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ABSTRACT  
  

Sensitivity indices are used to rank the importance of input design variables or components 
by estimating the degree of uncertainty of output variable influenced by the uncertainty 
generated from input variables or components.  With the advent of highly complex engineering 
simulation models that describe the relationship between input variables and output response, the 
need for an efficient and effective sensitivity analysis is more demanding.  Traditional 
importance measures either requires extensive random number generations or unable to measure 
variables interaction effects.  In this article, a generalized approach that can provide efficient and 
accurate global sensitivity indices is developed. The approach consists of two steps; running an 
orthogonal array based experiment using moment-matched levels of the input variables followed 
by a variance contribution analysis. The benefits of the approach are demonstrated through 
different real life examples. 
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1 Introduction  
 
The advancement of computing technologies and 

numerical approaches drove a tremendous growth of usage of 
sophisticated system models to assist scientific investigation. 
As a result, system reliability models are getting more and more 
complicated with large number of risk events and dependencies 
between these events.  Moreover, engineers or scientists make 
use of the models to perform various tasks and decision-making 
by interrogating the model to predict behavior of systems under 
different input variable settings.   

 
In the context of probabilistic design [1] [2] [3], one is 

interested in studying the effect of input uncertainty (which are 
characterized by statistical distribution of input variables) to the 
variation of output variable. The sensitivity of a model output 
with respect to input variable is referred to as sensitivity 
measure of input variable. When the sensitivity measure is used 
to rank model inputs based on their influence on model output, 
it is called importance measure [4]. The application of 
sensitivity  analysis is found in product development where 
sophisticated engineering computer models are eminent [5], 
nuclear waste [6] [7], safety [8] [9] , hurricane losses [10], 
medical decision [11], marine ecosystem [12], and power plant 
maintenance decision making [13]   

 
Once effect of input variables is determined, design 

improvement can be made effectively to mitigate the associated 
risk due to input variation. The probability distribution function 
assumed for each parameter then quantifies the uncertainty that 
is due either to lack of knowledge about the exact value of this 
parameter or to an actual variability of the value of the 
parameter [14].  The input variables could be design or process 
variables such as dimension, material property, or reliability of 
a component in a complex system. In the latter case, the focus 
is on system reliability variance which is widely used in 

probabilistic safety and risk analysis of industrial plants such as 
nuclear ones. For example, risk achievement worth (RAW) 
measure is a common importance measure [15] defined as the 
ratio of the conditional system unreliability if component i is 
zero to the actual system unreliability. Other measures have 
also been introduced such as the ones found in [14] [16] [17]. 

 
In some cases, the number of variables may be too large to 

be managed and design improvements using all design 
variables are too costly. In this situation, design engineers must 
make decisions to act on important design variables only and 
neglect the less significant ones.  In such cases, it is crucial to 
prioritize the input variables importance based on their 
contribution to overall output variance so that efficient design 
improvements can be made.   

 
When the input-output relationship is sufficiently captured 

by low order polynomial models and all inputs are uniformly 
distributed, one can rank the importance of input variables by 
simply inspecting the regression coefficients.   On the other 
hand, when the input-output relationship is highly nonlinear or 
the input variables follow various probability distributions, 
sensitivity analysis becomes a non-trivial task.  Therefore, a 
general approach where the extension of the idea of traditional 
analysis of variance (ANOVA) decomposition for model 
interpretation is needed [18] [19].   

 
One common way used to measure sensitivity is based on 

measuring the impact of varying one factor on output while the 
other input factors are fixed at their nominal values using the 
finite difference in output provoked by individual change of 
input [20] [1]. Such approach is referred to as one way 
sensitivity measures such as tornado diagram [21] [22] and 
spider plots [22].  In both approaches, the sensitivity analysis is 
evaluated as the maximum deviation of output from its nominal 
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value such as the mean or median and does not account for all 
possible output values that stem from output probability 
distribution. These measures are referred to as local sensitivity 
measures as opposed to global ones. 
   
Borgonovo and Bischke [4] provided an overview of available 
local and global sensitivity measures. Examples of local 
measures are: Tornado diagrams, one way sensitivity functions, 
differentiation-based measures, and scenario decomposition. 
Similarly, research is full of different global sensitivity 
measures obtained through different methods such as non-
parametric methods, variance-based methods, moment-
independent methods, and value of information-based 
sensitivity methods.  
Differentiation methods are based on Taylor series expansion 
of model output where partial derivatives of model output 
relative to model input is used as the sensitivity measures [7]. 
However, the partial derivatives can’t be used alone if the input 
variables have different units. Borgonovo and Apostolakis [23] 
suggested using the product of partial derivative and difference 
of input variable at a fixed local point to overcome such 
limitation. Several researchers proposed several ways to extend 
basic importance measures to account for interaction by 
including higher order derivatives of Taylor expansion [24] 
Similar concept is used in reliability analysis where 
components importance measures are assessed based on the 
partial derivative of probability of system failure with respect to 
component probability failure provided that failures are 
statistically independent [25].   
  

