Implementation of the Hyperloop in the U.A.E.

Eilin Rachid-57182 (CVE)  Ahmad Hamdan-60623 (ELE)  Mina Elias-53195 (MCE)  Lama Al Ajaji-50257 (INE)  Taher Arafa-56702 (CVE)

Situation

The rapid increase in the UAE population has increased the need of transportation which results in Carbon dioxide (CO$_2$) emissions [3]. Therefore, this may lead to devastating results if there was no transportation system that could contribute in decreasing the CO$_2$ emissions. Therefore, the implementation of the Hyperloop could be a solution in resolving such a problem, which was envisioned by Elon Musk.

Natural Disasters
- Addition of pylons and dampers will make the Hyperloop withstand thermal expansions and also make it not fixed to allow deviations [1] (see Figure 1)

Solar panels energy efficiency
- Solar panels across the tube’s length providing power to the system
- Excess power will be stored in batteries for full function at night [6] (See Figure 2)

Kantrowitz Limit
- Addition of a turbine to the front of the hyperloop (See Figure 3)

Safety Solutions
- Oxygen masks for passengers in the case of capsule depressurization [1]
- The usage of backup lithium battery in case of emergency [1]

Problems

Hyperloop Challenges:

Natural disasters
1. Geological disaster
   - Displacements may occur due to the presence of earthquakes and that may cause severe damage to the Hyperloop’s structure [1]
2. Meteorological disasters
   - Damages may be caused to the infrastructure due to volumetric expansion from heat waves [5]

Solar panels energy efficiency
- Present time solar panels do not have enough energy efficiency to power up a complex structure such as the hyperloop [2]

Kantrowitz limit
- Application of a force that opposes the capsule that resides inside of the Hyperloop’s tube which will slow-down the capsule
- Activation of the Hyperloop may not occur with the current solar panels

Safety
- In the case of depressurization of the capsule [1]
- In the case of Power Outage in the system [1]

Solution

Evaluation

- Initial costs are high but in the long run the benefits will outcome the costs and profits will cover the cost of the building in few years
- Estimate cost of two tubes with 40 capsules and is 6 Billion [4]
- Sponsors willingness to contribute in funding the project
- Major differences between the Hyperloop and the Metro Dubai system
- Hyperloop can move at high speeds between the Emirates
- Under High speed movement Still Provides comfort for passengers
- Reduces traffic and pressure on roads and highways.
- Self sufficient so has almost zero CO$_2$ emissions [4]

References

[7] Average Number Of People Per Car During Morning Peak Hour. 2016. in person.
Implementation of the Hyperloop in the U.A.E.

Eilin Rachid-57182 (CVE)  Ahmad Hamdan-60623 (ELE)  Mina Elias-53195 (MCE)  Lama Al Ajaji-50257 (INE)  Taher Arafa-56702 (CVE)

Situation

The rapid increase in the UAE population has increased the need of transportation which results in Carbon dioxide (CO₂) emissions [3]. Therefore, this may lead to devastating results if there was no transportation system that could contribute in decreasing the CO₂ emissions. Therefore, the implementation of the Hyperloop could be a solution in resolving such a problem, which was envisioned by Elon Musk.

What is a Hyperloop?

It is a fast transportation system that can go up to 1220 kph which uses solar energy that makes it produce the power needed to allow it to be self-sufficient system and it is eco-friendly [1]

Problems

Hyperloop Challenges:

Natural disasters

1. Geological disaster
   - Displacements may occur due to the presence of earthquakes and that may cause severe damage to the Hyperloop’s structure [1]

2. Meteorological disasters
   - Damages may be caused to the infrastructure due to volumetric expansion from heat waves [5]

Solar panels energy efficiency

- Present time solar panels do not have enough energy efficiency to power up a complex structure such as the hyperloop [2]

Kantrowitz limit

- Application of a force that opposes the capsule that resides inside of the Hyperloop’s tube which will slow-down the capsule
- Activation of the Hyperloop may not occur with the current solar panels

Safety

- In the case of depressurization of the capsule [1]
- In the case of Power Outage in the system [1]

Solution

Natural Disasters

- Addition of pylons and dampers will make the Hyperloop withstand thermal expansions and also make it not fixed to allow deviations [1]

Solar panels energy efficiency

- Solar panels across the tube’s length providing power to the system
- Excess power will be stored in batteries for full function at night [6]

Kantrowitz Limit

- Addition of a turbine to the front of the hyperloop

Safety Solutions

- Oxygen masks for passengers in the case of capsule depressurization [1]
- The usage of backup lithium battery in case of emergency [1]

Evaluation

- Initial costs are high but in the long run the benefits will outcome the costs and profits will cover the cost of the building in few years
- Estimate cost of two tubes with 40 capsules and is 6 Billion [4]
- Sponsors willingness to contribute in funding the project
- Major differences between the Hyperloop and the Metro Dubai system
  - Hyperloop can move at high speeds between the Emirates
  - Under High speed movement Still Provides comfort for passengers
  - Reduces traffic and pressure on roads and highways.
  - Self sufficient so has almost zero CO₂ emissions [4]

References

[7] Average Number Of People Per Car During Morning Peak Hour. 2016. in person.