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Abstract

Matrix-matrix multiplication is a component of many numerical algorithms; however, it

is a time consuming operation. Sometimes, when the matrix size is huge, the processing

of the matrix-matrix multiplication on a single processor in not sufficiently fast. Find-

ing an approach for efficient matrix-matrix multiplication can scale the performance

of several applications that depend on it. The aim of this study is to improve the ef-

ficiency of matrix-matrix multiplication on a distributed network composed of hetero-

geneous nodes. Since load balancing between heterogeneous nodes forms the biggest

challenge, the performance model is derived using the Divisible Load Theory (DLT).

The proposed solution improves performance by: (a) the reduction of communication

overhead, as DLT-derived load partitioning does not require synchronization between

nodes during processing time, and (b) high utilization of resources, as both Control

Processing Unit (CPU) and Graphical Processing Unit (GPU) are used in the compu-

tation. The experiments are conducted on a single node as well as a cluster of nodes.

The results prove that the use of DLT equations balances the load between CPUs and

GPUs. On a single node, the suggested hybrid approach has superior performance when

compared to C Basic Linear Algebra Subroutines (cBLAS) and OpenMP Basic Linear

Algebra Subroutines (openBLAS) approaches. On the other hand, the performance dif-

ference between the hybrid and GPU only (CUDA Basic Linear Algebra Subroutines)

approaches is mild as the majority of the load in the hybrid approach is allocated to the

GPU. On a cluster of nodes, the computation time is reduced to almost half of the GPU

only processing time; however, the overall improvement is impeded by communication

overhead. It is expected that faster communication media could reduce the overall time

and further improve speedup.

Search Terms: hybrid processing, parallel processing, load partitioning, matrix-

matrix multiplication, divisible load theory

6



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2. Problem Definition and Approach . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Inter Node Load Balancing . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Intra Node Load Balancing . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 GPU Programming Characteristics . . . . . . . . . . . . . . . . . . . . 15

3. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Research Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Heuristic algorithms . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.2 DLT methodologies . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Linear Algebra Libraries . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Basic linear algebra subprogram . . . . . . . . . . . . . . . . . 24

3.2.2 Linear algebra libraries supporting hybrid processing . . . . . . 24

3.2.2.1 CuBLAS-XT . . . . . . . . . . . . . . . . . . . . . . 24

3.2.2.2 AMD Core Math Library . . . . . . . . . . . . . . . 24

3.2.2.3 Intel Math Kernel Library . . . . . . . . . . . . . . . 25

3.2.2.4 HiFlow . . . . . . . . . . . . . . . . . . . . . . . . . 25

4. Performance Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 DLT Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.1 The case of an accelerator, CPU-core pair . . . . . . . . . . . . 28

4.2.1.1 Multiple single-accelerator-equipped systems . . . . . 31

5. Experiment Set-up and Measurement of Parameters . . . . . . . . . . . . . . 35

5.1 Hardware and Software Set-up . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Measurement of Parameters . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2.1 Measurement of CPU processing speed and latency . . . . . . . 36

5.2.2 Measurement of GPU processing speed and latency . . . . . . . 36

7



5.2.3 Measurement of GPU PCIe bus speed . . . . . . . . . . . . . . 37

5.2.4 Measurement of communication link speed and latency . . . . . 37

6. Implementation and Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7. Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.1 Hybrid Approach on Dune-970 . . . . . . . . . . . . . . . . . . . . . . 43

7.2 Hybrid Approach on Dune-770 . . . . . . . . . . . . . . . . . . . . . . 44

7.3 Hybrid Approach on Multiple Nodes . . . . . . . . . . . . . . . . . . . 47

8. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

8



List of Figures

Figure 1: Distributed network used in matrix-vector multiplication [36]. . . . . 23

Figure 2: The communication and computation of matrices A and B on a hy-
brid system composed of an accelerator and three nodes having the
same computational power. . . . . . . . . . . . . . . . . . . . . . . 27

Figure 3: Possible timings for a CPU core and an accelerator card in process-
ing the product of two matrices A×B. . . . . . . . . . . . . . . . . 30

Figure 4: CPU processing time for different MNK values on Dune-970 and
Dune-770. p j is the slope and e j is the intercept. . . . . . . . . . . . 37

Figure 5: GPU processing time for different NMK values on Dune-770 and
Dune-970. p ja is the slope. . . . . . . . . . . . . . . . . . . . . . . 38

Figure 6: GPU PCIe bus speed on Dune-970. lp is the slope. . . . . . . . . . . 38

Figure 7: GPU PCIe bus speed on Dune-770. lp is the slope. . . . . . . . . . . 39

Figure 8: Graph showing the communication speed using a ping-pong pro-
gram between Dune-970 and Kingpenguin. l is the slope and b is
the intercept. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 9: Sequence diagram of master-worker communication in the imple-
mentation of proposed matrix-matrix multiplication. . . . . . . . . . 40

Figure 10: Sequence diagram showing internode communication in the imple-
mentation of matrix-matrix multiplication. . . . . . . . . . . . . . . 41

Figure 11: Showing the GPU only time and the hybrid time on Dune-970 . . . . 43

Figure 12: Speedup achieved by hybrid approach on Dune-970 . . . . . . . . . 44

Figure 13: Comparative results of GPU only, hybrid, cBLAS and openBLAS
methods on Dune-770 . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 14: Comparative results of GPU only and hybrid methods on Dune-770 46

Figure 15: Graph showing expected execution time calculated using DLT equa-
tion (shown as DLT Theory) and actual execution time (shown as
Measured) in multiple nodes experiment. . . . . . . . . . . . . . . . 48

9



List of Tables

Table 1: List of applications for which closed form partitioning solutions have
been obtained . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Table 2: Symbol table for [19]. . . . . . . . . . . . . . . . . . . . . . . . . . 20

Table 3: A summary of notation for [5]. . . . . . . . . . . . . . . . . . . . . 22

Table 4: Summary of linear algebra libraries supporting hybrid computation . . 26

Table 5: Symbols and Notations . . . . . . . . . . . . . . . . . . . . . . . . . 28

Table 6: Hardware Specifications . . . . . . . . . . . . . . . . . . . . . . . . 35

Table 7: Dune-970 properties . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Table 8: Summary of the results collected from Dune-970 . . . . . . . . . . . 45

Table 9: Dune-770 properties . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Table 10: Summary of the results collected from Dune-770 . . . . . . . . . . . 46

Table 11: Summary of the results collected from multiple node test . . . . . . . 48

10



Chapter 1: Introduction

Currently, a common practice to achieve faster computations involves the com-

position of distributed systems by interconnecting commodity desktops. The potential

for accelerated execution depends on workload divisibility among the connected nodes

for parallel program processing. However, the success of parallel techniques is directly

related to efficient load balancing. The work load should be partitioned and distributed

in a way that reduces the program overall execution time [1]. Thus, all the time spent

in communication, either to distribute data from the master node to the workers, or to

collect the results from workers, should be reduced or overlap computation. The desired

performance enhancement will not be achieved unless the proper workload balancing

strategy is applied.

