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Abstract

In this paper, we derive closed-form exact and asymptotic expressions for the symbol error rate (SER) as

well as channel capacity when communicating over the Fox’s H-function fading channel. The SER expressions

are obtained for numerous practically-employed modulation schemes in case of single as well as three multiple-

branch diversity receivers: maximal ratio combining (MRC), equal gain combining (EGC), and selection

combining (SC). The derived exact expressions are given in terms of the univariate and multivariate Fox-

H functions for which we provide a portable and efficient Python code. Since the Fox’s H-function fading

channel represents the most generalized fading model ever presented in the literature, the derived expressions

subsume most of those previously presented for all the known simple and composite fading models. Moreover,

easy-to-compute asymptotic expansions are provided so as to easily study the behavior of the SER and channel

capacity at high values of the average signal-to-noise (SNR). The asymptotic expansions are also useful in

comparing different modulation schemes and receiver diversity combiners. Numerical and simulation results

are also provided to support the mathematical analysis and prove the validity of the obtained expressions.
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I. INTRODUCTION

Performance evaluation of wireless communication systems over fading channels has always been

an active area of research in the communication theory literature. Typically, performance metrics

such as the bit/symbol error rates (BER/SER), outage probability (OP), amount of fading (AoF), and

ergodic channel capacity are usually used among many others (see [1] and references therein). These

quantities are of interest for both the single-branch as well as the multiple-branch diversity receivers

usually employed to reduce the detrimental effect of fading.

Over the recent years, numerous new fading models have been proposed to model either the

fading or the joint shadowing/fading phenomena. These models generally provide a better fit for

experimental data than the classical Rayleigh, Nakagami-m, and Rician ones. This is especially true

as new communication technologies are continuously being introduced and analyzed, for example,

millimeter wave communications, free space optical (FSO) communications as well as cognitive radios.

Examples of these new models include the α-μ [2], the K [3], the generalized K [4], the extended

generalized K (EGK) [5], the Gamma-Gamma [6] and the Málaga distributions [7], among many

others. Having said that, the need for a unified fading model that subsumes most, if not all, of the

proposed fading models to date and provides enough flexibility to accommodate future experimental

results becomes eminent. One possible model that achieves these goals is the Fox’s H-function fading

model. Historically, the Fox’s H-function distribution has been reported in mathematical publications as

old as [8] and [9]. In these works, the Fox’s H-function was introduced as a generalization for most of

the probability distributions having a non-negative support. In the context of wireless communications,

since the received signal envelope and the signal-to-noise ratio (SNR) are always non-negative, this

distribution is very well-suited to represent the probability density function (PDF) of the received signal

envelope or SNR. Moreover, it was shown that the products, quotients, and powers of H-function

variates are actually H-function variates themselves [8] and that the sum of H-function variates is

indeed another H-function variate [10] (These properties are collectively known as the H-preserving

property). This provides a very powerful tool to analyze diversity receivers as well as scenarios where

mixed fading models are encountered, e.g., communications in presence of co-channel interference or

within networks of relays. We can think of the Fox’s H-function model as a “cast” that can be used to

carry out a unified mathematical analysis for all possible fading models. More importantly, the Fox’s

H-function model could be used to provide a possible fit for channel measurements that the current
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models fail to accommodate because of the multiple degrees of freedom it offers.

Two important metrics that are usually used to characterize digital communications over fading

channels are the the SER/BER and the ergodic capacity [1]. In the same time, they are usually very

challenging to obtain, especially in closed-form. This is particularly true for the considered Fox’s

H-function distribution. Unfortunately, the straightforward way, based on averaging the conditional

probability of error on a specific SNR over the distribution of the SNR, rarely results in tractable

integrals that lead to closed-form expressions. Hence, it has been limited to simple fading models such

as the Rayleigh distribution. Alternatively, one of the most popular approaches is presented in the

seminal works by Alouini et al in [11] and [12], who have laid the foundation of what is commonly

known as the moment-generating function (MGF) approach. This approach has been successfully

applied to the Rayleigh, the Nakagami-m, the Rice, the Nakagami-q and many other fading models (see

[1, Ch. 8] and references therein). However, this approach requires performing some tricky integrations

for moderately complicated fading distributions such as the case of Nakagami-m. That is why the

literature is full of works that propose efficient techniques for numerically evaluating the performance

using the MGF approach especially with diversity reception over some generalized fading channels

(e.g., [13] and [14]). For complicated models such as the Fox’s H-function distribution or even some

of its special cases, e.g., the EGK and the Gamma-Gamma distributions, the MGF is actually given in

the form of a Fox-H function, which limits the usability of the MGF approach. Additionally, the MGF

approach cannot be straightforwardly used to estimate the asymptotic behavior of the SER for large

values of the average SNR, which is an alternative simpler useful metric for performance evaluation.

Recently in [15], we proposed a unified approach for calculating the SER of α−μ fading channels

based on the use of Mellin transform to express the SER in the form of a Mellin-Barnes integral [16],

which can then be represented in terms of the Fox’s H-function in a direct manner. Depending on

the specific parameter settings of the fading distribution and/or the modulation scheme, the obtained

expressions can even be further simplified to simpler special functions such as the Meijer’s G-function

or the hypergeometric function. Moreover, this approach enables obtaining asymptotic expansions that

could be straightforwardly derived by evaluating some complex residues of the integrand function

in the obtained Mellin-Barnes integral. Motivated by the successful application of this approach for

α-μ distribution in our work in [15], in this paper, we generalize our approach to deal with more

generalized fading distributions and diversity receivers scenarios. In particular, we extend the previous

work in [15] in the following ways:
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1) We derive novel closed-form expressions for the SER of most (if not all) of the practically-

used modulation schemes when operating over the Fox’s H-function fading channel in presence

of additive white Gaussian noise (AWGN). This generalization is not trivial because, unlike

the α − μ distribution, we have to derive the necessary conditions on the Fox’s H-function

distribution parameters so that the SNR distribution is valid mathematically. Moreover, the

asymptotic expansions, which we do believe are of prime importance practically, require more

analysis and in some cases further approximations.

2) We present a unified analysis framework to derive exact and asymptotic expressions for the SER

of a wide range of diversity receivers over the Fox’s H-function channel. While we focus in

the current paper on the equal gain, maximal-ratio, and selection combining (EGC, MRC, and

SC) schemes, the analysis is directly applicable to other types of diversity receivers. Moreover,

the SC was not addressed in the previous work. In addition, we also provide simple asymptotic

expansions for the SER in these cases, which can be very easily and quickly computed even for

a large number of branches.

3) We extend our framework to accommodate the ergodic capacity calculations and apply it to the

Fox’s H-function fading model assuming single branch communication. Moreover, we derive the

asymptotic expansion for the ergodic channel capacity and verify the results via simulations.

4) We present a portable implementation of the multivariate H-function using Python in Appendix

A. The code is efficient and provides very accurate results. Its execution time for up to four

branches does not exceed a few seconds. To the best of the authors’ knowledge, this is a new

contribution to the literature of digital communications.

To the best of the authors’ knowledge, our results represent the most general SER and capacity

expressions ever presented in the literature for communications over fading channels and subsume

most of those previously presented in the literature for the classical and more recent fading mod-

els alike, whether simple or composite. More importantly, the presented framework enables us to

straightforwardly derive easy-to-calculate asymptotic expansions, which do serve as very accurate

approximations of the SER and the ergodic capacity for high average SNR values. This is verified in

many different cases as illustrated in the simulations. Moreover, and unlike the exact expressions, they

help to easily compare the performance over different fading channels (which are special cases of the

Fox’s H-function model), for different modulation schemes as well as diversity combining strategies.

It is worth mentioning here that the use of the Fox’s H-function as a unified model for fading
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statistics is not in fact new. In [17], the authors used the Fox’s H-function model to characterize the

spherically-invariant random process (SIRP), a generalization of the Gaussian process, which can be

used to provide a unified theory to model fading channel statistics. In [18], unified expressions for the

effective capacity of fading channels under a QoS constraint were obtained through the use of the Fox’s

H-function distribution. Also in [19], a variation of the Fox’s H-function fading model presented here,

which consists of a summation of multiple Fox’s H-functions (titled as the hyper Fox’s H-function),

was discussed. The main differences between this work and the one at hand are as follows: first, the

work in [19] only considers the BER for two binary modulation schemes, namely, BFSK and BPSK.

In this work, however, we manage to obtain closed-form exact and asymptotic expressions for the SER

for M -ary PSK, M -QAM, M -ASK as well as non-coherent M -ary FSK (NC M -ary FSK). Secondly,

the work in [19] only considers MRC as an example for diversity reception while we consider EGC,

MRC, and SC as mentioned earlier. It is worth mentioning that the model in [19] might seem more

general than the one presented here since it involves a summation of multiple Fox’s H-functions and

not just one, which enables it to subsume a few more fading models as special cases, e.g., the Hyper-

Gamma [20]. However, the results presented herein can be straightforwardly extended to follow the

model in [19] since all the operations involved are linear.

The rest of the paper is organized as follows: the next section treats the single-branch receivers

and derives closed-form SER and capacity expressions as well as asymptotic expansions assuming

the Fox’s H-function fading model. Several special cases are also presented and their expressions are

compared against those previously published in the literature. In Section III, the analysis is extended

to the multiple-branch EGC, MRC, and SC diversity receivers. Numerical and simulation results are

then presented in Section IV before the paper is finally concluded in Section V.

II. SINGLE BRANCH COMMUNICATION

We consider communications over a fading channel where the SNR, γ, follows the unified Fox’s

H-function distribution for which the probability density function (PDF) is given by [8, Sec. 4.1]

fγ(γ) = κHm,n
p,q

⎛
⎝λγ

∣∣∣∣∣∣
(aj, Aj)j=1:p

(bj, Bj)j=1:q

⎞
⎠ , γ > 0 (1)
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where λ > 0 and the constant κ are such that
∫∞
0
fγ(γ)dγ = 1. The notation (xj, yj)j=1:� is a shorthand

for (x1, y1), . . . , (x�, y�). The univariate H-function, Hm,n
p,q (ζ), is defined by [21]

Hm,n
p,q

⎛
⎝ζ

∣∣∣∣∣∣
(aj, Aj)j=1:p

(bj, Bj)j=1:q

⎞
⎠ =

1

2πi

∫
L

∏m
j=1 Γ(bj +Bjs)

∏n
j=1 Γ(1− aj − Ajs)∏p

j=n+1 Γ(aj + Ajs)
∏q

j=m+1 Γ(1− bj − Bjs)
ζ−sds (2)

where Aj > 0 for all j = 1, . . . , p and Bj > 0 for all j = 1, . . . , q and the path of the integration L
depends on the value of the parameters. Examples of how classical and more recent fading models can

fit into this unified fading model are provided in [19, Tables II-V]. As mentioned earlier, some of these

fading models need to be approximated by a summation of Fox’s H-functions. The model presented

in (1) can be easily extended to accommodate these cases. We chose, however, to work with a single

Fox’s H-function to keep the presentation as compact as possible. Some other fading models that are

not mentioned in [19, Tables II-V] but can still be considered as special cases of the Fox’s H-function

fading model are the Málaga and the Gamma-Gamma (double Gamma). We illustrate this fact in

Appendix B. In this section, we seek to derive exact expressions as well as asymptotic expansions for

the SER and the channel capacity. For the validity of our analysis, we require that fγ(γ) be a valid

PDF and have a Mellin transform. Therefore, in Subsection II-A, we derive the sufficient conditions

for that to happen. SER analysis is presented in Subsection II-B followed by channel capacity analysis

in Subsection II-C.

