 m 2.6 cm

Edge3 to End Edge 0.24 m 0.242 m 0.19 cm

Start to Crack 1.5 m 1.577 m 7.75 cm

Average Abs. Error 3.73 cm

INS integration in n-frame.

Figure 24: Path estimate of the robot for straight pipe without elbow, derived in n-frame,
first scenario.
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Table 2: Real length vs. measured length for each part of the pipe without elbow,
derived in n-frame, first scenario.

True Length Measured Length Abs. Error

Start Edge to Edge1 0.82 m 0.859 m 3.93 cm

Edge1 to Edge2 0.86 m 0.901 m 4.09 cm

Edge2 to Edge3 1.09 m 1.116 m 2.6 cm

Edge3 to End Edge 0.24 m 0.242 m 0.17 cm

Start to Crack 1.5 m 1.577 m 7.69 cm

Average Abs. Error 3.70 cm

INS integration for RISS.

Figure 25: Path estimate of the robot for straight pipe without elbow, given by RISS
method, first scenario.
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Table 3: Real length vs. measured length for each part of the pipe without elbow, given
by RISS method, first scenario.

True Length Measured Length Abs. Error

Start Edge to Edge1 0.82 m 0.864 m 4.35 cm

Edge1 to Edge2 0.86 m 0.878 m 3.78 cm

Edge2 to Edge3 1.09 m 1.119 m 2.95 cm

Edge3 to End Edge 0.24 m 0.243 m 0.342 cm

Start to Crack 1.5 m 1.579 m 7.90 cm

Average Abs. Error 3.87 cm

5.3.1.2. Experimental results for straight pipe with one elbow.

The performance of the proposed navigation algorithms for straight pipe with

one elbow, for first scenario, is presented in Figures 26-28 and Tables 4-6. The perfor-

mance of the three algorithms is very similar and the average absolute error is around

±7 cm for all.

INS Integration in e-frame.

Figure 26: Path estimate of the robot for straight pipe with one elbow, derived in e-
frame, first scenario.
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Table 4: Real length vs. measured length for each part of the pipe with one elbow,
derived in e-frame, first scenario.

True Length Measured Length Abs. Error

Start Edge to Edge1 0.24 m 0.252 m 1.17 cm

Edge1 to Edge2 1.09 m 1.17 m 8.04 cm

Edge2 to Edge3 0.86 m 0.973 m 11.29 cm

Edge3 to Elbow Entrance 0.78 m 0.88 m 9.95 cm

Elbow Exit to Edge4 0.47 m 0.436 m 3.41 cm

Edge4 to End Edge 0.475 m 0.507 m 3.21 cm

Start Edge to Crack 1.5 m 1.630 m 12.98 cm

Average Abs. Error 7.15 cm

INS integration in n-frame.

Figure 27: Path estimate of the robot for straight pipe with one elbow, derived in n-
frame, first scenario.
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Table 5: Real length vs. measured length for each part of the pipe with one elbow,
derived in n-frame, first scenario.

True Length Measured Length Abs. Error

Start Edge to Edge1 0.24 m 0.252 m 1.17 cm

Edge1 to Edge2 1.09 m 1.17 m 7.99 cm

Edge2 to Edge3 0.86 m 0.972 m 11.23 cm

Edge3 to Elbow Entrance 0.78 m 0.88 m 9.92 cm

Elbow Exit to Edge4 0.47 m 0.435 m 3.47 cm

Edge4 to End Edge 0.475 m 0.506 m 3.11 cm

Start Edge to Crack 1.5 m 1.63 m 12.92 cm

Average Abs. Error 7.12 cm

INS Integration for RISS.

Figure 28: Path estimate of the robot for straight pipe with one elbow, given by RISS
method, first scenario.
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Table 6: Real length vs. measured length for each part of the pipe with one elbow, given
by RISS method, first scenario.