There are two methodologies used for load distribution, the static, and the dy-

namic approach. The static approach splits the data and assigns the partitions to proces-

sors before computation commences. On the other hand, the dynamic scheduling takes

into consideration the real execution time of every partition and adjusts the load distri-

bution schedule accordingly. Thus, the dynamic strategy can adapt to changes during

runtime such as network traffic and off-line nodes. However, the major disadvantage

of this approach is the overhead caused by extra communication and frequent synchro-

nization between nodes. In certain situations, the overhead caused by the use of the

dynamic workload balancing can degrade the overall performance [2, 3].

A large number of load balancing algorithms is based on a theory called Di-

visible Load Theory (DLT); DLT popularity is obtained from its ability to define a

mathematical model used to do time-optimal processing. DLT assumes that the data

can be divided into arbitrary, independent partitions that can be processed in parallel.

These partitions should not have any precedence relations. This requirement is satisfied

by a wide spectrum of scientific problems such as digital image processing, database

processes and linear algebra calculations [3–9]

Most machines nowadays are equipped with a Graphical Processing Unit (GPU)

besides the Central Processing Unit (CPU). A CPU contains few cores optimized for

sequential processing while a GPU has a massively parallel architecture composed
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of thousands of smaller, simpler cores designed for executing multiple tasks simul-

taneously. As its name might suggest, GPUs were first used for manipulating com-

puter graphics. Later, General Purpose GPU Processing (GPGPU), in which compute-

intensive portions of the application are off-loaded to the GPU, has evolved. GPGPU

is now used to accelerate scientific, analytics, engineering, consumer, and enterprise

applications [10].

The speedup achieved by GPUs, when used in certain applications, made them

a crucial component in parallel architecture. With the evolution of multi-core CPUs,

developers started to make use of the extra cores through designing applications that

can be executed in parallel. Recently, hybrid computation started to grab attention:

instead of using multi-cores alone or GPU alone, why not integrate both to optimize

the use of available resources? The use of GPU and CPU as peers can boost perfor-

mance particularly in data-intensive applications, applications that process huge data

sets. However, the simultaneous use of GPU and CPU requires challenging schedul-

ing techniques, which should take into account the difference in computation costs and

capabilities between these two hardware platforms.

The interest in hybrid parallel computation has grown considerably in recent

times. The scheduling techniques used are tightly coupled with the application [11].

Several algorithms were proposed to tackle the load balancing issue of linear algebra

operations, including matrix multiplication, in hybrid systems. In addition, some linear

algebra libraries like cuBLAS-XT provided routines that allow the simultaneous use of

CPU and GPU. However, all these methodologies failed to provide a mathematical tool

that can be utilized to handle workload distribution in heterogeneous systems.

This thesis suggests the use of DLT to provide a mathematical model that will be

used for load balancing between the CPU and GPU during matrix multiplication. DLT

mathematical models can also be used to measure if the node’s contribution will actually

enhance performance or not. Further analysis based on load distribution equations can

reveal the minimum and maximum number of nodes that can participate in a network

in order to reduce the overall execution time.

The contribution of this thesis can be summarized as follows:

• Providing a DLT solution for matix-matrix multiplication, one of the most expen-
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sive basic linear algebra routines

• Offering a performance evaluation of the proposed mathematical model

The organization of this thesis is as follows. Chapter 2 includes the problem

definition and approach. Chapter 3 includes the literature review. Chapter 4 discusses

the performance model as well as the DLT equations. Chapter 5 covers the experiment

set-up as well as the measurement of parameters. Chapter 6 contains the implementa-

tion and profiling details. In Chapter 7, the experimental evaluation of the conducted

experiments is discussed and Chapter 8 concludes this thesis.
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Chapter 2: Problem Definition and Approach

Matrix-matrix multiplication is a time consuming operation, that is a component

of many numerical algorithms. When the matrix size is huge, matrix-matrix multiplica-

tion on a single processor is tremendously slow. Using parallel processing for speeding-

up matrix-matrix multiplication can enhance the performance of several applications.

In this thesis, we consider a group of heterogeneous nodes such that each node

is equipped with multi-core CPU and a GPU. Our target is to accelerate large sized

matrix-matrix multiplication through high resource utilization. Thus, the work load is

first divided between the nodes in the network. Then, the distributed partitions is sub-

divided between the processors in a single node. To achieve the optimum performance,

two distinct scheduling problems must be addressed: inter node and intra node load

balancing.

2.1. Inter Node Load Balancing

A master/slave paradigm is used in inter node load balancing. One node hosts

the matrices; assuming that the computational capability of this node is insufficient

for matrix multiplication optimal processing, the matrices are partitioned using the di-

visible load methodology, and distributed to other nodes for parallel processing using

the Message Passing Interface (MPI). The introduced approach enables communica-

tion/computation overlap to hide communication cost.

2.2. Intra Node Load Balancing

In intra node load balancing, the work is subdivided among node processors.

The node available CPUs and GPUs are queried and, according to their number as well

as their computational power, the work load is distributed among them to achieve the

most efficient load processing. For example, if a node has four cores and a GPU, three

cores will participate in computation, while the fourth one will be used to copy the data

to/from the GPU. The Compute Unified Device Architecture platform (CUDA) is used

to program the GPU. Asynchronous CUDA APIs are used whenever possible to reduce
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communication overhead resulting from copying huge matrices from host to device and

vise versa.

2.3. GPU Programming Characteristics

The two major factors that greatly affect GPU use in parallel processing are:

• Input Size: The size of the input plays a crucial role in determining the most effi-

cient hardware set up for task execution. It should not be taken for granted that the

use of GPU will necessarily enhance performance. On the contrary, it can drasti-

cally increase the total execution time. Copying the data from host to device and

vice versa is an expensive process; hence, GPU performance enhancement can

only be achieved when the size of data is big enough such that the reduction in

computation time can offset the communication overhead [10]. For every appli-

cation, there is a certain size threshold below which GPU execution deteriorates

performance.

• CUDA Runtime Initialization: There is a delay that occurs when the first run-

time CUDA call, usually cudaMalloc(), is made. This delay is caused by CUDA

runtime initialization. This CUDA startup time must be taken in consideration

whenever a GPU is to be used in parallel processing [12].
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Chapter 3: Related Work

The literature review is divided into two parts, the first one covers research work

done in the area of DLT and parallel computations using heterogeneous clusters. The

second part of this section lists different linear algebra libraries that include matrix-

matrix multiplication aiming at discussing the pros and cons of each of these libraries.

3.1. Research Work

This section is divided into two parts. The first part discusses heuristic algo-

rithms used to solve a number of linear algebra problems using parallel processing,

while the second one covers DLT load partitioning techniques.

3.1.1. Heuristic algorithms. Park and Perumalla state in [13] that efficient

use of hybrid systems in linear algebra computations can reduce total execution time.