Local sensitivity quantification suffers from three 
shortcomings: first it is local since local or nominal values for 
input variables are used to estimate the derivative or output 
increase/decrease [20]. Secondly it does not capture the full 
interaction impact between input variables without an 
additional computational cost that may hinder its feasibility for 
models with large number of input variables such as the case in 
Tornado diagrams [4]. Finally it is deterministic, i.e., the 
occurrences of input variable values are treated uniformly 
ignoring shape of distribution where input variables may come 
from [16]. In some cases, analysts are forced to use local 
sensitivity measures due to lack of knowledge on model input 
distributions especially when dealing with new product or 
process.  

When model input distributions are known or can be 
reasonably approximated, one can refer to global or 
probabilistic sensitivity measures where a “total effect” index 
that measures the total effect of input variables including all the 
possible synergetic terms between that variable and all other 
variables is considered [26] [17]. Several global sensitivity 
measures will be presented in section two. 

 
The paper is organized as follows. Section two discusses 

available techniques such as Sobol indices and correlation 
ratios. The widely accepted Sobol approach will be used as a 
benchmark performance.  Section three presents our proposal 
while the performance of the proposed approach is studied in 
section four using four examples including real engineering 

examples such as oil sampling module and automotive engine 
joint sealing.  Finally, conclusions are presented in section five. 

2 Global Sensitivity Analysis  
Global or probabilistic sensitivity analysis utilizes 

knowledge gained on model inputs’ distributions to estimate its 
impact on the random model output variable distribution or its 
moments.    

 
 The most common approach of global sensitivity is the 

sample-based probabilistic sensitivity method using Monte 
Carlo (MC) approach. Typical steps to rank global importance 
of input variables for probabilistic model output using 
sampling-based sensitivity analysis are as follows: 
1. Assign a probability density function (PDF) to each input 

variable 
2. Generate samples or input matrix using a certain sampling 

scheme and PDF’s of input variables 
3. Evaluate model output to generate output distribution of 

response variable. When the simulation model is 
computationally expensive, one typically uses a meta-
model to generate the outputs [27]. 

4. Finally, estimate the influences or relative contributions of 
each input variable to the output variable. 

 
Although the previous outlined procedure is a general approach 
followed by almost all sensitivity measures, measures may 
differ in how samples are generated (step 1) or in influence 
estimation method (step 4). 
In general global sensitivity methods can be categorized into: 
non-parametric methods [7] [19], variance-based [26] [26] [28] 
[29] [18] [30], moment-independent [8] [31] [17], and value of 
information-based sensitivity methods [4].  Borgonovo [1] 
provided a good comparison between the different uncertainty 
measures techniques. Non-parametric techniques measures 
sensitivity through input-output regression models which can 
be estimated using MC simulation sample of model input 
variables and estimation of sample output.  Once input-output 
model is well defined, standardized regression coefficient 
(SCR) [7] or Pearson’s product moment correlation coefficient 
(PEAR) can be used as non-parametric sensitivity measures. 
The ability of assessing influence of input variability depends 
on adequacy of regression model measured using model 
coefficient of determination  which can be low under the 
presence of model nonlinearity or parameters interaction. 
Screening methods extends the estimation of partial derivatives 
around one point to several locations to identify least important 
model inputs while maintaining limited number of model 
evaluations [32] [33]. Selected locations are usually determined 
using design of experiment (DOE) technique such as model 
input range segmentation [34] and sequential bifurcation 
introduced by Bettonvil [35] and extended by Bettonvil and 
Kleijnen [36].  

 
 The variance based techniques such as Iman and Hora [37] 

and Sobol indices [30] [28]  measures uncertainty based on 
input variables contribution to output variance and provides 
broader interpretation than other techniques and capable of 
providing insights on model structure.  
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Finally, moment-independent techniques provide insights 

on the influence that uncertain inputs have on the output 
distribution. Borgonovo [1] showed by example that non-
informative results can be obtained when a decision maker 
relies on variance as the sole representative of the output 
uncertainty. As a result, moment-independent importance 
measures were proposed [8] [31] [17] where the entire output 
distribution is considered without specific reference to its 
moments. These moment independent measures are driven by 
the area between conditional and unconditional output 
distribution and hold independently of parameters correlation.  
For example, Borgonovo [1] proposed moment-independent 
sensitivity indicator   estimated as shown below : 

 

 

 
where is the PDF of y and is the conditional 

density function of y given  and the expected value represent 
the area enclosed between the conditional and unconditional 
model output densities obtained for a particular value of model 
input . In case of model output sparsity, transformation 
invariance can be used to improve sensitivity measure 
estimation accuracy [37] [38]. 

 
Since variance based techniques requires large number of 

model simulations, a meta-model can be used to replace the 
original model to make computational cost less expensive [39] 
[33] [32] [40]. For example, Baltman and Sudret [41] proposed 
the use of sparse polynomial chaos (PC) expansions in order to 
build up a PC-based meta-model to be used to compute 
sensitivity indices. More details on variance based techniques 
in general and Sobol indices in specific are provided in section 
2.1. 

 
A second relevant aspect discussed by researchers is role 

of DOE in general and orthogonal arrays in specific in variance 
based sensitivity analysis model building. For example, Tissot 
and Prieur [12] discussed the computational cost of estimating 
Sobol indices in terms of number of independent input vectors 
MC simulations. As a result, they proposed a new approach to 
estimate all the first-and second-order Sobol indices by using 
only two input vectors. Similarly Morris et al., [42] considered 
the use of permuted column sampling plans, including 
replicated Latin hypercube sampling (LHS), to estimate first-
order sensitivity coefficients. They used deterministic column 
permutations characterized by orthogonal array that eliminate 
coefficients estimation bias.   