A. Sufficient Conditions for the Validity of Analysis

Our previously proposed SER calculation framework in [15] was totally dependent on the straight-

forward and simple derivation of the Mellin transform of fγ(γ). For the general case of unified Fox’s

H-function distribution, the Mellin transform can be easily obtained only if the path of integration

in (1) is a straight line parallel to the imaginary axis. Therefore, the following condition needs to be

enforced [21]:

n∑
j=1

Aj −
p∑

j=n+1

Aj +
m∑
j=1

Bj −
q∑

j=m+1

Bj > 0. (3)

Fortunately, all the considered distributions in [19, Tables II-V] satisfy this requirement. In fact, in all

of them n = p = 0 and m = q. Moreover, as required by the definition of the H-function, the poles of

the factors Γ(bj+Bjs), j = 1, . . . ,m should be separable from those of Γ(1−aj−Ajs), j = 1, . . . , n.

This is equivalent to having l < u where l = −minj=1,...,m

(
�
{

bj
Bj

})
, u = minj=1,...,n

(
�
{

1−aj
Aj

})
,
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and �{.} denotes the real part of a complex quantity. In such a case, it can be shown that the path of

integration can be taken as a straight line from σ − i∞ to σ + i∞ where σ satisfies l < σ < u.

Now, in order for fγ(γ) to be a valid PDF, its integration from 0 to ∞ needs to be equal to one. At

this point, it is more convenient to start working with the Mellin transform of fγ(γ) rather than the

distribution itself. This is, in fact, one of the major strengths of the unified Fox’s H-function fading

model; its Mellin transform is straightforward to obtain and easy to deal with. The Mellin transform

of a continuous function is defined as [22]:

f ∗(s) ≡ M{f(γ)} =

∫ ∞

0

f(γ)γs−1dγ. (4)

The above mentioned condition is now equivalent to having the point s = 1 in the region of convergence

(ROC) of f ∗(s) since f ∗(1) =
∫∞
γ=0

fγ(γ)γ
1−1dγ = 1. That is, we must have l < 1 < u. An illustration

of this condition is shown in Fig. 1(a). This condition is again satisfied by all the distributions

investigated in [19, Tables II-V]. Finally, in order to have a finite value for κ, lims→1 f
∗(s) must

exist and be equal to 1. From (1) and (4), the Mellin transform of fγ(γ) can be obtained directly using

[21, Eq. (2.8)] as

f ∗(s) = κλ−s

∏m
j=1 Γ(bj +Bjs)

∏n
j=1 Γ(1− aj − Ajs)∏p

j=n+1 Γ(aj + Ajs)
∏q

j=m+1 Γ(1− bj − Bjs)
. (5)

Hence, we do require that the following limit exist and be bounded

κ

λ
= lim

s→1

∏p
j=n+1 Γ(aj + Ajs)

∏q
j=m+1 Γ(1− bj − Bjs)∏m

j=1 Γ(bj +Bjs)
∏n

j=1 Γ(1− aj − Ajs)
. (6)

B. Symbol Error Rate Analysis

1) Exact expressions: The derivation in this subsection is based on [15, Theorem I], which we

proved earlier. We recall this theorem here for convenience.

Theorem 1. Consider a general fading channel where the received SNR PDF is fγ(γ) having a

Mellin transform f ∗(s). If the Mellin transform of P (error|γ) exists, then the unconditional SER for

a single-branch receiver is given by:

Pe =
1

2πi

∫ σ+i∞

σ−i∞
f ∗(s)h∗(1− s)ds (7)
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(a) (b) (c) 

Fig. 1. (a) ROC of f∗(s). Note that the point s = 1 must be inside the ROC because fγ(γ) is a PDF. In this example, m = n = 3,
(b) ROC of h∗(z) in the z-domain, (c) The intersection of the ROCs of f∗(s) and h∗(1 − s) is the solid grey region l < �{s} < 1.
The solid circles refer to the poles considered for deriving the asymptotic expansion of the SER.

TABLE I
BASIC COMPONENTS OF h(γ) TOGETHER WITH THEIR MELLIN TRANSFORMS

hr(γ; θ) Mellin transform Modulation schemes

h0(γ; b) = e−bγ h∗
0(s; b) = b−sΓ(s) DBPSK, NC M -FSK

h1(γ; b) =
∫∞
u=γ

u−1/2e−budu h∗
1(s; b) = s−1b−s−1/2Γ(s+ 1/2) CBPSK, CBFSK, M -PSK, M -QAM

h2(γ; a, b) =∫∞
u=γ

u−1/2e−buQ′(
√
au)du

h∗
2(s; a, b) =

b−s

2s
√
bπ

×
1

2πi

∫ c2+i∞

w=c2−i∞

Γ(1/2− w)Γ(s+ w + 1/2)

w

( a

2b

)w

dw
PSK, QAM

where h∗(s) is the Mellin transform of h(γ) ≡ P (error|γ) and the constant σ is such that σ lies in

the ROC of both f ∗(s) and h∗(1− s).

From [1, Ch. 8], it is not difficult to observe that the conditional SER expression, h(γ), for each of

the aforementioned modulation schemes, is a linear combination of one or more of the terms h0(γ; b),

h1(γ; b), and h2(γ; a, b) listed in the first column of Table I. It is straightforward to prove that the

ROC of their Mellin transforms, presented in the second column of the table using (4) along with the

definition of the Gamma function, is �{s} > 0. Hence, the ROC of h∗(1 − s) in (7) is �{s} < 1.

Intersecting that ROC with the ROC of f ∗(s), we easily conclude that one needs to have l < σ < 1

in order for (7) to be valid. This result is illustrated in Fig. 1(b) and (c). Now, according to (7) and

the fact that h(γ) is a linear combination of one or more of the functions mentioned earlier, it can be
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easily shown that the SER itself is a linear combination of one or more of the functions

Ir(θ) ≡ 1

2πi

∫ σ+∞

σ−i∞
f ∗(s)h∗r(1− s; θ)ds, r = 0, 1 and 2 (8)

where θ = {b} for r = 0, 1 and θ = {a, b} for r = 2, which we refer to as the basic functions. For

I0(b), we have h∗0(s; b) = b−sΓ(s) from Table I. Substituting from (5) into (8) and using h∗0(1−s; b) =
bs−1Γ(1− s) and θ = b, we easily get

I0(b) =
κ

b

1

2πi

∫ σ+i∞

σ−i∞

(∏m
j=1 Γ(bj +Bjs)

)
Γ(1− s)

∏n
j=1 Γ(1− aj − Ajs)∏p

j=n+1 Γ(aj + Ajs)
∏q

j=m+1 Γ(1− bj − Bjs)

(
λ

b

)−s

ds. (9)

Following similar steps, one can derive similar expressions for I1(b) and I2(a, b). Now, referring to

the definition of the H-function in (2), and using the relation [21, Eq. (1.60)] so as the results include

the ratio κ/λ for convenience, the following results of Ir(θ), r = 0, 1, 2, follow immediately:

I0(b) =
κ

λ
Hm,n+1

p+1,q

⎛
⎝λ

b

∣∣∣∣∣∣
(1, 1), (aj + Aj, Aj)j=1:p

(bj +Bj, Bj)j=1:q

⎞
⎠ , (10a)

I1(b) =
κ/λ√
b
Hm,n+2

p+2,q+1

⎛
⎝λ

b

∣∣∣∣∣∣
(1, 1), (1

2
, 1), (aj + Aj, Aj)j=1:p

(bj +Bj, Bj)j=1:q, (0, 1)

⎞
⎠ , (10b)

I2(a, b) =
κ/λ

2
√
πb1/2

H0,1;1,1;m,n+1
1,0;1,2;p+1,q+1

⎛
⎝ a

2b
,
λ

b

∣∣∣∣∣∣
(1
2
; 1, 1) (1, 1) (1, 1), (aj + Aj, Aj)j=1:p

− (1
2
, 1), (0, 1) (bj +Bj, Bj)j=1:q, (0, 1)

⎞
⎠ .

(10c)

where H0,n;m1,n1;...;mL,nL
p,q;p1,q1;...;pL,qL

(ζ1, . . . , ζL) is the multivariate H-function defined by [21, Eq. (A.1)]. Finally,

the SER can be obtained by substituting the expressions in (10) into the expressions in [15, Table III]

yielding the final forms provided in Table II. We want to stress here that these expressions are, to the

best of the authors knowledge, the most general SER expressions ever presented in the literature. They

literally subsume each and every SER expression previously presented as a special case.

2) Asymptotic expansions: In many practical settings, the obtained exact expressions could be of

limited value because of the difficulty encountered in evaluating the univariate and multivariate H-

function. Generally, the H-function is given in the form of a complex integral, which is computed

numerically. For high values of the average SNR, the exact value of the SER is very small and thus

their computation using numerical integration methods is subject to underflow. Therefore, it is often

desired to derive simpler asymptotic expansions of the SER for large values of the average SNR; a
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TABLE II
FINAL FORM OF THE Pe FOR THE DIFFERENT MODULATION SCHEMES WITH FOX’S H-FUNCTION FADING.