Despite the speed-up achieved by using GPU parallel processing for solving linear alge-

bra problems, the heterogeneous parallel systems can still compete and further enhance

performance. The authors argue that in GPU only parallel set-up, the CPU computation

capabilities are wasted by being restricted to inter-node communication (data supply to

the GPU). On the other hand, their study shows that blind use of GPU/CPU parallel

structure would not produce the desired effect unless applied appropriately. To derive

benefit from hybrid parallel execution, proper memory management of the GPU (in case

of several processes accessing the accelerator simultaneously) as well as efficient load

distribution between GPU and CPU should be taken into consideration.

One of Park and Perumalla’s contributions to optimize hybrid computation is the

libaccelmm library which handles GPU memory management [13]. This library can be

utilized by applications that reuse computational results performed by the accelerator.

Libaccelmm treats the GPU memory as a virtual memory and the CPU memory as a

disk. The only limitation is that the data required for a given process computation must

completely fit in the GPU memory. The role of libaccelmm library can be summarized

as follows:
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• Device memory mapping: This includes handling data copying from host to de-

vice, and device memory allocation. In addition, a new entry is created in a hash

table to keep track of the copied data. The hash table entry has two pointers and

a number of flags. The pointers are pointing to data storage in the host and to

its location in the device. The flags are required for data validation and efficient

memory management.

• Device memory synchronization: When the host data or the device data are mod-

ified, the corresponding hash table entry is marked as invalid. In this case, libac-

celmm is responsible for data synchronization between the device and the host

before being accessed by any process.

• Device memory deletion and replacement: libaccelmm ensures that deleting data

will not affect correctness but can affect performance. The library keeps track

of the least and the most recently used data, and whenever the device is out of

memory, the least recently used data are evacuated first.

Park and Perumalla tested their implementations by solving a system of linear

equations:

Ax = b (1)

where A is a NM×NM block tridiagonal matrix (A is described as a N×N matrix of

M×M blocks), x and b are NM×1 vectors (formed by writing the columns of N×M

matrix one below the other) [14]. The mathematical operations required to solve the

problem involves the following four steps (performed on blocks) :

1. A factorization of the M×M diagonal block matrix

2. Two solve operations on M×M using the factorization calculated in step 1

3. Two matrix-matrix multiplications

4. A matrix-vector multiplication

Park and Perumalla used a cyclic reduction algorithm, as well as divide and

conquer strategies to tackle the problem [15]. Park and Perumalla experiment set-up

was as follows:

• Software set-up: libaccelmm is written in CUDA. Solving the tridiagonal ma-

trix required BLAS and LAPACK routines in CPU execution and cuBLAS and

MAGMA in GPU execution.
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• Hardware set-up: TitanDev was the platform used; it is a supercomputer con-

taining 15,360 cores among 960 nodes, each consisting of one 16-core AMD

Interlagos processor with 32 GB of memory and one nVidia TX2090 accelerator

connected via PCI Express.

Park and Perumalla compared four different execution structures. CPU only

execution in which multi-cores are involved. GPU only execution, in which the role

of the CPU is to supply data to the GPU. CPU/GPU structure in which one process is

used for CPU parallel execution and another for GPU. SGPU/CPU in which multiple

processes are allowed to access the GPU. In the SGPU/CPU scenario proper partitioning

is addressed plus efficient memory management (using libaccelmm).

In [16], Ravi et al. propose a number of new scheduling algorithms that enable

load balancing on CPU-GPU clusters. Their proposed solution is based on the fact that

different tasks have different performances on different resources. Thus, tasks should be

assigned to the resource that will execute them faster, and not in a first come first served

scheme. The authors assume that the program can be divided into tasks compatible

to run on both the CPU or the GPU. The implemented scheduler decides the best set

up to execute the task whether it is the CPU cores, the GPU or both, in any number

of nodes in the network. The obtained results show that the suggested load balancing

scheme outperforms a blind round-robin (naive dynamic approach) methodology and

approaches the performance of an ideal scheduler that includes an idealistic exhaustive

investigation of all possible schedules.

A recent study was done by Zhu et al. [17] targeting heterogeneous computa-

tion support. In hybrid systems, there is a necessity for code compatibility between

CPUs and GPUs as well as different kinds of GPUs [16, 17]. A task can be mapped

to either GPU or CPU; however, tasks must be distributed based on performance. Not

all tasks perform well on GPU, only hot spots of the code (such as loops with no data

dependencies) can benefit from GPU parallel computation. The authors achieved code

compatibility between CPU and GPU using a dynamic binary translator called Cross-

Bit. CrossBit first translates binary source code to an intermediate instruction set and

then transforms these instructions to the target platform code. The researchers devel-

oped a module GXBIT which employed the CrossBit to support hybrid computation as
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follows [17].

• CrossBit is used to convert binary source code to intermediate instruction set

• The hot spots of the program are extracted and the required information is gath-

ered

• The code is then translated to relevant platform code (CUDA for hot spots of the

code)

In [18], Lastovetsky and Reddy suggest a load balancing algorithm for some

computations including matrix-matrix multiplication that considers memory constraints

of the processors. Primarily, the algorithm calculate the partition for the processors

based on their computational capabilities. Afterwards, the calculated partition for each

processor is compared with the size of its memory. In case the allocated partition does

not fit in the processor memory, the part assigned to that processor is reduced to the

maximum size that fits while the rest is redistributed between the remaining nodes.

3.1.2. DLT methodologies. As mentioned before, DLT requires that the work-

load can be divided into several independent arbitrary sized chunks that can be pro-

cessed in parallel. A summary of application domains that satisfy this criterion is listed

in Table 1. This is followed by detailed explanation of some DLT applied solutions.

Barlas, Hassan and Al Jundi [19] state that there is a necessity to take advantage

of both CPU cores and GPU devices to speed-up tasks. In [19], Barlas, Hassan and Al

Jundi discuss the use of both GPU and CPU to fasten the encryption and decryption

process of block ciphers. The study has the following contributions:

• A mathematical framework based on DLT is proposed to optimally distribute/collect

data to/from hybrid nodes. This is explained in details below.

• The proposed partitioning approach showed better results than the dynamic load

balancing one.

Barlas, Hassan and Al Jundi’s architecture is composed of N heterogeneous

worker nodes receiving input data from one node named the Coordinator Node (CN).