True Length Measured Length Abs. Error

Start Edge to Edge1 0.24 m 0.251 m 1.11 cm

Edge1 to Edge2 1.09 m 1.171 m 8.12 cm

Edge2 to Edge3 0.86 m 0.969 m 10.86 cm

Edge3 to Elbow Entrance 0.78 m 0.828 m 4.84 cm

Elbow Exit to Edge4 0.47 m 0.44 m 2.96 cm

Edge4 to End Edge 0.475 m 0.539 m 6.42 cm

Start Edge to Crack 1.5 m 1.681 m 18.10 cm

Average Abs. Error 7.48 cm

5.3.1.3. Experimental results for straight pipe with two elbows.

The performance of the proposed navigation algorithms for straight pipe with

two elbows is presented in Figures 29-31 and Tables 7-9. This performance is consistent

with previous discussed results and the average absolute error is around ±9 cm for all.

INS integration in e-frame.

Table 7: Real length vs. measured length for each part of the pipe with two elbows,
derived in e-frame, first scenario.

True Length Measured Length Abs. Error

Start Edge to Edge1 0.82 m 1.031 m 21.14 cm

Edge1 to Edge2 0.86 m 0.828 m 3.20 cm

Edge2 to Elbow Entrance 0.24 m 0.177 m 6.33 cm

Elbow Exit to Edge3 0.44 m 0.523 m 8.30 cm

Edge3 to Elbow Entrance 0.445 m 0.387 m 5.77 cm

Elbow Exit to Edge4 0.45 m 0.436 m 1.36 cm

Edge4 to End Edge 0.5 m 0.551 m 5.06 cm

Start Edge to Crack 1.5 m 1.684 m 18.36 cm

Average Abs. Error 8.69 cm
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Figure 29: Path estimate of the robot for straight pipe with two elbows, derived in
e-frame, first scenario.

INS integration in n-frame.

Figure 30: Path estimate of the robot for straight pipe with two elbows, derived in
n-frame, first scenario.
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Table 8: Real length vs. measured length for each part of the pipe with two elbows,
derived in n-frame, first scenario.

True Length Measured Length Abs. Error

Start Edge to Edge1 0.82 m 1.031 m 21.15 cm

Edge1 to Edge2 0.86 m 0.828 m 3.21 cm

Edge2 to Elbow Entrance 0.24 m 0.177 m 6.34 cm

Elbow Exit to Edge3 0.44 m 0.523 m 8.29 cm

Edge3 to Elbow Entrance 0.445 m 0.388 m 5.74 cm

Elbow Exit to Edge4 0.45 m 0.436 m 1.40 cm

Edge4 to End Edge 0.5 m 0.549 m 4.85 cm

Start Edge to Crack 1.5 m 1.684 m 18.36 cm

Average Abs. Error 8.67 cm

INS integration for RISS.

Figure 31: Path estimate of the robot for straight pipe with two elbows, given by RISS
method, first scenario.
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Table 9: Real length vs. measured length for each part of the pipe with two elbows,
given by RISS method, first scenario.

True Length Measured Length Abs. Error

Start Edge to Edge1 0.82 m 1.033 m 21.26 cm

Edge1 to Edge2 0.86 m 0.828 m 3.18 cm

Edge2 to Elbow Entrance 0.24 m 0.176 m 5.43 cm

Elbow Exit to Edge3 0.44 m 0.522 m 8.17 cm

Edge3 to Elbow Entrance 0.445 m 0.414 m 3.06 cm

Elbow Exit to Edge4 0.45 m 0.483 m 3.26 cm

Edge4 to End Edge 0.5 m 0.408 m 9.17 cm

Start Edge to Crack 1.5 m 1.684 m 18.39 cm

Average Abs. Error 8.99 cm

5.3.2. Second scenario.

5.3.2.1. Experimental results for straight pipe without elbows.

The performance of the proposed navigation algorithms for straight pipe with-

out elbow, for second scenario, is presented in Figures 32-34 and Tables 10-12. The

performance of the three algorithms is very similar and the average absolute error is

around ±2 cm for all.

INS integration in e-frame.

Table 10: Real length vs. measured length for each part of the pipe without elbows,
derived in e-frame, second scenario.

