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Abstract

In this paper, we revisit energy detection-based spectrum sensing cognitive radio systems operating

over generalised fading channels. In particular, we derive closed-form exact expressions as well as low-

and high-signal-to-noise ratio asymptotic expansions for the misdetection probability over the Fox’s

H-function fading channel. The closed-form expression is given in terms of the bivariate Fox’s H-

function and subsumes most of the expressions previously presented in the literature. Also, the obtained

asymptotic expressions are very easy to compute and can be used to get various performance insights.

We verified, theoretically and numerically, the validity of the exact expression for important special

cases previously reported in the literature, namely the Nakagami-m and the extended generalised-K

(EGK) fading distributions. Numerical results also demonstrate the high accuracy of the asymptotic

expansions.
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I. INTRODUCTION

Among the different signal detection schemes, energy detection (ED) has stood out due to

its simplicity and ability to sense the unknown signal without any prior knowledge about its

characteristics nor about the channel gain [1]. The main idea of ED is comparing the received

energy over an observation window with a predefined threshold and then deciding whether a

specific signal exists or not. While ED is preferable over other detection schemes, it is severely

affected by fading and its performance becomes poor at low signal-to-noise ratios (SNRs).

With the advent of cognitive radio systems as a possible solution for the spectrum scarcity

problem, lots of works have been devoted to analyze the performance of ED spectrum sens-

ing when operating over different fading models. The classical way for obtaining the average

probability of detection over a specific fading distribution is through averaging the probability

of detection of the additive white Gaussian noise (AWGN) channel over the probability density

function (PDF) of the output SNR (e.g., [2]). This approach works well with many fading models

[1], [3], [4]. However, with more complicated fading models, the resulting integrals become

prohibitively complicated and rarely result in closed-form results. Recently, a new approach has

been presented in [5] for analyzing the performance of ED. This approach is based on using

the contour integral representation of the Marcum-Q function along with the moment generating

function (MGF) of the SNR. Results pertaining to Rician and Nakagami-m fading were then

presented but in terms of infinite series. Beside using the MGF approach with the classical fading

models, it has also been used with more generalised fading models in [6], [7], [8], [9], [10],

[11] and [12].

From the above discussion, it is clear that the literature lacks a unified approach that can be

used to obtain the probability of detection over the ever-increasing number of fading channel

models. Towards that end, in this paper, we derive a novel closed-form generalised expression

and asymptotic expansions for the probability of misdetection over Fox’s H-fading. The Fox’s

H-distribution has been very recently used as a generalised fading model [13]. In [14], the

authors showed that it actually models fading in vehicle-to-vehicle (V2V) communication better

than other ordinary fading distributions. Our derivation is based on the framework we developed

previously in [15] for calculating the symbol error rate (SER) over fading channels. The proba-

bility of misdetection can be expressed in the form of a double Mellin-Barnes integral, which can
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then be transformed into a bivariate Fox’s H-function. To the best of our knowledge, the resulting

expression is the most generalised and unified form, which can handle the average probability of

detection over most of the well-known fading distributions. The average probability of detection

over two special cases of the Fox’s H-fading are then discussed, namely, the Nakagami-m and

the EGK. Similar to our previous work in [15, 16], we also derive asymptotic expansions of the

misdetection probability for large and small values of the average SNR.

The rest of the paper is organized as follows. The unified approach for the probability of

misdetection computation is presented in the following section. It is then applied to the case of

H-function fading in Section III where special cases are also considered and shown to reduce to

those previously studied in the literature. Asymptotic expansions at low and high average SNRs

are addressed in section IV. Numerical results are then presented and discussed in Section V

before the paper is finally concluded in Section VI.

II. THE AVERAGE PROBABILITY OF DETECTION: A UNIFIED APPROACH

The conventional method of evaluating P d over fading channels is through

P d =

∫ ∞

0

Pd(γ)fγ(γ)dγ. (1)

For the AWGN channel, Pd(γ), has been derived in [1, Eq. (5)] and is given by Pd(γ) =

Qu

(√
2γ,

√
λ
)

where u = WT , W is the one-sided bandwidth, T is the observation time

and λ is the threshold used in ED, which can be selected based on the required probability of

false alarm Pf according to Pf = Γ(u, λ/2)/Γ(u) where Γ(., .) is the upper incomplete Gamma

function. Also, Qu(.) is the generalised Marcum Q-function, defined by [17, Eq. (4.74)]

Qu(α, β) =
1

αu−1

∫ ∞

β

xu exp

(
−x2 + α2

2

)
Iu−1(αx)dx, (2)

where Ik(·) is the kth-order modified Bessel function of the first kind. It is actually more

convenient to derive a closed-form expression for the misdetection probability, Pm = 1 − P d

since limγ→∞ Pd(γ) = 1 and hence, Pd(γ) does not have a Mellin transform, which will be the

primary tool of our analysis. It is straightforward to show that the Pm is given by

Pm =

∫ ∞

0

Pm(γ)fγ(γ)dγ, (3)
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where Pm(γ) = 1−Pd(γ). Using the Parseval’s relation for the Mellin transform [18, Eq. (2.31)],

the misdetection probability is given by

Pm =
1

2πi

∫ σ+i∞

s=σ−i∞
P ∗
m(1− s)f ∗(s)ds, (4)

where P ∗
m(s) and f ∗(s) are the Mellin transforms of Pm(γ) and fγ(γ), respectively, and σ is

a real constant, which lies in the domain of convergence (DOC) of both f ∗(s) and P ∗
m(1− s).