In their proposed model, the CN is not contributing in the computations but with slight

adjustments to cost parameters it can. The total processing cost (Ti) of a portion (parti)

of the block ciphers can be precisely modeled as the summation of the distribution
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Table 1: List of applications for which closed form partitioning solutions have been
obtained

Applications Authors Reference(s)

Video Compression
Barlas, Li, Veeravalli, Kassim,
Momcilovic, Illic, Roma, Sousa

[20–22]

Cloud System Suresh, Huang, Kim, Abdullah, Othman [23]
Image Processing Lee, Hamdi, Veeravalli, Li, Ko, Ranganath [24–27]
Multiple Protein
Sequence Alignment

Low, Veeravalli, Bader [28]

Biological Sequence
(DNA) Comparison

Min, Veeravalli [29]

Wireless Sensor Net-
works

Shi, Wang, Kwok, Chen,,Moges, Robertazzi [30–33]

Resilient Lambda Grids
Thysebaert, De Leenheer, Volckaert,
De Turck, Dhoedt, Demeester

[34]

Data Grid Applications Abdullah, Othman, Ibrahim, Subramaniam [35]

(DSi), the collection (CLi) and the processing cost (PRi) [19]:

PRi = pi partiL (2)

DSi = li(partiL+ k)+ai (3)

CLi = li partiL+ai (4)

The symbols used above are explained in Table 2. Assuming parallel input

distribution, the minimum time to process L can be achieved when all the nodes begin

and end computation at the same time. Thus, for two nodes i and j where i, j in [0,N−1]

parti = part j
p j +2l j

pi +2li
+

2(a j−ai)+ k(l j− li)
L(pi +2li)

(5)

Table 2: Symbol table for [19].

Symbol Description
L Data to be encrypted/decrypted
parti Portion of the data 0 <= parti <= 1
pi Inversely proportional to processor speed
k Size of encryption key
ai Communication latency
li Inverse of node i’s communication link data rate

M
The total number of installments in case communication capabilities of
a node exceeds its computation
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N−1

∑
i=0

parti = 1 (6)

Using equations (5) and (6) part0 can be calculated as follows:

part0 =
1−∑

N−1
i=1

2(a0−ai)+k(l0−li)
L(pi+2li)

1+∑
N−1
i=1

p0+2l0
pi+2li

(7)

From equations (5) and (7), we notice that for a certain node parti can be negative. This

indicates a slow node. One way to deal with the slow nodes is to remove them from

computation.

In case that communication time exceeds processing time, the total processing

cost can be reduced by subdividing parti. parti can be supplied to the processors as

installments. In that way, the communication and the processing can overlap and the lik

overhead in (2) will apply only for the first installment. In the multi-installment case Ti

can be calculated as follows [19]:

Ti = li(part0,iL+ partM−1,iL+ k)+2ai + piL
M−1

∑
j=0

part j,i (8)

In [5], Ilic and Sousa state that little effort was spent on the study of DLT in

highly heterogeneous systems in which the computation is distributed among computer

devices as well as CPUs and GPUs available in each device. The researchers propose

a feasible solution to model the relative performance of system resources that are not

known in advance. Their algorithm adopts an iterative procedure that is composed of

two main phases: initialization and the iterative phase. The initialization phase is re-

sponsible for the determination of α (partition offloaded to a single machine), β (parti-

tion supplied to each processor either a CPU or GPU in one machine) and preliminary γ

(installment given to GPU) partitions. The iteration phase commences with the continu-

ous splitting of γ into sub loads using a factor by two technique to achieve the optimum

load balancing. After each γ split, the new α and β are computed and the performance

is assessed. If there is no significant improvement in performance from the previous

run, the current α , β , and γ partitions are considered the most efficient values and load

balancing is achieved; otherwise, the iteration is repeated. The above notations as well
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Table 3: A summary of notation for [5].

Symbol Description
N The whole data

α
Portion of data assigned to different computer devices in the network
(inter- node partitions)

β
Portion of data split among different processors (CPUs and GPUs of the
same device i.e. intra-node partitions)

γ The installment supplied to the GPU
D The desktops in the network

ΨT (x)
The total time to distribute and process load of size x on a desktop system
(total relative performance for the desktop)

m The number of CPU cores in a single desktop
w The number of devices like GPU in a single desktop

ψτ(x)
The ratio between the load of size x and the time required to communicate
and process x in a single processor in Di (total relative performance for
the processor where i is the desktop index)

Γ
The total number of sub-loads (resulting from βi, j subdivision where i
is the desktop index, and j is the processor index)

Γk The total number of sub-load fractions (resulting from γk sub-
partitioning), where k is 1 <= k <= Γ

as other symbols used in Ilic and Sousa’s DLT solution are explained in Table 3.

The authors proposed algorithm for load scheduling is composed of the three

main steps [5] :

Step 1- Calculating α

α1

Ψτ1(α1)
= ...=

α|D|
Ψτ|D|(α|D|)

;
|D|
∑
i=1

αi = N (9)

Step 2- Calculating β

βi,1

ψτi,1(βi,1)
= .... =

βi,m+w

ψτi,m+w(βi,m+w)
;

m+w

∑
j=1

βi, j = αi (10)

Step 3- Calculating γ . In distant workers, the load is sub-partitioned into γ to allow

communication and computation overlap

|Γ|
∑
k=1

|Γ(k)|
∑
l=1

γ
k
l = βi, j (11)

Note that the sum of sub-fractions (γk
l ) should fit in the GPU memory.
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The most relevant study to this thesis is the one conducted by Chan, Bharadwaj,

and Ghose [36] on large matrix-vector multiplication using DLT. The researchers used

several identical processors linked through a bus network as shown in Figure 3. The

load was bigger than the computation capability of a single node (the master node).

Consequently, the node divided the workload and distributed it to be processed using

several machines then collected the results. The master node did not participate in

the computation. Similar to this thesis topic, the researchers tried to find the ultimate

speed-up using DLT analysis. Despite the communication delay, the authors were able

to achieve a closed form solution to the problem which they further used to determine

the minimum and maximum number of nodes that can share in processing and enhance

performance [36]. Chan, Bharadwaj, and Ghose study divides the matrix row-wise on

a group of homogeneous nodes. On the other hand, this thesis targets highly heteroge-

neous networks inwhich both inter and intra node load balancing should be achieved.

Figure 1: Distributed network used in matrix-vector multiplication [36].

3.2. Linear Algebra Libraries

Due to the importance of basic linear algebra routines in solving a huge number

of complicated real life problems, a large number of optimized libraries have been de-

veloped. The earlier versions of such libraries adopted sequential algorithms. With the

evolution of parallel programming, parallel versions of these routines were released.
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GPUs were the core accelerator of matrices operations. Recently, some libraries tar-

geted systems in which load can be dispatched between CPUs and GPUs.

3.2.1. Basic linear algebra subprogram. Basic Linear Algebra Subprogram

(BLAS) is an open source library that provides a set of optimized basic matrix oper-

ations. Due to its efficiency, availability, and portability, the BLAS is used in several

linear algebra applications like Linear Algebra Package (LAPACK1 ). LAPACK is a

software for solving complicated linear algebra problems such as a system of simulta-

neous linear equations and eigenvalue problems. BLAS was orginally written in For-

tran; however, a C version of BLAS was released later [37]. Furthermore, parallel

implementations of BLAS evolved such as openBLAS2, clBLAS and cuBLAS.

BLAS is composed of three modules:

• BLAS 1: contains routines to perform vector-vector operations

• BLAS 2: responsible for vector-matrix operations

• BLAS 3: methods that perform matrix-matrix operations [37]

3.2.2. Linear algebra libraries supporting hybrid processing. A summary

of linear algebra libraries supporting hybrid computation is given in Table 4. A detailed

description of these libraries is given below.