Modulation Scheme Pe

CBFSK
κ/λ

2
√
π
Hm,n+2

p+2,q+1

(
2λ

∣∣∣∣(1, 1), (12 , 1), (aj + Aj, Aj)j=1:p

(bj +Bj, Bj)j=1:q, (0, 1)

)

M -ary ASK
(M − 1)(κ/λ)

M
√
π

Hm,n+2
p+2,q+1

(
M2 − 1

3
λ

∣∣∣∣(1, 1), (12 , 1), (aj + Aj, Aj)j=1:p

(bj +Bj, Bj)j=1:q, (0, 1)

)

M -ary PSK

κ/λ

2
√
π

[
Hm,n+2

p+2,q+1

(
λ

sin2(π/M)

∣∣∣∣(1, 1), (12 , 1), (aj + Aj, Aj)j=1:p

(bj +Bj, Bj)j=1:q, (0, 1)

)

+
1√
π
H0,1;1,1;m,n+1

1,0;1,2;p+1,q+1

(
cot2

( π
M

)
,

λ

sin2(π/M)

∣∣∣∣(12 ; 1, 1) (1, 1) (1, 1), (aj + Aj, Aj)j=1:p

− (1
2
, 1), (0, 1) (bj +Bj, Bj)j=1:q, (0, 1)

)]

M -QAM

2(
√
M − 1)(κ/λ)

M
√
π

[
Hm,n+2

p+2,q+1

(
2(M − 1)λ

3

∣∣∣∣(1, 1), (12 , 1), (aj + Aj, Aj)j=1:p

(bj +Bj, Bj)j=1:q, (0, 1)

)

+

√
M − 1√
π

H0,1;1,1;m,n+1
1,0;1,2;p+1,q+1

(
cot2

( π
M

)
,
2(M − 1)λ

3

∣∣∣∣(12 ; 1, 1) (1, 1) (1, 1), (aj + Aj, Aj)j=1:p

− (1
2
, 1), (0, 1) (bj +Bj, Bj)j=1:q, (0, 1)

)]

DBPSK
κ/λ

2
Hm,n+1

p+1,q

(
λ

∣∣∣∣(1, 1), (aj + Aj, Aj)j=1:p

(bj +Bj, Bj)j=1:q

)

NC M -ary FSK
κ

λ

M−1∑
n=1

(−1)n+1

(
M − 1

n

)
1

n+ 1
Hm,n+1

p+1,q

(
(n+ 1)λ

n

∣∣∣∣(1, 1), (aj + Aj, Aj)j=1:p

(bj +Bj, Bj)j=1:q

)

typical case of many practical situations. Beside their simplicity of computations, asymptotic expansions

offer an indication of the rate of change of the SER with respect to the SNR. This is very useful in

comparing different modulation schemes/fading channels. Moreover, their logarithms can be computed

efficiently and hence their computation is not subject to underflow. Taking a careful look at [19, Tables

II-V], we notice that the multiplier λ is usually inversely proportional to the average SNR. Therefore,

asymptotic expansions should be derived in terms of positive powers of λ. This could be accomplished

by evaluating the complex residues of the functions Ir(θ) at the largest negative poles of the terms

Γ(bj +Bjs), j = 1, . . . ,m. That is, we should consider the poles given by s = −bj/Bj , j = 1, . . . ,m,

indicated in Fig. 1(c) as solid circles. In fact, the asymptotic expansions of the H-function depend

on the order of the poles. Therefore, we present the most general form based on [23, Theorem 1.12],

which we restate below after some slight modifications.

Theorem 2. Consider the H-function defined by (2) and let the condition (3) be satisfied. Define the

set of unique poles S = {s1, . . . , sm′}, where sj = −bj/Bj and m′ ≤ m. For each pole sj , define the

set of indexes Kj = {k : k ∈ {1, . . . ,m}, rk,j = −bk +Bkbj/Bj ∈ {0, 1, 2, . . .}} and let Nj = |Kj| be

the multiplicity of the pole sj = −bj/Bj . The asymptotic expansion near ζ = 0 is given by

Hm,n
p,q (ζ) ∼

m′∑
j=1

Ej [− ln(ζ)]Nj−1 ζ−bj/Bj (11)
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where the constants Ej , j = 1, . . . ,m′ are given by

Ej =
1

(Nj − 1)!

∏
k∈Kj

(−1)rk,j

rk,j!Bk

∏
k/∈Kj

Γ(bk − Bk
bj
Bj
)
∏n

k=1 Γ(1− ak + Ak
bj
Bj
)∏p

k=n+1 Γ(ak − Ak
bj
Bj
)
∏q

k=m+1 Γ(1− bk +Bk
bj
Bj
)
. (12)

The expression of Ej in (12) simplifies for simple poles (Kj = {j}, Nj = 1, rj,j = 0) to the

following expression:

Ej =
1

Bj

∏m
k=1
k �=j

Γ(bk − Bk
bj
Bj
)
∏n

k=1 Γ(1− ak + Ak
bj
Bj
)∏p

k=n+1 Γ(ak − Ak
bj
Bj
)
∏q

k=m+1 Γ(1− bk +Bk
bj
Bj
)
. (13)

Thus, the asymptotic expressions for the functions Ir(θ) can be easily evaluated thanks to Theorem 2

yielding

I0(b) ∼ κ

λ

m′∑
j=1

EjΓ

(
1 +

bj
Bj

)[
ln

(
b

λ

)]Nj−1(
λ

b

) bj
Bj

+1

, (14a)

I1(b) ∼ κ/λ√
b

m′∑
j=1

Ej

1 + bj/Bj

Γ

(
3

2
+
bj
Bj

)[
ln

(
b

λ

)]Nj−1(
λ

b

) bj
Bj

+1

, (14b)

I2(a, b) ∼ (κ/λ)
√
a

b
√
2π

m′∑
j=1

Ej

1 + bj/Bj

Γ

(
2 +

bj
Bj

)
2F1

(
1

2
, 2 +

bj
Bj

;
3

2
;− a

2b

)[
ln

(
b

λ

)]Nj−1(
λ

b

) bj
Bj

+1

(14c)

where 2F1(., .; .; .) is the Gauss hypergeometric function, κ/λ is given by (6), and Ej , Nj , and m′ are

given by Theorem 2. We should notice that, according to the second condition in Subsection II-A, we

guarantee that all the powers 1 +
bj
Bj

, j = 1, . . . ,m have positive real parts. Thus, we are confident

that the obtained asymptotic expansions decrease monotonically with the increase of the average SNR.

Similar to the case of exact expressions, asymptotic expansions of the SER for different modulation

schemes are easily obtained by substituting from (14) into the expressions in [15, Table III] yielding

the results in Table III.

C. Channel Capacity

One of the main contributions of this work is deriving closed-form exact and asymptotic expressions

for the average ergodic capacity of the Fox’s H-function fading channel based on our previously
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TABLE III
ASYMPTOTIC EXPRESSIONS FOR Pe FOR THE DIFFERENT MODULATION SCHEMES OVER FOX’S H-FUNCTION FADING. Ej , Nj , AND

m′
ARE AS DEFINED IN THEOREM 2.

Modulation Scheme Asymptotic Pe

CBFSK
κ/λ

2
√
π

m′∑
j=1

Ej

1 + bj/Bj
Γ

(
3

2
+

bj
Bj

)
[− ln(2λ)]Nj−1 (2λ)

bj
Bj

+1

M -ary ASK
(M − 1)(κ/λ)

M
√
π

m′∑
j=1

Ej

1 + bj/Bj
Γ

(
3

2
+

bj
Bj

)[
ln

(
3

(M2 − 1)λ

)]Nj−1 (
M2 − 1

3
λ

) bj
Bj

+1

M -ary PSK

κ/λ√
π

m′∑
j=1

⎧⎨
⎩ Ej

1 + bj/Bj

[
ln

(
sin2(π/M)

λ

)]Nj−1 (
λ

sin2( π
M
)

) bj
Bj

+1

×
[
1

2
Γ

(
3

2
+

bj
Bj

)
+

cot( π
M
)√

π
Γ

(
2 +

bj
Bj

)
2F1

(
1

2
, 2 +

bj
Bj

;
3

2
;− cot2

( π

M

))]}

M -QAM

2κ/λ√
π

√
M − 1√
M

m′∑
j=1

⎧⎨
⎩ Ej

1 + bj/Bj

[
ln

(
3

2(M − 1)λ

)]Nj−1 (
2(M − 1)

3
λ

) bj
Bj

+1

×
[

1√
M

Γ

(
3

2
+

bj
Bj

)
+ 2

√
M − 1√
Mπ

Γ

(
2 +

bj
Bj

)
2F1

(
1

2
, 2 +

bj
Bj

;
3

2
;−1

)]}

DBPSK
κ/λ

2

m′∑
j=1

EjΓ

(
1 +

bj
Bj

)
[− ln(λ)]Nj−1 (λ)

bj
Bj

+1

NC M -ary FSK
κ

λ

M−1∑
n=1

(−1)n+1

(
M − 1

n

)
1

n+ 1

m′∑
j=1

EjΓ

(
1 +

bj
Bj

)[
ln

(
n

(n+ 1)λ

)]Nj−1 (
n+ 1

n
λ

) bj
Bj

+1

introduced framework. The capacity of a fading channel is given by

C =

∫ ∞

γ=0

fγ(γ) ln(1 + γ)dγ (15)

where we chose the natural logarithm in the above definition in order to simplify the analysis1.

