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“The true sign of intelligence is not knowledge but imagination.”

“The difference between stupidity and genius is that genius has its limits.”

Albert Einstein



Dedication

In loving memory of Dr. Ibrahim Sadek



Abstract

We reformulated the problem of training the neural networks model into a con-

vex optimization problem by performing a local quadratic expansion of the cost

function and adding the necessary constraints. We designed a new algorithm

that extends the back propagation algorithm for parameters estimation by using

second-order optimization methods. We computed the second order mixed partial

derivatives of the cost function for a single hidden layer neural network model to

construct the Hessian matrix. We used the Gauss-Newton approximation instead

of the Hessian matrix to avoid the analytical computation of the second order

derivative terms for higher order neural network topologies. To compare the accu-

racy and computational complexity of our proposed algorithm versus the standard

back propagation we tested both algorithms in different applications, such as: re-

gression, classification, and ranking.

Search Terms: Neural Networks, Convex Optimization, Gauss-Newton Matrix
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Chapter 1

Introduction

In the field of learning from data, researchers aim to model an unknown relation

between the features (input variables) and the labels (output variables). Super-

vised learning uses the training data (samples consist of paired data of features

and labels measurement) to produce a function (model) that can predict new ex-

amples [1].

The quality of the measured data is a primary concern to take into account when

attempting to learn from data. In some cases, we consider a fewer number of fea-

tures than what we need due to practical reasons in data collection or due to the

lack of understanding of the underlying physical phenomena. Also, the measured

data can also contain noise, typically because of the measurement tool’s internal

structure and due to environmental conditions.

The mathematical models are either parametric or non-parametric models. A

parametric model assumes a finite dimensional set of parameters. However, a

non-parametric model doesn’t hold the same assumption [8]. The complexity of

parametric models increases as we increase the number of parameters [14]. In

the case of Artificial Neural Networks (ANN) model complexity increases as we

increase the number of layers and neurons.

Let y ∈ Rm×1 be the labels vector (assuming single output) and x ∈ Rm×n be

the features matrix with m samples and n features. The mapping from x to y is

unknown; instead the hypothesis ŷθ will approximate the unknown mapping. The

parameters estimation of ŷθ is based on minimizing a cost function C(θ) w.r.t the

parameters θ.

Function approximation is effectively made using methods based on analytical

approaches such as series expansion and Stone-Weierstrass theorems [12]. Such
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Chapter 1 Introduction

methods constrain the problem of learning from data by imposing the continuity

of the unknown function. However, we do not know if the unknown function is

continuous or if it exists.

In simple models like linear regression, parameters can be estimated optimally

by computing a closed form equation that provides the optimal parameters θ̂.

However, in more complex models like ANN parameters estimation is done in an

iterative way since a closed form equation does not exist. For some applications,

the computational time required to perform parameters estimation increases non-

linearly as we increase the number of samples m. Let k be the number of samples

needed to achieve parameters estimation. In ranking applications with pairwise

training rule k is the square of m (k = m2). Therefore, traditional algorithms

like back propagation require additional time to estimate the parameters. Hence,

new algorithms are required to compute the optimal parameters in a more efficient

way.

Neural Networks

In chapter 2 of this thesis, we will formulate the ANN model analytically and

state the back propagation algorithm which is the most widely used algorithm for

training ANN [15]. ANN model maps a set of features x to a desired output y

by spanning a composition (layers) of nonlinear activation functions acting on the

span of features.

The performance of the model depends on our initial parameters, activation func-

tion, and the values of the learning rate η, momentum factor µ, and the batch size.

η & µ define the step size in the parameters update loop and a decaying factor of

the previous iterations gradient [17]. Both parameters improve the convergence of

the back propagation algorithm. The comparison between the activation functions

and their advantages/disadvantages is difficult, and such comparison will be bi-

ased by our choice of initial parameters [13]. Below are the most common choices

of the activation function:

• Gaussian function

φ(xi) = exp

(
−‖xi − ci‖

2
2

2σ2

)
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Chapter 1 Introduction

• Multi-quadratic function

φ(xi) =
√
‖xi − ci‖22 + a2

• Soft-sign function

φ(xi) =
xi

1 + |xi|

• Sigmoid function

φ(xi) = σ(x) =
1

1 + exp(−xi)

The sigmoid function σ(x) is the commonly used activation function in ANN . The

main reasons behind choosing the sigmoid function are

• It has a bounded output range that varies from 0 to 1. Therefore, it is

considered as a mapping of the input values into probabilities.

• The non-linearity induced in the network when using the sigmoid function

enables the ANN to learn the nonlinear relation between the inputs and

outputs.

• It is continuous and smooth which enables us to compute the derivatives

which are needed when deriving the training rule for parameters estimation.

Another reason for justifying the choice of the sigmoid activation function is its nat-

ural probabilistic properties. Consider a two classes classification problem where

each class follows a Gaussian distribution and both distributions have equal co-

variance matrices. We can show[13, 16] with Bayesian approach that the posterior

probability of each class equals to the sigmoid activation function.

p(Class1 | x) =
p(x | Class1)p(Class1)

p(x | Class1)p(Class1) + p(x | Class2)p(Class2)
= 1− p(Class2 | x) = σ(y(x))

where y(x) is

ln

(
p(x | Class1)P (Class1)

p(x | Class2)P (Class2)

)
With the same above reasoning, we can generalize the classification problem to

handle multiple classes by introducing the softmax activation function instead of

the sigmoid activation function.

6



Chapter 1 Introduction

The universal approximation theorem proven by Cybenko in 1989 [10] states that

an ANN with a single hidden layer containing an N number of neurons can ap-

proximate continuous functions defined on compact subsets of Rn.

In a simple example where we have only two features, an ANN model consisting

of a single hidden layer with two neurons ŷθ will be modeled by:

ŷθ = σ(θ211σ(θ111x1 + θ121x2 + θ11b) + θ221σ(θ112x1 + θ122x2 + θ12b) + θ21b)

Rewriting the above using σ(x) =
1

1 + exp(−x)
, we obtain

ŷθ =
1

1 + exp(− θ211
1+exp(−θ111x1−θ121x2−θ11b)

− θ221
1+exp(−θ112x1−θ122x2−θ12b)

− θ21b)

where the upper indexes represent the layer number and the lower indexes repre-

sent the neuron numbers from the (i− 1)th layer to the ith layer.

The following figure illustrate a neural network with a single hidden layer. In the

figure, z represents the linear combination of the previous layer outputs weighted

by the current layer parameters. The linear combination z is fed into the sigmoid

activation function to have the current layer output a.

Figure 1.1: Single-Layer Artificial Neural Network
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Chapter 1 Introduction

Convex Optimization

Convex optimization is the branch of mathematics that focuses on generalizing

methods that can be used to minimize a convex objective function subjected to

convex constraints. Convexity of the objective function can be geometrically inter-

rupted as a function with a single unique minimum. A successful optimization of a

convex problem guarantees to reach the global minimum of the objective function.

On the other hand, optimization of a non-convex problem doesn’t guarantee the

convergence to the global minimum.

In chapter 3, Gradient Descent, Newton’s, and Interior-Point Methods will be

explained from the theory to implementation pseudo code. The choice of the op-

timization method depends on the problem’s structure and complexity.

Gradient descent is a method used in unconstrained optimization problems and

requires only the availability of the gradient ∇C of the objective function.

Newton’s method is also used for unconstrained optimization. However, it requires

the availability of the gradient ∇C and the Hessian matrix H of the objective

function. Therefore, the objective function should be twice differentiable to use

Newton’s method.

The Interior-Point method is used in constrained optimization problems and re-

quires both the gradient ∇C, and the Hessian matrix H. The interior-point

method is used in large scale optimization problems where the number of pa-

rameters is large.

The term large scale optimization is vague and changes every year, since what

is considered to be a large scale optimization problem a couple of years ago is

now considered a regular problem due to the increase of the computational power.

Optimizing neural networks with multiple layers, which are known as Deep Neural

Networks (DNN), will require large scale optimization techniques since the number

of parameters needed to be estimated can be considerably large w.r.t the available

hardware.

Neural Networks as a Convex Problem

In this report, we will introduce a new way of training neural networks other than

the traditional back propagation algorithm. After formulating the ANN model

(Chapter 2) analytically and reviewing the general convex optimization methods
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Chapter 1 Introduction

(Chapter 3), we will introduce training the ANN using convex optimization meth-

ods.

Training ANN using the back propagation algorithm is equivalent to an uncon-

strained minimization problem with a gradient descent algorithm. Since the ANN

cost function is non-convex, ANN model training with the back propagation al-

gorithm suffers the long training time and the convergence to local minimums

instead of the global minimum.