3.2.2.1. CuBLAS-XT. CuBLAS was implemented using CUDA to run on

GPUs. Currently, the latest version contains a group of subroutines called cuBLAS-

XT; these modules allow hybrid CPU-GPU computation. CublasXT version supports

CPU-GPU load distribution strategy using two routines: cublasXtSetCpuRoutine() and

cublasXtSetCpuRatio(). These functions can be used together to setup the percentage of

load that will be assigned to the CPU. These functions are only supported for xGEMM

routines (Matrix-Matrix operations) [38].

3.2.2.2. AMD Core Math Library. AMD Core Math Library (ACML) pro-

vides a free set of efficient threaded math routines. ACML contains a full implementa-

tion of BLAS Level 1, 2 and 3, with key modules optimized for high performance on

1http://www.netlib.org/lapack/
2http://www.openblas.net/
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AMD OpteronTM processors. ACML 6 permits the heterogeneous computation of all

BLAS Level 3 subroutines and two Level 2 subroutines (GEMV & SYMV) in which

the load can be divided between CPUs and GPUs. The GPU processing is achieved

by calling the clBLAS library that ships with ACML6. The load partitioning heuristic

logic is controlled by ACML scripting language. The ACMLScript is a scripting lan-

guage embedded in the ACML library, introduced with version 6. It allows ACML to

embed programming logic within text files, which avoids hard-coding logic within the

library itself. The main purpose of ACMLScript is to encode the load balancing logic

in scripts. This allows the logic to be updated to fit the needs of the user [39].

3.2.2.3. Intel Math Kernel Library. Intel Math Kernel Library (Intel MKL) is

a mathematical library that provides a set of threaded routines including linear algebra

operations. Natively, Intel MKL supports C, C++ and Fortran development. A recent

addition is the support of an OpenCL SDK which enables GPU-CPU parallel process-

ing. The success of using the OpenCL SDK is case dependent. The speed-up achieved

from a hybrid execution depends on application characteristics such as the fraction of

parallel work, data dependencies, and synchronization requirements [40, 41].

3.2.2.4. HiFlow. HiFlow is multi-purpose software that provides powerful

tools for efficient and accurate solutions of a wide range of medical and industrial prob-

lems modeled by partial differential equations (PDEs). The goal of HiFlow is the full

utilization of resources in hybrid platforms ranging from supercomputers to stand-alone

desktops. To achieve this goal, HiFlow uses MPI to manage communication between

processors as well as a hardware-aware computing modules implemented on the linear

algebra level. The target of HiFlow is to supply the user with methodologies and mod-

ules that can apply to a variety of problem classes and architectures [42].
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Table 4: Summary of linear algebra libraries supporting hybrid computation

Libraries Supported
Computing
Devices

Routines Sup-
porting Hybrid
Feature

Load Par-
titioning
Methodology

Restrictions

CuBLAS-
XT [38]

Single nVidia
GPUs and dual-
GPU cards such
as the Tesla
K10 or GeForce
GTX690

xGEMM
(BLAS LEVEL
3 matrix-matrix
multiplication)

The user has
to set-up the
amount of work
offloaded to the
CPU

The user should
be careful when
using this fea-
ture as it could
interfere with
the CPU threads
feeding the
GPUs

ACML Ver-
sion 6 [39]

AMD Opteron
processors

All BLAS Level
3 subroutines
and two Level
2 subroutines
(GEMV &
SYMV)

ACML uses
heuristic algo-
rithm to split
data between
CPU and GPU;
it saves the load
balancing logic
in a text file

Does not sup-
port multiple
GPU processing
in a node

Intel
MKL [40]

IntelHD Graph-
ics devices

All imple-
mented routines
through the
use of Intel
OpenCL SDK

The load-
balancing
between CPUs
and GPUs
should be
implemented

The success of
the heteroge-
neous strategy
should be stud-
ied for each
application

HiFlow [42] Intel and AMD
multi-core
CPUs and
NVIDIA GPUs

BLAS 1 and 2
routines

Implemented
modules handle
load partition-
ing process
based on avail-
able hardware

Only BLAS 1
and 2 are avail-
able
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Chapter 4: Performance Model

This chapter starts with a detailed description of the performance model fol-

lowed by the closed form solution. The closed form solution section contains a table of

notations and the DLT equations as well as their explanation.

Figure 2: The communication and computation of matrices A and B on a hybrid system
composed of an accelerator and three nodes having the same computational power.

4.1. Model Description

Suppose there are two matrices A of size N×M and B of size M×K where

K >N. The matrices A and B are stored on one machine, the master node. This machine

will be responsible for distributing data to worker nodes. The hardware set-up of the

worker is composed of one GPU and three nodes (CPUs) having different computational

capabilities. Assuming that the communication time for all the nodes is the same, load

distribution of the two matrices for matrix multiplication can be described as follows:
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• Matrix A will be distributed in parallel to all nodes.

• Matrix B is partitioned in column-wise fashion to uneven sized partitions and

distributed to working nodes sequentially.

• The fastest node (the GPU) takes the first part of the load; notice that there will

be extra communication overhead for the GPU.

• All nodes have to finish computation at the same time as shown in Figure 2. Note

that the execution time of a task on a set of nodes is minimized if they all finish

processing at the same time [43].

4.2. DLT Equations

This section contains the closed form partitioning solution for the matrix-

matrix multiplication. The notations used are shown in Table 5.

Table 5: Symbols and Notations

Symbol Description
parti Portion of the data 0 <= parti <= 1
p j Inversely proportional to processoring speed of the CPU
e j CPU processing latency
p j,a Inversely proportional to processoring speed of the GPU
e j,a GPU latency
lp Inverse of the GPU PCIe bus speed
l Inverse of communication link data rate
b Communication latency
s The size of bytes of the data type used to represent matrix elements

4.2.1. The case of an accelerator, CPU-core pair. Suppose we have to multi-

ply two matrices, A (N×M) and B (M×K). We assume that each multicore node (MN)

in the system is assigned a number of columns of the result matrix C. Computation

at a node will start after the whole of A is transmitted and the corresponding columns

of B are also received. Computation at a core can commence after the columns of B

corresponding to its own part of the C matrix are collected.
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The time required for downloading A is

tA = l N M s+b (12)

where s is the size in bytes of the type used to represent matrix elements.

We can assume that tA is a cost incurred by all MNs, except from the “load

originating” one. We can also assume that it takes place in the form of a broadcast.

The time required for downloading the c j columns of B required by a core j is

tB j = l M c j s+b (13)

where c j = part jK. The computational cost for core j is:

t j = p j N M c j + e j (14)

where e j corresponds to constant setup overheads. These can be zero for CPUs or more

significant for GPUs (e.g. the time required to initialize the CUDA runtime).

We first examine the case of a MN with an accelerator card and a single core.

Accelerator cards (e.g. GPUs) require extra communication time over the PCIe bus for

delivering the input data and retrieving the results. On the other hand, a CPU core can

start computation as soon as the data are received by a MN.

