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Abstract— Reliability growth testing (RGT) has been widely 
used for assessing the reliability of complex systems in many 
industries such as automotive, aerospace, and oil and gas 
industry. The traditional common and practiced approach of 
RGT is to assess the initial reliability of the system by 
building and testing few prototypes for a period of time that 
extends from few months to years. Then, based on the initial 
reliability, initial testing time, and reliability target; the total 
testing time is determined using power law based models such 
as Duane and AMSAA/Crow models.  In this paper, a new 
method is proposed to allocate RGT testing time for both 
subsystems and system level in order to minimize system 
failure rate under limited cost and time resources. Unlike 
existing methods, intensity failure rate is assumed to be 
dynamic and modeled using Weibull distribution. Modeling 
using Weibull is more realistic and increases the applicability 
of the proposed method in real life applications. The proposed 
method is motivated by real life examples and its effectiveness 
is demonstrated by real-life examples.  

Keywords—Reliability Growth Testing; Duane; Repairable 
systems;  

I.  INTRODUCTION  
Reliability Growth Testing (RGT) is a valuable tool to 
measure product reliability improvement either through 
planned and dedicated testing or through gradual upgrade and 
improvement of the fielded product [1]. RGT involve planning 
and execution of test plans, data collection, modeling, fixing, 
and re-testing to validate reliability requirements of products 
or systems.    The majority of RGT models are either based on 
Duane empirical graph model, or AMSAA/Crow model which 
is considered to have higher mathematical fidelity than Duane 
[2]. Both models are based on the non-homogenous Poisson 
process (NHPP) assumption which can be modeled using the 
power law model. Mathematically, this means that the 
expected number of failures at some test time t can be 
fitted through a power model such as Weibull as shown 
below: 

 
where s and s represent the system Weibull scale and shape 
parameters, respectively.  The failure intensity or failure 
frequency at time t can be represented by u(t) as shown in 
equation 2 below: 

 
  

Depending on the value of the shape parameter s, the failure 
rate can be decreasing over time (reliability grow) if s < 1.0 
or constant if s=1.0 or increasing (reliability decay) if 

s>1.0 .  Scale and shape parameters of the intensity function 
are nearly always estimated using the maximum likelihood 
(ML) method [2] and can change only if a hardware or 
software change is imposed on the system which will change 
the system reliability performance. 
For a repairable system following NHPP process, the 
probability that a system of age t fails between t and  is 
given by .  Unlike component probability of failure, 
repairable system probability of failure is not conditioned on 
no-system failure up to time t. 
To plan an RGT test for a system, initial values for s and s 

are assumed to be known at some initial time . These initial 
values are obtained based on previous experience of a similar 
product or after engagement of system testing for some time. 
Once initial testing time, initial intensity rate, and shape factor 

 is obtained, the final testing time  is calculated as shown 
below [3]: 

 

 

Hence, the required testing time to demonstrate a certain 
failure intensity is: 

 

 

 
The model in equation 3 above uses a growth rate parameter  
which represents the rate of reliability improvement, or failure 
rate reduction. Mean time between failures (MTBF) can also 
be used instead of failure intensity as well.  
 
Practitioners tend to follow two different approaches to derive 
the initial values: physical RGT initial testing and qualitative 
RGT testing. The first approach is more common where 
engineering prototypes of systems are built, tested, and initial 
estimates of failure intensity and shape factors are estimated 
based on testing time, failure frequency and correction actions 
made or planned. To shorten the total testing time, accelerated 
test methods are often used for long life products. However, 
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using accelerated methods is not practical for all applications 
because of complexity or lack of understanding of failure 
mechanisms. During the initial physical RGT testing, it is not 
uncommon for some organizations to use a correlation factor 
of two to four between RGT testing and field. The rationale 
behind such factor is the criticality of testing personnel during 
RGT and their ability to detect issues or failures sooner than 
customers in the field. Project managers are usually not in 
favor of using such approach since it does not help them to 
allocate resources needed for RGT execution upfront. This 
issue gets more complicated when building the test units is 
expensive and time consuming like the case in aerospace, 
automotive, and oil and gas applications.  
In the second approach, i.e. qualitative reliability growth, 
engineering judgment and previous experience with similar 
products are used to guess  [4] [5]. This method relies on the 
expertise of the team involved in the assessment and 
complexity of the new product developed; hence it could be 
subjective and risky. 
Although the AMSAA/CROW planning has been used 
extensively in different industries [6] [5] [7] [8], it has two 
major drawbacks:  
1. The model assumes that shape and scale parameters do 