By deriving the Jacobian and Hessian matrices of the ANN, we can implement

faster algorithms like Newton’s method. However, the non-convexity of the ANN

will still limit the performance of the training since still there is no guarantee of

converging to the global minimum

Finally, an approximated semi-definite matrix (Gauss-Newton Matrix) will be used

to approximate the Hessian matrix. The approximate model introduced can be

trained directly with convex optimization techniques. The addition of layers/neu-

rons in the ANN will increase the complexity of training due to the large number

of parameters need to be estimated. Therefore, we will formulate the problem us-

ing the interior point method after adding the necessary constraints. The interior

point method is a second order large scale convex optimization technique. Also in

this chapter, we will state the pseudo codes of our formulation with guidelines for

implementation.

Simulation of the proposed approximate model will be presented within the con-

cluding points. A lot of work can be done in the future to expand the approach

to multi-layers ANN which is named as Deep Neural Networks (DNN). Also, the

analytical derivations of the gradient and Hessian can be possibly rewritten in

a closed form for a general DNN architecture. Such closed form formulas can

increase the performance in numerical implementation.
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Chapter 2

Neural Networks

ANN are systems designed based on the theory of the biological neuron system.

With a similar architecture of the human brain neuron system researchers at-

tempts to mimic the biological neuron system with an artificial system that can

be used in many areas typically learning from data. ANN models can be used for

classification, regression and ranking problems in a wide range of applications in

engineering such as voice and image recognition, control theory..., etc. With more

demand from engineering applications, the complexity of ANN has been increas-

ing. For example, trying to analyze multiple layers of abstractions in an image or

controlling an under-actuated robotic system requires more than a single hidden

layer in the network.

As we increase the number of layers/neurons in the artificial neural network sys-

tem, the network becomes a Deep Neural Network. With recent achievements

training a deep neural network with a particular configuration is possible with an

almost null error in the training set. However, training such networks is slow and

complicated. Therefore, using deep architectures is limited to offline mode.

2.1 Forward Propagation

Let M be the number of hidden layer in the network. The first layer is called the

input layer, and the last layer is called the output layer. Let N be the number of

neurons in each hidden layer. Let l be a variable that denotes the layer number

(1 ≤ l ≤M).

10



Chapter 2 Neural Networks

The following are the notations we will use in the ANN model:

θl Matrix of parameters from layer l − 1 to layer l

θlb Vector of bias terms from layer l − 1 to layer l

zl Weighted input of layer l

al Output of layer l

Neural Networks maps the input features x into the hypothesis output ŷθ by ap-

plying a series of linear transformations (scaling with parameters θ) and nonlinear

transformations (using the sigmoid function σ(x)). A process that is called for-

ward propagation.

The linear output vector of layer l is the dot product between the layer l matrix

of parameters θl and the previous layer output vector al−1 plus the bias terms θlb.

zl = θl · al−1T + θlb

Note that in forward propagation we are mapping the al−1 to zl with the dot

product. Hence, we can stack a vector of l’s to al−1 to calculate z1. Such matrix

form of the operation improves the computation speed.

zl =
[
θlb θl

]
·

[
1

al−1

]

Note that θl is the matrix of all the parameters that connects the outputs of the

previous layer l − 1 neurons with the current layer l neurons.

The linear output zl is fed to a nonlinear activation function (sigmoid function)

to reach the final output of the layer l by al = σ(zl). Similarly, the final output of

the network is calculated as:

ŷθ = aM+1 = σ(zM+1)

= σ
(
θM+1 · aMT

+ θM+1
b

)
The features matrix x is considered as an input to the ANN and denoted as a0.

Using forward propagation a0 propagates as explained earlier to compute all the

hidden layers output al (1 < l < M). The model output is considered to be the

final layer output ŷθ = aM+1. The forward propagation can be summarized as the

11



Chapter 2 Neural Networks

following:

Input Layer l = 0

a0 = x Features Matrix

First Layer l = 1

z1 = a0
T
θ1 + θ1b

a1 = σ(z1)

Second Layer l = 2

z2 = a1
T
θ2 + θ2b

a2 = σ(z2)

...

Output Layer l = M + 1

zM+1 = aM
T
θM+1 + θM+1

b

aM+1 = σ(zM+1)

Output

ŷθ = σ(zM+1) = aM+1

The following figure illustrates the multiple layer neural network system:

Figure 2.1: Multi-Layer Artificial Neural Network
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Chapter 2 Neural Networks

2.2 Applications in Data Mining

In data mining, we are considering a large dataset with many features with an aim

to extract useful information. Such information can be applied in many applica-

tions like environmental forecasts, stock market analysis, tumors identification...,

etc. Artificial neural networks are considered as an adaptive model that can dy-

namically change according to the training set fed into it in the training phase.

The adaptivity of the artificial neural networks system made it useful in many

applications since it can be used in Regression, Classification, and with recent

development, ANN can be used in Ranking problems also.

2.2.1 The Regression Problem

Regression analysis is a branch of mathematics that attempts to model the re-

lationship between variables. Let y = f(x1, x2, ..., xn) be the output variable y

modeled as a function of the features x1, x2, ..., xn. The function f : Rn → R is

unknown, and the regression analysis is applied to approximate the relation be-

tween the output variable y and the features. A typical application of regression

is forecasting such as stock-market forecast, traffic flow forecast, and inventory

forecast. Artificial neural networks can be viewed as a nonlinear regression model,

also the more layers we add to the network the more levels of abstractions the

model can learn.

f ≈ ŷθ

However with big data problems that include a high number of features, increasing

the number of layers and neurons in the network becomes a must to meet the level

of complexity of the problem. The complexity imposed by increasing the number

of layers and neurons will highly impact the convexity of the cost function. For

simple problems such as regression with two features and a single output, adding

a layer to the network drives the cost function to have additional local minimums

and hence parameters estimation becomes a non-convex problem. The complexity

is highly correlated to our choice of the cost function. In regression, the standard

13



Chapter 2 Neural Networks

cost function is the mean square error which is presented as:

C(y, ŷθ) =
1

2
(y − ŷθ)2

=
1

2m

m∑
i=1

(yi − ŷθi)2

Training such big networks or Deep Neural Networks is a hard problem and re-

quires a high amount of computational power to estimate the optimal parameters

of the model. Time series forecasting can also be viewed as a special type of re-

gression although only a single feature is available to train the model. Recurrent

Neural Networks (RNN) is a form of neural networks which have inner loops that

make the model able to recall previous events learned. RNN models can determine

the past trends in the time series data and compute predictions based on that [2].

2.2.2 The Classification Problem

Classification in machine learning is the problem that attempts to formulate a

model that can be trained to classify a set of features into a particular category.

Classification can be viewed as a discrete case of the regression problem since the

number of outputs is always discrete. Let y = f(x1, x2, ..., xn) be the output set

of classes. The function f : Rn → N is unknown and the classification problem

aims to approximate it by the model ŷθ. Artificial neural networks in binary

classification (y is a set of only two classes) can be viewed as a generalization of

the logistics regression. The Cross-Entropy cost function is defined as

C(y, ŷθ) = −y ln ŷθ − (1− y)(1− ln ŷθ)

=
−1

m

m∑
i

(
yi ln ŷθi + (1− yi)(1− ln ŷθi)

)

2.2.3 The Ranking Problem

The ranking problem corresponds to ranking a set of samples in order w.r.t rele-

vance criteria. An important application to mention is the web page search engines

such as Google, Yahoo, and Bing. As a machine learning definition, we refer to

the problem as a preference learning on the pairwise sets of samples. We can judge
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Chapter 2 Neural Networks

the ranking of samples in different ways, for example, we can use the binary judg-

ment set relevant, irrelevant or generalize it to multi-level ratings set great, good,

fair, and bad. The choice of our judgment set always depends on the physical

application. To illustrate the different approaches to this problem lets consider

the following definition:

Definition 2.1. Let the relation . imply ”rank is relatively higher than” and /

implies ”rank is relatively smaller than”. so we read a1 . a2 as a1 has a rank

relatively higher than a2 where a1, a2 be any two samples.

Below are the different approaches used in the ranking problem:

• Pointwise Ranking

The pointwise ranking assigns a unique value for each sample using a ranking

function. Therefore, all the samples can be sorted based on their rank scores.

Let R : X → R be the pointwise ranking function such that R(a1) > R(a2) if

and only if a1.a2. The pointwise ranking can be approached using regression

algorithms to predict each sample ranking score approximately.

• Pairwise Ranking

In this approach examine a pair of samples to see which sample has a higher

rank relatively to the other. Let R : X × X → {−1, 0, 1} be the pairwise

ranking function such that:

R(a1, a2) =


−1 ⇐⇒ a1 . a2

0 ⇐⇒ a1 = a2

1 ⇐⇒ a1 / a2

In pairwise ranking we are interested in finding a model that approximate

the pairwise ranking function R(a1, a2) based on the data provided in the

training set. The main application of pairwise ranking is Web pages sorting.