1) Exact expression: Using Parseval’s relation for the Mellin transform [22, Eq. (2.31)], it can be

easily shown that the capacity is given by

C =
1

2πi

∫ σ+i∞

σ−i∞
f ∗(s)c∗(1− s)ds (16)

where c∗(s) is the Mellin transform of ln(1 + γ). Using [24, Eq. (17.43.23)] along with the Gamma

reflection formula [25, Appendix II.1], Γ(s)Γ(1− s) = π/ sin(πs), it can be shown that c∗(s) is given

by

c∗(s) = −Γ(s)Γ(−s) = Γ(s+ 1)Γ(−s)
−s , −1 < �{s} < 0. (17)

1It goes without saying that using the log2(·) function will just entail a scale factor to our results.
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Hence, the ROC of c∗(1−s) is 1 < �{s} < 2. Intersecting that ROC with that of f ∗(s), the integration

(16) will be valid for 1 < σ < min(2, u). Substituting from (17) and (5) into (16), employing the

definition of the H-function and using [21, Eq. (1.60)], we obtain

C =
κ

λ
Hm+2,n+1

p+2,q+2

⎛
⎝λ

∣∣∣∣∣∣
(0, 1), (aj + Aj, Aj)j=1:p, (1, 1)

(0, 1), (0, 1), (bj +Bj, Bj)j=1:q

⎞
⎠ . (18)

2) Asymptotic Expansion: Since the integral in (16) converges for 1 < σ < min(2, u), the asymptotic

expansion is derived by evaluating the residues of this integral at the largest poles closest to the path

of integration from the left. Basically, we have three sets of poles lying on the left of the integration

path: a double pole at s = 1, the poles of Γ(s) given by s = 0,−1, . . ., and the poles of the terms

Γ(bj +Bjs), j = 1, . . . ,m. For simplicity, we shall consider only the double pole at s = 1 because it

is the closest to the integration path and we believe that the obtained expansion upon considering only

this pole is adequate for most applications. If more accurate expansions are required, the residues at

the other poles, e.g., s = −bj/Bj , j = 1, . . . ,m may be considered. Noting that f ∗(s) does not have

a pole at s = 1 because that point lies in its ROC, we have

C ∼ lim
s→1

d

ds

(
(s− 1)2f ∗(s)

Γ(2− s)Γ(s− 1)

s− 1

)
= lim

s→1

d

ds
(f ∗(s)Γ(2− s)Γ(s)) . (19)

Since d
ds
Γ(s) = Γ(s)ψ(s) where ψ(x) = d

dx
ln Γ(x) is the digamma function [24, Eq. (8.360)] and

substituting from (5), the following result for the asymptotic capacity is obtained:

C ∼ − ln(λ) + lim
s→1

[
m∑
j=1

Bjψ(bj +Bjs)−
n∑

j=1

Ajψ(1− aj − Ajs)

−
p∑

j=n+1

Ajψ(aj + Ajs) +

q∑
j=m+1

Bjψ(1− bj − Bjs)

]
. (20)

D. Special cases

As mentioned before, the Fox’s H-function fading distribution generalizes many well-known recent

fading distributions such as the α-μ and the EGK distributions. It is interesting to see how the general

expressions derived for the SER and the channel capacity simplify when selecting special parameters

corresponding to those distributions.
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1) α − μ distribution: As shown in [19, Table V], the α − μ (generalized Gamma) distribution is

a special case of the H-function fading distribution for which the parameters are chosen as follows2:

κ = β
Γ(μ)γ̄

, λ = β
γ̄

where β = Γ(μ+1/α)
Γ(μ)

, m = q = 1, n = p = 0, b1 = μ − 1
α

, and B1 = 1
α

. Hence,

the function f ∗(s) has poles only at the points s = −(b1 + r)/B1 = 1− (μ+ r)α, r = 0, 1, . . .. As a

consequence, l = 1− αμ, u → ∞, and the ROC of f ∗(s) is simply �{s} > 1− αμ, which includes

the point s = 1 as long as μ > 0 and α > 0, which is always achieved as required by the definition

of the distribution. Thus, the SER is obtained using (7) with 1 − αμ < σ < 1. Substituting with the

above-mentioned values into the expressions in Table II, it is straightforward to obtain the exact same

results as those previously published in our work [15, Table III] for α-μ fading, which confirms the

versatility of the Fox’s H-function fading model.

The asymptotic expansions of the basic functions Ir(θ), r = 0, 1, 2 are obtained either by evaluating

the residue of the integrand in (7) at the pole s = −b1/B1 = 1 − αμ or by employing Theorem 2

directly. We should note that since we have only one simple pole, we have m′ = m = 1, N1 = 1,

and K1 = {1} and hence, E1 = 1/B1 = α. Substituting the α− μ parameters into (14) will yield the

following simplified expressions:

I0(b) ∼ Γ(1 + αμ)

Γ(1 + μ)

(
β

bγ̄

)αμ

, I1(b) ∼
Γ
(
1
2
+ αμ

)
√
bΓ(1 + μ)

(
β

bγ̄

)αμ

, (21a)

I2(a, b) ∼
√
aΓ(1 + αμ)

b
√
2πΓ(1 + μ)

2F1

(
1

2
, 1 + αμ;

3

2
;− a

2b

)(
β

bγ̄

)αμ

, (21b)

which are identical to [15, Eq. (15) and Eq. (17)] with the single exception of a missing b in the

denominator of I0(b) due to the fact that, in this paper, we are working directly with the conditional

SER, P (error|γ) rather than its derivative. Nonetheless, we stress that upon substituting (21) into the

expressions in [15, Table III], we obtain the exact same expansions obtained in [15, Table V].

The exact expression for the channel capacity is obtained either by using (16) with 1 < σ < 2 or

by substituting in (18) with the corresponding parameters of the α−μ distribution. This results in the

following exact expression for the average channel capacity:

C =
1

Γ(μ)
H3,1

2,3

⎛
⎝β

γ̄

∣∣∣∣∣∣
(0, 1), (1, 1)

(0, 1), (0, 1), (μ, 1
α
)

⎞
⎠ . (22)

2In [15], we defined γ̄ = (E {γα})1/α. Here and in [19], γ̄ is defined as γ̄ = E {γ}. The final results in both cases are exactly the
same though.
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The asymptotic expansion for the channel capacity can also be obtained by substituting into (20) using

the special parameters corresponding to the α− μ distribution yielding

C ∼ ln(γ̄)− ln(β) +
1

α
ψ(μ), (23)

which is identical to the result reported in [26, Eq. (18)].

2) EGK distribution: The second special case considered here is that of the EGK distribution.

According to [19, Table V], this distribution can be obtained from the Fox’s H-function fading

distribution by setting the parameters of the latter as follows: κ = βsβ
Γ(μs)Γ(μ)γ̄

, λ = βsβ
γ̄

where γ̄ =

E {γ}, βs =
Γ(μs+

1
ξs

)

Γ(μs)
, and β =

Γ(μ+ 1
ξ
)

Γ(μ)
, m = q = 2, n = p = 0, b1 = μs − ξ−1

s , B1 = ξ−1
s ,

b2 = μ − ξ−1, and B2 = ξ−1. Hence, the function f ∗(s) in this case has two sets of poles: at

s = −(b1 + r1)/B1 = 1 − (μs + r1)ξs, and at s = −(b2 + r2)/B2 = 1 − (μ + r2)ξ where r1 and r2

are non-negative integers. Therefore, we have l = 1−min(μsξs, μξ), u→ ∞, and the ROC for f ∗(s)

is �{s} > 1 − min(μsξs, μξ). Since we have μs > 0.5, ξs > 0, μ > 0.5, and ξ > 0, as dictated by

the distribution definition, we always guarantee that the ROC includes the point s = 1. Substituting

with the above-mentioned values of the EGK fading model into the generalized expressions of SER

in Table II, it is straightforward to obtain the exact SER expression of different modulations schemes

under EGK channel fading as summarized in Table IV. It is important to note here that these SER

expressions for the EGK model are novel and have never been reported before in the literature.

Unlike the case of α−μ distribution, we have m = 2 and hence the asymptotic expansion of the SER

is derived by computing the residues at two poles: s1 = −b1/B1 = 1−μsξs and s2 = −b2/B2 = 1−μξ.

In fact, we have three possible scenarios. First, the two poles are simple, which happens when both

μs − μξ/ξs and μ − μsξs/ξ are neither a negative integer nor zero. In that case, we have m′ = 2,

N1 = N2 = 1, K1 = {1}, K2 = {2}, E1 = ξsΓ(μ − μsξs/ξ), and E2 = ξΓ(μs − μξ/ξs). Second,

the two poles coincide, which happens when μsξs = μξ. In that case, m′ = 1,N1 = 2, K1 = {1, 2},

and E1 = ξξs. Finally, one of the poles is simple while the other coincides with a third pole, which

happens when either μs − μξ/ξs or μ − μsξs/ξ is a negative integer. If μ − μsξs/ξ = −r where r is

a positive integer, it can be shown that m′ = 2, N1 = 2, K1 = {1, 2}, E1 = (−1)rξξs/r!, N2 = 1,

K2 = {2}, E2 = ξΓ(μs − μξ/ξs). If μs − μξ/ξs = −r where r is a positive integer, then m′ = 2,

N1 = 1, K1 = {1}, E1 = ξsΓ(μ− μsξs/ξ), N2 = 2, K2 = {1, 2}, and E2 = (−1)rξξs/r!. Substituting

the EGK parameters into (14) while taking into consideration the previous scenarios, we obtain the
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TABLE IV
FINAL FORM OF THE Pe FOR THE DIFFERENT MODULATION SCHEMES WITH EGK FADING.

Modulation Scheme Pe

CBFSK
1

2
√
πΓ(μs)Γ(μ)

H2,2
2,3

(
2βsβ

γ

(1, 1), (1
2
, 1)

(μs,
1
ξs
), (μ, 1

ξ
), (0, 1)

)

M -ary ASK
(M − 1)

M
√
πΓ(μs)Γ(μ)

H2,2
2,3

(
(M2 − 1)βsβ

3γ

(1, 1), (1
2
, 1)

(μs,
1
ξs
), (μ, 1

ξ
), (0, 1)

)

M -ary PSK
1

2
√
πΓ(μs)Γ(μ)

[
H2,2

2,3

(
βsβ

γ sin2( π
M
)

(1, 1), (1
2
, 1)

(μs,
1
ξs
), (μ, 1

ξ
), (0, 1)

)

+
1√
π
H0,1;1,1;2,1

1,0;1,2;1,3

(
cot2( π

M
),

βsβ

γ sin2( π
M
)

(1
2
; 1, 1) (1, 1) (1, 1)
− (1

2
, 1), (0, 1) (μs,

1
ξs
), (μ, 1

ξ
), (0, 1)

)]

M -QAM
2(
√
M − 1)

M
√
πΓ(μs)Γ(μ)

[
H2,2

2,3

(
2(M − 1)βsβ

3γ

(1, 1), (1
2
, 1)

(μs,
1
ξs
), (μ, 1

ξ
), (0, 1)

)

+

√
M − 1√
π

H0,1;1,1;2,1
1,0;1,2;1,3

(
1,

2(M − 1)βsβ

3γ

(1
2
; 1, 1) (1, 1) (1, 1)
− (1

2
, 1), (0, 1) (μs,

1
ξs
), (μ, 1

ξ
), (0, 1)

)]

DBPSK
1

2Γ(μs)Γ(μ)
H2,1

1,2

(
βsβ

γ

(1,1)

(μs,
1
ξs

),(μ, 1
ξ
)

)

NC M -ary FSK
1

Γ(μs)Γ(μ)

M−1∑
n=1

(−1)n+1

(
M − 1

n

)
n

n+ 1
H2,1

1,2

(
(n+ 1)βsβ

nγ

(1,1)

(μs,
1
ξs

),(μ, 1
ξ
)

)

following expressions for the basic functions Ir(θ):

I0(b) ∼
m′∑
j=1

EjΓ(1 + μjξj)

ξjΓ(μ3−j)Γ(1 + μj)

[
ln

(
bγ̄

βsβ

)]Nj−1(
βsβ

bγ̄

)μjξj

, (24a)

I1(b) ∼ 1√
b

m′∑
j=1

EjΓ
(
1
2
+ μjξj

)
ξjΓ(μ3−j)Γ(1 + μj)

[
ln

(
bγ̄

βsβ

)]Nj−1(
βsβ

bγ̄

)μjξj

, (24b)

I2(a, b) ∼
√
a

b
√
2π

m′∑
j=1

EjΓ(1 + μjξj)

ξjΓ(μ3−j)Γ(1 + μj)
2F1

(
1

2
, 1 + μjξj;

3

2
;− a

2b

)[
ln

(
bγ̄

βsβ

)]Nj−1(
βsβ

bγ̄

)μjξj

(24c)

where we define, for convenience, μ1 = μs, μ2 = μ, ξ1 = ξs, and ξ2 = ξ, j = 1, 2. Substituting (24)

into the expressions in [15, Table III], the asymptotic expansions of the SERs for different modulation

schemes are obtained as in Table V.