 
In the next section, two traditional and widely used 

sensitivity analysis techniques will be reviewed; Sobol indices 
and Mckay correlation ratios. The former is a global sensitivity 
index while the latter is a local sensitivity one. Although both 
techniques use MC simulation for estimating the indices, Sobol 
uses simple or quasi random sampling while Mckay uses Latin 
hypercube sampling (LHS). Both of these techniques will be 
used as comparators to our proposed technique. 

2.1 Sobol Indices: 
 Suppose that a model  is an integral 

function defined in n-dimensional unit cube 
 Sobol [18] shows that f(x) 

can be decomposed into summands of different dimensions in 
the following functional ANOVA form:  

 
 

  
 where the integral of every summands over any of its 
independent variables are zero, i.e., 

 

 
Decomposition equation (2) has several interesting 

properties such as orthogonality between different terms as 
shown in equation (3) below: 

 

Reader is referred to [26] for more discussion on properties 
and theorems stemmed from decomposition equation.  

 
  The term ANOVA is used here because it provides the same 
interpretation as an ANOVA model in traditional design of 
experiments theory. For example fi (xi) can be viewed as the 
main effects, while  may be regarded as first order 
interaction effects, and so on. As a matter of fact, the one-
indexed term fi (xi) can be obtained by integrating the 
decomposition equation over all the indices but  and using 
orthogonality property [26] to obtain: 
 

 

 
where  indicates integration over all variables 

except . Equation (4) can be extended to the two-indexed 
summands , i.e., 

 

 
 
Assume further that f(x) is square integrable. Then, 

sensitivity estimates  can be defined as: 
 

 
 

where  and 

 

                 
The constants  and are called variances. Note that: 
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If x is viewed as a random variable vector uniformly distributed 
over the experimental domain, then D and  are the 
variances of  and  respectively and the 
ratios  are called global sensitivity indices. 
 

All  's are nonnegative and their sum is 
 

 
 
The indices   are sometimes called Sobol indices as 

they were proposed by Sobol [30] [18].  For a piecewise 
continuous function f (x), the equality  implies that 

.  Thus, the functional structure of f (x) can be 
studied by estimating the indices. 

 
The integral computation presented in the definition of 

 can be a challenging task.  In practice, the simplest way 
to estimate  by using the MC simulation method: 
generate random vectors  which are uniformly 
distributed over the unit cube in  , then  can be 
estimated as follows: 

 

 

      
It can be shown that this estimate is consistent and possess 

a root N convergence rate.  For a given randomly generated 
sample with size N, the sensitivity estimates can be estimated 
as the following:  

 

 

 
 

 

 

 
 

where  is a sampled point in the space , u and v denote 
projections of x on minus the variable. Hence, the 
term  is generated by summing the products of two function 
values: one with all sampled variables and the other with all 
variables re-sampled except the variable .  
 
Homma and Saltelli [26] extended this MC estimation approach 
to estimate the second order terms  as shown below: 
 

 
 
where , the left hand side represent the total 
variance due to variables  and  including interaction and it 
can be estimated by summing the products of two function in 
which all the variables are re-sampled except the variable  
and . According to Sobol [18] [30], the total number of 
random numbers which must be generated to evaluate a 
complete set of  is a matrix of size (N, 2n). The random 
numbers can either be generated using random sampling or 
some other form such as LHS as suggested by Mckay et al., 
[19]. 
     Note that Sobol decomposition is based on the assumption 
that  is measurable and its density function equals the 
product of the density function of each of the parameters  
[43]. The latter assumption requires that the inputs are 
statistically independent since correlated inputs deteriorate 
Sobol decomposition represented by equation 2 [40].  Saltelli et 
al., [44] proposed variance-based measures under correlation by 
identifying the smallest number of factors that lead to the 
highest output variance reduction using importance 
decomposition [45] shown in equation (16) in the next section. 
Another shortcoming of Sobol indices is the total reliance on 
variance to describe uncertainty. Saltelli [28] indicated that 
focusing on variance as the sole measure of uncertainty is 
equivalent to describing the output variable distribution using 
second moment only which could be misleading when 
considering uncertainty [1].  Huang and Litzenberger [46] 
showed that variance is sufficient to characterize variability 
only if model output is normal or the utility function of 
decision-maker is quadratic.   