• Listwise Ranking

In this approach, we are assigning a relative rank score between two sets of

samples. Let I be the set of ordered ranked-lists and R : I → R be the list-

wise ranking function such that R(i1) > R(i2) implies i1.i2. Hence, i1, i2 ∈ I
implies i1 = (ai11 , ai12 , ..., ai1n) and i2 = (ai21 , ai22 , ..., ai2n). An application

of the listwise approach is the structured ranking predictions.
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Chapter 2 Neural Networks

In machine learning formulation the ranking problem can be approached as follows:

• Randomly select samples ai from the training set.

• For each sample assign a relevance grade yi.

• Model the ranking function R(x) to preserve the order y.

In the ranking problem, there are many choices for the cost function. Below is the

common two cost functions used:

• Mean Average Precision (MAP)

The MAP requires a binary prejudgment relevant, irrelevant of each sample

in the training data set. The precision at a point i is calculated as

Precision at i =
number of relevant samples at top of i

i

The Average Precision (AP) is computed as

AP =
∑
i

Precision at i ∗ Ii

where

Ii =

1 if relevant

0 if irrelevant

The Mean Average Precision (MAP) is defined as the AP for the complete

set

• Normalized Discounted Cumulative Gain (NDCG)

NDCG at position k is calculated as

NDCGk = Z

k∑
i=1

(
2Ri − 1

log(i+ 1)

)

Where Z normalization factor

Ri rank of sample i

16



Chapter 2 Neural Networks

The pairwise ranking problem is not treated like regression and classification prob-

lem due to its complexity. Therefore, there exist some algorithms designed specifi-

cally to tackle the problem of ranking. Below is a survey of the standard algorithms

used in parameters estimation for ranking applications.

• PRanking Algorithm

PRanking is an ordinal regression algorithm [9] in which it attempts to find

the optimal parameters θ that projects the samples into numeric scores which

can be used to distinguish the ranks r1, r2, ..., rn of each sample. Hence we

are assuming that there exist a rank ri ∈ R for each sample. The algorithm

updates the parameters by perceptron or SVM based algorithms.

R(x) =


1 θTx < k1

i ki−1 < θTx < ki

k kn < θTx

• Combined Regression and Ranking (CRR) Algorithm

The CRR algorithm uses a combined objective function that optimizes regression-

based and rank-based objectives simultaneously. The combined CRR opti-

mization problem is

min
θ

αC(θ,D) + (1− α)C(θ, P ) +
λ

2
‖θ‖22

Where C is the loss function, D is the training data set and P is a set of

candidate pairs of samples. The CRR algorithm combines both the regres-

sion loss and the ranking loss function for the training and the parameters

θ can be trained using gradient descent method.

• RankNet Algorithm

RankNet algorithm is a probabilistic ranking model [5, 6] which predicts the

probability of the relative rank r̂ij between a given pair of samples ai, aj. We

define the modeled posterior as p(ai . aj) or p(ai / aj) where ai . aj asserts

that sample ai has a higher rank relatively to sample aj.

Let the training data consist of a pair of samples which shares the same

features along with the target pairwise rank (output) p between the pair.

Target probability for pairwise samples can be defined in many forms. In its
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Chapter 2 Neural Networks

simplest forms, it is defined as:

p =


1 ai . aj

0 ai, aj has relatively the same rank

−1 ai / aj

The RankNet algorithm models the pairwise relative rank probability using

the neural networks framework by defining the estimated relative probability

between two samples to be

r̂ij ≡ γ(r̂i − r̂j)

pij ≡
exp(r̂ij)

1 + exp(r̂ij)
= σ(r̂ij)

(2.1)

Where r̂i, r̂j are theoretically the outputs of an ANN model that assigns a

pointwise rank to every sample. Although RankNet algorithm doesn’t train

the ANN to predict any pointwise ranks of the samples it uses the pointwise

outcomes to construct a training rule that generalizes the back propagation

algorithm to predict the pairwise relative rank r̂ij between any given two

samples ai, aj.

Frank Algorithm is a generalization of the RankNet algorithm by using a

new cost function. The fidelity cost function is defined as

F ≡ 1− (
√
p ∗ p+

√
(1− p) ∗ (1− p))

The Frank algorithm provides a zero minimum cost within a bounded interval

on [0, 1] however the cost function is non-convex.

2.3 Back Propagation

Training the neural networks in all topologies follows the same principle. We start

by defining our cost function C, and we derive the gradient ∇C with respect to

all the parameters of the net. The back propagation algorithms utilize the theory

of chain rule for computing the derivative of a composition of functions to derive

the gradient of the cost function. Below is the derivation of the back propagation

for the standard cost functions used in classification and regression applications.

Note that deriving the gradient of the cost function for ranking applications is
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not straightforward [5], and therefore a generalization of the back propagation

algorithm is needed.

C(y, ŷθ) =

−y ln ŷθ − (1− y)(1− ln ŷθ) Cross Entropy Loss

1
2
(y − ŷθ)2 Mean Square Loss

The back propagation algorithm computes the gradient of C with respect to all

the parameters θ using the chain rule.

∂C

∂θM+1
=
∂C

∂ŷθ

∂ŷθ
∂zM+1

∂zM+1

∂θM+1

The three terms on the right hand side can be computed as the following:

• Computing
∂C

∂ŷθ
The derivative of C with respect to ŷθ is straight forward, but it depends on

our choice of C.

∂C

∂ŷθ
=


1−2y
ŷθ

Cross Entropy Loss

y − ŷθ Mean Square Loss

• Computing
∂ŷθ

∂zM+1

By the definition of the ANN model ŷθ = σ(zM+1) hence we can directly

compute the derivative as:

∂ŷθ
∂zM+1

= σ′(zM+1)

• Computing
∂zM+1

∂θM+1

By the definition of the ANN model zM+1 = θM+1 · (aM)T + θM+1
b so we can

directly compute the derivative as:

∂zM+1

∂θM+1
= aM

∂zM+1

∂θM+1
b

= 1

Finally by combining the above partial derivatives we can compute the gradient

of the cost function C with respect to the final layer parameters θM+1 and θM+1
b
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(Assuming mean square loss).

∂C

∂θM+1
=
(
y − ŷθ

)
σ′(zM+1)aM

∂C

∂θM+1
b

=
(
y − ŷθ

)
σ′(zM+1)

We can simplify the common factor by introducing δM+1 = ∂C
∂ŷθ

∂ŷθ
∂zM+1

∂C

∂θM+1
= δM+1aM

∂C

∂θM+1
b

= δM+1

We should repeat the steps above for the other layers parameters. For the param-

eters of the last hidden layer M

∂C

∂θM
=
∂C

∂ŷθ

∂ŷθ
∂zM+1

∂zM+1

∂θM

=
∂C

∂ŷθ

∂ŷθ
∂zM+1

∂zM+1

∂aM
∂aM

∂θM

= δM+1∂z
M+1

∂aM
∂aM

∂θM

The last two terms of the right hand side can be computed as:

• Computing ∂zM+1

∂aM

Recall that zM+1 = θM+1aM + θM+1
b . By substitution:

∂zM+1

∂aM
= θM+1

• Computing ∂aM

∂θM

Recall that aM = σ(zM) and zM = θMaM−1 + θMb . By substitution:

∂aM

∂θM
=
∂aM

∂zM
∂zM

∂θM
= σ′(zM)aM−1

∂aM

∂θMb
=
∂aM

∂zM
∂zM

∂θMb
= σ′(zM)
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We can simplify again the common factor by introducing δM = ∂aM

∂zM
= σ′(zM) to

conclude the partial derivatives with respect layer M parameters as:

∂C

∂θM
= δM+1δMaM−1

∂C

∂θMb
= δM+1δM

We will continue to compute the gradient of the cost function C w.r.t all the other

layer’s parameters M − 1,M − 2, ..., 1. The first layer gradient will follow to be

∂C

∂θ1
= δM+1δM ... δ2δ1a0

∂C

∂θ1b
= δM+1δM ... δ2δ1

The back propagation algorithm computes the gradient of the cost function ∇C
with respect to all the parameters θ using the chain rule. The back propagation

algorithm can be viewed in an algorithmic form [15] as shown in the following

page:
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1: Select the number of layers M . Set the value of the error tolerance parameter
ε > 0. Let E be the batch training error.

2: Initialize the all the parameters in the matrix randomly θ ∼ N (0, 1) for all
layers.

3: Calculate the neural output.

zl = θl
T
al−1 + θlb

al = σ(zl)

4: Calculate the output residue based on the choice of the cost function C.

ξM+1 =
∂C

∂ŷθ
=

{
1−2y
ŷθ

Cross Entropy Loss

y − ŷθ Mean Square Loss

5: Repeat
6: Calculate the last layer delta’s.

δM+1 = ξM+1σ′(zM)

7: Recursively calculate the propagation errors of the hidden neurons.

ξl =
1∑

l=M

δl+1θl

8: Recursively calculate the hidden neurons delta’s vectors.

δl = ξl ◦ σ′(zl)

9: Return the partial derivative of the cost function with respect to each layer
parameters.