not change over time. The most common approach for 
RGT is to deploy testing of systems, collect data, and 
analyze failures, fix failure modes and re-test again. The 
model parameters may change over time with more and 
more corrective actions implemented 

2. The model does not account for the variability of the 
intensity rate estimate.  Uncertainty may put 
unwarranted emphasis on a system with great potential for 
improvement; however this is risky if the failure intensity 
estimate is not accurate [3]. It might be more beneficial to 
allocate the resources to a system with lower potential for 
improvement but with great confidence in the intensity 
estimate.  

  Moreover, the 2008 Defense Science Board Task Force 
raised a major concern regarding the major risks of the initial 
assumptions [9]. As a result, many researches use the 
Bayesian reliability demonstration theorem [10] [11] [12] to 
come up with more reliable initial assumptions. The Bayesian 
method considers various prior information such as historical 
test data, field data, design changes, corrective actions, and 
field data for similar products and factors this information in 
the initial assumptions. However, research on information 
integration in RGT is relatively scarce [13] and can be 
subjective [14].  Another enabler approach is the failure mode 
elimination using stress tests [7] where reliability credit is 
given based on the ability of the design team to “weed out” a 
potential failure mode based on the understanding of the 
physics of the failure mode through detection or prevention 
risk mitigation.  

 
To tackle the second drawback, i.e. variability consideration, 
Coit [3] proposed a method to allocate subsystem RGT test 
time in order to minimize failure intensity and variance of 

failure intensity estimate of all subsystems with limited 
resources.  His model is summarized below: 

 

 

 
 

Where 
  and  are shape and scale parameters for subsystem i 

 percentile of a standard normal 
distribution 

 number of subsystems 
 additional planned test time for subsystem i 

 initial test time already accumulated for subsystem i 
 cost of testing subsystem i per unit time 
 available cost budget for RGT testing 

The first term in the objective function represents the 
summation of subsystem intensity estimates and the second 
term represents the variance of these estimates. Although the 
above model provides a major improvement over 
AMSAA/CROW model, it suffers from the following 
limitations: 

1. It assumes that the estimate of failure intensity (at time 
) is normally distributed or number of subsystems s 

is large enough to be approximated as normal 
according to the central limit theorem (CLT) [3] [15]. 
Using a more flexible and generic distribution such as 
Weibull distribution is more reasonable especially 
when dealing with mechanical or electro-mechanical 
systems [16]. The validity of Weibull distribution will 
be demonstrated using the motivational example in the 
next section. 

2. The model accounts for RGT testing of subsystems 
only. Although testing at subsystem level only is very 
attractive due to cost, in practice RGT testing is done 
at both subsystem and system level since some of the 
failure modes do not manifest themselves except at 
system level. As a matter of fact, researchers classified 
failures into two categories: surfaced failure modes 
occur during in-house RGT testing, and latent failure 
modes occur post system installation or post RGT 
[15].  

The purpose of this article is to propose a new method to 
allocate RGT testing time that addresses the above two 
limitations. The new method considers both subsystem and 
system testing time allocation in order to minimize the system 
intensity failure rate, i.e. maximizing system reliability while 
using a more generic distribution for intensity function such as 
Weibull.  This work is motivated by the increasing importance 
of RGT planning which is recognized by many practitioners 
and researchers [9] [17]. 
 
The rest of this article is organized as follows. The next 
section will present a real-life example that demonstrates the 



need for a new method. Section III outlines the proposed 
methodology based on the Weibull distribution assumption. 
Section VI provides a numerical real life example to 
demonstrate the proposed methodology followed by 
conclusion in the last section. 