 

2.2 Correlation Ratios and Local Indices: 
Let y be the output response of input vector , the 

variance of y, var(y), can be decomposed into: 
 

 
    

McKay [47] called the term )(var( ixyE  variance conditional 
expectation (VCE) and defined the correlation ratio CRi as: 

 

 

     
CRi reflects the proportion of variation of outputs explained by 
xi. The correlation ratios play a similar role in nonlinear 
regression settings to that of the usual correlation coefficient for 
linear relationships between the output and the input variables.  
Iman [45]  introduced a similar measure  represents the 
expected reduction in output variance that can be achieved if 
uncertainty of  is eliminated [28].  
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 Note that unlike Sobol sensitivity indices, correlation ratios 
only capture the marginal effects of xi which do not include 
their interactions.  Correlation ratios may be quite effective in 
identifying prospective variables that require further 
investigation, but they may not accurately identify the true 
importance of variables or subset of variables. When first order 
only indices are of interest, Saltelli [28] pointed that equation 
12 and 15 will provide the same rankings where both indices 
would be measuring the expected percentage of variance 
remaining if all parameters but the variable of interest were 
known.  
The correlation ratio is similar in principle to the tornado 
diagrams, one way sensitivity metric proposed by Morton et al. 
[48], and differential importance measures (DIM) [20].  In all 
these techniques, one input variable is varied at a time while 
other variables are fixed at their nominal values. All these one 
way sensitivity metrics suffer from local sensitivity measures 
deficiencies mentioned earlier. Namely, inability to capture 
effect of variables interactions, and sensitivity is evaluated 
locally around the output nominal value only.  
 

McKay et al., [19] suggested the calculation of correlation 
ratios using r-LHS where r is the number of LHS samplings.  
The analysis starts with generating a LHS with size of N for the 
k input variables. Then a new sample set with the same size N 
is generated by independently applying new random 
permutations to each of its k columns.   In this way, N k LHS is 
generated first and repeated r times using different 
permutations. 
 

Despite its accuracy, Sobol indices require a relatively 
large number of simulations which is dependent on the 
dimension of the model of interest. Mckay correlations ratios, 
on the other hand, require less number of simulations but lacks 
accuracy when interactions between input variables are present.  
In this paper, we propose the use of simpler sampling scheme 
using orthogonal array DOE followed by a simple variance 
reduction technique.  This approach is presented in the next 
section and proven to achieve high accuracy with much less 
sample size and analysis steps.  

3 Proposed Technique 
 
The proposed technique consists of two steps: a moment-
matching step where a design of experiment (DOE) is planned 
and conducted followed by a variance contribution analysis to 
calculate the sensitivity analysis indices.  The two steps are 
discussed in a more detail below. 

3.1 Moment-Matching: 
In this step, a DOE is used with properly selected levels for 

each input variable.  The theory behind this technique is 
explained by D’Errico and Zaino [49] for symmetrical 
distribution and extended by Seo and Kwak [50] to include 
non-symmetrical distributions as well. For a random variable x, 
the kth order moment about the origin of model  can 
be approximated using a quadratic formula with m nodes [50] 
as follows: 

 
 

where  is a density function of a random variable x with 
mean  and standard deviation , is weight 
parameter set, and  is coefficient set.  

If we are interested in matching the first four moments 
only, three nodes in the quadratic formula  is sufficient 
and parameter set  is determined by 
solving equation (18) below: 

 

 
 

where  is the kth order central moment of x  
  
  The basic idea here is to replace the random input 

variable x with three discrete levels  by selecting a 
mean-distance parameters   where  
and assigning weights to these three discrete levels such that 
the first four moments (mean, standard deviation, skewness and 
kurtosis) of the distribution of x are matched.   
 
Without any loss of generality, let the second level be the 
mean , i.e. α2= 0.  When k=4, we end up with four equations 
from (18) in addition to the constraint that the weights should 
add to one. The latter constraint is necessary to satisfy the 
equality in equation (18) when . These five equations are 
enough to uniquely estimate all unknown parameters as 
follows: 
 

 
 

 
 

 
 

 
 

 
 
where  and  are skewness and kurtosis of x PDF and 

 is replaced with level .  
The above equations can be solved simultaneously to get 

the three levels with its weights as follows:  
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One obvious limitation for the equations above is  has 
to be greater than one to have a nonnegative  
The above process is repeated for all input variables of model 
response .  Next, a full factorial DOE with all possible 
combination for all input variables is generated for which the 
response variable  is evaluated.  For each treatment, there is 
an associated weight,  where  are the weights 
associated with the . The moments of the response, y, can be 
approximated directly from the N data points based on the 
theory of numerical integration originally discussed by Evans 
[51] as follows: 

 

     
and 

 

    
where  is nothing but the variance of the response y. 
 

Note that a full factorial DOE will provide balance and 
orthogonality between input variables. These characteristics are 
necessary to prevent any bias towards any of the input variables 
and provide equal weight of variance contribution in the next 
step. Another advantage of the choice of  full factorial DOE 
is low number of experimental runs which is vital when model 
does not exist and experimentation is expensive or time 
consuming. Fractional factorial designs capable of handling 
variables with three levels and a minimum resolution of V can 
also be used to further reduce number of experiments. 
Resolution V guarantees that no main effects or 2-factor 
interactions are aliased with any other main effect or 2-
factor interactions. Reader is referred to Phadke [52] or 
Montgomery [53] for details on fractional factorial 
experimental designs.  