True Length Measured Length Abs. Error

Start edge to edge1 0.82 m 0.82 m 0.04 cm

Edge1 to Edge2 0.86 m 0.879 m 1.94 cm

Edge2 to Edge3 1.09 m 1.105 m 1.52 cm

Edge3 to End Edge 0.24 m 0.243 m 0.26 cm

Start to Crack 1.5 m 1.541 m 4.06 cm

Average Abs. Error 1.57 cm
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Figure 32: Path estimate of the robot for straight pipe without elbows, derived in e-
frame, second scenario.

INS integration in n-frame.

Figure 33: Path estimate of the robot for straight pipe without elbows, derived in n-
frame, second scenario.

77



Table 11: Real length vs. measured length for each part of the pipe without elbows,
derived in n-frame, second scenario.

True Length Measured Length Abs. Error

Start Edge to Edge1 0.82 m 0.82 m 0.04 cm

Edge1 to Edge2 0.86 m 0.879 m 1.93 cm

Edge2 to Edge3 1.09 m 1.105 m 1.52 cm

Edge3 to End Edge 0.24 m 0.242 m 0.25 cm

Start to Crack 1.5 m 1.541 m 4.05 cm

Average Abs. Error 1.56 cm

INS integration for RISS.

Figure 34: Path estimate of the robot for straight pipe without elbows, given by RISS
method, second scenario.
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Table 12: Real length vs. measured length for each part of the pipe without elbows,
given by RISS method, second scenario.

True Length Measured Length Abs. Error

Start Edge to Edge1 0.82 m 0.82 m 0.04 cm

Edge1 to Edge2 0.86 m 0.879 m 1.89 cm

Edge2 to Edge3 1.09 m 1.109 m 1.93 cm

Edge3 to End Edge 0.24 m 0.242 m 0.23 cm

Start to Crack 1.5 m 1.536 m 3.59 cm

Average Abs. Error 1.54 cm

5.3.2.2. Experimental results for straight pipe with one elbow.

The performance of the proposed navigation algorithms for straight pipe with

one elbow, for second scenario, is presented in Figures 35-37 and Tables 13-15. This

performance is consistent with previous discussed results.

INS integration in e-frame.

Figure 35: Path estimate of the robot for straight pipe with one elbow, derived in e-
frame, second scenario.
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Table 13: Real length vs. measured length for each part of the pipe with one elbow,
derived in e-frame, second scenario.

True Length Measured Length Abs. Error

Start Edge to Edge1 0.24 m 0.24 m 0.001 cm

Edge1 to Edge2 1.09 m 1.119 m 2.87 cm

Edge2 to Edge3 0.86 m 0.884 m 2.42 cm

Edge3 to Elbow Entrance 0.78 m 0.796 m 1.64 cm

Elbow Exit to Edge4 0.47 m 0.451 m 1.86 cm

Edge4 to End Edge 0.475 m 0.479 m 0.434 cm

Start Edge to Crack 1.5 m 1.569 m 6.89 cm

Average Abs. Error 2.30 cm

INS integration in n-frame.

Figure 36: Path estimate of the robot for straight pipe with one elbow, derived in n-
frame, second scenario.
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Table 14: Real length vs. measured length for each part of the pipe with one elbow,
derived in n-frame, second scenario.

True Length Measured Length Abs. Error

Start Edge to Edge1 0.24 m 0.24 m 0.001 cm

Edge1 to Edge2 1.09 m 1.119 m 2.87 cm

Edge2 to Edge3 0.86 m 0.884 m 2.43 cm

Edge3 to Elbow Entrance 0.78 m 0.796 m 1.63 cm

Elbow Exit to Edge4 0.47 m 0.465 m 0.45 cm

Edge4 to End Edge 0.475 m 0.486 m 1.08 cm

Start Edge to Crack 1.5 m 1.569 m 6.91 cm

Average Abs. Error 2.20 cm

INS integration for RISS.

Figure 37: Path estimate of the robot for straight pipe with one elbow, given by RISS
method, second scenario.
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Table 15: Real length vs. measured length for each part of the pipe with one elbow,
given by RISS method, second scenario.