∂C

∂θ

l

= δlal−1

∂C

∂θb

l

= δl

Algorithm 1: The Back Propagation Algorithm [15]
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Convex Optimization

Optimization methods are a set of algorithms that aim to minimize a convex ob-

jective function. The simplest geometric interpretation of the convexity of a cost

function is the uniqueness of the minimum value (Convex functions has only a

global minimum). Lets x1 and x2 be two points in the domain and t a parametriza-

tion variable then ∀x1, x2 ∈ X, ∀t ∈ [0, 1] a function f is convex if and only if

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2)

By having a convex objective function defined on a convex set the optimization

solution can reach the global minimum much faster than the non-convex case.

Different algorithms will approach the global minimum solution point using dif-

ferent techniques and complexity. The first-order optimization methods like the

gradient descent algorithm, only the gradient of the objective function is required

to achieve the optimization solution.

∇f =

(
∂f

∂x1
, · · · , ∂f

∂xn

)
However, second-order optimization methods like Newton’s, Trust Region, and

Interior Points methods requires the availability of the gradient ∇C as well as

the Hessian matrix H. A quick comparison between first-order and second-order

optimization methods shows that first-order methods are faster and simpler. How-

ever, the second-order methods are more accurate but slower and have a higher

complexity.
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Depending on the complexity of the problem the computational time of the Hes-

sian matrix is high. Also, in the second-order methods computing the inverse of

the Hessian matrix is required which is not guaranteed to exists since the matrix

might not be invertible especially for the non-convex cost functions. The Hessian

matrix is computed generally as follows:

H =



∂2f

∂x21

∂2f

∂x1 ∂x2
· · · ∂2f

∂x1 ∂xn

∂2f

∂x2 ∂x1

∂2f

∂x22
· · · ∂2f

∂x2 ∂xn
...

...
. . .

...

∂2f

∂xn ∂x1

∂2f

∂xn ∂x2
· · · ∂2f

∂x2n


Artificial neural networks are non-convex problems even if we choose a convex cost

function (except neural networks with a single layer) since the number of layers

will raise the level of complexity of the problem by having additional minimum

values. As a result, the convexity feature of the problem is lost.

Reaching the global minimum value of the cost function C with the artificial neu-

ral networks model using convex optimization methods in an efficient time seems

to be an invalid argument simply because the function is not convex.

In this thesis, we argue that the above problem can be treated as a convex opti-

mization problem. We start by deriving the analytical form of the gradient and

Hessian matrices of the cost function subjected to the artificial neural networks

model. Later, we reformulate the cost function with a special approximation of

the Hessian matrix. Finally, we use the approximated cost function as an objective

function in our optimization problem formulation.

The approximated convex Hessian matrix will be derived using the Gauss-Newton

matrix method. The approximated positive semi-definite Hessian matrix will be

used in the second order expansion of the objective function. Optimizing the ap-

proximated convex objective function will be done using different optimization

techniques.

The idea of using an approximated form of the Newton’s method is called the in-

exact Newton’s method [3]. In the inexact Newton’s method, we attempt to solve

an approximated Newton’s system to derive only a good enough direction search
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for the minimum. In mathematical optimization form:

min
θ

C(y, ŷθ)

which will transforms into following equation (after expanding C)

min
θ

θT · ∇C +
1

2
θT · Ĥ(θ) · θ

In optimization theory, we are concerned with finding the value of θ which lies in

a certain domain D. The image C(θ) will have the minimum value in the range

R. Where θ is the set of parameters of our model.

The above minimization problem lies in the area of unconstrained optimization

because there are no constraints. On the other hand, a constrained optimization

problem will have the form of :

min
θ

C(y, ŷθ)

subject to f(θ) ≥ a

g(θ) ≤ b

Where a, b ∈ R and f, g are continuous functions on R. Such problems are cat-

egorized under the area of constrained optimization problems. Many algorithms

are used to find the parameters which minimize or maximize the objective func-

tion C(θ) such as Gradient Descent, Newton’s Method..., etc.). More generally

optimization problems can be interpreted as iterative methods to find the optimal

values of the parameters w.r.t the problem constraints. A minimum or a maximum

of any function occurs at the points at which the gradient vanishes.

∇C(θ) = 0

Descent methods can be used to minimize the objective function C. However,

for larger problems which contain more levels of abstractions, learning from data

using the artificial neural networks model can be achieved by adding more layers

and neurons in the network. In such cases, the classical descent methods used to

minimize the objective function in an unconstrained manner will either not con-

verge to the true global minimum and will require a high computational amount

of time which is not feasible in the real-time applications.
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The parameters estimation is done in an iterative way. At each iteration, the al-

gorithm adds an additional value to the parameters of the previous iteration. The

additional value to be added consists of two parts, a magnitude, and a direction.

The magnitude value is controlled by the step size (also known as the learning

rate), and the direction is a normalized vector quantity points in the direction of

nearest local minimum (mathematically equal to the negative normalized gradient

at each iteration).

Calculation of the gradient at each point of optimization can be achieved using

algorithms developed precisely for training neural networks like the back propa-

gation algorithm.

The general terminology of the descent methods is:

x = x+ tk 4 x

4 x : search direction

tk : step size

Pseudo-code
x = x0(any initial value)

Loop until stopping criterion < ε

4 x = search direction

tk = step size)

x = x+ tk 4 x

Stopping criterion = depend on the method

3.1 Gradient Descent Method

We can see that the gradient descent method to derive an optimization rule is

based on a greedy approach of search; we move in the direction opposite to the

gradient of the function at any point.

This method is based on the idea that the gradient of the function is always in

the direction of the maximum rate of change at that point.

The gradient descent method uses the following search direction:

4x = −∇C
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Pseudo-code
x = x0(any initial value)

Loop until stopping criterion < ε

4 x = −∇C

tk = step size

x = x+ tk 4 x

Stopping criterion = ‖∇C‖2

3.2 Newton’s Method

Newton’s method uses the search direction

4x = −H(x)−1∇f(x)

where H(x) is the Hessian matrix. Newton’s method in optimization is a general-

ization of Newton’s method for finding the zeros of a function. Newton’s method in

optimization replaces the fraction
f(xk)

∇f(xk)
by
∇f(xk)

∇2f(xk)
. In higher dimensions the

division by ∇2f(xk) becomes multiplication by the inverse of the matrix ∇2f(xk).

To derive the above using the Taylor expansion of the directional derivative of the

function with the directional vector v.

∇f(x+ v) ∼ f

f = ∇f(x) +∇2f(x)v

= 0

Hence
v = −∇2f(x)−1∇f(x)

= −H(x)−1∇f(x)

= 4x

The final remark on Newton’s method for optimization is that Newton’s method

uses the local Hessian near the point x and calculate the direction of minimization

based on that local approximation.
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Pseudo-code
x = x0(any initial value)

Loop until stopping criterion < ε

4 x = −H(x)−1∇C

tk = step size

x = x+ tk 4 x

Stopping criterion = ‖∇C‖2

3.3 Interior Point Methods

So far we were discussing the traditional methods used in optimization such as

gradient descent and Newton’s methods. Such methods are mainly used for un-

constrained optimization. However, most problems in practice have constraints.

Let fi(θ), gj(θ) for i ≤ n, j ≤ m be the n number of inequality and m number of

equality constraint functions.

min
θ

f0(θ)

subject to fi(θ) ≤ 0

gj(θ) = 0

(3.1)

and so there is a need to use more practical algorithms to optimize such problems.

To optimize an objective function with respect to some constraints we use the

theory of Lagrange multipliers. Let the Lagrangian of the problem be defined as:

L(θ, α, β) = f0(θ) +
n∑
i=1

αifi(θ) +
m∑
j=1

βjgj(θ)

To ensure that our constraints are satisfied we impose the following:

max
α,β

L(θ, α, β) =

f0(θ) , If conditions are satisfied

∞ , Otherwise

By defining the Lagrangian, we have transformed our problem from a constrained

problem into unconstrained problem as:

min
θ

max
α,β

L(θ, α, β)
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However, in large scale optimization where the number of parameters to be esti-

mated is huge, the Lagrangian will require the optimization algorithm to solve a n

number of constraints by finding the gradient for each parameter and equate it to

zero. Such method is not feasible when it come to tackling a large scale nonlinear

system like Deep Neural Networks.

The interior point method approximates the original inequality constrained prob-

lem into a sequence of equality constrained problems using the log barrier function.

Let µ be a relatively small positive scalar (often called the Barrier Parameter).

By reformulating equation (3.1) into:

B(θ, µ) = −µ
I∑
i=1

log(−fi(θ))

the minimization problems is reformulated (Assuming gj(θ) = 0) to:

min
θ

(
tf0(θ) +B(θ, µ)

)
Note that the log barrier function is twice differentiable and convex.