3.2 Variance Contribution 
 

Let’s set one of the input variables  to a fixed value using its 
mean, the total variance will be reduced to a new value, 

 Similarly, reduced variances can be 
estimated for the other possible values of  and averaged out to 
estimate the expected reduced variance  which 
is expected to be small if  is important. The variance 
decomposition in (14) can be written as: 

 

 
 

where  represent all the input variables except xi .  The first 
term in (23) corresponds to the reduced variance due to fixing xi 
over its possible values while the second term is the expected 
reduction of variance.  The second term measures what the 
variance of all of the input variables other than xi on average 
when we vary xi .When the fixed factor is significant, it is 
intuitively expected that the reduced variance will be 
significant while the expected reduced variance will be small.  
As a result, the main effect contribution of the fixed variable on 
sensitivity analysis can be approximated using the following:  
 

 

 
The numerator can be estimated using the same way as that of 
the variance of the response in equation (23) and the total effect 
term can be estimated using the following: 
 

 

 
 
Note that equation (25) is very similar in nature to Sobol 
indices, where both  and  are estimated as a 
function of the fractional variance that would be left if all 
factors but xi were fixed.  The variance estimation as proposed 
by moment-matching guarantees that the variance is estimated 
by averaging all the different level values of .  
 
Since the DOE used in variance estimation is full factorial, i.e. 
balanced and orthogonal, the sum of squares partitioning can 
also be used instead of variance decomposition as shown 
below: 

 

where  is the total sum of squares and  is the sum of 
squares of variable  and  is the sum of square of the 
interaction between  and  variables. Reader is referred to 
[53] for more details on sum of squares calculations. As a 
result, the sensitivity index of variable  can be estimated as 
follows: 

 

Similarly, the interaction sensitivity index can be estimated as   

 

Keep in mind that the sum of sensitivity indices of all variables 
and their interaction will not add up to one if the sum of square 
of error term  is not zero. This should not be an issue 
since  should be small relative to other terms if model 
used is accurate enough. 
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4 Numerical Examples 
 

In this section, the proposed technique will be illustrated 
using four examples.  The performance is compared to the two 
current methods discussed in section two. 

4.1 Example 1: Beam Deflection 
 
The first example discusses the maximum deflection of a 

statically indeterminate beam studied by Thoft-Christesen and 
Baker [54] and re-discussed by Seo et al., [50].  The maximum 
deflection of a 5 m beam can be written as: 

 
 

 
where P is the concentrated force measured in KN, E is 
modulus of elasticity measured in KN/m2, and I is the moment 
of inertia measured in m2. The description of these input 
random variables is provided in table 1. Moreover, the levels 
and weights computed using moment matching in equations 16. 
Note that the weight for a variable following   
normal or uniform distribution is  respectively. 
 
Table 1  
Beam deflection design variables 

Variable    
Distribution Gumble Normal Normal 
Mean 4 2.0E+07 1.0E-04 
Stdev 1 5.0E+06 2.0E-05 
Skewness 1.14 0 0 
Kurtosis 2.4 3 3 

2.2679 1.133E+7 0.653E-04 
4 2.0E+07 1.0E-04 

5.7321 2.866E+07 1.3464E-04 
0.1667 0.1667 0.1667 
0.6667 0.6667 0.6667 
0.1667 0.1667 0.1667 

 
Table 2 summarizes the sensitivity indices for the total 

effect of input variables and conjoint effect (effect of 
interaction of two variables combined) represented by *. Below 
is a description of how the analysis was carried out: 

 Sobol indices were estimated by generating random 
samples twice for each input variable to correspond to 
sample (1) and sample (2) in equation (12). The 
results show that increasing the random samples 
generated did slightly improve the accuracy of the 
sensitivity measures. This is shown by the second-
fourth columns in Table 2 where 10K, 100K, and one 
million random samples were generated to estimate 
Sobol sensitivity indices’.    

 The four moment-matching technique employed a 33 
full factorial DOE with three levels for each input 
variable and a total of 27 runs.  Appendix (A) shows 
the detailed calculations of the proposed technique. In 
general, since three levels are selected for each 
variable a is needed where k is the number of 
model variables. 

 
 To be able to compare McKay's correlation ratios with 

the moment-matching technique, we set the total 
number of runs equal to what’s required by the four 
moment-matching technique (i.e. 27 runs). Two LHS 
scenarios each with a total of 27 runs were considered:  
1. Generate a 9-run (9 levels) LHS then augment it 
with three distinct permutations with 9-runs each (r = 
3, N = 27).  
2. Generate a 3-run (3 levels) LHS then augment it 
with nine distinct permutations with 3-runs each (r = 
9, N = 27) 

In both scenarios, the levels are selected by 
uniformly dividing each variable range into intervals 
(number of intervals = number of levels for that 
variable) and select the midpoint of each interval as a 
level value. Note that the second scenario is nothing 
but a full factorial DOE, similar to the four moment-
matching technique, with different level values. The 
results in Table 2 are obtained using the second 
scenario since it provided better results than the 
former.  

Table 2 indicate that four and two moments matching 
techniques are very close to the Sobol indices but with much 
lesser runs than Sobol technique requires.  The results of 
McKay’s correlation ratios are consistent in terms of the order 
of the main effects only.  Although both McKay’s technique 
and the four moment-matching technique uses a 33 full factorial 
DOE , the four moment technique provided more accurate 
results due to the two following reasons: 

 The four moment-matching technique provided a 
better selection of the levels used in the DOE. 

 McKay’s technique stems from traditional 
ANOVA which treats all variables as uniform 
while the four moment-matching technique uses 
the variance contribution step which considers 
original variables distributions. 