True Length Measured Length Abs. Error

Start Edge to Edge1 0.24 m 0.24 m 0.00 cm

Edge1 to Edge2 1.09 m 1.092 m 0.22 cm

Edge2 to Edge3 0.86 m 0.876 m 1.61 cm

Edge3 to Elbow Entrance 0.78 m 0.799 m 1.87 cm

Elbow Exit to Edge4 0.47 m 0.463 m 0.70 cm

Edge4 to End Edge 0.475 m 0.519 m 4.4 cm

Start Edge to Crack 1.5 m 1.554 m 5.4 cm

Average Abs. Error 2.03 cm

5.3.2.3. Experimental results for straight pipe with two elbows.

The performance of the proposed navigation algorithms for straight pipe with

two elbows, for second scenario, is presented in Figures 38-40 and Tables 16-18. This

performance is consistent with previous discussed results.

INS Integration in e-frame.

Table 16: Real length vs. measured length for each part of the pipe with two elbows,
derived in e-frame, second scenario.

True Length Measured Length Abs. Error

Start Edge to Edge1 0.82 m 0.82 m 0.026 cm

Edge1 to Edge2 0.86 m 0.889 m 2.94 cm

Edge2 to Elbow Entrance 0.24 m 0.214 m 2.62 cm

Elbow Exit to Edge3 0.44 m 0.448 m 0.754 cm

Edge3 to Elbow Entrance 0.445 m 0.393 m 5.20 cm

Elbow Exit to Edge4 0.45 m 0.454 m 0.35 cm

Edge4 to End Edge 0.5 m 0.536 m 3.55 cm

Start Edge to Crack 1.5 m 1.472 m 2.79 cm

Average Abs. Error 2.28 cm
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Figure 38: Path estimate of the robot for straight pipe with two elbows, derived in
e-frame, second scenario.

INS integration in n-frame.

Figure 39: Path estimate of the robot for straight pipe with two elbows, derived in
n-frame, second scenario.
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Table 17: Real length vs. measured length for each part of the pipe with two elbows,
derived in n-frame, second scenario.

True Length Measured Length Abs. Error

Start Edge to Edge1 0.82 m 0.82 m 0.026 cm

Edge1 to Edge2 0.86 m 0.889 m 2.93 cm

Edge2 to Elbow Entrance 0.24 m 0.214 m 2.63 cm

Elbow Exit to Edge3 0.44 m 0.448 m 0.76 cm

Edge3 to Elbow Entrance 0.445 m 0.394 m 5.11 cm

Elbow Exit to Edge4 0.45 m 0.456 m 0.57 cm

Edge4 to End Edge 0.5 m 0.531 m 3.06 cm

Start Edge to Crack 1.5 m 1.472 m 2.80 cm

Average Abs. Error 2.24 cm

INS integration for RISS.

Figure 40: Path estimate of the robot for straight pipe with two elbows, given by RISS
method, second scenario.
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Table 18: Real length vs. measured length for each part of the pipe with two elbows,
given by RISS method, second scenario.

True Length Measured Length Abs. Error

Start Edge to Edge1 0.82 m 0.82 m 0.026 cm

Edge1 to Edge2 0.86 m 0.879 m 2.93 cm

Edge2 to Elbow Entrance 0.24 m 0.215 m 1.47 cm

Elbow Exit to Edge3 0.44 m 0.48 m 3.98 cm

Edge3 to Elbow Entrance 0.445 m 0.414 m 3.06 cm

Elbow Exit to Edge4 0.45 m 0.483 m 3.26 cm

Edge4 to End Edge 0.5 m 0.466 m 3.36 cm

Start Edge to Crack 1.5 m 1.47 m 2.85 cm

Average Abs. Error 2.49 cm

5.3.3. Summary.

To show the effect of using the detected pipe length measurement to correct the

INS or RISS solution, the average absolute error of the first scenario vs. the average

absolute error of the second scenario, for the three pipe shapes, is shown in Tables 19-

21. By using the detected pipe length measurement in addition to encoder’s velocity to

correct the INS or RISS solution, the absolute error decreased by 50% for straight pipe

without elbows as shown in Table 19, the absolute error decreased by 70% for straight

pipe with one elbow as shown in Table 20, and the absolute error decreased by 75% for

straight pipe with two elbows as shown in Table 21.