 

II. MOTIVATIONAL EXAMPLES 
Data acquisition systems (DAQ) are complex telemetry 
systems used to capture operational data from complex 
systems such as power generators, transformers, airplanes and 
oil and gas tools. A 650 newly developed DAQ systems were 
tested for a full year as part of RGT plan. In an attempt to 
understand the variability of failure intensity rate  as a 
function of testing time, the authors analyzed the reliability 
data for this DAQ 650 systems by dividing them into 
subgroups of 60’s and analyzing the failure rate of the 
subgroups using the NHPP assumption at 500, 1000, and 1500 
hours’ time points. At each time point, failure and survival 
records were considered up to that time point while any 
records after that were censored.  Figure 1 summarizes the 
results of the failure intensity of each subgroup at the three 
time points along with fitted curves for the mean and variance 
of the intensity rates. The primary axis was used for all data 
points except variance for which the secondary vertical axis 
was used.  
As expected, both failure intensity mean and variance dropped 
with more testing (reliability grow) and discovered failure 
modes were mitigated. A closer look at the failure intensities 
at each time point indicates that the best fit distribution is 
Weibull and not Normal. Figure 2 and Figure 3  show the 
Weibull and Normal probability plots of the DAQ failure 
intensity at the three time points respectively.  The p-values of 
normality test is less than 0.1, indicating that the failure 
intensities at 500, 1000, and 1500 hours are not normal. Table 
1 summarizes the shape and scale parameter estimates for the 
DAQ subsystem.  Although the scale parameter of the Weibull 
distributions dropped with time, the shape parameter did not 
change significantly (0.5 ± 0.02).  

Table 1 Shape and scale parameter estimates for DAQ 
example 

Statistic Time Point 
500 1000 1500 

Shape parameter  0.49 0.52 0.5 
Scale parameter  3.2E-6 1.1E-6 8.5E-7 
 
The DAQ subsystem was tested as a standalone subsystem 
thoroughly first, then it was tested part of a full system test. It 
was found that at least 20% of failure modes were discovered 
only when the DAQ was tested with other subsystems in real 
life settings. This behavior was also observed in other 
equipment’s RGT such as construction, automobile, and oil 
and gas equipment’s as well. This is understandable since 
some failure modes are due to subsystem-subsystem 
interactions which will not be exposed from subsystem testing 
level only.  

 
 

Figure 1 DAQ RGT data analysis 

 
Figure 2 Weibull probability plot for DAQ u(t) 

 
Figure 3 Normal probability plot for DAQ u(t) 

 

III. PROPOSED METHODOLOGY 
The proposed methodology for RGT planning consists of two 
steps: intensity mean and variance mapping, and testing time 
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allocation. Each step will be discussed in detail in the next two 
subsections. 

 

A. Failure Intensity Mean and Variance Functions Mapping 
  The mean of the failure intensity can be described in terms of 
an exponential function in accordance with Poisson NHPP 
model shown in equation 1 as follow: 

 
 

 
 

where  is the mean of failure intensity at time t,  and  
are mean coefficients. The mean of failure intensity is 
expected to drop over time, so the exponential coefficient 
should be negative. Moreover, a target for failure intensity 
mean should be set upfront indicating the expected failure 
intensity at certain testing times. For example, the expected 
life (T) for the DAQ system is 1500 hours; historically the 
failure intensity for similar products was estimated to be 1.155 
E-06 failures/ hour at 500 hours. The targets were set to lower 
the intensity by one third at 1000 hours of testing and by half 
at expected life, i.e. 1500 hours. Figure 4 depicts the DAQ 
targets and initial historical intensity  along with a fitted 
exponential equation. As a result,  and 

. Quigley and Walls [18] argued that RGT approach 
should focus on the identification and realization of faults, 
which if removed are likely to lead to the improvement in 
system reliability. RGT planning typically starts with a 
thorough investigation of existing and anticipated system 
failure modes and identification of improvement opportunities. 
Setting failure intensity targets is a natural and reasonable step 
since areas of improvement and its impact are already defined. 