 
Table 2 
 Sensitivity analysis results of example 1 

Varia
ble 

Sobol 
10K 

Sobol 
100K 

Sobol 1M CR Four 
MM 

P 0.015 0.012 0.010 0.004 0.014 
E 0.610 0.592 0.591 0.198 0.573 
I 0.399 0.362 0.369 0.127 0.367 

P*E 0.000 0.001 0.002  0.000 
P*I 0.000 0.006 0.004  0.000 
E*I 0.019 0.021 0.025  0.046 

 

4.2 Example 2: Oil pump 
 

The flow rate of a hydraulic oil pump  can be described in 
terms of three design parameters  as shown 
below: 
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Based on data provided by suppliers, the three design variables 
are found to have different skewed distributions as shown in 
Table 3 below: 

Table 3 
Oil pump design variables 

Variable    
Distribution Beta Gamma Exponential 
Parameters shape 1= 0.7 

shape 2=0.9 
shape=1, 
 scale=2 

 
threshold=0.1 

Mean 0.4375 2.02 3.07 
Variance 0.095 4.00 8.77 
Skewness 0.225 1.96 1.98 
Kurtosis 1.25 5.53 5.67 

0.13 0.713 1.11 
0.436 2.02 3.08 
0.812 7.25 10.93 
0.460 0.469 0.455 
0.166 0.413 0.431 
0.373 0.117 0.114 

The last six rows in Table 3 show the results of level and 
weight selection based on moment matching equations (16).  
Table 4 show a comparison summary between Sobol sensitivity 
indices using 10,000 random MC simulations and four 
moments matching sensitivity indices. The indices are fairly 
close in general. However there is a slight difference in terms 
of the importance of term. This difference is acceptable since 
the Sobol and moment matching importance ranking of terms is 
same as shown by third and fifth columns of Table 4 
respectively. 

Table 4  
Sensitivity analysis results of example 2 

Variable Sobol 
Index 

Sobol 
Importance 

index 

Four 
Moments 
Matching 

Moment 
Matching 

importance 
index 

 0.113 4 0.106 4 
 0.165 3 0.156 3 
 0.348 1 0.362 1 

 0.039 6 0.096 6 
 0.106 5 0.085 5 
 0.229 2 0.217 2 

Although input variables of this example are highly skewed, the 
moment matching technique was not significantly impacted. 

4.3 Example 3: Bottle sampling module 
 

During exploration phase of oil and gas wells, a sample of well 
reservoir fluid is captured and sent to a chemical lab for 
analysis. Figure 1 below depicts a concept design for bottle 
sampling module; one of the core modules of the sampling tool. 
To fill a sample in the bottle, a pump is used to push the sample 
downstream where a motorized valve (MV) is opened to direct 
the sample towards the bottles. The bottle is equipped with a 
normally open (NO) valve which is closed after filling the 
bottle. The bottle is typically filled with water behind the piston 

which will be pushed out using the pressure of the sample and 
pass through a check valve (CV). The check valve acts as a one 
way valve, i.e. prevents any fluid or gas to flow in the opposite 
direction 
 

Motor
Valve

NO

NO

CV

Bottle
1

Bottle
2

 
 
Figure 1 Oil and gas bottle sampling module 

The sampling module is a serial system, i.e. any failure in MV, 
NO, or CV will prohibit filling a sample. In order to increase 
the likelihood of capturing a sample, another redundant bottle 
along with NO valve is attached using a parallel configuration 
as shown in Figure 1.   Based on historical field data, all 
components are found to have a constant failure rate with a 
uniformly distributed failure rate λ as shown in Table 3. If 
failure is defined as failure to capture a sample, the mean time 
to failure can be written as: 

 

 
Table 5 
 Bottle sampling module variables 

Variable Min. Max.    
: Motorized 

valve failure rate 
0.004 0.006 0.004 0.005 0.006 

: Check valve 
failure rate 

0.0005 0.0006 0.0005 0.00055 0.0006 

: Normally 
open valve failure 
rate 

0.018 0.022 0.018 0.020 0.022 

 
The calculated Sobol indices for the main and total effects are 
summarized in Table 6 along with the results of both McKay's 
and moment-matching techniques. Both correlation ratio and 
moment-matching techniques used 27 total runs similar to the 
first example.  

Once again the four moment-matching technique 
demonstrated consistent results with respect to Sobol indices.  
 
Table 6 
 Sensitivity analysis results for bottle sampling module 

Variable Sobol 
Index 

CR 4 MM 

 0.718 0.829 0.726 
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 0.0001 0.000 0.0006 
 0.278 0.281 0.279 

 0.003  0.004 
 0.000  0.000 
 0.000  0.000 

 

4.4 Example 4: Engine Block and Head Joint Sealing Assembly  
 
 Engine block and head joint sealing assembly is one of the 

most crucial and fundamental structural designs in the 
automotive internal combustion engines.  The design of engine 
block and head joint sealing assembly is very complex 
involving multiple components with complicated geometry to 
maintain (proper sealing of combustion, high-pressure oil, oil 
drain, and coolant).  The selection of design parameter settings 
in this assembly (block and head structures, gasket, and 
fasteners) cannot be analyzed separately because of strong 
assembly interaction effects.  Because design decisions must be 
made upfront in the product development stage prior to the 
availability of physical prototypes, the use of computer 
simulation in the design process is eminent. To best simulate 
the engine assembly process and its operation, a finite element 
model (FEM) is used to capture the effects of three-dimensional 
part geometry, the compliance in the components, non-linear 
gasket material properties, and contact interface among the 
block, gasket, head, and fasteners [55].  An example of FEM 
for this system is shown in Figure 2. 