Fortunately, the Mellin transform of fγ(γ) can be straightforwardly derived for the H-function

and its special cases. Meanwhile, the Mellin transform of Pm(γ) is given in the following

theorem.

Theorem 1. If 0 < λ < ∞, the Mellin transform of Pm(γ) is given by

P ∗
m(z) =

1

2πi

Γ(z)

Γ(u− z)

∫ σ2+i∞

w=σ2−i∞

Γ(−w)Γ(u− z + w)

Γ(u+ 1 + w)

(
λ

2

)u+w

dw, 0 < �{z} < u, (5)

where σ2 is a real constant such that �{z} − u < σ2 < 0.

Proof. Starting with Pm(γ) = 1−Qu(
√
2γ,

√
λ) and substituting α =

√
2γ and β =

√
λ in (2),

we arrive at

Pm(γ) = (2γ)−(1−u)/2e−γ

∫ √
λ

0

xue−x2/2Iu−1(x
√

2γ)dx. (6)

Hence, we have

P ∗
m(z) =

∫ ∞

γ=0

Pm(γ)γ
z−1dγ =

∫ ∞

γ=0

2−(u−1)/2γz−(u+1)/2e−γ

∫ √
λ

x=0

xue−x2/2Iu−1(x
√

2γ)dxdγ

=

∫ √
λ

x=0

xue−x2/2

∫ ∞

γ=0

2−(u−1)/2γz−(1+u)/2e−γIu−1(x
√

2γ)dγdx. (7)

Using [19, Eq. (6.643.2)] and [19, Eq. (9.220.3)], the inner integral in the previous expression

converges only for �{z} > 0 and it reduces to (Γ(z)/Γ(u))(x/2)u−1
1F1(z; u; x

2/2) where

1F1(.; .; .) is the confluent hypergeometric function. Consequently,

P ∗
m(z) =

Γ(z)

Γ(u)

∫ √
λ

x=0

21−ux2u−1e−x2/2
1F1(z; u; x

2/2)dx (8a)

=
Γ(z)

Γ(u− z)

∫ √
λ

x=0

21−ux2u−1 1

2πi

∫ σ2+i∞

w=σ2−i∞

Γ(−w)Γ(u− z + w)

Γ(u+ w)

(
x2

2

)w

dwdt, (8b)

in which we used the Mellin-Barnes definition of the confluent hypergeometric function [20, Eq.

13.4.16] in deriving (8b). Note that the Mellin-Barnes integral in (8b) is valid only if �{z} < u.
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Moreover, σ2 must be chosen such that �{z}−u < σ2 < 0. Interchanging the order of integrations

in (8b) and performing the integration with respect to x, we easily derive the required result as

long as λ < ∞.

Based on Theorem 1, substituting from (5) into (4), we derive the following final expression

for Pm.

Pm =
1

(2πi)2

∫ σ+i∞

s=σ−i∞

∫ σ2+i∞

w=σ2−i∞

Γ(1− s)

Γ(u− s+ 1)

Γ(−w)Γ(u− s+ 1 + w)

Γ(u+ 1 + w)

(
λ

2

)u+w

dwf ∗(s)ds,

(9)

where σ lies in the intersection of the DOC of f ∗(s) and the interval ]1− u, 1[. In addition, σ2

must satisfy that 1 − �{s} − u < σ2 < 0. The above expression is the main formula that will

be used in deriving Pm in this work.

III. APPLICATION TO THE FOX’S H -FUNCTION FADING CHANNEL

The Fox’s H-function is a general fading distribution whose PDF is defined by [21]

fγ(γ) = KHm,n
p,q

⎛
⎝Cγ

∣∣∣∣∣∣
(aj, Aj)j=1:p

(bj, Bj)j=1:q

⎞
⎠ , (10)

where the constants C > 0 and K > 0 depend on the average SNR γ̄ and are chosen such that∫∞
γ=0

fγ(γ)dγ = 1. Using the definition of the H-function in [21], the Mellin transform of fγ(γ)

is directly obtained as

f ∗(s) = KC−s

∏m
j=1 Γ(bj +Bjs)

∏n
j=1 Γ(1− aj − Ajs)]∏q

j=m+1 Γ(1− bj − Bjs)
∏p

j=n+1 Γ(aj + Ajs)
. (11)

A closed-form expression for the probability of misdetection can now be obtained by substituting

(11) and (5) into (4) yielding

Pm =
K (

λ
2

)u
(2πi)2

∫ σ1+i∞

s=σ1−i∞

∫ σ2+i∞

w=σ2−i∞
Ξ(s)

Γ(1− s)Γ(−w)Γ(u− 1 + s+ w)

Γ(u+ s− 1)Γ(u+ 1 + w)

(
2

λ

)−w

C−sdwds,

(12)

where

Ξ(s) =

∏m
j=1 Γ(bj +Bjs)

∏n
j=1 Γ(1− aj − Ajs)∏q

j=m+1 Γ(1− bj − Bjs)
∏p

j=n+1 Γ(aj + Ajs)
, (13)