The channel capacity may also be driven through the use of (18) after substituting with the parameters
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TABLE V
ASYMPTOTIC EXPRESSIONS FOR Pe FOR THE DIFFERENT MODULATION SCHEMES OVER EGK FADING. μ1 = μs , μ2 = μ, ξ1 = ξs ,

AND ξ2 = ξ, j = 1, 2. THE VALUES OF m′ , Ej , Nj ARE AS DISCUSSED IN SUBSUBSECTION II-D2.

Modulation Scheme Asymptotic Pe

CBFSK
1

2
√
π

m′∑
j=1

EjΓ
(
1
2 + μjξj

)
ξjΓ(μ3−j)Γ(1 + μj)

[
ln

(
γ̄

2βsβ

)]Nj−1(
2βsβ

γ̄

)μjξj

M -ary ASK
M − 1

M
√
π

m′∑
j=1

EjΓ
(
1
2 + μjξj

)
ξjΓ(μ3−j)Γ(1 + μj)

[
ln

(
3γ̄

(M2 − 1)βsβ

)]Nj−1(
(M2 − 1)βsβ

3γ̄

)μjξj

M -ary PSK

1√
π

m′∑
j=1

{
Ej

ξjΓ(μ3−j)Γ(1 + μj)

[
ln

(
sin2

(
π
M

)
γ̄

βsβ

)]Nj−1(
βsβ

sin2
(

π
M

)
γ̄

)μjξj

×
[
1

2
Γ

(
1

2
+ μjξj

)
+

cot(π/M)√
π

2F1

(
1

2
, 1 + μjξj ;

3

2
;− cot2

( π

M

))]}

M -QAM

2(
√
M − 1)/

√
M√

π

m′∑
j=1

{
Ej

ξjΓ(μ3−j)Γ(1 + μj)

[
ln

(
3γ̄

2(M − 1)βsβ

)]Nj−1(
2(M − 1)βsβ

3γ̄

)μjξj

×
[

1√
M

Γ

(
1

2
+ μjξj

)
+ 2

√
M − 1√
Mπ

2F1

(
1

2
, 1 + μjξj ;

3

2
;−1

)]}

DBPSK
1

2

m′∑
j=1

EjΓ(1 + μjξj)

ξjΓ(μ3−j)Γ(1 + μj)

[
ln

(
γ̄

βsβ

)]Nj−1(
βsβ

γ̄

)μjξj

NC M -ary FSK

M−1∑
n=1

(−1)n+1

(
M − 1

n

)
1

(n+ 1)

m′∑
j=1

EjΓ(1 + μjξj)

ξjΓ(μ3−j)Γ(1 + μj)

[
ln

(
nγ̄

(n+ 1)βsβ

)]Nj−1(
(n+ 1)βsβ

nγ̄

)μjξj

of the EGK distribution. This easily yields the following expression for the channel capacity:

C =
1

Γ(μs)Γ(μ)
H4,1

2,4

⎛
⎝βsβ

γ̄

∣∣∣∣∣∣
(0, 1), (1, 1)

(0, 1), (0, 1), (μs,
1
ξs
), (μ, 1

ξ
)

⎞
⎠ , (25)

which, after some straightforward manipulations, can reduce to [5, Eq. (15)]. The asymptotic expansion

is also obtained by either taking the residue of the integrand in (16) at the double pole s = 1 or

substituting the EGK parameters in (20). After some simplifications, we reach the following asymptotic

expansion of the channel capacity for EGK fading:

C ∼ ln(γ̄)− ln(βsβ) +
1

ξs
ψ (μs) +

1

ξ
ψ (μ) . (26)

III. MULTIPLE-BRANCH COMMUNICATION

In this section, we consider deriving the exact and asymptotic SER expressions for various diversity

combiners assuming statistically independent but not necessarily identical branches.
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A. System Model

Suppose we have an L-branch receiver, each of which has an instantaneous SNR γl, l = 1, . . . , L

with a PDF

fγl(γl) = κlH
ml,nl
pl,ql

⎛
⎝λlγl

∣∣∣∣∣∣
(a

(l)
j , A

(l)
j )j=1:pl

(b
(l)
j , B

(l)
j )j=1:ql

,

⎞
⎠ , γl > 0, l = 1, . . . , L. (27)

Obviously, the existence and convergence conditions will be similar to the case of single-branch

communication. The only difference will be in adding the subscript l wherever appropriate. In our

analysis, we will make use of the following definition of the multivariate H-function [27]:

H0,n:m1,n1:...:mL,nL
p,q:p1,q1,...,pL,qL

⎛
⎜⎜⎜⎝
ζ1
...

ζL

∣∣∣∣∣∣∣∣∣
(cj : C

(1)
j , . . . , C

(L)
j )j=1:p (a

(1)
j , A

(1)
j )j=1:p1 . . . (a

(L)
j , A

(L)
j )j=1:pL

(dj : D
(1)
j , . . . , D

(L)
j )j=1:q (b

(1)
j , B

(1)
j )j=1:q1 . . . (b

(L)
j , B

(L)
j )j=1:qL

⎞
⎟⎟⎟⎠

=
1

(2πi)L

∫
L1

. . .

∫
LL

Ξ(s1, . . . , sL)
L∏
l=1

(
φl(sl)ζ

−sl
l

)
ds1 . . . dsL (28)

where

Ξ(s1, . . . , sL) =

∏n
j=1 Γ

(
1− cj −

∑L
l=1C

(l)
j sl

)
∏p

j=n+1 Γ
(
cj +

∑L
l=1C

(l)
j sl

)∏q
j=1 Γ

(
1− dj −

∑L
l=1D

(l)
j sl

) , (29a)

φl(sl) =

∏ml

j=1 Γ(b
(l)
j +B

(l)
j sl)

∏nl

j=1 Γ(1− a
(l)
j − A

(l)
j sl)∏pl

j=nl+1 Γ(a
(l)
j + A

(l)
j sl)

∏ql
j=ml+1 Γ(1− b

(l)
j − B

(l)
j sl)

, l = 1, . . . , L. (29b)

For convenience, we shall adopt the following abbreviated notation for the multivariate-H function

H
0,n:[ml,nl]l=1:L

p,q:[pl,ql]l=1:L

⎛
⎜⎜⎜⎝
ζ1
...

ζL

∣∣∣∣∣∣∣∣∣

(
cj : {C(l)

j }l=1:L

)
j=1:p(

dj : {D(l)
j }l=1:L

)
j=1:q

⎡
⎣(a(l)j , A(l)

j )j=1:pl

(b
(l)
j , B

(l)
j )j=1:ql

⎤
⎦

l=1:L

⎞
⎟⎟⎟⎠

where the square brackets indicate replication across different dimensions.
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B. Symbol Error Rate Analysis

The output of a wide range of diversity receivers can be generally written in the following form

[28]3:

γc = η0

(
L∑
l=1

γη1l

)1/η1

(30)

where {η0, η1} = {1, 1} for MRC and {η0, η1} = {1/L, 1/2} for EGC. For SC, it is well-known that

γc = maxl=1,...,L γl, which corresponds to η0 = 1 and η1 → ∞. The unconditional SER is given by

Pe =

∫
γ

fγ(γ)h(γc)dγ (31)

where
∫
γ

is a shorthand for
∫∞
γ1=0

. . .
∫∞
γL=0

, fγ(γ) is the joint PDF of γ = [γ1, . . . , γL], and h(γc) is

the conditional SER, which can be considered as a function of γ after substituting from (30) for γc.

We have provided a generalization of Theorem 1 to the case of L-branch diversity receivers in [15,

Theorem 2], which is reproduced here for convenience.

Theorem 3. Consider an L-branch diversity receiver in which the fading channels are independent

and the joint PDF of the SNRs at each branch is fγ(γ). Suppose that the Mellin transforms of fγ(γ)

and h(γc) are f ∗(s) and h∗(s), respectively. The SER at the combiner output is given by the relation

Pe =
1

(2πi)L

∫
s

f ∗(s)h∗(1− s)ds (32)

where s =
[
s1 . . . sL

]T
, 1 is the L×1 all-ones vector and

∫
s

is a shorthand for
∫ σ1+i∞
s1=σ1−i∞ . . .

∫ σL+i∞
sL=σL−i∞.

The constants σl, l = 1 . . . , L are chosen such that the vector σ =
[
σ1 . . . σL

]
lies in the region of

definitions of f ∗(s) and h∗(1− s).

In order to evaluate the SER integral in (32), both f ∗(s) and h∗(s) are needed. The former can

be easily obtained from f ∗(s) =
∏L

l=1 f
∗(sl) due to the independence assumption. As for the latter,

because of the very special form of γc, we are able to derive an interesting relation for the L-dimensional

Mellin transform of h(γc) as shown in the following theorem:

3In fact, the relation presented in [28] takes the form γc = η
(

1
L

∑L
l=1 γ

p
l

)q

where p and q are not to be confused with the definition

of p and q in this paper. Nonetheless, in almost all diversity schemes of interest (even in [28] itself), we have q = 1/p. Hence, by
setting η0 = ηL−1/p and q = 1/p, we get the relation in (30).
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Theorem 4. If γc is given by (30), then the L-dimensional Mellin transform of h(γc) is given by

h∗(s) =
η
−∑L

l=1 sl
0

∏L
l=1 Γ(sl/η1)

η1L−1Γ
(

1
η1

∑L
l=1 sl

) ∫ ∞

γc=0

h(γc)γ
∑L

l=1 sl−1
c dγc. (33)

Moreover, if h(γc) =
∫∞
u=γc

g(u)du, then

h∗(s) =
∏L

l=1 Γ(sl/η1)

η1L−1Γ
(

1
η1

∑L
l=1 sl

)∑L
l=1 sl

∫ ∞

u=0

g(u)u
∑L

l=1 sldu. (34)

Proof. The Mellin transform of h(γc) is given by

h∗(s) =
∫ ∞

γ1=0

. . .