The computer model simulates the assembly process as 
well as engine operating conditions such as thermal and 
cylinder pressure cyclical loads due to combustion process. A 
computer experiment employing a fractional factorial design 
with 27 runs and six factors described in Table 7 was selected 
to optimize the design of the head gasket for sealing function. 
A review of fractional factorial designs and their applications 
can be found in Phadke [52] and Montgomery [53].  

Figure 2 Finite element model of engine assembly 

Table 7  
Head Assembly Variables 

Variable Mean STDEV    

x1: Gasket thickness 
(um) 

150 10 132.7 150 167.3 

x2: Stopper zone-to-zone 
transition (um/m) 

0.5 0.033 0.443 0.5 0.557 

x3: Coining depth (um) 22.5 2.5 18.17 22.5 25.24 
x4: Combined cylinder 
head/block deck face 
surface flatness 

1 0.33 0.428 1 1.57 

x5: Load/deflection 
variation 

1 0.33 0.428 1 1.57 

x6: Head bolt force 
variation (KN) 

48 2 44.53 48 51.46 

 
The small number of runs is necessary due to simulation 

setup complexity and excessive computing requirements.  The 
objective of the design is to optimize the head gasket design 
factors (x1-x4) to minimize the "gap lift" of the assembly as well 
as its sensitivity to manufacturing variation (x5, x6). The data of 
the experiment is shown in Table 8 where the response 
variable, y, is the gap lift. 

The finite element model is computationally intensive, thus 
a mathematical regression model was developed using the 
fractional factorial DOE in Table 8 as a surrogate model. For 
the purposes of sensitivity analysis and comparison with Sobol 
technique, this cheap-to-compute mathematical meta-model 
was used.  

 
Table 8  
Head Assembly Finite Element Model Results 

x1 x2 x3 x4 x5 x6 y 

2 3 2 1 2 3 1.53 
3 3 3 1 3 1 2.21 
1 2 2 1 3 3 1.69 

3 2 2 2 3 1 1.92 
1 2 3 1 1 2 1.42 

1 2 3 3 2 2 5.33 
1 1 1 2 3 3 2.00 
2 2 1 1 1 1 2.13 

3 1 3 2 1 2 1.77 
2 1 1 3 1 3 1.89 

1 3 3 2 1 3 2.17 
3 2 1 2 1 3 2.00 
3 1 2 1 2 3 1.66 

2 1 3 2 3 1 2.54 
1 1 3 1 2 1 1.64 

3 3 3 3 2 3 2.14 
1 3 1 3 3 2 4.2 
3 2 1 3 2 1 1.69 

1 1 2 3 1 1 3.74 
2 2 3 3 3 3 2.07 

2 3 2 3 1 1 1.87 
2 2 2 2 2 2 1.19 
3 1 2 3 3 2 1.7 

2 3 1 1 3 2 1.29 
2 1 1 1 2 2 1.82 

1 3 1 2 2 1 3.43 
3 3 2 2 1 2 1.91 
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The results for the engine sensitivity analysis using 

moment-matching technique and Sobol indices are shown in 
table 9 and 10 respectively. The results of moment-matching 
method are consistent with Sobol indices except for x1x4 term. 
This is due to the confounding resulted from using  
fractional factorial, which provides clear main effects and 
confounded second order terms such as x1x4 term 
Table 9  
Head Assembly four moments sensitivity analysis 

 x1 x2 x3 x4 x5 x6 
x1 0.304      
x2 0.000 0.036     
x3 0.000 0.000 0.003    
x4 0.456 0.000 0.000 0.165   
x5 0.000 0.000 0.000 0.000 0.024  
x6 0.000 0.000 0.000 0.000 0.000 0.013 
 
Table 10  
Head assembly Sobol indices 

 x1 x2 x3 x4 x5 x6 
x1 0.459      
x2 0.006 0.032     
x3 0.006 0.006 0.001    
x4 0.265 0.006 0.006 0.184   
x5 0.014 0.006 0.006 0.014 0.017  
x6 0.006 0.006 0.006 0.006 0.006 0.017 
 

5 Conclusions 
 
As shown by examples, moment matching technique up to 

the fourth moment provides accurate results for assessing the 
importance of the input variables with respect to total response 
variance.  Moreover, the technique requires less number of runs 
while providing comparable results to that of Sobol and McKay 
techniques. 