∇B(θ, µ) = ∇f0(θ)− µ
m∑
i=1

1

fi(θ)
∇fi(θ)

Pseudo-code

x = x(any initial strictly feasible value)

tk = t0 (Such that t0 > 0)

Loop until stopping criterion < ε

Compute x? by minimizing
(
tf0(θ) +B(θ, µ)

)
tk = tk + any practical increment

We should note that minimizing the approximate log barrier function tf0(θ) +

B(θ, µ) is done with Newton’s method. Hence the gradient and Hessian of the

objective function are required. The solution of the interior point method is sub-

optimal to the original problem.
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Neural Networks as a Convex

Problem

In this thesis, we aim to apply convex optimization techniques to ANN although

the ANN is a non-convex problem. However, we are aiming to tackle the non-

convexity of the problem with the second-order expansion of the cost function and

by approximating the Hessian matrix using the Gauss-Newton matrix.

This approach of training ANN will be used to modify the RankNet algorithm

that is used in ranking applications. Nevertheless, this approach can be used in

other applications like regression and classification.

Training ANN with traditional methods leverage the back propagation algorithm

to compute the gradient of the cost function ∇C with respect to the model param-

eters. Later on, the gradient is used to update the search direction in an attempt

to find the global minimum of the cost function. Unfortunately, ANN has many

local minimums and training ANN using back propagation does not guarantee a

convergence to the global minimum.

Second-order optimization methods require computing the Hessian matrix. Al-

though it is complicated and time-consuming, computing the Hessian matrix pro-

vides more efficiency in updating the search direction. Computing the Hessian

matrix depends on the structure of the model.

In the case of artificial neural networks model, the large number of parameters

makes it hard to compute the Hessian matrix analytically because we require

computing the second order mixed partial derivatives with respect to all the pa-

rameters. In this thesis, a generalization of RankNet algorithm will be presented
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by introducing both the Hessian matrix and the Gauss-Newton matrix in the train-

ing phase.

In the following sections, we will illustrate the idea of training ANN using convex

optimization techniques, and we will show how to use such techniques in ranking

theory, for simplicity, we will present the derivations and algorithms of a single

layer network.

4.1 Neural Networks in Optimization Form

Artificial neural networks can be viewed as a minimization problem where the

objective function is the cost function.

min
θ

C(θ) (4.1)

The above problem is typically approached using the gradient descent algorithm

where the gradient is computed using the back propagation algorithm. However,

since the cost function is non-convex, the gradient descent approach will not guar-

antee a convergence to the global minimum.

1: Initialize θ = θinitial
2: Choose η the learning rate.
3: Compute ∇C(θ) using Back Propagation (Algorithm 1)
4: 4θ = −∇C
5: θ = θ + η4 θ
6: Until C(θ) < ε

Algorithm 2: Training ANN using the Back Propagation Algorithm

However the cost function C(θ) is a non-convex function so we will expand the

cost function with Taylor expansion theory around the initial value of parameters

θinitial. This approach preserves the local curvatures [7] around the initial values.

Finally, we will apply convex optimization techniques to optimize the approxi-

mated convex cost function ˆC(θ).

ˆC(θ) = C(θ + δθ)

= C(θ) +∇C(θ)T δθ +
1

2
δθTH(θ)δθ

(4.2)
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Due to the complexity of deriving H(θ) analytically an approximated form of the

Hessian will be used instead. The Gauss-Newton approximation [7] approximates

the Hessian matrix locally around the initial parameters. It is calculated by com-

puting the outer product of the gradient matrices.

ˆH(θ) = ∇C(θ)T · ∇C(θ)

By replacing H(θ) by ˆH(θ) in equation (4.2) the quadratic approximation of equa-

tion (4.2) is called the Gauss-Newton approximation. Since the cost function (4.2)

is the second order expansion of the cost function C(θ) we can use second order

methods to minimize it. We can enhance the training of the ANN by approaching

the problem with computing the search direction 4θ using Newton’s method.

1: Initialize θ = θinitial
2: Choose η the learning rate.
3: Compute ∇C(θ) using Back Propagation (Algorithm 1)
4: Compute H(θ)
5: 4θ = −HNewton(θ)−1∇C(θ)
6: θ = θ + η4 θ
7: Until C(θ) < ε

Algorithm 3: Training ANN using Newton Method

Training ANN can still be achieve using Newton’s like method with the Gauss-

Newton matrix approximation.

1: Initialize θ = θinitial
2: Choose η the learning rate.
3: Compute ∇C(θ) using Back Propagation (Algorithm 1)

4: ˆH(θ) = ∇C(θ)T∇C(θ)

5: 4θ = − ˆH(θ)
−1
∇C(θ)

6: θ = θ + η4 θ
7: Until C(θ) < ε

Algorithm 4: Training ANN using Gauss-Newton Matrix

In the following sections, we will show how training the ANN using algorithm 4 is

superior to algorithm 1 in terms of time and accuracy.
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The Gradient

The matrix of all the first order partial derivatives of the cost function C with

respect to its parameters θ is:

∇C(θ) =
[

∂C
∂θM+1

∂C

∂θM+1
b

. . . ∂C
∂θ1

∂C
∂θ1b

]
Using the back propagation algorithm we could analytically derive the partial

derivatives as:

∇C(θ) =
[

δMaM−1 δM . . . δ1a0 δ1
]

For a single hidden layer with N number of neurons the gradient ∇C is:

∇C(θ) =
[

∂C
∂ŷ
σ′(z2)a1 ∂C

∂ŷ
σ′(z2) θ2σ′(z1)a0 θ2σ′(z1)

]

The Hessian Matrix

The Hessian matrix is the matrix of all second order mixed partial derivatives. For

simplicity, we will consider the single hidden layer neural networks model. The

partial derivatives will be computed with respect to four parameters θ2, θ2b , θ
1, θ1b

hence the Hessian matrix will consist of the following four columns:

H1 =


∂2C
∂θ2∂θ2

∂2C
∂θ2b∂θ

2

∂2C
∂θ1∂θ2

∂2C
∂θ1b∂θ

2

 H2 =


∂2C
∂θ2∂θ2b
∂2C
∂θ2b∂θ

2
b

∂2C
∂θ1∂θ2b
∂2C
∂θ1b∂θ

2
b

H3 =


∂2C
∂θ2∂θ1

∂2C
∂θ2b∂θ

1

∂2C
∂θ1∂θ1

∂2C
∂θ1b∂θ

1

 H4 =


∂2C
∂θ2∂θ1b
∂2C
∂θ2b∂θ

1
b

∂2C
∂θ1∂θ1b
∂2C
∂θ1b∂θ

1
b

 (4.3)

The detailed derivations can be found in the appendix section. The columns of

the Hessian matrix for a single hidden layer network is:

H1 =


a1(∂C

∂ŷ
σ′′(z2)a1

T
+ σ′(z2)

∂ ∂C
∂ŷ

∂θ2
)

a1(∂C
∂ŷ
σ′′(z2) + σ′(z2)

∂ ∂C
∂ŷ

∂θ2b
)

∂C
∂ŷ
σ′(z2)σ′(z1)a0

T
+ a1(∂C

∂ŷ
σ′′(z2)a0

T
θ2 + σ′(z2)

∂ ∂C
∂ŷ

∂θ1
)

∂C
∂ŷ
σ′(z2)σ′(z1) + a1(∂C

∂ŷ
σ′′(z2)θ2 + σ′(z2)

∂ ∂C
∂ŷ

∂θ1b
)


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H2 =


∂C
∂ŷ
σ′′(z2)a1

T
+ σ′(z2)

∂ ∂C
∂ŷ

∂θ2

∂C
∂ŷ
σ′′(z2) + σ′(z2)

∂ ∂C
∂ŷ

∂θ2b

∂C
∂ŷ
σ′′(z2)a0

T
θ2 + σ′(z2)

∂ ∂C
∂ŷ

∂θ1

∂C
∂ŷ
σ′′(z2)θ2 + σ′(z2)

∂ ∂C
∂ŷ

∂θ1b



H3 =


σ′(z1)a0

0

θ2σ′′(z1)a0
T
a0

θ2σ′′(z1)a0



H4 =


σ′(z1)

0

θ2σ′′(z1)a0
T

θ2σ′′(z1)


We still need to compute the partial derivatives of the cost function with respect

to all the parameters. Recall that the partial derivative of the cost function with

respect to the artificial neural networks model output ŷθ is:

∂C

∂ŷθ
=


1−2y
ŷθ

Cross Entropy Loss

y − ŷθ Mean Square Loss

And writing ŷθ explicitly as a function of all the parameters of the network it

follows that:
ŷθ = a2

= σ(z2)

= σ(a1
T
θ2 + θ2b )

= σ(σ(z1)
T
θ2 + θ2b )

= σ(σ(a0
T
θ1 + θ1b )

T
θ2 + θ2b )
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Taking the above analysis for the case of the Cross Entropy cost function:

∂ ∂C
∂ŷθ

∂θ2
=

(
1− 2y

ŷθ

)
σ′(z2)a1θ2a0

T

∂ ∂C
∂ŷθ

∂θ2b
=

(
1− 2y

ŷθ

)
σ′(z2)a1θ2

∂ ∂C
∂ŷθ

∂θ1
=

(
1− 2y

ŷθ

)
σ′(z2)a1

∂ ∂C
∂ŷθ

∂θ1b
=

(
1− 2y

ŷθ

)
σ′(z2)