σ1 and σ2 are real constants such that max
(
−minj=1,...,m

(
�
{

bj
Bj

})
, 1− u

)
< σ1 < 1 and

1− σ1 − u < σ2 < 0. Often, it is desired to have the multiplicative constant proportional to the
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ratio K/C because it always depends on the parameters of the fading distribution only. This can

be achieved by performing the change of variables s = s′ + 1 in the previous expression and

using the definition of the bivariate Fox’s H-function [21] to obtain

Pm =
K
C

(
λ

2

)u

×

H0,1;1,0;n+1,m
1,0;0,2;q,p+2

⎛
⎝λ/2

1/C

∣∣∣∣∣∣
(1− u : 1, 1) − (1− bj − Bj, Bj)j=1,...,q

− (0, 1), (−u, 1) (0, 1), (1− aj − Aj, Aj)j=1,...,p, (1− u, 1)

⎞
⎠ ,

(14)

which represents a closed-form expression for the probability of misdetection. It is worth men-

tioning here that efficient implementations of the bivariate H-function using Python and MAT-

LAB have already been presented in [16, 22], respectively. To the best of the authors’ knowledge,

(14) is the most general expression for Pm ever presented in the literature. It subsumes most,

if not all, of the expressions previously presented for different fading distributions. In Table I,

we state some common fading distributions together with their corresponding expressions for

Pm as special cases of (14). In Appendices A and B, we prove the equivalence of our derived

expressions for the cases of Nakagami-m and EGK distributions to those previously found in

the literature.

It is important to note that although the expression in (14) is very general, its evaluation, in

fact, requires numerical integration, which limits its practical value. Moreover, when the value of

Pm is very small, the evaluation is subject to numerical underflow, which adds another difficulty

in evaluating the integral. Therefore, we present asymptotic expansions for Pm when γ̄ is either

very large (≥ 20 dB) or very low (≤ 0 dB) in the next section.

IV. ASYMPTOTIC EXPANSIONS FOR THE PROBABILITY OF MISDETECTION

The main idea for deriving the asymptotic expansions is to represent the integration in (12)

as a single integral in s and evaluating the residues at the most significant poles of the integrand

[23]. Towards that end, we note that the inner integral w.r.t. w is a Mellin-Barnes representation

of the confluent hypergeometric function [19]. Hence, Pm can be written as

Pm =
K (

λ
2

)u
2πi

∫ σ1+i∞

s=σ1−i∞
Ξ(s)

Γ(1− s)

Γ(u+ 1)
1F1

(
s+ u− 1; u+ 1;−λ

2

)
C−sds. (15)

April 11, 2016 DRAFT



7

TABLE I

EXPRESSIONS OF Pm FOR DIFFERENT SPECIAL CASES OF THE FOX’S H -FUNCTION DISTRIBUTION.

Fading distribution fγ(γ) and Pm

Rayleigh
fγ(γ) =

1

γ̄
exp

(
−γ

γ̄

)
=

1

γ̄
H1,0

0,1

⎛
⎝γ

γ̄

∣∣∣∣∣∣
−

(0, 1)

⎞
⎠

Pm =
(
λ
2

)u
H0,1;1,0;1,1

1,0;0,2;1,2

⎛
⎝λ/2

γ̄

∣∣∣∣∣∣
(1− u : 1, 1) − (0, 1)

− (0, 1), (−u, 1) (0, 1), (1− u, 1)

⎞
⎠

Maxwell
fγ(γ) =

√
27

2πγ̄3
exp

(
−3γ

2γ̄

)
=

3√
πγ̄

H1,0
0,1

⎛
⎝3γ

2γ̄

∣∣∣∣∣∣
−

( 1
2
, 1)

⎞
⎠

Pm = 1√
π

(
λ
2

)u
H0,1;1,0;1,1

1,0;0,2;1,2

⎛
⎝λ/2

2γ̄

∣∣∣∣∣∣
(1− u : 1, 1) − ( 1

2
, 1)

− (0, 1), (−u, 1) (0, 1), (1− u, 1)

⎞
⎠

Nakagami-m
fγ(γ) =

1

Γ(m)

(
m

γ̄

)m

γm−1 exp

(
−m

γ

γ̄

)
=

m

Γ(m)γ̄
H1,0

0,1

⎛
⎝mγ

γ̄

∣∣∣∣∣∣
−

(m− 1, 1)

⎞
⎠

Pm = 1
Γ(m)

(
λ
2

)u
H0,1;1,0;1,1

1,0;0,2;1,2

⎛
⎝ λ/2

γ̄/m

∣∣∣∣∣∣
(1− u : 1, 1) − (1−m, 1)

− (0, 1), (−u, 1) (0, 1), (1− u, 1)

⎞
⎠

Weibull
fγ(γ) = α

(
β

γ̄

)α

γα−1 exp

(
−
(
βγ

γ̄

)α)
=

β

γ̄
H1,0

0,1

⎛
⎝βγ

γ̄

∣∣∣∣∣∣
−

(1− 1
α
, 1
α
)

⎞
⎠ , β = Γ

(
1 +

1

α

)

Pm =
(
λ
2

)u
H0,1;1,0;1,1

1,0;0,2;1,2

⎛
⎝λ/2

γ̄/β

∣∣∣∣∣∣
(1− u : 1, 1) − (0, 1

α
)

− (0, 1), (−u, 1) (0, 1), (1− u, 1)

⎞
⎠

Generalised Gamma
fγ(γ) =

ξ

Γ(μ)

(
β

γ̄

)ξμ

γξμ−1 exp

(
−
(
βγ

γ̄

)ξ
)

=
β

Γ(μ)γ̄
H1,0

0,1

⎛
⎝βγ

γ̄

∣∣∣∣∣∣
−

(μ− 1
ξ
, 1
ξ
)

⎞
⎠ , β =

Γ
(
μ+ 1

ξ

)
Γ(μ)