Table 19: Average abs. error of the first scenario vs. average abs. error of the second
scenario for straight pipe without elbows.

First Scenario Second Scenario

INS derived in e-frame 3.73 cm 1.57 cm

INS derived in n-frame 3.70 cm 1.56 cm

RISS 3.87 cm 1.54 cm
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Table 20: Average abs. error of the first scenario vs. average abs. error of the second
scenario for straight pipe with one elbow.

First Scenario Second Scenario

INS derived in e-frame 7.15 cm 2.3 cm

INS derived in n-frame 7.12 cm 2.2 cm

RISS 7.48 cm 2.03 cm

Table 21: Average abs. error of the first scenario vs. average abs. error of the second
scenario for straight pipe with two elbows.

First Scenario Second Scenario

INS derived in e-frame 8.69 cm 2.28 cm

INS derived in n-frame 8.67 cm 2.24 cm

RISS 8.99 cm 2.49 cm
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Chapter 6: Conclusion and Future Work

6.1. Summary and Conclusion

Three navigation algorithms based on extended Kalman filter, to fuse INS with

two proposed aided systems, have been investigated and implemented successfully for

in-pipe inspection robot and the accuracy of the proposed algorithms was around±3 cm

after sensor fusion. The kinematics equations and the error model state equation have

been derived in e-frame in the first algorithm and derived in n-frame in the second

algorithm. Instead of using the measurements from the three accelerometers and the

three gyroscopes in the IMU in the former two algorithms, 3D RISS uses measurements

from the vertically aligned gyroscope and the two horizontal accelerometers with speed

readings provided by wheel encoder, to implement the mechanization process.

Because the building and designing of the in-pipe robot prototype was still in

progress, an experimental test has been conducted to verify the performance of the pro-

posed algorithms by driving a car around the campus with applying extended Kalman

filter to fuse INS with GPS.

Due to the blockage of the GPS signal inside the pipe, so it can not be used

in our application. Detection of the edges between each two pieces of the pipe and

encoder-derived velocity with zero velocity constraint are used to correct the drift in the

navigation state of the robot obtained from the INS mechanization.

The sensor fusion is based EKF, which corresponds to a closed-loop filter con-

figuration. The 15 estimated error states, by regular Kalman filter based on the error

between the INS and the aided systems measurements, are fed back to the inertial sys-

tem to correct its output, so the INS errors remain small, and the linearity assumption

required for the KF technique is supported. In the first two algorithms, the 15 estimated

error states are the position error in x, y and z-axes, velocity error in x, y and z-axes,

quaternions error in x, y and z-axes, accelerometers bias drift in x, y and z-axes, and

finally, rate gyro bias drifts in x, y and z-axes, whereas 3D RISS has 9 estimated error

states, which are the position error in x, y and z-axes, velocity error in x, y and z-axes,
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the error in the yaw angle, the error of the encoder-derived speed, and the stochastic

bias drift in the vertical gyroscope.

The proposed fusion algorithms of INS with detected pipe lengths and encoder

derived speed measurements have been tested and validated in a real pipe by using

in-pipe robot designed and made manually for this purpose.

6.2. Future Work

This thesis work represents only the start, so, as a continuation of this project, it

is advised that more effort should be put into improving the algorithm performance and

implementation. This can be achieved by testing our algorithms in the field. The use of

more robust in-pipe robot design equipped with high-performance IMU and sensors to

detect the pipe edges and measure the derived encoder velocity should be considered in

order to be developed into a commercial product.

Also, we need to apply more effort on the tuning of the process and the mea-

surements covariance. The use of AI methods, like Neural Network (NN) and Adaptive

Neuro-Fuzzy Inference Systems (ANFIS), to set these covariance parameters is highly

advisable to be considered. Also, AI can be considered instead of mathematical ap-

proaches for states estimation, or a hybrid system that combines AI and EKF method.
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