Taking the above analysis for the case of the Mean Square cost function:

∂ ∂C
∂ŷθ

∂θ2
= −σ′(z2)a1θ2a0T

∂ ∂C
∂ŷθ

∂θ2b
= −σ′(z2)a1θ2

∂ ∂C
∂ŷθ

∂θ1
= −σ′(z2)a1

∂ ∂C
∂ŷθ

∂θ1b
= −σ′(z2)

Combining the Hessian matrix columns H1, H2 with the above equations depend-

ing on the choice of the cost function analytical derivation of the Hessian matrix

of a single hidden layer network is completed. The Gauss-Newton approximation

of the Hessian matrix [7] is:

ˆH(θ) = ∇C(θ)T · ∇C(θ) =


δ2a1δ2a1 δ2a1δ2 δ2a1δ1a0 δ2a1δ1

δ2a1δ2 δ2δ2 δ2δ1a0 δ2δ1

δ1a0δ2a1 δ1a0δ2 δ1a0δ1a0 δ1a0δ1

δ2a1δ1 δ2δ1 δ1a0δ1 δ1δ1

 (4.4)

Unfortunately, it ’s hard to obtain the exact form of the Hessian matrix analytically

if the number of layers is more than one. To resolve this problem, we will use the

Gauss-Newton approximation instead.
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4.2 Training with Unconstrained Optimization

4.2.1 Regression

Friedman data set one [4] is used to simulate a response with a uniformly dis-

tributed parameters over [0, 1]

y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + ε

The network was initiated with the following parameters:

Figure 4.1: Cost Function for Friedman Data Set

Comparing the cost function reduction over the training iterations for both the tra-

ditional back propagation algorithm and the proposed algorithm (Gauss-Newton)

is illustrated in the following figure:

Figure 4.2: Cost Function for Friedman Data Set

For a bigger data set testing the Abalone data set is used. It consist of eight fea-

tures with 41493 samples. The network were initiated with the following parame-

ters: Comparing the cost function reduction over the training iterations for both
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Figure 4.3: Parameters for Abalone Data Set

the traditional back propagation algorithm and the proposed algorithm (Gauss-

Newton) is illustrated in the following figure:

Figure 4.4: Cost Function for Abalone Data Set

4.2.2 Classification

Taking a small data set that presents a two classes output with two features and

400 samples. By training the network with the below parameters:

Figure 4.5: Parameters for Moons Data Set

Comparing the cost function reduction over the training iterations for both the tra-

ditional back propagation algorithm and the proposed algorithm (Gauss-Newton)

is illustrated in the following figure: For a bigger data set, we will test the model
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Figure 4.6: Cost Function for Moons Data Set

with the HIVA (existence of HIV disease in the human body data set) data set.

It consist of 1618 features with 3849 samples. By training the network with the

below parameters:

Figure 4.7: Parameters for HIVA Data Set

Comparing the cost function reduction over the training iterations for both the tra-

ditional back propagation algorithm and the proposed algorithm (Gauss-Newton)

is illustrated in the following figure:

Figure 4.8: Cost Function for HIVA Data Set
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4.2.3 Ranking

Let r̂ : Rd → R be our hypothesis to predict the pointwise rank r̂i of the sample

ai. Let r̂ij be the predicted relative rank between the two samples ai, aj and let

rij be the target relative rank between . Define r̂ij ≡ γ(r̂i − r̂j) where γ ∈ [0, 1].

In pair-wise ranking we are interested in the probability of relative rank between

given two samples. Therefore, RankNet algorithm modifies the traditional back

propagation algorithm to handle a pair of inputs instead of a single input. The

RankNet modification [6] for a single layer neural network:

∂C

∂θ2
= δ22a

1
2 − δ21a11

∂C

∂θ2b
= δ22 − δ21

∂C

∂θ1
= δ12a

0
2 − δ11a01

∂C

∂θ1b
= δ12 − δ11

The cross entropy cost function will computes the error between the relative rank

probability output pij and the target relative rank pij

C(pij, pij) = pij ln pij + (1− pij)(1− ln pij)

To derive the δ of the output layer for both samples we will require to compute

the partial derivative of the cost function C with respect to the parameters θ.

∂C

∂θ
=

∂C

∂pij

∂pij
∂r̂ij

=
∂C

∂r̂i

∂r̂i
∂θ
− ∂C

∂r̂j

∂r̂j
∂θ

(4.5)

The problem will be arranged such that the sample i will always have a higher

rank relative to j. Hence pij ≡ 1 and with the necessary arrangement [6] the

partial derivatives of the pointwise ranks can be linked as

∂r̂i
∂θ

= −∂r̂j
∂θ

The following algorithm explains the details of implementing the RankNet algo-

rithm: Second order optimization methods require the computation of a Newton

step which requires computing the Hessian matrix or the Gauss-Newton matrix.

However, we are expanding the cost function using the Gauss-Newton matrix in-

stead of the Hessian matrix.
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1: Initialize θ = θinitial randomly for all the network parameters.
2: Calculate the neural output for both samples i and j.

r̂i = a1i = σ(z1)

r̂j = a1j = σ(z1)

3: Repeat
4: Compute r̂ij, pij and πij

r̂ij ≡ γ(r̂i − r̂j)

pij ≡
exp(r̂ij)

1 + exp(r̂ij)

πij = γ(pij − pij)
5: Compute

ξ2i =
∂C

∂r̂i
= πij , ξ2j =

∂C

∂r̂j
= −πij

6: Calculate the last layer delta’s for both samples i and j.

δ2i = ξ2i σ
′(z2) , δ2j = ξ2jσ

′(z2)

7: Recursively calculate the propagation errors of the hidden neurons.

ξ1i = δ2i θ
1 , ξ1j = δ2j θ

1

8: Recursively calculate the hidden neurons delta’s vectors.

δ1i = ξ1i ◦ σ′(z1i ) , δ1j = ξ1j ◦ σ′(z1j )

9: Update the parameters.
θ2

θ2b
θ1

θ1b

 =


θ2

θ2b
θ1

θ1b

+ η


δ2i a

1
i − δ2ja1j
δ2i − δ2j

δ1i a
0
i − δ1ja0j
δ1i − δ1j


10: Compute the forward propagation with the updated parameters
11: Compute the posterior probability pij
12: Until E < ε

E =
1

m

m∑
−pij log pij − (1− pij) log(1− pij)

Algorithm 5: The Back Propagation Algorithm Modified by RankNet
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Deriving the second order derivatives of the cost function C with respect to the

parameters θ can be done by directly by differentiating the gradient as computed

by the RankNet (modified back propagation) with respect to θ.

∂

∂θ

(
∂C

∂θ

)
= Hij =

∂

∂θ

(
πij

(
∂r̂i
∂θ
− ∂r̂j
∂θ

))
=
∂πij
∂θ

∂C

∂θ
+ πij

(
∂2r̂i
∂θ2
− ∂2r̂j
∂θ2

)
= −γ ∂

∂rij

(
1

1 + erij

)
∂rij
∂θ

∂C

∂θ
+ πij

(
∂2r̂i
∂θ2
− ∂2r̂j
∂θ2

)
= γγ

∂

∂rij

(
1

1 + erij

)
∂C

∂θ

T ∂C

∂θ
+ πij

(
∂2r̂i
∂θ2
− ∂2r̂j
∂θ2

)
= γγ

(
−

1 + erij
1

1 + e−rij

)
∂C

∂θ

T ∂C

∂θ
+ πij

(
∂2r̂i
∂θ2
− ∂2r̂j
∂θ2

)
= γπpij

∂C

∂θ

T ∂C

∂θ
+ πij

(
∂2r̂i
∂θ2
− ∂2r̂j
∂θ2

)

(4.6)

Note that the above equation can be approximated using Gauss-Newton matrix.

Hij = γπpij
∂C

∂θ

T ∂C

∂θ
+ πij

(
Hi −Hj

)
Where Hi, Hj are the Hessian matrices of the neural networks constructed to model

r̂i and r̂j. We can read the above equation as the Hessian of the cost function equal

to a factor times the outer product of the cost function gradient plus a factor times

the difference of the pointwise model outputs Hessian matrices. Gauss-Newton ap-

proximation can approximate both Hessian matrices (Hi, Hj) and the result is used

to train the ranking problem using Newton’s methods.