∫ ∞

γL=0

h

⎛
⎝η0

(
L∑
l=1

γη1l

)1/η1
⎞
⎠ L∏

l=1

γsl−1
l dγL . . . dγ1. (35)

Performing the change of variables vl =
∑l

k=1 γ
η1
k and noting that the Jacobian of the transformation

is |J | = η1
−Lv

1/η1−1
1

∏L
l=2(vl − vl−1)

1/η1−1, we easily obtain the following expression for h∗(s):

h∗(s) =
1

η1L

∫ ∞

vL=0

h
(
η0v

1/η1
L

)(∫ vL

vL−1=0

. . .

∫ v2

v1=0

v
s1
η1

−1

1

L∏
l=2

(vl − vl−1)
sl
η1

−1
dv1 . . . dvL−1

)
dvL. (36)

The integration between parenthesis in (36) is simply evaluated using the definition of the beta function

[24, Eq. (8.380.1)] with proper changes of variables and is equal to
∏L

l=1 Γ(sl/η1)

Γ(
∑L

l=1 sl/η1)
v

1
η1

∑L
l=1 sl−1

L . Hence,

we have

h∗(s) =
∏L

l=1 Γ(sl/η1)

η1LΓ(
∑L

l=1 sl/η1)

∫ ∞

vL=0

h
(
η0v

1/η1
L

)
v

1
η1

∑L
l=1 sl−1

L dvL. (37)

Performing the change of variable γc = η0v
1/η1
L , the result in (33) follows. Eq. (34) follows from (33)

by substituting h(γc) =
∫∞
u=γc

g(u)du into it and changing the order of the resultant double integration.

This concludes the proof of the theorem.

It is worth noting that, for SC, the limit as η0 = 1, η1 → ∞ exists and is given by the following

corollary:

Corollary 1. As η0 = 1, η1 → ∞, we have

h∗(s) =
∑L

l=1 sl∏L
l=1 sl

∫ ∞

γc=0

h(γc)γ
∑L

l=1 sl−1
c dγc =

1∏L
l=1 sl

∫ ∞

u=0

g(u)u
∑L

l=1 sldu. (38)
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TABLE VI
BASIC COMPONENTS OF h(γc) TOGETHER WITH THEIR MELLIN TRANSFORMS

hcr(γ; θ) Mellin transform

hc0(γc; b) = e−bγc h∗0(s; b) =
η
−∑L

l=1 sl
0

η1L−1

Γ
(∑L

l=1 sl

)∏L
l=1 b

−slΓ(sl/η1)

Γ
(

1
η1

∑L
l=1 sl

)

hc1(γc; b) =
∫∞
u=γc

u−1/2e−budu h∗1(s; b) =
η
−∑L

l=1 sl
0

η1L
√
b

Γ
(

1
2
+
∑L

l=1 sl

)∏L
l=1 b

−slΓ(sl/η1)

Γ
(
1 + 1

η1

∑L
l=1 sl

)

hc2(γc; a, b) =∫∞
u=γc

u−1/2e−buQ′(
√
au)du

h∗2(s; a, b) =
η
−∑L

l=1 sl
0

2η1L
√
bπ

∏L
l=1 b

−slΓ(sl/η1)

Γ
(
1 + 1

η1

∑L
l=1 sl

)×
1

2πi

∫ c2+i∞

w=c2−i∞

Γ(1
2
− w)

w
Γ

(
w +

1

2
+

L∑
l=1

sl

)( a

2b

)w

dw

1) Exact Expressions: Similar to the case of single-branch communication, h(γc) contains one or

more of the terms shown in the first column of Table VI. It can also be shown that the region of

definition of h∗(s) is always given by Ωh = {s : s1 > 0, . . . , sL > 0}. Hence, the region of definition

of h∗(1 − s) is Ω′
h = {s : s1 < 1, . . . , sL < 1}. Furthermore, as mentioned before, since fγ(γ) is a

PDF, it is always guaranteed that the vector 1 ∈ Ω where Ω is the region of definition of f ∗(s). Thus, it

is also guaranteed that the intersection between the two regions Ω and Ω′
h is not empty since the vector

1 belongs to both Ω and the closure of Ω′
h. Moreover, the vector σ must belong to this intersection

for the validity of Theorem 3. Similar to the case of single-branch communication, the function h(γc)

is usually given as a linear combination of one or more of the functions hcr(γ; θ), r = 0, 1, 2 listed in

Table VI. Therefore, the exact SER is a linear combination of the basic functions defined by

Icr(θ) ≡ 1

(2πi)L

∫
s

f ∗(s)h∗cr(1− s; θ)ds, r = 0, 1 and 2, (39)

where the functions h∗cr(z) are obtained with the aid of Theorem 4 and are listed in Table VI. Expres-

sions for Icr(θ) with different modulation schemes are stated in Table VII. Using these expressions in

the corresponding entries in [15, Table III], the expressions of the SER for the different combining and

modulation schemes over the Fox’s H-function fading channel directly follow. They are not presented

here though due to tight space limitations.
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2) Asymptotic Expansions: The asymptotic expansions of the SER for large average SNRs are

obtained using the exact same way employed with single branch communication. In this case, we should

compute the residue at the points s = (s1, . . . , sL), where sl ∈
{
− b

(l)
1

B
(l)
1

, . . . ,− b
(l)
ml

B
(l)
ml

}
, l = 1, . . . , L.

However, this will result in a number of terms equal to
∏L

l=1ml. Though it is possible to compute all

of them, we found that4, in most cases, only one dominates the sum; namely the one corresponding

to the pole s = (s∗1, . . . , s
∗
L) where s∗l = −minj=1,...,ml

b
(l)
j

B
(l)
j

. Therefore, we may further simplify the

asymptotic expansions by considering only that pole. Defining jl = argmaxj=1,...,ml

b
(l)
j

B
(l)
j

, we get the

following expressions for Icr(θ):

Ic0(b) ∼ K/Λ

η1L−1

Γ
(
L−∑L

l=1 s
∗
l

)
Γ
(

L
η1

− 1
η1

∑L
l=1 s

∗
l

) L∏
l=1

E
(l)
jl
Γ

(
1− s∗l
η1

)[
ln

(
b

λl

)]N(l)
jl

−1(
λl
η0b

)1−s∗l
, (40a)

Ic1(b) ∼ K/Λ

η1L
√
b

Γ
(
L+ 1

2
−∑L

l=1 s
∗
l

)
Γ
(
1 + L

η1
− 1

η1

∑L
l=1 s

∗
l

) L∏
l=1

E
(l)
jl
Γ

(
1− s∗l
η1

)[
ln

(
b

λl

)]N(l)
jl

−1(
λl
η0b

)1−s∗l
,

(40b)

Ic2(a, b) ∼
√
aK/Λ

η1Lb
√
2π

Γ
(
L+ 1−∑L

l=1 s
∗
l

)
Γ
(
1 + L

η1
− 1

η1

∑L
l=1 s

∗
l

)2F1

(
1

2
, L+ 1−

L∑
l=1

s∗l ;
3

2
;− a

2b

)

×
L∏
l=1

E
(l)
jl
Γ

(
1− s∗l
η1

)[
ln

(
b

λl

)]N(l)
jl

−1(
λl
η0b

)1−s∗l
(40c)

where K =
∏L

l=1 κl, Λ =
∏L

l=1 λl, N
(l)
j is the order of the pole s

(l)
j = −b(l)j /B(l)

j , and the constants

E
(l)
j are given in Theorem 2 after adding the superscript (l) wherever appropriate. It can be shown

that the ratio K/Λ depends only on the distribution parameters. Therefore, we prefer to represent the

above expressions in terms of that ratio. Asymptotic expansions of the basic functions for the three

considered diversity combiners are given in Table VIII. Plugging these expressions again into Table

[15, Table III] yields the asymptotic expressions for the SER.

C. Demonstrative Examples

It is of interest to demonstrate how the proposed framework will allow us to derive exact expressions

as well as asymptotic expansions for the SER for the different fading channels and the aforementioned

4We would like to thank one of the reviewers for drawing our attention to this.
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diversity receivers. Due to space limitations, we find it difficult to list all the possible combinations

for all cases. Moreover, we see it is more constructive to demonstrate how the proposed framework

can be used to derive results of interest for non-trivial cases, which have not been treated before in the

literature. In the following examples, we assume all the fading branches to be statistically independent.

1) Example 1: α−μ fading with SC diversity and M -ary PSK modulation: According to [15, Table

III], the SER for PSK modulation is given by

Pe =
sin(π/M)√

π

[
1

2
Ic1

(
sin2(π/M)

)
+ Ic2

(
2 cos2(π/M), sin2(π/M)

)]
. (41)

The expressions for Ic1(.) and Ic2(.) are obtained by substituting the α − μ parameters into the

eighth and ninth rows of Table VII, respectively. Substituting the result into (41) while setting a =

2 cos2(π/M) and b = sin2(π/M) yields the following exact expression for the SER:

Pe =
1

2
√
π
∏L

l=1 Γ(μl)

⎡
⎢⎢⎢⎣H0,1:[1,1]l=1:L

1,0:[1,2]l=1:L

⎛
⎜⎜⎜⎝
β1/ sin

2
(

π
M

)
γ̄1

...

βL/ sin
2
(

π
M

)
γ̄L

∣∣∣∣∣∣∣∣∣
(
1
2
: {1}l=1:L

)
−

⎡
⎣ (1, 1)

(μl,
1
αl
), (0, 1)

⎤
⎦

l=1:L

⎞
⎟⎟⎟⎠

+
1√
π
H

0,1:(1,1),[1,1]l=1:L

1,0:(1,2),[1,2]l=1:L

⎛
⎜⎜⎜⎜⎜⎝

cot2
(

π
M

)
β1/ sin

2
(

π
M

)
γ̄1

...