Pm = 1
Γ(μ)

(
λ
2

)u
H0,1;1,0;1,1

1,0;0,2;1,2

⎛
⎝λ/2

γ̄/β

∣∣∣∣∣∣
(1− u : 1, 1) − (1− μ, 1

ξ
)

− (0, 1), (−u, 1) (0, 1), (1− u, 1)

⎞
⎠

EGK

fγ(γ) =
ξ

Γ(μ)Γ(μs)

(
ββs

γ̄

)ξμ

γαμ−1Γ

(
μs − ξμ

ξs
, 0,

(
ββsγ

γ̄

)ξ

,
ξ

ξs

)

=
ββs

Γ(μ)Γ(μs)γ̄
H2,0

0,2

⎛
⎝ββsγ

γ̄

∣∣∣∣∣∣
−

(μ− 1
ξ
, 1
ξ
), (μs − 1

ξs
, 1
ξs
)

⎞
⎠

Pm = (λ/2)u

Γ(μ)Γ(μs)
H0,1;1,0;1,2

1,0;0,2;2,2

⎛
⎝ λ/2

γ̄/(ββs)

∣∣∣∣∣∣
(1− u : 1, 1) − (1− μ, 1/ξ), (1− μs, 1/ξs)

− (0, 1), (−u, 1) (0, 1), (1− u, 1)

⎞
⎠

The confluent hypergeometric function is an entire function, i.e., it does not impose any pole.

Hence, we have three sets of poles in the integrand of (15): the poles of the factors Γ(bj +Bjs),

which are given by s = −(bj + k)/Bj for j = 1, . . . ,m where k ∈ {0, 1, 2, . . .}, the poles of

the factors Γ(1 − aj − Ajs), which are given by s = (1 − aj + k)/Aj for j = 1, . . . , n where

k ∈ {0, 1, 2, . . .} and the poles of Γ(1−s), which are given by s = k+1 where k ∈ {0, 1, 2, . . .}.
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Note that the first set of poles lies to the left of the integration path while the other two sets lie

to its right. Therefore, we should consider either the first set alone or the second and third ones

alone. The choice of poles depends on the values of γ̄.

For very high values of γ̄ (γ̄ → ∞), we require to have positive powers of C in the asymptotic

expansion of Pm since C is inversely proportional to γ̄. It can be conjectured that the required

expansion is obtained by evaluating the residues of the integral in (15) at the first set of poles

and a formal proof of this statement is given in [23]1. First, let us consider the simple scenario

where all the poles of the first set are simple, i.e., (bj1 + k1)/Bj1 	= (bj2 + k2)/Bj2 for j1 	= j2

and any non-negative integers k1, k2. For H-functions with m = 1, this is obviously guaranteed.

Fortunately, this is the case for the vast majority of fading distributions of interest. Thus, the

asymptotic expansion is given by

Pm ∼ K
(
λ

2

)u m∑
j=1

∞∑
k=0

Γ(1 +
bj+k

Bj
)

Γ(u+ 1)
1F1

(
−bj + k

Bj

+ u− 1; u+ 1;−λ

2

)
ej,kC

bj+k

Bj , (16)

where the constants ej,k are given by

ej,k = Res

(
Ξ(s),−bj + k

Bj

)
=

(−1)k

k!Bj

∏m
j′=1
j′ �=j

Γ(bj′ − Bj′
bj+k

Bj
)
∏n

j′=1 Γ(1− aj′ + Aj′
bj+k

Bj
)

∏q
j′=m+1 Γ(1− bj′ +Bj′

bj+k

Bj
)
∏p

j′=n+1 Γ(aj′ − Aj′
bj+k

Bj
)
.

(17)

Practically, for very high average SNR, e.g., γ̄ ≥ 20 dB, the first few terms of the series w.r.t.

k dominate the sum yielding the following simplified expression.

Pm ∼ K
(
λ

2

)u m∑
j=1

K−1∑
k=0

Γ(1 +
bj+k

Bj
)

Γ(u+ 1)
1F1

(
−bj + k

Bj

+ u− 1; u+ 1;−λ

2

)
ej,k
Bj

C
bj+k

Bj , (18)

where typically K = 2 when γ̄ ≥ 20 dB.

For the case of H-functions with m > 1, there is a possibility that poles from different Gamma

factors coincide yielding multiple poles. We already considered a similar situation for another

problem in [16]. Due to space limitations, we state the asymptotic expansion of Pm for this case

in the following theorem without a proof (for more details, refer to [16, Theorem 2] or [23]).

1In fact, asymptotic expansions are given only for the H-function in [23]. However, it can be shown that the confluent

hypergeometric function does not influence the asymptotic behavior because it grows much slower than the gamma functions

in Ξ(s) as |s| → ∞.
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Theorem 2. Consider the H-function and define sj,k ≡ −(bj + k)/Bj where j = 1, . . . ,m and

k ∈ {0, 1, 2, . . .}. Let S be the unique set of the poles sj,k. For each unique pole sj,k ∈ S,

define the sets of indexes L(sj,k) = {l : sl,r = sj,k, l ∈ {1, . . . ,m}, r ∈ {0, 1, 2, . . .}} and

R(sj,k) = {r : sl,r = sj,k, l ∈ {1, . . . ,m}, r ∈ {0, 1, 2, . . .}} and let N(sj,k) = |L(sj,k)| be the

multiplicity of the pole sj,k. Then, the asymptotic expansion of Pm is given by

Pm ∼ K
(
λ

2

)u ∑
sj,k∈S

Γ(1− sj,k)

Γ(u+ 1)
1F1

(
sj,k + u− 1; u+ 1;−λ

2

)
e(sj,k) [log(C)]N(sj,k)−1 C−sj,k ,

(19)

where

e(sj,k) =
(−1)N(sj,k)−1

N(sj,k)!