Ĥij = γπpij
∂C

∂θ

T ∂C

∂θ
+ πij

(
∂r̂i
∂θ

T ∂r̂i
∂θ
− ∂r̂j
∂θ

T ∂r̂j
∂θ

)
= γπpij

∂C

∂θ

T ∂C

∂θ
+ πij

(
Ĥi − Ĥj

) (4.7)

Now we can illustrate how to enhance the RankNet algorithm by utilizing New-

ton’s method to train the artificial neural networks model. The Gauss-Newton

approximation combined with RankNet algorithm is listed as a new algorithm in

the following page:
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1: Initialize θ = θinitial randomly for all the network parameters.
2: Calculate the neural output for both samples r̂i = a1i = σ(z1) and

r̂j = a1j = σ(z1).
3: Repeat
4: Compute r̂ij, pij and πij

r̂ij ≡ γ(r̂i − r̂j)

pij ≡
exp(r̂ij)

1 + exp(r̂ij)

πij = γ(pij − pij)

5: Compute ξ2i = ∂C
∂r̂i

= πij, ξ
2
j = ∂C

∂r̂j
= −πij

6: Calculate the last layer delta’s for both samples δ2i = ξ2i σ
′(z2) and

δ2j = ξ2jσ
′(z2).

7: Recursively calculate the propagation errors of the hidden neurons ξ1i = δ2i θ
1,

ξ1j = δ2j θ
1.

8: Recursively calculate the hidden neurons delta’s vectors δ1i = ξ1i ◦ σ′(z1i ),
δ1j = ξ1j ◦ σ′(z1j ).

9: Compute the gradient of the cost function

∇C =


δ2i a

1
i − δ2ja1j
δ2i − δ2j

δ1i a
0
i − δ1ja0j
δ1i − δ1j


10: Compute the Gauss-Newton matrices for both samples outputs Ĥi, Ĥj

11: Compute the approximated Hessian matrix for the cost function.

Ĥij = γπijpij∇CT · ∇C + πij(Ĥi − Ĥj)

12: Update the parameters. 
θ2

θ2b
θ1

θ1b

 =


θ2

θ2b
θ1

θ1b

+ η(Ĥij

−1
∇C)

13: Compute the forward propagation with the updated parameters
14: Compute the posterior probability pij
15: Until E < ε

E =
1

m

m∑
−pij log pij − (1− pij) log(1− pij)

Algorithm 6: The Generalization of RankNet Algorithm Using Gauss-Newton
Matrix
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To test the proposed algorithm, five data sets were chosen, MQ2007, MQ2009

(benchmarked datasets designed especially for learning how to rank application),

HIVA (existence of HIV disease in the human body dataset), SYLVA (ecology

dataset) and NOVA (test classification dataset). For each data set the parameters

used and the cost function reduction on the training data is illustrated in the

following figures:

Data set: MQ2008

Figure 4.9: Percentage of Misordered Pairs for MQ2008 Data Set

Data set: MQ2007

Figure 4.10: Percentage of Misordered Pairs for MQ2007 Data Set
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Data set: Sylva

Figure 4.11: Percentage of Misordered Pairs for Sylva Data Set

Data set: HIVA

Figure 4.12: Percentage of Misordered Pairs for HIVA Data Set
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Data set: NOVA

Figure 4.13: Percentage of Misordered Pairs for NOVA Data Set

The following table illustrates the accuracy on the training sets after training with

RankNet and Gauss-Newton approximation with RankNet algorithm.

Percentage of Misordered Pairs

Data set RankNet RankNet with

Gauss Newton

MQ2008 52% 24%

MQ2007 31% 14%

SYLVA 40% 15%

HIVA 22% 7%

NOVA 39% 10%

4.3 Training with Constrained Optimization

All the previous results were obtained by applying first and second-order opti-

mization methods to minimize the cost function. However, no constraints were

imposed in the problem. The output of the artificial neural network will hardly

change for large parameters values since the output of the sigmoid function for
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each neuron will fall in the saturation region this phenomenon is called network

paralysis [18]. To show that analytically note that the derivative of the sigmoid

function goes to zero for large input values as follows:

a = σ(z)

a′ = σ′(z)

= σ(z)(1− σ(z))

= − σ(z)2

exp(z)
−→ 0 as z −→ 0

The following figure illustrates how the derivative of the sigmoid function vanishes

as the region expand to infinity:

Figure 4.14: Sigmoid Function Derivative

Algorithms 2 and 3 assumes no constraints on the parameters space. This might

lead to the network paralysis phenomena. To avoid the network paralysis, we im-

pose constraints on the parameters space to stay in the linear region of the sigmoid

function output. The linear region of the sigmoid function provides the highest

change of the ANN output for any small perturbation of the parameters.

We will choose the bounds to be [−0.7, 0.7] this selection can be justified be vi-

sualizing the output of the sigmoid function with respect to its input and the

approximated linear region of the sigmoid function output.

Limiting the values fed to the sigmoid functions to stay in the linear region impose
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Figure 4.15: Sigmoid Function Linear Region

inequality constraints to the optimization problem as follows:

min
θ

C(θ)

subject to −0.7 ≤ zl ≤ 0.7

The constraints of the above problem can be rewritten in the following matrix

form:
min
θ

C(θ)

subject to Λθ −B + s = 0

−s ≤ 0

(4.8)

where s is a slack variable and Λ, B are the parameters matrices for the case of a

single hidden layer:

Λ =


a0
T

1 0 0

−a0T −1 0 0

0 0 a1
T

1

0 0 −a1T −1

 θ =


θ1

θ1b

θ2

θ2b

B =


0.7

0.7

0.7

0.7


Then the original problem can be approximated by the following optimization

problem:

min
θ

C(θ) +∇C(θ)T δθ +
1

2
δθT ˆH(θ)δθ

subject to Λθ −B + s = 0

−s ≤ 0

(4.9)
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In an unconstrained optimization Newton method computed 4θ for the problem

(4.1) as 4θ = −H(θ)−1∇C(θ) or using the Gauss-Newton matrix approximation.

4θ = − ˆH(θ)
−1
∇C(θ). However, this approach will not guarantee the optimality

of the solution to the problem (4.9) due to the constraints imposed.

The optimal θ that minimizes problem (4.9) is computed using the theory of

quadratic programming [9]. The solution is feasible only if the Hessian matrix H

is a positive semi-definite matrix and hence invertible which is not the case in ANN.

The theory of Gauss-Newton approximation guarantees the positive semi-definiteness

of the approximation ˆH(θ) hence we can use the theory of quadratic programming

with inequality constraints to solve the problem (4.9) if we substitute the Hessian

matrix by the Gauss-Newton matrix.
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Conclusion

ANN is a powerful model that can be used in many applications. The complexity

of the ANN model makes it hard to estimate the optimal parameters. To overcome

this obstacle, we used the Gauss-Newton matrix that approximates the Hessian

matrix without the need for direct computation of the second order derivatives.

The training algorithm proposed in the previous chapter shows that second order

convex optimization techniques, like Newton’s method, are superior to the tradi-

tional back propagation algorithm for ANN training. The results indicate that

using Gauss-Newton matrix increase the accuracy and the speed of training. Such

results are major for applications that usually suffer from long training times such

as ranking.

Also, a new parameters estimation technique can use the Gauss-Newton approx-

imation in the initial iterations of the training followed by the traditional back

propagation algorithms for the rest of iterations. The benefit of this technique

is it combines the speed of the Gauss-Newton approximation at initial iterations

where their parameters are far from their optimal values, and the back propaga-

tion algorithm for fine tuning the parameters.

Training ANN with Gauss-Newton method updates the parameters with a New-

ton’s step which moves the parameters faster to the region near the minimum

value. In recent research [11], it is shown that in high-dimensional problems, such

as DNN, the training near saddle points slows down the learning dramatically.

A proposed second order optimization algorithm is used to overcome the saddle

points. Therefore, in the future, we believe that our proposed algorithm can be

generalized to overcome the saddle points issue for DNN.
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Appendix A: Hessian Matrix Derivation

Mixed derivatives for θ2 will compute the first column of the Hessian matrix H1

∂2C

∂θ2∂θ2
=
∂δ2a1

∂θ2
= δ2

∂a1

∂θ2
+ a1

∂δ2

∂θ2

= a1
∂(∂C

∂Ŷ
σ′(z2))

∂θ2
= a1(

∂C

∂Ŷ

∂σ′(z2)

∂θ2
+ σ′(z2)

∂ ∂C
∂Ŷ

∂θ2
)

= a1(
∂C

∂Ŷ
σ′′(z2)a1

T
+ σ′(z2)

∂ ∂C
∂Ŷ

∂θ2
)

∂2C

∂θ2b∂θ
2

=
∂δ2a1

∂θ2b
= δ2

∂a1

∂θ2b
+ a1

∂δ2

∂θ2b

= a1
∂(∂C

∂Ŷ
σ′(z2))

∂θ2b
= a1(

∂C

∂Ŷ

∂σ′(z2)

∂θ2b
+ σ′(z2)

∂ ∂C
∂Ŷ

∂θ2b
)

= a1(
∂C

∂Ŷ
σ′′(z2) + σ′(z2)

∂ ∂C
∂Ŷ

∂θ2b
)

∂2C

∂θ1∂θ2
=
∂δ2a1

∂θ1
= δ2

∂a1

∂θ1
+ a1

∂δ2

∂θ1

=
∂C

∂Ŷ
σ′(z2)σ′(z1)a0

T
+ a1

∂(∂C
∂Ŷ
σ′(z2))