βL/ sin
2
(

π
M

)
γ̄L

∣∣∣∣∣∣∣∣∣∣∣

(
1
2
: 1, {1}l=1:L

)
(1, 1)

− (1
2
, 1), (0, 1)

⎡
⎣ (1, 1)

(μl,
1
αl
), (0, 1)

⎤
⎦

l=1:L

⎞
⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎦

(42)

where βl =
Γ(μ+1/αl)

Γ(μl)
, l = 1, . . . , L. For the asymptotic expansions, the basic functions Ic1(.) and Ic2(.)

are obtained using the eighth and ninth rows of Table VIII, respectively. Since ml = 1, l = 1, . . . , L,

we have N
(l)
jl

= 1 and E
(l)
jl

= αl for all l and jl. The final asymptotic expression for the SER is

Pe ∼ 1√
π

L∏
l=1

1

Γ(1 + μl)

(
βl

sin2( π
M
)γ̄l

)αlμl

×
[
1

2
Γ

(
1

2
+

L∑
l=1

αlμl

)
+

cot(π/M)√
π

Γ

(
1 +

L∑
l=1

αlμl

)
2F1

(
1

2
, 1 +

L∑
l=1

αlμl;
3

2
;− cot2

( π
M

))]
.

(43)
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2) Example 2: EGK fading with EGC diversity and M -QAM modulation: According to [15, Table

III], the exact SER for M -QAM modulation is given by

Pe =

√
M − 1√
M

√
6

π(M − 1)

[
1√
M

Ic1

(
3

2(M − 1)

)
+ 2

√
M − 1√
M

Ic2

(
3

M − 1
,

3

2(M − 1)

)]
(44)

where, in this case, the basic functions Ic1(.) and Ic2(.) are given by the fifth and sixth rows of Table

VII. Hence, the final expression for the SER is given by setting a = 3/(M − 1) and b = 3/2(M − 1)

in Ic1(.) and Ic2(.) then substituting into (44). The final result is

Pe =
2L+1(

√
M − 1)

Mπ
∏L

l=1 Γ(μl)Γ(μsl)

⎡
⎢⎢⎢⎣H0,0:[2,1]l=1:L

0,1:[1,2]l=1:L

⎛
⎜⎜⎜⎝

L(M−1)βs1β1

6γ̄1
...

L(M−1)βsLβL

6γ̄L

∣∣∣∣∣∣∣∣∣
−

(0 : {1}l=1:L)

⎡
⎣ (1, 2)

(μl − 1
ξl
, 1
ξl
), (μsl − 1

ξsl
, 1
ξsl
)

⎤
⎦
l=1:L

⎞
⎟⎟⎟⎠

+

√
M − 1

π
H

0,1:(1,1),[2,1]l=1:L

1,1:(1,2),[1,2]l=1:L

⎛
⎜⎜⎜⎜⎜⎝

1

2(M−1)β1βs1L
3γ̄1
...

2(M−1)βLβsLL
3γ̄L

∣∣∣∣∣∣∣∣∣∣∣

(
1
2
: 1, {1}l=1:L

)
(1, 1)

(0 : 0, {2}l=1:L) (1
2
, 1), (0, 1)

⎡
⎣ (1, 2)

(μl − 1
ξl
, 1
ξl
), (μsl − 1

ξsl
, 1
ξsl
)

⎤
⎦

l=1:L

⎞
⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎦ .

(45)

Finally, the asymptotic expansion of the SER can be easily obtained using Theorem 2 with m′
l, E

(l)
jl

,

and N
(l)
jl

being as defined in Subsection II-D2. Defining μ1,l = μl, μ2,l = μsl, ξ1,l = ξl, ξ2,l = ξsl,

l = 1, . . . , L, and jl = argmaxj=1,2 μj,1ξj,l, the asymptotic expansion of the SER is given by

Pe ∼ 2(
√
M − 1)√
M

⎛
⎝ L∏

l=1

E
(l)
j Γ (1 + 2μjl,lξjl,l)

ξjl,lΓ(μ3−jl,l)Γ(1 + μjl,l)

[
ln

(
3γ̄l

2(M − 1)βlβsl

)]N(l)
j −1(

L(M − 1)βlβsl
6γ̄l

)μjl,l
ξjl,l

⎞
⎠

×
⎡
⎣ 1
√
MΓ

(
1 +

∑L
l=1 μjl,lξjl,l

) + 2

√
M − 1√
Mπ

2F1

(
1
2
, 1 +

∑L
l=1 μjl,lξjl,l;

3
2
;−1

)
Γ
(

1
2
+
∑L

l=1 μjl,lξjl,l

)
⎤
⎦ . (46)

IV. NUMERICAL AND SIMULATION RESULTS

In this section, we compare the values of the SER obtained via Monte Carlo simulations with our

derived exact and asymptotic expressions for single-branch communication as well as MRC, EGC, and

SC diversity receivers in order to illustrate the accuracy of the presented mathematical formulation.

Furthermore, we compare the exact and the asymptotic results for the capacity expressions for single
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Fig. 2. Exact, asymptotic, and simulated SER results of QPSK, CBFSK, and DBPSK modulation schemes over some limiting cases of
the EGK fading model.

branch communication. In most of the results, we consider the EGK fading distribution and special

cases of it as representative examples. The solid lines in all figures denote the exact results while the

dashed ones represent the asymptotic results. The markers denotes the simulation results, which are

obtained using MATLAB.

We first start with the SER for single-branch receivers. In Fig. 2, we consider communication using

QPSK, CBFSK, and DBPSK over Weibull and Nakagami-m fading channels while 8-PSK, 8-QAM, and

8-NCFSK modulation schemes operating over the generalized-K and the Weibull-Gamma composite

fading channels are considered in Fig. 3. Furthermore, the SER for the single-branch case is depicted

in Fig. 4 for 16-symbols systems considering different combinations of the EGK channel parameters.

In all the figures, we notice a strong match between the exact and simulation results of the SER for

all the SNR range. Moreover, we notice that the exact and asymptotic expansions agree very well

at high SNRs. This confirms the validity of our mathematical analysis for different communication

scenarios and parameter settings. It is important to note that the asymptotic expansions are much easier

and faster to calculate than the exact SER values and are not prone to underflow usually encountered

in numerical integration when very small values SER are calculated. This is the reason behind the

strength of using the asymptotic expansions for quickly comparing different communication scenarios.
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Fig. 3. Exact, asymptotic, and simulated SER results of 8-PSK, 8-QAM, and 8-NCFSK over some special cases of the EGK fading
model.
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Fig. 4. Exact, asymptotic, and simulated SER performance considering 16-PSK, 16-QAM, and 16-NCFSK over EGK fading with
different parameters.

The applicability of our proposed framework for computing the SER of MRC, EGC, and SC diversity

receivers is next demonstrated in Figs. 5, 6, and 7, respectively. In these figures, all branches are

assumed to be statistically independent and are subject to identical EGK fading distribution with the

following channel parameters: μl = 1, ξl = 1.5, μsl = 3.5, and ξsl = 2. In Figs. 5 and 6, we consider

dual and quad-branch diversity receivers, respectively, while in Fig. 7, dual and triple-branch receivers
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Fig. 5. SER for dual- and quad-branch MRC receivers employing 16-PSK and 16-QAM with μl = 1, ξl = 1.5, μsl = 3.5, and ξsl = 2.
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Fig. 6. SER for dual- and quad-branch EGC receivers employing 16-ASK and 16-NCFSK with μl = 1, ξl = 1.5, μsl = 3.5, and
ξsl = 2.

are considered. Different modulation schemes are also considered. As seen in these three figures, the

asymptotic results match the exact results well at high average SNR. Furthermore, as expected, the

average SER decreases significantly with the increase of number of diversity branches.

We next demonstrate the capacity of special cases of the H-function distribution. In Figs. 8 and

9, the capacity of the EGK and α-μ fading channels, respectively, is depicted. As before, a strong
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Fig. 8. Exact, asymptotic, and simulated capacity over EGK composite fading assuming different distribution parameters.

match between the exact and asymptotic values of the capacity for SNR values roughly above 25 dB

is noticed in both figures. Moreover, the match increases for less severely faded channels in which

the values of α or ξ are relatively smaller than μ. We also notice that, in all cases, the value of the

asymptotic capacity is always less than its corresponding exact one. Hence, we may argue that the

obtained asymptotic expression may serve as a tight lower bound for the true capacity.
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Fig. 9. Exact, asymptotic, and simulated capacity over α-μ fading assuming different distribution parameters.

V. CONCLUSIONS

In this paper, we have evaluated the performance of single and multiple-branch diversity receivers

when operating over the Fox’s H-function fading channel as a unified fading model that subsumes

many fading models of practical interest. For single-branch communications, we have derived exact

expressions as well as asymptotic expansions for the SER and the channel capacity while for multiple

branch communication only exact SER analysis was addressed. Our mathematical analysis was vali-

dated by various computer simulations considering a variety of special fading distributions, modulation

schemes, and diversity receivers. In all experiments, a perfect match between the exact expressions

and their corresponding asymptotic expansions has been clearly observed.

APPENDIX A

PYTHON IMPLEMENTATION OF THE MULTIVARIATE H-FUNCTION

from __future__ import division

import numpy as np

import scipy.special as special

import itertools

def detBoundaries(params, tol):

’’’Determine rectangular boundaries of integration region of Fox-H function.’’’
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TABLE VII
EXACT EXPRESSIONS FOR Ic0(b), Ic1(b), AND Ic2(a, b) FOR DIFFERENT DIVERSITY COMBINING RECEIVERS SUBJECT TO GENERAL

FOX’S H-FUNCTION FADING. K =
∏L

l=1 κl AND Λ =
∏L

l=1 λl .