 
Next the mean targets above will be mapped to Weibull 
distribution mean equations as follow: 

 

        

          

 

 

Where , , and  are time points with failure intensities 
targets are set. In the case of DAQ example, , , and  are 
500, 1000, and 1500 hours respectively.  and  are the 
shape and scale parameters of the failure intensity Weibull 
distributions at the target time points and  is the Gamma 
distribution. Keep in mind that the  and values 
are only valid for the DAQ example and can be different 
depending on the set targets by development team. Without a 
loss of generality, the shape factor  will be assumed 
constant across all time points. This is a fair assumption since 
the same systems will be used to carry out testing across all 
data points with additional failure modes show up and 

mitigation of old ones.  Hence, the overall shape factor will 
change slightly as shown in DAQ and other examples. 

Moreover, the gamma function   is not sensitive 

to changes relative to the shape parameter.  

 
Figure 4 DAQ intensity function targets 

For variance of intensity function, we will assume that 
standard deviation is a function of testing time as shown 
below: 

 
 

 
Where  is the standard deviation of failure intensity at 
time t ,  are the standard deviation coefficients. 

 
Similar to intensity mean mapping step above, the standard 
deviation is mapped to standard deviation of a Weibull 
distribution at the three target points as shown below: 

 

 

 

 

With the assumption of constant shape parameter, i.e. 
, equations (6-8) and (10-12) can be used 
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to solve for the six unknown variables 
namely: , , , , , and . Once these 
variables are estimated, both mean and variance functions of 
failure intensity can be formulated.  In the case of the DAQ 
system, , , 

, , , and . One 
fundamental assumption for the proposed method above to 
work is that  which means that the subsystem will 
become more reliable with testing. If this assumption is 
violated for any subsystem, this means that the subsystem 
does not warrant any testing since more testing will make the 
subsystem less reliable. 

 

B. Testing Time Allocation 
With only one explanatory testing time variable for the 
location  and variability , the upper quantile function 
for the failure intensity function can be expressed as: 
 

 
 
where  is the pth percentile of the smallest extreme 
function. The choice of the smallest extreme function  
was based on the fact that  follows a Weibull distribution.  
Based on the above, we propose the following problem 
formulation which is to minimize the lower-bound of the 
system failure intensity in equation 13. The system is 
composed of subsystems that work in series and the system 
intensity failure is the summation of the subsystem intensity 
functions. 

 

 

 

 

 
Where, 

 number of subsystems 
 total testing time of subsystem i 
 initial test time already accumulated for subsystem i 

 additional planned testing time of subsystem i 
 detection ration of subsystem i testing  

 planned test time for system 
 cost of testing subsystem i per unit time 

 cost of system testing per unit time 
 available cost budget for RGT testing 
 available time budget for RGT testing 

The objective of the model is to minimize the system intensity 
failure which can be obtained as a summation of the intensity 
failure means of the individual subsystems. It also accounts 
for intensity variability represented by the square root of the 

sum of subsystem variances. The total allocated testing time 
for each subsystem  is made of three components: historical 
test time  based on actual accumulated testing or the 
performance of similar products, additional testing time 
planned for subsystem  and testing time planned for the 
whole system . Since there are certain failure modes 
resulted from subsystem-subsystem interaction which cannot 
be detected with individual subsystem testing, a detection 
ration  ranges between 0 and 1 will be used to give more 
credit to system testing over subsystem. Since 80% of failure 
modes were only detected during subsystem testing, a 

 was used for DAQ subsystem. The decision variables for 
the model is the additional planned subsystem and system 
testing time, i.e.  and  respectively. 
 In addition to the non-negativity constrain, two constraints 
were used to limit total time and cost budget for testing.   

 

IV. NUMERICAL EXAMPLE 
 

To demonstrate the use of the proposed methodology the 
following real life example will be used. An oil and gas 
hydraulic system used for pressure and oil sampling that 
consists of five subsystems is under development with mission 
duration of 1500 hours. Due to confidentiality reasons, the 
original data of each subsystem is altered and presented in 
Table 2. The total budget dedicated for RGT testing is limited 
to $3000,000 and testing time is limited to 18 months (3,168 
hours) with system testing cost rate of $3500/hr. The system 
testing cost rate is substantially higher than subsystem testing 
rates for two reasons: system testing is inclusive to all 
subsystems hardware and requires more staff for operation; 
and it is done in a real-life setting in a pressure well where 
subsystem testing is done in lab environment. The last three 
rows in Table 2 are the results of the mean and variance 
mapping stage of the proposed method above. 