∏
r∈R(sj,k)

(−1)r

r!∏
l∈L(sj,k) Bl

∏
j′ /∈L(sj,k) Γ(bj′ +Bj′sj,k)

∏n
j′=1 Γ(1− aj′ − Aj′sj,k)]∏q

j′=m+1 Γ(1− bj′ − Bj′sj,k)
∏p

j′=n+1 Γ(aj′ + Aj′sj,k)
.

(20)

The asymptotic expansions for the common distributions treated in Table I are shown in Table

II. It is evident that the given expressions are very easy to compute and do not require the

evaluation of a numerical integration. Moreover, when the false alarm probability is very close

to either 0 or 1, simpler relations between Pm and λ can be established. This is achieved by

further approximating the confluent hypergeometric functions in the given expressions for very

small values of λ (when Pf is close to 1) or very large values of λ (when Pf is close to 0).

The case of very small γ̄ (γ̄ → 0) is also of interest because it is important to be able to detect

the presence of the primary user (PU) even in very low SNRs. In this case, Pm is obtained by

evaluating the residues at the poles on the right of the integration path. Generally, the asymptotic

expansion is given by

Pm ∼ −K
(
λ
2

)u
Γ(u+ 1)

∑
s′∈S

1F1

(
u+ s′ − 1; u+ 1;−λ

2

)
Res (Ξ(s)Γ(1− s), s′)C−s′ , (21)

where S = {1, 2, . . .} ∪ {k+1−aj
Aj

}j=1,...,n, k=0,1,... and the minus sign is because the contour of

integration is circling the poles in the clock-wise direction. Again, there is a possibility that

some poles are not simple, which may complicate the final expressions. Fortunately, in all the

fading distributions of interest, we have n = 0, i.e., there are no Γ(1−aj −Ajs) factors. Hence,

we are left only with the poles of the factor Γ(1 − s). In this case, the asymptotic expansion
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TABLE II

ASYMPTOTIC EXPANSIONS OF Pm FOR DIFFERENT SPECIAL CASES OF THE FOX’S H - FADING DISTRIBUTION WHEN

γ̄ → ∞.

Fading distribution Asymptotic expression for Pm

Rayleigh Pm ∼
(
λ
2

)u
Γ(u+ 1)

K−1∑
k=0

(−1)k1F1

(
u− k − 1;u+ 1;−λ

2

)
γ̄−k−1

Maxwell Pm ∼ 2√
π

(
λ
2

)u
Γ(u+ 1)

K−1∑
k=0

(−1)kΓ(k + 3
2
)

k!
1F1

(
u− k − 3

2
;u+ 1;−λ

2

)(
2γ̄

3

)−k− 3
2

Nakagami-m Pm ∼ 1

Γ(m)

(
λ
2

)u
Γ(u+ 1)

K−1∑
k=0

(−1)kΓ(k +m)

k!
1F1

(
u− k −m;u+ 1;−λ

2

)( γ̄

m

)−k−m

Weibull Pm ∼ α

(
λ
2

)u
Γ(u+ 1)

K−1∑
k=0

(−1)kΓ(αk + α)

k!
1F1

(
u− αk − α;u+ 1;−λ

2

)(
γ̄

β

)−αk−α

Generalised Gamma Pm ∼ ξ

Γ(μ)

(
λ
2

)u
Γ(u+ 1)

K−1∑
k=0

(−1)kΓ(ξk + ξμ)

k!
1F1

(
u− ξk − ξμ;u+ 1;−λ

2

)(
γ̄

β

)−ξk−ξμ

EGK

Pm ∼ 1

Γ(μ)Γ(μs)

(
λ
2

)u
Γ(u+ 1)

×

∑
sj,k∈S

Γ(1− sj,k)1F1

(
u+ sj,k − 1;u+ 1;−λ

2

)
e(sj,k)

[
log

(
ββs

γ̄

)]N(sj,k)−1 (
γ̄

ββs

)1−sj,k

where S = {ξj(μj+k) : j ∈ {1, 2}, k ∈ {0, 1, . . . ,K−1}}, μ1 = μ, ξ1 = ξ, μ2 = μs, ξ2 =

ξs, and e(sj,k) is given by (20).

greatly simplifies to

Pm ∼ K
(
λ
2

)u
Γ(u+ 1)

∞∑
k=1

1F1

(
u+ k − 1; u+ 1;−λ

2

)
Ξ(k)

(−1)k−1

(k − 1)!
C−k. (22)

Similar to the case of high γ̄, the first few terms dominate the above sum when γ̄ is very small

(generally below 0 dB). Based on our observations, when γ̄ is extremely low, we may set K = 2

in the previous expression, which will result in the following interesting expression:

Pm ∼
(
λ
2

)u
Γ(u+ 1)

[
1F1

(
u; u+ 1;−λ

2

)
− e−λ/2γ̄

]
, (23)

where we used KΞ(1)C−1 = f ∗(1) = 1, KΞ(2)C−2 = f ∗(2) = γ̄, and 1F1(a, a, z) = ez. That is,

the performance of the detection system will be almost independent of the fading distribution if

γ̄ is extremely low, which is quite expected. The general asymptotic expressions for low γ̄ are

given in Table III.
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TABLE III

ASYMPTOTIC EXPANSIONS OF Pm FOR DIFFERENT SPECIAL CASES OF THE FOX’S H - FADING DISTRIBUTION WHEN γ̄ → 0.