The two possible timings are shown in Figure 3. Matrix A is delivered to the

accelerator as soon as it is received by the MN system. Typically, the PCIe speed far

exceeds the network speed, so we can assume with a degree of confidence, that A can

cross the PCIe bus before the next portion of matrix B is delivered.

The cost of sending data over the PCIe bus is a linear function of the data volume

(no latency used in this case):

tPCIe = lP s M K part0 (15)

The B matrix is divided between the two nodes shown in Figure 3 (i.e. part0 +

part1 = 1), we have for the first configuration:
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(1)

(2)

l ·N ·M · s+ b l ·M ·K · s · part0 + b

l ·N ·M · s+ b

l ·N ·K · s(part0 + part1) + b

l ·N ·K · s(part0 + part1) + bl ·M ·K · s · part1 + b

l ·M ·K · s · part0 + b

lP ·M ·K · part0 · s

l ·M ·K · s · part1 + b

p0 ·N ·M ·K · part0 + e0

p1 ·N ·M ·K · part1 + e1

p0 ·N ·M ·K · part0 + e0

p1 ·N ·M ·K · part1 + e1

lP ·N ·K · s · part0

lP ·N ·M · s

lP ·N ·M · s

Figure 3: Possible timings for a CPU core and an accelerator card in processing the
product of two matrices A×B.

lPMKspart0 + p0NMK part0 + e0 + lPNKspart0 =
lMsK part1 +b+ p1NMK part1 + e1 (16)

with the total time excluding receiving A and sending back C being equal to:

t(1) = lMKs+2b+ p1NMK part1 + e1 (17)

For the second configuration we have:

p1NMK part1 + e1 =

(l + lP)MKspart0 +b+ p0NMK part0 + lPNKspart0 + e0 (18)

with the total time excluding receiving A and sending back C being equal to:

t(2) = lMKspart1 +b+ p1NMK part1 + e1 (19)

The parts can be found with the normalization equation and the difference between t(1)
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and t(2) can be simplified to:

t(1)− t(2) =
((bp0−bp1)M+blps)N +((e1− e0)l +blp)sM

((p0 + p1)M+ lPs)N +(lP + l)sM
=

bNM
((p0 + p1)M+ lPs)N +(lP + l)sM

(p0− p1 +
(e1− e0)ls

bN
+

lPs
M

+
lPs
N

) (20)

The result obtained by equation (20) reflects the fact that the optimal ordering

depends on both the relative speeds of the two computing platforms, but also on the

severity of the constant overheads associated with the initialization of the computation.

4.2.1.1. Multiple single-accelerator-equipped systems. Assuming that the ac-

celerators will receive their part of the B matrix first, we can establish relationships

connecting the part to be assigned to the accelerator of the j-th system part j,0 and the

parts to be assigned to the remaining of its n j cores part j,i for i ∈ [1,n j]:

lsMK part j,0 +b+ lPsMK part j,0 + p j,aNMK part j,0 + e j,a + lPNKspart j,0 =

lsMK
i

∑
m=0

part j,m +(i+1)b+ p jNMK part j,i + e j (21)

For i = 1 in the above equation we get:

lsMK part j,0 +b+ lPsMK part j,0 + p j,aNMK part j,0 + e j,a + lPNKspart j,0 =

lsMK(part j,0 + part j,1)+2b+ p jNMK part j,1 + e j⇒

part j,1 = part j,0
lPs(1+ N

M )+ p j,aN
ls+ p jN

+
e j,a− e j−b

MK(ls+ p jN)
(22)

For two successive CPU cores we have:

p jNMK part j,i + e j =

lsMK part j,i+1 +b+ p jNMK part j,i+1 + e j⇒

part j,i+1 = part j,i
p jN

ls+ p jN
− b

MK(ls+ p jN)
(23)

We can rewrite equations (22) and (23) as:

part j,1 = part j,0Z j +Φ j (24)
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part j,i+1 = part j,iX j +Yj (25)

with Z j =
lPs(1+ N

M )+p j,aN
ls+p jN

, Φ j =
e j,a−e j−b

MK(ls+p jN) , X j =
p jN

ls+p jN
and Yj = − b

MK(ls+p jN) con-

stants which are problem and platform specific.

We can also extend equation (25) to:

part j,i+1 = part j,iX j +Yj = part j,i−1X2
j +X jYj +Yj = . . .

= part j,1X i
j +Yj

i−1

∑
m=0

Xm
j = part j,1X i

j +Y j
X i

j−1

X j−1
=

= part j,0Z jX i
j +Φ jX i

j +Yj
X i

j−1

X j−1
(26)

An association between the parts assigned to two individual j and q MNs can be

also established, by equating the total duration of their executions. The total execution

time of a MN j is:

Tj = lsNM+b+ lsMK part j,0 +b+ lPsMK part j,0 + p j,aNMK part j,0 + e j,a+

lPsNK part j,0 + lNKs
n j

∑
m=0

part j,m +b =

lsNM+3b+ part j,0
(
lsMK + lPsMK + p j,aNMK + lPsNK

)
+ e j,a+

lNKs
n j

∑
m=0

part j,m (27)

The summation term in the left hand side of the above expression can be reduced

using the following equations:

nr

∑
m=1

Xm−1
r =

nr−1

∑
m=0

Xm
r =

Xnr
r −1

Xr−1
(28)

and

nr

∑
m=1

Xm−1
r −1
Xr−1

=
1

Xr−1
(

nr

∑
m=1

Xm−1
r −

nr

∑
m=1

1) =

1
Xr−1

(
nr−1

∑
m=0

Xm
r −nr) =

1
Xr−1

(
Xnr

r −1
Xr−1

−nr) (29)

The outcome of the above simplification is as follows:
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n j

∑
m=0

part j,m =

part j,0 + part j,0Z j

n j

∑
m=1

Xm−1
j +Φ j

n j

∑
m=1

Xm−1
j +Yj

n j

∑
m=1

Xm−1
j −1

X j−1
=

part j,0

(
1+Z j

Xn j
j −1

X j−1

)
+

Φ j
Xn j

j −1

X j−1
+

Y j

X j−1

(
Xn j

j −1

X j−1
−n j

)
= part j,0Vj +Wj (30)

where

Vj =

(
1+Z j

Xn j
j −1

X j−1

)
(31)

and

Wj = Φ j
Xn j

j −1

X j−1
+

Yj

X j−1

(
Xn j

j −1

X j−1
−n j

)
(32)

Replacing equation (30) into equation (27) we get:

Tj = part j,0
(
lsMK + lPsMK + p j,aNMK + lPsNK + lNKsVj

)
+

e j,a + lsNM+3b+ lNKsWj =

part j,0K
(

p j,aNM+ lPs(N +M)+ ls
(
M+NVj

))
+

e j,a + lsNM+3b+ lNKsWj =

part j,0Q j +R j + lsNM+3b (33)

where

Q j = K
(

p j,aNM+ lPs(N +M)+ ls
(
M+NVj

))
(34)

and

R j = e j,a + lNKsWj (35)