∂θ1

=
∂C

∂Ŷ
σ′(z2)σ′(z1)a0

T
+ a1(

∂C

∂Ŷ
σ′′(z2)a0

T
θ2 + σ′(z2)

∂ ∂C
∂Ŷ

∂θ1
)

∂2C

∂θ1b∂θ
2

=
∂δ2a1

∂θ1b
= δ2

∂a1

∂θ1b
+ a1

∂δ2

∂θ1b

=
∂C

∂Ŷ
σ′(z2)σ′(z1) + a1

∂(∂C
∂Ŷ
σ′(z2))

∂θ1b

=
∂C

∂Ŷ
σ′(z2)σ′(z1) + a1(

∂C

∂Ŷ
σ′′(z2)θ2 + σ′(z2)

∂ ∂C
∂Ŷ

∂θ1b
)

Mixed derivatives for θ2b will compute the second column of the Hessian matrix

H2.
∂2C

∂θ2∂θ2b
=
∂δ2

∂θ2
=
∂C

∂Ŷ
σ′′(z2)a1

T
+ σ′(z2)

∂ ∂C
∂Ŷ

∂θ2

∂2C

∂θ2b∂θ
2
b

=
∂δ2

∂θ2b
=
∂C

∂Ŷ
σ′′(z2) + σ′(z2)

∂ ∂C
∂Ŷ

∂θ2b

∂2C

∂θ1∂θ2b
=
∂δ2

∂θ1
=
∂C

∂Ŷ
σ′′(z2)a0

T
θ2 + σ′(z2)

∂ ∂C
∂Ŷ

∂θ1

∂2C

∂θ1b∂θ
2
b

=
∂δ2

∂θ1b
=
∂C

∂Ŷ
σ′′(z2)θ2 + σ′(z2)

∂ ∂C
∂Ŷ

∂θ1b
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Mixed derivatives for θ1 will compute the third column of the Hessian matrix H3.

∂2C

∂θ2∂θ1
=
∂δ1a0

∂θ2
= σ′(z1)a0

∂2C

∂θ2b∂θ
1

=
∂δ1a0

∂θ2b
= 0

∂2C

∂θ1∂θ1
=
∂δ1a0

∂θ1
= θ2σ′′(z1)a0

T
a0

∂2C

∂θ1b∂θ
1

=
∂δ1a0

∂θ1b
= θ2σ′′(z1)a0

Mixed derivatives for θ1b will compute the third column of the Hessian matrix H4.

∂2C

∂θ2∂θ1b
=
∂δ1

∂θ2
= σ′(z1)

∂2C

∂θ2b∂θ
1
b

=
∂δ1

∂θ2b
= 0

∂2C

∂θ1∂θ1b
=
∂δ1

∂θ1
= θ2σ′′(z1)a0

T

∂2C

∂θ1b∂θ
1
b

=
∂δ1

∂θ1b
= θ2σ′′(z1)
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Appendix B: RankNet Algorithm

To apply the back propagation algorithm we need to find the partial derivatives

of the cost function with respect to the parameters θl and θlb for all the layers l.

Recalling our discussion in Chapter 2 for deriving the gradient of the cost function

C with respect to all the parameters of the neural network.

∂C

∂θ2
= δ2a1

∂C

∂θ2b
= δ2

∂C

∂θ1
= δ1a0

∂C

∂θ1b
= δ1

RankNet modifies the back propagation algorithm to generalize the learning into

pair of samples r̂i and r̂j. Let rij be the relative rank between the two samples

and let r̂ij be the relative rank between r̂i, r̂j that can be modeled as

r̂ij = γ(r̂i − r̂j)

Let the cost function C(r̂ij, rij) be the Cross-Entropy loss between the relative

rank target probability p and the relative rank posterior probability pij.

C ≡ −pij log pij − (1− pij) log(1− pij)

By substituting the pij term from equation (2.1) in equation (4.9).

C = −pij r̂ij + log(1 + exp(r̂ij))

Note that the Cross-Entropy cost function used in the RankNet algorithm is con-

vex. However it may not have a zero cost minimum and it is unbounded. In order

to derive a learning rule we will compute the derivative of the cost function C with

respect to the model parameters θ using chain rule.

∂C

∂θ
=
∂C

∂r̂i

∂r̂i
∂θ
− ∂C

∂r̂j

∂r̂j
∂θ
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Note that the partial derivative of the cost function C with respect to r̂i, r̂j can be

computed directly by differentiating equation (4.10). An interesting result is that

both derivatives are equal except a negative sign.

∂C

∂r̂i
= −pij

∂r̂ij
∂r̂i

+
∂

∂r̂i
log(1 + exp(r̂ij)) = −pij

∂r̂ij
∂r̂i

+
exp(r̂ij)

1 + exp(r̂ij)

∂r̂ij
∂r̂i

=
∂r̂ij
∂r̂i

(
exp(r̂ij)

1 + exp(r̂ij)
− pij

)
= γ

(
pij − pij

)
= −∂C

∂r̂j
= πij

This result simplifies equation (4.11) to

∂C

∂θ
= πij

(
∂r̂i
∂θ
− ∂r̂j
∂θ

)
This learning rule defined by the RankNet algorithm modifies the back propagation

algorithm to derive the gradient of the cost function C which is defined as the

Cross-Entropy loss for the relative rank estimates between any two samples with

respect to the model parameters θ.
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Appendix C: Implementation

1 def backward(self, a1, a2):

2 r12 = self.gamma * (a1[self.L] - a2[self.L])

3 p12 = self.sigmoid(r12); p12_par = self.sigmoid(self.r12_par)

4 s12 = 2 * p12_par -1

5 pi = - self.gamma * self.sigmoid(-r12)

6 deltas_1 = pi; deltas_2 = -pi

7 for i in range(self.L - 1, -1, -1):

8 deltas_prev_1 = np.multiply(np.multiply(

9 np.dot(self.thetas[i].T, deltas_1) , a1[i]), 1 - a1[i])

10 deltas_prev_2 = np.multiply(np.multiply(

11 np.dot(self.thetas[i].T, deltas_2) , a2[i]), 1 - a2[i])

12 gradient, S = self.compute_step(i, a1, a2,

13 deltas_1, deltas_2, pi, p12)

14 self.weight_update(i, gradient, S)

15 deltas_1 = deltas_prev_1[1:, :]

16 deltas_2 = deltas_prev_2[1:, :]

17 return None

18

19 def compute_step(self, i, a1, a2, deltas_1, deltas_2, pi, p12):

20 gradient_1 = np.sum(np.array([np.outer(deltas_1[:, k],

21 a1[i][:, k]) for k in range(deltas_1.shape[1])]), axis=0)

22 gradient_2 = np.sum(np.array([np.outer(deltas_2[:, k],

23 a2[i][:, k]) for k in range(deltas_2.shape[1])]), axis=0)

24 gradient = float(pi)* (gradient_1 - gradient_2)

25 H_1 = np.dot(np.transpose(gradient_1), gradient_1)

26 H_2 = np.dot(np.transpose(gradient_2), gradient_2)

27 H = self.gamma * float(pi) * float(p12) *

28 np.dot(np.transpose(gradient), gradient) + float(pi)*(H_2 - H_1)

29 S = np.transpose(np.dot(pinv(np.matrix(H)),

30 np.transpose(gradient)))

31 return gradient, S

32

33 def weight_update(self, i, gradient, S):

34 self.momentum[i] = self.mu*self.momentum[i] + S

35 self.thetas[i] = self.thetas[i] - self.alpha *

36 self.momentum[i] - self.beta * self.thetas[i]

37 return None

Listing 1: RankNet Back Propagation
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1 def train_neural_network(self, method, niter, mu, alpha, beta):

2 self.mu = mu

3 self.alpha = alpha

4 self.beta = beta

5 self.method = method

6

7 cost = [self.countMisorderedPairs(self.X, self.pairs)]

8

9 start = time.time()

10 i = 0; Stopping_Criteria = 10

11 while(np.abs(Stopping_Criteria) >= self.tol):

12 for pair in self.pairs:

13 s1 = np.array(self.X.iloc[pair[0]]).reshape((1,-1))

14 s2 = np.array(self.X.iloc[pair[1]]).reshape((1,-1))

15 a1 = self.forward(s1)

16 a2 = self.forward(s2)

17 self.backward(a1, a2)

18 Stopping_Criteria = self.countMisorderedPairs(self.X, self.pairs)

19 cost.append(Stopping_Criteria)

20 i = i + 1

21 if(i >= niter):

22 break;

23

24 m, s = divmod(time.time()-start, 60)

25 print(’Training took: ’, m, ’m’, np.round(s,2), ’s’)

26

27 return cost, i

28

29 def predict_neural_network(self, X, thetas):

30 self.thetas = thetas

31 return self.forward(X)[self.L][0].T

Listing 2: Train and Predict
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