Fading distribution Asymptotic expression for Pm

Rayleigh Pm ∼
(
λ
2

)u
Γ(u+ 1)

K∑
k=1

1F1

(
u+ k − 1;u+ 1;−λ

2

)
(−1)k−1γ̄k−1

Maxwell Pm ∼ 2√
π

(
λ
2

)u
Γ(u+ 1)

K∑
k=1

1F1

(
u+ k − 1;u+ 1;−λ

2

)
Γ

(
k +

1

2

)
(−1)k−1

(k − 1)!

(
2γ̄

3

)k−1

Nakagami-m Pm ∼ 1

Γ(m)

(
λ
2

)u
Γ(u+ 1)

K∑
k=1

1F1

(
u+ k − 1;u+ 1;−λ

2

)
Γ(k +m− 1)

(−1)k−1

(k − 1)!

( γ̄

m

)k−1

Weibull Pm ∼
(
λ
2

)u
Γ(u+ 1)

K∑
k=1

1F1

(
u+ k − 1;u+ 1;−λ

2

)
Γ

(
k

α
+ 1− 1

α

)
(−1)k−1

(k − 1)!

(
γ̄

β

)k−1

Generalised Gamma Pm ∼ 1

Γ(μ)

(
λ
2

)u
Γ(u+ 1)

K∑
k=1

1F1

(
u+ k − 1;u+ 1;−λ

2

)
Γ

(
k

ξ
+ μ− 1

ξ

)
(−1)k−1

(k − 1)!

(
γ̄

β

)k−1

EGK

Pm ∼ 1

Γ(μ)Γ(μs)

(
λ
2

)u
Γ(u+ 1)

×
K∑

k=1

1F1

(
u+ k − 1;u+ 1;−λ

2

)
Γ

(
μ− 1

ξ
+

k

ξ

)
Γ

(
μs − 1

ξs
+

k

ξs

)
(−1)k−1

(k − 1)!

(
γ̄

ββs

)k−1

V. NUMERICAL RESULTS

In this section, we verify the accuracy of our derived expressions. In all figures, the reference

values of Pm were obtained by numerically evaluating the integration in (1) (after subtracting

from one) using 5000 sample values of the integrand and 100 points for the computation of the

H-function whenever necessary. The values of our expression were computed using the Python

implementation of the multivariate-H function in [16] and it is based on a grid of 2500 sample

points (50 × 50). The number of points was chosen such that both methods provide similar

accuracy. The reference values in all cases are shown as solid curves whereas the values of our

expressions are denoted by markers.

Fig. 1 shows the complementary receiver operating characteristics (ROC) for various simple

fading distributions with u = 1.5 and γ̄ = 10 dB. It is clear from the figure that the derived

closed-form expression in (14) is indistinguishable from the result obtained via the integration

in (1). It is worth mentioning here that our derived expression is calculated much faster than

the numerical integration. Specifically, on a 3 GHz, quad-core, 8 GB RAM laptop, the average

computation time of the numerical integration method was 7.98 seconds per point versus merely

0.038 seconds for our derived expression. This amounts to a speed factor of approximately 209
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Fig. 1. Exact complementary ROC curves for different simple fading distributions with u = 1.5 and γ̄ = 10 dB. Solid lines

represent numerical integration while the markers represent the novel derived expression.

without sacrificing the accuracy.

Figs. 2 and 3 show both the exact Pm from (1) with γ̄ = 20 dB as well as the high-SNR

asymptotic expansion in (18) for simple and composite fading distributions with u = 5 and

u = 1.5, respectively. Note that the case of colliding poles occurs in the Weibull-Exponential

fading distribution only. The results show that the high-SNR asymptotic expansion matches very

well the exact expression and they are also hardly distinguishable from each other.

As for the behavior of the low-SNR asymptotic expansion, we choose to investigate this over

the two Fox-Cox models used in [14, Table IV] (See Table IV). These models were obtained via

curve fitting to real measurements of scaled multipath fading of a 5.2 GHz band V2V channel

and they correspond to γ̄ of about −4 dB, which makes them a very good candidate to test our

proposed low-SNR asymptotic expansion. Fig. 4 shows the exact and asymptotic expansion for
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Fig. 2. Exact and high-SNR asymptotic complementary ROC curves for different simple fading distributions with u = 5 and

γ̄ = 20 dB.

TABLE IV

FOX H -FITS TO MEASUREMENTS FOR SCALED MULTI-PATH FADING IN V2V COMMUNICATION.

m n p q K C {(aj , Aj)} {(bj , Bj)}
Measurements 1 3 0 0 3 0.225 5.774 - {(1.5, 0.5), (0.4, 0.5), (4.5, 0.5)}
Measurements 2 3 0 0 3 2.874 3.940 - {(0.45, 0.5), (2, 0.5), (1.8, 0.2)}

different choices of u. It is clear that they indeed match well over a significant portion of the

ROC curve. Moreover, the ROC curves for different fading channels get closer to each other,

which is consistent with our observation near the end of Section IV.
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Fig. 3. Exact and high-SNR asymptotic complementary ROC curves for different composite fading distributions with u = 1.5

and γ̄ = 20 dB.