Optimality (the best possible execution time using the given hardware) dictates

that the execution times of any pair of MN machines j and q are identical, hence:
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Tj = Tq⇒ part j,0Q j +R j = partq,0Qq +Rq⇒

part j,0 = partq,0
Qq

Q j
+

Rq−R j

Q j
(36)

We can then combine equation (36) with the normalization equation to yield

a closed form solution for the partitioning problem on a platform made-up of E MN

nodes:

E−1

∑
j=0

n j

∑
i=0

part j, i = 1
Eq.30⇒

E−1

∑
j=0

(
part j,0Vj +Wj

)
= 1⇒

E−1

∑
j=0

((
part0,0

Q0

Q j
+

R0−R j

Q j

)
Vj +Wj

)
= 1⇒

part0,0 =
1−∑

E−1
j=0

(
Vj

R0−R j
Q j

+Wj

)
Q0 ∑

E−1
j=0

V j
Q j

(37)

The pre-calculation of the X j, Yj, Z j, Φ j, Vj, Wj, Q j, and R j constants requires Θ(E)

time and space. Subsequently, the calculation of the optimum partitioning requires the

use of equation (37), equation (36) for j ∈ [0,E−1] and equation (26) for j ∈ [0,E−1]

and i∈ [0,n j−1], in that order, for an overall time complexity of Θ(∑E−1
j=0 n j), i.e. linear

with respect to the total number of cores in the system.
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Chapter 5: Experiment Set-up and Measurement of Parameters

This chapter contains the hardware and software set-up followed by a descrip-

tion of the methodologies used to measure the parameters.

5.1. Hardware and Software Set-up

The proposed hardware set up is composed of highly heterogeneous computing

cluster of three machines connected through an Ethernet 100 Mbps network. One ma-

chine will be the master node while the other two machines have high end dual GPU

configuration. The detailed specifications of the machines are provided in Table 6.

Table 6: Hardware Specifications

Dune-770 Kingpenguin Dune-970
CPU Core(TM) 2 Quad

CPU Q8200 @
2.33 GHz

Intel(R) Xeon(R)
CPU E5-2640 @
2.50GHz

Intel(R) Core(TM)
i7-4820K CPU @
3.70GHz

No. of CPU Cores 4 12 4
No. of
Threads/Core

2 2 2

RAM 32 GB 64 GB 32 GB
No. of GPUs 2 - 1
GPU Version GeForce GTX 770

& Quadro 5000
- GeForce GTX 970

No. of GPU Cores 352 - 1536
GPU RAM 2559 MB - 2048 MB
Compute capabil-
ity

2.0 & 3.0 - 5.2

The software environment is the same for all the test beds in Table 7 and is

mentioned below:

• Operating System: Kubuntu 15.04 (64 bit)

• Compiler: GCC 4.9.2, 64 bit

• Qt Version: 5.4.1

• CUDA Driver Version / Runtime Version 7.5 / 7.5.17

• OpenMPI 1.6.5

• cBLAS ATLAS Version and openBLAS Version 0.2.16.dev

35



5.2. Measurement of Parameters

The size of matrices A and B (floating point matrices) involved in the matrix

product operation is determined by the values of the N, M and K variables. The product

of N, M and K denoted by NMK is a good metric of the load as it indicates the number

of floating point multiplications required to perform the matrix-matrix multiplication.

Consequently, throughout this thesis, this size of data involved will be refereed to and

plotted in terms of NMK.

In addition, the sizes of matrices used for testing this study are aimed to be as

big as possible. The suggested hybrid technique is designed for huge matrices with

matrix B(M×K) bigger than A(N×M). Matrix A is communicated as a whole to all

nodes while matrix B is partitioned. To satisfy the above condition, the values of M and

N is fixed to 10,000 while K ranges from 10,000 till the biggest possible number that

allows A and B to fit in memory.

5.2.1. Measurement of CPU processing speed and latency. To measure the

computation speed of the CPU, two random matrices A and B are generated with ele-

ments of type float in the range 1 to 10. As the model divides matrix B by columns, the

matrices are assumed to be stored column-wise. Since C++ stores matrices row-wise,

a transpose function is called on matrices A and B before passing them as arguments

to the cblas sgemm function. The test is repeated for 10 times and the time is accu-

mulated after each iteration. The average time is taken by dividing the total time by

10; consequently, the resulting time is the CPU processing time of that particular NMK

values.

The previous test is executed using a script that generates different NMK values.

The average CPU time for each NMK is plotted in a graph in which the Y-axis represents

time and the X-axis represents the NMK values, as shown in Figure 4. The slope of the

line is the p j while the intercept is e j.

5.2.2. Measurement of GPU processing speed and latency. The matrixMul-

CUBLAS program that is shipped with the CUDA SDK samples is used to measure p ja.

A small adjustment was performed on the matrixMulCUBLAS source code, so that 10
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Figure 4: CPU processing time for different MNK values on Dune-970 and Dune-770.
p j is the slope and e j is the intercept.

tests were conducted instead. e ja is the sum of two variables; the first variable is the

intercept resulting from plotting the matrix multiplication time on GPU versus NMK as

shown in Figure 5, the second variable is the GPU initialization delay, mainly when the

first cudaMalloc is called in the program, this is calculated manually by executing the

CUDA code and recording the time elapsed while CUDA initialization functions are

executing.

5.2.3. Measurement of GPU PCIe bus speed. cudaMemcpy is called several

times using different array sizes of type float. The average values for Dune-970 and

Dune-770 respectively, are shown in Figures 6 and 7. In both cases the slope of the

least-squares line is used as the lp.

5.2.4. Measurement of communication link speed and latency. A simple

ping-pong program using MPI is used to measure the network speed. l is the slope of

the line shown in Figure 8 while b is the intercept. Measuring this value is repeated 10

times and then the average value is computed.
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Figure 5: GPU processing time for different NMK values on Dune-770 and Dune-970.
p ja is the slope.

Figure 6: GPU PCIe bus speed on Dune-970. lp is the slope.
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Figure 7: GPU PCIe bus speed on Dune-770. lp is the slope.

Figure 8: Graph showing the communication speed using a ping-pong program between
Dune-970 and Kingpenguin. l is the slope and b is the intercept.
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Chapter 6: Implementation and Profiling

Consider a small network of three processors, in which node 0 is the root, while

nodes 1 and 2 are the workers. The worker nodes will read their properties (p j, p ja,

e j, etc.) from a properties file; these are the parameters required for calculating parts

(mentioned in Section 4.2) and communicate these properties to the root node as shown

in steps 2, 3, 7, 8, and 9 in Figure 9. Meanwhile the root reads matrix A from a file and

broadcasts it to workers (steps 1, 4, 5, and 6). Afterwards, the root node will calculate

the partitions using the closed form solution and use a collective MPI call (MPI Scatter)

to forward the parts in parallel to the corresponding nodes (steps 10 to 14).

Figure 9: Sequence diagram of master-worker communication in the implementation of
proposed matrix-matrix multiplication.