Table 2 Oil & gas hydraulic system RGT data 

 Subsystems 
 1 2 3 4 (DAQ) 5 

 1.8E-6 1.5E-7 1.0E-6 1.16E-6 1.7E-6 
 500 300 350 500 500 
 2.5E-6 1.8E-6 1.23E-6 1.6E-6 2.4E-6 

 -6.9E-4 -5.8E-4 -6.04E-4 -6.9E-4 -6.9E-4 
 0.8 0.8 0.8 0.8 0.8 

 ($/hr) 700 900 600 600 800 
 0.6 0.7 0.8 0.5 0.7 
 -5.16 -6.32 -5.17 -4.64 -5.16 
 -3.5E-4 -2.5E-4 -2.7E-4 -3.5E-4 -3.5E-4 

 
Since the objective function is a smooth nonlinear function, 
the generalized reduced gradient (GRG) solving method [19] 
with forward derivatives was selected for solving the proposed 
model. As a matter of fact, the objective function is concave 
when the decision variables are nonnegative. 



Table 3 below show results of baseline model solution in the 
first row along with 13 more scenarios carried out to 
investigate sensitivity of solution relative to some input 
parameters using a 95% upper limit for intensity, i.e.  

. 
The base line (run 1) indicates that testing on the subsystem 
level should be done for subsystems one and four for 905 and 
1891 hours respectively, followed by system testing for 371 
hours. Subsystems one and four had the lowest shape factors 

 and high initial failure intensity 
 which makes them good candidates for improvement. 

Runs 2-5 had the same parameter values as the base line case 
with the exception of the detection ration which is varied from 
0.6-0.9. It is clear that the lower the detection ration, the less 
powerful the subsystem testing is, and more reliance on 
system testing should be done. The same argument can be 
made for the system cost rate, the lower the system cost rate 
the higher the system testing allocation is (compare run 3 with 
11 and 14). The gradual increase of the shape factor for all 
subsystems from 0.6-0.9 in runs 6-9 showed a very little 
effect, if any, on the testing time.  

Table 3 Hydraulic system RGT results 

 
run βu D CS  t1 t2 t3 t4 t5 

1 0.6, 
0.7, 
0.8, 
0.5, 
0.7 

0.8 3500 371 905 0 0 1891 0 

2 0.5 0.9 3500 347 1054 0 0 887 880 

3 0.5 0.8 3500 348 1070 0 0 890 860 

4 0.5 0.7 3500 505 802 0 0 605 546 

5 0.5 0.6 3500 1500 0 0 0 0 0 

6 0.6 0.8 3500 343 1215 0 11 598 1001 

7 0.7 0.8 3500 341 1278 0 92 395 1063 

8 0.8 0.8 3500 339 1318 0 144 264 1103 

9 0.9 0.8 3500 338 1345 0 178 177 1130 

10 0.5 0.9 3000 421 1032 0 0 876 838 

11 0.5 0.8 3000 804 443 0 0 271 219 

12 0.5 0.7 3000 1000 0 0 0 0 0 

13 0.5 0.9 2500 1500 70 0 0 0 0 

14 0.5 0.8 2500 1500 0 0 0 0 0 

 

V. CONCLUSIONS 
In this article, a proposed method for estimating RGT testing 
requirement is presented and demonstrated using a real life 
numerical example. The method is composed of two stages: 
intensity mean and variance mapping, followed by testing time 
allocation using non-linear model with testing time as decision 
variables. The proposed test method is limited to systems with 

continuous time to failure and has potential for reliability 
growth, i.e. shape factors of less than one.  
The new method is based on modeling intensity function at 
any time using Weibull distribution.  It also allows for the 
allocation of system and subsystem testing at the same time.  
As a result, it applies to a greater range of systems compared 
to the previously existing methods. 
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