VI. CONCLUSION

We presented a Mellin transform based unified approach for calculating the probability of

misdetection of the PU in a cognitive radio network. We then applied this approach to the very

general case of H-function fading and obtained a closed-form expression for the probability of

detection in terms of the bivariate H-function. The obtained expression was shown to reduce to

those previously obtained in the literature for Nakagami-m and EGK fading and the proposed

approach has been shown to be a powerful and fast tool for performance evaluation over different

fading channels. We also proposed low- and high-SNR asymptotic expansions that are much

simpler to calculate and were shown to provide very good approximation for Pm. Moreover,

they can be easily used for comparing the performance over different fading channels for high
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Fig. 4. Exact and low-SNR asymptotic complementary ROC curves for the Fox-Cox model in [14, Table IV] with various

values of u.

average SNRs.

Though there are some fading distributions that are not special cases of the Fox’s H-function

such as the Rice and the log-normal distributions, we believe that the unified framework we

developed in Section II will still be applicable to those cases. The main difference, however, is

that the obtained expressions will be in terms of the tri-variate Fox’s H-function instead.

APPENDIX A

THE NAKAGAMI-m FADING DISTRIBUTION

The representation of the Nakagami-m distribution as an H-function as well as the correspond-

ing expression for Pm are shown in Table I. It can be shown that this expression is equivalent
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to that in [1, Eq. (20)] for integer u by first proving the following lemma.

Lemma 1. For the Nakagami-m distribution, we have

Pm(u) = Pm(u− 1)−
(
1 +

γ̄

m

)−m

e−λ/2 (λ/2)
u−1

Γ(u)
1F1

(
m; u;

λγ̄

2(m+ γ̄)

)
, (24)

where Pm(u) is the average probability of misdetection at a certain time-bandwidth product u

and u > 1.

Proof. Using the definition of the multivariate H-function, it is straightforward to show that

Pm =
(λ/2)u

Γ(m)(2πi)2

∫∫
Γ(−s)Γ(−w)Γ(u+ s+ w)Γ(m+ s)

Γ(u+ s)Γ(u+ 1 + w)

(
λ

2

)w ( γ̄

m

)s

dsdw

=
(λ/2)u

Γ(m)(2πi)

∫
Γ(−s)Γ(m+ s)

Γ(u+ 1)
1F1

(
u+ s; u+ 1;−λ

2

)( γ̄

m

)s

ds. (25)

With the aid of [19, Eq. (9.212.2)] and performing some algebraic manipulations, we can show

that

(λ/2)u

Γ(u+ 1)
1F1

(
u+ s; u+ 1;−λ

2

)
=

(λ/2)u−1

Γ(u)

[
1F1

(
u− 1 + s; u;−λ

2

)
− 1F1

(
u+ s; u;−λ

2

)]
.

(26)

Substituting (26) into (25), we can prove that

Pm(u) = Pm(u− 1)− (λ/2)u−1

Γ(m)(2πi)

∫
Γ(−s)Γ(m+ s)

Γ(u)
1F1

(
u+ s; u;−λ

2

)( γ̄

m

)s

ds

= Pm(u− 1)− (λ/2)u−1e−λ/2

Γ(m)(2πi)

∫
Γ(−s)Γ(m+ s)

Γ(u)
1F1

(
−s; u;

λ

2

)( γ̄

m

)s

ds, (27)

in which we used the Kummer transformation of the confluent hypergeometric function in

deriving the last line. Substituting 1F1

(−s; u; λ
2

)
by its Mellin-integral representation, we get

Pm(u) = Pm(u− 1)− (λ/2)u−1e−λ/2

Γ(m)(2πi)2

∫∫
Γ(−w)Γ(w − s)Γ(m+ s)

Γ(u+ w)

(
−λ

2

)w ( γ̄

m

)s

dsdw

= Pm(u− 1)− (λ/2)u−1e−λ/2

Γ(m)(2πi)

∫
Γ(−w)

Γ(u+ w)

(
−λ

2

)w (
1

2πi

∫
Γ(w − s)Γ(m+ s)

( γ̄

m

)s

ds

)
dw.

(28)

The inner integral between parenthesis in the previous expression is equal to

1

2πi

∫
Γ(w − s)Γ(m+ s)

( γ̄

m

)s

ds = 1F0

(
m+ w;−;− γ̄

m

)
Γ(m+ w)

( γ̄

m

)w

= Γ(m+ w)
(
1 +

γ̄

m

)−m−w ( γ̄

m

)w

. (29)
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Substituting (29) into (28) and applying the Mellin-Barnes integral representation of the confluent

hypergeometric function to the resultant expression, the lemma follows.

When u is a positive integer, we can prove that Pm is given by the following theorem.

Theorem 3. If u is a positive integer, then

Pm(u) = Pm(1)−
(
1 +

γ̄

m

)−m

e−λ/2

u−1∑
k=0

(λ/2)k

k!
1F1

(
m; k + 1;

λγ̄

2(m+ γ̄)

)
, (30)

where

Pm(1) = 1− 1

Γ(m)

(
m

γ̄

)m ∫ ∞

γ=0

γm−1e−mγ/γ̄Q1(
√

2γ,
√
λ)dγ. (31)

Proof. By successive application of Lemma 1, we can easily show that for a positive integer

n ≤ u− 1

Pm(u) = Pm(u− n)−
(
1 +

γ̄

m

)−m

e−λ/2

n∑
k′=1

(λ/2)u−k′

Γ(u− k′ + 1)
1F1

(
m; u− k′ + 1;

λγ̄

2(m+ γ̄)

)
.