When each node receives its partition from the root node, it starts creating the

threads (one thread for each processor). The node reads part of matrix B and then

forwards matrix A as well as the columns of matrix B assigned to this processor to each

thread sequentially as shown in steps 5 to 13 in Figure 10. Each thread will then call
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Figure 10: Sequence diagram showing internode communication in the implementation
of matrix-matrix multiplication.

the corresponding BLAS operation (cblas sgemm for the CPU and cublasSgemm for

the GPU). Afterwards, the worker node will wait for all threads to finish computation

and then forwards the result (its part of matrix C) to the root through the collective MPI

call MPI Gatherv (steps 16 and 17).

There are two timings measured in this implementation to assess performance.

The first is the overall time for matrix-matrix multiplication calculated in the root node
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and the second is the processing time spent by the node to compute the load named as

NodeTimer (steps 5 and 15 in Figure 10).

In addition, VampirTrace is used to monitor the performance of the proposed

solution. VampirTrace is an open source library used to instrument and trace parallel

software applications. After a successful run for the application, vampirTrace stores

the collected data in an OTF file. This OTF file is visualized by an open source soft-

ware called ViTE. More information about vampirTrace and ViTE can be found in [44]

and [45], respectively.
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Chapter 7: Results and Discussion

All the matrices used for testing the hybrid methodology are generated using a

random number generator that generates floating point numbers between 1 and 10 and

stores them in a binary file. As this technique is designed for huge matrices with matrix

B bigger than A, the values of M N K must be as big as possible. The values of M

and N will be fixed to 10,000 while K value ranges from 10,000 to 41,000 (the biggest

possible value that allows A and B to fit in memory).

7.1. Hybrid Approach on Dune-970

The parameters of Dune-970 are listed in Table 7. The time was measured 10

times and the average is calculated for both hybrid approach and the GPU only (using

cuBLAS to process all load) method as shown in Figure 11.

Figure 11: Showing the GPU only time and the hybrid time on Dune-970

In Table 7, the value of p ja is much smaller than p j, which indicates that GPU

performance exceeds CPU performance in this matrix product by a big factor (two

orders of magnitude). Consequently, assigning a big portion of the load to the GPU in

the hybrid approach is sensible. This can be seen in Table 8 in which the percentage

of load assigned to GPU is never below 98% in all N M K values. This explains the
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small speed-up achieved when using the hybrid approach compared to the GPU only

one (Figure 11 and 12).

Figure 12: Speedup achieved by hybrid approach on Dune-970

Table 7: Dune-970 properties

p j 7.677E-008 msec/byte
e j 132.16 msec
p ja 6.4932E-010 msec/byte
e ja 175.5 msec
lp 5.332E-008 msec/byte

7.2. Hybrid Approach on Dune-770

The proposed hybrid approach was also tested on Dune-770. The execution time

was measured 10 times and the average was calculated for the hybrid, the GPU only,

CPU cBLAS, and CPU openBLAS methods, as shown in Figures 13 and 14. The GPU

only, as well as hybrid methodologies, are much faster than cBLAS, and openBLAS

ones. In some cases, the hybrid approach performance slightly exceeds the GPU only

method. Similar to Dune-970, the difference between CPU and GPU processing powers
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Table 8: Summary of the results collected from Dune-970

is very big as shown in Table 10. Consequently, the minimum load in hybrid approach

assigned to GPU never falls below 97% (see Table 10). As a result, there is a small

performance difference between the GPU only approach and the hybrid one on Dune-

770.

In addition, monitoring Dune-770 performance using VampirTrace reveals the

success of the hybrid method load distribution strategy, as the generated traces show the

three CPUs and the GPU finish execution the same time.

Figure 13: Comparative results of GPU only, hybrid, cBLAS and openBLAS methods
on Dune-770
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Figure 14: Comparative results of GPU only and hybrid methods on Dune-770

Table 9: Dune-770 properties

p j 7.8677E-008 msec/byte
e j 297.5628 msec
p ja 1.10844E-009 msec/byte
e ja 100 msec
lp 6.8828E-008 msec/byte

Table 10: Summary of the results collected from Dune-770
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7.3. Hybrid Approach on Multiple Nodes

Testing the hybrid approach on multiple nodes was conducted on Kingpenguin,

Dune-970 and Dune-770. Kingpenguin served as the root node, hence it did not take

part in the computation. The load was divided between Dune-970 and Dune-770, and

the processing time was computed for each. On the other hand, the overall timing was

calculated by Kingpenguin; this overall time includes matrix communication (except for

matrix A), as well as computational time. Due to slow communication, the reduction in

processing time resulting from load division was masked by the communication time;

however, the loads on the two machines were balanced and they finished computation

almost at the same time as shown in Table 11.

In addition, the time calculated using equation (27) in Section 4.2.1.1 greatly re-

flects the overall time calculated by Kingpenguin for different NMK values. The graph

plotted in Figure 15 shows the success of the DLT equation in predicting the execution

time for NMK values ranging from 1000×109 to 4100×109. The time calculated using

equation (22) (excluding matrix A communication) is considered the processing time

predicted by the DLT theory. The overall time calculated by Kingpenguin is depicted

as Measured.
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Table 11: Summary of the results collected from multiple node test

Figure 15: Graph showing expected execution time calculated using DLT equation
(shown as DLT Theory) and actual execution time (shown as Measured) in multiple
nodes experiment.

48



Chapter 8: Conclusion

Hybrid CPU-GPU systems recently attracted the attention of the parallel soft-

ware community aiming at further performance enhancement. The biggest challenge

facing hybrid computation success is load balancing. This study suggests a load parti-

tioning approach to improve efficiency of matrix-matrix multiplication on a distributed

network composed of heterogeneous nodes, using the DLT methodology. The proposed

technique efficiently handles the inter-node and intra-node load balancing to reduce the

overall execution time.

The provided solution used DLT analysis to acquire the closed form solution.

The parameters of the available hardware were accurately measured followed by run-

ning several experiments on both single and multiple nodes.

The results of the hybrid approach on a single node showed that the acquired

load balance between the GPU and available cores was achieved. This was also con-

firmed by the VampirTrace profiler. In addition, the hybrid approach showed significant

speed-up compared to cBLAS, and openBLAS methods. However, there is a small dif-

ference between the hybrid and cuBLAS approaches as the portion assigned to the GPU

formed about 97% to 98% of the load. This result is justified by the big difference in

performance between the GPU and CPU in the used hardware. In the multiple nodes

case, the DLT equations succeed in predicting the real execution time. However, the

overall time of the matrix product on multiple nodes was inferior to a single GPU time

due to slow communication.

Future work may include dividing the load between GPUs on a single node in

case the node is equipped with more than one GPU. The above study suggests that di-

viding the load between GPUs on a single node will achieve speed-up for the following

reasosns:

• No slow communication involved, as the experiment is done an a single node.

• The difference in performance between the GPUs will allow them to share evenly

in load processing and thus further speed-up could be achieved.
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