The main elements behind the moment-matching technique 
are better selection of the random variable levels, orthogonality 
in conducting the experiments, and modified variance 
decomposition. McKay's technique may provide orthogonality 
as in the examples presented, but moment-matching is superior 
due to the better selection of the levels of the variables and 
variance estimations.  
The main limitation of the proposed method is the satisfaction 
of    condition to avoid negative weights. Another 
limitation indicated by Sobol [18]; variance decomposition 
reflects the underlying function decomposition in the absence 
of correlations among the variables. Therefore, a variance 
based analysis such as the proposed technique is effective only 
when variables are independent. 
Examples 3 and 4 suggests that skewness of input variables and 
complexity of model output may have an impact on proposed 
technique accuracy.  This impact can be addressed by future 
research. 
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Appendix A 
 
For the beam deflection example illustrated in section 4.1; 

the following DOE was conducted: 
 
Table 1A  
Beam deflection example full factorial DOE 
 

P wp E 
107 

wE I 
10-4 

wI wG  G 

2.268 0.1667 1.133 0.1667 0.653 0.1667 0.0046 562.67 
2.268 0.1667 1.133 0.1667 1 0.6667 0.0185 955.82 
2.268 0.1667 1.133 0.1667 1.3464 0.1667 0.0046 1348.29 
2.268 0.1667 2 0.6667 0.653 0.1667 0.0185 1128.82 
2.268 0.1667 2 0.6667 1 0.6667 0.0741 1822.82 
2.268 0.1667 2 0.6667 1.3464 0.1667 0.0185 2515.62 
2.268 0.1667 2.866 0.1667 0.653 0.1667 0.0046 1694.32 
2.268 0.1667 2.866 0.1667 1 0.6667 0.0185 2688.82 
2.268 0.1667 2.866 0.1667 1.3464 0.1667 0.0046 3681.60 
4.000 0.6667 1.133 0.1667 0.653 0.1667 0.0185 427.35 
4.000 0.6667 1.133 0.1667 1 0.6667 0.0741 820.50 
4.000 0.6667 1.133 0.1667 1.3464 0.1667 0.0185 1212.97 
4.000 0.6667 2 0.6667 0.653 0.1667 0.0741 993.50 
4.000 0.6667 2 0.6667 1 0.6667 0.2963 1687.50 
4.000 0.6667 2 0.6667 1.3464 0.1667 0.0741 2380.30 
4.000 0.6667 2.866 0.1667 0.653 0.1667 0.0185 1559.00 
4.000 0.6667 2.866 0.1667 1 0.6667 0.0741 2553.50 
4.000 0.6667 2.866 0.1667 1.3464 0.1667 0.0185 3546.28 
5.732 0.1667 1.133 0.1667 0.653 0.1667 0.0046 292.03 
5.732 0.1667 1.133 0.1667 1 0.6667 0.0185 685.18 
5.732 0.1667 1.133 0.1667 1.3464 0.1667 0.0046 1077.65 
5.732 0.1667 2 0.6667 0.653 0.1667 0.0185 858.18 
5.732 0.1667 2 0.6667 1 0.6667 0.0741 1552.18 
5.732 0.1667 2 0.6667 1.3464 0.1667 0.0185 2244.98 
5.732 0.1667 2.866 0.1667 0.653 0.1667 0.0046 1423.68 
5.732 0.1667 2.866 0.1667 1 0.6667 0.0185 2418.18 
5.732 0.1667 2.866 0.1667 1.3464 0.1667 0.0046 3410.96 

 

Equations (16) are used to estimate three levels and weights for 
P, E, and I. A sample of calculations is shown below for E: 

 
 
 

 

 
The mean and variance of the response G is estimated using 
(14) and (15) respectively: 

 

 

 

Based on the variance reduction technique, the effect of 
each input variable is estimated. The effect of P will be 
demonstrated here as an example.  First the reduced variance of 
G is estimated using the nine runs of the full factorial DOE 
where P equals its mean=4.0 as shown in Table 2A and weight 
of P is adjusted to be 1. This reduced variance represents 

 with .  

 
and 

 

 
The next step is then to estimate the same reduced variance 

for and  and calculate the weighted 
average to have the contribution of  and  without any 
interaction with . This will give you 

 
 

Then the total contribution of P without the influence of all 
interactions between P and E, and P and I can be estimated as 
shown below: 
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Table 2A  
Effect of P in beam deflection example 

 
P wp E 

107 
wE I 

10-4 
wI wG  G 

4.0 1 1.133 0.1667 0.653 0.1667 0.0278 427.35 
4.0 1 1.133 0.1667 1 0.6667 0.1111 820.50 
4.0 1 1.133 0.1667 1.3464 0.1667 0.0278 1212.97 
4.0 1 2 0.6667 0.653 0.1667 0.1111 993.50 
4.0 1 2 0.6667 1 0.6667 0.4444 1687.50 
4.0 1 2 0.6667 1.3464 0.1667 0.1111 2380.30 
4.0 1 2.866 0.1667 0.653 0.1667 0.0278 1559.00 
4.0 1 2.866 0.1667 1 0.6667 0.1111 2553.50 
4.0 1 2.866 0.1667 1.3464 0.1667 0.0278 3546.28 

 
Another way to estimate the sensitivity indices is by 

calculating the sum of squares as shown in Table 3A  
 

Table 3A  
Sum of squares of beam deflection example 

 
Term SS Di 

P 329,609  

E 13,509,397 0.573 
I 8,651,582 0.367 

P*E 0 0 
P*I 0 0 
E*I 1,082,994 0.046 

Total 23,573,581  

 