(32)

Since u is a positive integer, we have Γ(u − k′ + 1) = (u − k′)!. Setting n = u − 1 and

performing the change of variables k = u − k′ in the previous expression, the first part of the

theorem is proved. The expression of Pm(1) is proved by substituting in (3) with Pm(γ) =

1−Q1(
√
2γ,

√
λ).

The expression in (30) can be shown to exactly match that given in [1, Eq. (20)] after some

straightforward manipulations.

APPENDIX B

THE EGK DISTRIBUTION

By substituting the EGK parameters (see Table I) in (14), we obtain the corresponding

expression in Table I. An alternative form is given in [12] as

Pm =
∞∑
n=0

Γl(n+ u, λ/2)

n!Γ(n+ u)

1

Γ(ms)Γ(m)
H2,1

1,2

⎛
⎝βsβ

γ̄

∣∣∣∣∣∣
(1− n, 1)

(ms,
1
ξs
), (m, 1

ξ
)

⎞
⎠ , (33)

where Γl(., .) denotes the lower incomplete gamma function. A proof of the equivalency of the

entry in Table I and (33) is as follows. Using the definition of the multivariate H-function and
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performing simple manipulations, we can prove that the entry in Table I reduces to

Pm =
1

2πi

∫ (
ββs

γ̄

)z

Γ

(
m− z

ξ

)
Γ

(
ms − z

ξs

)
P ∗
m(z)dz, (34)

where P ∗
m(z) is given by Theorem 1. In fact, P ∗

m(z) can also be expressed in terms of an infinite

series as shown in the following theorem.

Theorem 4.

P ∗
m(z) =

∞∑
n=0

Γl(n+ u, λ/2)

n!Γ(n+ u)
Γ(z + n), (35)

where Γl(., .) is the lower incomplete gamma function.

Proof. We start by deriving Pm(γ), the inverse Mellin transform of P ∗
m(z). From (8a), we can

deduce P ∗
m(z) has poles only at z = 0,−1,−2, . . . since the confluent hypergeometric function

is an entire function of its first argument. Hence, the inverse Mellin transform is simply given

by

Pm(γ) =
∞∑
n=0

Res
(
P ∗
m(z)γ

−z,−n
)
. (36)

Substituting (36) into (5) and noting that Res (Γ(z),−n) = (−1)n/n!, we obtain

Pm(γ) =
∞∑
n=0

(−γ)n

n!Γ(u+ n)

1

2πi

∫
Γ(−w)Γ(u+ n+ w)

Γ(u+ 1 + w)

(
λ

2

)u+w

dw

=
∞∑
n=0

(−γ)n

n!Γ(u+ 1)

(
λ

2

)u

1F1

(
u+ n; u+ 1;−λ

2

)
. (37)

Using the relations [19, Eq. (9.212.1)] and [19, Eq. (8.972.1)], we can prove that

1

Γ(u+ 1)
1F1

(
u+ n; u+ 1;−λ

2

)
=

(n− 1)!e−λ/2

Γ(u+ n)
Lu
n−1

(
λ

2

)
= e−λ/2

n−1∑
k=0

(−1)k
(
n− 1

k

)
(λ/2)k

Γ(k + u+ 1)
,

(38)

where Lu
n−1(.) is the associated Laguerre polynomial. Using the fact that e−λ/2(λ/2)k+u =

Γl(k + u+ 1, λ/2)− (k + u)Γl(k + u, λ/2) into (38), we can prove that

(λ
2
)u

Γ(u+ 1)
1F1

(
u+ n; u+ 1;−λ

2

)
=

n−1∑
k=0

(−1)k
(
n− 1

k

)[
Γl(k + u+ 1, λ/2)

Γ(k + u+ 1)
− Γl(k + u, λ/2)

Γ(k + u)

]

=
n∑

k=0

(−1)k
(
n

k

)
Γl(k + u, λ/2)

Γ(k + u)
. (39)
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The last line follows using some simple algebraic manipulations and using the Pascal’s rule for

binomial coefficients [24]. Substituting (39) into (37), we can now show that

Pm(γ) =
∞∑
n=0

(−γ)n

n!

n∑
k=0

(−1)k
(
n

k

)
Γl(k + u, λ/2)

Γ(k + u)
. (40)

Performing the change of variables n = k +m, k = k, we obtain

Pm(γ) =
∞∑

m=0

(−γ)m

m!

∞∑
k=0

Γl(k + u, λ/2)

Γ(k + u)

γk

k!
= e−γ

∞∑
k=0

Γl(k + u, λ/2)

Γ(k + u)

γk

k!
. (41)

Taking the Mellin transform of the last line the Theorem is proved.

Hence, upon substituting (35) into (34), we have

Pm =
1

2πi

∫ (
ββs

γ̄

)z

Γ

(
m− z

ξ

)
Γ

(
ms − z

ξs

) ∞∑
n=0

Γl(n+ u, λ/2)

n!Γ(n+ u)
Γ(z + n)dz

=
∞∑
n=0

Γl(n+ u, λ/2)

n!Γ(n+ u)

1

2πi

∫
Γ(z + n)Γ

(
m− z

ξ

)
Γ

(
ms − z

ξs

)(
ββs

γ̄

)z

ds, (42)

where the interchange between the integral and the infinite summation in the last line is allowed

due to the boundedness of the absolute integral. Substituting z = −s in the last expression and

employing the definition of the H-function, (33) immediately follows.
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