Diversity Expressions for Ic0(b), Ic1(b), and Ic2(a, b)

MRC
Ic0(b) =

K

Λ

L∏
l=1

H
ml,nl+1
pl+1,ql

(
λl

b

∣∣∣∣∣(1, 1), (a
(l)
j +A

(l)
j , A

(l)
j )j=1:pl

(b
(l)
j +B

(l)
j , B

(l)
j )j=1:ql

)

Ic1(b) =
K/Λ√

b
H

0,1:[ml,nl+1]l=1:L
1,1:[pl+1,ql]l=1:L

⎛
⎜⎝
λ1/b

...
λL/b

∣∣∣∣∣∣∣
(
1
2
: {1}l=1:L

)
(0 : {1}l=1:L)

[
(1, 1), (a

(l)
j +A

(l)
j , A

(l)
j )j=1:pl

(b
(l)
j +B

(l)
j , B

(l)
j )j=1:ql

]
l=1:L

⎞
⎟⎠

Ic2(a, b) =
K/Λ

2
√
πb

H
0,1:(1,1),[ml,nl+1]l=1:L
1,1:(1,2),[pl+1,ql]l=1:L

⎛
⎜⎜⎜⎝
a/2b
λ1/b

...
λL/b

∣∣∣∣∣∣∣∣∣
(
1
2
: 1, {1}l=1:L

)
(1, 1)

(0 : 0, {1}l=1:L) ( 1
2
, 1), (0, 1)

[
(1, 1), (a

(l)
j +A

(l)
j , A

(l)
j )j=1:pl

(b
(l)
j +B

(l)
j , B

(l)
j )j=1:ql

]
l=1:L

⎞
⎟⎟⎟⎠

EGC
Ic0(b) =

K

Λ
2L

√
πH

0,0:[ml,nl+1]l=1:L
0,1:[pl+1,ql]l=1:L

⎛
⎜⎝
λ1L/4b

...
λLL/4b

∣∣∣∣∣∣∣
−(

1
2
, {1}l=1:L

) [
(1, 2), (a

(l)
j +A

(l)
j , A

(l)
j )j=1:pl

(b
(l)
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(l)
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(l)
j )j=1:ql

]
l=1:L

⎞
⎟⎠
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(K/Λ)2L

√
π√

b
H
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⎛
⎜⎝
λ1L/4b
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∣∣∣∣∣∣∣
−
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[
(1, 2), (a

(l)
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j )j=1:ql
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⎟⎠
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2
√
bπ
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Ic0(b) =

K

Λ
H
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⎛
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∣∣∣∣∣∣∣
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1
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[
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(l)
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j , A

(l)
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]
l=1:L

⎞
⎟⎠
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K/Λ

2
√
πb

H
0,1:(1,1),[ml,nl+1]l=1:L
1,0:(1,2),[pl+1,ql+1]l=1:L

⎛
⎜⎜⎜⎝
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...
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⎞
⎟⎟⎟⎠

boundary_range = np.arange(0, 50, 0.05)

dims = len(params[0])

boundaries = np.zeros(dims)

for dim_l in range(dims):

points = np.zeros((boundary_range.shape[0], dims))

points[:, dim_l] = boundary_range

abs_integrand = np.abs(compMultiFoxHIntegrand(points, params))

index = np.max(np.nonzero(abs_integrand>tol*abs_integrand[0]))

boundaries[dim_l] = boundary_range[index]

return boundaries

def compMultiFoxHIntegrand(y, params):
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TABLE VIII
ASYMPTOTIC EXPANSIONS FOR Ic0(b), Ic1(b), AND Ic2(a, b) FOR DIFFERENT DIVERSITY COMBINING RECEIVERS SUBJECT TO

FOX’S H-FUNCTION CHANNEL FADING. SIMPLE POLES OF f∗(s) ARE ASSUMED. K =
∏L

l=1 κl AND Λ =
∏L

l=1 λl .

Diversity Expressions for Ic0(b), Ic1(b), and Ic2(a, b)

MRC
Ic0(b) ∼ K

Λ

L∏
l=1

E
(l)
jl
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ln

(
b

λl
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⎣Γ
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l
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⎦
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⎤
⎦

’’’ Compute complex integrand of Fox-H function at points given by rows of matrix y.’’’

z, mn, pq, c, d, a, b = params

m, n = zip(*mn)

p, q = zip(*pq)

npoints, dims = y.shape

s = 1j*y

lower = np.zeros(dims)

upper = np.zeros(dims)

for dim_l in range(dims):

if b[dim_l]:

bj, Bj = zip(*b[dim_l])

bj = np.array(bj[:m[dim_l+1]])

Bj = np.array(Bj[:m[dim_l+1]])

lower[dim_l] = -np.min(bj/Bj)

else:

lower[dim_l] = -100
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if a[dim_l]:

aj, Aj = zip(*a[dim_l])

aj = np.array(aj[:n[dim_l+1]])

Aj = np.array(Aj[:n[dim_l+1]])

upper[dim_l] = np.min((1-aj)/Aj)

else:

upper[dim_l] = 0

mindist = np.linalg.norm(upper-lower)

sigs = 0.5*(upper+lower)

for j in range(n[0]):

num = 1 - c[j][0] - np.sum(c[j][1:] * lower)

cnorm = np.linalg.norm(c[j][1:])

newdist = np.abs(num) / cnorm

if newdist < mindist:

mindist = newdist

sigs = lower + 0.5*num*np.array(c[j][1:])/(cnorm*cnorm)

s += sigs

s1 = np.c_[np.ones((npoints, 1)), s]

prod_gam_num = prod_gam_denom = 1+0j

for j in range(n[0]):

prod_gam_num *= special.gamma(1-np.dot(s1, c[j]))

for j in range(q[0]):

prod_gam_denom *= special.gamma(1-np.dot(s1, d[j]))

for j in range(n[0], p[0]):

prod_gam_denom *= special.gamma(np.dot(s1,c[j]))

for dim_l in range(dims):

for j in range(n[dim_l+1]):

prod_gam_num *= special.gamma(1 - a[dim_l][j][0] - a[dim_l][j][1]*s[:, dim_l])

for j in range(m[dim_l+1]):

prod_gam_num *= special.gamma(b[dim_l][j][0] + b[dim_l][j][1]*s[:, dim_l])

for j in range(n[dim_l+1], p[dim_l+1]):

prod_gam_denom *= special.gamma(a[dim_l][j][0] + a[dim_l][j][1]*s[:, dim_l])

for j in range(m[dim_l+1], q[dim_l+1]):

prod_gam_denom *= special.gamma(1 - b[dim_l][j][0] - b[dim_l][j][1]*s[:, dim_l])

zs = np.power(z, -s)

result = (prod_gam_num/prod_gam_denom)*np.prod(zs, axis=1)/(2*np.pi)**dims

return result

def compMultiFoxH(params, nsubdivisions, boundaryTol=0.0001):

’’’Estimate multivariate integral using rectangular quadrature.

Inputs: ’params’: list containing z, mn, pq, c, d, a, b. ’nsubdivisions’: the number of

divisions taken along each dimension. ’boundaryTol’: tolerance used for determining
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the boundaries. Output: ’result’: the estimated value of the Fox H function...’’’

boundaries = detBoundaries(params, boundaryTol)

dim = boundaries.shape[0]

signs = list(itertools.product([1,-1], repeat=dim))

code = list(itertools.product(range(int(nsubdivisions/2)), repeat=dim))

quad = 0

res = np.zeros((0))

for sign in signs:

points = np.array(sign)*(np.array(code)+0.5)*boundaries*2/nsubdivisions

res = np.r_[res,np.real(compMultiFoxHIntegrand(points, params))]

quad += np.sum(compMultiFoxHIntegrand(points, params))

volume = np.prod(2*boundaries/nsubdivisions)

result = quad*volume

return result

APPENDIX B

THE GAMMA-GAMMA AND THE MÁLAGA DISTRIBUTIONS AS SPECIAL CASES OF THE FOX’S

H-FUNCTION FADING MODEL

The Gamma-Gamma and the Málaga distributions have been presented in the literature to describe the

fading phenomenon over FSO channels. Let us start with the Gamma-Gamma distribution. According

to [6], the PDF of the instantaneous SNR is given by [6, Eq. (3)]

fγ(γ) =
ξ2

rγΓ(α)Γ(β)
G3,0

1,3

⎛
⎝αβ ( γ

μRD

)1/r

∣∣∣∣∣∣
ξ2 + 1

ξ2, α, β

⎞
⎠ (47)

where α, β, ξ, r, μRD are some properly defined parameters related to the FSO link. Since the Meijer-G

is a special case of the Fox-H function [21, Eq. (1.112)] and using the relations in [21, Eqs. (1.59)

and (1.60)], the instantaneous SNR PDF can be written as

fγ(γ) =
ξ2

Γ(α)Γ(β)
H3,0

1,3

⎛
⎝(αβ)r

μRD

γ

∣∣∣∣∣∣
(ξ2 + 1− r, r)

(ξ2 − r, r), (α− r, r), (β − r, r)

⎞
⎠ , (48)

which is indeed a special case of the model considered in this work. Note that the ROC of the Mellin

transform is �{s} > 1 −min(α, β, ξ2)/r, which is guaranteed to include the point s = 1 as long as

α, β, r are positive. Moreover, the expressions for the SER and capacity can be obtained by setting

κ = ξ2

Γ(α)Γ(β)
, λ = (αβ)r

μRD
, m = q = 3, n = 0, p = 1, a1 = ξ2+1−r, b1 = ξ2−r, b2 = α−r, b3 = β−r,
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and A1 = B1 = B2 = B3 = r.

Regarding the Málaga distribution, according to [7], the SNR PDF is given by

fγ(γ) =

⎧⎪⎨
⎪⎩
A(G)

∑∞
k=1 a

(G)
k γ(α+k)/2Kα−k

(
2
√

αγ
I

)
, if β is non-integer

A
∑β

k=1 akγ
(α+k)/2Kα−k

(
2
√

αβγ
Iβ+Ω′

)
, if β is an integer

(49)

where α, β, I , Ω′ are the distribution parameters, A, A(G), ak, and a
(G)
k are some dependent constants,

and Kν(.) is the modified Bessel function of the second kind. The modified Bessel function can be

expressed in terms of the Meijer G function as in [24, Eq. (9.34.3)], which can readily be written in

terms of the H-function using [21, Eq. (1.112)]. Thus, the PDF can be represented as the following

sum of the Fox-H functions:

fγ(γ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2
A(G)

∑∞
k=1 a

(G)
k H2,0

0,2

⎛
⎜⎝α

I
γ

∣∣∣∣∣∣∣
−

(ν+α+k
2

, 1), (−ν+α+k
2

, 1)

⎞
⎟⎠ if β is non-integer

1
2
A
∑β

k=1 akH
2,0
0,2

⎛
⎜⎝ αβ

Iβ+Ω′γ

∣∣∣∣∣∣∣
−

(ν+α+k
2

, 1), (−ν+α+k
2

, 1)

⎞
⎟⎠ if β is an integer

. (50)

Thus, if β is not integer, the SER and the ergodic capacity should be an infinite series in which the

kth-term corresponds to κ = 1
2
A(G)a

(G)
k , λ = α

I
, m = q = 2, n = p = 0, b1 = ν+α+k

2
, b2 = −ν+α+k

2
,

and B1 = B2 = 1. If β is an integer, the SER and the ergodic capacity should be a finite series of

β + 1 terms in which the kth-term corresponds to κ = 1
2
Aak, λ = αβ

Iβ+Ω′ , m = q = 2, n = p = 0,

b1 =
ν+α+k

2
, b2 =

−ν+α+k
2

, and B1 = B2 = 1.
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